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Abstract

In this thesis we address the challenges of hypervisor verification for multicore
processors. As a first contribution we unite different pieces of hypervisor
verification theory into a single theory comprising the stack of highly nontrivial
computational models used. We consider multicore hypervisors for x86-64
architecture written in C. To make code verification in a C verifier possible,
we define a reduced hardware model and show that under certain safety
conditions it simulates the full model. We introduce an extension of the C
semantics, which takes into consideration possible MMU and guest interaction
with the memory of a program. We argue that the extended C semantics
simulates the hardware machine, which executes compiled hypervisor code,
given that the compiler is correct.

The second contribution of the thesis is the formal verification of a software
TLB and memory virtualization approach, called SPT algorithm. Efficient TLB
virtualization is one of the trickiest parts of building correct hypervisors. An
SPT algorithm maintains dedicated sets of ‘‘shadow’’ page tables, ensuring
memory separation and correct TLB abstraction for every guest. We use our
extended C semantics to specify correctness criteria for TLB virtualization and
to verify a simple SPT algorithm written in C. The code of the algorithm is
formally verified in Microsoft’s VCC automatic verifier, which is ideally suited
for proofs performed on top of our semantic stack.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich eingehend mit der Verifikation von
Hypervisorn und den Herausforderungen, die dabei auftreten. Als ein
Hauptergebnis werden erstmalig die verschiedenen Teile der Hypervisor-
Verifikationstheorie zu einer einheitlichen Theorie zusammengefasst, in der
mehrere komplexen Rechenmodelle auf einander aufbauen. Als Zielplattform
für die Virtualisierung wählten wir eine x86-64-Architektur und betrachten
Hypervisoren für Multicore-Prozessoren, die in C implementiert sind.
Um Code-Verifikation in einem C-Verifizierer zu ermöglichen, definieren
wir ein reduziertes Hardware-Modell und zeigen, dass unter bestimmten
Bedingungen das ursprüngliche Modell davon simuliert wird. Die C-Semantik
wird so erweitert, dass mögliche MMU- und Gast-Interaktionen mit dem
Speicher eines Programms berücksichtigt werden. Unter der Annahme,
dass der Hyperviser-Code mit einem korrekten Compiler kompiliert wird,
argumentieren wir, dass die erweiterte C-Semantik die Hardware-Maschine,
welche den kompilierten Code ausführt, simuliert.

Ein weiterer Beitrag dieser Arbeit ist die formale Verifikation eines
Algorithmus zur Speicher und TLB-Virtualisierung, der mit Shadow
Page Tables (SPTs) arbeitet. Ein SPT-Algorithmus verwaltet Seitentabellen
und garantiert Speicherseparierung sowie eine korrekte TLB-Abstraktion
für alle Gäste. Wir benutzen unsere erweiterte C-Semantik, um die
Korrektheitskriterien für die TLB-Virtualisierung zu spezifizieren und um
einen einfachen SPT-Algorithmus zu verifizieren. Die Korrektheit des in
C implementierten Algorithmus wurde formal bewiesen mit Hilfe des
automatischen Beweiser VCC, der von Microsoft entwickelt wurde.
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1
Introduction

1.1 Motivation

Hardware virtualization is a technology used to provide a layer of abstraction
between a computer system and the users utilizing this system. The first
virtualization solutions appeared in 1960s and were designed to be used on
large and expensive mainframes, usually consisting of multiple CPUs and
operating on some sort of the shared memory. Today, with the intensive
growth of hardware capabilities, shared multi-threading and shared multi-
processing is becoming an integral part of the computer mainstream. As
a result, hardware virtualization has recently emerged as a key technology
in many areas. Virtualization solutions often provide good benefits in cost,
efficiency, and security [HN09]. Virtualization is becoming an important part
of safety and security-critical systems in avionics, medical, automotive, and
military engineering [GWF10, Day10]. In order to fully achieve the benefits
standing behind virtualization, one has to pay significant attention towards
reliability of virtualization software.

A hypervisor, also called a virtual machine monitor (VMM) [SN05], is a
piece of system software, that is responsible for hardware virtualization: it
virtualizes system resources of the host hardware machine and makes them
available for guest operating systems (OS) (Figure 1.1). A guest OS (or simply
guest) in this case is running in the virtual machine (VM) (also called the
guest partition) provided by the hypervisor. The clients are either aware of the
underlying software layer (para-virtualization) or have an illusion of being the
only system running on a physical machine (full virtualization). A hypervisor
provides this illusion by saving the state of the virtual machine (VM) when it
is not running, and by intercepting and virtualizing certain instructions and
events occurring during the execution of the guest code. In case of para-
virtualization the code of the guest OS has to be explicitly ported to comply
with the API of the hypervisor, while in case of full virtualization the guest OS
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Figure 1.1: Running multiple VMs on a single hardware machine.

can run unmodified.
Conventional testing, when applied to hypervisors, does not always

provide satisfactory results. Hypervisors are hard to debug and precise
testing of hypervisor features in not always feasible. At the same time,
hypervisor correctness is of critical importance for the reliability and safety
of the whole computer system. Another important concern is hypervisor
security. Hypervisors are often designed for use with general-purpose
operating systems, which are allowed to run any code, including malicious
or invalid one. The hypervisor’s duty is to guarantee that such code does not
escape the virtual environment and does not affect execution of other clients,
which might only run security-critical trusted applications.

For these reasons, and because of their relatively small size, hypervisors
make a viable and interesting target for formal verification. Formal software
verification is an act of proving or disproving correctness of a piece of software
w.r.t to its specification, using formal methods of mathematics. The main
advantage of formal verification in comparison to testing is the fact that
verification ensures correct behaviour of the program for all possible inputs
and all possible traces, while testing can only guarantee absence of bugs for
those inputs and traces, which have been included in the test suite.

Proving formal functional correctness of a hypervisor is not a trivial task.
Hypervisor is said to be correct, if it simulates execution of its guest systems.
Establishing this simulation formally in a theorem prover is challenging for a
number of reasons:

• hypervisors are usually written in a high-level language, such as C,
together with portions of assembler code. To verify such code one has
to consider mixed semantics of C and assembler, while theorem provers
are normally designed for verification of high-level program code only,

• in order to formally prove guest simulation, one has to come up with a
realistic hardware model and to encode this model in a theorem prover.
Formalizing hardware specifications of modern processors is itself a non-
trivial task,

• a hypervisor is running in the most privileged hardware level. Like a
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Figure 1.2: Execution thread of the hypervisor: virtualization layer.

regular OS kernel it is responsible for controlling address translations of
clients and is normally running in a translated mode itself. Hence, when
verifying hypervisor code one has to consider the presence of address
translation,

• most hypervisors today are designed to run on multi-processor systems
with shared memory. The shared memory of a modern multi-processor
machine is not sequentially consistent: it has caches and store buffers.
Both caches and store buffers are visible for the programmer writing the
hypervisor code and have to be treated in the verification.

For the reasons stated above, hypervisor verification (as well as OS
verification in general) is considered to be an important and challenging topic
in the field of system and software verification.

The work presented in this thesis closely addresses the challenges of
hypervisor verification. The main goals of this thesis are (i) to develop
methodology and to build a formal model stack for verification of the
virtualization layer1 of a generic hypervisor for (a subset of) x64 architecture2

and (ii) to apply this methodology for verification of a translation lookaside
buffer (TLB) virtualization algorithm3, called Shadow Page Table (SPT)
algorithm in Microsoft’s automatic verifier for concurrent C code (VCC).

We have chosen TLB virtualization as the main target for our verification for
several reasons. First, efficient TLB virtualization is perhaps the trickiest part
of building correct hypervisors (particularly for processors without hardware
support for the second level of address translation (SLAT)). Second, precise

1Virtualization layer of the hypervisor consists of services, responsible for virtualization. This
includes intercept handling, context switching, and hypercalls (Figure 1.2). In contrast to that,
the kernel layer of the hypervisor is responsible for low-level features, such as thread switch and
inter-processor communication.

2There is no standard naming convention for the 64-bit extension of the x86 hardware. AMD
and Intel use the names ‘‘AMD64’’ and ‘‘Intel 64’’ (former ‘‘IA-32e’’ and ‘‘EM64T’’) for their vendor-
specific implementations, while the names ‘‘x86-64’’ and ‘‘x64’’ are used in the industry as vendor-
neutral terms.

3Though we call it ‘‘TLB vitualization’’, it is in fact ‘‘TLB, MMU, and memory virtualization’’
algorithm.
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reasoning about memory management unit (MMU) and TLB behaviour is
central to the correctness of the memory manager of the hypervisor: since
flushing of the TLB is quite expensive, memory managers often use different
tricks to avoid flushes whenever possible by allowing the hardware TLB to be
out-of-sync with the page tables (PTs). Third, correctness of TLB virtualization
is crucial for deriving such important security properties, as separation of
guest partitions. Fourth, in spite of the critical importance of MMU behavior,
it has never been seriously treated in kernel and hypervisor verification.

1.2 The Problem of TLB Virtualization

When the code is executed in the VM, address translation consists of two
stages: first, a guest virtual address is translated into the guest physical
address, which would be used for memory accesses if the code was run on
the physical machine alone. Second, the guest physical address is translated
into the host physical address, which is then used for accesses to the memory
of the host machine. The second stage of address translation is controlled by
the hypervisor and is transparent to the guest OS.

Translations of guest physical to guest virtual addresses are defined by the
means of guest page tables (GPTs), which are located in the memory of the
virtual machine. All accesses to the guest memory performed by the guest
code are virtualized by the hypervisor with the help of the virtual TLB4.

There are two main approaches for TLB and memory virtualization: a
hardware-assisted solution and a software solution. In the hardware-assisted
approach, which requires the hardware support for SLAT (called ‘‘nested
paging’’ by AMD [Adv08] and ‘‘extended page table mechanism’’ by Intel
[NSL+06], [Int11, Chapter 25]) MMU operates with two sets of page tables.
The first one is the set of guest page tables and the second one is the set
of nested page tables, which implement the guest physical to host physical
translation. The hypervisor normally maintains a separate set of nested page
tables for every guest OS. The hardware MMU walks two sets of page tables
simultaneously: every guest physical address, obtained from the fetched GPT
entry is translated to the host physical address using nested page tables. Thus,
to perform a single translation of a virtual address in the long mode (with 4
levels of address translation), the TLB has to perform at most 20 fetches of PT
entries (1 fetch of GPT entry and 4 fetches of nested PT entries for every level
of translation), compared to at most 4 fetches for a regular translation.

A standard approach to software TLB virtualization in the hypervisor is
to maintain a set of SPTs (Intel uses the term ‘‘active page table hierarchy’’
instead [Int11, Chapter 28]), where each SPT is a ‘‘shadow’’ of some GPT,
which is linked (or was recently linked) to the page table graph of the guest
(Figure 1.3) [Phi06].

SPTs are used by the host TLB to perform address translations when the
machine is executing the guest code. They are maintained solely by the
hypervisor and are not visible for a guest OS running in the VM. Guest

4Intel uses the term ‘‘virtual TLB’’ only as a name for software mechanisms for virtualized
page translations [Int11], while we consider a more general meaning of a virtual TLB, as a virtual
device being responsible for providing address translations for VMs independently on what TLB
virtualization approach is used.
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Figure 1.3: Software TLB virtualization: shadow page tables.

TLB-controlling instructions, such as TLB invalidation or modification of
control registers (e.g., CR3 register), are intercepted by the host hardware and
virtualized by the hypervisor. When a memory access by the guest results in
a page fault, the hypervisor emulates the steps of the virtual MMU by walking
GPTs, setting access and dirty bits in the GPTs, and caching the translations
in the SPTs. Thus, the SPTs, the intercept handlers, and the host TLB act in
concert to provide a virtual TLB abstraction to the VM.

While the hardware-assisted TLB virtualization today is the preferable
choice in most cases (because of quite high costs for entering and exiting
the hypervisor) [AA06], the support for a software VTLB implementation is
still present in most of the modern hypervisors [Kiv07, BDF+03, Wal02].
Disadvantages of the hardware approach, for instance, include the large
overhead in the number of memory accesses due to the required fetches of
host PTEs. As a result, in certain user scenarios software TLB virtualization
approach may perform faster than the hardware one [BLD+10, BLD11]. Even
more promising looks the adaptive virtualization approach [WZW+11], which
dynamically switches between SPTs and nested paging depending on the
workload of the hypervisor.

Processor with the hardware-assisted virtualization support, besides the
hardware SLAT feature (which is not necessarily supported), provide a number
of other virtualization services [Adv11a, Int11, Int12], which normally include:

• support for multiple address spaces. Every translation in this case is
tagged with an address space identifier (ASID); only one ASID can be
active at a time,

• the mechanism to save the state of the VM to the memory (in AMD64
this is achieved by VMSAVE instruction),

• the mechanism to automatically load the saved state of the VM to the
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registers of the host processor (in AMD64 this is achieved by VMLOAD
and VMRUN instructions),

• a dedicated execution mode (we call it guest mode in contrast to
hypervisor mode), where certain instructions and events are treated as a
special kind of traps called intercepts, and

• an intercepts mechanism, which automatically stops execution of the
guest code if a certain instruction or event has been encountered, and
starts execution of an intercept handler, which is a part of the hypervisor
(in AMD64 this is called a VMEXIT event).

In the hardware models presented in this thesis we assume the presence
of virtualization extensions, but no hardware SLAT. Yet, an SPT algorithm
presented in Chapter 9 relies only on TLB support for multiple address spaces
and with slight modifications can be also applied in hypervisors, which run
on processors without virtualization extensions. Such hypervisors perform
virtualization purely by software means, e.g., using a mechanism called binary
translation [VMw07].

1.3 Related Work

Hardware Model. A formal definition of a (multi-processor) hardware model
involves two main aspects: the shared memory model and the model of the
instruction set architecture (ISA). In this thesis we focus on the memory model
of the x64 architecture, while leaving the ISA part of the model as a black box.

The first sequentially consistent memory model for a multiprocessor
machine was defined by Lamport in [Lam79]. Since then an extensive research
in the field of memory models has been done, leading to the development
of various relaxed memory models, which are not sequentially consistent
[DSB86, AG96, HKV98]. Most of the modern, real-world architectures
implement relaxed memory models due to the number of optimizations and
speed-ups which they provide in comparison to a sequentially consistent
memory model. The memory model of the x64 architecture is described in
the Intel and AMD manuals and white papers [Adv11a, Adv11b, Int11, Int07].
The way how the memory model is described in vendor manuals is by listing the
rules for reordering and execution of memory accesses. Several attempts have
been made to come up with a formal model capturing these rules. Sarkal et. al.
formalized the rules for accesses with a write-back memory type in [SSN+09].
Further, they developed the x86-CC model, which is a relaxed memory model
of the x86 architecture with causal consistency. This modelled turned out
to be too strict and to exclude certain execution traces, possible on the real
hardware. As a result, the new model was developed, called x86-TSO [OSS09].
TSO stands for total store ordering, the memory model first introduced for the
SPARC V8 processor [SI94]. The TSO model allows reads to return the value of
its own processor’s write before this write is made visible to other processors,
while not allowing the read to return the value of other processor’s write, which
is not yet delivered to the memory5. The scope of the x86-TSO model covers
typical user code and system code, which is using write-back memory type,

5It is believed, that the x86 memory model is by vendor intentions a variation of the TSO
model.
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does not have misalignment, self-modification of the code or the page tables,
and which does not cause exceptions.

Degenbaev in [Deg11] presents a comprehensive model of the x64
architecture, including both the memory model and the ISA model. The
work has started as part of the Verisoft XT project on Microsoft’s Hyper-V
hypervisor verification. Since the model was intended to be used for system-
code verification, it includes low-level design features, such as TLBs, APICs,
interrupts, different cache-modes, etc. The hardware model presented in this
thesis is based upon Degenbaev’s model.

Hardware Reduction and Ownership Discipline. Despite the fact that
almost all modern hardware processors have relaxed memory models, most
verification techniques for concurrent code still rely on sequentially consistent
memory [App11, CMST10, O’H04]. To apply these approaches for programs
running on a hardware machine with a relaxed memory model one has to
ensure additional guarantees and to prove a number of hardware reduction
theorems [DPS09]. A hardware reduction theorem is a simulation theorem
between two hardware models, where one model has less visible components
than the other. Applying proper reduction theorems, one can for instance
ensure that a program verified for the sequentially consistent memory, also
behaves correctly on a hardware machine with a store buffer, a cache system,
and an address translation mechanism. Caches and MMUs are usually made
invisible by asserting properties on page tables and hardware registers. In
contrast to that, making store buffers invisible in a concurrent environment
requires arguing about the code of the program itself.

When dealing with separation logic, a popular approach to store-buffer
reduction is to show absence of data races in a program, by ensuring lock
protection for all shared resources [AS07, OSS09]. If a program is data-race
free, then one can make store buffers invisible simply by ensuring that all
operations with synchronization primitives (e.g., locks) are performed with
interlocked atomic instructions. O’Hearn [O’H04] uses ‘‘ownership’’ of memory
locations for separation logic to make sure that dereferencing or disposing a
memory cell does not cause a race condition. The ownership of a given cell
can be transferred in and out of shared resources such as semaphores. In
[BCHP05] the ownership concept for separation logic is replaced with more
general ‘‘permissions’’. This allows arguing about shared memory cells, which
can be written by one thread and read by many threads. The concept of
fine-grained permissions is used by Appel in his Verified Software Toolchain
project [App11] and has been recently integrated into Leroy’s formally verified
CompCert compiler [LABS12].

Though a mechanism of permissions for separation logic is powerful
enough to argue about data-race free concurrency, including multiple-read
single-write protocols, it is still not sufficient for fine-grained concurrency and
‘‘write-write’’ data races. In contrast to that, Ridge [Rid07] uses operational
reasoning on top of a TSO memory model and guarantees sequential
consistency by explicitly performing a store buffer flush after every write to
shared data. Owens in [Owe10] shows sequential consistency for a TSO
memory model by ensuring absence of so-called triangular races, i.e., races
between a read and write operation where the read operation is preceded by
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another write operation on the same thread, and there are no synchronization
primitives in between (all other kinds of data races are allowed). Linden and
Wolper in [LW11] use a similar approach and provide an algorithm for insertion
of memory fences to guarantee that store buffer is appropriately flushed.
Cohen and Schirmer in [CS10] generalize this approach by introducing an
ownership discipline, which also ensures absence of triangular races for
volatile data by requiring a store buffer flush to be performed in between a
shared write and a subsequent shared read. At the same time their model
allows sequential accesses (without any flushes) to lock-protected non-volatile
data by allowing ownership transfer under certain conditions to occur. Both
Owens’ and Cohen-Schirmer’s approaches avoid having to consider store
buffers as an explicit part of the state of the target model.

The ownership model introduced in this thesis is done in the style of
Cohen-Schirmer model, though enforcing stronger restrictions on the code
(by requiring all volatile accesses to be performed with interlocked atomic
instructions). As part of the future work, we plan to replace the ownership
discipline in our framework with the Cohen-Schirmer ownership model.

OS Kernel Verification. A good survey on the OS verification has been
given by Klein in [Kle09]. The first groundbreaking attempt in pervasive
system verification was the famous CLI stack project [BHMY89a, BHMY89b],
which included verification of the KIT kernel [Bev89b, Bev89a]. KIT stands for
‘‘Kernel for Isolated Tasks’’ and is a simple multitasking kernel implemented
in assembler. The Flint project did not directly aim at the OS verification,
but has contributed into the verification of the low-level context switching
[NYS07, FSGD09] and into the treatment of hardware interrupts and pre-
emptive threads.

Substantial progress towards the goal of a fully verified OS kernel was made
in L4.verified and Verisoft projects. The main code verification technology
used in both projects is the interactive environment in the theorem prover
Isabelle [Sch05]. The Verisoft project [Ver08] was aimed at the pervasive formal
verification of the entire computer system from the hardware level (VAMP
processor [BJK+06]) up to application level [AHL+09, HP07, APST10]. As part
of the project the functional correctness of the CVM (Communicating Virtual
Machines) microkernel was proven [IdRT08]. CVM was implemented in a C
dialect called C0 [LPP05] together with inline-assembly. Correctness of CVM
was mainly stated in the form of a simulation theorem between the kernel
implementation and abstractions of virtual user processes.

The L4.Verified project [KEH+09] focuses on the functional verification
of high-performance C implementation of the seL4 (secure embedded L4)
microkernel [EKD+07], which is an evolution of the classical L4 microkernel
[Lie95]. In contrast to Verisoft, L4.Verified considers not a slightly changed
variant of C, but rather a true subset of C including such unsafe features
as pointer arithmetic and unchecked type casts. Hence, implementation of
seL4 can be compiled with a regular C compiler. In L4.verified the compiler
is considered as a part of the trusted code-base, while in Verisoft a non-
optimizing C0 compiler has been verified [LP08a, Pet07].
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Hypervisor Verification. Compared to the OS kernel verification, field of the
hypervisor verification is less mature. While there is a number of verification
projects dealing with hypervisors, most of them considered only certain safety
and security properties leaving complete functional verification out of scope.
The Nova micro-hypervisor verification project [TWV+08] aimed only at low-
level properties of the code, such as memory and hardware safety and
termination, and did not consider virtualization correctness at all [Tew07].
In [BBCL11] authors show isolation properties for a minimalistic model of
a hypervisor running on a simplified hardware without MMUs and TLBs.
[CVJ+12, VMQ+10] aim at showing memory integrity of the hypervisor, i.e.,
the fact that the hypervisor memory can not be modified by software running
at a lower privilege level. Both isolation and integrity properties follow from
the correctness of TLB and memory virtualization, which we address in this
thesis.

Alkassar and Paul in [AP08] outline a virtualization correctness proof of a
simple hypervisor for a single-core RISC machine with a single level address
translation but without a TLB. The functional verification of this hypervisor
was first presented in [AHPP10] and was completed with respect to the
assembly portions in [Sha12]. The result of the verification is a simulation
proof, carried out in Microsoft’s VCC verifier. This work was done in the
frame of the Verisoft XT project [The12] and was a precursor for the main
target of the Verisoft XT, which was the complete verification of the Hyper-
V hypervisor including virtualization correctness [LS09]. Yet, this goal was
not fully achieved. The work presented in this thesis was started as another
part of the Verisoft XT, which aimed at the development and verification of
a prototypical academic hypervisor for the x86 architecture. A sketch of the
top-level TLB virtualization proof from this thesis was previously presented in
[ACH+10, ACKP12].

TLBs/MMUs in OS and Hypervisor Verification. MMU and TLB behavior
has never been seriously treated in OS and hypervisor verification. For
example, the Verisoft project used a synthetic hardware model without TLBs,
while the L4.verified project explicitly assumed that the TLBs were kept in sync
with the page tables, essentially making the TLBs transparent to software. A
similar approach was chosen in the Nova micro-hypervisor verification project,
which used an abstract model of IA-32 hardware with MMU, but without the
TLB. To make this argumentation sound, page tables were assumed to be
read-only and to provide non-aliasing address translations. In our verification
framework we use an analogous approach to handle MMU behaviour when
the hypervisor’s own code is being executed. For the case when the guest
code is running (and SPTs are used for address translations) we make the TLB
component visible on the C level and allow the MMU to perform writes to the
memory by setting access and dirty bits in page tables.

Integrated and Mixed Semantics. As part of the work presented in this
thesis we extend the semantics of the C-IL language (C Intermediate Language
[Sch12b]) with the hardware state, responsible for execution of the guest
memory accesses. This involves modelling the behaviour of the hardware
MMU on the C level and exposing the current TLB and register state in the
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integrated C-IL + HW semantics. Previously the problem of arguing about the
hardware state and the device behaviour on the source-code level has been
treated in the projects mentioned above.

In the L4.verified project the state of the C machine is extended with
the hardware components, which are accessible with the assembly functions.
These assembly functions are not verified in a single framework with the rest
of the code, but are isolated into separate functions and are verified separately
against their specification. This specification is then used in the verification
framework every time when an assembly function is called.

The Verisoft project followed a similar approach, but used a single formal
framework for all proofs. The low-level hardware components were abstracted
into an extension of the C0 state. The effect of inline assembly and device steps
was modelled by so-called XCalls [AHL+09], which are atomic specifications
updating both the extended and the original state of the C0 machine.
Extension of the semantic stack with XCalls made it possible to verify assembly
portions and device drivers in Hoare logic and to transfer the result of the
verification down to VAMP assembly with devices. In order to justify XCall
semantics a reordering theorem was proven, where all interleaved and non-
interfering device steps are delayed until some inline assembler statement is
encountered [Alk09]. In this thesis we also rely on a reordering theorem to
justify the soundness of the C-IL + HW semantics. The difference between the
XCalls and our approach is that we consider a different interleaving scheme,
where the steps of ‘‘devices’’ (which in our case are the steps of the processors
executing guest code) may interleave with the program steps only at the so-
called consistency points (Chapter 5).

Schmaltz and Shadrin in [SS12] present an integrated operational small-
step semantics model of C-IL language with macro-assembler code execution
(C-IL + MASM). They sketch a theory connecting the semantic layer with an
ISA-model executing the compiled code. C-IL + MASM semantic model was
used to justify verification of assembly portions of a simple hypervisor for the
VAMP processor [Sha12].

Theory of Multicore Hypervisor Verification. The overall theory of
multicore hypervisor verification presented in this thesis is the result of
the joint work, which started in the frame of the Verisoft XT project and
continued afterwards on the chair of Prof. Paul in the Saarland University.
In [DPS09] Degenbaev, Paul, and Schirmer outlined the pervasive theory of
memory for TSO machines stating cache, SB, and TLB reduction theorems
and basic compiler consistency. The general methodology for multicore
hypervisor verification was sketched by Paul in talks given in Strasbourg and
Kaiserslautern during meeting of the Verisoft XT project6 and by Cohen in his
talks and discussions summarized in [HP10]. The methodology and the overall
theory of multicore hypervisor verification were further developed in numerous
oberseminar talks and discussions at the chair. Cohen, Paul, and Schmaltz
in [CPS13] outline the current state of this theory (including the topics which
are not addressed in this thesis, such as e.g. interrupts and assembly code
verification). Nevertheless, this thesis is the first document where different
pieces of hypervisor verification theory are formally put together into a single,

6Slides of these talks can be provided by Paul upon request.
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uniform paper-and-pencil theory and a formal semantic stack for multicore
hypervisor verification is presented.

1.4 Outline

This chapter ends with the description of notation used throughout this thesis.
The remainder of the thesis is structured as follows.

Chapter 2 gives a brief introduction on the general theory of I/O automata
and simulation proofs.

In Chapter 3 we introduce the abstract hardware model of (the subset
of) x64 architecture. The hardware is modelled as two communicating I/O
automata, where one automaton is responsible for instruction execution and
the other one is responsible for memory accesses and TLB operations. We
model in detail only the second automaton, while leaving the first one as a
‘‘black box’’, which can be further instantiated with the x64 ISA.

In Chapter 4 we introduce a reduced hardware machine and prove
hardware reduction theorems. We perform reduction in three phases: first
we reduce caches, then we reduce store buffers, and finally - make address
translation invisible by reducing TLBs. Caches are reduced for both the guest
and the hypervisor execution modes, while store buffer and TLB reduction
is done only for the hypervisor mode. Reduction is proven in the form of
a step-by-step simulation theorem, between a reduced hardware machine
and an original one. We introduce the safety properties, which have to be
maintained on the reduced machine in order for the reduction theorems to
go through. Caches are made invisible by requiring all memory accesses to
be performed in a ‘‘write-back’’ memory mode. TLBs are made invisible in the
hypervisor mode, by fixing the properties of the page tables used for hypervisor
own address translations and ensuring that the memory region, where these
page tables are located, stays unchanged afterwards. To prove a store-buffer
reduction theorem we introduce a simple ownership discipline, which has to
be maintained by all steps of the hardware machine.

In Chapter 5 we describe the operational semantics of the C-IL language,
enriched with some virtualization primitives. We introduce a reordering
theorem for execution sequences of reduced hardware machines. In a
reordered execution sequence interleaving of steps of different processors can
be done only at so-called consistency points. The set of consistency points
in this case must include all hardware states before and/or after an access
to a shared resource. We lift the safety properties defined for the reduced
hardware model, including the ownership discipline, to the C-IL level and
sketch a compiler correctness theorem for a generic, optimizing compiler.

In Chapter 6 we extend the C-IL semantics with the ghost state.
In Chapter 7 we make certain parts of the hardware model visible in another

extension of the C-IL semantics, which we call C-IL + Hardware (C-IL + HW).
We show that a regular C-IL program running in parallel with the guest code
behaves exactly the same way, as defined by our C-IL + HW semantics. As a
result, we can prove properties over such program in a C program verifier by
extending the program with the hardware component (and a hardware thread)
and verifying the combined program altogether. Further, we add the ghost
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state to C-IL + HW and obtain the C-IL + HW + Ghost semantics, which we
later use for verification of the SPT algorithm.

In Chapter 8 we specify correctness of TLB virtualization. We define the
coupling invariant between abstract data structures of the hypervisor and
the abstract configuration of VMs, which are modelled as instances of the
hardware model introduced in Chapter 3. Correctness of TLB virtualization is
stated in the form of a simulation theorem, between the execution sequence of
the hypervisor program inside C-IL + HW + Ghost semantics and the execution
of abstract VMs. In Chapter 8 we prove this theorem for non-deterministic
transitions of the hardware component of the C-IL + HW + Ghost machine.

In Chapter 9 we provide implementation of a simple SPT algorithm and
give the most crucial arguments on its correctness: we maintain the coupling
invariant after every step of the program and show that the abstract VMs
perform only those steps, which are supposed to be emulated by a given
intercept handler.

In Chapter 10 we discuss verification of the SPT algorithm from the previous
chapter in VCC. We focus on modelling of the hardware component of a thread
from C-IL + HW semantics, modelling of the virtual hardware state in VCC,
and simulation of steps of the abstract VMs. We provide the most crucial
portions of VCC annotations, necessary for understanding of our approach
and methodology.

In Chapter 11 we conclude and outline the future work.

1.5 Notation

The set of integers is denoted by Z. The set of natural numbers including 0
is denoted by N. The set of natural numbers in the range from 0 to k − 1 is
denoted by Nk. The set of boolean values {0,1} is denoted by B.

The type for a list of n ∈ N values of type T is denoted by Tn. For a given
list l ∈ Tn, we use the functions hd(l) and tl(l) to return the head and the
tail of list l respectively. The i-th element of list l is identified by l[i] (we start
counting from index 0) and the length of list l is obtained by the function |l|.
The last element of list l is identified by last(l). The sublist from the element i
to the element j is identified by l[j : i]. The concatenation of two lists l1 and l2
is denoted by l1 ◦ l2. The reverse list of list l is denoted by rev(l).

The function map(f ∈ T1 7→ T2, l ∈ Tn1) ∈ Tn2 returns list l′, where every
element is obtained by applying the function f to a respective element of the
list l.

The set of all possible strings with the elements from the set T is denoted
by T∗:

T∗
def
=

∞⋃
n=1

Tn ∪ {[]}.

The power set (i.e., the set of all subsets) of a set S or of a type T is denoted
by 2S and 2T respectively. The power set of T can be also considered as a
boolean map. Hence, the following types are considered equivalent:

2T = (T 7→ B).
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The pair of two elements a ∈ T1 and b ∈ T2 is denoted by (a, b) ∈ (T1 × T2).
We access the first element of a pair with the function fst and the second
element with the function snd.

The type of n-bit strings {0,1}n is denoted by Bn. We use the overloaded
operators +, − , · , / to perform arithmetic operations (modulo 2n ) on bit strings
of type Bn. When performing arithmetic operations on bit strings of different
length, we zero-extend the shorter string to match the longer one and perform
the operation modulo 2 in the power of the length of the longer string. To
convert a bit string a ∈ Bn to a natural number we write 〈a〉, where

〈a〉
def
=

i<n∑
i=0

(ai × 2i).

For conversion of a natural number b ∈ N to a bit-string with the length n ∈ N
we write binn(b).

A record R is defined as a tuple with named components and their types.
For example, a record type containing two components of types Bn and Bm is
defined as follows

R
def
= [a ∈ Bn , b ∈ Bm].

The component a of a record x ∈ R is obtained by a.x. The update of
components of a record x ∈ R with the values a′ ∈ Bn and b′ ∈ Bm is denoted
as

x := x[a 7→ a′, b 7→ b′].

For update of component a of nested record (z.t) ∈ R, we use a shorthand
z := z[t.a 7→ a′], which is equivalent to z := z[t 7→ t[a 7→ a′]]. The construction
of a new record y ∈ R with component values a0 and b0 is denoted as
y := R[a 7→ a0, b 7→ b0].

We use maps to identify functions which can be passed as parameters to
other functions. To distinguish an access to a map m ∈ Bn 7→ B from an
application of a ‘‘normal’’ function, we use notation m[i] for elements of the
map. We update a map in the same way, as we update a record:

m := m[i 7→ a′, j 7→ a′].

We use maps to boolean values for modelling sets. In this case we may
also write i ∈ m, to denote that i is an element of the set m (m[i] = 1).

Let m ∈ T1 7→ T2 be a map and T3 ⊂ T1. Then we write m[T3] to restrict m
to T3:

m[T3] ∈ T3 7→ T2

∀i ∈ T3 : m[i] = (m[T3])[i].

1.5.1 Relations

The hardware in this thesis is modelled as an I/O automaton (Section 2.1).
An I/O automaton is a labeled transition system with input and output
parameters. We define the hardware transition relation by splitting it into
smaller transitions, each of which can happen nondeterministically, if the
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precondition for its triggering is satisfied. The overall transition we denote by
∆.

To denote that hardware transition a from state h to h′ is a part of ∆ we
write (h, a, h′) ∈ ∆, or simply h

a
→ h′.

For every hardware transition we provide i) its label with the list of the
input parameters, ii) the guard of the transition (i.e., the set of conditions
under which the transition may occur), and iii) the effect of the transition on
the resulting hardware configuration.

Each hardware transition has its own visibility scope, where the following
names are visible:

• input parameters of the transition,
• the state of the hardware components before the transition has occurred,
• the state of the hardware components after the transition has finished,
• function names,
• free variables declared inside the transition relation, which are implicitly

universally quantified.

As an example of a hardware transition relation, we consider the following
transition of the abstract cache (Definition 3.23):

label fetch-line-from-ca(i ∈ Pid, j ∈ Pid, pa ∈ Bqpa)

guard
ca[j].v[pa],
mt = ca-memtype(p[i], tlb[i], pa),
cacheable(mt),

effect
ca′[i].v[pa] = 1,
ca′[i].data[pa] = ca[j].data[pa]

In order for cache i to successfully fetch a line from cache j, the data has to
be valid in cache j, and the address has to have a cacheable memory type. As
a result of this transition, the data is copied from cache j to cache i, and is
marked to be valid in cache i. We assume implicit framing for components of
the hardware not stated to be changed explicitly.

Formally, the transition given above is transformed into the following
statement:

∀i, j ∈ Pid : ∀pa ∈ Bqpa : ∀mt ∈ MemType
h.ca[j].v[pa]
∧mt = ca-memtype(h.p[i], h.tlb[i], pa)
∧ cacheable(mt)
∧ h′ = h[ca[i].v[pa] 7→ 1, ca[i].data[pa] 7→ h.ca[j].data[pa]])
=⇒ (h, fetch-line-from-ca(i, j, pa), h′) ∈ ∆.

For the quantified variables inside function and transition definitions, we
often omit their type if it can be clearly inferred from the context.

Given hardware states h and h′, the expression h
�
→ h′, where |�| = n and

n > 0 denotes a hardware execution sequence h0, �0, h1, �1, . . . , �n , hn, where
h0 = h, hn = h′ and every next hardware state is obtained from the previous
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one by performing the corresponding step from �:

∀i < n : h i
�i
→ h i+1.

In case when we define a function or a predicate on the hardware execution

sequence h0 �
→ hn, we explicitly provide as a parameter only the sequence of

actions �, assuming that hardware states h i for this sequence can be derived
from the context where the function/predicate is used. For instance, in the
definition of a safe hardware sequence (Definition 4.39) we write

safe-seq(�, o, o′) def
= ∃o0, . . . , on : o0 = o ∧ on = o′ ∧ ∀i ≤ n : safe-conf (h i , oi),

assuming that the states h0, h1, . . . , hn are provided implicitly. Further, we use

the predicate safe-seq(�, o, o′) only in the context where the sequence h0 �
→ hn

is well-defined.

1.5.2 Functions

For every function used in the hardware model we provide its signature
(function name, parameters, and the type of the result). We write a function
body as a mathematical expression. Sometimes we only declare a function
and leave the function body undefined e.g., if its definition varies depending
on execution modes or some vendor-specific architectural features.

The functions which we use in the definition of hardware models often
return a meaningful result only on a subset of possible inputs. For these
functions we define the function domain as a predicate with the name f√,
where f is a function name. We overload the functions read and write to
represent data accesses to different components of the hardware system.

When defining operational semantics of the C intermediate language we
also sometimes use partial functions which we denote as f ∈ T1 ⇀ T2, where
f is the name of the function. The domain of such function is then denoted by
dom(f ).

1.5.3 Invariants

Throughout this thesis we establish a number of properties over the hardware
and the software, which are then later used in the proofs of theorems and
lemmas. Since these properties are supposed to hold for all configurations of
the system, we call them invariants.

When defining an invariant, we provide its name and the established
property, e.g., the following definition of an invariant (Invariant 4.27)

name inv-cr3-cacheable(h ∈ Hardware)

property ∀i ∈ Pid : ¬h.p[i].CR3.CD

is equivalent to

inv-cr3-cacheable(h) def
= ∀i ∈ Pid : ¬h.p[i].CR3.CD.
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The correspondence (or equivalence) between
two transition systems I and S, where
I is regarded as implementation and S
is considered as specification, is often
expressed by the concept of trace inclusion,
where the traces of the implementation
system are included into the traces of
the specification one [SAGG+93]. If all
traces of I are contained in the traces
of S, then we say that S (specification)
simulates I (implementation), and call the
correspondence between I and S simulation.
The simulation proof formally captures the
natural structure of many informal ‘‘paper-
and-pencil’’ correctness proofs. Intuitively,
a system S simulates the system I (or I is
simulated by S) if the system S matches
all steps of I. The existence of simulation
between I and S allows to reduce the
behaviour of I to the behaviour of S when
showing some properties of I. More precisely,
if S simulates I, then any property exhibited
by I is also exhibited by S.
We use simulation as a base technique
for different proofs presented in this thesis.
This includes a hardware reduction proof,
a compiler correctness theorem, and a TLB
virtualization proof. In this chapter we
introduce basic I/O automata and give a brief
overview on simulation proofs.
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2.1 I/O Automaton

An I/O automaton [LT87, LT89] is a labeled transition system, which performs
internal and external actions. The internal actions are performed on the
internal parts of the state and are not visible outside of the system. The
external actions are divided into input and output actions and either require
some input data to occur, or produce the output result.

An I/O automaton, or simply an automaton, A is a tuple consisting of four
components, where

Definition 2.1 I
I/O automaton

• states(A) is a set of states (either finite or infinite),
• start(A) is a nonempty set of start states s.t. start(A) ⊆ states(A),
• sig(A) is an action signature (ext(A), int(A)), consisting of external

actions ext(A) and internal actions int(A). The set ext(A) of external
actions consists of input actions in(A) and output actions out(A). The
set of all actions acts(A) is ext(A) ∪ int(A),

• steps(A) is a transition relation of A s.t.

steps(A) ⊆ states(A) × acts(A) × states(A).

For s, s′ ∈ states(A) and a ∈ acts(A) we say that (s, a, s′) ∈ steps(A) is a
step or a transition of the automaton A. The state s is called a pre-state and
s′ is a post-state of the transition.

An execution fragment ω = s0, a1, s1, a2, s2, . . . of A is a finite or infinite
sequence of states and actions starting with a state s0, ending in a state sn (if
the sequence is finite), and satisfying for all i < n

(si , ai+1, si+1) ∈ steps(A).

For an execution fragment ω we use the functions first(ω) and last(ω) to
obtain respectively the first and the last configuration (if the sequence is finite)
of A in the fragment ω.

The trace (or the external behaviour) of an execution fragment ω of an
automaton A is the sequence of external actions extracted from ω. We denote
the trace of ω by trace(ω).

An execution of A is an execution fragment ω starting in a state s0 = first(ω)
s.t. first(ω) ∈ start(A). We say that a sequence of actions � ∈ acts(A)∗ is a trace
of an automaton A if there exists an execution ω of A s.t.

trace(ω) = �.

We denote the set of all traces of A by traces(A).

2.2 Simulation Proofs

Different types of simulation, having generally the same goals, can be applied
to different kinds of systems. The most commonly used types of simulation
for software and hardware verification are refinement, forward simulation and
backward simulation. The refinement is the most straightforward type of
simulation, where every step of I has a corresponding step of S, which begins
and ends in the respective images of the beginning and ending states of the
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step in I [LV95]. As a result, every trace of I is at the same time a trace of
S. The correspondence between the states of I and S is established by an
abstraction function, which is called a refinement from I to S.

While the refinement is a powerful simulation technique for verification of
sequential programs and for showing properties of deterministic automata, it
is often inapplicable for verification of complex, distributed, non-deterministic
transition systems in the concurrent environment. Particularly, constructing
the refinement mapping from I to S is not always feasible. More general
approaches, which could be applied to a broader set of problems, are forward
and backward simulation proofs. The idea of both approaches is to construct
an execution sequence of the specification system for every step of the
implementation system in a way, that the simulation relation holds between
the starting and ending states of the machines. The difference is in the way how
these sequences are constructed: in the forward simulation the construction
starts from the starting state, and in the backward simulation - from the
ending state of the implementation system.

2.3 Forward Simulation

The simulation between I/O automata requires that for every step of the
implementation system there exists an execution fragment of the specification
machine, s.t.

• the trace of the fragment equals to the trace of the step of the
implementation machine and,

• the simulation relation between the two systems holds after the step.

Let I and S be I/O automata. Then the simulation relation (or coupling
invariant) between I and S is a binary relation R ⊂ states(I)× states(S), s.t. :

J Definition 2.2
Forward simulation

• if t ∈ start(I), then there exists s ∈ start(S) such that (t, s) ∈ R,
• if (t, a, t′) ∈ steps(A), s ∈ states(S), and (t, s) ∈ R, then there exists a

finite execution fragment ω of S s.t.

first(ω) = s ∧ (t′, last(ω)) ∈ R ∧ trace(a) = trace(ω).

The soundness of forward simulation is defined with respect to trace
inclusion.

Theorem 2.1 (Soundness of forward simulation). Let there exist a forward
simulation R between I/O automata I and S. Then all traces of I are included
into the traces of S i.e.,

traces(I) ⊆ traces(S).

Proof. Versions of the proof for the soundness of forward simulation appear in
a variety of papers e.g., in [LT87, Sta86]. We omit it here. �

From theorem 2.1 it follows that any output produced by the
implementation automaton is also produced by the specification automaton,
under the condition that both automata are provided with the same
inputs. In other words, execution of any sequence of external actions in
implementation automaton is equivalent to execution of the same sequence on
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the specification one. Hence, specification resembles any possible behaviour
of the implementation.

Note, that even though forward simulation is sound with respect to trace
inclusion, it is not complete. There exist automata, such that the traces of one
are included among those of the other, but for which no forward simulation
can be constructed 1.

Note also, that the existence of simulation is not sufficient to express the
notion of correct implementation in general, because it does not rule out trivial
implementations, which do nothing. Hence, the simulation can only show that
if the implementation system does something, than this behaviour is correct.

In this thesis we use forward simulation as a technique for proving
correctness of hardware virtualization in Chapters 8 and Chapter 9. We
also use forward simulation as the base technique for step-by-step simulation
when stating and proving reduction theorems in Chapter 4 and for compiler
correctness theorems in Chapters 5 and 7.

1Even though forward simulation is incomplete in general, combinations of forward and
backward simulations can be shown to be complete [LV92]. The completeness for some other
types of simulation have also been shown. For instance, the completeness of refinement extended
with history and prophecy variables is stated in [AL91].
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Correctness of virtualization code is normally
established by showing simulation between
the actions performed by the code, and the
respective steps of the abstract hardware
machine implemented by the code [ACH+10,
AHPP10]. In this setting, the choice of the
proper hardware model is crucial. The model
has to be small and abstract enough to make
arguing about it feasible, especially in the
context of an automatic verification. From
the other side, this model has to capture
all the hardware features, important for
virtualization.
Moreover, when verifying system software
one has to deal with the hardware features
generally invisible on the pure C code level.
For instance, this includes presence of the
hardware MMU and the weak memory model
of the real hardware machine [DPS09].
In this chapter we present an abstract model
of the x64 hardware. Every processor in
our model consists of two communicating
I/O automata, where one automaton is
responsible for memory and TLB accesses
and the other one performs instruction
execution. We model in detail only the first
automaton, while leaving the second one as
a ‘‘black box’’. As the base for our model, we
used the full abstract model of x64 hardware
presented in [Deg11].
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Our goal in this chapter is to define a (hopefully) sound model, which can
simulate the TLB- and memory-related part of the x64 hardware defined in
[Int11, Adv11a, Int07] and at the same time be small enough to be used for
simulation proofs in a mechanical program verifier. In order to achieve this
goal, we

1. argue only about the components of the hardware architecture which
affect the behaviour of the memory subsystem (including TLB);

2. define a set of (software) rules, under which we can reduce the model
and make certain components invisible (e.g., store buffers and caches);

3. support only a subset of x64 hardware features, comprehensive enough
to describe the behavior of the memory subsystem of the real hardware
in certain execution modes, but not covering all details of the hardware
instruction set architecture. For instance, we support only long
addressing mode (we do not argue about legacy addressing modes).
Also we do not provide support for large memory pages and global page
translations.

The simplifications stated above allow us to design a model tiny enough to
perform formal automated proofs with it, while it still remains a realistic model
of the (subset of) x64 hardware features.

The model we aim at should support reasoning about three types of
operations:

1. steps of the memory management unit, which include traversal of SPTs,
caching translations in TLB and performing address translations (later
in this thesis we refer to those operation as TLB steps),

2. execution of accesses to the memory by the processor core,
3. execution of TLB controlling instructions s.t. TLB invalidation and

writing to certain control registers, and
4. execution of a switch from the hypervisor mode to the guest mode and

vice versa.

3.1 Multicore x64 Hardware Model

Degenbaev [Deg11] in his attempt to formalize the instruction set of the
x64 architecture splits the hardware model into two disjoint parts: a
nondeterministic abstract hardware, which includes memory, interrupt
controllers, and devices, and a deterministic processor core executing
instruction. The interface between these components is established by a set
of rules, which describe how the processor core may interact with the memory
system. For instance, if a processor needs to read the data from the memory, it
issues a request and waits until this request is served by the memory system.
The order of the requests issued by the processor core to other components
of the hardware system depends on the order of instructions, executed in the
core.

The multicore x64 hardware according to [Deg11] consists of the memory
system, local APIC controllers, IPI controllers, external devices and processor
cores. In the frame of this thesis we assume that external devices do not
write to the memory regions where the code and the data of the hypervisor are
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TLB
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SB

Figure 3.1: Hardware model: abstract view.

located. Hence, we abstract the devices away from the model. Moreover, we
assume that the interrupts either never occur or do not affect the parts of the
model we are interested in.

With the assumptions stated above we reduce the hardware model to
contain only the core and the (nondeterministic) memory system (since we
never use IPIs in our code and do not support interrupts we don’t need to
argue about the IPI controller).

The memory system of a multi-core machine consists of a shared physical
memory and of the modules local to processor cores: caches, store buffers, load
buffers, and TLBs. The data and code caches of real CPUs are modelled by
processor-local abstract caches. TLBs are the components we are particularly
interested in and are used for traversing page tables and producing address
translations for memory accesses. Store buffers collect the store requests
from the core to the caches/physical memory. Due to the delay, introduced
by the store buffers, the processors may observe loads of the data before the
old stores are completed. The load buffers produce a similar effect on the
read requests from the processor core to the memory. More precisely, the load
buffers non-deterministically pre-fetch data and instructions from the caches/
physical memory, which allows to model out-of-order/speculative instruction
execution (Intel and AMD manuals [Int11, Adv11a] do not specify how exactly
the speculative execution is done, which makes it non-deterministic by its
nature).

Since we do not model instruction execution in details, we do not
necessarily need to argue about the content of the load buffers explicitly and
can incorporate them into the abstract core. We allow the core to fetch data
non-deterministically. This simulates the pre-fetching behaviour of the load
buffers. The very abstract view of the hardware machine we have is presented
in Figure 3.1.

We model the hardware as a closed system (i.e., an automaton without
inputs or outputs), which itself consists of two communicating I/O automata:
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Figure 3.2: Data flow between components of processor i.

• the automaton responsible for memory accesses (which we later refer to
as the memory automaton). As an input it gets a request for a memory
access and provides the result of the memory access as an output.
By a ‘‘memory access’’ here we understand not only memory reads/
writes, but also updates of memory-related registers and TLB controlling
instructions. The state of this automaton consists of the main memory,
caches, store buffers, TLBs, and certain parts of the abstract core (buffers
and registers). We call the part of the core responsible for memory-
related operations as memory core. We model the memory automaton in
full detail, including the internal state and all possible internal actions,

• the automaton responsible for instruction execution (instruction
automaton). This automaton issues memory requests and performs
internal steps based on the input from the memory automaton. We do
not model in detail internal state and internal steps of this automaton,
but instead introduce an uninterpreted state and step function, which
calculates the new internal state based on the current state and the
outputs provided by the memory automaton. We refer to the part of the
processor core responsible for instruction execution as instruction core.

In the closed hardware model input actions of one automaton are at the
same time output actions of the other.

The configuration of the memory automaton is formally defined as a record
of the following type:

Definition 3.1 I
Hardware state

(memory automaton)

MemHw
def
= [p ∈ Pid 7→ MemCore,
mm ∈ Memory,
ca ∈ Pid 7→ Cache,
sb ∈ Pid 7→ SB,
tlb ∈ Pid 7→ Tlb],
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where Pid ⊂ N denotes the set of unique processor identifiers. Note, that
component p here denotes only the memory managing part of the processor
core.

The configuration of the instruction automaton is defined as a collection of
memory automata of all cores:

J Definition 3.2
Hardware state
(instruction automaton)

InstrHw
def
= [pi ∈ Pid 7→ InstrCore]

The full hardware configuration then consists of the state of the instruction
automaton, and the state of the memory automaton:

J Definition 3.3
Hardware state

Hardware
def
= [hm ∈ MemHw, hi ∈ InstrHw].

To simplify the notation when talking about the state of the full
hardware model h ∈ Hardware, we use the following shorthands for x ∈
{p,mm, ca, sb, tlb} and for y = pi :

h.x
def
= h.hm .x

h.y
def
= h.hi .y.

Moreover, we refer to a particular component of the hardware/processor
state by writing the name of the component and the index of the processor.
For instance, we write ca[i] instead of h.ca[i], and memreq[i] instead of
h.p[i].memreq, if the configuration h is clear from the context.

The detailed view on the communication between components and
subsystems of our hardware model is presented in Figure 3.2.

Every step of the hardware transition system is parametrized with the index
of the component making a step. When we need to identify the acting processor
in a step h

a
→ h′, we use the following shorthand:

J Definition 3.4
Step of component i

pid(a) = i
def
= (a is a step of component i).

Before we proceed with the formal definition of individual components of
the hardware model, we summarize all the restrictions of the real hardware
under which our model is valid.

3.1.1 The Scope of the Model

We define our abstract hardware model under the following assumptions:

• the interrupts either never occur, or are invisible to the program running
on the hardware,

• the memory regions we argue about all belong to a memory system,
memory mapped devices are not modelled1,

1To integrate memory-mapped devices to our hardware model, one would have to treat the
device mapped memory separately from the normal memory regions. For instance, our cache
reduction theorem (where all addresses are made always cacheable) would not be applicable for
the device mapped memory. As a result, caches would have to stay always visible for the range of
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• all memory accesses are done in the long addressing mode,
• memory paging is always enabled (CR0.PG bit is always set); as a

consequence of this, segmentation is disabled,
• caching is always enabled (CR0.CD bit is never set),
• write protection is always enabled (CR0.WP bit is always set),
• large and global memory pages are not supported (the page tables should

be set up accordingly),
• PAT and MTRR registers (responsible for the memory type computations)

are never changed after initialization.

In the subsequent sections of this chapter we define the transition relation
for the abstract hardware machine. Every transition from the transition
system consists of a guard and effect of the transition. If the guard of the
transition is satisfied, it can be triggered at any time nondeterministically. A
triggered transition can modify the state of one or more components of the
abstract machine.

3.1.2 Addressing Convention

As long as all memory accesses in our model are quadword (8-byte) aligned
we normally argue about quadword addresses. Yet, sometimes we also
have to argue about byte addresses (e.g., when defining byte-wise ownership
discipline). The size of the memory page in our model is fixed to 4Kb. Thus,
we consider six types of memory addresses:

• physical/virtual quadword addresses, which we simply call addresses
later on,

• physical/virtual page addresses, which we call page frame numbers
(PFNs) or base addresses, if talking about page addresses of page-aligned
data structures, and

• physical/virtual byte addresses.

The x64 architecture in the long addressing mode supports physical
(quadword) addresses up to 49 bits long (52 bits for byte addresses) and
physical page frame numbers up to 40 bits long. The length of the virtual
addresses depends on the addressing mode of the CPU. In the long addressing
mode it is limited to 45 bits (48 bits for byte addresses) and virtual page frame
numbers are limited to 36 bits. Since we model only a subset of the features of
the real hardware, we argue only about a subset of physical memory addresses
belonging to the physical memory (leaving the remaining ones e.g., for memory
mapped devices). At the same time, in the abstract model to simplify TLB
reduction we want to have physical and virtual addresses of the same length.
Moreover, we want these addresses to be of the same length as the addresses
in the C-IL semantics, introduced in Chapter 5. Hence, we define both sets of
virtual and physical byte addresses as subsets of 64-bit integers; physical and
virtual quadword addresses as subsets of 61-bit integers; physical and virtual

addresses which is assigned to devices. Alternatively, one could require all the accesses to device
memory to be done in an uncacheable memory mode, which would extend the cache reduction
theorem to be applicable for the devices.
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PFNs as subsets of 52-bit integers:

Bbpa ⊂ B64,
Bqpa ⊂ B61,
Bpfn ⊂ B52,
Bbva ⊂ B64,
Bqva ⊂ B61,
Bvpfn ⊂ B52.

Given the sets Bpfn and Bvpfn, we construct sets of virtual byte/quadword
addresses by extending virtual PFNs with all possible page indices and byte
indices using the following functions:

J Definition 3.5
Address conversions

qword2bytes(pa ∈ B61) ∈ 2B
64
,

pfn2qwords(pfn ∈ B52) ∈ 2B
61
,

pfn2bytes(pfn ∈ B52) ∈ 2B
64
,

qword2bytes(pa) def
= λbpa : ∃a ∈ B3 : bpa = pa ◦ 03 + a,

pfn2words(pfn) def
= λpa : ∃a ∈ B9 : pa = pfn ◦ 09 + a,

pfn2bytes(pfn) def
= λbpa : ∃a ∈ B12 : bpa = pfn ◦ 012 + a.

To make sure that addresses from the sets Bpfn and Bvpfn do not exceed
the architecture limit, one has to enforce at least the following restrictions on
these sets:

∀a ∈ B52 : a ∈ Bpfn =⇒ a[51 : 40] = 012,

∀a ∈ B52 : a ∈ Bvpfn =⇒ a[51 : 36] = 016.

Later in this thesis (starting from Chapter 4) we argue only about physical
addresses which are identity-mapped by hypervisor page tables. Hence, we
will consider sets of virtual and physical addresses to be equal, i.e.,

Bpfn = Bvpfn.

For a physical address pa ∈ Bqpa and for a virtual address va ∈ Bqva we
use shorthands pa.pfn and va.vpfn to denote the page frame numbers of the
addresses:

pa.pfn
def
= 012 ◦ pa[48 : 9],

va.vpfn
def
= 016 ◦ va[44 : 9].

For an address a ∈ Bqpa ∪ Bqva shorthand a.off denotes a page offset:

a.off
def
= a[8 : 0].

We decompose a virtual page frame number vpfn ∈ Bvpfn into page indices
9 bits long each:

vpfn = 016 ◦ vpfn.px[4] ◦ vpfn.px[3] ◦ vpfn.px[2] ◦ vpfn.px[1].
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016 va.px[4] va.px[3] va.px[2] va.px[1] va.off

60 45 44 36 35 27 26 18 17 9 8 0

va.vpfn

Figure 3.3: Decomposition of a virtual address va ∈ Bqva ⊂ B61.

For a virtual address va ∈ Bqva we use a shorthand va.px[i], i ∈ [1 : 4] to
identify page index i of va.vpfn and va.off to identify page offset (Figure 3.3).

3.2 Instruction Core - Memory Core Interface

In this section we define the interface between the memory and the instruction
automata of our hardware model.

3.2.1 Requests and Replies

We consider three basic types of memory accesses: a memory read, a memory
write, and an atomic compare exchange operation2. The compare exchange
is implemented as an atomic read-modify-write access, which requires store
buffers to be flushed before and after execution of the instruction. A memory
write can either be a regular write (not sequentially consistent) or a locked
write, which guarantees total ordering of stores by flushing the store buffer.

Definition 3.6 I
Memory access

MemAcc
def
= {read,write, atomic-cmpxchng, locked-write}.

Another type of operations, which can be coming from the instruction
automaton, is a TLB controlling request. This includes an address invalidation
and a move to the CR3 register. Note, that we consider a move to CR3 to be a
TLB controlling operation, because the side effect of this action is a TLB flush
performed in the currently active address space:

Definition 3.7 I
TLB request

TlbReq
def
= {invlpg-asid,mov2cr3}.

A complete TLB flush (across all address spaces) can not be requested
explicitly, but is rather performed during a VMRUN execution if an appropriate
bit in the memory request buffer is set.

The number of parameters possibly passed by the instruction core to
the memory automaton differs depending on what mode is currently active
(hypervisor or guest mode). To denote this distinction we split the memory
request into the part which is used in both modes and into the part which is
used solely in hypervisor mode.

2In the x64 architecture a memory accessing instruction is made atomic by adding the lock
instruction prefix [Adv11b].
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The following data type collects request parameters which are used in both
modes:

J Definition 3.8
Main parameters
of a request

MemReqMain
def
= [active ∈ B, va ∈ Bqva , r ∈ Rights,
data ∈ B64, mask ∈ B8,

cmp-data ∈ B64,
type ∈ TlbReq ∪MemAcc ∪ {vmexit, vmrun},
pf -flush-req ∈ B].

Type Rights is defined in Section 3.4.1.
A request to the memory system from external environment is then

modelled with the following data type:

J Definition 3.9
Request to the memory
subsystem

MemReq
def
= [main ∈ MemReqMain,
asid ∈ N,
cr3in ∈ RegCr3,
asidin ∈ N,
complete-flush ∈ B
inject-data ∈ InjectData].

To simplify notation later in this thesis we write req.x instead of req.main.x
when referring to the main parameters of the memory request req ∈ MemReq.

The parameters of the request req ∈ MemReq have the following meaning:

• req.type - the type of the request,
• req.active - the flag denoting that the request is pending,
• req.va - the virtual address in case if the request is a memory access,
• req.r - the access rights in case if the request is a memory access,
• req.data - the data to be written to the memory in case if the request is

a memory write, or a compare-exchange,
• req.mask - the byte mask in case if the request is a memory read, memory

write or a compare-exchange. In case of a write or a compare-exchange
byte i is written to the memory only if req.mask[i] equals 1,

• req.cmp-data - the data for the comparison in case if the request is a
compare-exchange,

• req.pf -flush-req - an internal bit, which is used to denote that a request
for TLB invalidation after a page fault is raised. This flag is controlled
internally by the memory core and is ignored if req.active bit is set. For
details on how we use this control flag see Section 3.5.1,

• req.asid - the address space identifier (ASID) in which TLB invalidation
has to be done,

• req.cr3in - the value which has to be written to the CR3 register in case
of a move to CR3 or a VMRUN request,

• req.asidin - the new value of ASID in case of a VMRUN request,
• req.complete-flush - the flag which denotes a request for the complete

TLB flush in case of a VMRUN request,
• req.inject-data - the data which has to be injected into the memory
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request/result buffers during VMRUN, emulating a successful INVLPG, a
move to CR3, or triggering a page fault (for details refer to Section 3.5.3).

A reply from the memory subsystem either contains the fetched data (in
case of a memory read request) or contains the information about the page
fault in case if the fault was trigged. Analogously to the memory request we
distinguish the main parameters of the memory reply (which are used in both
hypervisor and guest mode) and auxiliary parameters used only in hypervisor
mode.

In both modes a reply from the memory subsystem contains the fetched
data (in case of a memory read access), ready flag, which indicates that the
request is served, and the page fault data provided in case if the page fault is
raised as a result of the memory access:

Definition 3.10 I
Main parameters of a

memory reply

MemResMain
def
= [data ∈ B64, ready ∈ B, pf ∈ PfData].

The type of the page fault data PfData is defined in Section 3.4.4.
A memory reply in hypervisor mode additionally contains a vmexit flag

indicating that a memory request on a processor running in guest mode
resulted in a VMEXIT event (e.g., a page fault has occurred, which has to
be intercepted by the hypervisor), and the parameters of the memory request
which was active at the time of the VMEXIT event:

Definition 3.11 I
Reply of the memory

subsystem

MemRes
def
= [main ∈ MemResMain, vmexit ∈ B, vmexit-memreq ∈ MemReqMain].

To simplify notation later in this thesis we write res.x instead of res.main.x
when referring to the main parameters of the memory reply res ∈ MemRes.

3.2.2 External Actions.

The memory and the instruction automata communicate with each other by
the interface consisting of a number of external (input and output) actions.
Each input action of one automaton is at the same time an output action of
the other automaton.

The only input action to the memory automaton (and respectively the
only output action of the instruction automaton) is issuing of a request
req ∈ MemReq to the memory subsystem of the processor i ∈ Pid:

core-issue-mem-req(i, req).

The only output action of the memory automaton (and respectively the
input action of the instruction automaton) is sending a reply with the result
res ∈ MemRes of the memory operation of the processor i ∈ Pid:

core-send-mem-res(i, res).

We give semantics for these (external) actions separately for the memory
automaton (Section 3.5) and for the instruction automaton (Section 3.6). In
the transition system of the full hardware model, the effect and the guard of
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these steps is defined as a conjunction of effects and guards of the instruction
and memory automata.

Now we proceed with defining configurations and individual transitions of
every component of our hardware model.

3.3 Caches, Store Buffers and Main Memory

We model physical memory as a map from quadword physical addresses to bit
strings 8 bytes long:

J Definition 3.12
Physical Memory

Memory
def
= Bqpa 7→ B64.

In order to model byte-wise operations with the quadword addressable
memory, including the update of selected bytes in the quadword and
forwarding of selected bytes from the store buffer, we introduce the function

J Definition 3.13
Combining quadwords

combine(old ∈ B64, (new ∈ B64, mask ∈ B8)) ∈ B64,

combine(old, (new,mask)) def
= data, where

∀i ∈ N64 : data[i] =

new[i] mask[bi/8c]
old[i] otherwise.

If we want to refer to byte i ∈ [0 : 7] of quadword data ∈ B64 we use the
following function:

J Definition 3.14
Extracting a byte

bytei(data ∈ B64) ∈ B8,

bytei(data) def
= data[8 · (i + 1) − 1 : 8 · i].

Since we do not consider devices, we assume that reads from the memory
do not have side effects. Accesses to the physical memory are performed
through the following interface:

read√(mm ∈ Memory, pa ∈ Bqpa) ∈ B,
write√(mm ∈ Memory, pa ∈ Bqpa , data ∈ B64) ∈ B,
read(mm ∈ Memory, pa ∈ Bqpa , mask ∈ B8) ∈ B64,

write(mm ∈ Memory, pa ∈ Bqpa , data ∈ B64, mask ∈ B8) ∈ Memory.

Domains of memory read and write operations denote whether the main
memory is readable/writable at the time of the request. In the full hardware
model the instruction automaton might want to perform a series of memory
accesses knowing that no other processors will access the memory in between
these accesses. This behaviour can be modelled by introducing a global lock
for the memory and by allowing memory accesses to complete only when this
lock is free or is acquired by the processor performing a memory operation
[Deg11]. Since here we do not explicitly model the global lock, we leave the
functions read√ and write√ undefined.

The results of read and write operation are defined in a straightforward
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way:

Definition 3.15 I
Reading/writing

main memory

read(mm, pa) def
= mm[pa],

write(mm, pa, data) def
= mm[pa 7→ combine(mm[pa], (data,mask))].

The physical memory is connected via the common bus to a number of
processor caches. Every memory access has a certain memory type associated
with it, which determines how this memory access deals with caches.

3.3.1 Memory Types

The x64 architecture defines the following memory types:

• UC - Uncacheable: cache is bypassed and all accesses go directly to
the memory, write-combining3 and speculative reads are not allowed,
memory accesses are strongly ordered;

• WC - Write-Combining: accesses are uncacheable, write-combining and
speculative reads are allowed;

• CD - Cache-Disable: all accesses are uncacheable, on a cache hit the
line is invalidated and written back to the memory;

• WT - Write-Through: writes update the physical memory independently
of the state of the line in the cache, the line in the cache is updated on
a write hit and is not cached in case of a write miss, reads are always
cacheable;

• WP - Write-Protect: writes are uncacheable and a write hit invalidates
the line, the reads are always cacheable;

• WB - Write-Back: all accesses are fully cacheable.

Formally, we define the set of memory types in the following way:

Definition 3.16 I
Memory type

MemType
def
= {UC,WC,CD,WT,WP,WB}.

To distinguish cacheable memory types from uncacheable ones, we
introduce the following function:

Definition 3.17 I
Cacheable memory

cacheable(mt ∈ MemType) ∈ B def
= mt ∈ {WT,WP,WB}.

The type of a memory access is obtained by combining memory types for
the virtual address and for the physical address of the access. The latter
is defined by the Memory Type Range Registers (MTRR), which map ranges of
physical addresses into memory types. The memory type of the virtual address
is obtained during traversal of page tables by the MMU. Each page table entry
contains an index to the Page Attribute Table (PAT), which maps 3-bit indices
into memory types and is stored in the 64-bit PAT register.

In the scope of the thesis we assume that PAT and MTRR registers are never
written during the program execution. Hence, we consider that PAT and MTRR

3Write-combining allows memory accesses to be reordered and grouped together.
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memory type mappings are always fixed. We declare the functions, which map
a PAT index and the physical base address into the memory type, and combine
the two memory types into a single one:

pat-mt(pat-idx ∈ B3) ∈ MemType,
mtrr-mt(pfn ∈ Bpfn) ∈ MemType,
mt-combine(mt1 ∈ MemType,mt2 ∈ MemType) ∈ MemType.

3.3.2 Abstract Cache

The real x64 processor has a number of caches: L1, L2, L3 caches, separate
caches for instruction and data. The hardware ensures that data in all these
caches always stays consistent. Hence, we we can model all these caches as a
single processor-local abstract cache.

In a multi-core system caches of different processors communicate via
a certain protocol. This protocol maintains coherence between caches on
all processors and tries to minimize the data flow between caches and the
physical memory. In this thesis we do not define a specific cache coherence
protocol, but rather consider abstract caches with a generic MOESI [SS86]
communication protocol. Our generic protocol can be used to simulate
different implementations of MOESI, for instance the one introduced and
verified by Wolfgang J. Paul in [Pau11].

A cache line in an abstract MOESI cache can be in one of the following
states:

• E - Exclusive: the line is present only in the current cache and is clean
(i.e., it is equal to the content of the main memory if the user hasn’t
mixed cacheable/uncacheable memory types for this line),

• M - Modified: the line is present only in the current cache and is dirty,
• O - Owned: the line might be present in other caches and might be dirty;

the current cache is the owner of this line, i.e., it is responsible for writing
this line back to the memory and for sending this line to other caches if
requested,

• S - Shared: the line might be present in other caches and might be dirty;
the current cache is not the owner of the line and does not need to write
it back to the memory or send it to other caches,

• I - Invalid: the line is invalid.

The abstract cache maps a physical address to the line data (64 bit string)
and to the line state:

J Definition 3.18
Abstract cache

Cache
def
= [data ∈ Bqpa 7→ B64, state ∈ Bqpa 7→ {M,O, E, S, I}].
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Cache Interface. The other components of the x64 machine communicate
with the caches and the main memory via the following interface:

read√(ca,mm, i, pa,mt) ∈ B
read(ca,mm, i, pa,mt) ∈ B64

write√(ca,mm, i, pa,mt, data,mask) ∈ B
write(ca,mm, i, pa,mt, data,mask) ∈ (Cache,Memory),

where ca ∈ Pid 7→ Cache, mm ∈ Memory, p ∈ Core, i ∈ Pid, pa ∈ Bqpa ,
mt ∈ MemType, and data ∈ B64.

When the core performs an access to the cache, this access is either
handled by the cache itself or is forwarded to the physical memory. For a
read access to go through, a number of conditions have to hold:

• if the memory type of the access is cacheable the data in the cache for
the requested line has to be valid,

• if the memory type of the access is uncacheable, then the data has to
be readable from the main memory. Moreover, for the ‘‘Cache-Disable’’
memory type the line in the local cache has to be invalid:

Definition 3.19 I
Cache read domain

read√(ca,mm, i, pa,mt) def
=

ca[i].state[pa] , I cacheable(mt)
read√(mm, pa) ∧ ca[i].state[pa] = I mt = CD

read√(mm, pa) otherwise.

A read access to the cache is then handled in a straightforward way:

Definition 3.20 I
Cache read result read(ca,mm, i, pa,mt) def

=

ca[i].data[pa] if cacheable(mt)
read(mm, pa) otherwise.

In case of a write access we proceed in the following way:

• if the memory type of the access is ‘‘Write-Back’’, then

- check that the data is valid in the local cache and invalid in other
caches,

- write the new data to the cache line;

• if the memory type of the access is ‘‘Write-Through’’, then

- check that the data is invalid in other caches,
- if the line is valid in the local cache, update the data in the local cache,
- forward the write request to the physical memory;

• if the memory type of the access is ‘‘Write-Protect’’, then

- check that the line is invalid in other caches,
- invalidate a line in the local cache (without writing the data back),
- forward the write request to the physical memory;

• if the memory type of the access is ‘‘Cache-Disable’’, then

- check that the line is invalid in the local cache,
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- forward the write request to the physical memory;

• if the memory type of the access is ‘‘Uncacheable’’ or ‘‘Write-Combining’’,
then forward the write request to the physical memory.

Note, that on a real x64 machine cache behaviour could be different,
according to the particular choice of the coherence protocol. For instance, in
case of a write hit, we could transmit the data from the master cache to other
caches, instead of making the data in other caches invalid. This behaviour,
however, has to guarantee data coherency between different caches at least for
the case when the user doesn’t perform accesses with different memory types
to a single memory address.

Formally, we define the domain of a cache write access as follows:

J Definition 3.21
Cache write domain

write√(ca,mm, i, pa,mt, data,mask) def
=

ca[i].state[pa] , I ∧ ∀j , i : ca[j].state[pa] = I mt = WB

write√(mm, pa, data,mask) ∧ ∀j , i : ca[j].state[pa] = I mt ∈ {WT,WP}

write√(mm, pa, data,mask) ∧ ca[i].state[pa] = I mt = CD

write√(mm, pa, data,mask) otherwise.

The result of a cache write operation is defined in the following way:

J Definition 3.22
Cache write result

write(ca,mm, i, pa,mt, data,mask) def
=

(ca[.data[pa] 7→ data′, state[pa] 7→ M], mm) mt = WB

(ca[.data[pa] 7→ data′], mm′) mt = WT

(ca[.state[pa] 7→ I], mm′) mt = WP

(ca,mm′) otherwise,

where mm′ = write(mm, i, pa, data,mask) and
data′ = combine(ca.data[pa], (data,mask)). Note, that in case of a ‘‘write
protect’’ memory access, the line gets invalidated without writing it back to the
memory.

Transition relation. We allow an abstract cache to perform the following
actions:

• nondeterministically fetch a line from the physical memory or from
another cache,

• drop a clean line without writing it back to the memory,
• write back a dirty line to the memory,
• go from a shared to an exclusive state in case if all other caches do not

have the line in a valid state,
• pass the ownership of a dirty line together with the content of the line to

another cache.

A cache may fetch a line only if the physical address of a line has a
cacheable memory type. The memory type of a physical base address pfn ∈ Bpfn

is obtained from MTRR registers and from the TLB, which has walked the
page tables and has determined that pfn is a translation of some virtual base
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address vpfn ∈ Bvpfn:

tlb-memtype(p ∈ Core, tlb ∈ Tlb, pfn ∈ Bpfn) ∈ MemType ∪ {⊥}.

The function tlb-memtype() is defined in Section 3.4.4.
Another source of the memory type information for a cache is the store

buffer. If the store buffer contains a store to a cacheable memory address at
the beginning of the queue, then the cache is allowed to fetch the line for this
address. To denote the memory type of the first store in the store buffer we
use the following function:

sb-memtype(sb ∈ SB, pa ∈ Bqpa) ∈ MemType ∪ {⊥}.

The function sb-memtype is defined in Section 3.3.3.
A cache may fetch a line from some other cache, if this cache has the line

in a modified, exclusive, or owned state.

Definition 3.23 I
Fetching line from

remote cache

label fetch-line-from-ca(i ∈ Pid, j ∈ Pid, pa ∈ Bqpa)

guard

ca[i].state[pa] = I,

ca[j].state[pa] ∈ {M,O, E},
mt = tlb-memtype(p[i], tlb[i], pa) ∧ cacheable(mt)
∨mt = sb-memtype(sb[i], pa) ∧ cacheable(mt)

effect

ca′[i].state[pa] = S,

ca′[j].state[pa] =

S ca′[j].state[pa] = E

O otherwise,

ca′[i].data[pa] = ca[j].data[pa]

If a given cache has a line in the invalid state and all other caches have
this line either in a shared or in an invalid state, then the cache is allowed
to fetch this line from the main memory. Note, that strictly speaking we do
not need to fetch the data from the memory if at least one cache has it in a
valid state. Yet, in case if no cache owns the line (i.e., when all caches have
the line either in a valid or in a shared state) it is sometimes more efficient to
get the data from the memory, rather than from other caches. For instance,
this allows to implement a memory bus without additional arbitration between
caches having data in a shared state [Pau11].

Definition 3.24 I
Fetching line from
physical memory

label fetch-line-from-mm(i ∈ Pid, pa ∈ Bqpa)

guard

ca[i].state[pa] = I,

∀j , i : ca[j].state[pa] ∈ {S, I},
mt = tlb-memtype(p[i], tlb[i], pa) ∧ cacheable(mt)
∨mt = sb-memtype(sb[i], pa) ∧ cacheable(mt),
read√(mm, pa)

effect
ca′[i].state[pa] = S,

ca′[i].data[pa] = read(ca,mm, i, pa,mt)

When fetching the data from the main memory we always set a shared state for
the cache line. If no other cache has the data for this line in a valid state, then
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the cache may later change the state of a line to an exclusive one (Definition
3.27).

A cache may write back a line to the main memory, if this line is in a
modified or in an owned state.

J Definition 3.25
Writing-back
cache line

label writeback-line-to-mm(i ∈ Pid, pa ∈ Bqpa)

guard
ca[i].state[pa] ∈ {O,M},
write√(mm, pa, data,18)

effect
ca′[i].state[pa] =

E ca′[i].state[pa] = M

S otherwise,

mm′ = write(mm, i, pa, data,18)

A cache may drop any clean line without writing it back to the memory.

J Definition 3.26
Dropping
cache line

label drop-line(i ∈ Pid, pa ∈ Bqpa)

guard ca[i].satate[pa] ∈ {S, E},

effect ca′[i].state[pa] = I,

If a line in the cache is in the shared state, but no other cache has valid data
for this line, then the cache may change the state of the line to an exclusive
one.

J Definition 3.27
Getting to an
exclusive state

label make-exclusive(i ∈ Pid, pa ∈ Bqpa)

guard
ca[i].state[pa] ∈ {O, S},
∀j , i : ca[j].state[pa] = I

effect ca′[i].state[pa] =

M ca′[i].state[pa] = O

E otherwise

A cache may pass the ownership of a cache line to another cache, which
has the same line in a shared state.

J Definition 3.28
Passing ownership
of a cache line

label pass-ownership(i ∈ Pid, pa ∈ Bqpa)

guard
ca[i].state[pa] = O,

ca[j].state[pa] = S

effect
ca[j].state[pa] = S,

ca[i].state[pa] = O

Cache coherence. The cache protocol defined above ensures, that the data
is always consistent between different caches under an assumption that the
user does not mix accesses with different memory types for a single address.
In order to make cache consistency inductive and to perform cache reduction
proof further in Section 4.2 we have to specify a number of invariants, giving
the formal meaning to different states of cache lines [Pau11]:

1. if a cache has a line in one of the exclusive states (E or M ), then all other
caches have this line in an invalid state,

2. if a cache has a line in a clean exclusive state (E), then the data in this
line is the same as the data in the memory for the address of the line,
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3. if a cache has a line in state S, then either the data in this line is the
same as the data in the memory or another cache has this line in state
O,

4. if a cache has a line in state S and another cache has the same line in
state S or O, then the data for the line in these caches is the same,

5. only one cache can have a given line in state O4.

We formalize all these properties in the following invariant.

Invariant 3.29 I
Consistent caches

name inv-consistent-caches(ca ∈ Pid 7→ Cache,mm ∈ Memory)

property

ca[i].state[pa] ∈ {E,M} ∧ j , i =⇒ ca[j].state[pa] = I,

ca[i].state[pa] ∈ E =⇒ ca[i].data[pa] = mm[pa],
ca[i].state[pa] = S =⇒

ca[i].data[pa] = mm[pa] ∨ ∃j : ca[i].state[pa] = O,

ca[i].state[pa] = S ∧ ca[j].state[pa] ∈ {S, O} =⇒

ca[i].data[pa] = ca[j].data[pa],
ca[i].state[pa] = O ∧ j , i =⇒ ca[j].state[pa] , O

In Section 4.2 we prove a simple lemma (Lemma 4.2), showing that once
established this property is maintained by all cache transitions and memory
accesses of a ‘‘Write-back’’ memory type.

3.3.3 Store Buffers

An x64 processor has several buffers, responsible for write optimizations and
reordering. These include write buffers and write-combining buffers. We model
all these buffers by a single (processor-local) store buffer, which accumulates
and reorders writes from the core to the memory system.

A memory store is modelled with the following record type:

Definition 3.30 I
Memory Store

Store
def
= [pa ∈ Bqpa , data ∈ B64, mt ∈ MemType,mask ∈ B8].

We model a store buffer as a record, consisting of a queue of stores and
store fences:

Definition 3.31 I
Store Buffer

SBItem
def
= Store ∪ {SFENCE},

SB
def
= [buffer ∈ SBItem∗].

We introduce two auxiliary functions, which simplify data forwarding from
a store buffer. The function sb-cnt is used to count the number of writes to a
byte of a given physical address, which are present in the store buffer:

Definition 3.32 I
Counting writes in SB

sb-cnt(sb ∈ SB, pa ∈ Bqpa , k ∈ N8) ∈ N,

sb-cnt(sb, pa, k) def
= |{i ∈ N | i < |sb.buffer | ∧ sb.buffer[i] ∈ Store
∧ sb.buffer[i].pa = pa ∧ sb.buffer[i].mask[k]}|.

4Strictly speaking, we don’t need this property for our cache reduction theorem. Yet, we leave
it here, because it captures the intended meaning of the ‘‘owned’’ cache state.
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The function sb-data is used to provide the data of the most recent stores
to a physical address, which are still pending in the store buffer:

J Definition 3.33
Recent store data

sb-data(sb ∈ SB, pa ∈ Bqpa) ∈ B64

sb-data(sb, pa) def
=

064 |sb.buffer | = 0
combine(sb-data(sb[0 : |sb| − 2], pa), |sb.buffer | > 0 ∧ s ∈ Store

(s.data, s.mask)) ∧s = last(sb.buffer) ∧ s.pa = pa

sb-data(sb[0 : |sb| − 2], pa) otherwise.

Store buffer interface. The interface between the core and the store buffer
consists from write and forwarding requests, and from auxiliary functions
providing specific information about the state of the store buffer:

pending-store(sb ∈ SB, pa ∈ Bqpa) ∈ B,
pending-byte-store(sb ∈ SB, pa ∈ Bqpa , byte ∈ N8) ∈ B,
pending-qword-store(sb ∈ SB, pa ∈ Bqpa) ∈ B,
is-empty(sb ∈ SB) ∈ B,
sb-memtype(sb ∈ SB, pa ∈ Bqpa) ∈ MemType ∪ {⊥},
forward(sb ∈ SB, pa ∈ Bqpa) ∈ (B64,N8),
write(sb ∈ SB, store ∈ SBItem) ∈ SB.

The first function is used to identify whether the SB has a pending store to
at least one byte of the given quadword physical address:

J Definition 3.34
Pending store

pending-store(sb ∈ SB, pa ∈ Bqpa) def
= ∃k ∈ N8 : sb-cnt(sb, pa, k) > 0.

Another function is used to identify whether the SB has a pending store to
a particular byte of the quadword physical address:

J Definition 3.35
Pending byte store

pending-byte-store(sb ∈ SB, pa ∈ Bqpa , byte ∈ N8) def
= sb-cnt(sb, pa, byte) > 0.

To denote, whether the store buffer contains valid data for the whole
quadword, we use the following function:

J Definition 3.36
Pending quadword store

pending-qword-store(sb ∈ SB, pa ∈ Bqpa) def
= ∀k ∈ N8 : sb-cnt(pa, k) > 0.

The function sb-memtype is used to provide the memory type of the first
store in the queue to the cache, if the address of the store matches the provided
physical address pa:

J Definition 3.37
SB memory typesb-memtype(sb, pa) def

=

sb.buffer[0].mt |sb.buffer | > 0 ∧ sb.buffer[0].pa = pa

⊥ otherwise.
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Data forwarding is defined in a straightforward way with the help of the
components data and cnt of the store buffer. The returned mask identifies
which bytes of the quad-word are valid (i.e., data for them in SB is meaningful):

Definition 3.38 I
SB forwarding result

forward(sb, pa) def
= (sb-data(sb, pa), mask), where

mask = λk ∈ B8 : sb-cnt(sb, pa, k) , 0.

Before executing certain instructions (e.g., atomic or serializing
instructions), the core need to know that the store buffer is empty:

Definition 3.39 I
Empty store buffer

is-empty(sb ∈ SB) def
= |sb.buffer | = 0.

After certain hardware events the store buffer gets flushed. We introduce
a simple function, returning an empty store buffer:

Definition 3.40 I
Constructing empty

store buffer

empty-sb() ∈ SB

empty-sb() def
= SB[buffer 7→ {}].

The result of a store request from the core to the store buffer is defined as

Definition 3.41 I
SB write result

write(sb, store) def
= sb[buffer 7→ buffer ◦ store].

Transition Relation. A store buffer is allowed to nondeterministically
reorder stores, to write the stores to the cache/physical memory, and to drop
the leading store fence.

Reordering of stores can be applied to any of two adjacent stores, if one
of them has a ‘‘Write-Combining’’ memory type, none of them is a store fence,
and the stores write data to different physical addresses. This step models the
behaviour of the write-combining buffer of the real hardware.

Definition 3.42 I
Reordering of stores

label reorder-stores(i ∈ Pid, j ∈ N)

guard

j < |sb[i].buffer | − 1,
sb[i].buffer[j] , SFENCE,
sb[i].buffer[j + 1] , SFENCE,
sb[i].buffer[j].pa , sb[i].buffer[j + 1].pa,
sb[i].buffer[j].WC ∨ sb[i].buffer[j + 1].WC

effect
sb′[i].buffer[j] = sb[i].buffer[j + 1],
sb′[i].buffer[j + 1] = sb[i].buffer[j]

A store buffer is allowed to drop a leading store fence at any time.
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J Definition 3.43
Dropping SFENCElabel drop-sfence(i ∈ Pid)

guard
0 < |sb[i].buffer |,
sb[i].buffer[0] = SFENCE,

effect sb′[i].buffer = tl(sb[i].buffer),

A normal store item in the front of the queue may be committed to the
cache/physical memory.

J Definition 3.44
Committing a storelabel commit-store(i ∈ Pid)

guard

0 < |sb[i].buffer |,
store = sb[i].buffer[0],
store , SFENCE,

write√(ca,mm, i, store.pa, store.mt, store.data, store.mask)

effect
sb′[i].buffer = tl(sb[i].buffer),
(ca′, mm′) = write(ca,mm, i, store.pa, store.mt, store.data, store.mask)

3.4 Translation Lookaside Buffer

The purpose of a TLB is to cache address translations done by the MMU and
to reuse them later without performing additional memory accesses to page
tables. A modern TLB caches not only address translations themselves, which
could by considered as complete page table traversals, but also intermediate
states of such traversals, which we call walks.

3.4.1 Page Table Walks

A page table walk models either an address translation or an intermediate state
of the page table traversal. A walk, which represents an address translation,
is called complete and a walk, which models an intermediate state of the page
table traversal is called partial. We model a walk as a record, storing all the
information necessary for performing a next step of the address translation
(for a partial walk) or a result of the translation (for a complete walk):

J Definition 3.45
Page table walk

Walk
def
= [l ∈ N, asid ∈ N, vpfn ∈ Bvpfn , pfn ∈ Bpfn , r ∈ Rights,
mt ∈ MemType].

A set of rights r ∈ Rights contains the requested permissions for a memory
access, where ex represents a right to execute, us states for the user access,
and rw for a write permission:

J Definition 3.46
Translation rights

Rights
def
= [ex ∈ B, us ∈ B, rw ∈ B].
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To compare two sets of translation rights we overload the operator ‘‘less or
equal’’:

Definition 3.47 I
Rights comparison

op(≤)(r1 ∈ Rights, r2 ∈ Rights) ∈ B

r1 ≤ r2
def
= r1.ex ≤ r2.ex ∧ r1.us ≤ r2.us ∧ r1.rw ≤ r2.rw

To perform a bitwise ‘‘and’’ operation on two sets of rights we use the
standard operator:

Definition 3.48 I
Rights addition

r1 ∧ r2
def
= Rights[ex 7→ r1.ex ∧ r2.ex, us 7→ r1.us ∧ r2.us, rw 7→ r1.rw ∧ r2.rw].

The fields of a page table walk w ∈ Walk have the following meaning:

• w.l: the level of the page table walk; a walk with w.l = 0 is a complete
walk and a walk with w.l ∈ [1 : 4] is a partial walk,

• w.asid: the address space identifier (ASID) of the walk,
• w.vpfn: the page frame number of the virtual address to be translated,
• w.pfn: the physical page frame number of the next page table to be

traversed (for a partial walk) or the physical page frame number of the
resulting address translation (for a complete walk),

• w.r: the permissions of the walk,
• w.mt: the type of the memory where the next level page table is located

(for a partial walk) or the type of the memory for the resulted virtual
address (for a complete walk).

A complete walk is identified by the following predicate:

Definition 3.49 I
Complete walk

complete(w ∈ Walk) ∈ B def
= w.l = 0.

To give the formal definition for operations on walks performed by the MMU
(which we call TLB steps), we first have to define the format of the page tables
and page table entries.

3.4.2 Page Tables and Page Table Entries

A single page table occupies one page (4Kb) and consists of 512 page table
entries (PTEs), each of which is 64 bits long. The x64 architecture for correct
memory translation in the long addressing mode requires page tables to form a
graph, where each path has length 4.5 The CR3 register points to the top-level
(level 4) page table, which contains references to page tables of the next level
(level 3). Page tables of level 1 are called terminal page tables and contain the
mappings to physical addresses.

Definition 3.50 I
Page table

Pt
def
= [0 : 511] 7→ Pte

5Address translations for large pages, which are left out of the scope of the thesis, require less
then 4 PTEs in a path.
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Figure 3.4: Selection of PTEs during address translation.

A page table entry in the long address translation mode is a bit string (or a
union) 64 bits long:

Pte
def
= B64.

During page table traversal, a page index a.px[i], i ∈ [1 : 4] of a virtual
address a ∈ Bqva is used to select a PTE from the i-th level page table (Figure
3.4).

For a page table with the (page aligned) base address ba ∈ Bpfn, we obtain
the (quadword aligned) address of the j-th PTE, where j ∈ [0 : 511], in a
straightforward way:

J Definition 3.51
Base address of a PTE

pte-addr(pfn ∈ Bpfn , j ∈ N512) ∈ Bpfn

pte-addr(pfn, j) def
= (pfn ◦ 09) + j.

The MMU accesses PTEs with the help of the following functions:

J Definition 3.52
Reading/writing a PTE

pte-read(ca ∈ Cache,mm ∈ Memory, i ∈ Pid,w ∈ Walk) ∈ Pte,
pte-write(ca,mm, i, w, pte ∈ Pte) ∈ (Cache,Memory),

pte-read(ca,mm, i, w) def
= read(ca,mm, i, pa,w.mt,18),

pte-write(ca,mm, i, w, pte) def
= write(ca,mm, i, pa,w.mt, pte,18),

where pa = pte-addr(w.pfn,w.vpfn.px[w.l]) is the base address of the PTE.

The respective predicates pte-read√ and pte-write√ are defined in a
straightforward way, using the read/write domains of the cache interface.

To simplify reasoning about fields of a PTE and to hide implementation
details we introduce the function

abs-pte(pte ∈ Pte) ∈ AbsPte,

which converts binary representation of a PTE to an abstract representation,
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where an abstract PTE is a record of the following type:

Definition 3.53 I
Abstract PTE

AbsPte
def
= [p ∈ B, a ∈ B, d ∈ B, r ∈ Rights, pfn ∈ Bpfn ,
pat-idx ∈ B3, valid ∈ B].

The fields of an abstract pte ∈ Pte have the following meaning:

• pte.p: the present bit, denotes whether a given PTE has meaningful data;
• pte.a: the access bit, identifies whether MMU has already used the PTE

for an address translation;
• pte.d: the dirty bit, identifies whether MMU has already used the PTE

for a translation with the write request; is meaningful only for terminal
page tables;

• pte.r: the access permissions, may restrict the set of non-faulty
translations through this PTE (e.g., make write requests produce a page
fault);

• pte.pfn: the page frame number of the next level page table (for a non-
terminal page table) or a page frame number of the resulting address
translation (for a terminal page table),

• pte.pat-idx: the index to the PAT table, identifying the memory type of
the address stored in w.pfn;

• pte.valid: the flag indicating whether the reserved bits of the binary
representation of this PTE have the allowed values, specified by the
architecture.

Note, that due to the chosen restrictions on the address translation mode
and features, we omit some of the fields of PTEs, specified by the x64
architecture (such as flags for global or large pages).

To convert an abstract PTE into a concrete one, we use the following
function:

concrete-pte(pte ∈ AbsPte) ∈ Pte.

Since the PFN field of the concrete PTE is limited to 40 bits and the set Bpfn

contains 52-bit strings, we have to do conversion by throwing away the leading
12 bits of the abstract PFN value6.

3.4.3 TLB Model

We model a TLB as a set of walks:

Definition 3.54 I
Translation Lookaside Buffer

Tlb
def
= 2Walk.

In order to perform an address translation for a virtual address va ∈ Bqva

with initial permissions r ∈ Rights, MMU initializes a walk w with w.vpfn =

va.pfn and w.r = r, and sets the w.pfn field to point to the top-level page table.
Then it performs a number of walk extensions, fetching page table entries

6When defining the set Bpfn , one has to make sure that it only contains addresses which do
not exceed the length defined by the architecture (see Section 3.1.2).
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and updating the state of the walk. In the end, it either ends in a situation
where walk extension is not possible anymore due to a page-fault situation or
it produces a complete walk, which identifies a successful address translation.

Below we define all possible nondeterministic TLB steps, each of which is
a part of the transition relation of the abstract hardware model.

Creating a walk. To start an address translation, the TLB first has to create
a new walk with the initial parameters for page table traversal. The level of
the new walk is set to the depth of translation, which in our case (for the long
addressing mode) equals four. The physical base address of the top-level page
table and the memory type of that address are calculated from the value of the
CR3 register of the core.

J Definition 3.55
Creating a walk

label create-walk(i ∈ Pid,w ∈ Walk)

guard

w.l = 4,
w.asid = asid[i],
w.r = Rights[ex 7→ 1, us 7→ 1, rw 7→ 1],
CR3[i].valid,
w.pfn = CR3[i].pfn,
w.mt = root-pt-memtype(CR3[i])

effect tlb′[i][w] = 1

The structure of the CR3 register and the definition of root-pt-memtype are
given in Section 3.5.

Note, that we do not fix the initial vpfn field for the new walk, allowing
the TLB to start an address translation for any virtual address. By giving this
freedom to the TLB we model speculative address translations.

Extending a walk. To extend a partial walk we use the field pfn of the walk
together with the page index, obtained from the field vpfn, to fetch the next
PTE in the page table traversal path (Figure 3.4). The fields of the PTE are used
to calculate the new walk with the level of the original walk, decremented by
one. The memory type of the new walk is obtained by combining memory types
from the PAT and MTRR tables for the newly obtained physical PFN, which is
either the resulting physical PFN of the translation (if this is the last level of
walk extension) or the base address of the next level page table:

J Definition 3.56
Walk extension

wext(w ∈ Walk, pte ∈ AbsPte, r ∈ Rights) ∈ Walk

wext(w, pte, r) def
= w[l 7→ (w.l − 1), pfn 7→ pte.pfn, r 7→ r, mt 7→ mt′],

where mt′ = mt-combine(pat-mt(pte.pat-idx), mtrr-mt(pte.pfn)).
The number of conditions has to be met for the walk extension over a given

PTE to be successful:

• access permissions of the walk being extended should be broad enough
to satisfy the rights restrictions of the fetched PTE;

• the present bit has to be set in the PTE;
• the valid flag has to be set in the PTE;
• the access bit has to be set in the PTE;
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• for the last level of the walk extension with the write permission the dirty
bit has to be set in the PTE (PTE is terminal in this case);

• the walk to be extended has to be incomplete and should have at least
the same rights as the new walk (we do allow the rights of a walk to be
reduced arbitrarily during walk extension).

Violation of any of the first three conditions triggers a page fault during the
walk extension:

Definition 3.57 I
Page faulty PTE

page-fault(r ∈ Rights, pte ∈ AbsPte) ∈ B,

page-fault(r, pte) def
= ¬(r ≤ pte.r) ∨ ¬pte.p ∨ ¬pte.valid.

Note though, that for a page fault to be reported to the core, the walk
chosen for the extension should be suitable for an address translation with
the requested parameters (for details see Section 3.5.1).

The domain of the walk extension is then stated as follows:

Definition 3.58 I
Walk extension domain

wext√(w ∈ Walk, pte ∈ AbsPte, r ∈ Rights) ∈ B

wext√(w, pte, r) def
=¬page-fault(w.r, pte) ∧ ¬complete(w) ∧ pte.a
∧ (w.r.rw ∧w.l = 1 =⇒ pte.d) ∧ r ≤ w.r.

If all conditions for the extension of a walk w are satisfied, and the PTE
pointed to by w is readable, the TLB may perform a walk extension.

Definition 3.59 I
Extending a walk

label extend-walk(i ∈ Pid,w ∈ Walk, r ∈ Rights)

guard

tlb[i][w] = 1,
w.asid = asid[i],
pte-read√(ca,mm, i, w),
wext√(w, pte, r),
pte = abs-pte(pte-read(ca,mm, i, w)),
w′ = wext(w, pte, r)

effect tlb′[i][w′] = 1

During the walk extension we never add faulty walks to the TLB. This means
that in order to report a page fault, TLB has to fetch a faulty PTE from memory.
This allows to model silent rights granting in page tables i.e., when the user
grants more rights in a PTE without a consequent TLB flush, and setting of
present bit in a PTE without TLB flushing. In a real TLB the same behaviour
is achieved by performing a re-walk of page tables in case of a page fault. Our
model does not allow to (nicely) model the full traversal in case of a page fault.
Thus, we stick to modelling only the last level of this traversal by not storing
faulty walks in the TLB and by forcing the MMU to always fetch a faulty PTE
from the memory.

Note, that in the real hardware machine the TLB is probably not allowed
to store multiple complete walks for a given physical address. We consider a
more general TLB model, where this restriction is not enforced. This allows
us to use the same TLB model both for the host hardware and for the virtual
hardware when we later prove correctness of the SPT algorithm. Our virtual
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TLB might have multiple complete walks for a given physical address due to
the fact that the virtual TLB contains the translated version of all the walks
which could have been possibly added to the host TLB since the last flush.

Setting access and dirty bits. Before performing a walk extension, the MMU
must set access and dirty bits in the PTE chosen for a walk extension. The
MMU in this case fetches the entry, checks whether the entry is valid, updates
access and dirty bits, and writes the entry back to the memory. All these
actions are performed in one atomic step. The access bit is always set (for
a valid PTE). The dirty bit is set only for a terminal PTE in case if the walk
has the write permission, and the write is allowed by the PTE. The following
function returns the updated PTE:

J Definition 3.60
PTE with A/D
bits set

pte-set-ad-bits(pte ∈ AbsPte,w ∈ Walk) ∈ AbsPte

pte-set-ad-bits(pte,w) def
=

pte[a 7→ 1, d 7→ 1] w.r.rw ∧w.l = 1 ∧ pte.r.rw
pte[a 7→ 1] otherwise.

The step of setting access and dirty bits is defined in the following way.

J Definition 3.61
Setting access and
dirty bits

label set-access-dirty(i ∈ Pid,w ∈ Walk)

guard

tlb[i][w] = 1,
w.asid = asid[i],
¬complete(w),
pte-read√(ca,mm, i, w),
pte = abs-pte(pte-read(ca,mm, i, w)),
pte.p,

pte.valid,

pte′ = pte-set-ad-bits(pte,w),
pte-write√(ca,mm, i, w, concrete-pte(pte′))

effect (ca′[i], mm′) = pte-write(ca,mm, i, w, concrete-pte(pte′))

Dropping a walk. The MMU may nondeterministically drop any number of
walks, present in the TLB, at any time.

J Definition 3.62
Dropping a walklabel drop-walks(i ∈ Pid,walks ∈ 2Walk)

guard

effect tlb′[i].walks = λw ∈ Walk : tlb[i][w] ∧ ¬walks[w]

3.4.4 TLB Interface

The TLB interface provides the core with the ability to perform address
translations and gives a limited control over the TLB state. Parameters of a
TLB request are determined by the current state of the memory request buffer.
For instance, if memreq buffer contains a request for memory read, write, or
compare-exchange then the TLB is requested to either provide a successful
translation or to signal a page fault.
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To perform an address translation, the TLB nondeterministically selects a
walk, suitable either for a successful or a faulty translation. Note, that there
could be multiple walks, suitable for a particular translation, sitting in the
TLB at the same time. In this case an arbitrary walk is chosen.

All address translations are performed only in the currently active address
space and the ASID field of the request is ignored.

Successful address translation. For a successful address translation the
chosen walk has to be complete and has to have the address space identifier,
as well as the virtual base address, equal to the ones of the translation request.
The walk should have access permissions not less than the rights of the
request.

The following function denotes that a given walk in the TLB of a processor
can be used for successful address translation:

Definition 3.63 I
Successful translation ready

tlb-transl-ready(memreq ∈ MemReqMain, asid ∈ N, tlb ∈ Tlb,w ∈ Walk) ∈ B

tlb-transl-ready(memreq, asid, tlb,w) def
= tlb[w] = 1 ∧ complete(w)
∧w.vpfn = memreq.va.vpfn
∧w.asid = p.asid
∧memreq.active = 1
∧memreq.type ∈ MemAcc
∧memreq.r ≤ w.r.

Faulting address translation. For a page fault to be triggered, the TLB must
contain a (non-faulty) partial walk and extension of this walk must produce a
page fault i.e., one of the following conditions has to hold: the PTE for a walk
extension is not present, it is not valid, or it has less rights than required by
the translation. If a page fault is signaled, the TLB also provides the 4-bit code
of the page fault. The following function computes the code of the page fault
based on the rights of the translation access and on the present and valid
fields of the PTE:

page-fault-code(r ∈ Rights, present ∈ B, valid ∈ B) ∈ B4.

In our model we allow the selected walk for a translation to have more
rights, than the translation request. In this scenario, if we use the rights of
the selected walk to check PTE for a page fault, we may produce page faults
which should have never been triggered. Thus, for a rights-violation page fault
we check the original rights of the issued request, rather than the rights of the
chosen walk.

The following predicate denotes that a walk w can be used for triggering of
a page fault over a given PTE (in the context where this function is used one
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has to ensure that walk w points to this PTE):

J Definition 3.64
Faulty translation ready

tlb-fault-ready(memreq ∈ MemReqMain, asid ∈ ASID,
tlb ∈ Tlb, pte ∈ AbsPte,w ∈ Walk) ∈ B,

tlb-fault-ready(memreq, asid, tlb, pte,w) def
= tlb[w] = 1 ∧ ¬complete(w)
∧w.vpfn = p.memreq.va.vpfn
∧w.asid = asid
∧memreq.active = 1
∧memreq.type ∈ MemAcc
∧memreq.r ≤ w.r
∧ page-fault(memreq.r, pte).

The page fault data, accumulated in the memres buffer in case of a page
fault, contains the following information:

J Definition 3.65
Page fault data

PfData
def
= [fault ∈ B, fault-code ∈ B4, r ∈ Rights, va ∈ Bqva].

When a step of the memory core completes a memory access which is
not causing a page fault only the fault bit of the memres.pf buffer has to be
written. Yet, to simplify arguing about equality of outputs of memory automata
when proving hardware virtualization, we set the whole memres.pf buffer to a
dummy ‘‘zeroed’’ value (where only fault bit is meaningful):

J Definition 3.66
No page fault

no-page-fault() ∈ PfData,

no-page-fault() def
= PfData[fault 7→ 0, fault-code 7→ 0,

r.{ex, us, rw} 7→ 0, va 7→ 0].

TLB flushing. We model four types of TLB flushes: a complete flush across
all address spaces, a full flush in the running address space (performed as
part of the move to CR3 register), a tagged address invalidation, and a flush
in case of a page fault. Here we define the predicates, which are later used as
guarding conditions in these steps:

J Definition 3.67
TLB flushing
guards

tlb-empty-asid(tlb, asid) def
= ∀w ∈ Walk : tlb[w] =⇒ w.asid , asid,

tlb-invalidated(tlb, vpfn, asid) def
= ∀w ∈ Walk :

tlb[w] ∧w.asid = asid =⇒ (w.vpfn , vpfn ∧ complete(w)),

tlb-invalidated-pf (tlb, vpfn, asid) def
= ∀w ∈ Walk :

tlb[w] ∧w.asid = asid =⇒ w.vpfn , vpfn,

where tlb ∈ Tlb is the flushed TLB, asid ∈ N is the ASID in which flushing is
performed, and vpfn ∈ Bvpfn is the invalidated address.

Additionally, we introduce functions, which return an empty TLB and an
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invalidated TLB state:

Definition 3.68 I
Empty/invalidated TLB

empty-tlb() def
= λw ∈ Walk : 0,

inval-tlb(tlb ∈ Tlb, vpfn, asid) def
= λw ∈ Walk :

tlb[w] ∧w.asid , asid ∧w.vpfn , vpfn ∧ complete(w),

pf -inval-tlb(tlb ∈ Tlb, vpfn, asid) def
= λw ∈ Walk :

tlb[w] ∧w.asid , asid ∧w.vpfn , vpfn.

Cache - TLB interface. In addition to providing address translations to the
core, TLB is also used for calculating memory types of physical addresses.
These memory types are used by caches to decide whether this memory region
is cacheable or not. The following function7 obtains the memory type of a given
physical address. Note, that in every hardware state the function is defined
only for a subset of physical addresses.

Definition 3.69 I
TLB memory type

tlb-memtype(p ∈ MemCore, tlb ∈ Tlb, pfn ∈ Bpfn) ∈ MemType ∪ {⊥}

tlb-memtype(p, tlb, pfn) def
=


w.mt tlb[w] ∧w.pfn = pfn ∧w.asid = p.asid

∧complete(w)
⊥ otherwise

3.5 Memory Core

The memory core is modelled as a record, containing the CR3 register and
memory request/result buffers. We also introduce a register, containing the
identifier of the address space (ASID) currently being active on the processor8,
and the register CR3hyp, which is an auxiliary register storing the old value
of CR3 when the processor performs a switch to the guest mode. When the
processor switches back to the hypervisor mode, the value from CR3hyp is
restored to CR3.

Definition 3.70 I
Memory Core

MemCore
def
= [CR3 ∈ RegCr3,
asid ∈ N,
memreq ∈ MemReq,
memres ∈ MemRes,
CR3hyp ∈ RegCr3]

The CR3 register contains the base address of the top-level page table, the
flags for the memory type of this address and the reserved bits, which we

7Actually, tlb-memtype is a relation, because TLB could contain multiple complete walks for
a given address. Yet, we later restrict TLBs to contain only walks with ‘‘write-back’’ memory type,
which makes tlb-memtype a well-defined function.

8On the x64 architecture with hardware virtualization extensions this register is not accessed
explicitly and can be modified only by switching to and from guest mode.
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abstract into a validity flag:

J Definition 3.71
CR3 Register

RegCr3 def
= [pfn ∈ Bpfn ,WT ∈ B, CD ∈ B, valid ∈ B].

The following functions are used to convert a 64-bit string to an instance
of the type RegCr3 and vice versa:

cr3-2-uint(cr3 ∈ RegCr3) ∈ B64,

uint2cr3(a ∈ B64) ∈ RegCr3.

Flag CD denotes whether the top level page table is cacheable or not. Flag
WT identifies a ‘‘Write-through’’ memory type when it is set, or a ‘‘Write-back’’
type when it is not set. The combined memory type of the top-level page table
is calculated by the following function:

J Definition 3.72
Root PT memory type

root-pt-memtype(CR3 ∈ RegCr3) ∈ MemType

root-pt-memtype(CR3) def
= mt-combine(pat-mt(0 ◦ CR3.CD ◦ CR3.WT ),

mtrr-mt(CR3.pfn)).

Register asid contains the ID of the currently active address space. The TLB
of the core may perform all its operations, with the exception of walk removal,
only with the walks from the active address space. When the currently active
ASID equals 0, we say that the processor is running in hypervisor mode.
Otherwise, it is running in guest mode.

The memory request buffer contains the data only for a single pending
TLB or memory request (per processor). In the real hardware there could be
multiple pending TLB and memory requests at the same time. Since we do
not aim at providing the details of instruction execution, we leave the request
queues hidden inside the uninterpreted part of the core and assume that there
exists some ordering of these requests9.

External actions. Here we define the effect of external actions on the memory
core. The effect on the instruction core we define in Section 3.6. The memory
core accepts a request by writing it to the buffer memreq.

J Definition 3.73
Accepting a memory request

label core-issue-mem-req(i ∈ Pid, req ∈ MemReq)

guard

effect memreq′[i] = req,

The result of the memory operation is sent from the memory core to the
instruction core in case if the result in memres buffer is ready.

J Definition 3.74
Sending a memory result

label core-send-mem-res(i ∈ Pid, res ∈ MemRes)

guard
memres[i].ready = 1,
res = memres[i]

effect memres′[i].ready = 0

9For instance, one can order memory accesses based on their end time as shown in [Pau11].
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3.5.1 Memory Accesses.

A request for a memory access may get served if there exists a walk w which
can be used for successful address translation. After the request is served,
we clear the active bit in the memreq buffer to be sure that the memory access
will not be performed several times for a single request (this would not hurt in
case of read accesses, but would be unsound for memory writes).

Memory read. If the served request is a read request, the memory result
buffer gets the result of the read access. For a memory read to succeed, there
either has to be a pending write request to the required physical address in
the store buffer, or the address has to be readable in the caches/physical
memory. Note, that our memory read is masked. Later we rely on this fact
when introducing byte-wise ownership and proving a store-buffer reduction
theorem in Section 4.4. For simplicity in further arguing, we set all bits in the
result of the memory read to 0, if they are not supposed to be read from the
memory by the provided mask.

Definition 3.75 I
Core memory read

label core-memory-read(i ∈ Pid,w ∈ Walk)

guard

tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w),
memreq[i].type = read,

pa = w.pfn ◦memreq[i].va.off,
pending-qword-store(sb[i], pa) ∨ read√(ca,mm, i, pa,w.mt),
data = combine(read(ca,mm, i, pa,w.mt), forward(sb[i], pa))

effect

memres′[i].data = combine(064, (data,memreq[i].mask)),
memres′[i].pf = no-page-fault(),
memres′[i].vmexit = 0,
memreq′[i].active = 0,
memres′[i].ready = 1

Memory write. A memory write, in contrast to a memory read, does not
go directly to the caches/main memory but is rather committed to the store
buffer.

Definition 3.76 I
Core memory write

label core-memory-write(i ∈ Pid,w ∈ Walk)

guard

tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w),
memreq[i].type = write,

data = memreq[i].data,
mask = memreq[i].mask,
pa = w.pfn ◦memreq[i].va.off,
store = Store[pa 7→ pa, data 7→ data,mt 7→ w.mt,mask 7→ mask]

effect

sb′[i] = write(sb[i], store),
memres′[i].pf = no-page-fault(),
memres′[i].{data, vmexit} = 0,
memreq′[i].active = 0,
memres′[i].ready = 1
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Note, that setting of fields data and pf of the memres buffer in this step
does not effect the execution in any way (these fields must be ignored by the
instruction automaton in this case). Yet, we prefer to set these fields to some
default value so that we can know the exact state of the memres buffer after
the step is performed.

Atomic compare exchange. An atomic memory write guarantees that all
stores of previous instructions are written to the memory before any memory
access of the current instruction occurs. In the real hardware atomic compare
exchange is implemented by a sequence of memory accesses. The memory
lock, acquired before the start of the first memory access guarantees that no
other memory operations are performed in between the steps of the atomic
instruction. Hence, the result of all memory accesses of an atomic instruction
is equivalent to the effect of a single complex atomic memory action, which we
model below.

Regardless of whether the comparison was successful or not, the data
fetched from the memory is written to the memory result buffer. The predicate
meq(data1 ∈ B

64, data2 ∈ B
64, mask ∈ B8) ∈ B compares only bytes of the data,

which are set in the given mask:

meq(data1, data2, mask) def
= ∀k ∈ N8 :

mask[k] =⇒ data1[8 ∗ (k + 1) − 1,8 ∗ k] = data2[8 ∗ (k + 1) − 1,8 ∗ k].

J Definition 3.77
Atomic compare exchange

label core-atomic-cmpxchng(i ∈ Pid,w ∈ Walk)

guard

tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w),
memreq[i].type = atomic-cmpxchng,
is-empty(sb[i]),
pa = w.pfn ◦memreq[i].va.off,
mask = memreq[i].mask,
cmp-data = memreq[i].cmp-data,
mem-data = read(ca,mm, i, pa,w.mt),

store-data =

memreq[i].data meq(mem-data, cmp-data,mask)
mem-data otherwise

,

read√(ca,mm, i, pa,w.mt),
write√(ca,mm, i, pa,w.mt, store-data,mask)

effect

(ca′, mm′) = write(ca,mm, i, pa,w.mt, store-data,mask),
memres′[i].data = combine(064, (mem-data,mask))
memres′[i].pf = no-page-fault(),
memres′[i].vmexit = 0,
memreq′[i].active = 0,
memres′[i].ready = 1



54 Abstract Hardware Model

Locked write. In addition to the atomic compare-exchange operation we
introduce another step, which performs a locked memory write10.

Definition 3.78 I
Locked memory write

label core-locked-memory-write(i ∈ Pid,w ∈ Walk)

guard

tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w),
is-empty(sb[i]),
memreq[i].type = locked-write,
data = memreq[i].data,mask = memreq[i].mask,
pa = w.pfn ◦memreq[i].va.off,
write√(ca,mm, i, pa,w.mt, store-data,mask)

effect

(ca′, mm′) = write(ca,mm, i, pa,w.mt, data,mask),
memres′[i].pf = no-page-fault(),
memres′[i].{data, vmexit} = 0,
memreq′[i].active = 0,
memres′[i].ready = 1

Triggering a page fault exception. If a TLB translation for the requested
virtual address is faulting, the core acknowledges a page fault and writes page
fault data to the memres buffer. The page fault is reported if there is an active
memory request and walkw, which can be used for triggering of a page fault, is
present in the TLB. At the same time, Intel [Int11, p. 4-56] and AMD [Adv11a,
p. 144] specifications additionally guarantee that all entries (complete and
incomplete ones) for a faulty virtual address are flushed from the TLB after a
page fault is reported. As a result, we have to split page fault triggering into two
steps: first identifying the faulty entry and reporting page fault information,
and then performing a TLB invalidation. In the first stage of the page fault
triggering we write the result of the page fault to the memres buffer, but do
not set the ready bit. Instead, we raise an ‘‘internal’’ request for a page-fault
address invalidation by setting the pf -flush-req flag in the memreq buffer.

Definition 3.79 I
Triggering page fault

(stage 1)

label core-prepare-page-fault(i ∈ Pid,w ∈ Walk)

guard

memreq[i].active = 1,
memreq[i].type ∈ MemAcc,
pte-read√(ca,mm, i, w),
pte = abs-pte(pte-read(ca,mm, i, w)),
tlb-fault-ready(memreq[i].main, asid[i], tlb[i], pte,w)

effect

memres′[i].pf.fault-code = page-fault-code(req.r, pte.p, pte.v),
memres′[i].pf.r, va = memreq[i].r, va,
memres′[i].pf.fault = 1,
memres[i].{ready, data} = 0,
memreq′[i].active = 0,
memreq′[i].pf -flush-req = 1

10In the x64 instruction set a locked memory write can be implemented by an xchg instruction,
where one operand is a register and another one is a memory address. An xchg operation implicitly
has a lock prefix, which ensures atomicity of the memory write and acts as a serializing event
[Adv11b].
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Note, that in the first stage of the PF triggering we set the ready bit in the
memres buffer to zero. This is necessary, because we are overwriting certain
fields of the memres buffer and we want to make sure, that the instruction
core never reads a part of the memory result from one access and another part
from another access. (We currently do allow a new request to be issued, while
the result of the previous request has not been acknowledged. The result of
the old request in this case might get overwritten.)

In the second stage of the page fault triggering we wait until TLB is
invalidated and set the ready bit in the memres buffer.

J Definition 3.80
Triggering page fault
(stage 2)

label core-trigger-page-fault(i ∈ Pid)

guard

memreq[i].active = 0,
memreq[i].pf -flush-req = 1,
memreq[i].type ∈ MemAcc,
tlb-invalidated-pf (tlb[i], memreq[i].va.vpfn, asid[i]),
asid[i] = 0

effect
memreq′[i].pf -flush-req = 0,
memres′[i].vmexit = 0,
memres′[i].ready = 1

Note, that a regular page fault can be triggered only on a processor running
in hypervisor mode. In case if a processor is running in guest mode VMEXIT
event is triggered instead.

3.5.2 TLB Operations

The TLB actions, which can be requested from the instruction automaton,
include an address invalidation and a move to the CR3 register. All these
operations can be performed only on a processor running in hypervisor mode.

TLB address invalidation. Address invalidation removes not only all walks
for the invalidated virtual address, but also all partial walks.

J Definition 3.81
Tagged TLB address
invalidation

label core-tlb-invlpga(i ∈ Pid)

guard

asid[i] = 0,
memreq[i].active = 1,
memreq[i].type = invlpg-asid,
tlb-invalidated(tlb[i], memreq[i].va.vpfn,memreq[i].asid),

effect

memres′[i].pf = no-page-fault(),
memres′[i].{data, vmexit} = 0,
memreq′[i].active = 0,
memres′[i].ready = 1

Move to CR3. If a move to CR3 register is requested, we wait until the TLB
is completely flushed in the currently active ASID and update the value of the
CR3 register.
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Definition 3.82 I
Move to CR3 label core-mov2cr3(i ∈ Pid)

guard

asid[i] = 0,
memreq[i].active = 1,
memreq[i].type = mov2cr3,
tlb-empty-asid(tlb[i], asid[i])

effect

CR3′[i] = memreq[i].cr3in,
memres′[i].pf = no-page-fault(),
memres′[i].{data, vmexit} = 0,
memreq′[i].active = 0,
memres′[i].ready = 1

3.5.3 Virtualization Actions.

VMEXIT. A VMEXIT event is triggered on a processor running in guest mode
in one of the following cases:

• VMEXIT is requested by the instruction core,
• TLB contains a walk which can be used for page fault triggering and a

memory request is pending,
• TLB address invalidation or a move to CR3 is pending.

Additionally, we have to ensure that the store buffer is flushed at the time when
VMEXIT is triggered (VMEXIT is a serializing event, which requires flushing of
the store buffer).

Definition 3.83 I
VMEXIT label core-vmexit(i ∈ Pid,w ∈ Walk)

guard

asid[i] , 0,
memreq[i].type ∈ {mov2cr3, invlpg-asid, vmexit} ∪MemAcc,
memreq[i].type < MemAcc =⇒

memreq[i].active = 1,
memreq[i].type ∈ MemAcc =⇒

memreq[i].pf -flush-req = 1
∧memreq[i].active = 0
∧ tlb-invalidated-pf (tlb[i], memreq[i].va.vpfn, asid[i]),

is-empty(sb[i]),
memres[i].ready = 0

effect

CR3′[i] = CR3hyp[i],
asid′[i] = 0,
memres′[i].{ready, vmexit} = 1,
memres′[i].pf = no-page-fault(),
memres′[i].data = 0,
memreq′[i].{active, pf -flush-req} = 0,
memres′[i].vmexit-memreq = memreq[i]
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Note, that as a precondition for VMEXIT we require the memres buffer to
have no pending result of the previous operation (i.e., the flag ready does not
have to be 0). Strictly speaking, we could allow a new request to be accepted
by the memory automaton only when the result of the previous request is
acknowledged and the ready bit is reset. In this case we could be sure that
the buffersmemreq andmemres never contain an active request and a pending
result at the same time. Yet, in the proofs presented further in this thesis we
don’t need this requirement, and the only step where we have to know that
this bit equals 0 is the VMEXIT step (one would need this knowledge to satisfy
preconditions of Lemma 8.4).

VMRUN. In case the instruction automaton requests a VMRUN, we write
the provided values to the CR3 and ASID registers, and wait until the store
buffer is flushed. Additionally, we may inject a page fault to the memres
buffer (if required by the instruction automaton) and inject a pending memory
request to the memreq buffer. The data which might be injected in the memory
request/result buffers consists of the following fields:

J Definition 3.84
VMRUN injection
data

InjectData
def
= [req ∈ MemReqMain, pf ∈ PfData, ready ∈ B].

To simplify notation later in this thesis we sometimes write idata.x instead
of idata.req.x when referring to the parameters of the injection data idata ∈
InjectData.

If a bit memreq[i].complete-flush is set, then we wait until TLB removes all
walks with ASIDs other than zero.

J Definition 3.85
VMRUN

label core-vmrun(i ∈ Pid)

guard

asid[i] = 0,
memreq[i].active = 1,
memreq[i].type = VMRUN,

is-empty(sb[i]),
memreq[i].complete-flush =⇒

∀asid , 0 : tlb-empty-asid(tlb[i], asid)

effect

memreq′[i].main = memreq[i].inject-data.req,
CR3′hyp[i] = CR3[i],

CR3′[i] = memreq[i].cr3in,
asid′[i] = memreq[i].asidin,
memres′[i].pf = memreq[i].inject-data.pf,
memres′[i].{data, vmexit} = 0,
memres′[i].ready = memreq[i].inject-data.ready

After a VMRUN event is completed and the core continues execution of guest
instructions, the guest will see the result of his memory access without
knowing that it was interrupted. Injected data could contain information for
a successful INVLPG (in the ASID of the guest), or a move to CR3, or a page
fault which caused VMEXIT, was virtualized by the hypervisor, and has to be
propagated to the guest.
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The value of the field memres′[i].data is irrelevant, because we never inject
a result of a memory read operation at the VMRUN. Yet, instead of leaving this
filed undefined (or unchanged) after the step, we assign a zero value to it so
that we can later specify the respective VMRUN step in C-IL + HW semantics
(Section 7.2.1).

Note, that the instruction automaton has to guarantee, that the value of
the ASID to switch to is different from 0.

3.6 Instruction Automaton

The configuration of the instruction core contains a single component, which
denotes the internal state of the automaton:

Definition 3.86 I
Instruction core

InstrCore
def
= [state ∈ InstrCoreState].

To argue about updates of the internal state of the instruction automaton
we introduce two uninterpreted function. One function is used to perform an
internal step of the instruction automaton and the other is used to perform an
input action (from the point of view of the instruction automaton) accepting
the result of the memory operation received from the memory core:

next-instr-state(state ∈ InstrCoreState) ∈ InstrCoreState,
next-instr-mem-state(state ∈ InstrCoreState,

memres ∈ MemRes) ∈ InstrCoreState.

An internal step of the instruction automaton is defined in the following
way.

Definition 3.87 I
Internal step of

instruction automaton

label core-instr-step(i ∈ Pid)

guard

effect state[i]′ = next-instr-state(state[i])

The next memory request to be issued by the instruction automaton is
obtained with the following function:

next-mem-req(state ∈ InstrCoreState,memres ∈ MemRes) ∈ MemReq ∪ {⊥}.

The step of issuing a memory request is defined in the following way.

Definition 3.88 I
Issuing a memory

request

label core-issue-mem-req(i ∈ Pid, req ∈ MemReq)

guard next-mem-req(state[i], memres[i]) = req

effect

The effect of an input action from memory automaton involves updating
the internal state of instruction automaton based on the obtained result of the
memory operation.

Definition 3.89 I
Accepting memory reply

label core-send-mem-res(i ∈ Pid, res ∈ MemRes)

guard

effect state[i]′ = next-instr-mem-state(state[i], res)
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4
Reduced Hardware Model

4.1
Specification

4.2
Cache Reduction

4.3
Ownership

4.4
SB Reduction

4.5
TLB Reduction

4.6
Putting It All Together

One of our goals in this thesis is to define
a hardware model, which can be later used
for verification of system software code using
an automated C verifier. The very first
and crucial restriction on the hardware
model introduced by the C verifier is the
sequentially consistent memory model. The
C verifier can operate only with the memory,
where store buffers, caches, and TLBs are
not visible. The hardware model defined
thus far does not fit the aforementioned
requirements. In this Chapter we define
a reduced hardware model without caches,
SBs, and TLBs, which simulates the
full abstract machine (referred later as
a reference hardware model) presented in
Chapter 3.
To perform SB reduction we partition the
memory into ownership sets and define
an ownership discipline, which has to be
maintained in order for simulation to go
through. For TLB reduction we introduce
the set of identity mapped (hypervisor) page
tables and define properties on them. To
perform cache reduction, we restrict our
hardware model to operate only with ‘‘write-
back’’ memory types.
A sketch of the reduction theorems presented
in this chapter was outlined by Degenbaev,
Paul, and Schirmer in [DPS09].
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of the
C verifier

scope

RedHardwca

RedHardwsb

RedHardw

consistency
compiler

C code

Hardware

Figure 4.1: The stack of reduced hardware models.

Hypervisor code is often running in parallel with guest code being executed
on other processors of the system. As soon as we want to provide the
full hardware model to the guest, we cannot reduce SBs and TLBs on the
processors executed in virtualziation mode. Moreover, we need to have TLBs
on processors running the guest code in order to virtualize the guest memory.
Hence, we define a reduced hardware model where SBs and TLBs are invisible
for processors running in hypervisor mode and are visible otherwise.

At the same time, since we are controlling guest memory translations (by
setting shadow page tables), we can control the type of the guest memory.
This allows us to reduce caches on all processors, including the ones running
the guest code. Since we do not consider devices, we make this reduction by
assigning a ‘‘write-back’’ type to the whole guest memory1.

We do the hardware reduction in three stages: first we reduce caches, then
store buffers, and finally - TLBs. As a result, we have three different reduced
models and three simulation theorems (Figure 4.1). Two intermediate reduced
models we call cache-reduced and SB-reduced hardware respectively. Cache,
SB, and TLB reduction theorems from Sections 4.2, 4.4, and 4.5 are stated for
a single step of the hardware machine and are not inductive, i.e., we do not
show that preconditions for the reduction are maintained after every step of
the machine. In Section 4.6 we unite three reduction theorems into a single
one and make it inductive.

4.1 Specification

The only hardware components, which are reduced completely for all
processors are caches. Store buffers and TLBs are reduced only for processors
operating in hypervisor mode. Any processor operating in hypervisor mode
may at some point enter guest mode, which makes its SB and TLB visible

1In the presence of devices one would have to ensure that I/O mapped memory regions always
have non-cacheable memory types.
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Processor i

Processor core

Abstract Memory

TLBSB

Figure 4.2: Hardware model after cache reduction

again. Moreover, the TLB content is not flushed after the mode switch. This
means that we have to argue about TLBs of all processors in the reduced model
(including the ones running in hypervisor mode), even though some of them
do not participate in address translations. More precisely, we abstract away
only the part of the TLB, where the walks with the ASID tag 0 are stored.

All reductions are done only to the memory automaton of the hardware
system. Instruction automata in all reduced hardware models are the same
as in the reference model. Moreover, memory automata of all reduced models
have the same components of the state, which are identical to the components
of the reference hardware with the exception of caches which are not visible in
the reduced models (Figure 4.2).

The state of the memory automaton of reduced hardware is fixed by the
following data type:

J Definition 4.1
Reduced hardware state
(memory automaton)

RedMemHardw
def
= [p ∈ Pid 7→ MemCore,mm ∈ Memory,
tlb ∈ Pid 7→ Core, sb ∈ Pid 7→ SB].

The state of the reduced hardware machine is then obtained by combining
the reduced memory automaton with the instruction automaton of the
reference model.

J Definition 4.2
Reduced hardware state

RedHardw
def
= [hm ∈ RedMemHw, hi ∈ InstrHw].

The part where all reduced hardware models are different, is the transition
relation. In order to distinguish the models from each other, we denote the
transition relation of the first reduced model (after cache reduction) by ∆ca ,
the relation of the second reduced model (after cache and SB reduction) by
∆sb, and the relation of the fully reduced model (after cache, SB, and TLB
reduction) by ∆ (the same symbol as used for the original hardware model).
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Additionally, we introduce the types

RedHardwca
def
= RedHardw,

RedHardwsb
def
= RedHardw,

to distinguish instances of different kind of reduced models.

4.2 Cache Reduction

Caches are made invisible by requiring all memory addresses to always have a
‘‘write-back’’ memory type2. This prevents the hardware from mixing memory
types of accesses to a given address and making the cache content inconsistent
with the data in the physical memory. With this requirement on the program
enforced, caches can be abstracted in a straightforward manner:

Definition 4.3 I
Memory abstraction

(reducing caches)

reduced-ca-mm(mm ∈ Memory, ca ∈ Pid 7→ Cache) ∈ Memory,

reduced-ca-mm(mm, ca)[pa] def
=

ca[i].data[pa] ca[i].state[pa] , I
mm[pa] otherwise.

Cache-reduced hardware is obtained by applying the memory abstraction
function to the components of the reference hardware model:

Definition 4.4 I
Hardware reduction

(caches)

reduced-ca-hw(h ∈ Hardware) ∈ RedHardwca ,

reduced-ca-hw(h) def
= RedHardwca[p 7→ h.p, pi 7→ h.pi , tlb 7→ h.tlb, sb 7→ h.sb,

mm 7→ reduced-ca-memory(h.mm, h.ca)].

Transitions of the cache-reduced hardware are equivalent to the transitions
of the reference model with the following exceptions:

• all cache steps are empty (i.e., perform stuttering),
• memory accessing steps operate directly on the physical memory (by

the means of read(mm, . . .), write(mm, . . .) functions) rather than on the
cache/memory system,

• the functions pte-read and pte-write operate directly on the physical
memory, and

• the shared memory is considered to be always accessible i.e., we do not
require read√(mm, . . .) to hold for the access to succeed. This weakening
of the model is fine since we only argue about terminating traces of the
reference hardware.

In the reference model the memory type of a memory access is obtained
from the memory type of the walk, chosen for the address translation of this
access. The following predicate denotes that all walks with a given ASID in a

2Requiring just cacheable memory type is not enough, because performing an access with a
‘‘write-protect’’ memory type may lead to the loss of data, in case one of the previous writes to this
address was done with a ‘‘write-back’’ or a ‘‘write-through’’ type.
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given TLB have a ‘‘write-back’’ memory type:

J Definition 4.5
Cacheable (write-back) walks

cacheable-walks(tlb ∈ Tlb, asid ∈ N) ∈ B,

cacheable-walks(tlb, asid) def
= ∀w ∈ Walk :

tlb[w] ∧w.asid = asid =⇒ w.mt = WB.

To guarantee that all accesses in the system are always performed to
addresses with a ‘‘write-back’’ memory type, we have to maintain the following
invariant on all walks with the active ASID in all TLBs. Additionally, we
maintain the same property on all walks with ASID 0 (this part of invariant we
use in Lemma 4.6 to make the invariant inductive in case of VMEXIT).

J Invariant 4.6
Cacheable TLB
memory types

name inv-tlb-cacheable(h ∈ Hardware)

property cacheable-walks(tlb[i], asid[i]) ∧ cacheable-walks(tlb[i],0)

We also need to maintain an analogous invariant for SBs to guarantee that
all stores they commit to the memory have a ‘‘write-back’’ memory type.

J Invariant 4.7
Cacheable SB
memory types

name inv-sb-cacheable(sb ∈ Pid 7→ SB)

property ∀j < |sb[i].buffer | : sb[i].buffer[j].mt = WB

With the help of Invariant 4.6 and Invariant 4.7 we can now prove a cache
reduction theorem.

Theorem 4.1 (Cache reduction). Let all TLBs and SBs provide only ‘‘write-
back’’ memory types and the data in all caches be consistent. Moreover, let
reduction hold between states h ∈ Hardware and hr ∈ RedHardwca . Then
reduction is maintained after any step of the reference machine.

h
a
→ h′

∧ inv-consistent-caches(h.ca, h.mm)
∧ inv-tlb-cacheable(h)
∧ inv-sb-cacheable(h.sb)
∧ hr = reduced-ca-hw(h)

=⇒ hr
a
→ h′r

∧ h′r = reduced-ca-hw(h′)

Proof. If step h
a
→ h′ does not interfere with the caches or the main memory,

the step of the reduced machine is equivalent to h
a
→ h′ and the theorem

holds. Otherwise we do a case split on the type of the hardware step from h to
h′:

Case 1: h
a
→ h′ involves a read from the main memory on the processor i and

the physical address pa . The reduced machine performs the same
kind of a step, reading the physical memory instead of the cache/
memory system. From inv-tlb-cacheable we know that the memory
read is done from the ‘‘write-back’’ memory address. Hence,

read(hr .mm, i, pa) = h.ca[i].data[pa].
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From inv-consistent-caches we know that the content of all caches,
which have the data for the pa in a valid state, is the same. It
follows, that the reduced memory abstraction is well-defined and
hr .mm[pa] = h.ca[i].data[pa]. Thus, the results of the memory reads
on two machines are the same:

read(hr .mm, i, pa) = read(h.ca, h.mm, i, pa,mt).

Case 2: h
a
→ h′ involves a write to the memory:

(h′.ca, h′.mm) = write(h.ca, h.mm, i, pa,mt, data,mask).

The reduced machine performs the same kind of a step, writing the
main memory instead of the cache/memory system. Since the write
is done to a ‘‘write-back’’ memory address, we know that it does not
bypass the cache. Moreover, all other caches have the data for pa in
an invalid state. Hence, we get

h′r .mm = write(hr .mm, i, pa, data,mask).

Case 3: h
a
→ h′ is a step of the abstract cache i for the address pa. Our

cache coherence protocol guarantees that the data stays consistent
between all caches (see Lemma 4.2). If some cache is in a valid state
in h and stays in a valid state in h′, then its data is unchanged. If a
cache is invalid in h and goes to a valid state in h′, then it either gets
the data from the main memory or from another cache. In all these
cases the result of the memory abstraction function is not affected
by the step and the value of the abstracted memory is unchanged. A
corresponding step of the reduced machine hr

a
→ h′r is an empty step

i.e., h′r = hr .

�

Additionally, we state an easy lemma showing that the cache consistency
is maintained after every step of the machine.

Lemma 4.2 (Consistent caches). Let all TLBs and SBs provide only ‘‘write-
back’’ memory types and the data in all caches be consistent in state h ∈

Hardware. Further, let h
a
→ h′ be a hardware step. Then cache consistency

also holds in state h′:

h
a
→ h′

∧ inv-consistent-caches(h.ca, h.mm)
∧ inv-tlb-cacheable(h)
∧ inv-sb-cacheable(h.sb)
=⇒ inv-consistent-caches(h′.ca, h′.mm).

Proof. The proof is done by a case split on the type of the hardware step:

Case 1: h
a
→ h′ is a step of writing a line with the address pa to the

cache i by the processor core (either core-locked-memory-write or
core-atomic-cmpxchng). Invariant inv-tlb-cacheable guarantees that
the write is performed with a ‘‘write-back’’ memory type. It follows
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that no other cache has the same line in the valid state and the state
of the line in cache i is changed to M . Consistency invariants in this
case are trivially maintained,

Case 2: h
a
→ h′ is a commit-store step of the store buffer i to the address

pa. Invariant inv-sb-cacheable guarantees that the write is performed
with a ‘‘write-back’’ memory type. The state of the cache line is
changed to M and all consistency invariants are trivially maintained,

Case 3: h
a
→ h′ is a step of cache i of fetching a line with the address pa from

cache j. The state of the line in cache i is set to S. We now consider
three sub-cases:

Case 3.1: h.ca[j].state[pa] = E. During the transition the state for pa
is changed to S. From inv-consistent-caches(h.ca, h.mm) it
follows that no caches other than i and j have the data for
the line in a valid state. Moreover, the memory contains
the same data as the caches do. Hence, cache consistency
is preserved in h′,

Case 3.2: h.ca[j].state[pa] = M . During the transition the state for pa
is changed to O. From inv-consistent-caches(h.ca, h.mm) it
follows that no caches other than i and j have the data
for the line in a valid state. Hence, cache consistency is
preserved in h′,

Case 3.3: h.ca[j].state[pa] = O. During the transition the state for
pa is left unchanged and cache consistency is trivially
preserved,

Case 4: h
a
→ h′ is a step of cache i of fetching a line with the address

pa from the main memory. The guard of the step guarantees
that no other cache has the data in state M or O. From
inv-consistent-caches(h.ca, h.mm) it follows that the data in the
memory for the address pa is the same, as the data in all valid cache
lines. Hence, fetching the data from the memory does not break cache
consistency,

Case 5: h
a
→ h′ is a step of cache i of writing back a line with the address pa

to the main memory. After the step we have

h′.ca[i].data[pa] = h′.mm[pa].

We again consider two sub-cases:

Case 5.1: h.ca[i].state[pa] = M. During the transition the state for pa
is changed to E. From inv-consistent-caches(h.ca, h.mm) it
follows that no cache other than i has the data in a valid
state. The content of cache i and the main memory is the
same after the step and cache consistency is preserved,

Case 5.2: h.ca[i].state[pa] = O. During the transition the state for pa
is changed to S. From inv-consistent-caches(h.ca, h.mm)
it follows that all other caches have the data in a shared
or invalid state. For the cashes which have this line in a
shared state the data in the line is the same as the data
in cache i. After the step all caches have this line in state
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I or S and the data for the valid line is the same one as
the data in the main memory. Hence, cache consistency is
preserved,

Case 6: h
a
→ h′ is a step of dropping a line, bringing a line to an exclusive

state, or passing the ownership of a line to another cache. In all these
cases cache consistency is trivially maintained.

All the other steps do not affect the state of the cache and can not possibly
break the invariant. �

Ensuring that Invariant 4.6 holds after a step of the machine requires
arguing about the content of page tables, the value of control bits of the CR3
register, and the content of the MTRR registers. We fix these properties in
Section 4.5.

4.3 Ownership

In order to prove SB and TLB reduction theorems and to verify memory safety of
concurrent programs we need to introduce an ownership discipline for memory
addresses. More precisely, we aim at partitioning the memory address space
into a set of disjoint ownership domains of different cores and a set of shared
addresses.

4.3.1 Owned and Shared Addresses

In the context of a hypervisor program running atop of the hardware machine
we distinguish several sets of addresses, which we assume to be statically
fixed3. This partitioning is done from the point of view of the hypervisor
program and comprise the following sets of byte addresses:

• the set of shared writable addresses (e.g., used for storing shared global
data of the program):

SharedAddr ⊂ Bbpa ,

• the set of shared read-only-addresses (e.g., used for storing the code of
the hypervisor program):

ReadOnlyAddr ⊂ Bbpa ,

• the set of hypervisor addresses where local stacks of every hypervisor
thread is located:

StackAddr ⊂ Bbpa .

This set is subdivided into subsets StackAddri , where i ∈ Pid and
all subsets are disjoint from each other. A set StackAddri is always

3In general, sets of read-only and shared addresses are not fixed and may change. Yet, we
are interested only in those execution traces, where these sets are already fixed at the start of
execution and do not change afterwards.
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exclusively owned by a processor i, which means that other processors
can never access addresses from this set.

• the set of hypervisor addresses, where global non-shared variables of the
program are located (including the heap region):

PrivateAddr ⊂ Bbpa ,

• the set of addresses allocated to guest partitions. From the hypervisor
point of view these addresses are also shared:

GuestAddr ⊂ Bbpa .

All these sets have to be pairwise disjoint:

J Invariant 4.8
Disjoint sets of addresses

∀A, B ∈ {SharedAddr, ReadOnlyAddr, StackAddr,
PrivateAddr, GuestAddr} : A ∩ B = ∅

∀i, j : i , j =⇒ StackAddri ∩ StackAddrj = ∅.

Further in this thesis we assume that partitioning of memory into sets of
addresses is correct and is statically fixed. Hence, we assume that Invariant
4.8 always holds.

Further, we introduce local ownership sets for every processor in the
system. Since the ownership discipline is defined purely by software, we do not
keep ownership sets of addresses in the hardware configuration, but rather
introduce a separate data type

Ownership ∈ Pid 7→ 2B
bpa
.

For o ∈ Ownership the set o[i] keeps the addresses owned by the core with
the index i, when it is running in hypervisor mode. Only addresses from
the set PrivateAddr can be present in the set o[i]. Addresses from the set
StackAddri are considered to be always owned by a thread i and we do not
include them to the set o[i], which may change during execution. Since we
do not do SB reduction for processors running in guest mode, we do not need
to argue explicitly about addresses owned by these processors (from the set
GuestAddr).

A processor in hypervisor mode is allowed to read any address, except those
addresses which are in ownership domains of other processors. It can write
either an owned, a shared writable, or a guest address. A processor in guest
mode is allowed to access only guest addresses.

Note, that we require the set of shared writable addresses to be disjoint
from sets of owned addresses. Yet, on top of our ownership model one can
implement another model, where a shared address can be in the ownership
domain of some processor. In this case only this processor can write this
address and others can only read it (including MMUs which would not be able
to write to this address).

Further in this Chapter we consider ownership setting o to be changing
during hardware execution (ownership transfer). To denote a sequence of
ownership setting from o0 to on, which consists of n + 1 states we write
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o0, . . . , on.

4.3.2 Ownership Discipline

The ownership discipline consists of a number of invariants which have to be
maintained by any step of the system. This discipline is later used to justify
reordering of hardware steps to I/O points (see Section 5.4.3). We also use the
ownership discipline to prove a store buffer reduction theorem in Section 4.4.

First, we formalize the disjointness of ownership sets.

Invariant 4.9 I
Disjoint ownership

domains
name

inv-disjoint-ownership-domains(p ∈ Pid 7→ MemCore,
o ∈ Ownership)

property
pa ∈ o[i] =⇒ pa ∈ PrivateAddr,

pa ∈ o[i] ∧ pa ∈ o[j] =⇒ i = j

Next, we define restrictions on reading and writing operations performed
by the core. In order to identify all byte addresses participating in a given read
or write, we introduce the following function:

Definition 4.10 I
Affected byte addresses

affected-byte-addr(pa ∈ B61, mask ∈ B8) ∈ 2B
64
,

affected-byte-addr(pa,mask) def
=

{bpa | ∃bx ∈ B3 : bpa = pa ◦ 03 + bx ∧mask[〈bx〉]}.

Memory reads can be performed from any address which is not owned by
others if a processor is running in hypervisor mode and from guest addresses
if the processors is running in guest mode.

Invariant 4.11 I
Ownership for reads name

inv-owned-reads(p ∈ Pid 7→ MemCore, tlb ∈ Pid 7→ Tlb,
o ∈ Ownership)

property

p[i].memreq.type = read

∧ tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w)
∧ pa = w.pfn ◦ p[i].memreq.va.off
∧ bpa ∈ affected-byte-addr(pa, p[i].memreq.mask)

=⇒ (p[i].asid = 0 =⇒ bpa <
⋃
j,i

(o[j] ∪ StackAddrj))

∧ (p[i].asid , 0 =⇒ bpa ∈ GuestAddr)

In contrast to regular reads, writes in hypervisor mode can be performed
only to owned addresses.

Invariant 4.12 I
Ownership for writes name

inv-owned-writes(p ∈ Pid 7→ MemCore, tlb ∈ Pid 7→ Tlb,
o ∈ Ownership)

property

p[i].memreq.type = write

∧ tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w)
∧ pa = w.pfn ◦ p[i].memreq.va.off
∧ bpa ∈ affected-byte-addr(pa, p[i].memreq.mask)
=⇒ (p[i].asid = 0 =⇒ bpa ∈ o[i] ∪ StackAddri)
∧ (p[i].asid , 0 =⇒ bpa ∈ GuestAddr)
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Writes to the memory performed by an atomic compare-exchange operation
or by a locked memory write have to be done to an owned, shared, or guest
address (for processors running the hypervisor) or to a guest address (for
processors in guest mode).

J Invariant 4.13
Ownership for interlocked
operations

name
inv-owned-atomic(p ∈ Pid 7→ MemCore, tlb ∈ Pid 7→ Tlb,

o ∈ Ownership)

property

p[i].memreq.type ∈ {atomic-cmpxchng, locked-write}
∧ pa = w.pfn ◦ p[i].memreq.va.off
∧ bpa ∈ affected-byte-addr(pa, p[i].memreq.mask)
∧ tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w)
=⇒ (p[i].asid = 0 =⇒ bpa ∈ SharedAddr ∪ GuestAddr

∪ o[i] ∪ StackAddri)
∧ (p[i].asid , 0 =⇒ bpa ∈ GuestAddr)

Note, that Invariants 4.12 and 4.13 require all writes to shared addresses to
be performed with an interlocked operation, which has a side effect of flushing
the store buffer. Shared variable of a C program have to be marked with the
volatile type qualifier and the compiler is responsible for executing a locked
write or a locked compare-exchange for every update of volatile data in a C
program.

In contrast to memory reads, regular writes are not done to the cache-
memory subsystem directly, but are at first committed to store buffers. Hence,
we have to talk about all stores which are currently pending in SBs.

J Invariant 4.14
SB stores ownedname

inv-owned-stores(p ∈ Pid 7→ MemCore, sb ∈ Pid 7→ SB,
o ∈ Ownership)

property

pending-byte-store(sb[i], pa, 〈byte〉)
∧ bpa = pa ◦ 03 + byte ∧ byte ∈ B3

=⇒ (p[i].asid = 0 =⇒ bpa ∈ o[i] ∪ StackAddri)
∧ (p[i].asid = 0 =⇒ bpa ∈ GuestAddr),

The memory of the hardware machine may be accessed not only by
processor cores, but also by MMUs. Hence, we need to be sure that MMUs
also obey the ownership discipline. More precisely, when an MMU is writing
a PTE in the memory, we have to be sure that there are no stores to this PTE
pending in any of the store buffers.

J Invariant 4.15
Ownership for walksname

inv-tlb-ownership(p ∈ Pid 7→ MemCore, tlb ∈ Pid 7→ Tlb,
o ∈ Ownership)

property

tlb[i][w] ∧w.l , 0 ∧w.asid = p[i].asid
∧ bpa ∈ qword2bytes(pte-addr(w.pfn,w.vpfn.px[w.l]))

=⇒ bpa <
⋃
i,j

(o[j] ∪ StackAddrj)

We group all the invariants defined in this section into a single property.
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Invariant 4.16 I
Ownership discipline

name inv-ownership-discipline(h ∈ Hardware, o ∈ Ownership)

property

inv-disjoint-ownership-domains(h.p, o),
inv-owned-reads(h.p, h.tlb, o), inv-owned-writes(h.p, h.tlb, o),
inv-owned-atomic(h.p, h.tlb, o), inv-owned-stores(h.p, h.sb, o),
inv-tlb-ownership(h.p, h.tlb, o)

Note, that maintaining the ownership discipline is user’s and compiler’s
responsibility. The correct ownership scenario first has to be established
for the original program. The compiler has to guarantee that the ownership
discipline of the original code is then transfered to the hardware ISA level.

The ownership discipline presented in this section is quite strict. In
particular, it does not allow store buffers to contain stores to the shared data.
As a result, the user has to flush the SB every time when he does a write to the
shared data. However, weaker ownership disciplines could be defined, which
still ensure sequential consistency of the memory/SBs system and can be used
for the store buffer reduction. One of such disciplines [CS10] requires that the
store buffer is flushed not after every shared write, but before a shared read
and only in case if the store buffer is ‘‘dirty’’ (i.e., there were writes to shared
data after the last flush).

4.4 SB Reduction

Generally, defining an abstraction function for SB reduction is a non-trivial
task, because of the unknown ordering of stores, committed by SBs to the
memory (due to the nondeterministic nature of SB behaviour). For instance,
consider a programming discipline where the store buffer flushes are done
not after writes to shared data, but before reads to shared data [CS10]. In
this case, one could end up with having two different chunks of data for one
physical address residing in different store buffers without any clue, which
data will be committed to the memory first.

A simpler ownership discipline used in this thesis allows us to overcome
this problem and to abstract store-buffers in a straightforward way. Our
discipline guarantees, that no two store buffers contain a pending store request
to a given physical byte address at the same time. Hence, the memory
abstraction for the SB-reduced model can be constructed analogously to the
abstraction function for cache reduction:

Definition 4.17 I
Memory abstraction

(reducing store buffers)

reduced-sb-mm(mm ∈ Memory, sb ∈ Pid 7→ SB, p ∈ Pid 7→ MemCore) ∈ Memory,

reduced-sb-mm(mm, sb)[pa] def
= data, where

∀i ∈ N64 : data[i] =


(sb[j].data[pa])[i] pending-byte-store(sb[j], pa, bi/8c)

∧p[i].asid = 0
mm[pa] otherwise.

In the SB-reduced model SBs of processors running in hypervisor mode
are considered to be always empty, while SBs of other processors are simply
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copied from the reference model:

J Definition 4.18
SB abstraction

reduced-sb(sb ∈ Pid 7→ SB, p ∈ Pid 7→ MemCore) ∈ Pid 7→ SB,

reduced-sb(mm, sb)[i] def
=

empty-sb() p[i].asid = 0
sb[i] otherwise.

The SB-reduced machine is then defined in the following way:

J Definition 4.19
Hardware reduction
(store buffers)

reduced-sb-hw(h ∈ RedHardwca) ∈ RedHardwsb,

reduced-sb-hw(h) def
= h[sb 7→ reduced-sb(h.sb, h.p),

mm 7→ reduced-sb-mm(h.mm, h.sb, h.p)].

The transition system of the SB-reduced hardware is equivalent to the
transition system of the cache-reduced model with the exception of the steps
of processors running in hypervisor mode (i.e., with current ASID set to 0).
The steps of these processors differ in the following way:

• all store buffer steps are empty (i.e., perform stuttering),
• the core memory write operation is done directly to the main memory of

the SB-reduced machine, rather than committed to a store buffer,
• the core memory read is always done from the main memory (no store

buffer forwarding),
• VMRUN step does not require the SB to be flushed.

As an example of the core memory access of a processor running in
hypervisor mode, consider a memory write operation.

J Definition 4.20
Core memory write
(RedHardwsb )

label core-memory-write(i ∈ Pid,w ∈ Walk)

guard

asid[i] = 0,
tlb-transl-ready(p[i].memreq.main, p[i].asid, tlb[i], w),
memreq[i].type = write,

data = memreq[i].data,
mask = memreq[i].mask,
pa = w.pfn ◦memreq[i].va.off

effect

mm′ = write(mm, pa, data,mask),
memres′[i].pf = no-page-fault(),
memres′[i].{data, vmexit} = 0,
memreq′[i].active = 0,
memres′[i].ready = 1

Theorem 4.3 (Store buffer reduction). Let the ownership discipline hold in a
state h ∈ RedHardwca . Moreover, let SB-reduction hold between states h and
hr ∈ RedHardwsb. Then reduction is maintained after any step of the cache-
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reduced machine:

h
a
→ h′

∧ inv-ownership-discipline(h, o)
∧ hr = reduced-sb-hw(h)

=⇒ hr
a
→ h′r

∧ h′r = reduced-sb-hw(h′).

Proof. If step h
a
→ h′ does not interfere with the store buffers or the main

memory, the step of the SB-reduced machine is equivalent to h
a
→ h′ and the

theorem holds. Otherwise, we do a case split on the type of a step performed
by the host hardware.

Case 1: h
a
→ h′ is a compare exchange step to physical address pa on

processor i. The byte addresses affected by this step are

bpa ∈ affected-byte-addr(pa,memreq[i].mask).

The reduced machine performs the same kind of a step. From
inv-owned-atomic (Invariant 4.13) we get that

bpa ∈ SharedAddr ∨ bpa ∈ GuestAddr.

Using inv-owned-stores (Invariant 4.14) we conclude that there are no
stores to bpa pending in any of the store buffers of processors running
in hypervisor mode. Hence,

h′.p[i].memres.data = combine(064, (h.mm[pa], h.p[i].memreq.mask))
= combine(064, (hr .mm[pa], hr .p[i].memreq.mask))
= h′r .p[i].memres.data, and

h′.mm[pa] = combine(h.mm[pa], (h.p[i].memreq.data,
h.p[i].memreq.mask))

= combine(hr .mm[pa], (h.p[i].memreq.data,
h.p[i].memreq.mask))

= h′r .mm[pa].

Case 2: h
a
→ h′ is a locked memory write to physical address pa on processor

i. The proof for this case is completely analogous to the previous case.

Case 3: h
a
→ h′ is a TLB step of setting access/dirty bits in a PTE or a walk

extension (which involves fetching of the PTE). From inv-shared-ptes
(Invariant 4.15) we get that the address of the PTE is shared and
complete the proof analogously to Case 1.

Now we consider the hardware steps performed by processors running in
hypervisor mode (h.p[i].asid = 0).

Case 3: h
a
→ h′ is a core memory read from physical address pa on processor

i. The reduced machine performs the same step, reading the physical
memory. The byte addresses, which are supposed to be read from the
memory are

bpa ∈ affected-byte-addr(pa,memreq[i].mask).
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From the ownership discipline it follows that the data for bpa may
be present only in the store buffer of the processor i. If the memory
read doesn’t involve forwarding from the store buffer, then the data is
not present in any of the store-buffers at all and the theorem holds.
Otherwise, the copy of the data is taken from the store buffer and we
have

h′.p[i].memres.data = combine(064, (combine(h.mm[pa],
forward(h.sb[i], pa)), h.p[i].memreq.mask))

= combine(064, (combine(h.mm[pa],
forward(h.sb[i], pa)), h.p[i].memreq.mask))

= combine(064, (hr .mm[pa], h.p[i].memreq.mask))
= h′r .p[i].memres.data.

Case 4: h
a
→ h′ is a core memory write to the (owned) physical address pa

on processor i. For the bytes of pa which are not affected by the
write nothing is changed. The write is committed to the store buffer
together with the write mask. The other store buffers do not have the
data for the bytes of pa, which are modified by this write. It follows
for all bytes i < 8 affected by the memory write:

bytei(h′.sb[i].data[pa]) = bytei(h′r .mm[pa]).

The reduced machine performs the same step, writing directly to the
physical memory and the theorem holds.

Case 5: h
a
→ h′ is a step of store buffer h.sb[i]. The reduced machine makes

an empty step. The proof for this case requires a case split on the
type of the store buffer step and is analogous to previous cases.

Case 6: h
a
→ h′ is a VMRUN step of processor i. The reduced machine

performs the same step. The store buffer becomes now visible on
the reduced machine. Since store buffer h.p[i].sb is empty at the time
when the step is triggered and buffer hr .p[i].sb is also empty according
to the abstraction relation, we get

h′.p[i].sb = h′r .p[i].sb = empty-sb()

and the abstraction relation holds after the step.

Now we do a case split on steps of the processor running in guest mode
(h.p[i].asid , 0).

Case 7: h
a
→ h′ is a core memory write to (guest) physical address pa

on processor i. The reduced machine performs the same step,
committing a store to the SB. From the ownership discipline it
follows that no store buffers of processors in hypervisor mode contain
stores to the bytes affected by this write. Hence, the main memory
abstraction of the reduced machine is maintained.

Case 8: h
a
→ h′ is an SB write to the main memory. The proof for this case is

analogous to the previous case .

Case 9: h
a
→ h′ is a VMEXIT step of processor i. Before the step the store

buffers are empty on both machines. Hence, after the step the
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Figure 4.3: Reduced hardware machine.

abstraction relation holds.

All steps, which are not explicitly mentioned above, are equivalent on both
machines and there is nothing to prove for them. �

4.5 TLB Reduction

A compiler is normally not aware of any address translation performed by the
hardware MMU: it produces the code, which behaves as intended only when it
is executed on a machine with sequentially consistent memory. In order to talk
about compiler consistency of multi-threaded programs (where every thread is
executed on a dedicated processor), we introduce another reduced hardware
model, where address translation is not visible on processors running in
hypervisor mode.

Note, that although the pointer to the top-level page table is set separately
for every processor, MMU reduction can not be done on a per-processor basis.
In order to run a multi-threaded program on a machine with reduced MMUs,
we need to be sure that all processors do the same address mapping. Only
then we can run programs operating on a shared memory. Moreover, we want
to have a number of other processors running in the ‘‘translated’’ mode, which
have their MMUs operating in the same address space as the ‘‘untranslated’’
processors do.

The simplest solution to this problem is to set up page tables for
‘‘untranslated’’ processors so that they provide the identity mapping. Further,
we require the hypervisor code to run under the identity mapping. In the next
section we formalize the properties of the identity mapped page tables (IMPTs).

4.5.1 Identity Mapped Page Tables

We require IMPTs to be located in the dedicated range of physical addresses:

IMPTAddr ⊂ Bbpa .
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We require this set of addresses to be disjoint from all other sets (i.e., from
shared writable, read only, processor owned, and guest addresses) introduced
in Section 4.3.1.

J Invariant 4.21
Disjoint IMPT
addresses

∀bpa ∈ IMPTAddr : bpa < SharedAddr ∪ ReadOnlyAddr ∪ StackAddr
∧ bpa < PrivateAddr ∪ GuestAddr.

Further in this thesis we assume that partitioning of memory into sets of
addresses is correct and is statically fixed. Hence, we assume that Invariant
4.21 always holds.

For IMPTs we introduce a predicate, which denotes that addresses of all
entries of a page table are located in the set IMPTAddr:

J Definition 4.22
IMPT in IMPTAddr

impt-in-IMPTAddr(ba ∈ Bpfn) ∈ B,

impt-in-IMPTAddr(ba) def
= pfn2bytes(ba) ⊆ IMPTAddr.

The base address of the root IMPT is fixed by the constant IMPTRootBA s.t.

impt-in-IMPTAddr(IMPTRootBA).

For simplicity, we require all physical addresses to be mapped i.e., we have

Bpfn = Bvpfn.

We say that an IMPT is valid, if the following properties are satisfied:

• all entries of the IMPT are located at the address from IMPTAddr,
• all entries of the IMPT are marked as present and valid with A and D bits

(for terminal PTs) set,
• all entries of the IMPT have pat-idx value identifying a ‘‘write-back’’

memory type,
• all entries of the IMPT have all rights enabled,
• if the IMPT is non-terminal, then all its entries point to other valid IMPTs,
• if the IMPT is non-terminal, then all its entries have the pfn field equal

to the virtual PFN, which leads to this terminal IMPT.

With the following function we check that a given base address ba points
to a valid subtree of IMPTs with the depth l and the virtual prefix vpfn. Let

pte = abs-pt(read(h.mm, ba ◦ 09)).pte[vpfn.px[l]]

be the next PTE to be fetched for a given vpfn. Then the valid IMPT is defined
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in the following way:

Definition 4.23 I
Valid IMPT tree

valid-im-tree(h ∈ RedHardsb, vpfn ∈ Bvpfn , ba ∈ Bpfn , l) ∈ B

valid-im-tree(h, vpfn, ba, l) def
=

impt-in-IMPTAddr(ba)
∧ pte.p ∧ pte.a ∧ pte.valid
∧ pat-mt(pte.pat-idx) = WB
∧ pte.r.{us, rw, ex} = 1
∧ (l > 1 =⇒ valid-im-tree(h, vpfn, pte.pfn, l − 1))
∧ (l = 1 =⇒ pte.d ∧ pte.pfn = vpfn).

Now we can define an invariant, which ensures that all address translations
for any virtual address from Bvpfn go only through valid IMPTs.

Invariant 4.24 I
Valid IM

translations

name inv-valid-im-translations(h ∈ RedHardwsb)

property ∀vpfn ∈ Bvpfn : valid-im-tree(h, vpfn, IMPTRootBA,4)

To make sure that the properties of IMPTs don’t get violated during the
code execution, we need to know that the core never writes to the addresses
in IMPTAddr. This is guaranteed by our ownership discipline for the reduced
model, which is defined in the next section.

All incomplete walks with ASID 0 in TLBs of the reference hardware model
have to be walks through the IMPTs. The CR3 register of processors running in
hypervisor mode should always point to the root IMPT. All complete walks with
ASID 0 should have w.pfn and w.vpfn fields equal (this guarantees identity
mapping for address translations). Moreover, when the hypervisor is sleeping
and the guest is running, the CR3hyp register should point to the root IMPT.
We fix these properties in the following invariant.

Invariant 4.25 I
TLB walks through

IMPTs

name inv-tlb-walks-impts(h ∈ RedHardwsb)

property

h.p[i].asid = 0 =⇒ h.p[i].CR3.pfn = IMPTRootBA,

h.p[i].asid , 0 =⇒ h.p[i].CR3hyp.pfn = IMPTRootBA,

h.p[i].tlb[w] ∧w.asid = 0 ∧w.l , 0
=⇒ valid-im-tree(h, i, w.vpfn,w.pfn,w.l),
h.p[i].tlb[w] ∧w.asid = 0 ∧w.l = 0 =⇒ w.pfn = w.vpfn

4.5.2 Registers

To make sure that all accesses in the system have ‘‘write-back’’ memory types
we additionally have to maintain invariants over the registers, used in memory
type calculations.

Since the content of the MTRR registers is considered to be fixed during
initialization and may not change during machine execution, we simply require
all physical addresses to have a ‘‘write-back’’ MTRR memory type:

Invariant 4.26 I
MTRR memory types name mtrr-cacheable()

property ∀i ∈ Pid, pfn ∈ Bpfn : mtrr-mt(pfn) = WB
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To ensure that the top-level page table has a ‘‘write-back’’ memory type,
we maintain an invariant on the value of the CR3 register. Additionally,
we maintain the same property on the CR3hyp register making the invariant
inductive after a VMEXIT event.

J Invariant 4.27
CR3 memory type

name inv-cr3-cacheable(h ∈ Hardware)

property
root-pt-memtype(h.p[i].CR3) = WB,

h.p[i].asid , 0 =⇒ root-pt-memtype(h.p[i].CR3hyp) = WB

4.5.3 TLB-reduced Hardware Model

TLBs of the reduced model do not contain any walks in ASID 0, while having
all the other walks copied from the underlying hardware layer:

J Definition 4.28
TLB abstraction

reduced-tlb(tlb ∈ Pid 7→ Tlb) ∈ Pid 7→ Tlb,

reduced-tlb(tlb) def
= λi ∈ Pid,w ∈ Walk : w.asid , 0 ∧ tlb[i][w].

The hardware model with reduced TLBs is then defined in the following
way:

J Definition 4.29
Hardware reduction
(TLBs)

reduced-tlb-hw(h ∈ RedHardwsb) ∈ RedHardw,

reduced-tlb-hw(h) def
= h[tlb 7→ reduced-tlb(tlb)].

Transitions of the fully reduced hardware are equivalent to the transitions
of the SB-reduced model with the exception of the steps of processors running
in hypervisor mode (i.e., with current ASID set to 0). The steps of these
processors differ in the following way:

• all TLB steps except dropping of walks are empty (i.e., perform
stuttering),

• core memory read, write and compare exchange operations are done
directly to the virtual address and do not require an address translation,

• there are no core steps for triggering of the page fault (since it would
never be triggered).

As an example, consider an updated core memory read step of a processor
running in hypervisor mode.

J Definition 4.30
Core memory read
(reduced model)

label core-memory-read(i ∈ Pid,w ∈ Walk)

guard
asid[i] = 0,
memreq[i].type = read,

data = read(mm, i,memreq[i].va)

effect

memres′[i].data = combine(064, (data,memreq[i].mask))
memres′[i].pf = no-page-fault(),
memres′[i].vmexit = 0,
memreq′[i].active = 0,
memres′[i].ready = 1

Now we can prove a TLB reduction theorem.
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Theorem 4.4 (TLB reduction). Let all walks with ASID 0 be walks over the
IMPTs and let the tlbres buffer contain no active page fault. Moreover, let
reduction hold between states h ∈ RedHardwsb and hr ∈ RedHardw. Then
reduction is maintained after any step of the SB-reduced machine:

h
a
→ h′

∧ inv-tlb-walks-impts(h)
∧ hr = reduced-tlb-hw(h)
∧ h′r = reduced-tlb-hw(h′)

=⇒ hr
a
→ h′r

∧ h′r = reduced-tlb-hw(h′).

Proof. Steps of processors running in guest mode (h.p[i].asid , 0), except of
removing walks in ASID 0, are equivalent to the steps of h. This is the case
because TLB performs all steps (with the exception of walk removal) only with
the walks in active ASID, which are simply copied from the original hardware
to the reduced one.

Next, we consider steps of processors running in hypervisor mode
(h.p[i].asid = 0). Note, that the step of triggering a page fault is not possible,
because the predicate tlb-fault-ready will never hold under the invariant
inv-tlb-walks-impts(h).

Case 1: h
a
→ h′ is a core memory access (read, write, locked write, or compare

exchange) from physical address pa on processor i, where

pa = w.pfn ◦ h.p[i].memreq.va.off.

The reduced machine makes the same step, reading/writing the
memory at the address h.p[i].memreq.va. From the invariant, we
conclude that

pa = h.p[i].memreq.va.

Hence, the memory access is performed to the same address
(returning the same result) and the theorem holds.

Case 2: h
a
→ h′ is a TLB step of setting access and dirty bits. The write

is performed directly to the main memory. From Invariant 4.25, we
know that the PTE being written already has the access and dirty bits
set. Hence, the memory is unchanged. This corresponds to an empty
step of the reduced hardware.

Case 3: h
a
→ h′ is a TLB step of removing a walk with ASID 0. This step

corresponds to an empty step of the reduced hardware (since it doesn’t
contain any walks with ASID 0 anyway). Note, that if the step h

a
→ h′

at the same time removes walks in different ASIDs including ASID 0,
then the reduced machine will remove all the walks with the exception
of the ones with ASID 0.

Case 4: h
a
→ h′ is any other TLB step in ASID 0. This corresponds to an empty

step of the reduced machine, and the theorem trivially holds.

All the other steps are performed identically on both machines. �
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Note, that in general we don’t necessarily need to have an identity mapping
to make MMUs invisible. However, in order to have a reduced model, where
MMUs of processors running in guest mode operate on the same abstract
memory as the reduced processors do, we need the page tables of the reduced
processors to be identity mapped4. Another advantage, which we get with the
identity mapping is an easy way to obtain the allocated physical base address
of data structures. For example, in our TLB virtualization algorithm (Chapter
9) we need to know the physical base address of shadow page tables to set
them up correctly.

4.6 Putting It All Together

The reduced hardware configuration is obtained by applying the three
reduction functions one after another:

J Definition 4.31
Hardware reduction

reduced-hw(h ∈ Hardware) ∈ RedHardw

reduced-hw(h) def
= reduced-tlb-hw(reduced-sb-hw(reduced-ca-hw(h)))

Now we unite the three reduction theorems presented in this chapter into
one theorem.

Theorem 4.5 (Cache, SB, and TLB reduction). Let the caches be consistent,
the complete walks in TLBs and SBs have ‘‘write-back’’ memory types, and
the ownership discipline hold. Moreover, let TLB reduction requirements be
satisfied. Further, let hardware reduction hold between states h ∈ Hardware
and hr ∈ RedHardw. Then reduction is maintained after any step of the

4If we reduced MMUs under a mapping hpa2spa, which is not an identity mapping, we would
have to consider different sets of addresses (i.e., GuestAddr, SharedAddr, etc.) for the reference
model and for the reduced model. Moreover, non-reduced MMUs and processors running in guest
mode would have to perform memory accesses under hpa2spa−1 mapping rather than accessing
the memory directly with the physical address.

The TLB ownership invariant (Invariant 4.36) in this case would change to

tlb[i][w] ∧w.l , 0 ∧w.asid , 0 ∧w.asid = asid[i]

∧ bva ∈ qword2bytes(pte-addr(hpa2spa−1(w.pfn), w.vpfn.px[w.l]))
=⇒ bva ∈ SharedAddr ∪ o[i],
tlb[i][w] ∧w.l = 0 ∧w.asid , 0 ∧w.asid = asid[i]

=⇒ pfn2bytes(hpa2spa−1(w.pfn)) ⊆ GuestAddr,

where GuestAddr and SharedAddr are sets of addresses defined for the reference model.
Additionally, certain properties have to be enforced on hpa2spa mapping for the simulation proof
to go through (e.g., injectivity).
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reference machine:

h
a
→ h′

∧ inv-tlb-cacheable(h),
∧ inv-sb-cacheable(h.sb),
∧ inv-consistent-caches(h.ca, h.mm),
∧ inv-ownership-discipline(reduced-ca-hw(h), o),
∧ inv-tlb-walks-impts(reduced-sb-hw(reduced-ca-hw(h)))
∧ hr = reduced-hw(h)

=⇒ hr
a
→ h′r

∧ h′r = reduced-hw(h′).

Proof. The proof is done by applying Theorems 4.1, 4.3, 4.4 one after
another. �

Our next goal is to make invariants needed for TLB, SB, and cache
reduction inductive. Moreover, we want to define a programming discipline
on the level of the reduced hardware model, which can be then used to
transfer properties down to the reference model and to maintain the reduction
invariants there. This will allow us to do the verification solely in the reduced
model (e.g., in the program verifier) and still be sure that the simulation
between the models holds.

All invariants needed for the reduction proofs can be divided into two
groups:

• invariants talking about the part of the hardware state, which is fixed
during initialization and remains constant afterwards. This includes the
MTRR and PAT registers and content of the IMPTs,

• invariants talking about the part of the state, which is allowed to change
during the code execution. This includes the ownership discipline and
certain properties of page tables used for address translations when the
guest is executed (i.e., properties of shadow page tables).

Establishing the properties of the first kind requires arguing about the
hypervisor initialization code and the boot loader. Since we do not verify
the hypervisor initialization, we simply require that these properties already
hold at the time when we start execution of the machine. Maintaining these
invariants afterwards requires that we never write to the part of the state they
talk about.

The properties of the second kind, on the other hand, have to be explicitly
maintained by the code we verify. And since we do the verification of this
code w.r.t the reduced hardware model, we need to be able to transfer these
properties from the reduced model downwards to the reference one, so that
the preconditions of the reduction theorem are satisfied.

We start with defining the ownership discipline for the reduced model (we
can not use the same discipline as for the reference model, because TLBs
and SBs are partially invisible in the reduced model). Then we put everything
together in a single top-level reduction theorem.
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4.6.1 Ownership for Reduced Model

For the reduced model we split the ownership discipline into two parts: (i)
properties for processors running in hypervisor mode and (ii) properties of
processors running in guest mode.

Ownership for Hypervisor Mode

The requirement for disjoint ownership domains stays identical to the one for
the reference model (Invariant 4.9).

The ownership requirements for read, compare-exchange, regular writes,
and locked writes now only talk about the hardware state of processors in
hypervisor mode. The property for steps of processors in guest mode follows
from the TLB ownership invariant for the reduced model (Invariant 4.36),
where we additionally require all complete walks to point to addresses from
GuestAddr.

J Invariant 4.32
Ownership for reads
(reduced model)

name inv-owned-readsr (p ∈ Pid 7→ MemCore, o ∈ Ownership)

property

p[i].asid = 0 ∧ p[i].memreq.type = read ∧ va = p[i].memreq.va
∧ bva ∈ affected-byte-addr(va, p[i].memreq.mask)

=⇒ bva <
⋃
j,i

(o[j] ∪ StackAddrj)

J Invariant 4.33
Ownership for writes
(reduced model)

name inv-owned-writesr (p ∈ Pid 7→ MemCore, o ∈ Ownership)

property

p[i].asid = 0 ∧ p[i].memreq.type = write

∧ va = p[i].memreq.va
∧ bva ∈ affected-byte-addr(va, p[i].memreq.mask)
=⇒ bva ∈ o[i] ∪ StackAddri

J Invariant 4.34
Ownership for interlocked
(reduced model)

name inv-owned-atomicr (p ∈ Pid 7→ MemCore, o ∈ Ownership)

property

p[i].asid = 0 ∧ va = p[i].memreq.va
∧ p[i].memreq.type ∈ {atomic-cmpxchng, locked-write}
∧ bva ∈ affected-byte-addr(va, p[i].memreq.mask)
=⇒ bva ∈ SharedAddr ∪ GuestAddr ∪ o[i] ∪ StackAddri

Note, that Invariant 4.33 alone is not sufficient to maintain the property
for owned stores (Invariant 4.14) in case of the ownership transfer (i.e., when
the record o is being modified). Further we introduce a rule, which makes
ownership transfer sound w.r.t to the ownership discipline.

Analogously to the ownership for the reference model we group all the
properties (except the one for the TLB ownership) into a single invariant.

J Invariant 4.35
Ownership discipline
(reduced model)

name inv-ownership-discipliner (h ∈ RedHardw, o ∈ Ownership)

property

inv-disjoint-ownership-domainsr (h.p, o),
inv-owned-readsr (h.p, o),
inv-owned-writesr (h.p, o),
inv-owned-atomic-cmpxchngr (h.p, o)
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Ownership for Guest Mode

For the ownership of PTEs pointed by incomplete walks in TLBs we strengthen
Invariant 4.15 to talk about walks with w.asid , 0. We now require all PTEs
to be located either in the shared writable memory or in the owned memory of
the processor. For walks in ASID 0 the required ownership property follows
from Invariant 4.25. Additionally, we require all complete walks with ASID
other than zero to point to addresses from GuestAddr.

Invariant 4.36 I
TLB ownership

(reduced model)
name

inv-tlb-ownershipr (p ∈ Pid 7→ Core, tlb ∈ Pid 7→ Tlb,
o ∈ Ownership)

property

tlb[i][w] ∧w.l , 0 ∧w.asid , 0 ∧w.asid = asid[i]
∧ bva ∈ qword2bytes(pte-addr(w.pfn,w.vpfn.px[w.l]))
=⇒ bva ∈ SharedAddr ∪ o[i],
tlb[i][w] ∧w.l = 0 ∧w.asid , 0 ∧w.asid = asid[i]
=⇒ pfn2bytes(w.pfn) ⊆ GuestAddr

Note, that the property about the guest walks is stated only for the currently
active ASID of the processor.

4.6.2 Ownership Transfer

Here we define an invariant which has to hold during ownership transfer from
ownership setting o to o′ in order for this transfer to be sound w.r.t to the
ownership discipline and the hardware reduction. The ownership transfer can
occur when the memory core makes a step from p to p′.

We allow the release of ownership on an address from some processor to
occur only when the store buffer of this processor is empty. Since on the
reduced machine store buffers might be invisible, we state the requirement
on the processor core, rather than on the store buffer itself. In particular,
we allow a processor to abandon ownership only when it performs a locked
memory write5.

Invariant 4.37 I
Ownership transfer

(reduced model)
name

inv-safe-transferr (p ∈ Pid 7→ MemCore, p′ ∈ Pid 7→ MemCore
o ∈ Ownership, o′ ∈ Ownership)

property

bpa ∈ o[i] ∧ bpa < o′[i]
=⇒ p[i].memres.ready = 0 ∧ p′[i].memres.ready = 1
∧p[i].memreq.type ∈ {atomic-cmpxchng, locked-write},

bpa < o[i] ∧ bpa ∈ o′[i] =⇒ bpa ∈ PrivateAddr ∧ bpa <
⋃
i,j

o′[j]

4.6.3 Main Reduction Theorem

Safety for Reference Hardware

We group all properties of the reference model we need in order to prove
reduction theorem and to maintain the properties after a step of the hardware

5In a C program this corresponds to acquiring/releasing of a lock, which obtains/abandons
ownership of lock-protected data by a thread.
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machine. We say that a hardware configuration which satisfies all reduction
invariants is safe.

J Invariant 4.38
Safe configuration
(reference model)

name safe-conf (h ∈ Hardware, o ∈ Ownership)

property

inv-valid-im-translations(h),
inv-tlb-walks-impts(reduced-sb-hw(reduced-ca-hw(h))),
mtrr-cacheable(),
inv-cr3-cacheable(h),
inv-tlb-cacheable(h),
inv-sb-cacheable(h.sb),
inv-consistent-caches(h.ca, h.mm),
inv-ownership-discipline(reduced-ca-hw(h), o),

A step of the hardware is safe when it starts and ends in a safe

configuration. An execution sequence h0 �
→ hn, where |�| = n and n > 0

is safe if it starts in a safe state and every step in this sequence also leads to
a safe state6. The following predicate denotes that a sequence � from h0 to hn

is safe starting with the ownership setting o and ending with the ownership
setting o′:

J Definition 4.39
Safe sequence

safe-seq(�, o, o′) def
= ∃o0, . . . , on : o0 = o ∧ on = o′ ∧ ∀i ≤ n : safe-conf (h i , oi).

Note, that in the definition given above and in the upcoming definitions
of functions which take as a parameter a sequence of hardware actions, we
implicitly pass as another parameter a sequence of hardware configurations
h0, h1, . . . , hn, produced by the sequence of actions. Later we use such
functions only in the context where this sequence of configurations is well
defined.

Since we don’t explicitly fix the initial configuration of the reference
machine h0, we assume that any hardware configuration where the reduction
invariant holds can be considered as initial one7.

Safety for Reduced Hardware

Safety properties for the reduced model comprise properties for TLB walks
with ASID other than zero (since we want to derive these properties in
the program and then transfer them down to the reference model) and
the programming discipline for the hypervisor program (i.e., for instructions
executed in hypervisor mode). The programming discipline for hypervisor
consists of the following requirements:

• the ownership discipline for the reduced model has to be maintained,
• if a write to the register CR3 is pending (as a result of a move to CR3 or

a VMRUN), then the provided value of the register should have a ‘‘write-
back’’ memory type,

6We don’t require ownership transfer in execution of a reference hardware to be safe, but
rather enforce this restriction on executions of a reduced model (see Definition 4.43).

7One can easily construct a trivial initial configuration, where the caches and TLBs are empty,
no core request is pending, and identity mapped page tables are correctly initialized.
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• if a VMRUN event was triggered, then the provided ASID should be
different from 0,

• if after a pending write to CR3 the processor continues execution in ASID
0, then the pfn field of the new value of the register should point to the
top-level IMPT.

Formally we write these requirements as follows.

Invariant 4.40 I
Hypervisor mode safety name safe-hyp-confr (h ∈ RedHardw, o ∈ Ownership)

property

inv-ownership-discipliner (h, o),
h.p[i].memreq.type ∈ {mov2cr3, VMRUN}
∧ h.p[i].asid = 0 ∧ h.p[i].memreq.active
=⇒ root-pt-memtype(h.p[i].memreq.cr3in),
h.p[i].memreq.type = VMRUN ∧ h.p[i].memreq.active
=⇒ h.p[i].memreq.asidin , 0,
h.p[i].memreq.active ∧ h.p[i].memreq.type ∈ {mov2cr3}
∧ h.p[i].asid = 0
=⇒ h.p[i].memreq.cr3in.pfn = IMPTRootBA

Safety for TLBs of the reduced model is stated as a separate predicate.
We require all walks in TLBs with ASIDs other than 0 to have a ‘‘write-back’’
memory type and to point to PTEs which are located either in the shared or
in the owned memory region. Moreover, all complete walks should point to an
address from GuestAddr. Maintaining these properties requires arguing about
the page tables, used for the translations when VMs are running.

Invariant 4.41 I
Safe TLBs

(reduced model)

name safe-tlbsr (h ∈ RedHardw, o ∈ Ownership)

property
inv-tlb-ownershipr (h.p, h.tlb, o),
∀i ∈ Pid : h.asid[i] , 0 =⇒ cacheable-walks(h.tlb[i], h.asid[i])

Putting invariants 4.40 and 4.41 together we get the definition of a safe
configuration of the reduced hardware machine.

Invariant 4.42 I
Safe configuration

(reduced model)

name safe-confr (h ∈ RedHardw, o ∈ Ownership)

property
safe-hyp-confr (h, o),
safe-tlbsr (h, o)

An execution sequence h0 �
→ hn of a reduced machine, where |�| = n and

n > 0 is safe if it starts in a safe state and every step in this sequence also leads
to a safe state. Moreover, if the ownership transfer occurs at some hardware
step then the transfer also has to be safe. The following predicate denotes that
a sequence � from h0 to hn is safe starting with the ownership setting o and
ending with the ownership setting o′:

Definition 4.43 I
Safe sequence

(reduced machine)

safe-seqr (�, o, o′)
def
= ∃o0, . . . , on : o0 = o ∧ on = o′ ∧ ∀i ≤ n : safe-confr (h i , oi)

∧ ∀i < n : inv-safe-transferr (h i .p, h i+1.p, oi , oi+1).
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We also define a weaker predicate, which denotes that a given execution
sequence is hypervisor-safe, i.e., only the safety of hypervisor steps and of the
ownership transfer is guaranteed to hold:

J Definition 4.44
Hypervisor-safe sequence

safe-hyp-seqr (�, o, o′)
def
= ∃o0, . . . , on : o0 = o ∧ on = o′

∧ ∀i ≤ n : safe-hyp-confr (h i , oi)
∧ ∀i < n : inv-safe-transferr (h i .p, h i+1.poi , oi+1).

Safety Transfer

Now we can prove a lemma, which ensures that if a step of the reduced machine
is safe, then the same step of the reference machine is also safe.

Lemma 4.6 (Safety transfer). Let safety requirements hold in state h ∈

Hardware and h
a
→ h′ be a step of the hardware machine. Further, let hr , h′r be

respective states of the reduced hardware machine satisfying safety conditions.
Then configuration h′ is also safe:

h
a
→ h′

∧ safe-conf (h, o)
∧ hr = reduced-hw(h)
∧ h′r = reduced-hw(h′)
∧ safe-confr (hr , o)
∧ safe-confr (h′r , o

′)
∧ inv-safe-transferr (hr .p, h′r .p, o, o

′)
=⇒ safe-conf (h′, o′).

Proof. Unfolding safe-conf for the reference model we get the following
statements to prove:

• inv-valid-im-translations(h′): from the ownership discipline it follows
that no writes can be done to the range of addresses where identity
mapped page tables are located, with the exception of MMU writes. All
PTEs from the IMPTs are quad-word aligned. MMU is always writing to
quad-word aligned entries, hence the only bits which could possibly be
updated by MMU writes are A and D bits. Since these bits are always
set in IMPTs, MMU writes have no effect and do not break the IMPT
properties,

• inv-tlb-walks-impts(reduced-sb-hw(reduced-ca-hw(h′)): if a TLB is
creating a new walk with ASID 0, then we know that the register
CR3 points to the root IMPT. From inv-valid-im-translations we know
that IMPTs have correct values and the property holds. If TLB
is extending a walk with ASID 0, then the property follows from
inv-tlb-walks-impts(reduced-sb-hw(reduced-ca-hw(h))), the definition of
the memory abstraction from h to hr , and the ownership discipline which
guarantees that no SBs can have stores to IMPTs. If a move to CR3
register of a processor running in ASID 0 (or switching to ASID 0) is
done, then from the programming discipline we know that the new CR3
register points to the root IMPT and the property holds,
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• inv-cr3-cacheable(h′): from the programming discipline we know that
the provided CR3 value always has a ‘‘write-back’’ memory type,

• mtrr-cacheable(): the property is always maintained since we never write
MTRR registers,

• inv-tlb-cacheable(h′): If a new walk with ASID 0 is added to the TLB, then
from inv-valid-im-translations, inv-tlb-walks-impts inv-cr3-cacheable,
and mtrr-cacheable we know that it has a ‘‘write-back’’ memory type.
The property for walks with ASID other than zero follows directly from
safe-confr (h′r , o),

• inv-sb-cacheable(h′.sb) : if a new store is added to SB, then from
inv-tlb-cacheabe(h′) we know that this store has a cacheable memory
type,

• inv-consistent-caches(h′.ca, h′.mm): the property is shown by Lemma
4.2,

• inv-ownership-discipline(reduced-ca-hw(h′), o′): the parts of the
invariant talking about ownership domains, memory reads, and
memory compare-exchanges follow from the analogous properties of the
ownership discipline for the reduced model and the safety of complete
TLB walks (the fact that they point only to addresses from GuestAddr).
If a new store is added to the store buffer, then from the ownership
discipline for h we know that this store is done to an address either in
the ownership domain of the processor (if it is running in hypervisor
mode) or to the address from GuestAddr (if the processor is in guest
mode). According to the invariant inv-safe-transferr the processor could
not give up the ownership of this address on a transition from h to h′.
Hence, ownership for stores (Invariant 4.14) is maintained.
If some TLB extends a walk with ASID 0, then we use
inv-tlb-walks-impts(reduced-sb-hw(reduced-ca-hw(h))) to conclude that
the pfn field of the new walk points to an address from the set IMPTAddr,
which is disjoint from other ownership sets. Hence, ownership for PTEs
is maintained. If a TLB adds a walk with ASID 0, the same property
is ensured by inv-valid-im-translations. Ownership for PTEs pointed by
walks with ASID other than 0 follows from the ownership discipline for
the reduced model.
If some processor gives up the ownership of an address during transition
from h to h′, then from inv-safe-transferr we know that the SB of this
processor is empty in h′ and ownership for stores (Invariant 4.14) is
maintained. If a processor acquires the ownership of an address which
was not owned by anyone in configuration h, then no SBs of other
processors can contain stores to this address. If a processor acquires
the ownership of an address which was owned by another processor in
h, then the store buffer of that processor has to be empty in h′ and the
ownership invariants are maintained.

�

Main Reduction Theorem

The purpose of the main reduction theorem (Theorem 4.7) is to guarantee that
every trace of the reference model which starts in a safe state is also a trace
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of the reduced model. To achieve this goal, we have to make sure that the
following properties hold:

1. every safe sequence of steps of the reference model is also a sequence of
steps of the reduced model (existence of a trace),

2. every unsafe sequence of steps of the reference model starting from a
safe state is also a sequence of steps of the reduced model which leads
to an unsafe state (soundness of reduction),

3. all sequences of steps of the reduced model are safe (this property has
to be guaranteed by the compiler and the properties of the compiled
program).

Formally we state the main reduction theorem in a slightly different way.

Theorem 4.7 (Main reduction theorem). Let h0 ∈ Hardware be a safe initial
hardware state and h0

r ∈ RedHardw be a respective initial safe state of the
reduced machine. Further, let every execution sequence of the reduced machine
starting from h0

r be safe w.r.t to some ownership sequence. Then any execution
sequence of the reference machine starting from h0 is safe and is at the same
time a (safe) sequence of the reduced machine:

∀�, (h0 �
→ hn) :

safe-conf (h0, o)
∧ h0

r = reduced-hw(h0)

∧ (∀ω, h′r , (h
0
r

ω
→ h′r ) : ∃o′ : safe-seqr (ω, o, o′))

=⇒ ∃o′ : safe-seq(�, o, o′)

∧ ∃(h0
r

�
→ hnr ) : hnr = reduced-hw(hn).

Proof. By induction on the step of the reference machine. Consider a step

h i
�i
→ h i+1, where h ir = reduced-hw(h i) and safe-conf (h i , oi) hold. Applying

Theorem 4.5 we get h i+1
r = reduced-hw(h i+1), where h ir

�i
→ h i+1

r . Now, with
the assumption that all execution sequences of the reduced machine are
safe, we get safe-confr (h i+1

r , oi+1). Finally, we apply Lemma 4.6 and get
safe-conf (h i+1, oi+1). �

From Theorem 4.7 it follows, that if a certain property holds for all traces
of the reduced machine (particularly we are interested in traces of the memory
automaton of the reduced machine), then it also holds for all traces of the
reference machine, under the assumption that both machines start executing
from a safe configuration.
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5
Intermediate C (C-IL) Semantics

5.1
Sequential C-IL Semantics

5.2
Concurrent C-IL Semantics

5.3
C-IL Program Safety

5.4
Compiler Correctness

Despite the fact that informal specification
for the C programming language first
appeared more than 40 years ago there is still
no agreement among computer scientists on
what to consider the ‘‘formal C semantics’’.
Moreover, the C programming language, as
defined by ISO standards [ISO99], describes
a whole class of semantics, which may differ
depending on hardware architecture and
compilers.
Since many high-level features of the C
language (e.g., loops) are syntactic sugar and
can be modeled with simpler C constructs
(e.g., labels and gotos), we do not consider the
complete C semantics. Instead, we present
the semantics of the C intermediate language
(C-IL), developed by Sabine Schmalz [SS12],
which abstracts away some of the complex
C constructs, while still being expressive
enough for verification of low-level C code.
We present the operational semantics of
the C-IL language and state a compiler
correctness theorem, which establishes
simulation between execution of the reduced
hardware machine and the C-IL machine.
Further, we define safety conditions on the
C-IL level, which are necessary to derive
the safety of the hardware execution of the
reduced machine.
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The formal C-IL semantics was designed with some specific low-level
features, which made it possible (with a few extensions) to use it for the
verification of the mixture of C and macro-assembly code, as well as for
regular C verification [Sha12]. Another goal behind the development of the
C-IL semantics was to use it as a basis for the paper-and-pencil soundness
proof of the Microsoft’s VCC [Mic12a] tool, which was used as the verification
environment in the Verisoft XT project [The12]. However, due to the complexity
of the VCC axiomatization system and the high-level memory model used there,
the soundness proof of VCC still remains as future work even on paper.

Since one of the applications of the C-IL semantics is verification of
low-level system code, such as hypervisors and OS kernels, which requires
combination with high-level assembly languages, C-IL considers a byte-
addressable memory, which includes the region allocated for the heap, and an
abstract stack. Pointer arithmetic on global variables is fully supported, while
on local variables it is restricted to calculating offsets inside local memories.
Every memory access in C-IL includes dereferencing of the left-value, which is
either a pointer to some part of the global memory, or is an offset in a local
variable. Only assignments of primitive values (at most 64 bits) are supported.

Since the behavior of C in general depends on the underlying architecture
and compiler, the C-IL semantics is parameterized with the information,
obtained from the compiler. This information is necessary for expression
evaluation and C-IL computations.

Note, that in the semantics presented in this chapter, we do not care much
about the C syntax. We also do not model expressions with side effects, which
again could be considered as syntactic sugar and implemented on top of the
C-IL language.

5.1 Sequential C-IL Semantics

5.1.1 Types

Primitive types. The set of primitive types TP consists of the signed and
unsigned n-bit integers (usually we consider only sizes, which are multiple of
four) and the type void:

Definition 5.1 I
Primitive types

TP
def
= {void} ∪ {in,un | n ∈ {8,16,32,64}}.

Note, that we do not introduce an explicit type for boolean values, but rather
use an integer type to model it.

Complex types.

Definition 5.2 I
C-IL types

Let TC denote the set of struct names. Then the set of C-IL
types T, including the subset of all pointer types Tptr ⊂ T, is constructed in the
following way:

• primitive types: t ∈ TP =⇒ t ∈ T,

• struct types: tc ∈ TC =⇒ (struct tc) ∈ T,
• (regular) pointer types: t ∈ T =⇒ ptr(t) ∈ Tptr ,
• array types: t ∈ T, n ∈ N =⇒ array(t, n) ∈ Tptr ,
• function pointer types: t ∈ T, T ∈ T∗ =⇒ fptr(t, T ) ∈ Tptr .
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Note, that the array type is also considered as a pointer type.

Qualified types. Regular C supports a number of type qualifiers, which are
used as hints for a compiler on how to treat variables of these types. Such
qualifiers can either give more or less freedom to a compiler when doing code
optimization. For example, the const qualifier forbids writing to a variable and
allows the compiler to do more optimizations relying on the fact that its value
in never overwritten.

A volatile qualifier, on the other side, informs the compiler that the
memory region might be accessed externally w.r.t the compiled program.
The compiler in this case does not do reordering of memory accesses to
such kind of variables. This concept is highly useful when arguing about
compiler consistency for optimizing compilers. It is also widely used when
doing memory mapped I/O and writing concurrent applications (especially for
lock-free concurrent algorithms).

In order to define qualified types we introduce the set of type qualifiers Q:

J Definition 5.3
Type Qualifiers

Q
def
= {volatile, const}.

J Definition 5.4
Qualified C-IL types

Now we inductively construct the set of qualified types TQ in exactly the
same manner as we constructed the regular C-IL types. The set TQ contains
the following qualified types:

• primitive types: q ⊆ Q ∧ t ∈ TP =⇒ (q, t) ∈ TQ,
• struct types: q ⊆ Q ∧ tc ∈ TC =⇒ (q, struct tc) ∈ TQ,
• pointers: q ⊆ Q ∧ t ∈ TQ =⇒ (q,ptr(t)) ∈ TQ,
• array types: q ⊆ Q ∧ t ∈ TQ, n ∈ N =⇒ (q, array(t, n)) ∈ TQ,
• function pointer types: q ⊆ Q ∧ t ∈ TQ, T ∈ T∗Q =⇒ (q, fptr(t, T )) ∈ TQ.

Note, that the set of qualifiers q ⊆ Q might be empty, which allows as to
trivially obtain a qualified type from unqualified one. Analogously, we can get
unqualified type from the qualified one by simply dropping the qualifier away.

The function qt2t(x ∈ TQ) ∈ T converts a qualified type to an unqualified
one by throwing away type qualifiers:

J Definition 5.5
Converting qualified type
to unqualified

qt2t(x) def
=



t x = (q, t) ∧ t ∈ TP
ptr(qt2t(x ′)) x = (q,ptr(x ′))
array(qt2t(x ′), n) x = (q, array(x ′, n))
fptr(qt2t(x ′),map(qt2t, X )) x = (q, fptr(x ′, X ))
struct tc x = (q, struct tc).
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Type predicates. We define predicates, which check whether the provided
type t ∈ T is a pointer type, an array type, or a function pointer type:

Definition 5.6 I
Pointer/array

type predicates

isptr(t) def
= ∃t′ : t = ptr(t′),

isarray(t) def
= ∃t′, n′ : t = array(t′, n′),

isfptr(t) def
= ∃t′, T : t = fptr(t′, T ).

5.1.2 Values

Due to the fact that C-IL is designed to be used in conjunction with assembly
and hardware models, most values are represented with bit or byte strings.
The set of values val is defined as

Definition 5.7 I
C-IL values

val
def
= valint ∪ valstruct ∪ valptr ∪ vallref ∪ valfptr ∪ valfun ,

where each of the sets is defined in the following way:

• integer values - a value of an n-bit (unsigned or signed) integer is a bit
string of the respective length:

n ∈ {8,16,32,64} ∧ b ∈ Bn =⇒ val(b,un) ∈ valint ,
n ∈ {8,16,32,64} ∧ b ∈ Bn =⇒ val(b, in) ∈ valint ,

• struct values - a value of a struct is represented by a sequence of byte
strings:

tc ∈ TC ∧ B ∈ (B8)∗ =⇒ val(B, struct tc) ∈ valstruct ,

• global pointer and array values - a value val(b, t) of a pointer or an array
consists of address b, and pointer type t:

b ∈ Bsizeptr ∧ isptr(t) ∨ isarray(t) =⇒ val(b, t) ∈ valptr ,

where sizeptr ∈ N is the size of the pointer (depends of the underlying
architecture and for the x64 architecture we take sizeptr = 64),

• local pointer values (local references) - due to the stack abstraction, the
values of pointers to local variables are represented by the name of the
local variable v, the offset inside this variable o, the number of the local
stack frame i, and the pointer type t:

v ∈ V, o, i ∈ N, t ∈ Tptr ∧ isptr(t) ∨ isarray(t) =⇒ lref((v, o), i, t) ∈ vallref ,

where V denotes the set of variable names,
• function pointer values - a value val(b, t) of a function pointer consists

of address b, where the compiled code of the function starts and the
function pointer type t:

b ∈ Bsizeptr ∧ isfptr(t) =⇒ val(b, t) ∈ valfptr ,

• (symbolic) function values - in C-IL for a function fn the function
pointer may be undefined during expression evaluation (e.g., for inline
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functions); to call such functions we use a symbolic value fun(fn):

fn ∈ Fname ∧ isfptr(t) =⇒ fun(fn, t) ∈ valfun ,

where Fname is the set of function names.

5.1.3 Expressions and Statements

The sets of unary and binary operators O1 and O2 are defined in the following
way:

J Definition 5.8
Unary and binary operators

O1 ⊂ {⊕ | ⊕ ∈ val ⇀ val}
O2 ⊂ {⊕ | ⊕ ∈ (val × val) ⇀ val}

O1
def
= {-,∼,!}

O2
def
= {+,-,*,/,%, <<,>>,<,>, <=, >=,==, !=,&, |, ˆ,&&, ||}.

J Definition 5.9
C-IL expressions

The set of C-IL expressions E is constructed recursively from the following
sets of expressions:

• constants: c ∈ val =⇒ c ∈ E,

• variable names: v ∈ V =⇒ v ∈ E,

• function names: fn ∈ Fname =⇒ fn ∈ E,

• unary operations: e ∈ E ∧ ⊕ ∈ O1 =⇒ ⊕e ∈ E,

• binary operations: e1, e2 ∈ E ∧ ⊕ ∈ O2 =⇒ (e1 ⊕ e2) ∈ E,
• ternary operation: e, e1, e2 ∈ E =⇒ (e ? e1 : e2) ∈ E,
• type cast: t ∈ TQ ∧ e ∈ E =⇒ (t)e ∈ E,
• pointer dereferencing: e ∈ E =⇒ ∗e ∈ E,

• address of: e ∈ E =⇒ &e ∈ E,
• field access: e ∈ E ∧ f ∈ F =⇒ (e).f ∈ E,
• size of a type: t ∈ TQ =⇒ sizeof (t) ∈ E,
• size of an expression: e ∈ E =⇒ sizeof (e) ∈ E,

where F denotes the set of field names.
In order to use standard syntax for the array access operation, we introduce

the following notation:

a[i] def
= ∗(a + i).

Note, that C-IL supports only strictly typed expressions and implicit type
casts have to be converted to explicit ones during the translation from C to
C-IL.

J Definition 5.10
C-IL statements
(part 1)

The set S of C-IL statements consists of the following elements:

• assignment: e0, e1 ∈ E =⇒ (e0 = e1) ∈ S,
• goto: l ∈ N =⇒ (goto l) ∈ S,
• if-not-goto: l ∈ N, e ∈ E =⇒ (ifnot e goto l) ∈ S,
• function call: e0, e ∈ E, E ∈ E∗ =⇒ (e0 = call e(E)) ∈ S,
• procedure call: e ∈ E, E ∈ E∗ =⇒ (call e(E)) ∈ S,
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• return from function and procedure: e ∈ E =⇒ (return e) ∈ S and
return ∈ S.

In case of a function or procedure call, E ∈ E∗ is the list of expressions passed
to a function as function parameters.

Additionally, we include a number of special statements, which are
abstractions of external assembly functions or inline assembly instructions
used inside a hypervisor1. These statements include a compare-exchange
operation and several statements used for hardware virtualization, which
we later refer as virtualization statements. Execution of a virtualization
statement does not have any effect on the C-IL memory/local stacks, except
of increasing the program counter (which is also the case with assembly
functions, implementing these statements in a real program). Later, when we
extend the C-IL configuration with the hardware state (Chapter 7), we provide
more meaningful semantics for these statements.

Additional C-IL statements are written in the following way:

Definition 5.11 I
C-IL statements

(part 2)

• compare exchange:

e0, e1, e2, e3 ∈ E =⇒ cmpxchng(e0, e1, e2, e3) ∈ S.

This is an abstraction of the respective compiler intrinsic if the compiler
supports this operation, or an abstraction of the respective external
assembly function, which performs a locked read-modify-write operation.
Parameter e0 is a return destination where the content of the memory
has to be written, e1 is a pointer to memory destination, e2 holds the
compared value, and e3 contains the new value which has to be written
to the memory destination if the comparison was successful,

• VMRUN instruction:

e0, e1, e2 ∈ E =⇒ vmrun(e0, e1, e2) ∈ S.

This is an abstraction of the respective inline assembly instruction.
Parameters e0 and e1 hold the values of the CR3 and ASID registers
assigned to the guest by the hypervisor. Parameter e2 holds a pointer to
the struct, containing the data which has to be injected into memreq
and memres buffers after a switch to guest mode has occurred. In
hypervisor implementation all these values are not provided to VMRUN
directly, but are rather taken from the architecture-specific control data
structure (called virtual monitor control block or VMCB in the AMD x64
case [Adv11a, p. 373]). Here we don’t want to stick to architecture
specific code. Hence, we consider VMCB to be lying outside of the scope
of our program and provide all VMRUN parameters explicitly when calling
an abstract VMRUN statement,

• complete (all asids) TLB flush:

completeflush ∈ S.

For AMD x64 architecture this statement is an abstraction of setting the
respective bit in the VMCB data structure and denoting that TLB has

1A complete TLB flush is an exceptional case, because it is implemented differently in AMD
and Intel architectures and does not necessarily involve an external function call.
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to be flushed at the next VMRUN call [Adv11a, p. 400]. In case of Intel
x64 architecture the flush is done directly by executing an assembler
instruction [Int11, p. 25-20]. Hence, for the Intel case completeflush
statement is an abstraction of the respective external function. In
order to model both AMD and Intel scenarios, we introduce a special
auxiliary flag to our C-IL semantics, which denotes that TLB has to be
flushed at the next VMRUN (see Section 5.1.4). This flag is set by the
completeflush statement and is cleared by the next VMRUN. A compiler
correctness theorem (Section 5.4.6) guarantees that if this bit is set, then
the next VMRUN will be performed with the complete-flush bit being set
in the memreq buffer of the processor executing the compiled code,

• INVLPGA instruction:

e0, e1 ∈ E =⇒ invlpga(e0, e1) ∈ S.

This is an abstraction of the respective external assembly function, which
performs an address invalidation either in the ASID provided by the user,
or in the currently active ASID (in the latter case parameter e1 should
evaluate to the current ASID value). Parameter e0 holds the value of the
invalidated virtual address and parameter e1 holds the value of the ASID
in which invalidation has to be done.

5.1.4 Configuration and Program

Configuration of a C-IL program consists of a byte-addressable global memory
M and an abstract stack s, which is modelled as a list of C-IL frames.
Additionally, we introduce an auxiliary flushTLB flag, which is an abstraction
of the respective control bit, denoting that TLB has to be flushed at the next
VMRUN execution:

J Definition 5.12
C-IL configuration

confC−IL
def
= [M ∈ Bgm 7→ B8, stack ∈ frame∗C−IL , flushTLB ∈ B.],

where Bgm ⊂ Bsizeptr is a set restricting the domain of the global memory. Note,
that the global memoryM is used only to store global and heap variables, and
is not used to store local variables, which are stored in the abstract stack.

A single C-IL frame consists of a local memory, a return destination, a
function name and a location:

J Definition 5.13
C-IL frame

frameC−IL
def
= [ME ∈ V⇀ (B8)∗, rds ∈ valptr ∪ vallref ∪ {⊥}, f ∈ Fname, loc ∈ N],

whereME maps variables names to their values, rds stores the pointer to the
memory location where the return value has to be stored (if there is a return
value), f is the name of the function/procedure which is executed in the given
frame, and loc points to the next statement which has to be executed in the
frame.

A program in C-IL consists of a function table F , a set of global variables
and their types V, and the function TF , which maps a struct type to the name
of the struct and the list of its fields:

J Definition 5.14
C-IL program

progC−IL
def
= [F ∈ Fname ⇀ funC−IL ,V ∈ (V × TQ)∗, TF ∈ TC ⇀ (F × TQ)∗].
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A single entry of a function table consists of the number of function
parameters npar, a function body P, and the set of local variables and their
types V:

Definition 5.15 I
Function table entry

funC−IL
def
= [rettype ∈ TQ, npar ∈ N,P ∈ S∗ ∪ {extern},V ∈ (V × TQ)∗],

where retype is the return value type of the function, |funC−IL .V| ≥ npar, and
the first npar entries of funC−IL .V store the names and values of the function
parameters.

If a function is not defined in the function table of the C-IL program, then
it has to be marked with the keyword extern, which means that this function
is an assembly/macro assembly function, and its execution is not governed
by the C-IL semantics2.

5.1.5 Context

In order to execute a C-IL program it is not enough to have the context and
the program itself. For expression evaluation and C-IL transitions we need
to get certain information from the compiler. This information, for instance,
includes addresses of global variables in the memory, offsets of fields in structs,
and sizes of struct types. The context θ ∈ contextC−IL provides the missing
information from the compiler:

Definition 5.16 I
C-IL context

contextC−IL
def
= [allocgvar ∈ V⇀ Bsizeptr ,
Faddr ∈ Fname ⇀ B

sizeptr ,
sizestruct ∈ TC ⇀ N,
size_t ∈ TP ,
offset ∈ TC × F⇀ N,
cast ∈ val × TQ ⇀ val,
endianness ∈ {little, big}]

where allocgvar maps the name of the global variable to its address, Faddr
returns the address of the function for a given function name (undefined for
inline and external functions), sizestruct maps a struct name to its size, size_t
is the type of the value returned by the sizeof operator, offset returns the
byte-offset of a given field in a struct, function cast does type casting of a given
value to a given type, and endianess denotes the order in which bytes are
stored in the memory.

Having the C-IL context we can now define a predicate, which checks
whether a given function pointer corresponds to a given function name:

Definition 5.17 I
Is function

is-function(v ∈ valfptr , f ∈ Fnamesθ ∈ contextC−IL) 7→ B,

is-function(v, f, θ) def
= v = val(b, fptr(t, T )) ∧ θ.Faddr (f ) = b ∨ v = fun(f, fptr(t, T ))

2Currently we don’t provide special treatment for external functions in our compiler
correctness theorem. For more details on how one can treat external functions in C-IL semantics
refer to [Sha12]
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We also introduce the function, which calculates the size of a given type
from the C-IL context and the type declaration:

sizeθ(t ∈ T) ∈ N.

The definition of this function is straightforward and we omit it here.

5.1.6 Memory Semantics

In operations with (global) memory accesses we have to deal with the fact
that the memory is modelled as a flat bye-addressable mapping, while all C
memory operations are typed. To perform conversions to and from byte strings
we introduce the following functions:

J Definition 5.18
Converting values
to/from strings

val2bytesθ ∈ val ⇀ (B8)∗,
bytes2valθ ∈ (B8)∗ × T⇀ val,

val2bytesθ(v) def
=


bytes(b) v = val(b, t) ∧ θ.endianness = little

bytes(rev(b)) v = val(b, t) ∧ θ.endianness = big

undefined otherwise

bytes2valθ(B, t)
def
=


val(bits(B), t) t , struct tC ∧ θ.endianness = little

val(bits(rev(B)), t) t , struct tC ∧ θ.endianness = big

undefined otherwise.

The functions bytes and bits convert bit strings into byte strings and vice
versa in an obvious way.

Now we define functions which read and write byte strings to the global
memory of the C-IL machine. The first function reads a byte string of length s
starting from address a:

J Definition 5.19
Reading from the
global memory

read ∈ (Bgm 7→ B8) × Bsizeptr × N⇀ (B8)∗,

read(M, a, s) def
=

read(M, a + binsizeptr (1), s − 1) ◦M(a) s > 0
ϸ otherwise.

In case if ∃b < s : (a + binsizeptr (b)) < Bgm , the function read(M, a, s) is
undefined.

Another function is used to write a provided byte string B to the global
memoryM starting at the address a:

J Definition 5.20
Writing to the
global memory

write ∈ (Bgm 7→ B8) × Bsizeptr × (B8)∗ ⇀ (Bgm 7→ B8),

∀x ∈ Bgm : write(M, a, B)(x) def
=

B[〈x〉 − 〈a〉] 〈x〉 − 〈a〉 ∈ [0 : |B| − 1]
M(x) otherwise.

In case if ∃b < |B| : (a + binsizeptr (|B|)) < Bgm , the function write(M, a, B) is
undefined.

The following function reads a byte string of length s from local memory
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ME for local variable v starting at offset o:

Definition 5.21 I
Reading from a

local memory

read ∈ (V⇀ (B8)∗) × V × N × N⇀ (B8)∗,

read(ME, v, o, s) def
= ME(v)[o + s − 1] ◦ . . . ◦ME(v)[o].

In case if s + o > |MconfE(v)| or v < dom(ME) the function read(ME, v, o, s) is
undefined.

To write a byte string B to variable v of local memoryME starting at offset
o we use the following function:

Definition 5.22 I
Writing to a

local memory

write ∈ (V⇀ (B8)∗) × V × N × B8 ⇀ (V⇀ (B8)∗),
∀w ∈ V, i < |ME(w)| :

write(ME, v, o, B)(w)[i] def
=

B[i − o] w = v ∧ i ∈ [o : o + s − 1]
ME(w)[i] otherwise.

In case if s > |MconfE(v)| or v < dom(ME) the function write(ME, v, o, B) is
undefined.

Now we are ready to define functions which read and write C-IL values
to/from C-IL configurations. First, we define the function which performs a
read using the provided pointer value and the provided C-IL configuration.

Definition 5.23 I
Reading from the

C-IL configuration

readθ ∈ confC−IL × val ⇀ val,

readθ(c, x) def
=

bytes2valθ(read(c.M, a, sizeθ(t)), t) x = val(a,ptr(t))
bytes2valθ(read(c.stack[i].ME, v, o, sizeθ(t)), t) x = lref((v, o), i,ptr(t))
readθ(c, val(a,ptr(t))) x = val(a, array(t, n))
readθ(c, lref((v, o), i,ptr(t))) x = lref((v, o), i, array(t, n))
undefined otherwise

The following function is used for writing C-IL value y at the memory
pointed by pointer x in the given C-IL configuration c:

Definition 5.24 I
Writing to the

C-IL configuration

writeθ ∈ confC−IL × val × val ⇀ confC−IL ,

writeθ(c, x, y) def
=

c[M 7→ write(c.M, val2bytesθ(x), val2bytesθ(y))] x = val(a,ptr(t))
c′ x = lref((v, o), i,ptr(t))
writeθ(c, val(a,ptr(t)), y) x = val(a, array(t, n))
writeθ(c, lref((v, o), i,ptr(t)), y) x = lref((v, o), i, array(t, n))
undefined otherwise,

where c′ = c[c′.stack[i].ME 7→ write(c.stack[i].ME, v, o, val2bytesθ(y))].

Note, that due to the fact that local variables are accessed by their
reference, rather than by an explicit address, we do not support storing of
local pointers in the memory.
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5.1.7 Expression Evaluation

An expression from the program π ∈ progC−IL is evaluated in the configuration
c ∈ confC−IL with the context θ ∈ contextC−IL by the partial function

[·]π,θc ∈ E⇀ val.

Before we proceed with the formal definition of expression evaluation, we
have to define a number of auxiliary functions calculating types of C-IL values,
variables, and expressions. This functions are also used in Section 5.3 when
we define a safe execution of a C-IL program.

Types of values. The following function extracts the (unqualified) type from
a given C-IL value:

J Definition 5.25
Type of a value

τ(v ∈ val) ∈ T,

τ(v) def
=


t v = fun(y, t)
t v = val(y, t)
t v = lref((v, o), i, t).

Types of functions. The function τπfun(f ) extracts the type information for the
function f from the function table of the program:

J Definition 5.26
Type of a function

τπfun ∈ Fname ⇀ TQ,

τπfun(f ) def
=

(∅, funptr(π.F (f ).rettype, [t0, . . . , tnpar−1])) f ∈ dom(π.F )
undefined otherwise,

where npar = π.F (f ).npar and ti = snd(π.F (f ).V[i]).

Types of declared variables/fields. The set of all variables extracted from
the list of variable declarations V is obtained with the following function:

J Definition 5.27
Declared variables

decl(V ∈ V × TQ)∗ → 2V,

decl(V) =

{v} ∪ decl(V′) V = V′ ◦ (v, t)
∅ V = ϸ.

The following function calculates the qualified type of a given variable from
a respective declaration list:

J Definition 5.28
Type of a variable.

τV ∈ V × (V × TQ)∗) ⇀ TQ,

τV (v,V) =


t V = (v, t) ◦ V′

τV (v,V′) V = (v′, t) ◦ V′ ∧ v′ , v
undefined V = ϸ,

Another function is used to calculate the qualified type of a given field from
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a respective declaration list:

Definition 5.29 I
Type of a field.

τF ∈ F × (F × TQ)∗) ⇀ TQ,

τF (f, T ) =


t T = (f, t) ◦ T ′

τF (f, T ′) T = (f ′, t) ◦ T ′ ∧ f ′ , f
undefined T = ϸ

The set of variables declared for the top-most stack frame is obtained with
the following shorthand:

c.Vtop(π) = π.F (c.stack[|c.stack| − 1].f ).V.

Types of Expressions. Now we can define the function which returns a
qualified type of a given expression e in the program π and the context θ:

Definition 5.30 I
Type of an expression

τπ,θE (e ∈ E) ∈ TQ.

We define this function by a case split on the type of an expression:

• constant: x ∈ val =⇒ τπ,θE (x) = (∅, τ(x)),
• unary operator: e ∈ E,	 ∈ O1 =⇒ τπ,θE (	e) = τπ,θE (e),
• binary operator: e0, e1 ∈ E,⊕ ∈ O2 =⇒ τπ,θE (e0 ⊕ e1) = τπ,θE (e0),
• ternary operator: e, e0, e1 ∈ E =⇒ τπ,θE (e ? e0 : e1) = τπ,θE (e0),
• type cast: e ∈ E, t ∈ TQ =⇒ τπ,θE ((t)e) = t,

• variable name:

v ∈ V =⇒ τπ,θE (v) =


τV (v, c.Vtop(π)) v ∈ decl(c.Vtop(π))
τV (v, π.V) v < decl(c.Vtop(π)) ∧ v ∈ decl(π.V)
(∅, void) otherwise,

• function name: fn ∈ Fname =⇒ τπ,θE (fn) = τπfun(fn),
• pointer dereference:

e ∈ E =⇒ τπ,θE (∗e) =


t τEπ,θ(e) = (q,ptr(t))
t τEπ,θ(e) = (q, array(t, n))
(∅, void) otherwise,

• address of an expression: e ∈ E =⇒

τπ,θE (&e) =



τπ,θE (e′) e = ∗e′

(∅,ptr(τπ,θE (v)) e = v

(∅,ptr(q′ ∪ q′′, X )) e = (e′).f ∧ τπ,θE (e′) = (q′, struct tC)
∧τF (f, π.TF (tC)) = (q′′, X )

(∅, void) otherwise,

• field access: e ∈ E, f ∈ F =⇒ τπ,θE (e.f ) = τπ,θE (∗&(e).f ),
• size of a type: t ∈ TQ =⇒ τπ,θE (sizeof(t)) = (∅, θ.size_t),
• size of an expression: e ∈ E =⇒ τπ,θE (sizeof(e)) = (∅, θ.size_t).
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Zero values. In order to distinguish zero values from non-zero ones, we
introduce a predicate, which checks whether a value is considered to be zero:

J Definition 5.31
Zero-value check

zeroθ ∈ val ⇀ B,

zeroθ(x) def
=

a = 0sizeθ(t) x = val(a, t)
undefined otherwise.

Expression evaluation. We define expression evaluation function

J Definition 5.32
Expression evaluation

[·]π,θc ∈ E⇀ val,

by a case split on the type of the expression:

• constant: x ∈ val =⇒ [x]π,θc = x,
• unary operator: e ∈ E,	 ∈ O1 =⇒ [	e]π,θc = 	[e]π,θc ,
• binary operator: e0, e1 ∈ E,⊕ ∈ O2 =⇒ [e0 ⊕ e1]π,θc = [e0]π,θc ⊕ [e1]π,θc ,
• ternary operator: e, e0, e1 ∈ E =⇒

[(e ? e0 : e1)]π,θc =

[e0]π,θc ¬zeroθ([e]π,θc )
[e1]π,θc otherwise,

• type cast: e ∈ E, t ∈ TQ =⇒ [(t)e]π,θc = θ.cast([e]π,θc , qt2t(t)),
• function name: fn ∈ Fname =⇒

[fn]π,θc =


val(θ.Fadr (fn), qt2t(τπfun(fn))) fn ∈ dom(π.F ) ∧ fn ∈ dom(θ.Fadr )
fun(fn, qt2t(τπfun(fn))) fn ∈ dom(π.F ) ∧ fn < dom(θ.Fadr )
undefined otherwise,

• pointer dereference: e ∈ E =⇒

[∗e]π,θc =



readθ(c, [e]π,θc ) (τ([e]π,θc ) = ptr(t) ∧ ¬isarray(t))
∨τ([e]π,θc ) = array(t, n))

val(a, array(t, n)) [e]π,θc = val(a,ptr(array(t, n)))
lref((v, o), i, array(t, n)) [e]π,θc = lref((v, o), i,ptr(array(t, n)))
undefined otherwise,

• address of an expression: e ∈ E =⇒

[&e]π,θc =



[e′]π,θc e = ∗e′

lref((v,0), |c.stack| − 1,ptr(t′)) e = v ∧ v ∈ decl(c.Vtop(π))
val(θ.allocgvar (v),ptr(t′′)) e = v ∧ v < decl(c.Vtop(π))

∧v ∈ decl(π.VG)
σθ([&e′]π,θc , f ) e = (e′).f
undefined otherwise,

where t′ = qt2t(τV (v, c.Vtop(π))) and t′′ = qt2t(τV (v, π.VG)). The function
σπθ ∈ val × F ⇀ val is a field reference function and is used to calculate
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the pointer or the local reference of a field in a variable. We omit giving
the formal definition for this function here,

• variable name: v ∈ V =⇒ [v]π,θc = [∗&v]π,θc ,

• field access: e ∈ E, f ∈ F =⇒ [(e).f ]π,θc = [∗&(e).f ]π,θc ,
• size of a type:

t ∈ TQ =⇒ [sizeof(t)]π,θc = val(binsizeθ(θ.size_t)(sizeθ(qt2t(t))), θ.size_t),

• size of an expression: e ∈ E =⇒ [sizeof(e)]π,θc = [sizeof(τ([e]π,θc ))]π,θc .

5.1.8 Operational Semantics

Notation. First, we introduce a number of shorthands which make it easier
to argue about components of the frame i of the C-IL configuration c ∈ confC−IL :

c.Mi
def
= c.stack[i].M c.rdsi

def
= c.stack[i].rds,

c.fi
def
= c.stack[i].f c.loci

def
= c.stack[i].loc.

The index of the top most frame is computed by the function top(c ∈ confC−IL) ∈
N, where

Definition 5.33 I
Top most stack frame

top(c) def
= |c.stack| − 1.

To identify the components of the top level stack frame we use the following
notation for x ∈ {M, rds, f, loc}:

c.xtop
def
= c.xtop(c).

Auxiliary functions. Now we start with introducing auxiliary functions
which are used to calculate the C-IL configuration after execution of a single
step. The function computing the next statement to be executed in a given
C-IL configuration is defined using information from the top-most stack frame
and from the function table of the program:

Definition 5.34 I
Next statement

stmtnext(c ∈ confC−IL , π ∈ progC−IL) 7→ S,

stmtnext(c, π) def
= π.F (c.ftop).P[c.loctop].

The function computing the C-IL configuration where the location counter
is incremented by one is defined as follows:

Definition 5.35 I
Incrementing location counter

incloc(c ∈ confC−IL) 7→ confC−IL ,

incloc(c)
def
= c[loctop 7→ loctop + 1].

Next, we define the function which removes the top-most frame from the
C-IL configuration:

Definition 5.36 I
Removing top-most frame

dropframe(c ∈ confC−IL) 7→ confC−IL ,

dropframe(c)
def
= c[stack 7→ tl(stack)].
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Another function is used to assign a given value to the location counter of
the top most stack frame:

J Definition 5.37
Setting location counter

setloc(c ∈ confC−IL , l ∈ N) 7→ confC−IL ,

setloc(c, l)
def
= c[loctop 7→ l].

The operational semantics of C-IL is defined by a case split on the type of
the statement which has to be executed next in the given C-IL configuration.

Assignment. In case of an assignment operation, we store the result of the
right-hand expression evaluation at the location identified by the left-hand
expression, and increment the program counter.

J Definition 5.38
Assignment

stmtnext(c, π) = (e0 = e1)
π, θ ` c → incloc(writeθ(c, [&e0]π,θc , [e1]π,θc ))

Goto. In case of a goto operation, we update the value of the current location
counter of the top most stack frame with the provided value.

J Definition 5.39
Goto

stmtnext(c, π) = goto l
π, θ ` c → setloc(c, l)

If-Not-Goto. This statement is used to model conditional jumps, which are
used e.g., for implementing while- and for-loops on top of the C-IL semantics.
The resulting C-IL configuration depends on the result of the conditional
expression evaluation. Hence, we define two rules: one for the case when
the expression is evaluated to zero (success), and another for the case when it
is evaluated to a non-zero value (failure). As a result of the statement execution
the location counter of the top-most stack frame is either set to the provided
value (in case of success), or is incremented by one (in case of failure).

J Definition 5.40
IfNotGoto (success)

stmtnext(c, π) = ifnot e goto l zeroθ([e]π,θc )
π, θ ` c → setloc(c, l)

J Definition 5.41
IfNotGoto (failure)

stmtnext(c, π) = ifnot e goto l ¬zeroθ([e]π,θc )
π, θ ` c → incloc(c)

Function call. In case the next statement is a call to a function or a
procedure, we nondeterministically choose a new stack frame frame, which
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satisfies the conditions of the following predicate:

Definition 5.42 I
New stack frame

callframe ∈ confC−IL × progC−IL × contextC−IL × Fname × E
∗ × frameC−IL 7→ B

callframe(c, π, θ, f, E, frame) def
=

∀i ∈ [1 : npar − 1] : frame.ME(vi) = val2bytesθ([E[i]]π,θc )
∧ ∀i ∈ [npar : |V| − 1] : |frame.ME(vi)| = sizeθ(ti)
∧ frame.loc = 0
∧ frame.f = f

∧ frame.rds =

[&e0]π,θc stmtnext(c, π) = (e0 = call e(E))
⊥ stmtnext(c, π) = call e(E),

where f is the name of the function, E is a list of expressions passed to the
function as the function parameters, V is a set of local variables and their
types (V = π.F (f ).V), (vi , ti) is the i-th variable declaration from V, and npar
is the number of function parameters (npar = π.F (f ).npar). Note, that the
initial content of the local variables (other than function parameters) is not
fixed and can be chosen non-deterministically.

As a result of function call execution we push the new frame to the stack
and increment the location counter.

Definition 5.43 I
Function call

stmtnext(c, π) = call e(E) ∨ stmtnext(c, π) = (e0 = call e(E))
is-function([e]π,θc , f ) θ.F (f ).P , extern callframe(c, f, π, θ, E, framenew)

π, θ ` c → incloc(c[stack 7→ framenew ◦ c.stack])

Function return. We define separate rules for return from a function (with
a return destination) and for a return from a procedure (without a return
destination). As a result of statement execution we drop the top-most frame
and in case of return from a function write the result of the execution to the
return destination.

Definition 5.44 I
Function return

with result

stmtnext(c, π) = return ∨ (stmtnext(c, π) = return e ∧ c.rdstop , ⊥)

π, θ ` c → writeθ(dropframe(c), c.rdstop, [e]π,θc )

Definition 5.45 I
Function return

without result

stmtnext(c) = return e c.rdstop = ⊥

π, θ ` c → dropframe(c)

Compare-exchange. Additionally to a regular assignment we introduce a
compare-exchange operation to the C-IL semantics. Since this operation has
to be done atomically, we can model its impact on the C-IL memory. We
distinguish between two cases: when compare operation succeeds and when
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it fails.

J Definition 5.46
Compare-exchange (success)

stmtnext(c, π) = cmpxchng(rds, dest, cmp, exchng)
readθ(c, [dest]π,θc ) = [cmp]π,θc c′ = writeθ(c, [&rds]θ,πc , readθ(c, [dest]π,θc ))

π, θ ` c → incloc(writeθ(c′, [dest]π,θc , [exchng]π,θc ))

J Definition 5.47
Compare-exchange (failure)

stmtnext(c, π) = cmpxchng(rds, dest, cmp, exchng)
readθ(c, [dest]π,θc ) , [cmp]π,θc c′ = writeθ(c, [&rds]π,θc , readθ(c, [dest]π,θc ))

π, θ ` c → incloc(c′)

Virtualization statements. The effect of execution of any of the
virtualization statements is not visible on the C-IL level. The only result which
we see is the increase of the location counter and modification of the flushTLB
bit.

J Definition 5.48
Complete flush step

stmtnext(c, π) = completeflush
π, θ ` c → incloc(c[flushTLB 7→ 1])

J Definition 5.49
VMRUN step

stmtnext(c, π) = vmrun(e0, e1, e2)
π, θ ` c → incloc(c[flushTLB 7→ 0])

J Definition 5.50
INVLPG step

stmtnext(c, π) = invlpga(e0, e1)
π, θ ` c → incloc(c)

The third parameter in the abstract VMRUN statement is a pointer to the
data which, has to be injected into thememres buffer. Since the whole VMRUN
statement in our semantics is just an abstraction, and on a real machine
parameters of the injected request depend on the correct setting of the fields
of the VMCB data structure, we do not want to define this data in full detail
here. Nevertheless, later we want to identify that a request injected into the
memres buffer is exactly the one defined by the third parameters of the VMRUN
statement in C-IL. To do this, we introduce an uninterpreted function which
takes this pointer and the current C configuration and returns an instance of
the type InjectData:

inject-dataπ,θ ∈ confC−IL × E⇀ InjectData.

5.2 Concurrent C-IL Semantics

Let Tid ⊂ N be a set containing IDs of the C-IL threads. Then a configuration
of the parallel C-IL semantics consists of a shared memory, an array of local
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memory stacks, and an array of flushTLB flags:

Definition 5.51 I
Parallel C-IL

configuration

confCC−IL
def
= [M ∈ Bgm 7→ B8, stack ∈ Tid 7→ frame∗C−IL , flushTLB ∈ Tid 7→ B].

The sequential configuration of a thread t ∈ Tid is denoted by c(t) :=
(c.M, c.stack(t), c.flushTLB(t)) and the step of a thread t is denoted by

π, θ ` c(t)→ c′(t).

A step of the concurrent C-IL semantics is a step of some thread operating
on the shared memory and on its local stack.

Definition 5.52 I
Step of concurrent C-IL

π, θ ` c(t)→ (M′, stack′, flush′TLB)
c′ = (M′, c.stack[t 7→ stack′], c.flushTLB[t 7→ flush′TLB])

π, θ ` c → c′

To denote that transition of a concurrent configuration from c to c′ involves
only steps of a thread t ∈ Tid (leaving local stacks of other threads unchanged)
we write

π, θ ` c →t c
′.

To denote a non-empty sequence of steps (either for a particular thread
or for the whole C-IL configuration) we use the symbol →+. For example, a
sequence of steps of a thread t ∈ Tid is denoted by

π, θ ` c →+
t c
′.

Analogously, we use→∗ to denote a possibly empty sequence of C-IL steps.
Note, that a program in concurrent C-IL has the same format as in

sequential C-IL (Definition 5.14).

5.3 C-IL Program Safety

Compiler correctness can be defined only if SB, cache, and TLB reduction
holds. To ensure that reduction holds, we have to know that the program
obeys a certain programming discipline. We call such a program safe. Further,
the compiler has to guarantee that its output also satisfies certain rules (given
that the program is safe), which results in the safe execution sequence of the
reduced hardware machine (see Theorem 4.7).

In this section we define the programming discipline for C-IL, which is
largely based on the programming discipline for the reduced hardware model
defined in Section 4.6.3. We start with defining the ownership for C-IL.

5.3.1 C-IL Ownership

In the scope of this thesis we assume that any C-IL program has as many
threads as the number of hardware processors executing this program i.e.,

Tid = Pid.
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Moreover, a C-IL configuration has flat byte-addressable memory, which
resembles the memory layout of the reduced hardware machine. Hence,
ownership of C-IL addresses by a given thread should imply ownership of
the same addresses by a hardware processor executing this thread.

An ownership set o[i] from Section 4.3 includes addresses from the global
memory of the C-IL program which are owned by thread i. Addresses from the
part of the physical memory where the local stack of thread i is located are
gathered in the address set StackAddri , which is also owned by the processor
i. On the C-IL level we have to consider only ownership for the global memory,
since all local variables are thread-local by default. As a result, we can use
ownership setting o ∈ Ownership from Section 4.3 to define safety of a C-IL
program.

We say that a given C-IL state satisfies the ownership discipline when any
expression and any statement, which could be evaluated/performed from this
state satisfies this discipline. Expressions and statements which satisfy the
ownership discipline and some additional restrictions on input parameters
(e.g., for a VMRUN statement) are also called safe. Note, that operations on
the stack (both reads and writes) are always safe. Further we proceed with
defining ownership safety for C-IL expressions and statements3.

5.3.2 Safe Expressions

A quick look at the C-IL expression evaluation (Section 5.1.7) tells us that only
two kinds of expressions involve a read from the global memory. They are

• evaluation of a global variable and
• dereferencing of another expression.

In the C-IL semantics dereferencing a pointer may result in several (up to
8) byte-addresses being accessed in the memory. To define safety for memory
reads and writes we first have to calculate all byte addresses, which belong to
a given pointer. We call these addresses support of a pointer:

J Definition 5.53
Support of a pointer

supportθ(p ∈ val) 7→ 2B
64

supportθ(p) =

{a + i | 0 ≤ 〈i〉 < sizeθ(t)} p = val(a,ptr(t))
∅ otherwise.

A read from pointer p ∈ val in thread k ∈ Tid is safe if it is a read from an
owned, a shared, or a guest address:

J Definition 5.54
Safe read

safe-readθ(p ∈ val, o ∈ Ownership, k ∈ Tid) 7→ B

safe-readθ(p, o, k) def
= (p = val(a,ptr(t)) =⇒

supportθ(p) ⊆ o[k] ∪ SharedAddr ∪ GuestAddr.

3In order to maintain ownership invariants on the C-IL level, one can for instance explicitly
maintain ownership sets inside the ghost state of C-IL + ghost semantics [CMST09].
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The following function determines whether a given expression e ∈ E from
thread k ∈ Tid is safe:

Definition 5.55 I
Safe expression

safe-exprπ,θ(e ∈ E, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B

safe-exprπ,θ(e, c, o, k) def
=


safe-readθ([&v]π,θc , o, k) e = v

safe-readθ([e′]π,θc , o, k) e = ∗e′

1 otherwise.

5.3.3 Safe Statements

A given C-IL statement which does not involve a memory write and is not
a VMRUN is safe if all its expressions are safe. A statement which involves a
write to the global memory is safe if all its expressions are safe and the memory
write is also safe.

We use the function sub-exprπ,θ(s, c) to extract the set of all sub-
expressions of a statement s ∈ S:

sub-exprπ,θ(s ∈ S, c ∈ confC−IL) ∈ 2E.

Definition of the function sub-expr is straightforward and follows from the
rules for expression evaluation. We omit it here.

The following predicate denotes that all expressions extracted from a given
statement are safe:

Definition 5.56 I
Safe expression

safe-exprsπ,θ(s ∈ S, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B,

safe-exprsπ,θ(s, c, o, k) def
=

∀e ∈ sub-exprπ,θ(s, c) : safe-exprπ,θ(e, c, o, k).

Memory writes in the C-IL semantics are performed as a result of an
assignment operation, a compare-exchange operation, or a return from the
function. Only one memory write per statement is allowed (only the left value
can be updated). Moreover, C-IL supports only writes to primitive variables/
fields. Hence, at most 64 bits are updated in a single C-IL statement.

To state safety on memory writes performed as a part of statement
execution, we have to identify writes which will be compiled to locked
operations (either compare exchange or a locked write) from regular writes.
We do this distinction based on the type qualifier of the global variable being
written. We assume that every memory write to a volatile global memory
is compiled to a locked write and every execution of a compare-exchange
statement (which is an abstraction of the respective compiler intrinsic/external
assembly function) is compiled into an atomic compare exchange operation.

The following predicate denotes that a given statement s ∈ S involves a
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write to a shared global variable:

J Definition 5.57
Write to a shared memory

shared-writeπ,θ(c ∈ confC−IL , s ∈ S) ∈ B,

shared-writeπ,θ(c, s) def
= (((s = (e0 = e1)) ∨ s = (e0 = call e(E)))

∧ [&e0]π,θc , lref((v, o), t) ∧ volatile ∈ fst(τEπ,θ(e0)))
∨ (s = cmpxchng(rds, dest, cmp, exchng) ∧ volatile ∈ fst(τEπ,θ(dest))).

Analogously, we identify statements which involve a non-volatile global
write:

J Definition 5.58
Non-volatile write

normal-writeπ,θ(c ∈ confC−IL , s ∈ S) ∈ B,

normal-writeπ,θ(c, s) def
= (((s = (e0 = e1)) ∨ s = (e0 = call e(E)))

∧ [&e0]π,θc , lref((v, o), t) ∧ volatile < fst(τEπ,θ(e0)))
∨ (s = cmpxchng(rds, dest, cmp, exchng) ∧ volatile < fst(τEπ,θ(dest))).

A non-volatile global memory write to (64 bit) pointer p ∈ val in thread
t ∈ Tid is safe iff the support of p is included into the ownership set of t:

J Definition 5.59
Safe write

safe-writeπ,θ(p ∈ val, o ∈ Ownership, k ∈ Tid) 7→ B,

safe-writeπ,θ(p, o, k) def
= (p = val(a,ptr(t)) =⇒ supportθ(p) ⊆ o[k]).

A volatile (i.e., interlocked) write to a global variable is safe if it is performed
either to a shared address or to a guest address, or to an address from the
ownership set of t:

J Definition 5.60
Safe locked write

safe-locked-writeπ,θ(p ∈ val, o ∈ Ownership, k ∈ Tid) 7→ B,

safe-locked-writeπ,θ(p, o, k) def
= (p = val(a,ptr(t)) =⇒

supportθ(p) ⊆ SharedAddr ∪ GuestAddr ∪ o[k]).

In case of an assignment we have to distinguish between writes to a volatile
variable from the writes to a non-volatile one:

J Definition 5.61
Safe assignment

safe-assignmentπ,θ(s ∈ S, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B,

safe-assignmentπ,θ(s, c, o, k) def
= s = (e0 = e1) =⇒

safe-exprsπ,θ(s, c, o, k)
∧ (shared-writeπ,θ(c, s) =⇒ safe-locked-writeπ,θ([&e0]π,θc , o, k))
∧ (normal-writeπ,θ(c, s) =⇒ safe-writeπ,θ([&e0]π,θc , o, k)).

Similar to the safety of an assignment we introduce the safety of a function
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call:

Definition 5.62 I
Safe function call

safe-fcallπ,θ(s ∈ S, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B

safe-fcallπ,θ(s, c, o, k) def
= s = (e0 = call e(E)) =⇒

safe-exprsπ,θ(s, c, o, k)
∧ (shared-writeπ,θ(c, s) =⇒ safe-locked-write([&e0]π,θc , o, k))
∧ (normal-writeπ,θ(c, s) =⇒ safe-write([&e0]π,θc , o, k)).

Another C-IL statement which might involve a write to the shared memory
is an atomic compare exchange. We assume that all compare-exchange
statements are compiled into respective hardware atomic compare-exchange
operations. Hence, we don’t distinguish between writes to volatile and non-
volatile data in this case:

Definition 5.63 I
Safe compare-exchange

safe-cmpxchngπ,θ(s ∈ S, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B

safe-cmpxchngπ,θ(s, c, o, k) def
= s = cmpxchng(rds, dest, cmp, exchng) =⇒

safe-exprsπ,θ(s, c, o, k) ∧ safe-locked-write([dest]π,θc , o, k)).

Additionally to ownership safety, we have to take care of the safety of C-IL
steps which involve writing to the CR3 register (see Invariant 4.40). Since we
do not support a move to CR3 instruction in our C-IL semantics, the only
statement we have to deal with is a VMRUN:

Definition 5.64 I
Safe VMRUN

safe-vmrunπ,θ(s ∈ S, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B

safe-vmrunπ,θ(s, c, o, k) def
= (s = vmrun e([asid, cr3, inject])) =⇒

safe-exprsπ,θ(s, c, o, k) ∧ [asid]π,θc = val(a, u64) ∧ a , 064

∧ [cr3]π,θc = val(b, u64)∧
∧ root-pt-memtype(uint2cr3(〈b〉)) = WB.

The following predicate determines whether expression s ∈ S is safe in
thread k ∈ Tid:

Definition 5.65 I
Safe statement

safe-stmtπ,θ(s ∈ S, c ∈ confC−IL , o ∈ Ownership, k ∈ Tid) 7→ B

safe-stmtπ,θ(s, c, o, k) def
=



safe-assignmentπ,θ(s, c, o, k) s = (e0 = e1)
safe-fcallπ,θ(s, c, o, k) s = (e0 = call e(E))
safe-cmpxchngπ,θ(s, c, o, k) s = cmpxchng(E)
safe-vmrunπ,θ(s, c, o, k) s = vmrun(E)
safe-exprsπ,θ(s, c, o, k) otherwise.

Ownership transfer on the C-IL level has to comply with the same
restrictions as on the reduced hardware level (Invariant 4.37). Release of the
ownership has to be performed during a locked write or a compare-exchange.
When a thread acquires the ownership of an address, then this address can
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not be present in the ownership domain of any other thread.

J Definition 5.66
Safe ownership transfer

safe-transferπ,θ(c ∈ confC−IL , c′ ∈ confC−IL , k ∈ Tid,
o ∈ Ownership, o′ ∈ Ownership) ∈ B

safe-transferπ,θ(c, c′, k, o, o′) def
=

bpa ∈ o[i] ∧ bpa < o′[i] =⇒ i = k ∧ shared-writeπ,θ(c, stmtnext(c, π))

bpa < o[i] ∧ bpa ∈ o′[i] =⇒ bpa ∈ PrivateAddr ∧ bpa <
⋃
i,j

o′[j]

5.3.4 Safe Execution

We say that a given step of a sequential C-IL configuration is safe, if the
statement being executed and the ownership transfer being performed are
safe:

J Definition 5.67
Safe C-IL step

safe-stepπ,θC−IL(c ∈ confC−IL , c′ ∈ confC−IL , k ∈ Tid,
o ∈ Ownership, o′ ∈ Ownership) ∈ B

safe-stepπ,θC−IL(c, c′, k, o, o′) def
=safe-stmtπ,θ(stmtnext(c, π), c, o, k)
∧ safe-transfer(c, c′, k, o, o′).

A local sequence of C-IL steps from configuration c to c′ is safe if every step
in this sequence is safe. The following predicate denotes that sequence c →∗ c′

is safe starting with the ownership setting o and ending with the ownership
setting o′:

J Definition 5.68
Safe C-IL execution
of a thread k

safe-local-seqπ,θC−IL(c ∈ confC−IL , c′ ∈ confC−IL , k ∈ Tid,
o ∈ Ownership, o′ ∈ Ownership) ∈ B

safe-local-seqπ,θC−IL(c, c′, k, o, o′) def
= (c = c′ ∧ o = o′)

∨(∀c′′ : ∃o′′ : c → c′′ =⇒ safe-stepπ,θC−IL(c, c′′, k, o, o′′)
∧ safe-local-seqπ,θC−IL(c′′, c′, k, o′′, o′))

Note, that safe-local-seq is well defined only if there exists an execution
sequence from c to c′ or c = c′.

5.4 Compiler Correctness

Compiler correctness is often stated in the form of a simulation relation
between the code being compiled and the hardware instruction sequence,
obtained as a result of compilation [LPP05, Lei08, BDL06, Ler09]. We call this
relation compiler consistency. Normally, this simulation relation consists of a
number of properties fixing memory layout of the compiled program, values
of registers taking part in the program execution, and the stack layout. For
non-optimizing compilers compiler consistency has to hold for every step of the
compiled program (C-IL step in our case). With the presence of the compiler
optimizations and code reordering consistency is relaxed to hold only at certain
points in program execution, which we call consistency points.
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In order to define compiler consistency and to state that it holds at
consistency points, we first have to reorder the steps of a hardware execution.
If we consider a regular (non-reordered) sequence of hardware steps, then at
a given consistency point of some thread only consistency for this thread (and
possibly for the shared memory) will be guaranteed to hold. Hence, to be able
to state the compiler consistency for all threads at every consistency point,
we introduce reordering of hardware steps into a so-called consistency-block
schedule [Bau12].

In order for the reordering theorem to hold, one has to enforce certain
requirements on the set of consistency points. More precisely, we have to
make sure that between any two consistency points of a given thread there is
no more than one access to a shared resource. A step performing such access
we call an I/O step. In order to make sure that this restriction holds, we first
define the set of I/O points, which denote hardware states directly before I/O
steps. Further, we define the set of consistency points in such a way, that
every I/O point is also a consistency points.

5.4.1 Hardware I/O Points

I/O points [DPS09] in the hardware execution sequence identify hardware
states directly before and/or after an action of a given processor, which is
visible for external environment (including other processors). For instance,
access to a shared memory is such an action. Execution sequence of a given
processor in between two I/O points is called local. We use the notion of
I/O points to define an I/O-block schedule of a hardware execution sequence,
where interleaving of steps of different processors can occur only at I/O points
(Section 5.4.3).

In case of a hypervisor program running in parallel with guest threads,
I/O points come in two flavors: I/O points of the hypervisor and I/O points of
guests.

A hypervisor I/O step is a hardware step which involves an access to a
global shared variable of a processor running in hypervisor mode. These steps
are an atomic compare-exchange, a locked write, and a read from a shared/
guest memory (guest memory is also considered to be a shared resource).

A hypervisor I/O point is a hardware configuration directly before a
hypervisor I/O step or a hardware configuration before the first step of every
processor (initial thread-local configuration after boot-loading and hypervisor
initialization are complete). Note, that the end of the execution is not
considered to be an I/O point because we assume (optimistically) that the
hypervisor never terminates.

For a hardware execution fragment h0 �
→ hn, where |�| = n and n > 0, we

introduce a predicate, which denotes that the hardware configuration h i is a
hypervisor I/O point of processor k:

Definition 5.69 I
Hypervisor I/O point of

processor k

hyp-iopointk(�, i) def
= h i .p[k].asid = 0

∧ (pid(�i) = k ∧ (∀j < i : pid(�j) , k)
∨ affected-byte-addr(va,mask) ⊆ SharedAddr ∪ GuestAddr
∧ �i ∈ {core-atomic-cmpxchng(k,w), core-locked-write(k,w)

core-memory-read(k,w)})),
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where va = h i .p[k].memreq.va and mask = h i .p[k].memreq.mask. Note, that
in the definition given above and in the upcoming definitions of functions
which take as a parameter a sequence of hardware actions, we implicitly pass
as another parameter a sequence of hardware configurations h0, h1, . . . , hn,
produced by the sequence of actions. Later we use such functions only in the
context where this sequence of configurations is well defined.

For processors running in guest mode we consider all guest steps which
involve an access to the main memory (including MMU reading/writing
shared PTEs and SB committing stores) to be guest I/O steps and hardware
configurations before such steps to be guest I/O points:

J Definition 5.70
Guest I/O point of
processor k

guest-iopointk(�, i) def
= h i .p[k].asid , 0

∧ (�i ∈ {extend-walk(k,w, r), set-access-dirty(k,w)}
∧ qword2bytes(pte-addr(w.pfn,w.vpfn.px[w.l])) ⊆ SharedAddr
∨ �i ∈ {core-atomic-cmpxchng(k,w), core-locked-memory-write(k,w)}
∨ �i = core-memory-read(k,w)
∧ ¬pending-qword-store(sbi[k], w.pfn ◦memreqi[k].va.off )
∨ �i = core-report-page-fault(k,w)
∨ �i = commit-store(k))

Note, that the initial hardware configuration cannot be a guest I/O point,
because we consider only those execution sequences which start when all
processors are in hypervisor mode.

If we need to denote that configuration h i is an I/O point regardless of its
flavour or regardless of the processor which has performed an I/O step we use
the following functions:

J Definition 5.71
I/O point

iopointk(�, i) def
= hyp-iopointk(�, i) ∨ guest-iopointk(�, i)

iopoint(�, i) def
= ∃k ∈ Pid : iopointk(�, i).

5.4.2 Consistency Points

Another set of dedicated hardware states which we define, is the set of
hypervisor consistency points. An optimizing compiler has to guarantee that
the compiler consistency relation holds at every consistency point under an
assumption that the program is executed alone on the hardware machine (i.e.,
there are no guest steps). Every hypervisor I/O point is also a consistency
point.

The set of hypervisor consistency points consists of the following hardware
configurations:

• any hardware configuration which is a hypervisor I/O point4,
• hardware configuration before execution of a VMRUN instruction,

4Note, that the state before execution of an atomic compare-exchange is an I/O point only if
the memory write is done to a shared memory region. Yet, one could also consider states before
non-shared compare-exchanges to be consistency points. In order to do so, one has to add these
states to sets of hardware and software consistency points.
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• hardware configuration before the first step of a processor in hypervisor
mode after a VMEXIT event (return from guest mode),

• hardware configuration before execution of an INVLPG statement.

For a hardware execution fragment h0 �
→ hn, where |�| = n and n > 0,

we introduce a predicate, which denotes that a hardware configuration h i is a
hypervisor consistency point of a processor k:

Definition 5.72 I
Hypervisor consistency point

of processor k

hyp-cpointk(�, i) def
= i < |�|∧

(hyp-iopointk(�, i)
∨ �i ∈ {core-vmrun(k) ∨ core-tlb-invlpga(k)}
∨ pid(�i) = k ∧ ∃j < i : �j = core-vmexit(k,w)

∧ ∀m ∈ (j : i) : pid(�m) , k).

Note, that the set of consistency points could include more hardware states.
For instance, one could also include a hardware state before execution of the
first statement in every function into the set of consistency points. However,
identifying these states in the execution of our hardware model is tedious,
because we do not model instruction execution in detail. Since extension of
the set of consistency points will not further affect any proofs presented in this
thesis, we stick to the limited consistency set defined above.

Additionally to the set of hypervisor consistency points we introduce
guest consistency points, which are used as auxiliary points in the compiler
correctness proof. Note, that this set is defined solely from the hypervisor
point of view and is (likely to be) different from the set of consistency points of
a guest program running in a partition.

The set of guest consistency points has to include at least all guest I/O
points. Yet, we define this set to include all states before execution of a guest
step:

Definition 5.73 I
Guest consistency point

of processor k

guest-cpointk(�, i) def
= i < |�| ∧ pid(�i) = k ∧ h i .p[k].asid , 0.

If we need to denote that configuration h i is a consistency point regardless
of its flavour or regardless of a processor ID we use the following functions:

Definition 5.74 I
Hardware consistency point

cpointk(�, i) def
= hyp-cpointk(�, i) ∨ guest-cpointk(�, i),

cpoint(�, i) def
= ∃k ∈ Pid : cpointk(�, i).

The following function returns the index of a hardware configuration at the
next consistency point encountered in the execution sequence starting from
configuration h i (not including h i itself). In case if no such point exists, the
function returns ⊥:

Definition 5.75 I
Next consistency point

next-cpoint(�, i) def
=


0 i = 0
j cpoint(�, j) ∧ ∀k ∈ [i + 1, j − 1] : ¬cpoint(�, k)
⊥ ∀k > i : ¬cpoint(�, k).
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Given a point i in the hardware execution sequence h0 �
→ hn, where |�| = n,

i < n, and n > 0, we want to identify, whether thread k will perform any steps
in between h i and hn. If this is the case, then we call thread k a running thread
in configuration h i . In the compiler correctness theorem in Section 5.4.6 we
require the consistency relation to hold at consistency points only for running
threads. A thread which is not running, could have been interrupted before
it has advanced to its own next consistency point. In this case, the compiler
cannot guarantee local consistency for this thread. The following predicate
denotes that a thread k is running in configuration h i :

J Definition 5.76
Running thread

running-threadk(�, i) def
= ∃j ∈ [i : n − 1] : pid(�j) = k.

5.4.3 Consistency-block Schedule

A consistency-block schedule is a hardware execution sequence, where steps
of different processors can be interleaved only as consistency blocks. Every
consistency block starts with a consistency point, which is followed by a
number of local steps of the same thread.

The following predicate denotes that an execution sequence h0 �
→ hn, where

|�| = n and n > 0 is a consistency block schedule:

J Definition 5.77
Consistency block schedule

cosched(�) def
=


1 n = 1
cosched(�[0 : n − 2]) cpoint(�, n − 1)
cosched(�[0 : n − 2])
∧pid(�n−1) = pid(�n−2) otherwise.

Before we can state the reordering theorem, we first have to identify that
two given hardware executions starting and ending in the same state are equal
from the processor-local point of view, i.e., for a given processor execution
traces of each of these sequences are the same. To state this equivalence
formally, we introduce a function which extracts the sequence of local actions
of a processor k from execution sequence �, where |�| = n and n > 0:

J Definition 5.78
Local sequencelocal-seq(�, k) def

=

local-seq(�[0 : n − 2], k) ◦ �n−1 pid(�n−1) = k

local-seq(�[0 : n − 2], k) otherwise.

We call hardware execution sequences h0 �
→ hn and h0 ω

→ hn where |�| = n
and n > 0 equivalent, iff local sequences of actions of all processors are equal:

J Definition 5.79
Equivalent sequences

(� ≡ ω) def
= |�| = |ω| ∧ ∀i ∈ Pid : local-seq(�, i) = local-seq(ω, i)

Now we can state the consistency-block reordering theorem.

Theorem 5.1 (Consistency-block reordering). Let h
�
→ h′ be an execution

sequence of hardware machine h ∈ RedHardw, which starts in a safe state.
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Moreover, let all consistency block schedules which lead from h to h′ be safe.

Then sequence h
�
→ h′ is also safe and there exists a consistency block schedule

h
ω
→ h′, such that sequence of actions ω is equivalent to sequence of actions �:

∀�, (h
�
→ h′) :

safe-confr (h, o)

∧ (∀γ, (h
γ
→ h′) : ∃o′ : cosched(γ) =⇒ safe-seqr (γ, o, o′))

=⇒ ∃o′′ : safe-seqr (�, o, o′′)

∧ ∃ω, (h
ω
→ h′) : cosched(ω) ∧ ω ≡ �.

Proof. The proof of this great theorem for a general case of distributed
communicating I/O automata was done by Christoph Baumann in
[Bau12]. �

5.4.4 Consistency Relation

A compiler consistency relation normally consists of two parts: (i) control
consistency and (ii) data consistency [LP08b].

Control consistency bounds values of program counters with memory
addresses, where the executed code is located. Additionally, it fixes values
of return addresses of all stack frames to point to the next instruction in the
code after the function call corresponding to a given stack frame [Sha12].

Data consistency argues about the memory content of the hardware
machine and consists of the following components:

• code consistency, which ensures that the program code is located at the
dedicated memory region, disjoint from the memory where the program
data is located (this assumes no self-modifying code),

• stack consistency, which argues about the memory region allocated for
the program stack, which has to be disjoint from global data and code
memory regions; this also includes register consistency, which fixes the
values of registers used during execution of the code (e.g., stack pointer
and base pointer) excluding the program counters, which are fixed by
the control consistency relation,

• memory consistency, which talks about the global program variables,
i.e., the content of the shared memory component of the C-IL memory.

We further divide all consistency properties into two groups:

• global consistency, which fixes the content of the hardware memory
independently of the local processor state. This includes memory
consistency and code consistency;

• local consistency, which fixes the local processor state and the content of
the hardware memory region where the program stack is located. This
includes stack consistency and control consistency.
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Global Consistency

Now we can define the set of addresses which forms the global memory of the
C-IL hypervisor program:

Bgm = λa ∈ B64 : a ∈ PrivateAddr ∪ SharedAddr ∪ GuestAddr.

The set Bgm is statically fixed by the compiler and consists of physical
addresses where global variables and the program heap are located. This
set is disjoint from the physical addresses, where the program stack and the
compiled program code reside (we do not support self-modifying code and
pointers to local variables in the C-IL semantics). Additionally, we include the
set of guest addresses to Bgm in order to allow the hypervisor program to read
and write the guest memory.

Since a C-IL configuration has flat byte-addressable memory, we define the
memory consistency relation in a straightforward way, linking the content of
the C-IL memory with the memory of the reduced hardware machine:

J Definition 5.80
Memory consistency

gm-consis(M ∈ Bgm 7→ B8, h ∈ RedHardw) ∈ B,

gm-consis(M, h) def
= ∀a ∈ Bgm : i = 〈a[0 : 2]〉 =⇒

M[a] = bytei(h.mm[a[52 : 3]]).

The code consistency argues about the read-only memory region where
the compiled code of the program π is located. We define it as the following
(uninterpreted) function:

code-consis(π ∈ progC−IL , mm ∈ ReadOnlyAddr 7→ B64) ∈ B.

Putting together memory consistency and code consistency we get the
global part of the C-IL consistency relation:

J Definition 5.81
Global consistency

global-consis(M ∈ Bgm 7→ B8, π ∈ progC−IL , h ∈ RedHardw) ∈ B

global-consis(M, π, h) def
= code-consis(π, h.mm[ReadOnlyAddr])
∧ gm-consis(M, h).

Local Consistency

The definition of the stack consistency largely depends on the compiler
architecture and stack layout. It couples the current state of the stack of
the C-IL configuration with the content of the hardware memory where the
stack is located and with a certain state of hardware registers (callee/caller
save registers, base pointer, and stack pointer). Since we do not model
these registers explicitly, we use the uninterpreted state of our instruction
automaton (Section 3.6) instead and define local stack consistency of processor
i with the following function:

stack-consisi(stack ∈ frame∗C−IL , state ∈ InstrCoreState,
mm ∈ StackAddri 7→ B

64) ∈ B.
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When switching to guest mode the hypervisor (i.e., a special assembly
function inside the hypervisor) is responsible for saving values of callee/caller
save registers, stack and base pointers and other registers participating in
stack consistency relation. The same applies in case of a return from the
guest execution, where a consistent configuration has to be restored.

When the guest code is executed on a processor, regular stack consistency
[Sha12] for a hypervisor program will not hold. Yet, it does hold if one takes
saved values of registers instead of the running ones. Hence, one can define
hypervisor stack consistency in such a way, that it considers running registers
when the hypervisor is executed (and after configuration is restored) and saved
registers if a guest is running.

In this thesis we assume stack-consisi to be defined in this way. Moreover,
it cannot be broken by any guest step, if this step does not involve writing to
the memory region where the stack is located (this also assumes that saving
of registers is done to the same memory region):

Definition 5.82 I
Stack consistency stable

stack-consis-stablei(stack ∈ frame∗C−IL , h ∈ RedHardw) ∈ B,

stack-consis-stablei(stack, h) def
=

∀a : h
a
→ h′ ∧ pid(a) = i ∧ h.p[i].asid , 0
∧ h.mm[StackAddri] = h′.mm[StackAddri]
∧ stack-consisi(stack, h.p[i].state, h.mm[StackAddri])
=⇒ stack-consisi(stack, h′.p[i].state, h′.mm[StackAddri]).

A property of the same kind should also hold for control consistency, which
also has to argue about saved register values in case the hypervisor is sleeping.
We assume here that values of registers are either saved in the uninterpreted
part of the core state or in the same memory region which is used for the local
stack:

control-consisi(stack ∈ frame∗C−IL , state ∈ InstrCoreState,
mm ∈ StackAddri 7→ B

64) ∈ B.

In contrast to the stack consistency, registers fixed by the control
consistency are saved automatically by the hardware which supports
virtualization extensions. Hence, stability of control consistency under guest
steps should always hold:

Definition 5.83 I
Control consistency stable

control-consis-stablei(stack ∈ frame∗C−IL , h ∈ RedHardw) ∈ B

control-consis-stablei(stack, h) def
=

∀a : h
a
→ h′ ∧ pid(a) = i ∧ h.p[i].asid , 0
∧ h.mm[StackAddri] = h′.mm[StackAddri]
∧ control-consisi(stack, h.p[i].state, h.mm[StackAddri])
=⇒ control-consisi(stack, h′.p[i].state, h′.mm[StackAddri]).

Local consistency is obtained by putting together stack and control
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consistencies:

J Definition 5.84
Local consistency

local-consisi(stack ∈ frame∗C−IL , state ∈ InstrCoreState,
mm ∈ StackAddri ∈ B

64) ∈ B

local-consisi(stack, state,mm) def
= stack-consisi(stack, state,mm)
∧ control-consisi(stack, state,mm)

Stability of the stack and control consistencies combined together gives us
stability of the local consistency under guest steps. Further in this thesis we
assume that the local consistency is defined in such a way, that its stability
always holds.

J Invariant 5.85
Local consistency stable

name inv-local-consis-stable()

property
∀h ∈ RedHardw, stack ∈ frame∗C−IL , i ∈ Pid :

stack-consis-stablei(stack, h)
∧ control-consis-stablei(stack, h)

Putting together the global consistency and the local consistency of a given
processor we obtain C-IL consistency relation for processor i:

J Definition 5.86
C-IL consistency

consisC−IL(c ∈ confCC−IL , π ∈ progC−IL , h ∈ RedHardw, i ∈ Pid) ∈ B

consisC−IL(c, π, h, i) def
= global-consis(c.M, π, h)

∧ local-consisi(c.stack[i], h.p[i].state, h.mm[StackAddri]).

5.4.5 Software Consistency Points

In order to state compiler consistency in an inductive form (so that we can
reuse it later for C-IL + HW consistency in Section 7.4), we need to be able
to identify not only consistency points in the hardware execution sequence,
but also respective consistency points in a C-IL program. The meaning of
consistency points in a C-IL execution sequence is exactly the same as the
meaning of hardware (hypervisor) consistency points.

The following predicate is used to identify an expression performing a read
from a global shared variable.

J Definition 5.87
Read from a shared variable

shared-readπ,θ(c ∈ confC−IL , e ∈ S) ∈ B

shared-readπ,θ(c, e) def
= [e]π,θc = val(a,ptr(t)) ∧ volatile ∈ fst(τEπ,θ(e)).

The definition of a statement performing a write to shared data was given
in Section 5.3.3 (Definition 5.57). Hence, we can now define a predicate which
denotes that execution of a given statement requires an access (either a read
or a write) to a shared global variable:

J Definition 5.88
Statement performing
a shared memory access

shared-stmtπ,θ(c ∈ confC−IL , s ∈ S)
def
=

∃e ∈ sub-exprπ,θ(s, c) : shared-readπ,θ(c, e) ∨ shared-writeπ,θ(c, s).
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A given state of local C-IL configuration c ∈ confC−IL is a consistency point if
the location counter points to the first statement to be executed in the program
π ∈ progC−IL , if the next statement is a VMRUN or an INVLPG, if the next
statement is the first one after a VMRUN, or if the next statement involves an
access to the shared memory:

Definition 5.89 I
C-IL consistency point

cpointC−IL(c, π) def
= (|c.stack| = 1 ∧ c.loctop = 0)
∨ stmtnext(c, π) = vmrun(E)
∨ stmtnext(c, π) = invlpg(e)
∨ c.loctop > 0 ∧ π.F (c.ftop).P[c.loctop − 1] = vmrun(E)
∨ shared-stmtπ,θ(c, stmtnext(c, π)).

Note, that both states before and after execution of a VMRUN step are
considered to be C-IL I/O points. In a respective hardware execution the state
before a VMRUN will correspond to the hardware state before execution of a
core-vmrun state and the state after VMRUN will correspond to the hardware
state before the first step of the processor after a core-vmexit step.

5.4.6 Compiler Correctness Theorem

Intuitively, correct compiler has to guarantee, that for any consistency-block
execution fragment h0, a0, h1, a1, . . . of the hardware machine h ∈ RedHardw
there exists an execution sequence c0, c1, . . . of a C-IL machine and a step
function5 s ∈ N 7→ N, s.t. for every consistency point i the consistency relation
holds between configurations h i and cs(i).

Yet, in case of a hypervisor program this is not necessarily true, because
hypervisor consistency might get broken after the first write to the guest
memory by a processor running in guest mode (executing the guest code).
Moreover, even if we exclude the guest memory from the C-IL memory
component (which would make it impossible for hypervisor to access the guest
memory), consistency still could get broken by guest MMUs setting A/D bits
in shadow page tables, which are located in the hypervisor memory.

In this chapter we state compiler correctness in an iterative form, where we
fix properties only for steps performed by processors running in the hypervisor
mode. In Section 7.4.1 we introduce guest steps (including MMU steps) to the
C-IL semantics and prove compiler consistency for all hardware steps (w.r.t to
C-IL + HW semantics defined in Section 7.2).

Note, that though we call the following theorem ‘‘compiler correctness’’, it
states more than just properties of the compiler. To prove such a theorem, one
would also have to show that hypervisor state is saved and restored correctly.
This would involve both arguing about hardware virtualization features (of
the hardware instruction automaton which we don’t define in this thesis) and
about assembly code which saves and restores the hypervisor program stack.
Additionally, our compiler correctness theorem defines the way how INVLPG
and VMRUN abstractions, which we have introduced into the C-IL semantics,
are compiled.

Theorem 5.2 (C-IL compiler correctness). Let π ∈ progC−IL be a C-IL program
with context θ ∈ contextC−IL . Further, let h0 ∈ RedHardw be the initial safe state

5A step function is a monotonically increasing function defined on a subset of integers.
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Figure 5.1: Compiler correctness for a C-IL hypervisor (induction step): (a) -
case when one consistency point in hardware corresponds to one consistency
point in C-IL, (b) - case when two consistency points in hardware correspond
to the same consistency point in C-IL.

of the reduced hardware machine, where execution of the program starts and hn

be an arbitrary point in the execution sequence of the compiled program where
n > 0. Let the consistency relation hold at the beginning of the execution6:

∀k ∈ Pid : consisC−IL(c0, π, h0, k).

Then for all block schedules starting from h0 and ending in hn the following
property holds: if h i is a safe hypervisor consistency point of processor k, i < n,
and consistency for all running threads holds between state h i and state c,
where thread k is at the consistency point in c, then there exists configuration
c′ s.t.

• either c′ = c (this is the case when one consistency point in C corresponds
to several consistency points in hardware e.g., when a first statement in a
thread or a first statement after VMRUN involves a volatile access) (Figure
5.1, b), or c′ is a next consistency point of a thread k and is obtained from
c by executing a number of steps of k: π, θ ` c →+

k c
′ (Figure 5.1, a);

• if m is the next hardware consistency point in the execution sequence
then consistency for all running threads holds between states c′ and hm

and sequence of hardware steps from h i to hm is hypervisor-safe if C-IL
execution from c to c′ is safe (note, that from the definition of a consistency
point, there is always at least one running thread in configuration hm );

• if �i is a VMRUN step, then the next instruction to be executed in c is a
VMRUN with the same inputs as the hardware VMRUN step has and C-IL
execution from c to c′ consists of exactly one step; otherwise (if �i is not a
VMRUN step and c , c′), the next instruction to be executed in c is not a
VMRUN;

• if �i is an INVLPG step, then the next instruction to be executed in c is an
INVLPG with the same inputs as the hardware INLVPG step has; otherwise

6The fact that consistency relation holds at the beginning of the hypervisor execution should
be guaranteed by the bootloader. Bootloading on an x64 machine can not be performed in the
long addressing mode and is left out of the scope of the thesis. We start our argumentation from
the configuration h0, which is a configuration after the bootloader finishes initialization and we
assume that compiler consistency is already established at this point.
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(if �i is not an INLVPG step and c , c′), the next instruction to be executed
in c is not an INVLPG;

• if �i is a VMRUN step and the flag c.flushTLB is set, then the complete-flush
bit in the memreq buffer is set in the configuration h i .

Formally we state this as follows:

∀(h0 �
→ hn) : cosched(�)
=⇒ ∀i < n : ∀c, o : hyp-cpointk(�, i) ∧ cpointC−IL(c(k), π)

∧ safe-hyp-confr (h i , o) ∧m = next-cpoint(�, i)
∧(∀k′ ∈ Pid : running-threadk′ (�, i) =⇒

consisC−IL(c, π, h i , k′))
=⇒ ∃c′ : π, θ ` c →∗k c

′

∧ cpointC−IL(c′(k), π)
∧ (∀k′ ∈ Pid : running-threadk′ (�,m) =⇒

consisC−IL(c′, π, hm , k′))
∧ (∀o′ : safe-local-seqπ,θC−IL(c(k), c′(k), k, o, o′) =⇒

safe-hyp-seqr (�[i : m − 1], o, o′))
∧ (�i = core-vmrun(k) =⇒ π, θ ` c →k c

′

∧ stmtnext(c(k), π) = vmrun(e0, e1, e2)
∧ [e0]π,θc = val(bin64(h i .memreq[k].asidin), u64)
∧ [e1]π,θc = val(bin64(h i .memreq[k].cr3in, u64)
∧ inject-dataπ,θ(c(k), e2) = h i .memreq[k].inject-data
∧ c.flushTLB =⇒ h i .memreq[k].complete-flush)

∧ (�i , core-vmrun(k) ∧ c , c′ =⇒

stmtnext(c(k), π) , vmrun(E))
∧ (�i = core-tlb-invlpga(k) =⇒ c , c′

∧ stmtnext(c(k), π) = invlpg(e0, e1)
∧ [e0]π,θc = val(bin64(h i .memreq[k].va), u64))
∧ [e1]π,θc = val(bin64(h i .memreq[k].asid), u64))

∧ (�i , core-tlb-invlpga(k) ∧ c , c′ =⇒

stmtnext(c(k), π) , invlpg(E)).

Proof. Proof of this theorem does not fall into the scope of this thesis. A proof
of a (simpler) compiler correctness theorem for a non-optimizing compiler of
a Pascal-like language with C syntax was shown in [LP08b]. A proof of a
correctness theorem for an optimizing compiler (with limited optimizations) of
the C language was done in the CompCert verification project [Ler09]. �

To prove Theorem 5.2 one has to make sure that when the hardware
machine advances from one consistency point to another, the C-IL machine
must also advance from one consistent configuration to another consistent
configuration (or stay unchanged, while remaining consistent). This implies
the following restrictions on a C-IL program:

1. only one volatile access (i.e., an access to the shared portion of the
memory) per compiled C-IL statement is allowed,

2. no volatile accesses are allowed in a VMRUN or INVLPG statements.
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If a given C program does not satisfy these restrictions, then one can enforce
them during the translation of the program from C to C-IL language done by a
pre-processor of the compiler.

The situation when the hardware machine advances from one consistency
point to another, but the C-IL machine stays unchanged (while remaining
consistent with the hardware configuration) happens when the first statement
in a thread or a first statement after VMRUN involves a volatile access or is
an INVLPG. In this case, both the hardware state before the first step of the
thread and the hardware state before a volatile access or an INVLPG step are
hardware consistency points. And both these states must be consistent with
a single C-IL configuration.

Note also, that the compiler is responsible for correct partitioning of the
hardware memory into sets of addresses (i.e., SharedAddr, ReadOnlyAddr,
IMPTAddr, etc. ) introduced in Section 4.3.1 and in Section 4.5.1. Further,
it has to ensure that the program code, local stacks, and global memory of
the program are located in the designated memory regions and allocation
addresses of all local variables of thread i are present in the ownership
set StackAddri . Only under these conditions one can prove Theorem 5.2,
particularly the part which ensures safe hardware execution sequence for the
compiled code.
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C-IL + Ghost Semantics

6.1
Ghost Types and Values

6.2
Ghost Memory

6.3
Ghost Code

6.4
Configuration and Program

6.5
Memory and Operational

Semantics

6.6
Simulation Theorem

Program verification often involves
maintaining additional information about the
program state. This information might
include an abstract program specification
or auxiliary data, necessary to prove that
implementation behaves accordingly to its
specification. To store and maintain this
information we use an extension of the
C-IL semantics with the ghost state as
documented by Sabine Schmaltz in [Sch12a].
Ghost state consists of local and global ghost
variables and ghost fields of implementation
structures.
Ghost code comprises ghost statements and
ghost parameters of functions. In order
for a program extended with ghost state
to simulate the original program, it has
to fulfill certain properties. For instance,
the ghost code should always terminate (it
should not influence the control flow of the
program) and there should be no information
flow from ghost variables to implementation
ones. Under these restrictions one can show
simulation between execution of a regular C-
IL machine and a C-IL + Ghost machine.
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6.1 Ghost Types and Values

6.1.1 Ghost Types

Ghost variables can either be of a qualified non-ghost C-IL type TQ or of a
special ghost type TGQ. The set TGQ contains the following ghost types:

Definition 6.1 I
Ghost types

• mathematical (unbounded) integers:

q ⊆ Q =⇒ (q,math_int) ∈ TGQ,

• mathematical maps (i.e., functions):

q ⊆ Q ∧ t, t′ ∈ TG ∪ T =⇒ (q,map(t, t′)) ∈ TGQ,

• mathematical records:

q ⊆ Q ∧ tC ∈ TC ⇒ (q, record tC) ∈ TGQ,

• state-snapshots of the C-IL machine:

q ⊆ Q⇒ (q, state_t) ∈ TGQ,

• pointers to variables of a ghost type:

q ⊆ Q ∧ X ∈ TGQ ⇒ (q,ptr(X )) ∈ TGQ,

• generic pointers:

obj ∈ TGQ,

• arrays over ghost types:

q ⊆ Q ∧ X ∈ TGQ ∧ n ∈ N⇒ (q, array(X, n)) ∈ TGQ.

A value of the generic pointer type obj can hold arbitrary pointers including
their type information. This, together with maps, can be used to formalize sets
of pointers of an arbitrary type.

For C-IL + Ghost we extend the predicates defined on regular C-IL types to
work for both C-IL and ghost types:

Definition 6.2 I
Pointer/array

type predicates

isptr(t ∈ TQ ∪ TGQ) def
= ∃t′ : t = ptr(t′),

isarray(t ∈ TQ ∪ TGQ) def
= ∃t′, n′ : t = array(t′, n′),

isfptr(t ∈ TQ ∪ TGQ) def
= ∃t′, T : t = fptr(t′, T ).

6.1.2 Ghost Values

A value of a global ghost reference in C-IL + Ghost is represented by the
following type:

Definition 6.3 I
Value of a global
ghost reference

a ∈ (V ∪ N ∪ valptr) × (N ∪ F)∗ ∧ t ∈ TG ∪ T ∧ (isptr(t) ∨ isarray(t))
=⇒ gref(a, t) ∈ valgref.
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We consider the following kinds of ghost references, where S ∈ (N ∪ F)∗ is
a finite sequence of subvariable selectors (a subvariable selector is either an
array index or a struct field name) and t ∈ TG ∪ T is a pointer or array type:

• gref((v, S), t) - a reference to a sub-variable of a global ghost variable
v ∈ V,

• gref((a, S), t) - a reference to a sub-variable of a ghost object allocated
dynamically from the ghost memory at the address a ∈ N,

• gref((x, S), t) - a reference to a ghost sub-variable of an implementation
pointer value x ∈ valptr .

A reference to a local ghost variable is represented by the type:

J Definition 6.4
Reference to a local
ghost variable

a ∈ ((V × N) × T ∪ V × N) × (N ∪ F)∗ ∧ t ∈ TG ∪ T ∧ (isptr(t) ∨ isarray(t))
=⇒ lrefG(a, t) ∈ vallrefG .

The following kinds of local ghost variables are considered, where S ∈
(N∪F)∗ is a finite sequence of subvariable selectors and t ∈ TG ∪T is a pointer
or array type:

• lrefG((((v, o), t′), i, S), t) - a reference to a ghost sub-variable of a local
implementation variable v ∈ V, where o ∈ N is an offset inside this
variable and i ∈ N is the number of the stack frame. The local variable
itself is identified by the corresponding local reference lref((v, o), i, t′),

• lrefG((v, i, S), t) - a reference to a sub-variable of a local ghost variable
v ∈ V, where i ∈ N is a stack frame number.

A value of the generic pointer type, which includes both implementation
and ghost global pointers is defined in the following way:

J Definition 6.5
Value of a generic
pointer type

p ∈ valptr ∪ valgref ⇒ gval(p,obj) ∈ valobj.

A ghost variable of the generic pointer type can store either a pointer to the
implementation memory or to the ghost memory.

A symbolic value of a ghost function is defined in the following way:

J Definition 6.6
Value of a ghost
function

f ∈ Fname ⇒ gfun(f ) ∈ valgfun.

Further, we provide values of special ghost types introduced in Definition
6.1:

• value of a mathematical integer:

i ∈ Z⇒ gval(i,math_int) ∈ valmath_int,

• value of a map:

map(t′, t) ∈ TG∧f ∈ (t2valG(t′) 7→ t2valG(t))⇒ gval(f,map(t′, t)) ∈ valmap.

The function t2valG(t ∈ T ∪ TG) ∈ 2val∪valG returns the set of all possible
values of the type t and is defined in [Sch12a],

• value of a record:

tC ∈ TC ∧ r ∈ (F⇀ (val ∪ valG))∗ ⇒ gval(r, record tC) ∈ valrecord,



128 C-IL + Ghost Semantics

• value of a state snapshot:

c ∈ confC+G ⇒ gval(c, state_t) ∈ valstate_t.

Putting together inductive definitions given above we obtain the set of ghost
values valG:

Definition 6.7 I
Ghost values

valG = valgref ∪ vallrefG ∪ valgfun ∪ valmath_int ∪ valobj

∪ valmap ∪ valrecord ∪ valstate_t.

For more information on ghost types and values as well as on arithmetic
operations and functions defined on them refer to [Sch12a].

6.2 Ghost Memory

The global ghost memory in contrast to the regular memory does not have to
support pointer arithmetic. Hence, we model it in a more abstract way:

Definition 6.8 I
Global ghost memory

MG ∈ valptr ∪ N ∪ V 7→ valMG .

The global ghost memory takes as an input an instance of one of the following
types:

• a pointer of an implementation type (the value is defined only for ghost
pointers of implementation type),

• the number of a ghost object on the ghost heap, or
• a global variable name (the value is defined only for ghost variables of

implementation type).

The function MG returns a memory, which provides values not only for the
variable itself, but also for all sub-variables of it. Hence, we call valMG the set
of structured ghost values, which contains:

• non-ghost values, ghost values, and the undefined value:

val ∪ valG ∪ {⊥} ⊆ valMG ,

• struct and array values: f ∈ (F ∪ N) 7→ valMG =⇒ f ∈ valMG .

Ghost local variables as well as ghost sub-variables of local non-ghost
variables are stored in local ghost memories of stack frames:

Definition 6.9 I
Local ghost memory

MGE ∈ (V × N) × T ∪ V 7→ valMG .

A local ghost memory takes as an input either a reference to a sub-variable
of a non-ghost variable (described by the variable name, offset of the sub-
variable and the type of the variable) or a name of a local ghost variable. As
an output it provides the corresponding structured ghost value.
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For reading and updating structured ghost values we introduce the
following functions:

readvalMG
∈ valMG × (N ∪ F)∗ 7→ valMG

writevalMG
∈ valMG × (N ∪ F)∗ × valMG 7→ valMG .

For the formal definition of these functions refer to [Sch12a].

6.3 Ghost Code

We support the following types of instructions of the ghost code:

• ghost statements reading/writing ghost data and/or reading non-ghost
data,

• allocation of ghost memory,
• ghost function calls of ghost functions,
• non-ghost function calls of functions extended with ghost parameters.

Expressions

The set of ghost expressions EG is constructed from the set E by extending
it to support both non-ghost and ghost types and values. Every non-
ghost expression can also be a ghost expression, which operates either with
implementation or ghost types and values (with the exception of some binary
and unary operators which are not supported for mathematical integers).
Additionally, we introduce a number of ghost expressions which are not
supported by the non-ghost C-IL semantics:

• lambda expression: t ∈ TQ∪TGQ∧v ∈ V∧e ∈ EG =⇒ lambda(t v; e) ∈ EG,
• record update: e, e′ ∈ EG ∧ f ∈ F =⇒ e[f := e′] ∈ EG,
• state-snapshot: current_state ∈ EG,
• expression in a state-snapshot: e, e′ ∈ EG =⇒ at(e, e′) ∈ EG,
• map access: e, e′ ∈ EG =⇒ e[e′] ∈ EG.

For complete definition of EG refer to [Sch12a].

Statements

To support function calls with ghost parameters we extend the set or non-
ghost statements S and define a new set of annotated C-IL statements S′ in
the following way:

J Definition 6.10
Statements in C-IL + Ghost

• assignment: e0, e1 ∈ E =⇒ (e0 = e1) ∈ S′,
• goto: l ∈ N =⇒ (goto l) ∈ S′,
• if-not-goto: l ∈ N, e ∈ E =⇒ (ifnot e goto l) ∈ S′,
• function call: e0, e ∈ E, E ∈ E∗, E′ ∈ E∗G =⇒ (e0 = call e(E, E′)) ∈ S′,
• procedure call: e ∈ E, E ∈ E∗, E′ ∈ E∗G =⇒ (call e(E, E′)) ∈ S′,
• return: e ∈ E =⇒ (return e) ∈ S′ and return ∈ S′,

• compare exchange: e0, e1, e2, e3 ∈ E =⇒ cmpxchng(e0, e1, e2, e3) ∈ S′,
• VMRUN: e0, e1 ∈ E =⇒ vmrun(e0, e1, e2) ∈ S′,
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• complete TLB flush: completeflush ∈ S′,

• INVLPGA: e0, e1 ∈ E =⇒ invlpga(e0, e1) ∈ S′.

The set of ghost statements SG is defined in the following way:

Definition 6.11 I
Ghost statements

in C-IL + Ghost

• assignment: e0, e1 ∈ EG =⇒ ghost(e0 = e1) ∈ SG ,
• goto: l ∈ N =⇒ ghost(goto l) ∈ SG ,
• if-not-goto: l ∈ N, e ∈ EG =⇒ ghost(ifnot e goto l) ∈ SG ,
• function call: e0, e ∈ EG , E ∈ E∗G , =⇒ (e0 = ghost(call e(E))) ∈ SG ,
• procedure call: e ∈ EG , E ∈ E∗G , =⇒ ghost(call e(E)) ∈ SG ,
• return: e ∈ EG =⇒ ghost(return e) ∈ SG and ghost(return) ∈ SG ,
• ghost allocation: e ∈ EG ∧ t ∈ TG =⇒ ghost(e = alloc(t)) ∈ SG.

Note, that in regular C-IL we do not have a heap for memory allocation. The
heap abstraction there should be implemented by the C-IL code performing
explicit memory management. In contrast to that, we do consider an infinite
heap for ghost objects in C-IL + Ghost. To manage the ghost heap we include
an address of the first free location on the heap to the configuration of a C-IL
+ Ghost frame (see Section 6.4.1). By allocating a new variable, this address
is always increased by one. As a result, in C-IL + Ghost we provide a ghost
allocation statement, which allocates a ghost object of a given type on the
heap. Since our ghost heap is infinite, we do not need to provide a deallocation
statement.

6.4 Configuration and Program

6.4.1 Configuration

A stack frame of C-IL + Ghost consists of the same components as a stack frame
of the regular C-IL (Section 5.1.4) plus the local ghost variable environment
MEG:

Definition 6.12 I
C-IL + Ghost frame

frameC+G
def
= [ME ∈ V 7→ (B8)∗,MGE ∈ (V × N) × T ∪ V 7→ valMG

rds ∈ valptr ∪ vallref ∪ valgref ∪ vallrefG ∪ {⊥}, f ∈ Fname, loc ∈ N].

Sequential C-IL + Ghost configuration consists of the components for the
non-ghost and ghost global memories, the local stack (which also includes
ghost frames), the flushTLB bit, and the next free address on the ghost heap
(i.e., a counter of the number of allocated ghost variables):

Definition 6.13 I
C-IL + Ghost
configuration

confC+G
def
= [M ∈ Bgm 7→ B8,MG ∈ valptr ∪ N ∪ V 7→ valMG ,
stack ∈ frame∗C+G , flushTLB ∈ B, next-freeG ∈ N].

Parallel C-IL + Ghost configuration is defined in a straightforward way:

Definition 6.14 I
Parallel C-IL + Ghost

configuration

confCC+G
def
= [M ∈ Bgm 7→ B8,MG ∈ valptr ∪ N ∪ V 7→ valMG ,
stack ∈ Tid 7→ frame∗C+G , flushTLB ∈ Tid 7→ B, next-freeG ∈ Tid 7→ N].
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The sequential configuration of a thread t ∈ Tid is extracted from parallel
configuration c ∈ confCC+G by c(t), where

c(t) := (c.M, c.MG , c.stack(t), c.flushTLB(t), c.next-freeG(t)).

6.4.2 Program and Context

A C-IL + Ghost program is defined in the following way

J Definition 6.15
C-IL + Ghost program

progC+G
def
= [V ∈ (V × TQ)∗,VG ∈ (V × (TQ ∪ TGQ))∗,
TF ∈ TC ⇀ (F × TQ)∗, TGF ∈ TC ⇀ (F × (TQ ∪ TGQ))∗,
F ∈ Fname ⇀ funC+G ,FG ∈ Fname ⇀ gfunC+G],

where V is a list of global non-ghost variable declarations, VG is a list of
global ghost variable declarations, TF is a type table for non-ghost fields of
struct types, TGF is is a type table for ghost fields of struct types, F is a
function table for (annotated) non-ghost functions, and FG is a function table
for ghost functions.

A function table is defined as a partial function mapping function names
Fname to function table entries. Note, that in a valid program domains of non-
ghost and ghost function tables have to be disjoint.

A single entry in a non-ghost annotated function table is defined by the
following type:

J Definition 6.16
Annotated function
table entry

funC+G
def
= [rettype ∈ TQ, npar ∈ N, ngpar ∈ N,
V ∈ (V × TQ)∗,VG ∈ (V × (TQ ∪ TGQ))∗,
P ∈ (S ∪ SG)∗ ∪ {extern}].

where rettype is a type of the function return value, npar is a number
of function non-ghost parameters, ngpar is a number of function ghost
parameters, V is a list of local variable declarations (including function
parameters), VG is a list of ghost local variable declarations (including ghost
parameters), and P is a function body.

An entry in the ghost function table has the following type:

J Definition 6.17
Ghost function
table entry

gfunC+G
def
= [rettype ∈ TQ ∪ TGQ, ngpar ∈ N,V ∈ (V × (TQ ∪ TGQ))∗,
P ∈ (S ∪ SG)∗ ∪ {extern}],

Note, that all statements of a ghost function are treated as ghost statements
in the operational semantics, even if they are not marked as ghost explicitly.

C-IL + Ghost semantics uses the same context θ ∈ contextC−IL , as the
original C-IL semantics does (Section 5.1.5).

6.5 Operational Semantics

Operational semantics of the sequential C-IL + Ghost is defined analogously to
the C-IL semantics. Depending on whether the next statement to be executed
is a ghost or a non-ghost one, the statement is executed either on the ghost or
the non-ghost components of the configuration.
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A single step of C-IL + Ghost is denoted in the same way as the step of the
regular C-IL semantics:

π, θ ` c → c′.

In C-IL + Ghost we distinguish between ghost and implementation (i.e.,
non-ghost) steps. A ghost step of the program π ∈ progC+G on configuration
c ∈ confC+G is denoted by

π, θ ` c
G
−→ c′.

An implementation step is denoted by

π, θ ` c
I
−→ c′.

The next statement to be executed is obtained with the function

stmtnext(c ∈ confC+G , π ∈ progC+G) 7→ S ∪ SG.

Definition of this functions is identical to the one for the regular C-IL semantics
(Definition 5.34).

What kind of step will be performed next depends on the next statement to
be executed in the current configuration.

Definition 6.18 I
Ghost step

stmtnext(c, π) ∈ SG π, θ ` c → c′

π, θ ` c
G
−→ c′

Definition 6.19 I
Implementation step

stmtnext(c, π) ∈ S′ π, θ ` c → c′

π, θ ` c
I
−→ c′

,

In contrast to the freely interleaved scheduling of concurrent C-IL, the
scheduling of concurrent C-IL + Ghost depends on the type of the statement
which has to be executed next in a thread. The interleaving happens as before
only between implementation steps, ghost steps can not interleave and are
‘‘attached’’ to the next implementation step.

A single step of the concurrent C-IL configuration c ∈ confCC+G consists
of execution of all ghost statements (if there are any) preceding an
implementation statement and of this implementation statement itself.

Definition 6.20 I
Concurrent C-IL + Ghost

step

π, θ ` c(t)
G
−→+ c′′ ∨ (c′′ = c(t))

π, θ ` c′′
I
−→ (M′,M′G, stack

′, flush′TLB)
c′ = (M′,M′G, c.stack[t := stack′], flush′TLB)

π, θ ` c → c′

For operational semantics of individual C-IL + Ghost statements and for
details on expression evaluation consult [Sch12a].
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6.6 Simulation Theorem

The execution result of a program annotated with ghost code should be the
same, as the result of the same program without ghost annotations. First,
we introduce two functions which extract a C-IL program from the given
C-IL + Ghost program and a C-IL configuration from a given C-IL + Ghost
configuration respectively:

cg2cil-prog(π ∈ progC+G) ∈ progC−IL ,
cg2cil(c ∈ confC+G , π ∈ progC+G) 7→ confC−IL .

The function cg2cil-prog we leave undefined here. For the formal definition
of this functions refer to [Sch12a]. The function cg2cil we define in the following
way:

J Definition 6.21
C-IL + Ghost to C-IL
conversion

cg2cil(c, π).M def
= c.M,

cg2cil(c, π).flushTLB
def
= c.flushTLB,

cg2cil(c, π).stack def
= cg2cil-stack(c.stack, π).

The function cg2cil-stack extracts the non-ghost part of the stack:

J Definition 6.22
Extracting non-ghost
part of the stack

cg2cil-stack(stack ∈ frame∗C+G , π ∈ progC+G) ∈ frame∗C−IL ,

cg2cil-stack(stack, π) def
=map(cg2cil-sfπ , stack[0 : siG(π, stack) − 1]) siG(π, stack) ∈ N

map(cg2cil-sfπ , stack) otherwise.

The function siG returns the index from which the ghost part of the stack
begins (i.e., starting from index siG(π, c) all frames in the stack of c are ghost
frames):

J Definition 6.23
Start of the ghost
stack

siG(π ∈ progC+G , stack ∈ frame
∗
C+G) ∈ N ∪ {⊥},

siG(π, c) def
=

min{i < |stack| | stack[i].f ∈ π.FG} ∃i : stack[i].f ∈ π.FG
⊥ otherwise.

One of the software conditions introduced later in this section guarantees
that a ghost function never calls an implementation one. As a result, all stack
frames starting from the index siG(π, c) must be ghost frames.

The function cg2cil-sf extracts the non-ghost part of a given C-IL + Ghost
stack frame:

J Definition 6.24
Extracting non-ghost
part of the frame

cg2cil-sfπ(sf ∈ frameC+G) ∈ frameC−IL ,

cg2cil-sfπ(sf ).ME
def
= sf.ME,

cg2cil-sfπ(sf ).rds def
=

sf.rds < valG⊥ otherwise,

cg2cil-sfπ(sf ).f def
= .f,

cg2cil-sfπ(sf ).loc def
=stmt (π.F (sf.f ).P, sf.loc).
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The function countstmt(P ∈ (S′ ∪ SG)∗, loc ∈ N) ∈ N counts the number of
non-ghost statements in list P up to location loc.

In order for the annotated program to behave in the same way as the
annotated one does, we have to make sure that the annotated program respects
a number of software conditions. Below we outline these software conditions
informally:

• non-ghost expressions should not use the ghost component of the state
i.e., all variables and functions occurring in a non-ghost expression of a
program πG should be also declared in cg2cil-prog(πG);

• left side (i.e., the address to be written) in a ghost assignment/allocation
statement should evaluate to a ghost location;

• ghost code should never leave a ghost block i.e., there should be no
jumps or calls from the ghost code to implementation code;

• return destinations of ghost functions should point to the ghost memory,
• ghost code should always terminate (should never ‘‘get stuck’’),
• return from an implementation function or procedure must be non-

ghost.

For the formal definitions of these software conditions consult [Sch12a].

We introduce a predicate which denotes that the next statement to be
executed in a given configuration c ∈ confC+G with a program π ∈ progC+G

satisfies all software conditions stated above :

ghost-safe-stmtπ,θC+G(c ∈ confC+G) ∈ B.

Further, we define a predicate on a C-IL program π ∈ progC+G and a state
c ∈ confC+G which guarantees that execution of all ghost statements and the
next implementation statement maintains ghost-safety:

Definition 6.25 I
Safety of statement execution

ghost-safe-seqπ,θC+G(c ∈ confC+G) ∈ B

ghost-safe-seqπ,θC+G(c) def
= ghost-safe-stmtπ,θC+G(c)

∧ (stmtnext(π, c) ∈ SG ∧ π, θ ` c → c′ =⇒ ghost-safe-seqπ,θC+G(c′)).

Now we state the simulation theorem between a step of the C-IL
configuration and the respective sequence of steps of the C-IL + Ghost
configuration.

Theorem 6.1 (C-IL + Ghost simulation (1 step)). Let πG ∈ progC+G be an
annotated program and c ∈ confC+G be a C-IL + Ghost configuration. Further,
let π ∈ progC−IL and ĉ ∈ confC−IL be a respective program and configuration
of the regular C-IL. Then for every step of the C-IL configuration, there exists
a respective sequence of steps of the ghost configuration, such that resulting



6.6. Simulation Theorem 135

configurations are equivalent w.r.t to the cg2cil function:

ghost-safe-seqπG ,θC+G(c)
∧ π = cg2cil-prog(πG)
∧ ĉ = cg2cil(c, πG)
∧ π, θ ` ĉ → ĉ′

=⇒ ∃c′, c′′ : πG , θ ` c
G
−→+ c′′

πG , θ ` c
′′ I
−→ c′

∧ ĉ′ = cg2cil(c′, πG).

Proof. For the proof of this theorem refer to [Sch12a]. �

With the help of Theorem 6.1 one can additionally prove a simulation
theorem between a concurrent C-IL + Ghost machine and a concurrent C-
IL machine. In order to further apply compiler correctness theorem (Theorem
7.7) one has to show that safety of a regular C-IL program in the C-IL semantics
follows from safety of the annotated program in the C-IL + Ghost semantics. In
our verification proofs we do not directly use neither the regular C-IL semantics
nor the C-IL + Ghost semantics, but rather work with their versions extended
with the hardware component (Chapter 7). As a result, we state the properties
mentioned above only for the C-IL + HW + Ghost semantics (Section 7.5).
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7.3
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7.4
Simulation Theorem

7.5
C-IL + HW + Ghost

Semantics

Hypervisor programs are normally written
in a high-level language, such as C. At
the same time, a hypervisor is running in
parallel with guest code and in order to
derive certain properties of the state of the
hypervisor program we need to consider
possible interaction with guests.
In this chapter we present an extension
of the C-IL semantics with the hardware
component, which mirrors the part of the
host hardware executing guest code. We
show that a regular C-IL hypervisor program
running in parallel with the guest code
behaves exactly the same way, as defined by
our C-IL + Hardware (C-IL + HW) semantics.
As a result, we can prove properties of such a
program in a C program verifier by extending
the program with the hardware component
(and a ‘‘hardware thread’’ i.e., a C thread
simulating the hardware) and verifying the
combined program altogether. Further,
we show that the hardware component of
our C-IL + HW semantics simulates the
memory automata of processors running in
guest mode, which makes it possible to
prove correct virtualization of these automata
inside the C-IL + HW semantics. Finally,
we combine two extensions of the C-IL
semantics and obtain the C-IL + HW + Ghost
semantics.
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7.1 Configuration

To model guest steps on the C-IL level and to further prove virtualization of
guest TLB and memory steps (Chapter 8), we extend the C-IL configuration
with the component, which stores the configuration of the processor when it is
running in guest mode. The part of the processor state visible on the C-IL level
includes a TLB, an SB, the CR3 and ASID registers, as well as the memory
result and request buffers:

Definition 7.1 I
Guest core state

corec
def
= [tlb ∈ Tlb, sb ∈ SB, CR3 ∈ RegCr3, asid ∈ N,
memreq ∈ MemReqMain,memres ∈ MemResMain].

A C-IL + HW configuration is obtained by extending the C-IL configuration
with the hardware component:

Definition 7.2 I
C-IL + HW

configuration

confC+HW
def
= [M ∈ Bgm 7→ B8, stack ∈ frame∗C, flushTLB ∈ B, p ∈ corec].

A concurrent C-IL configuration is defined respectively:

Definition 7.3 I
Concurrent C-IL + HW

configuration

confCC+HW
def
= [M ∈ Bgm 7→ B8, stack ∈ Tid 7→ frame∗C,
flushTLB ∈ Tid 7→ B, p ∈ Tid 7→ corec].

Further, we define two functions which convert a given concurrent C-IL +
HW configuration to a respective C-IL configuration and vice versa (extending
a C-IL configuration with a given hardware component):

Definition 7.4 I
C-IL + HW conversion

chw2cil(c ∈ confCC+HW ) ∈ confCC−IL
cil2chw(c ∈ confCC−IL , pc ∈ Tid 7→ corec) ∈ confCC+HW

chw2cil(c) def
= confCC−IL[M 7→ c.M, stack 7→ c.stack, flushTLB 7→ c.flushTLB]

cil2chw(c, pc)
def
= confCC+HW [M 7→ c.M, stack 7→ c.stack,

flushTLB 7→ c.flushTLB, p 7→ pc].

For an initial C-IL configuration one can obtain a respective initial C-IL +
HW configuration (with an empty TLB component) with the help of the following
function:

Definition 7.5 I
Initial C-IL + HW

configuration

cil2chw0(c ∈ confCC−IL) ∈ confCC+HW

cil2chw0(c) def
= confCC+HW [M 7→ c.M, stack 7→ c.stack, flushTLB 7→ c.flushTLB,

p 7→ corec[tlb 7→ empty-tlb(), CR3 7→ 0, asid 7→ 0]].

Both C-IL and C-IL + HW semantics operate with the same set of
expressions and the same set of rules for expression evaluation. As a result, we
can state a simple lemma, which ensures equality of values of the expressions
in both semantics.

Lemma 7.1 (Equality of expression evaluation). Let ĉ ∈ confCC−IL be a C-IL
configuration and c ∈ confC+HW be a C-IL + HW configuration, obtained from
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configuration ĉ and hardware component pc ∈ Tid 7→ corec. Then expression
evaluation of any expression results in the same value in both configurations.

∀k ∈ Tid : c = cil2chw(ĉ, pc) =⇒ [e]π,θc(k) = [e]π,θĉ(k)

Proof. The proof follows from the definition of cil2chw function and the fact
that hardware components do not participate in expression evaluation. �

Analogous lemmas can be stated for the case of the opposite conversion
(from C-IL + HW to regular C-IL) and for the values of all stack- and memory-
dependent functions introduced in Chapter 5 (e.g., stmtnext , topc, global-consis,
local-consis, safe-stmt, consisC−IL , or cpointC−IL ). Definitions for all of these
functions in the C-IL + HW (as well as in C-IL + Ghost and C-IL + HW + Ghost)
semantics are completely identical to the ones for the regular C-IL semantics.

7.2 Operational Semantics

Operational semantics of C-IL + HW is obtained by interleaving an arbitrary
step of a thread running in guest mode with implementation steps of a C-
IL program. To distinguish between these steps we introduce labels to the
semantics and denote a regular C-IL program step by c

cil
−−→ c′ and a step of

the hardware component by c
hw
−−→ c′. For the steps of accepting a memory

request and reporting a result of the memory access (see Section 7.2.1) we
also provide parameters denoting the issued request req ∈ MemReqMain or
the reported result res ∈ MemResMain.

J Definition 7.6
C-IL + HW stepπ, θ ` c

cil
−−→ c′ ∨ π, θ ` c

hw
−−→ c′ ∨ π, θ ` c

hw(req)
−−−−−−→ c′ ∨ π, θ ` c

hw(res)
−−−−−−→ c′

π, θ ` c → c′

Operational semantics of individual hardware and C-IL steps is given in
the following sections.

The sequential configuration of thread t ∈ Tid is denoted by c(t) :=
(c.M, c.stack(t), c.p(t), c.flushTLB(t)) and a step of thread t is denoted by

π, θ ` c(t)→ c′(t).

A step of the concurrent C-IL + HW semantics is a step of some thread
operating on the shared memory, on its local stack, and on its local MMU
component.

J Definition 7.7
Step of concurrent
C-IL + HW

π, θ ` c(t)→ (M′, stack′, p′, flush′TLB)
c′ = (M′, c.stack[t 7→ stack′, c.flushTLB[t 7→ flush′TLB]], c.p[t 7→ p′])

π, θ ` c → c′

Analogously to regular C-IL we sometimes use the notation π, θ ` c →t c′

to say that the step is performed by thread t ∈ Tid, leaving local configurations
of other threads unchanged.

Additionally, in the concurrent C-IL + HW semantics we extend the labels
of individual steps with the parameter identifying the thread performing this
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step. I.e., the following notions are equivalent:

(π, θ ` c
cil(t)
−−−→ c′) def

= (π, θ ` c
cil
−−→t c

′)

(π, θ ` c
hw(t)
−−−−→ c′) def

= (π, θ ` c
hw
−−→t c

′)

(π, θ ` c
hw(t,req)
−−−−−−−→ c′) def

= (π, θ ` c
hw(req)
−−−−−−→t c

′)

(π, θ ` c
hw(t,res)
−−−−−−→ c′) def

= (π, θ ` c
hw(res)
−−−−−−→t c

′).

Given a step π, θ ` c
a
→ c′ the predicate hw-step(a) denotes that this step

is performed by the hardware component of the C-IL machine:

Definition 7.8 I
HW step of C-IL machine

hw-step(a) def
= a ∈ {hw(t), hw(t, req), hw(t, res)}.

Analogously to the regular C-IL semantics (Section 5.2), we use π, θ ` c →+

c′ and π, θ ` c →∗ c′ to denote that there exists a sequence of C-IL/HW steps
starting in state c and ending in state c′. With →+ the sequence must be
non-empty and with→∗ it can be empty.

Given C-IL + HW states c and c′, the expression c
�
→
π,θ

c′, where |�| = n

and n > 0, denotes execution sequence c0, �0, c1, �1, . . . , �n , cn, where c0 = c,
cn = c′ and every next C-IL + HW state is obtained from the previous one by
performing the corresponding step from �:

∀i < n : π, θ ` ci
�i
→ ci+1.

7.2.1 C-IL Steps

All C-IL steps defined in Section 5.1.8, except VMRUN, TLB flush, and
INVLPGA, have the same semantics in C-IL + HW with the exception that all
of them can be performed only if c.p.asid equals 0 (i.e., a processor executing
the thread is running in hypervisor mode). Semantics of the MMU-related C-IL
steps is given below.

Definition 7.9 I
C-IL VMRUN step

stmtnext(c, π) = vmrun(e0, e1, e2) c.p.asid = 0
tlb′ = (c.flushTLB = 1) ? empty-tlb() : c.p.tlb

[e0]π,θc = val(asid′, u64) [e1]π,θc = val(cr3′, u64)
idata = inject-dataπ,θ(c(k), e2) memreq′ = idata.req

memres′ = c.p.memres[pf 7→ idata.pf, ready 7→ idata.ready, data 7→ 0]

π, θ ` c
cil
−−→ incloc(c′[p.tlb 7→ tlb′, p.asid 7→ 〈asid′〉, p.CR3 7→ 〈cr3′〉,

p.memreq 7→ memreq′, p.memres 7→ memres′, flushTLB 7→ 0])

Definition 7.10 I
C-IL complete

TLB flush

stmtnext(c, π) = completeflush c.p.asid = 0

π, θ ` c
cil
−−→ incloc(c[flushTLB 7→ 1, p.tlb 7→ empty-tlb()])
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J Definition 7.11
C-IL INVLPGA

stmtnext(c, π) = invlpga(e0, e1) c.p.asid = 0
val(va, u64) = [e0]π,θc val(asid, u64) = [e1]π,θc

π, θ ` c
cil
−−→ incloc(c[p.tlb 7→ inval-tlb(c.p.tlb, 〈va〉.pfn, 〈asid〉)

With definitions given in this section we are able to relate the result of a
C-IL step performed in the C-IL semantics and the same step performed in the
C-IL + HW semantics.

Lemma 7.2 (C-IL step transfer). Let ĉ ∈ confCC−IL be a C-IL configuration and
c ∈ confCC+HW be a C-IL + HW configuration, obtained from configuration ĉ and
hardware component pc ∈ Tid 7→ corec. Further, let ĉ perform a C-IL step from
ĉ to ĉ′. Then the C-IL + HW configuration also performs the same step. The
resulting MMU state in configuration c′ depends on whether this step involves
execution of a certain virtualization statement or not.

π, θ ` ĉ →k ĉ
′

∧ c = cil2chw(ĉ, pc)

=⇒ π, θ ` c
cil
−−→k c

′

∧ stmtnext(ĉ(k), π) < {vmrun(E), invlpga(E), completeflush}
=⇒ c′ = cil2chw(ĉ′, pc)

∧ stmtnext(ĉ(k), π) = vmrun(e0, e1, e2)
∧ [e0]π,θc = val(asid′, u64) ∧ [e1]π,θc = val(cr3′, u64)
∧ inject-dataπ,θ(c(k), e2) = idata
=⇒ c′ = cil2chw(ĉ′, pc[k 7→ p′k])

∧ p′k = (pc[k])[asid 7→ 〈asid′〉, CR3 7→ 〈cr3′〉,
tlb 7→ (c.flushTLB ? tlb-empty() : pc[k].tlb),
memreq = idata.req,
memres.pf 7→ idata.pf,memres.data 7→ 0,
memres.ready 7→ idata.ready]

∧ stmtnext(ĉ(k), π) = invlpga(e0, e1)
∧ [e0]π,θc = val(va, u64) ∧ [e1]π,θc = val(asid, u64)
=⇒ c′ = cil2chw(ĉ′, pc[pc[k].tlb 7→ inval-tlb(c.p.tlb, 〈va〉.pfn, 〈asid〉])

∧ stmtnext(ĉ(k), π) = completeflush
∧ [e0]π,θc = val(va, u64) ∧ [e1]π,θc = val(asid, u64)
=⇒ c′ = cil2chw(ĉ′, pc[pc[k].tlb 7→ empty-tlb()])

Proof. By a case split on the type of the step ĉ →k ĉ′. For every case the proof
follows from definitions and Lemma 7.1, which guarantees that the value of
every expression in c(k) is equal to the value of the same expression in ĉ(k). �

7.2.2 Hardware Steps

I/O Steps

Since we do not add the instruction automaton of the core into C-IL + HW
semantics and prove correct virtualization only for memory operations, we
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allow any memory request to be raised non-deterministically at any time when
the ASID of a thread not equals 01.

Definition 7.12 I
Accepting memory request

c.p.asid , 0 req ∈ MemReqMain

π, θ ` c
hw(req)
−−−−−−→ c[p.memreq 7→ req]

Another non-deterministic step reflects the effect of a core-send-mem-res
step on the hardware component of the C-IL + HW machine.

Definition 7.13 I
Reporting memory result

c.p.asid , 0 c.p.memres.ready = 1 res = c.p.memres

π, θ ` c
hw(res)
−−−−−−→ c[p.memres.ready 7→ 0]

MMU Steps

For reading and writing of an abstract PTE from/to the C-IL memory we
introduce the following functions 2:

Definition 7.14 I
Reading PTE from

C-IL memory

read-ptec(M ∈ Bmem 7→ B8, pa ∈ Bqpa) ∈ AbsPte,
write-ptec(M ∈ Bmem 7→ B8, pa ∈ Bqpa , pte ∈ AbsPte) ∈ M,

read-ptec(M, pa) def
= abs-pte(c.M[pa : pa + 3]),

write-ptec(M, pa, pte) def
= λpa′ ∈ Bmem :bytei(concrete-pte(pte)) i ∈ [0 : 7] ∧ pa′ = (pa ◦ 03) + i

M[pa′] otherwise.

A new top-level walk is added to the TLB with all rights enabled and with
the PFN field set to the value of the CR3 register.

Definition 7.15 I
MMU create walk

step

c.p.asid , 0w.l = 4 w.asid = c.p.asid
w.r = Rights[ex 7→ 1, us 7→ 1, rw 7→ 1] w.mt = root-pt-memtype(p.CR3)
w.pfn = c.p.CR3.pfn tlb′ = c.p.tlb[w 7→ true] c′ = c[p.tlb 7→ tlb′]

π, θ ` c
hw
−−→ c′

During walk extension we read a PTE from the C-IL memory, calculate the
new walk (it should be non-faulty) and add it to the TLB.

Definition 7.16 I
MMU extend walk step

c.p.asid , 0 c.p.tlb[w] = 1 w.asid = c.p.asid
pa = pte-addr(w.pfn,w.vpfn.px[w.l])

pte = read-ptec(c.M, pa) wext√(w, pte, r) w′ = wext(w, pte, r)
tlb′ = c.p.tlb[w′ 7→ true] c′ = c[p.tlb 7→ tlb′]

π, θ ` c
hw
−−→ c′

1To prove correctness of virtulization not only for memory accesses, but also for instruction
execution one has to model instruction part of the core in detail and lift this model to the C-IL +
HW semantics.

2Note, that if we reduced MMUs under a mapping hpa2spa, which is not an identity mapping
(see Section 4.5), then MMU steps would perform accesses to the C-IL memory under hpa2spa−1

mapping applied to the w.pfn field, rather than directly. Analogously, guest steps would have to
update memory under hpa2spa−1 applied to an address from the set GuestAddr.
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MMU performs setting of access/dirty bits by writing the respective entries
in the global C-IL memory.

J Definition 7.17
MMU set A/D step

c.p.asid , 0 c.p.tlb[w] = 1 w.asid = c.p.asid
pa = pte-addr(w.pfn,w.vpfn.px[w.l])

pte = read-ptec(c.M, pa) ¬complete(w) pte′ = pte-set-ad-bits(pte,w)
M′ = write-pte(c.M, pa, pte′) c′ = c[M 7→ M′]

π, θ ` c
hw
−−→ c′

Note, that we don’t introduce walk removal to the C-IL + HW semantics
because in the MMU consistency relation (Section 7.4.1) we require the
hardware TLB to be a subset of the software TLB, rather than to be equal
to it. The walks from the software TLB can be removed only by executing a
complete flush or an INVLPG statement.

Core and SB Steps

A VMEXIT step in the C-IL + HW semantics sets the ASID of the thread to
zero. Hence, no further MMU/guest steps can occur after VMEXIT and until
the next VMRUN is executed.

J Definition 7.18
Guest VMEXIT step

c.p.asid , 0 is-empty(c.p.sb) c.p.memres.ready = 0
c.p.memreq.type ∈ {mov2cr3, invlpg-asid, vmexit} ∪MemAcc

c.p.memreq.type < MemAcc =⇒ c.p.memreq.active = 1 ∧ tlb′ = tlb

c.p.memreq.type ∈ MemAcc =⇒ c.p.memreq.pf -flush-req = 1
∧ c.p.memreq.active = 0
∧ tlb′ = pf -inval-tlb(c.p.tlb, c.p.memreq.pa.vpfn, c.p.asid)

π, θ ` c
hw
−−→ c[p.asid 7→ 0, p.tlb 7→ tlb′]

Note, that we do not update the buffer c.p.memreq in case of a VMEXIT
event. Hence, when the hypervisor code is executed, this buffer contains the
parameters of the last memory access which was issued in guest mode before
the VMEXIT event has occurred.

For masked updates of the C-IL memory during guest memory writes we
use the following functions:

J Definition 7.19
C-IL guest memory update

masked-updatec(M ∈ Bmem 7→ B8, pa ∈ Bqpa , data ∈ B64, mask ∈ B8) ∈ M

masked-updatec(M, pa, data,mask) def
= λpa′ ∈ Bmem :

bytei(combine(c.M[pa : pa + 3],
(data,mask)) i ∈ [0 : 7] ∧ pa′ = (pa ◦ 03) + i

M[pa′] otherwise.

Below we define all remaining steps of the hardware component of a thread,
which resemble the respective steps of the reduced hardware machine. In
Definitions 7.20 - 7.27 we apply the hardware semantics from Chapter 3 to
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the hardware component of the C-IL + HW machine.

Definition 7.20 I
Guest memory write

c.p.asid , 0 tlb-transl-ready(c.p.memreq, c.p.asid, c.p.tlb,w)
c.p.memreq.type = write pa = w.pfn ◦ c.p.memreq.va.off
data = c.p.memreq.data mask = c.p.memreq.mask

store = Store[pa 7→ pa, data 7→ data,mt 7→ w.mt,mask 7→ mask]
sb′ = write(c.p.sb, store)

memres′ = p.memres[ready 7→ 1, pf 7→ no-page-fault(), data 7→ 0]

π, θ ` c
hw
−−→ c[p.sb 7→ sb′, p.memreq.active 7→ 0, p.memres 7→ memres′]

Definition 7.21 I
Guest memory read

c.p.asid , 0 tlb-transl-ready(c.p.memreq, c.p.asid, c.p.tlb,w)
c.p.memreq.type = read pa = w.pfn ◦ c.p.memreq.va.off
data′ = combine(c.M[pa : pa + 3], forward(c.p.sb, pa))

memres′ = c.p.memres[ready 7→ 1, data 7→ data,
pf 7→ no-page-fault(), data 7→ data′]

π, θ ` c
hw
−−→ c[p.sb 7→ sb′, p.memreq.active 7→ 0, p.memres 7→ memres′]

Definition 7.22 I
Guest locked

memory write

c.p.asid , 0 tlb-transl-ready(c.p.memreq, c.p.asid, c.p.tlb,w)
c.p.memreq.type = locked-write pa = w.pfn ◦ c.p.memreq.va.off

data = c.p.memreq.data mask = c.p.memreq.mask
M′ = masked-updatec(M, pa, data,mask)

memres′ = p.memres[ready 7→ 1, pf 7→ no-page-fault(), data 7→ 0]

π, θ ` c
hw
−−→ c[M 7→ M′, p.memreq.active 7→ 0, p.memres 7→ memres′]

Definition 7.23 I
Guest atomic

compare-exchange

c.p.asid , 0 tlb-transl-ready(c.p.memreq, c.p.asid, c.p.tlb,w)
c.p.memreq.type = atomic-cmpxchng pa = w.pfn ◦ c.p.memreq.va.off

mask = c.p.memreq.mask cmp-data = c.p.memreq.cmp-data

store-data =

c.p.memreq.data meq(c.M[pa : pa + 3], cmp-data,mask)
c.M[pa : pa + 3] otherwise
M′ = masked-updatec(M, pa, store-data,mask)

memres′ = c.p.memres[ready 7→ 1, data 7→ c.M[pa : pa + 3],
pf 7→ no-page-fault()]

π, θ ` c
hw
−−→ c[M 7→ M′, p.memreq.active 7→ 0, p.memres 7→ memres′]
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J Definition 7.24
Guest triggering PF
(stage 1)

c.p.asid , 0 c.p.memreq.active = 1
c.p.memreq.type ∈ MemAcc c.p.memres.ready = 0

pa = pte-addr(w.pfn,w.vpfn.px[w.l]) pte = read-ptec(c.M, pa)
tlb-fault-ready(c.p.memreq, c.p.asid, tlb[i], pte,w)

memres′ = c.p.memreq[ready 7→ 1, pf.va 7→ c.p.memreq.va,
pf.r 7→ c.p.memreq.r, pf.fault 7→ 1, data 7→ 0
pf.fault-code 7→ page-fault-code(req.r, pte.p, pte.v)]

memreq′ = c.p.memreq[active 7→ 0, pf -flush-req 7→ 1]

π, θ ` c
hw
−−→ c[p.memres 7→ memres′, p.memreq 7→ memreq′]

J Definition 7.25
Guest SB
commit store

c.p.asid , 0 0 < |c.p.sb.buffer | store = c.p.sb.buffer[0]
store , SFENCE pa = store.pa mask 7→ store.mask

M′ = masked-updatec(M, pa, store.data,mask)
sb′ = c.p.sb[buffer 7→ tl(c.p.sb.buffer)]

π, θ ` c
hw
−−→ c[M 7→ M′, c.p.sb 7→ sb′]

J Definition 7.26
Guest SB
reorder stores

c.p.asid , 0 j < |c.p.sb.buffer | − 1
c.p.sb.buffer[j] , SFENCE c.p.sb.buffer[j + 1] , SFENCE

c.p.sb.buffer[j].pa , c.p.sb.buffer[j + 1].pa
c.p.sb.buffer[j].WC ∨ c.p.sb.buffer[j + 1].WC

buffer′ = c.p.sb.buffer[j 7→ c.p.sb.buffer[j + 1], (j + 1) 7→ c.p.sb.buffer[j]]

π, θ ` c
hw
−−→ c[M 7→ M′, c.p.sb 7→ c.p.sb[buffer 7→ buffer′]

J Definition 7.27
Guest SB
drop SFENCE

c.p.asid , 0 0 < |c.p.sb.buffer | c.p.sb.buffer[0] = SFENCE
buffer′ = tl(c.p.sb.buffer)

π, θ ` c
hw
−−→ c[M 7→ M′, c.p.sb 7→ c.p.sb[buffer 7→ buffer′]

7.2.3 C-IL + HW I/O Traces

With a closer look at the operational semantics introduced in this chapter one
can also interpret C-IL + HW machine as a classical I/O automaton performing
internal and external actions. The set of external actions in this case consists
of only two actions:

• accepting a memory request (Definition 7.12), which is the only input
action and,

• completing a memory operation (Definition 7.13), which is the only
output action.
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These external actions correspond to the same kind of actions performed
by the memory automaton of the hardware machine (Section 3.2.2). As a
result, we can show correspondence between a trace (i.e., the sequence of
external actions) of the reduced hardware machine and a respective trace of
the C-IL + HW machine. This correspondence of traces later allows us to
prove virtualization properties about requests/replies of the memory automata
running in virtualization mode solely on software level (e.g., in a C verifier) and
then transfer the properties down to the hardware level (see Chapter 8).

Given an execution sequence c0 �
→
π,θ
cn of the concurrent C-IL + HW machine,

where � = n and n > 0, we use the following function to extract a trace of
external actions:

Definition 7.28 I
C-IL + HW I/O Trace

hw-trace(�) def
=


�0 �0 ∈ ext(C-IL+HW) ∧ |�| = 1
�0 ◦ hw-trace(tl(�)) �0 ∈ ext(C-IL+HW) ∧ |�| > 1
hw-trace(tl(�)) otherwise.

The set ext(C-IL+HW) consists of all possible labels of input and output
actions of the C-IL + HW semantics:

ext(C-IL+HW) def
= {hw(i, req), hw(i, res) |
i ∈ Pid, req ∈ MemReqMain, res ∈ MemResMain}.

Analogously, we extract the set of external actions performed in guest mode

from the execution sequence h0 �
→ hn of the reduced hardware machine:

Definition 7.29 I
Guest hardware trace

guest-trace(�) def
=



�0 �0 ∈ ext(RedHardw) ∧ |�| = 1
∧h0.p[pid(�0)].asid , 0

�0 ◦ guest-trace(tl(�)) �0 ∈ ext(RedHardw) ∧ |�| > 1
∧h0.p[pid(�0)].asid , 0

guest-trace(tl(�)) otherwise.

The set ext(RedHardw) consists of labels of input and output actions of the
memory automaton of the reduced hardware machine:

ext(RedHardw) def
= {core-issue-mem-req(i, req), core-send-mem-res(i, res) |
i ∈ Pid, req ∈ MemReqMain, res ∈ MemResMain}.

Now we can talk about the equivalence of guest I/O traces on the hardware
and on the C-IL level. Given a guest hardware trace � and a C-IL + HW I/O
trace ω we define their equivalence in the following way:

Definition 7.30 I
Equivalent hardware and

C-IL I/O traces

(� ≡ ω) def
= |�| = |ω| ∧ ∀i < |�| :

(ωi = core-issue-mem-req(i, req) =⇒ �i = hw(i, req.main))
∧ (ωi = core-send-mem-res(i, res) =⇒ �i = hw(i, res.main)).
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7.3 C-IL + HW Program Safety

For the C-IL + HW semantics we extend the program safety definition from
Section 5.3.4 to include the TLB safety properties from Invariant 4.41.

The safety for guest TLBs in the C-IL + HW semantics is defined as follows.

J Invariant 7.31
Safe TLBs
(C-IL + HW semantics)

name safe-tlbsc(p ∈ corec, o ∈ Ownership, k ∈ Pid)

property

p.tlb[w] ∧w.l , 0 ∧ p.asid , 0 ∧w.asid = p.asid

∧ bva ∈ qword2bytes(pte-addr(w.pfn,w.vpfn.px[w.l]))
=⇒ bva ∈ SharedAddr ∪ o[k],
p.tlb[w] ∧w.l = 0 ∧ p.asid , 0 ∧w.asid = p.asid

=⇒ pfn2bytes(w.pfn) ⊆ GuestAddr,
p.asid , 0 =⇒ cacheable-walks(h.tlb[i], p.asid)

Note, that we state the TLB safety property only for threads executing MMU
steps (i.e., with p[i].asid , 0).

Safety of a given state of the C-IL + HW semantics is then stated as follows:

J Definition 7.32
Safe configuration
(C-IL + HW semantics)

safe-conf π,θC+HW (c ∈ confC+HW , o ∈ Ownership, k ∈ Tid) ∈ B,

safe-conf π,θC+HW (c, o, k) def
=safe-stmtπ,θ(stmtnext(c, π), c, o, k)
∧ safe-tlbsc(c.p[k], o, k).

An execution sequence c
�
→
π,θ

c′ of the concurrent C-IL + HW machine
c ∈ confCC+HW starting with the ownership setting o ∈ Ownership is safe if
every state in this sequence is safe and the ownership transfer is safe:

J Definition 7.33
Safe sequence
(C-IL + HW semantics)

safe-seqπ,θCC+HW (�, o) ∈ B,

safe-seqπ,θCC+HW (�, o) def
= ∀t ∈ Tid : safe-conf π,θC+HW (c(t), o, t)

∧ (|�| > 0 ∧ π, θ ` c
�0
→ c′ ∧ �0 = cil(k)

=⇒ ∃o′ : safe-seqπ,θCC+HW (tl(�), o′)
∧ safe-transferπ,θ(c(k), c′(k), k, o, o′))

∧ (|�| > 0 ∧ π, θ ` c
�0
→ c′ ∧ hw-step(�0)

=⇒ safe-seqπ,θCC+HW (tl(�), o)).

Note, that we do not allow the ownership transfer to occur during steps of the
hardware component.

A program π ∈ progC−IL with the initial configuration c ∈ confCC+HW is safe
if every possible execution sequence of π is safe:

J Definition 7.34
Safe program
(C-IL + HW semantics)

safe-progπ,θCC+HW (c ∈ confCC+HW , o ∈ Ownership) ∈ B,

safe-progπ,θCC+HW (c, o) def
= ∀c′, � : π, θ ` c

�
→ c′ =⇒ safe-seqπ,θCC+HW (�, o).

The following lemma establishes safety of the local C-IL execution sequence
extracted from a C-IL + HW execution.
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Lemma 7.3 (C-IL local sequence safe). Let π ∈ progC−IL be a safe C-IL + HW
program. Further, let c′ be a state obtained from c by execution of a number of
C-IL steps of thread k. Then (i) local sequence of thread k is safe w.r.t the C-IL
semantics and (ii) C-IL + HW program safety is maintained in state c′:

safe-progπ,θCC+HW (c, o) ∧ π, θ ` c
cil
−−→k

+ c′ ∧ ĉ = chw2cil(c) ∧ ĉ′ = chw2cil(c′)
=⇒ ∃o′ : safe-local-seqπ,θC−IL(ĉ(k), ĉ′(k), k, o, o′) ∧ safe-progπ,θCC+HW (c′, o′)

Proof. Follows from Definition 7.34 and the definition of the safe sequence of
C-IL steps (Definition 5.68). �

Another lemma states transitivity of program safety for a single step of the
hardware component.

Lemma 7.4 (Safe C-IL + HW program transitive (HW step)). Let π ∈ progC−IL
be a safe program w.r.t to state c ∈ confC+HW and ownership o ∈ Ownership.
Further, let c′ be a state obtained from c with a single step of the hardware
component. Then π is also safe w.r.t to c′ and o.

safe-progπ,θCC+HW (c, o) ∧ π, θ ` c
a
→ c′ ∧ hw-step(a) =⇒ safe-progπ,θCC+HW (c′, o)

Proof. Follows from Definition 7.34. �

7.4 Simulation Theorem

7.4.1 HW Consistency

We introduce an additional consistency relation, which couples the state
of hardware processor i with the respective components of the C-IL + HW
semantics:

Definition 7.35 I
HW consistency

hw-consis(c ∈ confCC+HW , h ∈ RedHardw, i ∈ Pid) ∈ B

hw-consis(c, h, i) def
= h.asid[i] = c.p[i].asid

∧ h.asid[i] = 0 =⇒ (h.tlb[i] ⊆ c.p[i].tlb ∨ c.flushTLB[i])
∧ is-empty(c.p[i].sb)

∧ h.asid[i] , 0 =⇒ h.tlb[i] ⊆ c.p[i].tlb
∧ h.memreq[i].main = c.p[i].memreq
∧ h.memres[i].main = c.p[i].memres
∧ h.sb[i] = c.p[i].sb
∧ h.CR3[i] = c.p[i].CR3.

For buffers memreq and memres from the hardware configuration we couple
only the part which is relevant for the guest execution. For the TLB component
we require the hardware TLB to be the subset of c.p[i].tlb, rather than to be
equal to it. This allows us to leave the walks in the software TLB component,
when the hardware TLB drops them non-deterministically. The walks from
c.p[i].tlb are removed only when an INVLPG or a complete flush is requested
by the user. Note also, that we disable the coupling invariant for the TLB when
the bit c.flushTLB[i] is set and the processor is running in hypervisor mode. The
bit c.flushTLB[i] guarantees that at the next VMRUN the hardware TLB flush
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will be performed, which will enable the coupling for the TLB component once
again.

Putting together regular C-IL consistency and hardware consistency we get
the main consistency relation we aim at:

J Definition 7.36
C-IL + HW consistency

consisCC+HW (c, π, h, i) def
= hw-consis(c, h, i) ∧ global-consis(c.M, π, h)

∧ local-consisi(c.stack[i], h.p[i].state, h.mm[StackAddri]).

The following lemma states that consistency is maintained after any step
of a processor running in guest mode.

Lemma 7.5 (Safe and consistent guest step). Let hardware h ∈ RedHardw
perform a step of processor i running in guest mode and resulting in state h′ Let
c ∈ confCC+HW be a configuration of safe program π ∈ progC−IL and consistency
for thread i hold between c and h, where h is a valid hardware state. Then
configuration h′ is also safe and there exists configuration c′ s.t. consistency for

thread i holds between h′ and c′, c′ either equals to c or π, θ ` c
hw
−−→ c′, and

traces of the C step and the hardware step are equivalent. Moreover, consistency
for all other threads holds in c′, if it holds in c:

safe-progπ,θCC+HW (c, o)

∧ h
a
→ h′

∧ pid(a) = i
∧ safe-confr (h, o)
∧ consisCC+HW (c, π, h, i)
∧ h.p[i].asid , 0
=⇒ ∃c′ : consisCC+HW (c′, π, h′, i)

∧ safe-confr (h′, o)

∧ (π, θ ` c
b
→ c′ ∧ hw-step(b) ∧ pid(b) = i

∧ guest-trace(a) ≡ hw-trace(b)
∨ c = c′ ∧ guest-trace(a) = {})

∧ (∀t ∈ Pid : consisCC+HW (c, π, h, t) =⇒ consisCC+HW (c′, π, h′, t)).

Proof. By a case split on the type of the hardware step from h to h′.

Case 1: h
a
→ h′ is an internal step of the instruction automaton. In this

case the part of the hardware state visible on the C-IL + HW level
is unchanged, as well as the state of the physical memory. Hence,
hw-consis(c, h′, i) and global-consis(c.M, π, h′) hold, and we choose
c′ = c. Assuming that local C-IL consistency is stable under guest
steps which don’t write the local memory of a thread (see Section
5.4.4), we get

∀t ∈ Pid : consisCC+HW (c, π, h, t) =⇒ consisCC+HW (c, π, h′, t).

The safety for h′ is trivially maintained from the fact that the TLB state
and the state of processors running in hypervisor mode is unchanged.

Case 2: h
a
→ h′ is not a TLB step, but performs a write to the main memory

at the quad-word address pa. From hw-consis(c, h, i), we know that
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the hardware TLB is a subset of the software TLB component and
the content of the buffers is the same on hardware and software
levels. Hence, we can perform the same step with the C-IL machine,
performing a locked memory write, a compare-exchange, or an SB
commit store step:

π, θ ` c
hw
−−→ c′.

Since we write the same data to the hardware memory and to the C-
IL memory, hardware consistency relation is maintained. Hardware
memory regions where the compiled code and the local stacks are
located are left unchanged. Hence, code and stack consistency are
also maintained (assuming stability of local consistency under guest
steps). The state of TLBs is unchanged, as well as the state of
processors running in hypervisor mode. This implies safe-confr (h′, o).

Case 3: h
a
→ h′ is an MMU step of adding a new walk with the ASID other

than 0 to the TLB. The C-IL configuration performs the same kind of
an MMU step, adding a new walk to c.p[i].tlb (even if this walk was
already present there before) and producing configuration c′ s.t.

π, θ ` c
hw
−−→ c′.

From hardware consistency, we know that h.CR3[i] = c.p[i].CR3.
Hence, all parameters of the newly added walk in the hardware
configuration and in C are the same and equality of TLB
states is maintained after the step. The hardware memory
is unchanged. Hence, code and stack consistency are also
maintained (assuming stability of local consistency under guest
steps). From safe-progπ,θCC+HW (c, o) applying Lemma 7.4, we get
safe-progπ,θCC+HW (c′, o), which implies

∀i : safe-tlbsc(c′.p[i], o, i).

The state of processors running in hypervisor mode is unchanged.
Hence, safe-confr (h′, o) also holds.

Case 4: h
a
→ h′ is an MMU step of extending walk w with ASID other than

0. The C-IL configuration performs the same kind of an MMU step,
extending the walk w and producing configuration c′ s.t.

π, θ ` c
hw
−−→ c′.

From safe-confr (h, o) we know that the walk w points to a PTE located
at the address from SharedAddr. The content of the shared memory in
the hardware machine and in the C-IL machine is the same (according
to global-consis(c.M, π, h)). Hence, all parameters of the extended
walk in the hardware configuration and in the C-IL configuration are
the same and equality of TLB states is maintained after the step. All
the other arguments are identical to Case 3.

Case 5: h
a
→ h′ is an MMU step of setting A/D bits in a PTE pointed by a walk

w. The proof for this case is completely analogous to Cases 2 and 4.
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Case 6: h
a
→ h′ is an MMU step of removing an arbitrary number of walks

from the TLB. The C-IL configuration does not perform any steps.
Consistency relation can not be broken and there is nothing to show.

Case 7: h
a
→ h′ is a VMEXIT step on processor i. The C-IL configuration also

performs a VMEXIT step producing configuration c′ s.t.

π, θ ` c
hw
−−→ c′.

The ASID of processor i in state h′ equals 0. Hence, hardware
consistency holds for h′ and c′ (it couples register values only for
the case when h.asid[i] = 0). Other parts of the consistency relation
follow from the fact that memory and TLB content is unchanged both
in the hardware and software configurations.

Case 8: h
a
→ h′ is a step of issuing a memory request req ∈ MemReq to the

memory automaton of processor i. The C-IL machine also perform the
step of accepting a memory request:

π, θ ` c
b
→ c′ ∧ b = hw(i, req.main),

which ensures that traces of a and b are equal. Consistency relation
for the memory request buffer is maintained and other consistency
relations can not be broken.

Case 9: h
a
→ h′ is a step of sending a memory result res ∈ MemRes from the

memory automaton of processor i. The C-IL machine also perform the
step of sending a memory result:

π, θ ` c
b
→ c′ ∧ b = hw(i, res.main),

which ensures that traces of a and b are equal (the fact that the C-
IL machine can perform such a step follows from the memory result
buffer consistency between h and c). The consistency relation for the
memory result buffer is maintained and other consistency relations
can not be broken.

Case 10: h
a
→ h′ is any other processor step. The C-IL configuration performs

the same kind of a step and the proof is analogous to previous cases.

�

Another lemma guarantees that hardware consistency is maintained after
a VMRUN step, if parameters of C-IL VMRUN statement are the same as
parameters of the hardware core-vmrun step.

Lemma 7.6 (Consistent VMRUN). Let consistency hold between c ∈ confCC+HW

and h ∈ RedHardw. Further, let hardware h perform a VMRUN step on
processor k ∈ Pid and configuration c perform a respective VMRUN step of
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thread k. Then hardware consistency also holds between h′ and c′.

h
a
→ h′

∧ pid(a) = k
∧ hw-consis(h, c, k)
∧ h.asid[k].asid = 0
∧ h′.asid[k].asid , 0
∧ stmtnext(c(k), π) = vmrun(e0, e1, e2)
∧ [e0]π,θc(k) = val(bin64(h.memreq[k].asidin), u64)

∧ [e1]π,θc(k) = val(bin64(h.memreq[k].cr3in), u64)

∧ inject-dataπ,θ(c(k), e2) = h.memreq[k].inject-data
∧ c.flushTLB =⇒ h.memreq[k].complete-flush

∧ π, θ ` c
cil
−−→k c

′

=⇒ hw-consis(h′, c′, k)

Proof. Follows from definitions. We omit it here due to its simplicity. �

7.4.2 C-IL + HW Simulation

Below we state a simulation theorem, analogous to the compiler correctness
for regular C-IL (Theorem 5.2). This theorem guarantees, that on a machine
where a C-IL (hypervisor) program is executed in parallel with the guest code,
the result of the execution is consistent with the state of the C-IL + HW machine
executing the same program.

Theorem 7.7 (C-IL + HW simulation). Let π ∈ progC−IL be a safe C-IL program
with initial C-IL configuration ĉ0 ∈ confCC−IL and initial C-IL + HW configuration
c0 ∈ confCC+HW , where c0 = cil2chw0(ĉ0), and all threads in c0 are at C-IL
consistency points (this is the case when the location counter of every thread
points to the first statement of a thread). Let h0 ∈ RedHardw be an initial safe
state of the reduced hardware machine which is consistent with ĉ0, and hn be an
arbitrary point in the execution sequence of the compiled program where n > 0.
Let all processors in h0 be in hypervisor mode. Then for all block schedules
starting from h0 and ending in hn there exists a step function s ∈ N 7→ N
and an execution sequence c0, c1, c2, . . . , cs(n) s.t. for all consistency points h i

consistency relation holds between states h i and cs(i) for all running threads,
execution from h0 to hn is safe, and the trace of the hardware component
of this sequence is equivalent to the guest trace of the hardware sequence
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h0, h1, . . . , hn.

h0 �
→ hn

∧ ∀k′ ∈ Pid : cpointC−IL(c(k′), π)
∧ ∀k′ ∈ Pid : h0.asid[k′] = 0
∧ ∀k′ ∈ Pid : consisC−IL(ĉ0, π, h0, k′)
∧ cosched(�)
∧ c0 = cil2chw0(ĉ0)
∧ safe-progπ,θCC+HW (c0, o)
∧ safe-confr (h0, o)
∧ ∀k′ ∈ Pid : h0.asid[k′] = 0 ∧ h0.tlb[k′] = empty-tlb()
=⇒ ∃s, o′ : ∀i < n : cpoint(�, i) =⇒

(∀k′ ∈ Pid : running-threadk′ (�, i) =⇒

consisCC+HW (h i , π, cs(i), k′))
∧ safe-seqr (�, o, o′)
∧ (s(n) = 0 =⇒ guest-trace(�) = {})

∧ (s(n) , 0 =⇒ ∃ω, (c0 ω
→
π,θ
cs(n)) : guest-trace(�) ≡ hw-trace(ω))

Proof. The proof is done by induction on i. For the base case we have
cpoint(�,0) from the definition of a hardware consistency point. From the
preconditions of the theorem we get

∀k′ ∈ Pid : consisC−IL(ĉ0, π, h0, k′).

From c0 = cil2chw0(ĉ0) and the fact that all TLBs in configuration h0 are empty
we get

∀k′ ∈ Pid : consisCC+HW (c0, π, h0, k′).

Hence, we choose s(0) = 0.
For the induction step we assume that consistency for all running threads

holds between a state h i and cs(i), where i < n, state h i is safe (safe-confr (h i , o)),
and C-IL + HW program safety holds starting from state cs(i):

safe-progπ,θCC+HW (cs(i), o).

Moreover, we assume that all threads in configuration cs(i) are at consistency
points:

∀k′ ∈ Pid : cpointC−IL(ĉs(i)(k′), π).

Let m be the next consistency point in the hardware execution sequence:

m = next-cpoint(�, i).

If such point doesn’t exists, then i is the last consistency point in the execution
sequence and there is nothing to show. Further, let h i be a consistency point
of processor k: cpointk(�, i). We have to show that (i) there exists some number
y ≥ s(i) s.t.

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisCC+HW (hm , π, cy, k′)
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holds, all threads in cy are at C-IL consistency points, and

π, θ ` cs(i) ω
→ cy ∧ guest-trace(�[i : m − 1]) = hw-trace(ω)

∨ y = s(i) ∧ guest-trace(�[i : m − 1]) = {},

and (ii) there exists o′ s.t. execution from h i to hm is safe and C-IL + HW
program safety holds for cy

safe-seqr (�[i : m − 1], o, o′) ∧ safe-progπ,θCC+HW (cy, o′).

A safe hardware sequence also gives us safety of the final step in the sequence,
which is a part of our induction hypothesis (safe-confr (hm , o′)). We proceed
with a case split on the type of the consistency point h i :

Case 1: h i is a hypervisor consistency point and step �i is not a core-vmrun
step and not a core-tlb-invlpga step. First, we extract C-IL
configuration ĉ from configuration cs(i):

ĉ = chw2cil(cs(i)),

and observe that regular C-IL consistency holds between ĉ and h i :

∀k′ ∈ Pid : consisC−IL(ĉ, π, h i , k′).

Applying regular C-IL compiler correctness (Theorem 5.2) we find
configuration ĉ′, where

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisC−IL(ĉ′, π, hm , k′),
π, θ ` ĉ →∗k ĉ

′ ∧ cpointC−IL(ĉ′(k), π).

It follows that thread k is at consistency point in ĉ′. All the other
threads do not perform any steps in between. Hence, they also stay
at consistency points (as assumed by our induction hypothesis) and
we get

∀k′ ∈ Pid : cpointC−IL(ĉ′(k), π).

The guest trace of the hardware machine (i.e., the trace of the memory
automaton in guest mode) from configuration h i to hm is empty.
Hence, the hardware trace of the C-IL machine should also be empty.
We further split cases on whether a C-IL machine performs any steps
or not:

Case 1.1: the C-IL machine performs a number of steps from ĉ to ĉ′:

π, θ ` ĉ →+
k ĉ
′.

We apply Lemma 7.2 and get C-IL + HW configuration
cy = cil2chw(ĉ′, p′), where π, θ ` cs(i) cil

−−→k
+ cy and the

hardware component is unchanged (p′ = cs(i).p) or the
complete TLB flush has been performed in between cs(i)

and cy. In the latter case we have

p′ = cs(i).p[cs(i).p[k].tlb 7→ empty-tlb()] ∧ cy.p.[k].flushTLB.

Since cy is an MMU-extension of configuration ĉ′, we know
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that regular consistency holds for cy and all threads are at
consistency points:

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒

consisC−IL(cy, π, hm , k′),
∀k′ ∈ Pid : cpointC−IL(cy(k′), π).

From the fact that h i is a hypervisor consistency point of
processor k and � is a block schedule, we know that all
hardware steps in between h i and hm are performed by
processor k, which is running in hypervisor mode. Hence,
TLBs between h i and hm do not add new walks (TLB of
processor k may only remove walks). Moreover, since �i is
not a VMRUN, we know that ASIDs of all processors also
stay unchanged between h i and hm and execution from cs(i)

to cy does not involve any VMRUN steps (this follows from
Theorem 5.2 and definition of cil2chw function). The only
change to the hardware component which could happen
between cs(i) and cy is removal of walks from the TLB by
executing a completeflush step, which could not possibly
break the hardware consistency relation (because flushTLB
flag is always set in this case). Hence, applying induction
hypothesis we get

∀k′ ∈ Pid : hw-consis(cs(i), π, h i , k) =⇒

hw-consis(cy, π, hm , k′).

From the definition of a running thread it follows that the
set of running threads can not increase from h i to hm .
Hence, we get

∀k′ ∈ Pid :running-threadk′ (�,m) =⇒

consisCC+HW (hm , π, cy, k′)

Using program safety safe-progπ,θCC+HW (cs(i), o) (induction
hypothesis) and applying Lemma 7.3 we find ownership
setting o′, s.t.

safe-local-seqπ,θC−IL(ĉ(k), ĉ′(k), k, o, o′)
∧ safe-progπ,θCC+HW (cy, o′).

Given safety of the local sequence in C-IL, we further apply
Theorem 5.2 and get hypervisor safety of hardware steps
between h i and hm :

safe-hyp-seqr (�[i : m − 1], o, o′).

Further, from safety of hypervisor steps we get the safety
of ownership transfer for every step in between h i and
hm . Since all these steps are performed by processor
k, ownership domains of other threads do not decrease.
Hence, TLB safety for other processors is maintained in
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every step. For TLB safety of processor k there is nothing
to show, because it is running in hypervisor mode. That
gives us

safe-seqr (�[i : m − 1], o, o′).

From the fact that all steps between cs(i) and cy are
performed by a thread with ASID 0, we know that the
hardware trace of this sequence is empty, which concludes
the proof for this case.

Case 1.2: the C-IL machine does not perform any steps from ĉ to
ĉ′. This situation happens when one consistency point in
C corresponds to multiple consistency points in hardware
(e.g., when the first statement in a thread or the first
statement after the return following a VMRUN involves an
access to the shared memory). For this case configuration
cy is equal to c′ and we don’t change the ownership setting
and take o′ = o. The part of the consistency relation for the
hardware component of a thread trivially folds. Hypervisor
safety for hardware states between h i and hm , and the
consistency relation for the software part of the C-IL + HW
machine follows from Theorem 5.2. TLB safety follows from
the fact that ownership setting o is not changing between
those states and TLBs are not adding any new walks.

Case 2: h i is a hypervisor consistency point and step �i is a core-vmrun step.
In this case we proceed in the same way as in Case 1, obtaining
configuration ĉ = chw2cil(cs(i)) and observing that consisC−IL(ĉ, π, h i)
holds. Analogously to Case 1 we apply Theorem 5.2 and find
configuration ĉ′, where

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisC−IL(ĉ′, π, hm , k′),
π, θ ` ĉ →k ĉ

′ ∧ cpointC−IL(ĉ′(k), π).

From Theorem 5.2 we also know that the first statement to be
executed by thread k in configuration ĉ is a VMRUN statement with
the same parameters as the hardware core-vmrun step has. Further,
we apply Lemma 7.2 and get C-IL + HW configuration cy s.t.

cy = cil2chw(ĉ′, cs(i).p[k 7→ p′k]),
p′k = (cs(i).p[k])[asid 7→ h i .memreq[k].asidin,

CR3 7→ h i .memreq[k].cr3in,
tlb 7→ (cs(i).flushTLB ? tlb-empty() : cs(i).p[k].tlb)
memreq = h i .memreq[k].inject-data.req,
memres.pf 7→ h i .memreq[k].inject-data.pf,
memres.data 7→ 0,
memres.ready 7→ h i .memreq[k].inject-data.ready]).

Since cy is an MMU-extension of configuration c′, we know that
regular consistency holds for cy and all threads are at consistency
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points:

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisC−IL(cy, π, hm , k′),
∀k′ ∈ Pid : cpointC−IL(cy(k′), π).

Next, we observe that in the consistency block schedule the next
statement after VMRUN is either a step of the same processor in guest
mode (i.e., first guest step after VMRUN) or a step of another processor,
starting from a consistency point. Hence, from the definition of the set
of consistency points the next state after VMRUN is also a consistency
point and m = i + 1. Observing that transition from cs(i) to cy involves
only one C-IL step (hence, y = s(i) + 1) and applying Lemma 7.6, we
get hardware consistency for thread k between hm and cy:

hw-consis(cy, π, hm , k).

Since the state of other processors is not changed, we know that the
hardware consistency for these processors is maintained. This gives
us

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisCC+HW (hm , π, cy, k′).

Further, from the program safety safe-progπ,θCC+HW (cs(i), o) (induction
hypothesis), and applying Lemma 7.3 we find ownership setting o′,
s.t.

safe-local-seqπ,θC−IL(ĉ(k), ĉ′(k), k, o, o′)
∧ safe-progπ,θCC+HW (cy, o′).

Given safety of the local sequence in C-IL, we further apply Theorem
5.2 and get hypervisor safety of the hardware step between h i and
h i+1:

safe-hyp-seqr (�[i], o, o′).

Ownership domains of all threads do not decrease on transition from
o to o′. Hence, TLB safety of processors other than k is maintained.
TLB safety for processor k follows from safe-progπ,θCC+HW (cy, o′) and the
fact that hardware consistency for processor k holds between states
cy and hm . This gives us

safe-seqr (�[i : m − 1], o, o′).

Further, we observe that both the guest trace of the hardware machine
and the trace of the hardware component of the C-IL machine are
empty, because both the hardware and the software VMRUN do not
contribute to these traces, and conclude the proof for this case.

Case 3: h i is a hypervisor consistency point and step �i is a core-tlb-invlpga
step. From Theorem 5.2 it follows that the next step to be executed in
cs(i) is invlpga(e0, e1) statement with the ASID parameter being equal
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to the one of the hardware step:

[e0]π,θc(k) = val(bin64(h i .memreq[k].va), u64)

[e1]π,θc(k) = val(bin64(h i .memreq[k].asid), u64).

From the semantics of hardware and software INVLPG steps it
follows that hardware consistency is maintained after these steps are
performed in both machines:

hw-consis(cs(i)+1, π, h i+1, k).

From the definition of a block schedule and Theorem 5.2 it follows
that no new walks are added to the hardware TLB until the
next consistency point, and the state of the software TLB remains
unchanged until then. Hence, we get

hw-consis(cy, π, hm , k),

where configuration cs(y) is constructed using Theorem 5.2 and
Lemma 7.2 (analogously to the previous case). Since the state of other
processors is not changed, we know that the hardware consistency for
these processors is maintained. This gives us

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisCC+HW (hm , π, cy, k′).

Arguments for the safety of a hardware execution between h i and hm ,
as well as for the safety of the program starting from state cy, are
identical to those used in Case 1.

Case 4: h i is a guest consistency point. From the definition of consistency-
block schedule and our choice of consistency points it follows that
hm = h i+1 and �i is a guest step (possibly being a VMEXIT step).
We apply Lemmas 7.5 and 7.4 and obtain configuration cy, where
y >= s(i) and consistency holds between states hm and cy:

∀k′ ∈ Pid : running-threadk′ (�,m) =⇒ consisCC+HW (hm , π, cy, k′),

sequence of hardware steps between h i and hm is safe

safe-seqr (�[i : m − 1], o, o),

program safety is maintained for cy

safe-progπ,θCC+HW (cy, o),

and traces of hardware and software execution sequences are
equivalent. Location counters of all threads are not changed from
cs(i) to cy, which means that all threads remain at consistency points
in cy.

�

Note, that in Theorem 7.7 we show that compiler consistency holds for all
hardware consistency points. Yet, with a simple extension to the theorem one
can show that compiler consistency also holds for all software C-IL consistency
points. To do that, one has to keep track of all software consistency points
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and to show that we always advance to the next consistency point during the
induction step. To show this, one has to strengthen Theorem 5.2 to require
configuration c′ to be the next software consistency point of a given thread (so
that we don’t skip any C-IL consistency points in between c and c′).

7.5 C-IL + HW + Ghost Semantics

Putting together the C-IL + Ghost semantics from Chapter 6 and the C-IL +
HW semantics introduced in this chapter we obtain the C-IL + HW + Ghost
semantics.

Configuration of sequential C-IL + HW + Ghost is obtained by extending
the configuration from Definition 6.13 with the hardware component:

J Definition 7.37
C-IL + HW + Ghost
configuration

confC+HW+G
def
= [M ∈ Bgm 7→ B8,MG ∈ valptr ∪ N ∪ V 7→ valMG ,
stack ∈ frame∗C+G , flushTLB ∈ B, p ∈ corec, next-freeG ∈ N].

Concurrent C-IL + HW + Ghost configurations are constructed respectively:

J Definition 7.38
Concurrent configuration
(C-IL + HW + Ghost)

confCC+HW+G
def
= [confM ∈ Bgm 7→ B8,MG ∈ valptr ∪ N ∪ V 7→ valMG ,
stack ∈ Tid 7→ frame∗C+G , flushTLB ∈ Tid 7→ B,
next-freeG ∈ Tid 7→ Np ∈ Tid 7→ corec].

A software step of the C-IL + HW + Ghost semantics now involves execution
of a number of ghost statements (if there are any) followed by a single
implementation statement.

J Definition 7.39
Software step of
C-IL + HW + Ghost

π, θ ` c →∗G c
′′ π, θ ` c′′ →I c

′

π, θ ` c
cil
−−→ c′

A step of the sequential C-IL + HW + Ghost semantics involves either
execution of a software step or execution of a single step of the hardware
component.

J Definition 7.40
C-IL + HW + Ghost stepπ, θ ` c

cil
−−→ c′ ∨ π, θ ` c

hw
−−→ c′ ∨ π, θ ` c

hw(req)
−−−−−−→ c′ ∨ π, θ ` c

hw(res)
−−−−−−→ c′

π, θ ` c → c′

A step of the concurrent C-IL + HW + Ghost semantics is a step of some
thread operating on the shared memory, shared ghost memory, on its local
stack, and on its local MMU component.

J Definition 7.41
Step of concurrent
C-IL + HW + Ghost

π, θ ` c(t)→ (M′,M′G , stack
′, flush′TLB, p

′)
c′ = (M′,M′G , c.stack[t 7→ stack′, c.flushTLB[t 7→ flush′TLB]], c.p[t 7→ p′])

π, θ ` c → c′

We introduce two functions, which have as an input a C-IL + HW +
Ghost configuration and return a corresponding C-IL + HW or a C-IL + Ghost
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configuration by throwing away part of the state:

Definition 7.42 I
C-IL + HW + Ghost

conversion

chwg2chw(c ∈ confC+HW+G , π ∈ progC+G) ∈ confC+HW ,
chwg2cg(c ∈ confC+HW+G) ∈ confC+G ,

chwg2chw(c, π).{M, p, flushILB}
def
= c.{M, p, flushTLB},

chwg2chw(c, π).stack def
= cg2cil-stack(c.stack, π),

chwg2cg(c) def
= confC+G[M 7→ c.M,MG 7→ c.MG , stack 7→ c.stack

flushTLB 7→ c.flushTLB, next-freeG 7→ c.next-freeG].

Analogously, we define the same functions for a concurrent C-IL + HW +
Ghost configuration:

Definition 7.43 I
Concurrent C-IL + HW

+ Ghost conversion

chwg2chw(c ∈ confCC+HW+G , π ∈ progC+G) ∈ confCC+HW ,
chwg2cg(c ∈ confCC+HW+G) ∈ confCC+G ,

chwg2chw(c, π).{M, p, flushILB}
def
= c.{M, p, flushTLB},

chwg2chw(c, π).stack[t] def
= cg2cil-stack(c.stack[t], π),

chwg2cg(c) def
= confCC+G[M 7→ c.M,MG 7→ c.MG ,

stack 7→ c.stack, flushTLB 7→ c.flushTLB,
next-freeG 7→ c.next-freeG].

Further in this section we have two goals: (i) show (forward) simulation
between the C-IL + HW semantics and between the C-IL + HW + Ghost
semantics and (ii) transfer program safety from the C-IL + HW + Ghost level
to the C-IL + HW level (so that we could satisfy preconditions of Theorem 7.7
afterwards).

To achieve these goals we first define program safety for a C-IL + HW +
Ghost machine.

A state of the C-IL + HW + Ghost machine is safe if it satisfies both the
safety from C-IL + HW and the safety of the ghost code. Moreover, in the
definition of the safety of a given state of C-IL + HW + Ghost machine, we
consider safety of the next non-ghost statement to be executed as well as the
safety of all ghost statements preceding the next implementation statement:

Definition 7.44 I
Safe configuration

(C-IL + HW + Ghost)

safe-conf π,θC+HW+G(c ∈ confC+HW+G , o ∈ Ownership, k ∈ Tid) ∈ B

safe-conf π,θC+HW+G(c, o, k) def
= safe-tlbsc(c.p, o, k)

∧ ghost-safe-stmtπ,θC+G(chwg2cg(c, π))
∧ (stmtnext(c, π) < SG =⇒ safe-stmtπ,θ(stmtnext(c, π), c, o, k))
∧ (stmtnext(c, π) ∈ SG ∧ π, θ ` c → c′ =⇒ safe-conf π,θC+HW+G(c′, o, k)).

Annotated program π ∈ progC+G with initial configuration c ∈ confCC+HW+G

is safe if every possible state of the execution of π and the ownership transfer



7.5. C-IL + HW + Ghost Semantics 161

are safe:

J Definition 7.45
Safe program
(C-IL + HW + Ghost)

safe-progπ,θCC+HW+G(c ∈ confCC+HW+G , o ∈ Ownership) ∈ B

safe-progπ,θCC+HW+G(c, o) def
= ∀i ∈ Tid : safe-conf π,θC+HW+G(c(i), o, i)

∧ ∀c′ : π, θ ` c
cil
−−→k c

′ =⇒ ∃o′ : safe-progπ,θCC+HW+G(c′, o′)
∧ safe-transferπ,θ(chwg2chw(c(k), π), chwg2cg(c′(k), π), k, o, o′)

∧ ∀c′ : π, θ ` c
a
→ c′ ∧ hw-step(a) =⇒ safe-progπ,θCC+HW+G(c′, o).

Note, that the ownership transfer is allowed to occur only when the machine
performs an implementation software step. Note also, that the function
chwg2chw converts a C + HW + Ghost configuration to a respective C + HW
configuration, which also involves setting the location counter in the stack to
a next non-ghost statement.

Before we proceed to the simulation theorem for the C-IL + HW + Ghost
machine, we first prove a lemma which derives safety of a C-IL + HW step from
the safety of the annotated program inside the C-IL + HW + Ghost semantics.

Lemma 7.8 (Safe C-IL + HW + Ghost step). Let πG ∈ progC+G be a safe
annotated program and c ∈ confCC+HW+G be a concurrent C-IL + HW + Ghost
configuration. Further, let π ∈ progC−IL and ĉ ∈ confCC+HW be the corresponding
program and configuration of C-IL + HW. Then every possible step of the C-IL +
HW machine is safe:

safe-progπG ,θCC+HW+G(c, o)
∧ ĉ = chwg2chw(c, πG)
∧ π = cg2cil-prog(πG)

∧ π, θ ` ĉ
a
→ ĉ′

=⇒ safe-seqπ,θCC+HW (a, o).

Proof. Unfolding definition of safe-seqCC+HW we get the properties we have to
show:

∀t ∈ Tid : safe-conf π,θC+HW (ĉ(t), o, t),

∀c′ : π, θ ` ĉ
a
→ ĉ′ ∧ a = cil(k) =⇒

∃o′ : safe-transferπ,θ(ĉ(k), ĉ′(k), k, o, o′)
∧ ∀t ∈ Tid : safe-conf π,θC+HW (ĉ′(t), o′, t),

∀c′ : π, θ ` ĉ
a
→ ĉ′ ∧ hw-step(a) =⇒

∀t ∈ Tid : safe-conf π,θC+HW (ĉ′(t), o, t).

First, we unfold definitions safe-progCC+HW+G and safe-confC+HW+G and get the
safety of every non-ghost statement to be executed next in every thread and
the safety of a hardware component in state c. From the definition of the
chwg2chw function is follows that the next statement to be executed in every
thread in ĉ is the same one as the next non-ghost statement in c. Moreover,
hardware components in c and ĉ are the same. This gives us

∀t ∈ Tid : safe-conf π,θC+HW (ĉ(t), o, t).
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Further, we perform a case split on the type of a step performed by the C-IL
+ HW machine:

Case 1: a step from ĉ to ĉ′ is a step of the hardware component of thread k:
From safe-progCC+HW+G we know that safety is maintained after every
step of the hardware component:

∀c′ : π, θ ` c
a
→ c′ ∧ hw-step(a) =⇒ safe-progπG ,θCC+HW+G(c′, o).

Since memory and hardware components of c and ĉ are equal,
both machines can perform the same hardware steps resulting in
configurations c′ and ĉ′, such that ĉ′ = chwg2chw(c′, πG). Hence, we
can now use safe-progπG ,θCC+HW+G(c′, o) to get

∀t ∈ Tid : safe-conf π,θC+HW (ĉ′(t), o, t).

Case 2: a step from ĉ to ĉ′ is a software step of thread k. Applying Theorem 6.1
we can find a respective sequence of steps of the C-IL + HW + Ghost
machine, such that it executes a number of ghost steps of thread
k and one implementation step of k, and results in configuration
c′, such that ĉ′ = chwg2chw(c′, πG). From safe-progCC+HW+G we get
ownership setting o′ s.t.

safe-progπG ,θCC+HW+G(c′, o′)
∧ safe-transferπG ,θ(chwg2chw(c(k), πG), chwg2cg(c′(k), πG), k, o, o′).

Further, we observe that ĉ(k) = chwg2chw(c(k), πG) and ĉ′(k) =

chwg2cg(c′(k), πG). This gives us

safe-transferπ,θ(ĉ(k), ĉ′(k), k, o, o′).

Unfolding safe-progCC+HW+G(c′, o′) we get the safety of every statement
to be executed next in every thread and the safety of the hardware
component in c′. From the definition of function chwg2chw it follows
that the next statement to be executed in every thread in ĉ′ is the same
one as the next non-ghost statement in c′, and hardware components
in c′ and ĉ′ are equal. This concludes the proof.

�

Now we can prove a simulation theorem between a C-IL + HW + Ghost
machine and a C-IL + HW machine.

Theorem 7.9 (C-IL + HW + Ghost simulation). Let πG ∈ progC+G be a safe
annotated program and c ∈ confCC+HW+G be a concurrent C-IL + HW + Ghost
configuration. Further, let π ∈ progC−IL and ĉ ∈ confCC+HW be the corresponding
program and configuration of C-IL + HW. Then for every sequence of steps
of the C-IL + HW machine, there exists a sequence of steps of the C-IL +
HW + Ghost machine, such that resulting configurations correspond w.r.t the
chwg2chw function and hardware traces of both execution sequences are the
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same. Moreover, execution sequence of the C-IL + HW machine is safe.

∀�, (ĉ
�
→
π,θ
ĉ′) :

safe-progπG ,θCC+HW+G(c, o)
∧ ĉ = chwg2chw(c, πG)
∧ π = cg2cil-prog(πG)

=⇒ ∃c′, ω, (c
ω
→
πG ,θ

c′) : ĉ′ = chwg2chw(c′, πG)

∧ safe-seqπ,θCC+HW (�, o)
∧ hw-trace(�) = hw-trace(ω)

Proof. By induction on steps of the C-IL + HW machine and a case split on the
type of a step.

Case 1: if machine ĉ performs a step of the hardware component, then
machine c performs the same kind of a step, maintaining chwg2chw
abstraction and equality of traces.

Case 2: if machine ĉ performs a software step of thread k, then we apply
Theorem 6.1, and machine c performs a sequence of steps of k (which
consists of a number of ghost steps and a single implementation step)
resulting in configuration c′, s.t.

ĉ′ = chwg2chw(c′, πG).

The trace property is maintained since all software steps are
considered to be internal and do not affect the hardware trace in any
way.

For every step we obtain the safety of the C-IL + HW execution sequence with
the help of Lemma 7.8 and the inductive nature of safe-progCC+HW+G (i.e.,
for every c′ reachable from c there exists o′ such that the program safety is
maintained). �

With the help of Theorem 7.9 we can derive safety of a C-IL program in the
C-IL + HW semantics from the safety of a C-IL + Ghost program inside the C-IL
+ HW + Ghost semantics. We need this property to discharge the respective
precondition of Theorem 7.7.

Lemma 7.10 (Safety of C-IL + HW program.). Let πG ∈ progC+G be an
annotated program and c ∈ confCC+HW+G be a concurrent C-IL + HW + Ghost
configuration. Further, let π ∈ progC−IL and ĉ ∈ confCC+HW be the corresponding
program and configuration of C-IL + HW. Let the annotated program πG be safe
w.r.t state c and ownership setting o ∈ Ownership. Then the program π is also
safe w.r.t state ĉ and ownership setting o:

safe-progπG ,θCC+HW+G(c, o)
∧ ĉ = chwg2chw(c, πG)
∧ π = cg2cil-prog(πG)
=⇒ safe-progπ,θCC+HW (ĉ, o).

Proof. Follows directly from Theorem 7.9. �
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TLB Virtualization

8.1
Specification and

Implementation Models

8.2
VM Configuration

8.3
Coupling Invariant

8.4
Simulation

8.5
Emulating Machine With

Caches

The purpose of a hypervisor is to provide to
several virtual machines (VMs), each running
its own operating system, an illusion that
every VM is running alone on a physical
machine, even though different machines
might try to configure their page tables to
use the same physical addresses. To provide
this illusion, the hypervisor provides an
additional level of address translation. It
does this either with the help of the hardware
support (if the hardware supports nested
paging) or by maintaining a separate set
of page tables, called Shadow Page Tables
(SPTs), for each VM. These SPTs are the
tables actually used by the hardware for
address translation, but are kept invisible
to the VMs. The SPT algorithm guarantees,
that the virtual TLB, provided to the guest
by the hardware TLB together with the
intercept handlers, behaves according to
the hardware specification and provides
appropriate translations to the guest. In
this chapter we provide the specification
model for the VMs and give the correctness
criteria for TLB virtualization. Then we
define the coupling invariant for the VMs,
including the VTLB, and prove correctness
of simulation for hardware steps performed
in virtualization mode.
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Figure 8.1: Hypervisor virtualization correctness.

Correcntess of hypervisor virtualization is normally expressed via a
simulation proof between the host hardware machine executing a hypervisor
program and a guest virtual machine abstracted from the hypervisor/host
hardware configuration [AP08]. In this thesis we don’t aim at the full
hypervisor correctness, but only show correct virtualization of guest memory
accesses (including TLB operations).

We do this by showing forward simulation (Section 2.3) between memory
automata (Section 3.5) of the host hardware machine and an abstraction of
the memory automata of guest VMs (Figure 8.1). As a result, we show that
for any sequence of host hardware steps there exists a respective sequence of
steps of guest virtual machines, such that the guest memory trace1 of the host
hardware equals to the memory trace of the VMs2.

Our main virtualization correctness property is stated between the
host hardware machine (executing a hypervisor) and an abstract guest
configuration. Nevertheless, we want to use a C program verifier for performing
all proofs which involve arguing about the hypervisor code. Hence, our
correctness proof consists of two parts:

1. we define a coupling invariant between the hypervisor configuration in C-
IL + HW + Ghost semantics and the abstract guest VMs. We show that for
any sequence of steps of the C-IL machine there exists a valid sequence
of steps of the abstract guest VMs such that the coupling invariant is
maintained afterwards and traces of executions are equal (i.e., we show
forward simulation between the C-IL machine executing hypervisor code
and the abstract guest VMs) (Figure 8.2);

2. we observe that the compiler consistency theorem (Theorem 7.7)
together with the C-IL + HW + Ghost simulation theorem (Theorem
7.9) guarantees that for every hardware execution sequence of a host
hardware machine there exists an execution sequence of a C-IL + HW +

1A guest memory trace is a sequence of inputs/outputs of memory automata running in guest
mode (see Section 7.2.3).

2In this and the following chapters the notion of a ‘‘guest’’ and a ‘‘VM’’ can be considered
equivalent. Nevertheless, we mostly use ‘‘VM’’ when talking about an abstract machine provided
by the hypervisor, and ‘‘guest’’ when talking about the user code executed in this machine.
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C-IL + HW + Ghost machine

c.mm
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c.sb[i]
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Virtual Machines
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g.p[j]

Simulation

Figure 8.2: Hypervisor virtualization correctness on C-IL + HW + Ghost level.

Ghost machine, such that consistency holds between consistency points
and guest traces of both machines are equal. Using (1), we transfer
our simulation property down to the hardware level, showing equality of
memory traces of the host hardware and the guest VMs.

In this and the following chapter we aim at proving the first part of the
correctness theorem. The second part is obtained by a simple combination of
two theorems and we omit stating it explicitly here.

8.1 Specification and Implementation Models

8.1.1 Host Hardware Model

The host hardware machine h is modelled as an instance of the reduced
hardware machine RedHardw (Definition 4.2), where caches are completely
invisible, while SBs and TLBs are visible only on the processors running in
guest mode (Figure 8.3).

A hypervisor configuration running atop of the host hardware machine is
modelled via an instance of the C-IL + HW + Ghost machine, referred simply
as a ‘‘C-IL machine’’ later in this chapter.

Throughout this chapter we have to argue about the values of certain global
variables of a hypervisor program in a given C-IL configuration. For this reason
we introduce a number of abstraction functions, which extract these values.
We leave these functions undefined in this chapter and instantiate them in
the next chapter, where we consider a particular implementation of the SPT
algorithm. Yet, when proving Theorem 8.3 we have to know that values of
these abstractions are left unchanged when the C-IL machine performs a step
of the hardware component. Hence, we assume here that all these abstractions
are located in the hypervisor memory (i.e., not in the memory allocated to the
guest) and that they do not alias with each other.
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Figure 8.3: Semantics stack for hypervisor verification.

8.1.2 Guest Virtual Machines

For guest virtual machines emulated by the hypervisor we model only the part
responsible for memory accesses (i.e., the memory-controlling part of the core
together with the physical memory, TLBs, and store buffers). We do not include
caches to the guest configuration. Since we do not model devices and consider
memory accesses to have no side-affect, one can later prove an easy theorem
showing simulation between a cache-reduced VM model and a full hardware
model introduced in Chapter 3 (a machine without caches is simulated by a
machine with caches).

The number of VMs emulated by the hypervisor is expressed with the set
of guest IDs Gid. We assume that every guest machine has the same number
of (virtual) processors as the host machine has (identified by the set Pid).

The state of VMs is modelled as a map from a guest ID to an instance of
the reduced hardware configuration of the memory automaton:

VmHardw
def
= Gid 7→ RedMemHardw.

Since we don’t model the instruction part of the core, steps
core-issue-mem-req and core-send-mem-res are considered to be input and
output actions respectively.

Transitions of a single guest VM form a subset of transitions of the cache-
reduced machines (Section 4.2) under the following restrictions:

• the ASID register is not used in transitions; for guest machines it is
considered to be always equal 0,

• there are no VMRUN and VMEXIT steps; if the memory core of a
guest processor gets a VMEXIT or a VMRUN request then it will set bit
memreq.active to 0 and the request will never get served (i.e., getting a
VMRUN or a VMEXIT request is equivalent to getting an inactive request),

• step core-issue-mem-req takes as an input an instance of type
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MemReqMain rather than MemReq,
• step core-send-mem-req provides as an output an instance of type
MemResMain rather than MemRes,

• step core-invlpga performs invalidation in the current ASID (i.e., in ASID
0), which makes TLB tags invisible for the guest.

Every step of machine g ∈ VmHardw is additionally parametrised with the
ID of the VM performing a step, e.g.,

core-issue-mem-req(i ∈ Gid, j ∈ Pid, req ∈ MemReqMain),
core-send-mem-res(i ∈ Gid, j ∈ Pid, res ∈ MemResMain).

If VM i is making a step, then all components of all other VMs remain
unchanged.

To denote that transition a from state g to g′ is a part of the transition
relation of VMs we write g

a
→ g′.

Given states g and g′, the expression g
�
→ g′, where |�| = n and n > 0,

denotes execution sequence g0, �0, g1, �1, . . . , �n , gn, where g0 = g, gn = g′ and
every next hardware state is obtained from the previous one by performing the
corresponding step from �:

∀i < n : gi
�i
→ gi+1.

Analogously to the function pid(a) we introduce the function gid(a), which
extracts the ID of the VM which is performing step a:

J Definition 8.1
Step of VM i

gid(a) = i
def
= (a is a step of VM i).

8.1.3 Equality of Traces

A memory trace of VM execution sequence g
�
→ g′ is obtained by extracting

labels of all external actions of VM’s memory automata:

J Definition 8.2
VM memory trace

vm-trace(�) def
=


�0 �0 ∈ ext(VmHardw) ∧ |�| = 1
�0 ◦ vm-trace(tl(�)) �0 ∈ ext(VmHardw) ∧ |�| , 1
vm-trace(tl(�)) otherwise

The set ext(VmHardw) contains the labels of all possible external actions
of VmHardw.

ext(VmHardw) def
=

{core-issue-mem-req(i, j, req), core-send-mem-res(i, j, res) |
i ∈ Gid, j ∈ Pid, req ∈ MemReqMain, res ∈ MemResMain}.

In order to be able to identify a particular virtual machine and a virtual
processor which is currently being executed on a given host processor we
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introduce function

hp2vpc(i ∈ Pid) ∈ (Gid, Pid),

which we leave undefined for now and define it in Section 8.2.2 using
hypervisor configuration c ∈ confCC+HW+G.

We extend the C-IL hardware trace definition from Section 7.2.3 to collect
IDs of virtual processors which are being executed at the time when external

actions occur. Let c0 �
→
π,θ

cn be an execution sequence of the C-IL machine.

Then we define the extended C-IL +HW I/O trace in the following way:

Definition 8.3 I
C-IL + HW I/O Trace

(extended with VP IDs)

hw-id-trace(�) def
=

(�0, hp2vpc0 (pid(�0))) �0 ∈ ext(C-IL+HW) ∧ |�| = 1
(�0, hp2vpc0 (pid(�0)) ◦ hw-id-trace(tl(�))) �0 ∈ ext(C-IL+HW) ∧ |�| > 1
hw-id-trace(tl(�)) otherwise

Now we can specify our correctness criteria for virtualization of memory
accesses between a given C-IL execution trace and a respective execution trace
of the guest VMs.

Given an execution sequence of the C-IL machine c
�
→
π,θ
c′ and an execution

sequence of the guest VMs g
ω
→ g′ we say that guest memory traces of these

sequences are equal if the following property holds:

Definition 8.4 I
Equal VM memory traces

traces-eq(�, ω) def
= |hw-id-trace(�)| = |vm-trace(ω)| ∧ ∀i < |vm-trace(ω)| :

hw-id-trace(�)[i] = (hw(l, req), (j, k))
=⇒ vm-trace(ω)[i] = core-issue-mem-req(j, k, req)
∧ hw-id-trace(�)[i] = (hw(l, res), (j, k))
=⇒ vm-trace(ω)[i] = core-send-mem-res(j, k, res).

8.1.4 VM Simulation

We state correct virtualization of memory actions in the form of the following
theorem.

Theorem 8.1 (Correct virtualization). Let c ∈ confCCC+HW+G be the initial
hypervisor configuration and g ∈ VmHardw be the initial configuration of guest
VMs. Then for any sequence of C-IL steps starting from c there exists a sequence
of VM steps starting from g, such that traces of C-IL and VM executions are equal.

∀�, (c
�
→
π,θ
c′) : (∃ω, (g

ω
→ g′) : traces-eq(�, ω)) ∨ hw-trace(�) = {})

To prove Theorem 8.1 we do the following:

• define the coupling invariant between C-IL states and states of the
abstract VMs,

• verify hypervisor initialization phase, which ends in a state c′′, s.t. it is
reachable from c, the coupling invariant holds between c′′ and g, and the
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guest trace from c to c′′ is empty. In this thesis we do not argue about
initialization of data structures and consider a starting thread where the
data structures are already initialized and the coupling invariant initially
holds3,

• show that for every C step there exists a valid sequence of guest steps,
s.t. the coupling invariant is preserved and traces of this step and of the
hardware steps are equal. This further includes two cases:

1. if a step is done by a thread running in hypervisor mode and the
coupling invariant holds before the step, then the coupling invariant
also holds after the step and the trace of the respective sequence of
guest steps is empty. The sketch of the proof of this property for
intercept handlers of the SPT algorithm is given in the next chapter
and the theorem which argues about the correctness of VMRUN is
stated in Section 8.4.2,

2. if a step is performed by the hardware component of a thread and
the coupling invariant holds before the step, then the coupling
invariant also holds after the step and the trace of the respective
sequence of guest steps is equal to the trace of the C-IL step. The
proof of this property is done in Theorem 8.3.

The definition of the coupling invariant inv-coupling(c, g) is given in Section
8.3. In Section 8.4.1 we prove the property stated above for hardware steps of
the C-IL configuration and in the next chapter we present an implementation of
a simple SPT algorithm and sketch a proof for software steps. In Chapter 10 we
talk about proving this property for the implementation of the SPT algorithm
in VCC (for both hardware and software steps).

8.2 VM Configuration

In order to specify the correct behaviour of the VM, we first need to say how
VMs are abstracted from the host hardware. For this we need to introduce
data, specific to a guest partition, running in a given VM.

We use abstract data type VmConfig to model partition specific data, and
data type VpConfig to keep the data specific to a given virtual processor of the
partition. In the VM configuration we store the array of VP configurations and
(ghost) map gpa2hpa, which is an abstraction of the guest physical to host
physical address translation:

J Definition 8.5
Partition configuration

VmConfig
def
= [vp ∈ Pid 7→ VpConfig,

gpa2hpa ∈ Bpfn 7→ Bpfn ∪ {⊥}],

In case if guest physical to host physical translation is undefined, the map
gpa2hpa returns ⊥.

In the concrete hypervisor implementation, the guest configuration is
maintained in the data structures of the hypervisor. To obtain the abstract
configuration of VM i from a given C-IL machine c ∈ confCC+HW+G, we use the

3In our VCC proofs we have verified initialization of the data structures of the SPT algorithm,
to make sure that the coupling invariant can be initially established.



172 TLB Virtualization

following function:

guestc(i ∈ Gid) ∈ VmConfig.

The configuration of the virtual processor is defined in the following way:

Definition 8.6 I
Vp configuration

VpConfig
def
= [hpid ∈ Pid,
gwo ∈ Bpfn ,
iwo ∈ Nspt-cnt ,
asid ∈ N,
asidgen ∈ N,
walks ∈ Walk 7→ B]

The field guestc(i).vp[j].hpid denotes the index of the host hardware processor,
which executes VP j of guest partition i. The field gwo contains the guest walk
origin of the given VP i.e., the guest physical base address of the top level
guest page table. The field iwo, contains the index walk origin of the VP i.e.,
the index of the top-level SPT, allocated to this VP (see Section 8.2.3). The
fields asid and asidgen denote the current ASID and ASID generation of the VP
(see Section 8.2.1). The ghost set walks is an auxiliary set, which is used to
store all walks of the VP possibly residing in the host TLB. As a result, this set
is a translated version of the VTLB of this VP.

We also use a shorter notation to identify the configuration of VP j of guest
i in a given C-IL configuration c ∈ confCC+HW+G:

vpc(i, j)
def
= guestc(i).vp[j].

To guarantee that hypervisor maps guest memories to memory portions
disjoint from each other and from the memory where hypervisor data is located
we state the following invariant:

Invariant 8.7 I
Disjoint guest memories

name inv-gpa2hpa-disjoint(c ∈ confCC+HW+G)

property

guestc(i).gpa2hpa(gpfn) = pfn =⇒ pfn ∈ GuestAddr,

guestc(i).gpa2hpa(gpfn1) = pfn ∧ guestc(j).gpa2hpa(gpfn2) = pfn

=⇒ j = i ∧ gpfn1 = gpfn2

8.2.1 ASIDs and ASID generations.

Every set of SPTs is used for performing translations in a separate address
space and is identified by the ASID, allocated to this address space. The
hardware support for multiple address spaces and the presence of the tagged
TLB on the host hardware allows us to keep walks from different address
spaces present in the host TLB at the same time.

From the point of view of the guest running in the VM, its VPs may either
have different address spaces or may be run in a shared address space. This
depends on whether they use one or different sets of guest page tables for
address translations. Different implementations of SPT algorithms may either
support (up to a certain extent) sharing of SPTs by the VPs, or may allocate to
every VP a separate ASID and maintain a separate set of SPTs, even if these VPs
share one set of GPTs. Sharing of SPTs makes arguing about the correctness
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of the virtualization significantly harder and is not considered in the frame of
this thesis. Hence, we run every VP in a separate address space (allocating a
separate set of page tables for every VP) and assign a unique ASID identifier to
every virtual processor,

The ASID, currently assigned to VP j of VM i is stored in the field

vpc(i, j).asid

of the partition configuration. The hypervisor may allocate a new (fresh) ASID
to the VP in case the VP performs a TLB flush (this behaviour is called TLB
lazy flushing algorithm).

Since the number of the tags supported by the x64 hardware TLB is limited
to 256, we introduce another counter, which denotes the generation of every
ASID, allocated for the VP. We store the generation of the ASID assigned to the
VP in variable

vpc(i, j).asidgen.

The TLB lazy flushing algorithm utilizes TLB tags to reduce the number of
TLB flushes while handling intercepts. When the hypervisor gets a request for
a TLB flush from the VP (e.g., by intercepting a mov2cr3 request), it does not
perform a real flush of the hardware TLB, but rather allocates a new ASID to
this VP. Translations cached with the old ASID remain sitting in the TLB, but
are never used again, because we guarantee that no VP will get this old ASID
again.

The only time when we have to perform a real TLB flush is when we run out
of free ASIDs on a host processor. After a (complete) flush, all ASIDs become
once again available for use. All the VPs assigned to this host processor now
have to obtain a new ASID. To keep track of what ASIDs are still available on a
given host processor and whether an ASID of some VP was allocated before or
after the last complete TLB flush, we assign each host processor with its own
ASID generation and a counter of maximal ASIDs. We store this information
in a special data structure, called processor local storage. Every time when we
allocate a new ASID for some VP we increase the counter of maximal ASIDs
and assign the ASID generation of the host processor to the VP. When we run
out of free ASIDs we perform a flush, reset the maximal ASID counter and
increase the ASID generation of the host processor. When a VP is scheduled to
run, we check whether it has the same ASID generation as the host processor
does. If this is not the case, then we allocate a new ASID to this VP.

8.2.2 Processor Local Storage

In order to implement a TLB lazy flushing algorithm one has to keep track
of the current ASID generation and the maximal currently allocated ASID of
every host TLB in the system. We call the data structure used for storing this
data a processor local storage or PLS.

We model a PLS with the abstract data type PLS:

J Definition 8.8
Processor local storage

PLS
def
= [asidgen ∈ N, asidmax ∈ N, walks ∈ Walk 7→ B].

The ghost set walks is used to store all walks which could be possibly residing
in the host TLB and is obtained as a union of sets vpc(i, j).walks of all VPs with
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valid ASIDs (valid ASIDs are introduced further in this section). As a result,
this set acts as an overapproximation of the hardware TLB. For details on the
way how this set is defined refer to Section 8.3.5 and Figure 8.5.

The following function is used to extract PLS of host processor i from the
hypervisor configuration c ∈ confCC+HW+G:

plsc(i ∈ Pid) ∈ PLS.

Identifying the running VP. We introduce the function hp2vpc(i), providing
the ID of the virtual processor currently running on the host processor h.p[i]
or returning ⊥ if the host processor is running in hypervisor mode. The virtual
processor is identified by a pair of a guest ID and of the processor ID. Since the
ASID together with the ASID generation are unique for every VP in the system,
we are able to use these tags to uniquely identify the VP currently running on
the host processor. The values of the tags are taken from the hypervisor C-IL
configuration c ∈ confCC+HW+G:

Definition 8.9 I
Running VP

hp2vpc(i ∈ Pid) ∈ (Gid × Pid) ∪ {⊥}

hp2vpc(i)
def
=


(j, k) c.p[i].asid , 0 ∧ vpc(j, k).asid = c.p[i].asid

∧vpc(j, k).asidgen = plsc(i).asidgen ∧ vpc(j, k).hpid = i

⊥ otherwise.

Note, that hp2vpc is well defined only when pairs of ASIDs together with
ASID generations of all VPs scheduled to run on a given hardware processor
are different (when this processor is running in guest mode). We state this
property in the following invariant.

Invariant 8.10 I
Distinct ASIDs

name inv-distinct-asids(c ∈ confCC+HW+G)

property

c.p[i].asid , 0 ∧ i = vpc(j1, k1).hpid = vpc(j2, k2).hpid
∧ vpc(j1, k1).asid = vpc(j2, k2).asid
∧ vpc(j1, k1).asidgen = vpc(j2, k2).asidgen
=⇒ j1 = j2 ∧ k1 = k2

Valid ASIDs. If a given ASID could be scheduled to run on a host hardware
processor without a flush, we call it valid. An ASID is valid on host processor i,
iff there exists a VP with this ASID, which is scheduled to run on host processor
i, and which has the same ASID generation as the host processor does:

Definition 8.11 I
Valid ASIDs

valid-asidc(i ∈ Pid, asid ∈ N) ∈ B

valid-asidc(i, asid) def
= ∃k, j : vpc(k, j).hpid = i

∧ vpc(k, j).asid = asid
∧ vpc(k, j).asidgen = plsc(i).asidgen.

We maintain an invariant, which guarantees that all valid ASIDs are less or
equal than the maximal ASID, stored in the PLS. When allocating a fresh ASID
to the VP, we use this invariant to make sure that invariant inv-distinct-asids
is maintained
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J Invariant 8.12
Valid ASIDs range

name inv-valid-asids-range(c ∈ confCC+HW+G)

property
valid-asidc(i, asid) =⇒ asid ≤ plsc(i).asidmax ,
vpc(j, k).asidgen ≤ plsc(vpc(j, k).hpid).asidgen

8.2.3 Shadow Page Tables

Every shadow page table (as well as a regular page table) consists of exactly
512 page table entries. The number of the allocated SPTs may either be fixed
during initialization, or may be controlled dynamically by the hypervisor. We
aim at a simple version of the SPT algorithm, and therefore choose a fixed
number of SPTs. The set Nspt-cnt contains indices of all SPTs allocated by the
hypervisor.

The following function is used to obtain the address of a given SPT in the
global memory of the C-IL machine:

idx2hpac(i ∈ Nspt-cnt) ∈ Bpfn.

Note, that the address of an SPT has to be page-aligned.
Another function extracts an abstract SPT with index i from the hypervisor

configuration c ∈ confCC+HW+G:

J Definition 8.13
SPT abstraction

sptc(i ∈ Nspt-cnt) ∈ Pt

∀px ∈ B9 : sptc(i)[〈px〉]
def
=

abs-pte(c.M[(idx2hpac(i) ◦ px ◦ 03) : (idx2hpac(i) ◦ px ◦ 13)]).

The following predicate denotes that a page table entry px of the SPT with
index i points to or ‘‘walks to’’ (i.e., contains the address of) the SPT with index
j:

J Definition 8.14
SPT link

walks-toc(i ∈ Nspt-cnt , j ∈ Nspt-cnt , px ∈ N) ∈ B

walks-toc(i, j, px) def
= sptc(i)[px].pfn = idx2hpac(j).

8.2.4 SPT Properties

Every shadow page table has a number of properties, which are used for
defining the coupling relation for the VTLB and showing correctness of the
algorithm. We store the auxiliary page table data in the Page Table Info (PTI)
object.

J Definition 8.15
Page Table Info

PTI
def
= [used ∈ B, vpid ∈ (Gid × Pid), l ∈ N, re ∈ B,
prefix ∈ Bvpfn , r ∈ Rights].

The fields of PTI record pti ∈ PTI have the following meaning:

• pti.used: the flag, which denotes whether the associated SPT is assigned
to some VP or is free otherwise;
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• pti.vpid: if flag used is set, returns the pair of indices (i, j) identifying the
VP to which the SPT belongs (giving ID of the guest and of the VP itself);

• pti.l: the level of the associated SPT in the SPT tree;
• pti.re: the flag, denoting whether the SPT is reachable by the hardware

TLB, i.e., the hardware TLB could fetch an entry from this SPT for the
extension. Note, that this does not necessarily mean that the SPT is
linked in to the current SPT tree (i.e., is reachable from the top-level
SPT). If an SPT algorithm does not perform a hardware TLB invalidation
after detaching a shadow subtree, then the detached SPTs could still
be reachable by the HTLB, and thus cannot be reused for shadowing
other GPTs. Yet, in our simple version of the SPT algorithm presented
in Chapter 9 SPT is reachable by the HTLB only if it is linked into the
current SPT tree of the VP;

• pti.prefix: the prefix of the associated SPT i.e., the virtual address range
for the addresses of the walks that might use this SPT during address
translation;

• pti.r: accumulated rights from the top-level SPT to the associated SPT.

We obtain the PTI record of a given SPT from the hypervisor configuration
c ∈ confCC+HW+G with the help of the following function:

ptic(i ∈ Nspt-cnt) 7→ PTI.

Note, that some of the fields of the PTI (e.g., pti.re, pti.prefix, pti.r) might
not be used for implementation of the SPT virtualization in the hypervisor. Yet,
they have to be maintained as ghost values for specification and verification
needs.

8.3 Coupling Invariant

The coupling invariant for the virtual hardware establishes the relation
between the components of the hypervisor configuration c ∈ confCC+HW+G and
the state of the guest virtual hardware g ∈ VmHardw.

8.3.1 Memory Coupling

The main memory of the virtual machine is coupled with the guest portion of
the C-IL memory of the hypervisor configuration c.

Invariant 8.16 I
Memory coupling. name inv-mm-coupling(c ∈ confCC+HW+G , g ∈ VmHardw)

property
guestc(i).gpa2hpa[gpfn] = pfn =⇒ ∀px ∈ B9 :

g[i].mm[gpfn ◦ px] = c.M[(gpfn ◦ px ◦ 03) : (gpfn ◦ px ◦ 13)]

Note, that the map guestc(i).gpa2hpa operates with page frame numbers
(52 bits long), the guest memory g[i].mm is quadword addressable (61 bit
addresses), and the memory c.M is byte addressable (64 bit addresses). As a
result, in Invariant 8.16 we have to perform conversion of page frame numbers
to quadword and byte addresses.
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8.3.2 SB Coupling

In contrast to the main memory, which has to have meaningful values for all
VMs at the same time, the buffers (e.g., store buffer and memory result/request
buffers) of a given VP need to be coupled with the host configuration only when
this VP is running on some host processor.

For the store buffer coupling, we apply the function gpa2hpa to physical
addresses of all stores in the queue:

J Invariant 8.17
SB coupling.

name inv-sb-coupling(c ∈ confCC+HW+G , g ∈ VmHardw)

property

hp2vpc(i) = (j, k) =⇒ |g[j].sb[k].buffer | = |c.p[i].sb.buffer |
∧ ∀l < |g[j].p[k].sb.buffer |, store = g[j].p[k].sb.buffer[l] :

(store , SFENCE =⇒ c.p[i].sb.buffer[l] = store[pa 7→ hpa])
∧ (store = SFENCE =⇒ c.p[i].sb.buffer[l] = store),

hp2vpc(i) , (j, k) ∧ vpc(j, k).hpid = i

=⇒ is-empty(g[j].sb[k]),

where hpa = guestc(j).gpa2hpa[store.pa.pfn] ◦ store.pa.px.
Note, that Invariant 8.17 guarantees, that when a VP is not running on a

host machine its store buffer is always empty.

8.3.3 Memory Core Coupling

Since we do not support virtualization features for the guest hardware, the
values of the CR3hyp register is never used in the execution of the guest virtual
machine and does not need to be coupled with the host machine.

Register CR3 is fully virtualized by the hypervisor. When the guest performs
an instruction writing to CR3, this instruction is intercepted and the provided
value is stored in the variable vpc(j, k).gwo. At the same time, the pfn field
of the host hardware CR3 contains the base address of the top-level SPT,
allocated to the currently running VP. The type of the memory where the top-
level SPT is located is required to be ‘‘write-back’’. Additionally, we require that
the valid bit is always set in the CR3 registers of the VP.

J Invariant 8.18
CR3 coupling.

name inv-cr3-coupling(c ∈ confCC+HW+G , g ∈ VmHardw)

property

g[j].p[k].CR3.pfn = vpc(j, k).gwo,
g[j].p[k].CR3.valid = 1,
hp2vpc(i) = (j, k)
=⇒ c.p[i].CR3.pfn = idx2hpa(vpc(j, k).iwo)
∧root-pt-memtype(c.p[i].CR3) = WB

Memory request/result buffers are coupled with the respective parts of
the hypervisor configuration inside the C-IL semantics. The coupling for the
memres buffer is straightforward: the ready bits are always said to be equal,
while the other bits are equal only in case if they are meaningful i.e., when the
ready bit is set.

The active bit of the memreq buffer of the VP is set if the memreq buffer of
the host processor contains an active request, which is not a VMEXIT (VMEXIT
requests are not simulated by the virtual machine at all). The memreq buffer
of the host processor contains an active request if the active bit is set or
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the pf -flush-req bit is set. The latter occurs if the faulty walk was found in
the TLB, but the TLB invalidation, which has to be done in case of a page
fault, has not been performed yet (see Section 3.5.1). When a host processor
running in guest mode performs the first stage of page fault signalling and
sets the pf -flush-req bit, the corresponding virtual processor remains in the
same state as it was before. Later, when VMEXIT occurs, we simulate both
the first and the second stages of the page fault processing for this VP in the
PF intercept handler.

All the other fields of the memreq buffer are coupled only in case if the host
processor contains an active request and only if their values are meaningful
w.r.t the type of the pending request. The following predicate states conditional
equality of memory request/result buffers:

Definition 8.19 I
Request/result buffers

conditional equality

memreq-eq(req ∈ MemReqMain, reqg ∈ MemReqMain) ∈ B,
memres-eq(res ∈ MemResMain, resg ∈ MemResMain) ∈ B,

memreq-eq(req, reqg)
def
=

((req.active ∨ req.pf -flush-req) ∧ req.type , VMEXIT ⇐⇒ reqg.acitve)
∧ reqg.active =⇒ (req.type = reqg.type
∧ (req.type ∈ MemAcc =⇒ req.{va, r,mask} = reqg.{va, r,mask})
∧ (req.type ∈ MemAcc \ {read} =⇒ req.data = reqg.data)
∧ (req.type = atomic-cmpxchng =⇒

req.cmp-data = reqg.cmp-data)),

memres-eq(res, resg)
def
= res.ready = resg.ready

∧ res.ready =⇒ res = resg.

Note, that in case when the host processor gets a VMEXIT request, the
corresponding running VP does not have an active request at all.

The coupling invariant for the memory request/result buffers is then stated
as follows.

Invariant 8.20 I
Memory request/result

buffers coupling

name inv-core-buffers-coupling(c ∈ confCC+HW+G , g ∈ VmHardw)

property

hp2vpc(i) = (j, k)
=⇒ memreq-eq(c.p[i].memreq, g[j].p[k].memreq)

∧memreq-eq(c.p[i].memres, g[j].p[k].memres)
∧ g[j].p[k].memreq.pf -flush-req = 0

Note, that when the host processor is running in guest mode we require the
memreq.pf -flush-req flag of the running VP to be always 0. This means, that we
never simulate page-fault triggering steps when the VP is running, but rather
perform this simulation while executing the code of the PF intercept handler
of the hypervisor. As a result, when the host processor running in guest
mode performs the first stage of the page-fault triggering, the respective virtual
processor makes an empty step. Later, after the host processor performs a
VMEXIT step, we execute a PF intercept handler and simulate both the first
and the second stages of the PF triggering. Then we execute VMRUN and
inject the proper data to thememreq andmemres buffers of the host processor,
which correspond to the state of the virtual hardware after we performed the
simulation.
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8.3.4 VTLB Coupling

Though we also could define the VTLB coupling relation solely between the
MMU component of a C-IL thread (as we did with the SB and the memory
result/request buffers), we decided to choose a more complex form of the
VTLB coupling invariant. Our VTLB coupling relation consists of a number of
invariants, relating the walks in the host TLB with the walks defined by SPTs
and the walks in the VTLB, as well as stating properties of the valid ASIDs
and ASID generations. The reason for this decision was to allow more modular
verification of the SPT algorithm in a C verifier (see Chapter 10).

The coupling of walks in the host hardware TLB with the walks in the
virtual TLB is done with the help of the function gpa2hpa applied to the base
address field of a walk in the VTLB.

Since the translation of a given virtual address could be done by any of the
complete walks, which has at least the same rights as the translation request,
we want the VTLB to have walks with the maximal possible rights. So we do
not strictly fix the rights of the walks in the VTLB to be equal to the rights of
the walks in HTLB, but rather allow the VTLB to store more general walks.

We define the set of VTLB walks, that could be possibly used to justify a
hardware walk w under the gpa2hpa function of VM i:

J Definition 8.21
Host walk to guest
walk translation

hw2gwc(w ∈ Walk, j ∈ Gid) ∈ Walks 7→ B

hw2gwc(w, j)
def
= λgw ∈Walk : w.r ≤ gw.r

∧ guestc(j).gpa2hpa(gw.pfn) = w.pfn.

Now we can define the crucial property, coupling all complete walks in the
host TLB with the respective walks in the virtual TLBs (Figure 8.4). Note,
that though we state this property here, we do not maintain it as an invariant
over the hypervisor program, but rather use other VTLB coupling invariants
(defined later in this section) to derive this one.

J Invariant 8.22
Complete walks
in HTLB

name inv-htlb-complete-walks(c ∈ confCC+HW+G , g ∈ VmHardw)

property
hp2vpc(i) = (j, k) ∧w ∈ c.p[i].tlb ∧w.asid = c.p[i].asid ∧w.l = 0
=⇒ ∃gw ∈ hw2gwc(w, j) : gw ∈ g[j].tlb[k]

To maintain Invariant 8.22 after a step of the machine, we have to argue
about the host TLB walks not only in the currently running ASID, but in all
ASIDs which could possibly be scheduled to run without a preceding TLB flush.
In the next section we introduce a number of auxiliary invariants, which are
used to derive Invariant 8.22.

8.3.5 Auxiliary VTLB Invariants

We use the set plsc(i).walks to store all walks in valid ASIDs which could
possibly be added to the host TLB since the last TLB flush (see Figure 8.5 for
relations between the host TLB, the virtual TLBs, the SPTs, and the auxiliary
sets of walks stored in plcc(i) and in vpc(j, k)).

The following invariant couples valid walks in the host TLB with the walks
from the set plsc(i).walks. Additionally, it guarantees that all walks in the
TLB have ASIDs less than the maximal ASID stored in the PLS. We need this
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Figure 8.4: Coupling of complete walks in the host TLB.
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Figure 8.5: Coupling of walks in the host/virtual TLB.

property when verifying TLB lazy flushing (Section 9.4) to make sure that the
hardware TLB does not have any walks in the newly allocated ASID.
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J Invariant 8.23
Walks in HTLB.

name inv-htlb-walks(c ∈ confCC+HW+G)

property

w ∈ c.p[i].tlb ∧ valid-asidc(i, w.asid)
=⇒ w ∈ plsc(i).walks,
w ∈ c.p[i].tlb =⇒ w.asid ≤ plsc(i).asidmax

Another invariant couples the content of plsc(i).walks with the content of
vpc(j, k).walks from the VPs assigned to hardware processor i.

J Invariant 8.24
Walks in PLS.

name inv-pls-walks(c ∈ confCC+HW+G)

property

w ∈ vpc(j, k).walks ∧ valid-asid(i, w.asid) ∧ vpc(j, k).hpid = i

=⇒ w ∈ plsc(i).walks,
w ∈ plsc(i).walks =⇒ ∃j, k : vpc(j, k).hpid = i

∧w ∈ vpc(j, k).walks
∧ vpc(j, k).asidgen = plsc(i).asidgen
∧ vpc(j, k).asid = plsc(i).asid

The virtual TLB contains translated (w.r.t to the function gpa2hpa) versions
of complete walks from the set vpc(j, k).walks.

J Invariant 8.25
Walks in VTLB.

name inv-vtlb-walks(c ∈ confCC+HW+G , g ∈ VmHardw)

property
w ∈ vpc(j, k).walks ∧w.l = 0
=⇒ ∃gw : gw ∈ hw2gwc(w, j) ∧ gw ∈ g[j].tlb[k]

Additionally, to maintain Invariant 8.22, we need to know that the host
processors operate only in valid ASIDs. This means, that every AISD, which
is run on the host hardware processor in guest mode, is currently allocated to
some VP.

J Invariant 8.26
Running ASID.

name inv-running-asids(c ∈ confCC+HW+G)

property c.p[i].asid , 0 =⇒ valid-asidc(i, c.p[i].asid)

Now we can use the auxiliary invariants introduced above to derive
Invariant 8.22.

Lemma 8.2 (Complete walks in HTLB). Let c ∈ confCC+HW+G be a hypervisor
configuration and g be the state of the abstract VMs s.t. Invariant 8.25 holds
between c and g. Moreover, let all auxiliary VTLB invariants hold in state c.
Then Invariant 8.22 also holds between c and g.

inv-htlb-walks(c)
∧ inv-pls-walks(c)
∧ inv-vtlb-walks(c, g)
∧ inv-running-asids(c)
∧ inv-distinct-asids(c)
=⇒ inv-htlb-complete-walks(c, g)

Proof. Follows from the invariant definitions and the definition of the function
hp2vpc. �
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The last thing we need to do, in order to make VTLB coupling inductive, is
to define the content of sets vpc(j, k).walks and plsc(i).walks in such a way,
that Invariant 8.23 holds after a step of the host TLB. More precisely, we need
to be sure that the host TLB adds only the walks, which are already present
in vpc(j, k).walks and plsc(i).walks. We fix this using the properties of SPTs,
collected and maintained in the data structures of the hypervisor.

The choice, which walks are allowed to be added to the host TLB is
determined by a particular implementation of the SPT algorithm. Hence,
invariants fixing the content of vpc(j, k).walks are implementation specific.
We define them w.r.t a simple SPT algorithm, which we present in the next
chapter (Chapter 9).

8.3.6 Reachable Walks

Using the auxiliary data maintained in the PTI data structure we are able to
specify the set of (complete and partial) walks belonging to a given VP.

Partial Walks

The set of the partial walks of a given VP is defined by the set of reachable
SPTs. To construct a (partial) walk, ‘‘sitting’’ on some SPT, we need

• the level of the walk to be equal to the level of the SPT,
• access rights of the walk to be less or equal to the accumulated rights of

the SPT,
• the PFN field of the walk to contain the base address of the SPT,
• the ASID of the walk to be equal to the current ASID of the VP,
• the memory type of the walk to be equal to the type of the memory

where the SPT is located; as soon as we maintain invariants which
guarantee that all reachable SPTs are located in the ‘‘write-back’’ memory
(inv-cr3-coupling and inv-memory-types, which is defined later in this
section), we can simply set the memory type of the walk to WB,

• the top-most page indices (up to the level of the SPT) of the virtual PFN
of the walk have to be equal to the corresponding indices of the prefix of
the SPT.

To compare the top-most indices of two virtual PFNs we use the following
operator:

op(=l)(vpfn1 ∈ B
vpfn , vpfn2 ∈ B

vpfn) ∈ B

(vpfn1 =l vpfn2) def
= ∀i ∈ [l + 1 : 4] : (vpfn1.px[i] = vpfn2.px[i]).

The set of all partial walks of VP (j, k) sitting on the reachable SPTs is
defined in the following way:

Definition 8.27 I
Partial walks through

a reachable SPT

rwalksc(j ∈ Gid, k ∈ Pid) ∈ Walk 7→ B

rwalksc(j, k) def
= λw ∈Walk : ∃i ∈ Nspt-cnt :

ptic(i).re ∧ ptic(i).vpid = (j, k) ∧w.r ≤ ptic(i).r
∧w.pfn = idx2hpac(i) ∧w.l = ptic(i).l ∧w.mt = WB
∧w.vpfn =w.l ptic(i).prefix ∧w.asid = vpc(j, k).asid.
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The following invariant relates partial walks from set vpc(j, k).walks with
walks over reachable SPTs of VP (j, k):

J Invariant 8.28
Partial reachable walks

name inv-partial-walks(c ∈ confCC+HW+G)

property
w ∈ rwalksc(j, k) =⇒ w ∈ vpc(j, k).walks,
w ∈ vpc(j, k).walks ∧w.l , 0 =⇒ w ∈ rwalksc(j, k).

The next two invariants are used to maintain Invariant 8.23 when the host
TLB creates a new walk or performs a walk extension. The first one ensures
that the top-level SPT is always reachable, and that it has the same initial
parameters, as the top-level walk does.

J Invariant 8.29
Reachable root

name inv-reachable-root(c ∈ confCC+HW+G)

property

ptic(vpc(j, k).iwo).re,
ptic(vpc(j, k).iwo).vpid = (j, k),
ptic(vpc(j, k).iwo).r = [ex 7→ 1, rw 7→ 1, us 7→ 1],
ptic(vpc(j, k).iwo).l = 4

The second guarantees, that all reachable non-terminal SPTs point only
to other reachable SPTs, and that the parameters of SPTs are accumulated
correctly when going down the SPT tree. Additionally, we require every
reachable SPT to be linked to exactly one SPTE of another reachable SPT. We
use this property when we detach a subtree and mark SPTs ‘‘unreachable’’.

J Invariant 8.30
Reachable child

name inv-reachable-child(c ∈ confCC+HW+G)

property

ptic(n).re ∧ sptc(n)[px].p
=⇒ ∃m ∈ Nspt-cnt : walks-toc(n,m, px)

ptic(m).re ∧ ptic(m).vpid = ptic(n).vpid
∧ ptic(m).l = ptic(n).l − 1
∧ ptic(m).r = (ptic(n).r ∧ sptc(n)[px].r)
∧ ptic(m).prefix =ptic(n).l ptic(n).prefix
∧ ptic(m).prefix.px[ptic(n).l] = bin9(px)

ptic(n).re =⇒ ∃!m ∈ Nspt-cnt , px ∈ N512 :
sptc(m)[px].p ∧walks-toc(m, n, px) ∧ ptic(m).re

We maintain an invariant for the fields of SPTEs, which define the memory
type. We require all SPTEs to point to the memory with the ‘‘write-back’’ type.

J Invariant 8.31
Memory types

name inv-memory-types(c ∈ confCC+HW+G)

property

ptic(n).re ∧ sptc(n)[px].p
=⇒ mt-combine(pat-mt(sptc(n)[px].pat-idx),

mtrr-mt(sptc(n)[px].pfn)) = WB

Complete Walks

A straightforward way to identify the complete walks in sets plsc(i).walks and
vpc(j, k).walks is to argue about all terminal shadow PTEs that could have
possibly been walked by the host TLB since the last flush [ACH+10]. The task
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however is cumbersome: a single SPT could be reused for shadowing different
GPTs without a complete flush of the host TLB. In this case the host TLB could
have walked some shadow PTE twice - before and after it was reused for a new
shadowing. In our approach we only keep track of the terminal shadow PTEs
belonging to reachable SPTs, which is enough to justify the new walks added
to the HTLB w.r.t the VTLB. Additionally, we make sure that the VTLB (and
sets plsc(i).walks and vpc(j, k).walks) drops only walks which are no longer
present in the HTLB.

A complete walk through a (terminal) shadow PTE has the following
properties:

• the level of the walk is equal 0,
• access rights of the walk are less or equal to the accumulated rights of

the SPT and the access rights of the PTE,
• the PFN field of the walk is equal to the PFN field of the PTE,
• the ASID of the walk is equal to the current ASID of the VP,
• the memory type of the walk is equal to the memory type of the

memory page, pointed by the PTE; as soon as invariant inv-memory-types
guarantees that all PTEs point to ‘‘write-back’’ memory, we can simply
set the memory type of the walk to WB,

• the top-most page indices (up to level 1) of the virtual PFN of the walk
are equal to the corresponding indices of the prefix of the SPT,

• page index 0 of the virtual PFN of the walk is equal to the index of the
PTE in the page table.

Formally the set of complete reachable walks of VP (j, k) is defined in the
following way:

Definition 8.32 I
Complete walks through

a reachable SPT

cwalksc(j ∈ Gid, k ∈ Pid) ∈ Walk 7→ B

cwalksc(j, k) def
= λw ∈ Walk : ∃i ∈ Nspt-cnt :

ptic(i).re ∧ ptic(i).vpid = (j, k)
∧w.r ≤ (ptic(i).r ∧ spte.r)
∧ spte.p ∧w.l = 0
∧w.pfn = spte.pfn ∧w.mt = WB
∧w.vpfn =1 ptic(i).prefix ∧w.asid = vpc(j, k).asid,

where spte = sptc(i)[w.vpfn.px[1]].
The following invariant relates the set of complete reachable walks of VP

(j, k) with complete walks from set vpc(j, k).walks.

Invariant 8.33 I
Complete reachable walks

name inv-complete-walks(c ∈ confCC+HW+G)

property
w ∈ cwalksc(j, k) =⇒ w ∈ vpc(j, k).walks,
w ∈ vpc(j, k).walks ∧w.l = 0 =⇒ w.asid = vpc(j, k).asid

Note, that in contrast to Invariant 8.28, we don’t require all walks from
vpc(j, k).walks to be included into the set cwalksc(j, k). We only require
them to have the same ASID as the current ASID of the VP (together with
inv-partial-walks this guarantees that the set vpc(j, k).walks contains only
walks in the current ASID of the VP). This is sufficient, because the hardware
TLB never uses complete walks for further walk extension and for fetching
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PTEs. Hence, the complete walks through a terminal SPT could remain in
HTLB even after this SPT is freed or reused for further shadowing.

Note also, that safety of TLBs introduced in Section 5.3 can be derived from
our invariants, if we additionally require all SPTs assigned to a VP to be either
shared or owned by a thread, when this thread is running in guest mode in
the ASID of the VP (which we do in our VCC proofs).

8.4 Simulation

8.4.1 Simulation for Hardware C-IL Steps

The inductive version of the TLB coupling invariant includes all the VTLB
invariants defined in the previous section.

J Invariant 8.34
TLB coupling

name inv-tlb-coupling(c ∈ confCC+HW+G , g ∈ VmHardw)

property

inv-htl-walks(c),
inv-pls-walks(c),
inv-vtlb-walks(c, g),
inv-running-asids(c),
inv-distinct-asids(c),
inv-valid-asids-range(c),
inv-reachable-root(c),
inv-reachable-child(c),
inv-memory-types(c),
inv-partial-walks(c),
inv-complete-walks(c)

The VM coupling invariant includes the coupling for the main memory, for
the buffers, and for the TLB.

J Invariant 8.35
VM coupling

name inv-coupling(c ∈ confCC+HW+G , g ∈ VmHardw)

property

inv-gpa2hpa-gisjoint(c),
inv-mm-coupling(c, g),
inv-cr3-coupling(c, g),
inv-sb-coupling(c, g),
inv-core-buffers-coupling(c, g),
inv-tlb-coupling(c, g)

Now we are almost ready to prove correctness of virtualization for steps of
the hardware component of the C-IL configuration. The only invariant which
is missing is the one which guarantees that all C-IL abstractions defined in
this chapter are not located in the guest memory and do not alias with the
SPTs (and different SPTEs do not alias with each other). We call this invariant

non-aliasing-abstractions(c ∈ confCC+HW+G).

The formal definition of this invariant is straightforward and boring, and we
do not give it here.
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The following theorem argues about correctness of virtualization for steps
of the hardware component of the C-IL configuration.

Theorem 8.3 (Virtualization of hardware steps). Let c ∈ confCCC+HW+G and
c′ be pre- and post-states of the concurrent C-IL machine performing a step of
the hardware component. Let g ∈ VmHardw be the state of guest VMs s.t.
the coupling invariant between c and g holds. Then there exists abstract VM
configuration g′, s.t. the transition from g to g′ is valid, the coupling invariant is
maintained between c′ and g′, and traces of C-IL and VM executions are equal:

π, θ ` c
a
→ c′

∧ hw-step(a)
∧ inv-coupling(c, g)
∧ non-aliasing-abstractions(c)

=⇒ ∃�, g
�
→ g′ : inv-coupling(c′, g′)
∧ (traces-eq(a, �) ∨ g = g′ ∧ hw-trace(a) = {}).

Proof. To show that the theorem holds, we first have to find the ID of the VP
currently being executed on the host processor. Invariant inv-running-asid
ensures that the ASID of the host processor making a step is valid:

valid-asidc(i, c.p[i].asid).

Unfolding the definition of a valid ASID we can find virtual processor (j, k) s.t.

vpc(j, k).hpid = i
∧ vpc(j, k).asid = c.p[i].asid
∧ vpc(j, k).asidgen = plsc(i).asidgen.

From uniqueness of valid ASIDs, established by inv-distinct-asids, we conclude
that the function hp2vpc(i) is well defined and returns the pair (j, k):

hp2vpc(i) = (j, k).

Now, we perform a case split on the type of the step performed by the C-IL
machine.

Case 1: a step from c to c′ is a regular memory read (Definition 7.21) performed
with complete walkw ∈ c.p[i].tlb. The content of the C-IL memory and
the value of the CR3 register are not changed on the transition from c
to c′. Hence, all abstractions defined on the C-IL memory (e.g., guestc,
sptc, etc. ) have the same values in c and c′.
Guest machine g[j] is performing the same kind of a step of
virtual processor p[k], while the other guest machines (and guest
processors) remain unchanged. Applying Lemma 8.2 we get
inv-htlb-complete-walks(c, g) and use it to find guest walk gw, which
corresponds to the host walk w s.t.

gw ∈ hw2gwc(w, j) ∧ gw ∈ g[j].tlb[k].
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From the coupling invariant we know that the memory request buffers
of c.p[i] and g[j].p[k] have the same parameters of the read request.
On the host machine the read is done from the address hpa =

w.pfn◦c.p[i].memreq.va.off , while the virtual guest machine performs
the read from the address pa = gw.pfn ◦ g[j].p[k].memreq.va.off .
Unfolding hw2gwc, we get hpa = guestc(j).gpa2hpa(pa.pfn) ◦ pa.px.
From the coupling invariant for the physical memory and the store
buffers, we get that the result of the read operation is the same on
both machines and the core buffers coupling is maintained:

inv-core-buffers-coupling(c′, g′).

The other parts of the coupling invariant are trivially maintained.
Case 2: a step from c to c′ is a regular memory write step (Definition 7.20)

performed with complete walk w ∈ c.p[i].tlb. In this case a new store
is added to the SB of thread i. Analogously to the previous case we
find guest walk gw s.t.

gw ∈ hw2gwc(w, j) ∧ gw ∈ g[j].tlb[k].

Guest processor g[j].p[k] performs the same kind of a step, using walk
gw to add a new store to the SB. Hence, SB and core buffers coupling
holds after the step. All the other arguments in this case are identical
to the ones from the previous case.

Case 3: a step from c to c′ is a locked memory write step (Definition 7.22)
performed with complete walk w ∈ c.p[i].tlb. From inv-htlb-walks we
know that the walk w is also present in in set plsc(i).walks. From
inv-vtlb-walks it follows that there exists guest walk gw s.t.

gw ∈ hw2gwc(w, j) ∧ gw ∈ g[j].tlb[k].

Unfolding hw2gwc, we get w.pfn = guestc(j).gpa2hpa(w.gpfn).
Hence, the memory write is performed to the portion of the memory,
allocated to guest j at address pa = w.pfn ◦ c.p[i].memreq.va.off . The
value being written is taken from buffer memreq:

data = c.p[i].memreq.data,
mask = c.p[i].memreq.mask.

The result of the memory write operation to the address pa is

c′.M = masked-updatec(M, pa, data,mask).

The virtual guest processor g[j].p[k] performs the same kind of a step
using guest walk gw s.t.

gw ∈ hw2gwc(w, j) ∧ gw ∈ g[j].tlb[k].

The virtual memory of the abstract VM is updated at the address gpa =

gw.pfn ◦ g[j].p[i].memreq.va.off , using the data g[j].p[i].memreq.data
and the mask g[j].p[i].memreq.mask (inv-core-buffers-coupling(c, g)
guarantees that these values are equal to the ones in c.p[i].memreq).
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Hence,

g′[j].mm[gpa] = combine(g[j].mm[gpa], (data,mask)).

From pa.pfn = guestc(j).gpa2hpa(gpa.pfn) applying memory coupling
inv-mm-coupling(c, g) and unfolding masked-updatec, we get

g[j].mm[gpa] = c.M[pa ◦ 03 : pa ◦ 13],
g′[j].mm[gpa] = combine(c.M[pa ◦ 03 : pa ◦ 13], (data,mask))

= c′.M[pa ◦ 03 : pa ◦ 13].

Hence, the memory coupling for the address pa holds. From injectivity
and disjointness of the gpa2hpa maps (Invariant 8.7) we get the
memory coupling for all guest machines:

inv-mm-coupling(c′, g′).

The core buffers coupling also holds, because the machines perform
the same kind of a step starting with consistent configurations.
Further, we observe that all abstractions defined on the C-IL memory
(e.g., guestc, sptc, etc.) have equal values in c and c′. Hence, all
other invariants are maintained between c′ and g′, which concludes
the proof for this case.
Note, that here we rely on the fact that all abstractions defined on the
C-IL memory are not located in the guest memory. Hence, a guest
memory write does not affect the values of these abstractions.

Case 4: a step from c to c′ is an atomic compare-exchange step (Definition
7.23). The proof for this case is completely analogous to the previous
case.

Case 5: a step from c to c′ is a commit store step (Definition 7.25) performed
by an SB of thread i to the address pa. The guest machine performs
the same kind of a step, updating the main memory at the address
gpa, where

pa = guestc(j).gpa2hpa(gpa).

Since both machines commit a store from the start of the queue,
SB coupling is maintained between c′ and g′. The further proof for
this case is analogous to the case of a locked memory write, with
the only difference being that memory result/request buffers remain
unchanged in c′ and g′.

Case 6: a step from c to c′ is any other SB step (reorder store or drop store
fence). Guest processor g[j].p[k] performs the same step maintaining
the SB coupling invariant. The C-IL memory remains unchanged and
the values of C-IL abstraction functions are the same in c and c′.
Hence, the coupling invariant holds between c′ and g′.

Case 7: a step from c to c′ is a triggering page fault step of thread i. In this
case the guest virtual machine does not perform any steps. The flag
pf -flush-req is set to 1 in the buffer c′.p.memreq, while the flag active
is set to 0. Coupling for the memory request buffer is maintained,
because all the other fields of the c.p.memreq are unchanged and the
flag pf -flush-req is said to be always zero in g[j].p[k], when it is being
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executed. Coupling for the memory result buffer follows from the fact
that the ready bit is low in c and c′ (this is a requirement for the step
to occur). All the other parts of the coupling invariant are trivially
maintained.

Case 8: a step from c to c′ is a VMEXIT step of thread i. In this case the ASID
of thread i is changed to 0. Hence the function hp2vpc′ (i) will return
⊥, and there is nothing to show for the core buffers coupling. All the
other coupling invariants are trivially maintained between c′ and g
(the guest does not perform any steps in this case).

Case 9: a step from c to c′ is an input step of accepting a memory request
req in thread i (Definition 7.12). Guest processor g[j].p[k] accepts the
same memory request, performing a step g

b
→ g′, where

b = core-issue-memreq(j, k, req).

This allows us to conclude the equality of traces:

traces-eq(a, b).

In case the request is not a VMEXIT, both machines will have the
same state of the memreq buffer and the coupling invariant for the
memory request buffer will be maintained. If the request is a VMEXIT,
then the abstract VP will set the memreq.active bit to 0, and the
conditional equality of memory request buffers will also hold. All the
other coupling invariants are trivially maintained.

Case 10: a step from c to c′ is an output step of reporting memory result res
in thread i (Definition 7.13). From the coupling invariant we know
that memory result buffers are consistent. Hence, guest processor
g[j].p[k] can perform the same kind of a step, outputing the same
result res. This allows us to conclude equality of traces. The coupling
invariants are trivially maintained.

Case 11: a step from c to c′ is an MMU step of adding a new top-level walk w
to c.p[i].tlb. Memory of the C-IL machine remains unchanged. Hence,
all abstractions defined on the C-IL memory (plsc(i), guestc(i), etc. )
have the same values in c and in c′.
The only invariant which might get broken by this step is
inv-htlb-walks. The second part of this invariant follows from
inv-running-asids, inv-valid-asids-range, and the fact that we can add
walks only in the currently active ASID. It remains to show that the
newly added walk is already present in the set plsc′ (i).walks:

w ∈ plsc′ (i).walks.

From the semantics of the create walk step (Definition 7.15) we get
the following parameters of the newly added walk:

w.l = 4 ∧w.r = Rights[ex 7→ 1, us 7→ 1, rw 7→ 1]
∧w.pfn = c.p[i].CR3.pfn ∧w.asid = c.p[i].asid
∧w.mt = root-pt-memtype(c.p[i].CR3).

From invariant inv-CR3-coupling, we know that the pfn field of the



190 TLB Virtualization

host CR3 register contains the allocated address of the top-level SPT
and the memory type of the walks is WB:

w.mt = WB,
w.pfn = c.p[i].CR3.pfn

= idx2hpa(vp[j][k].iwo).

Invariant inv-reachable-root guarantees that the SPT with index iwo =

vpc(j, k).iwo is reachable and has the following parameters:

ptic(iwo).vpid = (j, k),
ptic(iwo).r = [ex 7→ 1, rw 7→ 1, us 7→ 1],
ptic(iwo).l = 4.

Constructing the set of reachable walks for the page table with
index iwo we conclude that w ∈ rwalksc(j, k). Applying invariants
inv-partial-walks and inv-pls-walks we get

w ∈ plsc′ (vpc′ (j, k).hpid).walks,

which concludes the proof for this case.
Case 12: a step from c to c′ is an MMU step of extending partial walk w from

c.p[i].tlb and adding the obtained new walk w′ to c.p[i].tlb. Memory of
the C-IL machine remains unchanged. Hence, all abstractions defined
on the C-IL memory (plsc(i), guestc(i), etc.) have the same values in c
and in c′. Analogously to the previous case, the only invariant which
might get broken is inv-htlb-walks. Hence, we have to show that

w′ ∈ plsc′ (i).walks.

From the semantics of the extend walk step (Definition 7.15) we get

pte = read-pte(c.M, w.pfn,w.vpfn.px[w.l])
∧wext√(w, pte, r)
∧w′ = wext(w, pte, r),

where pte is a page table entry used for a walk extension, and
w′ is a newly added walk. Moreover, the asid of w equals to
c.p[i].asid. From inv-running-asids it follows that w.asid is valid.
Invariant inv-htlb-walks guarantees that w ∈ plsc(i).walks. Invariant
inv-pls-walks gives us

∃j′, k′ : vpc(j′, k′).hpid = i ∧w ∈ vpc(j′, k′).walks
∧ vpc(j′, k′).asidgen = plsc(i).asidgen
∧ vpc(j′, k′).asid = plsc(i).asid.

From the uniqueness of valid ASIDs (inv-distinct-asids) it follows that
only one VP can have a valid ASID at a time. Hence, we get j′ = j and
k′ = k. Using invariant inv-partial-walks we conclude

w ∈ rwalksc(j, k).

Unfolding definition rwalksc, we obtain ID n ∈ Nspt-cnt of the SPT,
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pointed by the field w.pfn:

ptic(n).re ∧w.r ≤ ptic(n).r ∧w.pfn = idx2hpac(n)
∧w.l = ptic(n).l ∧w.vpfn =w.l ptic(n).prefix.

Unfolding definitions wext and wext√, we obtain the parameters of
the newly added walk w′:

w′.l = w.l − 1 ∧w′.pfn = pte.pfn ∧w′.r ≤ w.r
∧w′.r ≤ pte.r ∧w′.vpfn = w.vpf
∧w.mt = mt-combine(pat-mt(pte.pat-idx), mtrr-mt(pte.pfn)).

Invariant inv-memory-types guarantees that all PTEs point to a ‘‘write-
back’’ memory:

w.mt = WB.

Further, we need to consider two sub-cases.

Case 12.1: if the level of SPT n is greater than 1, then w′ is a partial
walk. Applying invariant inv-reachable-child, we get that
pte points to some other reachable SPT with indexm, with
the following properties:

ptic(m).l = ptic(n).l − 1 ∧ ptic(m).re
∧ ptic(m).r = ptic(n).l ∧ pte.r
∧ ptic(m).prefix =ptic(n).l ptic(n).prefix
∧ ptic(m).prefix.px[ptic(n).l] = bin9(px).

Constructing the set of reachable walks for the page table
with index m we get

w′ ∈ rwalksc′ (j, k),

which, together with inv-partial-walks and inv-pls-walks,
concludes the proof for this case,

Case 12.2: if the level of SPT n equals 1, then w′ is a complete walk.
Constructing the set of complete walks cwalksc(j, k) over
the page table with index n we get

w′ ∈ cwalksc(j, k),

and, applying invariant inv-complete-walks we conclude
the proof for this case.

Case 13: a step from c to c′ is an MMU step of setting A/D bits in a PTE
pointed by walk w ∈ c.p[i].tlb. From the semantics of the set A/D step
(Definition 7.17) we get

pte = read-pte(c.M, w.pfn,w.vpfn.px[w.l])
∧ pte′ = pte-set-ad-bits(pte,w)
∧ c′.M = write-pte(c.M, pte-addr(w.pfn,w.vpfn.px[w.l]), pte′).

Using invariants inv-htlb-walks, inv-pls-walks, and inv-partial-walks
we conclude that walk w belongs to the set of reachable walks of VP
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(j, k):

w ∈ rwalksc(j, k).

Unfolding definition rwalksc, we obtain ID n ∈ Nspt-cnt of the SPT,
pointed to by the fieldw.pfn. The only abstraction which gets changed
during the transition from c to c′ is sptc(n). All other abstractions
defined on the C-IL memory (plsc(i), guestc(i), etc.) have the same
values in c and in c′. Further, we observe that setting of A/D bits in
a given PTE can not break any invariant introduced in this chapter.
Hence, the coupling invariant is maintained in c′.
Note, that here we rely on the fact that all abstractions defined on the
C-IL memory do not alias and that the update of a single shadow PTE
does not affect values of other abstractions.

�

Note, that we could extend Theorem 8.3 with the postcondition, saying
that only SPTs assigned to a running VP can be modified by the hardware
component of a thread. We need this statement to make sure that the
hardware component does not break the data structures of VPs which are
sleeping or which are running on other processors. Yet, stating this framing
property formally would require us to introduce ownership on objects, which
we don’t have in our semantics thus far. Nevertheless, when verifying the
hypervisor code in VCC (together with the steps of hardware components of
the threads), we do state these framing conditions by identifying the sets of
objects which can be modified in a step of the hardware component.

Moreover, one can observe that some of the coupling invariants are local to
a single VP (as e.g., inv-complete-walks, inv-partial-walks, inv-reachable-root,
inv-reachable-child, inv-pls-walks, and inv-vtlb-walks) and do not have to hold
all the time, but are strictly required to hold only when this VP is being
executed on a host processor. As a result, the statement of Theorem 8.3
can be weakened to talk only about the processor-local coupling invariants of
the running VP and about the ‘‘global’’ part of the coupling invariant (as e.g.,
memory coupling and inv-htlb-walks). When verifying the algorithm in VCC
we use this modular approach (see Section 10.4). Nevertheless, in the proof
sketch of the SPT algorithm presented in this thesis we stick to the formalism
introduced in this chapter and maintain all parts of the coupling invariant
after every step of the C machine.

8.4.2 Correctness of VMRUN

The following lemma states simulation of an empty guest step for the execution
of a VMRUN statement. In this lemma we require VMRUN to have appropriate
parameters of the injected memory request/result. When implementing a
concrete hypervisor one has to argue that the abstraction of the VMRUN
statement always gets these (appropriate) parameters. To prove this, one has
to argue about the following parts of the hypervisor program:

• first, one has to make sure that the intercept handling mechanism
chooses an appropriate intercept handler, providing it with the
appropriate parameters obtained after a VMEXIT event (e.g., a page
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faulting address and faulting access rights in case of a page fault
intercept). From this, one concludes that the preconditions on the state
of the guest virtual hardware required by the chosen intercept handler
are satisfied;

• second, one uses the correctness of the chosen intercept handler,
which (possibly) simulates a number of guest steps producing a
configuration of the virtual machine with certain parameters (specified
by the postcondition of the intercept handler);

• finally, a correct VMRUN mechanism ensures that the memory request
injected to the guest matches the state of the guest virtual machine
produced by the intercept handler (e.g., if a page fault is injected, it has
to be justified by the postconditions of the page fault intercept handler).

Lemma 8.4 (Correct virtualization of VMRUN). Let c ∈ confCCC+HW+G and c′

be pre- and post-states of the concurrent C-IL machine performing a VMRUN step
of thread i. Let g be the state of guest VMs s.t. the coupling invariant between
c and g holds. Further, let the parameters of the VMRUN statement be in-sync
with the state of the abstract VP scheduled to be run on processor i. Then the
coupling invariants also holds between g and c′.

∧ inv-coupling(c, g)
∧ c.p[i].asid = 0
∧ π, θ ` c →i c

′

∧ stmtnext(c(i), π) = vmrun(e0, e1, e2)
∧ hp2vpc′ (i) = (j, k)
∧ inject-data = inject-dataπ,θ(c(k), e2)
∧memreq-eq(inject-data.memreq, g[j].p[k].memreq)
∧memres = MemResMain[ready 7→ inject-data.ready,

pf 7→ inject-data.pf, data 7→ 0]
∧memres-eq(memres, g[j].p[k].memres)
∧ [e1]π,θc = val(cr3in, u64)
∧ 〈cr3in〉.pfn = idx2hpac(vpc(j, k).iwo)
∧ root-pt-memtype(〈cr3in〉) = WB
∧ is-empty(g[j].p[k].sb)
=⇒ inv-coupling(c′, g)

Proof. Store buffer coupling holds after the step, because both the store buffer
of the abstract VP and of the host processor are empty. Coupling of the memory
result and request buffers holds, because we inject to the host processor
the same values of the memory request and result, as the abstract VP has.
Analogously, inv-cr3-coupling is maintained, because the new value of the
CR3 register has the proper value of the pfn field and the ‘‘write-back’’ memory
type. Since we require the function hp2vp after the step to return ID of the
VP (and not ⊥), invariant inv-running-asids holds in c′. All the other parts of
the coupling invariant are trivially maintained, because we do not update the
memory of the C-IL machine in the VMRUN step. �

Note, that when we enter the hypervisor after a VMEXIT event, the VP which
was executed on the processor before the VMEXIT has occurred always has
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the memres.ready bit set to 0. Hence, during VMRUN we can inject the active
result to the memres buffer only if some steps of the VP have been simulated
by the hypervisor and the resulting VP state has this bit set to 1. Since we
never simulate memory read/compare-exchange operations in the hypervisor,
the field memres.data of the VP will always be equal 0, if memres.ready equals
1 (for all steps, except memory read/compare-exchange we set memres.data
to 0).

The memory request buffer of the abstract VP, on the other hand, after
VMEXIT may either contain no request (if VMEXIT was requested from the
instruction automaton) or contain an active request. In the first case we
cannot simulate any steps of the memory core of the abstract VP (though we
could possibly simulate steps of the TLB or of the SB). Hence, when executing
next VMRUN step the state of the memory request buffer of the VP will be
unchanged and we have to inject an inactive memory request to the memreq
buffer of the host processor.

In case the VP has an active memory request at VMEXIT, we again have two
options. One of them is to leave the state of the memreq buffer unchanged (no
steps of the memory core simulated) and to inject the same type of the request
to the memreq buffer of the host processor at VMRUN. The memory request,
which caused a VMEXIT, will be repeated then. We do this for instance in case
when we detect a spurious page fault in SPTs, which we fix in the PF intercept
handler. The other option is to simulate steps of the memory core of the VP,
and to inject at VMRUN the resulting state. After VMRUN, the guest will have
an illusion that the intercepted memory access has successfully been served.
For instance, we do this when we handle INVLPG and move to CR3 intercepts,
or when we detect a page fault in GPTs in the PF intercept handler.
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Shadow Page Table Algorithm

9.1
Types and Data Structures

9.2
Software Walks

9.3
Basic Functions on Page

Tables

9.4
TLB Lazy Flushing

9.5
Intercept Handlers

The SPT algorithm virtualizes intercepted
page faults and TLB controlling instructions
of the guest, maintaining the invariants of
the virtual TLB defined in Chapter 8. In this
chapter we present a C implementation of the
basic ‘‘Virtual TLB’’ algorithm described in
[Int11, Chapter 28] and [HP10]. Additionally,
we provide the most crucial portions of
the ghost code necessary for maintaining
coupling invariants from Chapter 8 and
sketch the most crucial arguments showing
that the code maintains these invariants.
The code presented in this chapter was
formally verified in Microsoft’s VCC verifier
(Chapter 10).
Most realizations of the SPT algorithms share
the general TLB virtualization approach.
Nevertheless, they differ a lot in details
and optimizations. These optimizations for
instance include sharing of SPTs between
different processors and selective write-
protection of GPTs from guest edits to keep
them in sync with their SPTs (so that they
don’t have to be flushed on a guest address-
space switch) [SHW+08, Phi06]. We consider
the simplest version of the SPT algorithm,
without sharing and without write-protection
of GPTs.
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In this (and the following) chapter we use the regular C syntax when
talking about hypervisor program variables, program types, and program code.
Conversion from the standard C syntax to the C-IL syntax from Chapter 5
is straightforward, except for the loops which are not present in the C-IL
semantics. A C program with loops has first to be translated to a C-IL program,
where all loops are converted into IF-NOT-GOTO statements.

To distinguish ghost variables and code from implementation variables
and code, we use the keyword ghost. For instance, the following statement
represents an assignment to a ghost variable x:

1 _(ghost x = 10)

The value of variable x at the beginning of the function execution, or at the
beginning of a loop (if used inside the loop body) is denoted by

1 \old(x)

A map from an integer to an integer is stated as

1 _(ghost int m[int];)

Assingment of a lambda expression to a map is written in the following way:

1 _(ghost m = \lambda int a; a+1)

An update of field f of record r with value x is stated as

1 _(ghost r = r[f := x])

In this Chapter we also give comments on our VCC annotations and proofs.
These comments should be considered in the context of the next chapter, but
since they are related to the code presented in this chapter, we leave them here
in blocks of this kind.

9.1 Types and Data Structures

9.1.1 Constants and Types

We fix the number of virtual processors in a guest by the constant
VP_CNT and the number of processors in a host hardware machine by the
constant PROC_CNT. The number of guest partitions is fixed by the constant
GUEST_CNT.

We use the type uint for unsigned integers 32-bit long and the type
uint64 for unsigned integers 64-bit long. For physical/virtual page frame
numbers and PTEs we use dedicated types Ppfn, Vpfn, and Pte respectively.
All these types are shorthands for uint64. For ASIDs we use a dedicated
type ASID (which is a shorthand for an 8-bit unsigned integer) and for ASID
generations we use the type ASIDGen, which is again a shorthand for 64-bit
integers. For IDs of both hardware and virtual processors we use the type Pid
and for guest IDs we use the type Gid.

For abstract memory types we use ghost type MemType, which is
implemented as an enum of all possible memory types. For abstract access
permissions we use a ghost type Rights, which is implemented as a boolean
map (i.e., a set) of write, execute, and privilege permissions. Abstract walks
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1 typedef struct _Vp {
2 ASID asid; // current asid of the VP

3 ASIDGen asid_generation; // ASID generation of the VP

4 Ppfn gwo; // guest walk origin (points to top−level GPT)

5 uint iwo; // index walk origin (index of the top−level SPT)

6 Pid id; // ID of the VP

7 Guest *guest; // back−link to the guest, to which VP belongs

8 Pid pidx; // index of the processor on which this VP is scheduled to run

9 _(ghost bool walks[AbsWalk];)
10 } Vp;
11 typedef struct _Guest {
12 Vp vp[VP_CNT]; // array of VPs

13 _(ghost Pid id;) // ID of the guest

14 _(ghost Ppfn gpa2hpa[Ppfn];) // address map of the guest

15 } Guest;
16 typedef struct _Gm {
17 Guest guests[GUEST_CNT]; // array of Guests

18 } Gm;

Listing 9.1: VM Configuration.

are modelled by the ghost type AbsWalk, which is defined analogously to
Definition 3.45.

9.1.2 VM Configuration

A configuration of a VP (Definition 8.6) is stored in an instance of the data
type Vp (Listing 9.1). A single VP contains its current ASID, its ASID
generation, guest and index walk origins, an identifier, a back-link pointer
to the partition configuration, an index of the hardware processor on which
this VP is scheduled to run, and the (ghost) set of walks belonging to this VP.

Configuration of a guest partition (Definition 8.5) is stored in an instance
of the data type Guest (Listing 9.1). A single guest configuration contains
an array of VPs, which belong to this guest, a ghost identifier, and a ghost
gpa2hpa map.

A guest manager is implemented by the data type Gm (Listing 9.1) and
contains the array of partition configurations.

In VCC annotations the VP data structure owns all SPTs and PTIs assigned to
the VP.

9.1.3 Processor Local Storage

A PLS (Section 8.2.2) is implemented with the following data type.

1 typedef struct _Pls {
2 ASID max_asid; // maximal ASID in use

3 ASIDGen asid_generation; // ASID generation

4 _(ghost bool walks[AbsWalk];)
5 } Pls;

A pointer to the PLS of a given processor is always stored in a dedicated
hardware register. For instance, it can be stored in one of the segment registers
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1 typedef struct _Spt {
2 volatile Pte e[512];
3 } Spt;
4 typedef struct _Gpt {
5 volatile Pte e[512];
6 } Gpt;
7 typedef struct _Pti {
8 uint l; // level of SPT

9 _(ghost Rights r) // accumulated rights

10 _(ghost Vpfn prefix) // virtual prefix of a corresponding GPT

11 _(ghost bool used;) // used flag

12 _(ghost bool re;) // reachable flag

13 _(ghost Gid gid;) // identifier of the guest

14 _(ghost Pid vpid;) // identifier of the VP

15 } Pti;
16 typedef struct _Am {
17 SpinLock free_spt_lock; // lock for free SPTs

18 Pti PTI[SPT_CNT]; // array of PTIs

19 bool free_spt[SPT_CNT]; // list of free SPTs

20 Spt SPT[SPT_CNT]; // array of SPTs

21 } Am;

Listing 9.2: Page tables, PTIs, and the address manager.

if segmentation is disabled on the host machine (which is normally the case
when paging is used).

To obtain the pointer to the PLS we use the following function.

1 Pls* get_pls();

In our VCC verification the set of all possible walks residing in a hardware TLB
is located not in the PLS, but is the special ghost data structure which we call
‘‘hardware interface’’ (Section 10.2.2). The hardware interface is used to keep
the invariants which relate the HW state of a C thread (which is modelled as a
ghost object in VCCa) with the data structures of the SPT algorithm, as well as
the data necessary for maintaining these invariants.

aFor reasons why we use the ghost state to model the hardware component of a thread refer
to Section 10.2

9.1.4 Page Tables

A single shadow page table (as well as a single guest page table) contains
512 volatile PTEs, where every PTE is a 64-bit integer1 (Listing 9.2) . Note,
that since in our algorithm we do not support sharing of SPTs, it is not strictly
necessary to make them volatile. Yet, we developed our algorithm with the goal
to further add sharing of SPTs (which remains as future work) and decided to
stick with volatile SPTs to make this change easier in the future (this mainly
refers to VCC annotations, which treat volatile and regular fields differently).

1Normally a PTE is implemented as a 64-bit union. Yet, at the time when we did our VCC
proofs unions were considered as separate objects in VCC and arguing about plain 64 bit integers
was much more efficient. To perform updates on single fields of a PTE we use macros, which
resemble updates of respective fields in the union.



9.2. Software Walks 199

1 typedef struct _Walk {
2 Ppfn pfn; // page frame number

3 uint level; // level of the walk

4 Walk_state state; // state of the walk

5 Vpfn vpfn; // virtual PFN

6 bool ex; // execute bit

7 bool us; // privilege bit

8 bool rw; // write bit

9 } Walk;
10 typedef enum Walk_state_ {
11 WS_PROGRESS = 0, // walk in progress

12 WS_COMPLETE = 1, // walk successfully completed

13 WS_FAULT_NP = 2, // non−present page fault occurred

14 WS_FAULT_RSV = 3, // reserved (‘‘valid’’) bit violation occured

15 WS_FAULT_PVL = 4, // permission check failed

16 } Walk_state;

Listing 9.3: Software walks

A single PTI data structure (Section 8.2.4) is implemented with the data
type Pti (Listing 9.2).

We introduce different types for GPTs and SPTs because in VCC we annotate
them with different invariants (see Section 10.2.3 and Section 10.3). We don’t
put the fields used, re, gid and vpid to the PTI data structure. Instead of this,
we maintain maps of indices of used and reachable SPTs in the VP configuration
(an instance of the data type Vp). Additionally, in the Guest data structure
we maintain invariants over maps from different VPs which guarantee their
disjointness (i.e., no single SPT can be marked as used or reachable in multiple
VPs). Since approach with maps is counterintuitive and was implemented only
to make technical work with invariants easier in VCC, we stick here to the
formalism introduced in Chapter 8 and leave the fields mentioned above present
in the PTI data structure.

All SPTs and associated PTIs are stored in the data structure of type Am
(Listing 9.2). This data structure contains a lock on free SPTs, which has to
be acquired by a thread in order to allocate or deallocate an SPT. Bit-array
free_spt is used to denote which SPTs are still remaining free in the system
and can be used to shadow a GPT.

9.2 Software Walks

So far in this thesis we have talked only about abstract walks, which we used
to store a state of the hardware address translation. Yet, in the SPT algorithm
we also have to talk about the walks over page tables, which are performed
by software. We call these walk software walks. A single software walk is
implemented by the data type Walk (Listing 9.3).

All fields of a software walk have the same meaning as the fields of an
abstract walk introduced in Section 3.4.1. The only difference is the state
field, which is used here instead of a page fault flag of an abstract walk. The
state of a walk does not only give information whether this walk is faulty or
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not, but also identifies a particular type of the page fault. Additionally, the
state of a walk distinguishes between complete and partial walks.

To initialize the walk with given parameters and to extend a walk over a
given PTE we use the following functions:

1 Walk initwalk(Ppfn wo, Vpfn vpfn, bool ex, bool us, bool rw);
2 Walk wextf(Pte pte, Walk walk);

Implementation of these functions is straightforward and matches definitions
introduced in Section 3.4.3.

9.3 Basic Functions on Page Tables

In this section we provide the implementation for a number of functions which
are later used in intercept handlers of the SPT algorithm.

9.3.1 Creating an SPT

To set all entries of SPT i with zero values we use the following function:

1 void init_SPT(Am *am, uint i);

Another function is used to return the index of the first free SPT from the
respective list in the address manager2:

1 uint find_free_spt(Am *am);

For acquiring and releasing the lock from the address manager we use the
following functions3:

1 void SpinLockAcquire(SpinLock *l);
2 void SpinLockRelease(SpinLock *l);

Function createshadow (Listing 9.4) is used to find a free SPT and
initialized it with given parameters. Note, that initially we set flag re in the
PTI to zero, denoting that a fresh SPT is not yet linked to the SPT tree and
therefore no walks over this SPT could be present in the hardware TLB.

9.3.2 Shadowing a GPT

Function compspte (Listing 9.5) is used to construct an SPTE, which shadows
a given GPTE. For the case of a non-terminal SPTE this also includes finding
and initializing a free SPT which will be pointed to by a newly constructed
SPTE.

As an input this function takes pointers to the address manager and to the
VP configuration, a GPTE to be shadowed, an index of the SPT which will hold

2Currently we assume that there is always at least one free SPT available. To weaken this
assumption one has to implement a more sophisticated approach in management of free/shared
SPTs. For instance, one can allocate SPTs dynamically from the heap memory of the hypervisor
and limit the number of SPTs which can be allocated to a given VP to make sure that every VP
will get its own portion of the heap memory reserved for SPTs. Further, if the number of SPTs
allocated to a single VP exceeds the limit, one has to find some SPTs for reclaiming (i.e., detaching
and freeing). In our algorithm we do reclaiming only at the time when we detach a subtree in the
PF intercept handler, but a similar reclaiming strategy can be applied to an arbitrary SPT of a
given VP.

3On annotation and verification of acquiring/releasing a lock in VCC refer to [HL09].
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1 uint createshadow(Am *am, Vp *vp, uint l _(ghost Vpfn prefix, Rights r)
)

2 {
3 uint u;
4 SpinLockAcquire(&am->free_spt_lock);
5 u = find_free_spt(am);
6 am->free_spt[u] = 0;
7 am->PTI[u].l = l;
8 _(ghost am->PTI[u].vpid = vp->id)
9 _(ghost am->PTI[u].gid = vp->guest->id)

10 _(ghost am->PTI[u].used = 1)
11 _(ghost am->PTI[u].re = 0)
12 _(ghost am->PTI[u].prefix = prefix)
13 _(ghost am->PTI[u].r = (l == 4 ? ALL_INITIAL_RIGHTS : r))
14 init_SPT(am, u);
15 SpinLockRelease(&am->free_spt_lock);
16 return u;
17 }

Listing 9.4: Allocating an SPT.

1 Pte compspte(Am *am, Vp *vp, Pte gpte, uint idx _(ghost uint px))
2 {
3 Pte spte;
4 uint u;
5 Ppfn ppfn;
6 _(ghost Rights r)
7 _(ghost Vpfn prefix)
8

9 spte = SET_WB_PAT_MEMTYPE(gpte);
10 if (am->PTI[idx].l > 1) {
11 _(ghost r = ACCUM_RIGHTS(am->PTI[idx].r, READ_PTE_RW(gpte),

READ_PTE_US(gpte), READ_PTE_EX(gpte)))
12 _(ghost prefix = am->PTI[idx].prefix + (px << (am->PTI[idx].l - 1)))
13 u = createshadow(am, vp, am->PTI[idx].l - 1 _(ghost prefix, r));
14 ppfn = &am->SPT[u];
15 spte = WRITE_PTE_PFN(spte, ppfn);
16 } else {
17 ppfn = compute_gpa2hpa(READ_PTE_PFN(gpte), vp->guest);
18 spte = WRITE_PTE_PFN(spte, ppfn);
19 }
20 return spte;
21 }

Listing 9.5: Computing an SPTE from a GPTE.
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a constructed SPTE, and a page index in this SPT where the new SPTE will be
located (the latter two parameters we need for proper initialization of a newly
allocated SPT and for distinguishing a terminal SPTE from a non-terminal
one).

Note, that in case the returned SPTE is not terminal, the new SPT
pointed to by this SPTE satisfies the conditions of inv-reachable-child. If the
returned SPTE is terminal, then its PFN field is obtained by applying map
gpa2hpa to the PFN field of the shadowed GPT. Implementation of function
compute_gpa2hpa depends on the way how map gpa2hpa is defined in the
implementation. For instance, one way to define this map is by the means
of a separate set of page tables, called host page tables. In this thesis we
leave a particular implementation of gpa2hpa out of the scope and therefore
leave function compute_gpa2hpa undefined, assuming that its return value
complies with the ghost map gpa2hpa stored in the guest configuration.

Note also, that function compspte has to guarantee that the newly
constructed PTE points to the memory with the ‘‘write-back’’ memory type.
This is necessary to maintain invariant inv-memory-types, after we write the
new SPTE to the SPT tree. Moreover, we have to additionally restrict the value
of MTRR registers (see Section 3.3.1) to return a WB memory type for any PFN
allocated to the guest and for a base address of any SPT (we get a WB memory
type only if both the PAT and the MTRR memory types are WB [Adv11a, 199]).

In our VCC verification so far we haven’t argued about memory types of the
walks at all (we considered them to be already invisible). We also don’t prove
that invariant inv-memory-types is maintained. Extending our VCC proofs to
argue about memory types is considered as one of the directions of the future
work.

9.3.3 Walking SPTs

As the result of page table walking we return the set of PTEs fetched during
the walking process and the level where the walking has stopped. If we return
a result with level equals 0, then the walking was successful and fetched
PTEs do not contain a page fault. Otherwise, if level is greater than zero, then
pte[level] contains a page-faulty PTE.

1 typedef struct _Walkres {
2 Pte pte[5];
3 uint level;
4 } Walkres;

To find the index of the SPT from a given base address of the SPT we use
the following function:

1 uint SPTa2i(Am_t *am, Ppfn ba);

Another function is used to calculate the page index of the next PTE to be
fetched from a given virtual PFN and the level of the PTE:

1 uint compute_idx(Vpfn vpfn, uint level)
2 {
3 return (vpfn >> ((level - 1) * 9)) & 0x1FF;
4 }
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1 Walkres walkshadow(Am *am, Vp *vp, Vpfn vpfn, bool ex, bool us, bool rw
)

2 {
3 Walkres res;
4 Walk ws[5];
5 Ppfn wo;
6 uint idx;
7 uint px;
8 bool fault;
9 fault = 0;

10 wo = &am->SPT[vp->iwo];
11 ws[4] = initwalk(wo, vpfn, ex, us, rw);
12 res.level = 4;
13 while (res.level > 0 && !fault) {
14 idx = SPTa2i(am, ws[res.level].pfn);
15 px = compute_idx(vpfn, res.level);
16 res.pte[res.level] = am->SPT[idx].e[px];
17 ws[res.level - 1] = wextf(res.pte[res.level], ws[res.level]);
18 if (ws[res.level - 1].state < WS_FAULT_NP) {
19 res.level = res.level - 1;
20 } else {
21 fault = 1;
22 }
23 }
24 return res;
25 }

Listing 9.6: Walking shadow page tables.

Walking of SPTs of a given VP is performed by function walkshadow
(Listing 9.6), which takes as an input pointers to the address manager and
to the VP configuration, the virtual PFN to be translated, and the set of access
permissions for a translation.

We start with initializing a top-level walk using the index walk origin of a
given VP. Then we start fetching PTEs and performing walk extensions until
we either get a page fault or complete the translation.

At the beginning of the function we use invariant inv-reachable-root (Invariant
8.29) to get the properties of the top-level SPT. Further, we use invariant
inv-reachable-child (Invariant 8.30) to find properties of other SPTs used during
walking. These invariants guarantee that we only fetch PTEs which are owned
by our VP and hence do not change during walking. As a result, when the
function returns a set of fetched PTEs we know that they are still present in the
SPT tree of the VP.

9.3.4 Walking GPTs

When walking GPTs (Listing 9.7), the code of the hypervisor plays the role
of a virtual MMU. Hence, all operations performed with GPTs have to be
simulated by a VTLB. The main problem here is the setting of access and
dirty bits in GPTs, which has to be atomic. The x64 architecture does not
provide an instruction performing a generic atomic read-modify-write (not to
be confused with an atomic compare-exchange, which is provided by the x64
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ISA). To overcome this restriction and to perform an atomic GPTE update we
execute a loop (line 19), where we do the following

• we fetch the GPTE to a local variable (line 20),
• we check whether the fetched entry can be used for a walk extension

(line 21). If this is not the case (line 26), we do not update the GPTE and
exit the loop. If the fetched GPTE can be used for a walk extension we
proceed to the next step,

• we try to perform an interlocked compare-exchange operation, where we
check whether the entry in the memory is still the same one as was
fetched in the beginning of the loop (line 22). If this is the case, then
the value written to the memory by the compare-exchange instruction is
the fetched GPTE with A/D bits set. The compare-exchange returns 1
and we exit the loop. If the compare-exchange fails, the update of the
memory is not performed (since it would not be atomic) and we continue
to the next loop iteration.

Another difference from walking of SPTs is that the fetched GPTE could
point to the memory region which is out of range of the guest memory. Hence,
we have to perform an additional check to ensure that PFN field of the fetched
GPTE is in the allocated range of the guest memory (line 30). In this case
we set the level of the walk result to special value GM_VIOLATION, which is
greater than 4 (the maximal possible level of a successful/faulty walk).

Function walkguest plays a crucial role in the verification of the page
fault intercept handler, because there we have to simulate the most crucial
steps of the abstract virtual hardware:

• when we initialize a software walk (line 11) we simulate the step of
creating a walk in the VTLB of the abstract VP;

• when we successfully set A/D bits in a GPT, we first simulate the step
of setting of A/D bits by the VTLB and then simulate a walk extension.
Note, that we have to do simulation of both steps at the same time as we
update the GPT (line 22), because when we later write the updated value
to the res.pte array (line 28), the GPTE in the memory could already
be changed by other players and the simulation would not be possible
anymore.
We always set the access bit for present GPTEs which we fetch. The dirty
bit is set only for terminal entries, when rw is on and all fetched GPTEs
have the write permission enabled (when making a choice whether to set
the dirty bit or not in line 23 we check only the last GPTE; if the write
permission is not enabled in any of the previously fetched GPTEs, the
walk extension (line 33) will result in a page fault and we will not be able
to reach the last loop iteration).
Note, that we always add walks to the VTLB with the maximal possible
rights defined by the fetched GPTEs (independently on the input access
permissions). The only exception is the last loop iteration, when we add a
complete walk to the VTLB. In case bit rw equals 0 and all fetched GPTEs
are writable (i.e., have bit pte.rw set to 1), we restrict the complete walk
in the VLTB to contain only non-writable walks through this PTE. This is
due to the fact that we don’t set the dirty bit in the terminal GPTE in this
case. Later, in the PF handler, we mark the SPTE, which shadows this
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1 Walkres walkguest(Am_t *am, Guest *guest, Vpfn vpfn, Ppfn gwo, bool ex,
bool us, bool rw)

2 {
3 Walkres res;
4 Walk ws[5];
5 Ppfn pfn;
6 Pte old_pte;
7 Gpt *gpt;
8 bool fault;
9 uint px;

10 bool cmp_result;
11 ws[4] = initwalk(gwo, vpfn, ex, us, rw);
12 res.level = 4;
13 fault = 0;
14 while (res.level > 0 && !fault && res.level != GM_VIOLATION) {
15 pfn = compute_gpa2hpa(ws.[res.level].pfn, guest);
16 gpt = (Gpt *)(pfn<<12);
17 px = compute_idx(vpfn, res.level);
18 cmp_result = 0;
19 while (!cmp_result) {
20 old_pte = gpt->e[px];
21 if (can_wextend(old_pte, rw, ex, us, res.level)) {
22 cmp_result = (old_pte == asm_cmpxchg(&gpt->e[px], old_pte,
23 (res.level == 1 && rw && READ_PTE_RW(old_pte))
24 ? SET_PTE_AD(old_pte): SET_PTE_A(old_pte)));
25 } else
26 cmp_result = 1;
27 }
28 res.pte[res.level] = (res.level == 1 && rw && READ_PTE_RW(old_pte))
29 ? SET_PTE_AD(old_pte): SET_PTE_A(old_pte);
30 if(READ_PTE_PFN(res.pte[res.level]) > MAX_GPFN) {
31 res.level = GM_VIOLATION;
32 } else {
33 ws[res.level - 1] = wextf(res.pte[res.level], ws[res.level]);
34 if (ws[res.level - 1].state < WS_FAULT_NP) {
35 res.level = res.level - 1;
36 } else {
37 fault = 1;
38 }
39 }
40 }
41 return res;
42 }

Listing 9.7: Walking guest page tables.
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terminal GPTE as non-writable, even though the GPTE itself is marked
as writable. This mechanism allows us to later intercept the first write
access through this SPTE and propagate the dirty bit to the GPTE.

• when we fetch a GPTE from the memory (line 20) we simulate a page
fault triggering step (core-trigger-page-fault) if the fetched GPTE can be
used for page fault signalling. Note, that we have to simulate this step
immediately at the time when we read GPTE from the memory, because
later it could be overwritten by other players and the simulation would
not be possible anymore.

In VCC we store the configuration of abstract VMs in the ghost state (see Section
10.2.3). Updates of the state of abstract VMs is performed by the ghost code.
We update the state of the virtual hardware in the same atomic block where
we access a GPT. To be able to do simulation on every iteration of the top-level
while-loop we maintain loop invariants on the current state of the VTLB, which
guarantee that the VTLB contains a walk of the same level as the remaining
number of loop iterations. In the code snippets presented in this chapter we do
not show updates of the virtual hardware. An example of such an update is
shown in the next chapter (Section 10.5). We also do not present invariants,
assertions, and function contracts from our VCC-annotated sources.

9.3.5 Comparing GPTEs and SPTEs

Function notinsync (Listing 9.8) takes as an input the results of guest and
shadow walking (gws and sws respectively) and compares PTEs contained in
these results. Additionally it takes integer min_level, which denotes the
level up to which the comparison has to be done. As a result of comparison it
returns the level of the SPTE, which is not-in-sync with the respective GPTE.
If all the entries are in-sync, then the function returns min_level.

9.3.6 Reclaiming SPTs

Function reclaim_spt (Listing 9.9) takes as an input a pointer to the address
manager, a pointer to the VP configuration, and the index of an SPT, which is
going to be reclaimed. This SPT must be owned by the VP configuration.

The function first recursively reclaims all SPTs attached to the provided
SPT and then marks this SPT free.

As a precondition the function requires that all SPTs in the reclaimed
subtree have the re bit set to 0, meaning that the host TLB is not sitting
on any of these tables. This precondition allows to maintain invariant
inv-reachable-child after we do the reclaiming.

9.4 TLB Lazy Flushing

Implementation of the TLB lazy flushing algorithm, which we described in
Section 8.2.1, consists of two functions: vp_flush_tlb is called every time
when a VP requests a TLB flush and vp_pre_run is invoked every time when
a VP is prepared to be run on a hardware processor.



9.4. TLB Lazy Flushing 207

1 uint notinsync(Am_t *am, Guest *guest, Walkres sws, Walkres gws, uint
min_level)

2 {
3 uint level;
4 bool terminal;
5 level = 4;
6 terminal = !((bool)(level - 1);
7 while (level > min_level)
8 {
9 if (READ_PTE_A(gpte) != READ_PTE_A(spte) ||

10 READ_PTE_D(gpte) != READ_PTE_D(spte) ||
11 READ_PTE_EX(gpte) != READ_PTE_EX(spte) ||
12 READ_PTE_RW(gpte) != READ_PTE_RW(spte) ||
13 READ_PTE_US(gpte) != READ_PTE_US(spte) ||
14 READ_PTE_P(gpte) != READ_PTE_P(spte) ||
15 (terminal && READ_PTE_PFN(spte) !=
16 compute_gpa2hpa(READ_PTE_PFN(gpte), guest))){
17 break;
18 }
19 level --;
20 }
21 return level;
22 }

Listing 9.8: Comparing GPTEs and SPTEs.

1 void reclaim_spt(Am *am, Vp *vp, uint idx)
2 {
3 Ppfn child_pfn;
4 uint child_id;
5 uint pxi;
6 if (am->PTI[idx].l > 1)
7 {
8 for(pxi = 0; pxi < 512; pxi++)
9 {

10 if (READ_PTE_P(am->SPT[idx].e[pxi])) {
11 child_pfn = READ_PTE_PFN(am->SPT[idx].e[pxi]);
12 }
13 child_id = SPTa2i(am, child_pfn);
14 reclaim_spt(am, vp, child_id);
15 }
16 }
17 SpinLockAcquire(&am->free_spt_lock);
18 am->free_spt[idx] = 1;
19 _(ghost am->PTI[idx].used = 0;)
20 SpinLockRelease(&am->free_spt_lock);
21 }

Listing 9.9: Reclaiming SPTs.
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Function vp_flush_tlb (Listing 9.10) tries to find the first free ASID and
to allocate it to the VP. We distinguish two cases:

• the current maximal ASID is less than 255 (line 16). In this case
there is still at least one free ASID available and we allocate it to the
VP. The set vp->walks is updated respectively (line 18) to change the
ASID of the walks of the VP to the newly allocated one. This allows
us to maintain invariants inv-partial-walks, inv-complete-walks, and
inv-vtlb-walks after the ASID of the VP is changed. In case the ASID
of our VP was valid before the step, i.e., if the ASID generation of the VP
was equal to the ASID generation of the host processor (line 20), we also
update the set pls->walks to include all the walks of our VP with the
newly allocated ASID and to remove walks with the old ASID (line 21).
This is necessary to maintain invariant inv-pls-walks after we change
the ASID of the VP. In case if the ASID of the VP was not valid before
the step, we make it valid by updating the ASID generation of the VP
(line 28). At that point we also have to update the set pls->walks to
include the walks of our VP (line 26), which is necessary for maintaining
inv-pls-walks. Note, that in this case we don’t need to remove old walks
of the VP from pls->walks, because the ASID of the VP was previously
invalid.
All ASIDs of other VPs which were valid before the function call, remain
valid. The only ASID which becomes invalid (if it was valid before) is the
old ASID of our VP. Invariant inv-htlb-walks guarantees that the host
TLB does not contain any walks in the newly allocated ASID. Since the
set pls->walks keeps all walks with ASIDs other than the old ASID of
our VP, invariant inv-htlb-walks is maintained.

• the current maximal ASID equals 255 (line 6). In this case all available
ASIDs have been already allocated and we perform a complete TLB
flush4. After the flush we increase the ASID generation of the host
processor (line 9), which makes ASIDs of all VPs assigned to this
processor invalid (invariant inv-valid-asids-range guarantees that the
ASID generation of a VP is less or equal to the ASID generation of the
host processor). At the same time, we have to empty the set pls->walks
(line 8) in order to maintain invariant inv-pls-walks. Further, we allocate
ASID 1 to the VP (line 13) and update the set vp->walks to change the
ASID of the walks of the VP to the newly allocated one (line 11). This
allows us to maintain invariants inv-partial-walks, inv-complete-walks,
and inv-vtlb-walks after the ASID of the VP is changed. In the end we
make the ASID of our VP valid by updating the ASID generation of the
VP (line 15). ASIDs of all other VPs stay invalid, and we update the set
pls->walks to include only the walks of our VP. Hence, invariants
inv-partial-walks and inv-complete-walks are maintained. Invariant
inv-htlb-walks follows from the fact that the TLB is flushed and contains
no walks at the time when we start updating our PLS5.

4For the formal semantics of a complete TLB flush see Section 7.2.1.
5Note, that we currently assume that the ASID generation in the PLS (which is stored as a 64

bit unsigned integer) never overloads. To weaken this assumption one has to specifically handle
the situation when all ASID generations are depleted. In this case the ASID generation has to be
set to 0 and all VPs assigned to the current core have to be explicitly checked to make sure that
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1 void vp_flush_tlb(Am_t *am, Vp *vp)
2 {
3 Pls *pls;
4 pls = get_pls();
5 cpu_max_asid = pls->max_asid;
6 if (cpu_max_asid == 255) {
7 complete_tlb_flush(vp);
8 _(ghost pls->walks = \lambda AbsWalk w; 0)
9 pls->asid_generation++;

10 pls->max_asid = 1;
11 _(ghost vp->walks = \lambda AbsWalk w; w.asid = 1 &&
12 vp->walks[w / {.asid = vp->asid}])
13 vp->asid = 1;
14 _(ghost pls->walks = vp->walks)
15 vp->asid_generation = pls->asid_generation;
16 } else {
17 pls->max_asid++;
18 _(ghost vp->walks = \lambda AbsWalk w; w.asid = pls->max_asid &&
19 vp->walks[w / {.asid = vp->asid}])
20 _(ghost if (vp->asid_generation == pls->asid_generation) {
21 pls->walks = \lambda AbsWalk w; vp->walks[w] ||
22 (pls->walks[w] && (w.asid != vp->asid));
23 })
24 vp->asid = pls->max_asid;
25 _(ghost if (vp->asid_generation != pls->asid_generation) {
26 pls->walks = \lambda AbsWalk w; vp->walks[w] || pls->walks[w];
27 })
28 vp->asid_generation = pls->asid_generation;
29 }
30 }
31 void vp_pre_run(Am_t *am, Vp *vp)
32 {
33 Pls *pls;
34 pls = get_pls();
35 if (pls->asid_generation != vp->asid_generation)
36 vp_flush_tlb(am, vp);
37 }

Listing 9.10: TLB lazy flushing.

As a postcondition of the function we know that the ASID of the provided
VP is valid and that the hardware TLB does not contain any walks in that
ASID. Further, we use this knowledge for simulating a complete VTLB flush in
the MOVE TO CR3 intercept handler (Section 9.5.2).

If we increase the ASID generation of the host processor, all ASIDs of other
VPs become invalid. To make sure that we don’t schedule to run a VP with the
ASID being invalid (and to maintain invariant inv-running-asid), we introduce
function vp_pre_run (Listing 9.10). This function is called every time some
VP is prepared to be scheduled to run. It checks whether the ASID of this VP
is valid (by comparing ASID generations of the VP and of the host processor)
and calls function vp_flush_tlb if it is not valid. After this, we can be sure
that the VP has a valid ASID.

their ASIDs are marked invalid.
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9.5 Intercept Handlers

When we continue execution of the hypervisor after VMEXIT, we have to select
an appropriate intercept handler. This selection is done depending on the
state of a number of control registers, which are getting the parameters of the
intercept when it occurs. The state of these registers has to be in sync with
the state of the abstract VP. For instance, if we decide to choose a PF handler,
then the memreq buffer of the abstract VP should contain a request for the
memory access (the request which caused the intercept) and parameters of this
access should match the parameters passed into the PF handler. Moreover,
the SB of the abstract VP should be empty after VMEXIT, which follows from
the coupling invariant and from the fact that VMEXIT requires the SB of the
host processor to be empty. Since we do not explicitly model the control
registers used for storing the parameters of the intercept (they are located in
the instruction part of the core which we leave undefined), we do not formally
prove the correctness of the intercept dispatching process, but only verify
individual intercept handlers. Nevertheless, when verifying intercept handlers
we assume that dispatching is done correctly and the state of the abstract VP
corresponds to the chosen handler.

All intercept handlers take as an input parameter pointer vp to the VP
configuration. From this configuration we obtain ID (j, k) of the abstract VP
which is associated with this VP configuration:

(j, k) = (vp->guest->id,vp->id).

Let c ∈ confCC+HW+G be the state of the C-IL + HW + Ghost machine before
the first statement of the intercept handler is executed and g ∈ VmHardw be
the state of the abstract VMs, where inv-coupling(c, g) holds. Then the state
of the abstract VP, which is associated with the provided VP configuration can
be obtained as

(g[j].p[k], g[j].tlb[k], g[j].sb[k]).

As a precondition to every intercept handler we require that the VP
configuration, as well as all SPTs and PTIs assigned to this VP are owned
by a thread (i.e., are thread-local). The PLS is also considered to be owned by
a thread, since only one thread can run on a host processor at a time. We also
require the abstract VP configuration to be owned by a thread, meaning that
no other threads can perform updates of this abstract VP. To make sure that
no two threads get the ownership of the same abstract VP, we maintain an
invariant stating uniqueness of VP and guest identifiers. We also observe that
the steps of the hardware component of a thread (Theorem 8.3) update only the
state of the running abstract VP. When we are executing an intercept handler,
we know that no VPs assigned to our hardware processor are running. Hence,
we can be sure that the state of the abstract VP stays unchanged in between
the steps of the handler.

We require the coupling invariant to hold at the beginning of the function
and show that it is maintained after every step of the function, independently
of the scheduling.
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1 void invlpg_intercept(Am_t *am, Vp *vp, Vpfn vpfn, uint off _(ghost
bool page_fault))

2 {
3 Walkres sws;
4 uint pxi, idx;
5 _(ghost Pls* pls)
6 _(ghost pls = get_pls())
7 asm_invlpga(vp->asid, ((vpfn << 12) + off));
8 sws = walkshadow(am, vp, vpfn, 0, 0, 0);
9 if (sws.level == 0) {

10 pxi = compute_idx(vpfn, 1);
11 idx = SPTa2i(am, READ_PTE_PFN(sws.pte[2]));
12 am->SPT[idx].e[pxi] = RESET_PTE_P(am->SPT[idx].e[pxi]);
13 }
14 _(ghost vp->walks = \lambda AbsWalk w; vp->walks[w] && (w.l != 0 || w

.vpfn != vpfn))
15 _(ghost if (vp->asid_generation == pls->asid_generation) {
16 pls->walks = \lambda AbsWalk w; pls->walks[w] &&
17 (w.l != 0 || w.vpfn != vpfn || w.asid != vp->asid);
18 })
19 }

Listing 9.11: INVLPG intercept handler.

In VCC we store the configuration of an abstract VP in the ghost state. A thread,
executing an intercept handler owns the state of the abstract VP which has
been intercepted. In the beginning of the handler we require the state of the
VP to match the handler and its parameters (i.e., there should be an active
memory request, its type and parameters should correspond to the type and
parameters of the handler, and SB should be empty). Further, when executing
the body of the handler we simulate steps of the VP and update its state
appropriately. As a postcondition of the handler, we know that the state of
the abstract VP is in sync with the return result of the handler (e.g., if we require
a page fault to be propagated to the guest, then we have already simulated
steps core-prepare-page-fault and core-trigger-page-fault).

9.5.1 INVLPG Handler

We use function invlpg_intercept (Listing 9.11) to both handle the
INVLPG intercept and to perform the TLB invalidation in case when we
propagate a page fault to the guest (see Section 9.5.3).

Function invlpg_intercept takes as an input a pointer to the address
manager, a pointer to the VP configuration, and the address being invalidated,
which consists of the virtual PFN vpfn and of the page offset (in bytes) off.
Additionally we provide the flag page_fault, which we use to distinguish
whether the function is handling an INVLPG intercept or is called from the PF
handler.

Let (j, k) be the ID of the abstract VP which is associated with the
provided VP configuration, c ∈ confCC+HW+G be the state of the C-IL + HW
+ Ghost machine before the first statement of the handler is executed and
g ∈ VmHardw be the state of the abstract VMs, where inv-coupling(c, g) holds.
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Then as a precondition to the handler we require the abstract VP to be in the
following state:

〈g[j].p[k].memreq.va〉 = (vpfn << 012) + off,

page_fault = 0 =⇒ g[j].p[k].memreq.type = INVLPG
∧ g[j].p[k].memreq.active,

page_fault = 1 =⇒ g[j].p[k].memreq.type ∈ MemAcc
∧ g[j].p[k].memreq.pf -flush-req
∧ ¬g[j].p[k].memreq.active.

As a postcondition we ensure that either a core-invlpga or a
core-trigger-page-fault step is performed i.e., the ready bit in thememres buffer
is set, the active bit in the memreq buffer is lowered and the other fields of the
memory request and result buffers are left unchanged or get a default ‘‘zero’’
value.

In function invlpg_intercept we first perform the hardware INVLPG
in the ASID of the VP6 (line 7) to flush the translations from the host TLB.
Further, we walk down the SPT tree for the invalidated address (line 8). When
reaching a terminal SPTE, we mark it non-present (line 12) and update the
set vp->walks (line 14) to remove all complete walks with the invalidated
virtual PFN. In case the ASID of the VP is valid, we also have to update the set
pls->walks in the same manner (line 16), so that invariant inv-pls-walks is
maintained. Invariant inv-htlb-walks is maintained, because at that moment
the host TLB is already invalidated and does not contain translations with the
provided virtual PFN.

Note, that if we don’t reach a terminal PTE, this means that SPTs of
the VP, do not contain valid translations for the invalidated address. Yet,
sets vp->walks and pls->walks still could contain such translations,
remaining there from some outdated state of SPTs. Hence, in this case we
also have to update these sets.

After we remove the invalidated translations from vp->walks, we simulate
the respective walk removal from the VTLB. After the last statement of the
function is executed, we either simulate a core-invlpga step of the VP or
step core-trigger-page-fault, depending on whether the function is used for
handling an INVLPG intercept or is called from the PF handler. Both of the
steps are possible, because we know that at the end of the function the VTLB
does not contain any walks in the invalidated address.

9.5.2 MOVE TO CR3 Handler

Function mov2cr3_intercept (Listing 9.12) takes as an input a pointer to
the address manager, a pointer to the VP configuration, and the physical page
frame number pfn of the new top-level GPT.

Let (j, k) be the ID of the abstract VP which is associated with the
provided VP configuration, c ∈ confCC+HW+G be the state of the C-IL + HW
+ Ghost machine before the first statement of the handler is executed and
g ∈ VmHardw be the state of the abstract VMs, where inv-coupling(c, g) holds.
Then as a precondition to the handler we require the abstract VP to be in the

6For the formal semantics of the hardware INVLPGA see Section 7.2.1.
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1 int mov2cr3_intercept(Am_t *am, Vp *vp, Ppfn gpfn)
2 {
3 uint detached_idx;
4 if(gpfn > MAX_GPFN) {
5 return RESULT_GM_RANGE_VIOLATION;
6 }
7 vp_flush_tlb(am, vp);
8 for(uint pxi = 0; pxi < 512; pxi++) {
9 if(READ_PTE_P(am->SPT[vp->iwo].e[pxi])) {

10 _(ghost mark_unreachable_subtree(am, vp, vp->iwo, pxi))
11 am->SPT[vp->iwo].e[pxi] = RESET_PTE_P(am->SPT[vp->iwo].e[pxi]);
12 detached_idx = SPTa2i(am, READ_PTE_PFN(am->SPT[vp->iwo].e[pxi]));
13 reclaim_spt(am, vp, detached_idx);
14 }
15 }
16 _(ghost vp->walks = \lambda AbsWalk w; vp->walks[w] && w.l != 0)
17 _(ghost pls->walks = \lambda AbsWalk w; pls->walks[w] &&
18 (w.l != 0 || w.asid != vp->asid))
19 vp->gwo = gpfn;
20 return RESULT_CONTINUE;
21 }

Listing 9.12: Move to CR3 intercept handler.

following state:

g[j].p[k].memreq.type = mov2cr3 ∧ g[j].p[k].memreq.active
∧ 〈g[j].p[k].memreq.cr3in〉.pfn = gpfn ∧ g[j].p[k].memreq.cr3in.valid.

As a postcondition we guarantee that a core-mov2cr3 step is performed i.e.,
the ready bit in the memres buffer is set, the active bit in the memreq buffer is
lowered, and the other fields of the memory request and result buffers are left
unchanged or are getting a default ‘‘zero’’ value.

First, we check whether the provided gpfn value fits in the range of allocated
guest addresses (line 4) and continue only if it does. Next, we perform a TLB
lazy flush by calling function vp_flush_tlb (line 7). After that we know that
the hardware TLB does not contain any walks in the ASID of our VP. Further,
we go through all entries of the top-level SPT, mark them not present (line
11), and reclaim all SPTs pointed by these entries (line 13). At the same time
when resetting the present bit of an SPTE we reset the re bit in all SPTs in
the detached subtrees and remove all walks (complete and incomplete ones)
through this subtree from sets vp->walks and pls->walks (necessary to
maintain invariant inv-partial-walks after the step). This is done by the ghost
function mark_unreachable_subtree (line 10), which we leave undefined
here (for the body of this function consult the sources).

When we reset the re bit of some SPT, we have to maintain invariant
inv-reachable-child. The first part of this invariant guarantees that all
reachable SPTEs point only to reachable SPTs. To maintain this property after
the step, we use the second part of inv-reachable-child, which guarantees the
uniqueness of a link in the SPT tree. Hence, the detached SPT tree is linked
only to one SPTE, where we reset the present bit (line 11). As a result, marking
this subtree unreachable does not break the first part of inv-reachable-child,
because no reachable and present SPTE can point to any of the detached
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tables. Analogously, we maintain the second part of inv-reachable-child.
After we have marked all entries in the top-level SPT as not present, we

remove all the (possibly remaining) complete walks form the set vp->walks
(line 16). Invariant inv-complete-walks is maintained, because the set of
complete reachable walks though the top-level SPT is empty (since this SPT has
only non-present entries). At the same time we simulate the step of removal of
all walks from the VTLB. Since we know that the ASID of our VP is valid (this is
guaranteed by the function vp_flush_tlb), we have to respectively update
the set pls->walks (line 17) to maintain invariant inv-pls-walks. Invariant
inv-htlb-walks is maintained, because the host TLB does not contain any walks
in the current ASID of the VP.

Finally, after we have an empty VTLB, we set the new value for the guest
walk origin in the VP configuration (line 19) and simulate step core-mov2cr3.
Invariant inv-cr3-coupling is maintained, because we write the same value to
the gwo field and to the CR3 register of the abstract VP.

9.5.3 PF Handler

Function pf_intercept (Listing 9.13) takes as an input a pointer to the
address manager, a pointer to the VP configuration, the page fault address,
which consists of the virtual PFN vpfn and of the page offset (in bytes) off,
and access permissions ex, us, and rw. The function returns a result of the
type Walkres.

Let (j, k) be the ID of the abstract VP which is associated with the
provided VP configuration, c ∈ confCC+HW+G be the state of the C-IL + HW
+ Ghost machine before the first statement of the handler is executed, and
g ∈ VmHardw be the state of the abstract VMs, where inv-coupling(c, g) holds.
Then as a precondition to the handler we require the abstract VP to be in the
following state:

g[j].p[k].memreq.type ∈ MemAcc ∧ g[j].p[k].memreq.active
∧ 〈g[j].p[k].memreq.va〉 = (vpfn << 12) + off
∧ g[j].p[k].memreq.r = Rights[ex 7→ ex, us 7→ us, rw 7→ rw]
∧ tlb-invalidated-pf (g[j].tlb[k], g[j].p[k].memreq[i].va.vpfn,vp->asid).

Note, that we require the host TLB to contain no walks with the faulty
virtual PFN in the ASID of the provided VP. This property follows from the fact
that the TLB is invalidated in case of a VMEXIT event caused by a page fault
(Section 3.5.1).

In the postcondition of the function we distinguish three cases depending
on the field res.level, where res is the result returned by the function:

• if res.level = GM_VIOLATION (line 9), this means that we have
encountered a (present) GPTE, which has the PFN field not fitting into
the range of allocated guest addresses defined by the gpa2hpa function;
in this case we do not simulate any steps of the virtual hardware and
simply return,

• if res.level , 0 and res.level , GM_VIOLATION (line 12), it means that
we have encountered a page fault while walking GPTs. In this case
we simulate steps core-prepare-page-fault and core-trigger-page-fault.
As a result, we ensure that the active and pf -flush-req bits in the
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1 Walkres pf_intercept(Am_t *am, Vp *vp, Vpfn vpfn, uint off, bool ex,
bool us, bool rw)

2 {
3 Walkres gws, sws;
4 uint z, i, idx, pxi;
5 Pte nspte[5];
6 uint detached_idx;
7 gws = walkguest(am, vp->guest, vpfn, vp->gwo, ex, us, rw);
8 if (gws.level == GM_VIOLATION)
9 return gws; // guest memory range violation

10 if (gws.level > 0) {
11 invlpg_intercept(am, vp, vpfn, off _(ghost 1));
12 return gws; // propagate a PF

13 } else {
14 sws = walkshadow(am, vp, vpfn, ex, us, rw);
15 z = notinsync(am, vp->guest, sws, gws, sws.level);
16 if (z == 0)
17 return gws; // repeat guest instruction

18 i = z;
19 detached_idx = SPT_CNT;
20 while (i > 0) {
21 if (i == z)
22 idx = SPTa2i(am, sws.pfn[i]);
23 else
24 idx = SPTa2i(am, READ_PTE_PFN(nspte[i + 1]));
25 pxi = compute_idx(vpfn, i);
26 nspte[i] = compspte(am, vp, idx, gws.pte[i], pxi);
27 if (READ_PTE_P(am->SPT[idx].e[pxi]) && i > 1) {
28 detached_idx = SPTa2i(am, READ_PTE_PFN(am->SPT[idx].e[pxi]);
29 }
30 if (i == 1 && !rw && !READ_PTE_D(gws.pte[1]) && RW_SET(gws)) {
31 _(ghost vp->walks = \lambda Walk w;
32 vp->walks[w] && (w.l != 0 || w.vpfn != vpfn) ||
33 WALK_THROUGH_PTE(w, RESET_PTE_RW(nspte[i]), am, idx, pxi))
34 _(ghost if (vp->asid_generation == pls->asid_generation) {
35 pls->walks = \lambda Walk w; vp->walks[w] ||
36 pls->walks[w] && (w.l != 0 || w.vpfn != vpfn ||
37 w.asid != vp->asid);
38 })
39 am->SPT[idx].e[pxi] = RESET_PTE_RW(nspte[i]);
40 } else {
41 _(ghost if (i > 1) {
42 mark_unreachable_subtree(am, vp, idx, pxi);
43 mark_reachable(am, vp, idx, pxi, nspte[i]);
44 } else {
45 vp->walks = \lambda Walk w;
46 vp->walks[w] && (w.l != 0 || w.vpfn != vpfn) ||
47 WALK_THROUGH_PTE(w, nspte[i], am, idx, pxi);
48 if (vp->asid_generation == pls->asid_generation) {
49 pls->walks = \lambda Walk w; vp->walks[w] ||
50 pls->walks[w] && (w.l != 0 || w.vpfn != vpfn ||
51 w.asid != vp->asid);
52 }
53 })
54 am->SPT[idx].e[pxi] = nspte[i];
55 }
56 i--;
57 }
58 if (detached_idx < SPT_CNT)
59 reclaim_spt(am, vp, detached_idx);
60 return gws; // repeat guest instruction

61 }
62 }

Listing 9.13: PF intercept handler.
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memreq buffer are low, the ready bit in the memres buffer is high, and
memres.pf contains the page fault information defined by the faulty
GPTE res.pte[res.level]. The other fields of the memreq buffer in this
case are left unchanged. After we return from the handler the page fault
information contained in the entry res.pte[res.level] has to be injected
into the VP,

• if res.level = 0 (line 17 or 56), then GPTs do not have a page fault for the
provided parameters of the access. This means, that the PF intercept was
caused by a faulty shadow PTE which is out-of-sync with the respective
GPTE (this also includes the case, when the present bit in the SPTE is
not set). In this case we fix the problem by allocating new SPTEs and
making them in sync with the previously fetched GPTEs. We do not
simulate any steps of the virtual hardware rather than VTLB steps of
adding/dropping walks and setting of A/D bits (this simulation is done
while walking GPTs). As a result, we ensure that the state of the memreq
and memres buffers is unchanged and the request for a memory access
is still pending. After we return from the handler the guest memory
accessing instruction has to be repeated once again.

First, we execute function walkguest (line 7), which walks down the
GPTs, simulates VTLB steps, and returns the result gws of the guest
walk. Second, we check whether violation of the guest memory range was
encountered (line 8) and return from the function in case it it was found.

Further, we distinguish cases when gws.level is greater than zero (which
denotes that a PF was found in GPTs) and when it is equal to zero. In
the first case postconditions of the walkguest function ensure that step
core-prepare-page-fault was already performed and the abstract VP has the
flag memreq.pf -flush-req set to 1 and the flag memreq.active set to 0. We then
execute the function invlpg_intercept (line 11), which invalidates the
faulty address and simulates step core-trigger-page-fault, and exit the function
returning gws. Postconditions of the walkguest function also guarantee
that the PF information from memres.pf is in sync with the PF information
from gws and postconditions of function invlpg_intercept guarantee that
memres.pf is not overwritten.

In case no page fault was found while walking GPTs we execute function
walkshadow (line 14) and write the result of the shadow walk to sws. Next,
we execute function notinsync (line 15), which compares gws with sws and
finds the first entry in sws which is out-of-sync with the entry from gws. If no
such entry is found (line 17), this means that SPTs do not contain a page fault
and we simply return7. Otherwise we store the level of the first SPT which
is out-of-sync in variable i (line 18) and execute a loop, where we compute
new SPTEs and write them into the SPT tree (line 20). In the loop we first find
the index of the SPT to which we will write the new SPTE (lines 22 and 24).
Then we find the page index of this SPTE (line 25). Next, we execute function
compspte, which computes a new SPTE from a given GPTE and if this GPTE
is not a terminal one, then it also allocates a fresh SPT linked to the newly
computed SPTE (line 26).

7In our algorithm this situation is actually impossible, because SPTs of our VP could not
change since the time when the page fault intercept has happened. As a result, SPTs must
contain a page fault. Yet, with the shared version of the SPT algorithm this situation is possible.
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Further, we check whether the SPTE which is going to be overwritten points
to another SPT (line 27). If it is the case, then we put the index of the detached
SPT to the variable detached_idx (line 28). Note, that the situation when
the present bit is set in the entry which we overwrite can happen only in the
first iteration of the loop. On latter iterations we always overwrite an entry
in the newly allocated SPT, where all entries are zeroed (this is guaranteed by
function compspte).

Next, we distinguish two cases (line 30). In the first case we take care of the
write protection for further dirty bit propagation to the guest. In this case we
are in the last loop iteration, the rw bit is not set, all fetched GPTEs have a write
permission enabled, and the dirty bit in the terminal GPTE is not set (function
walkguest for this case does not set a dirty bit, because the intercepted
request is a read request, see Section 9.3.4). We mark the terminal SPTE non-
writable, which guarantees that the first write access through this SPTE will
be intercepted (line 39). All complete walks though the newly written SPTE
are added to the set vp->walks (line 31)8. This guarantees that invariant
inv-complete-walks is maintained. In case the ASID of our VP is valid, we also
have to update the set pls->walks respectively (line 34) to maintain invariant
inv-pls-walks. Invariant inv-htlb-walks is maintained, since we know that the
hardware TLB does not contain any walks with the faulty virtual PFN.

In the second case we simply overwrite the old SPTE with the newly
computed one (line 54). If we are overwriting a non-terminal SPTE (line 41), we
first call the ghost function mark_unreachable_subtree (line 42), which
resets the re bit in all detached SPTs and removes all the walks through these
SPTs from vp->walks and pls->walks. Analogously, to the MOVE to CR3
handler (see Section 9.5.2), when we mark detached SPTs unreachable we
rely on the uniqueness of a ‘‘parent’’ in the SPT tree, which is guaranteed by
inv-reachable-child. After that we call the ghost function mark_reachable
(line 43), which sets the re bit for the newly attached SPTE and adds the walks
through this SPTE to sets vp->walks and pls->walks (for the body of this
function consult the sources). In case we are overwriting a terminal SPTE,
we update the set vp->walks to remove old complete walks with the faulty
virtual PFN and to include the walks over the new SPTE (line 45). If our VP
has a valid ASID, then we also update the set pls->walks respectively (line
50). Invariant inv-htlb-walks is maintained, since we know that the hardware
TLB does not contain any walks with the faulty virtual PFN.

In all cases invariant inv-vtlb-walks holds, because the virtual TLB already
contains all walks, which we are adding to vp->walks (this is ensured by
function walkguest). Invariants inv-complete-walks and inv-partial-walks
are maintained, because we always remove the walks over the detached SPTs
and add the walks over the newly attached ones from/to the set vp->walks.

Finally, we perform reclaiming of the detached subtree (line 59). Since
detaching of a subtree can happen only once (on the first loop iteration), we
can be sure that detached_idx is never overwritten after it is set. Hence, all
detached SPTs are reclaimed afterwards.

8For the way how to construct the set of complete walks for a given SPTE see Definition 8.32.
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In VCC we perform all updates of vp->walks and pls->walks in dedicated
ghost functions, rather than directly in the page fault handler. Moreover,
we split the PF handler (as well as other implementation functions) into a
number of blocks, to make verification easier for VCC. Updates of the ghost
state in VCC we normally perform after the update of an implementation field,
rather than before that (as we do in this chapter). This does not break the
soundness of verification, because scheduling of the ghost code (before or
after the implementation statement) can be considered benign. Note also,
that a number of invariants local to a single VP (as e.g., inv-complete-walks,
inv-partial-walks, inv-reachable-root, inv-reachable-child, and inv-vtlb-walks)
do not have to hold all the time, but are strictly required to hold only when this
VP is being executed on a host processor (see Section 10.4). Hence, in VCC
we sometimes disable these invariants (by unwrapping the VP configuration) in
the middle of the function and show that they are again maintained in the end
of the function (i.e., before we execute a VMRUN statement). Yet, in the proof
sketch presented in this chapter all the invariants are maintained after every
implementation step of the C machine, with the ghost code being executed before
the implementation statement.
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VCC [Mic12a] is a verifier for concurrent C
code [CDH+09] which is being developed at
Microsoft and which was used as a proof tool
in the Verisoft XT project, aimed at the formal
verification of industrial software including
the Microsoft’s hypervisor Hyper-V [Mic12b,
LS09]. VCC supports adding annotations to
the C code of a program, which includes pre-
and postconditions, loop and type invariants,
and ghost code. The features of VCC and its
focus on verification of concurrent code make
VCC an ideal instrument for implementation
of the C-IL + HW + Ghost semantics and for
verification of hypervisor code. We used VCC
as the tool for the formal verification of our
TLB virtualization algorithm.
In this chapter we give an overview of VCC
and discuss the key aspects of verification,
which include modelling of the hardware
component of a thread introduced in Chapter
7, modelling of the virtual hardware state
in VCC, and simulation of steps of the
virtual hardware. Code snippets which we
present in this chapter contain only a part
of the annotations, which is necessary for
understanding these crucial aspects.
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The formal verification work has started in the frame of the Verisoft
XT project [The12] and was completed before the formal C-IL + Hardware
semantics was developed. As a result, the hardware component of a thread
and the model for the guest virtual machines which we used in VCC verification
is simpler than the one introduced in Chapter 7 (e.g., we haven’t modelled SBs
and memory request/result buffers there). Nevertheless, we believe that these
differences do not produce any additional obligations on the hypervisor code
itself and only reduce the number of unintercepted hardware steps, for which
we can show correct virtualization in VCC (in VCC we have only proven correct
virtualization for all MMU steps, namely walk creation, walk extension, and
setting of A/D bits). The paper-and-pencil proof for all of these steps, including
the ones which were not proven in VCC, is given in Theorem 8.3. We plan to
adapt our formal VCC proofs1 so that they adhere to the paper-and-pencil
verification presented in this thesis as a part of the future work.

10.1 The Verifying C Compiler

VCC first translates an annotated C program into BoogiePL [DRL05], an
intermediate language for verification. A BoogiePL program is further
translated to logical formulas using the Boogie verification condition generator
[ByECD+06]. These logical formulas are then passed to an automated SMT
solver Z3 [dMB08] to check their validity.

VCC provides a number of features which are central to our methodology:

• it provides the ghost state, similar to the ghost state of the C-IL + Ghost
semantics introduced in Chapter 5; moreover, we use the VCC ghost
state to store the state of the hardware component of a thread from C-IL
+ HW semantics2,

• it provides two-state object invariants (i.e., invariants that not only talk
about the state of the object, but also constrain its transitions), which
we use to express the transition system of the virtual hardware,

• it provides the ghost code, which we use for maintaining auxiliary
information necessary for the TLB virtualization proof (Chapter 8);
additionally it allows us to update the abstract state of the virtual
hardware preserving the coupling invariant,

• it supports verification of programs with fine-grained concurrency which
makes it possible to model atomic steps of the hardware component of a
thread.

Formalization and documentation of VCC semantics, as well as the formal
soundness proof of VCC still remains as future work. Yet, we believe that
there should exist a simulation proof between a program executed and verified
in VCC semantics and the same program executed in C-IL + Ghost or C-IL +
HW + Ghost semantics (depending on whether the hardware component of a
thread is modelled or not).

1The annotated sources of the verified SPT algorithm (including the models introduced in
this chapter) can be found at http://www-wjp.cs.uni-saarland.de/publikationen/
sources/kov12_sources.zip.

2For reasons why we use the ghost state to model the hardware component of a thread refer
to Section 10.2.

http://www-wjp.cs.uni-saarland.de/publikationen/sources/kov12_sources.zip
http://www-wjp.cs.uni-saarland.de/publikationen/sources/kov12_sources.zip
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10.1.1 Memory Model

The memory state of type-safe languages like C# and Java is defined as a
collection of typed objects, which can not overlap. Moreover, one object can
not contain another object as a member, it can have only a pointer to another
objects. As a result, aliasing can occur only through two pointers pointing
to the same object. This typed memory model allows a convenient logical
representation of a program state, which is then defined as a mapping from
an object and its fields to a value.

In contrast to that, the C-IL semantics from Chapter 5 as well as the regular
C [ISO99] considers a flat untyped byte-addressable memory model. ‘‘Objects’’
in C can overlap arbitrarily (w.r.t to the object alignment) and there is no
strict distinction between objects and their fields. A pointer is allowed to
point to a field of a struct, and any struct can contain another struct as a
member. Hence, two objects in C are disjoint only if they occupy disjoint
memory regions. The whole concepts of types and objects in C is used to
merely give a way of interpreting a chunk of memory, rather than to provide a
self-contained abstraction.

When doing program verification it is much more efficient to work with
typed memory objects, rather than with the flat untyped memory. For
instance, it makes framing axioms much simpler by ensuring that if a single
object gets updated, the other objects stay unchanged. For this reason VCC
considers a typed object oriented memory model on top of the flat C memory
[CMTS09, BM11]. Pointers to structs are interpreted as pointers to (implicitly)
non-overlapping objects with disjoint fields. The set of ‘‘valid’’ typed pointers
to ‘‘real’’ objects is maintained by VCC in the ghost state of the program. For
every memory update VCC finds a respective ‘‘real’’ object, which has to be
modified. If it cannot find such an object, then verification fails.

The difference of the VCC memory model compared to C# or Java memory
model is that a struct is allowed to be a member of another struct. Hence, it
two objects overlap, then one has to be a member of the other.

Soundness and completeness of the typed memory model on top of the flat
C memory model was shown in [CMTS09].

10.1.2 Objects, Invariants, and Ownership

An object in VCC is an instance of a structured type. In each state each object
is classified as open or closed and has a unique owner. In contrast to the
ownership model used in this thesis (see Section 5.3.1), VCC has an object-
oriented ownership model3. Any object can be owned by a thread, owned by
another object, or can be not owned by anyone. Only threads can own open
objects, and only closed objects can own other objects.

VCC allows each object to be annotated with 1-state and 2-state invariants.
The first ones define a property which has to hold in every state of the program.
The second ones specify how the state of an object may change (in a single
atomic transition). The invariant of an object is only required to hold in
transitions that begin or end with the object being closed.

3We believe that the object-oriented ownership can be translated into byte-wise ownership,
like the one used in this thesis or alike.
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VCC uses a modular approach to verification [CMST10]: when verifying
the code performing a memory write, it checks only invariants of the object
being updated. A transition which maintains invariants of all objects which
are modified is called legal. VCC allows object invariants to mention arbitrary
parts of the state. To make modular verification under this condition sound
VCC performs an admissibility check for all invariants of all objects: an object
invariant is said to be admissible iff it is preserved by all legal transitions that
do not update the object itself. The admissibility check is performed once for
every type definition and does not require looking at the program code (besides
the program type definitions being checked).

Fields of an object which do not have the volatile type qualifier are
considered to be sequential. All volatile fields are considered to be shared.
The value of a sequential field can change only when the object is open and
is owned by a thread. The value of a volatile field can change anytime, if this
transition satisfies the 2-state invariant of the object. A thread can either write
a field of an owned, open object or can write a shared field of an object which
is known to be closed (only if an object is closed its volatile fields are really
‘‘shared’’; volatile fields of an open object are treated the same way as regular
sequential fields).

A thread is allowed to open (i.e. unwrap) a closed object which it owns.
After performing desired updates of the unwrapped object the thread can wrap
the object back to the closed state. Invariants of this object are checked only
at the time when the object gets wrapped. As a result, 2-state invariants are
meaningless for the fields of sequential objects.

Nevertheless, sometimes we want to make sure that sequential fields of
objects change in a certain way when the object gets closed (i.e., specify pre-
and postconditions on a state before the object was open and on a state when
the object gets closed). To solve this problem we can add a ghost volatile copy
of sequential data in the object and add a coupling invariant for this data,
which has to hold when the object is closed. This volatile copy of the data has
to reside in the part of the object which always stays closed. VCC supports
splitting of a given object into parts called groups, which can be treated as
different objects. Now we can state 2-state invariants on the volatile copy of
the data located in a closed group inside the object. These invariants restrict
the updates of the volatile copy of the data. When the object gets closed, the
coupling invariant between the volatile and the sequential data guarantees
that the changes to the sequential data were done with the same restrictions,
as apply to the volatile copy of the data.

10.1.3 Claims

Object invariants are required to hold only when an object is closed. When a
thread owns an object it can guarantee that it stays closed. Yet, shared objects
are often not owned by a thread trying to access it. This is, for instance, a
typical case when dealing with synchronisation objects like locks [HL09]. To
capture information on closed, shared objects, VCC provides so-called claims.

A claim is a ghost object that stores a reference to its claimed object and
has the invariant that this object will stay closed as long as the claim is not
destroyed. To guarantee that the claimed object really stays closed, VCC adds
a ghost field to it that counts the number of currently active claims on that
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object. Every object has an invariant which prevents it from opening the object
if this counter is greater than zero.

In addition to guaranteeing that an object stays closed, a claim may state
certain properties of the system state. More precisely, a property stated by
a claim has to hold initially when the claim is created and has to be stable
under changes to other objects (in this sense it doesn’t differ from admissibility
or regular objects). For example, a claim may state a property which holds
initially and which is guaranteed to be maintained by a 2-state invariant of
the claimed object.

10.1.4 Atomic Updates

If a thread can not open the data being accessed (i.e., it is either not owned
by a thread or has a claim counter greater than zero), the only way to perform
this access is inside an atomic block. Any atomic block represents a single
transition of the state. VCC uses atomic blocks to distinguish places in
a thread execution where other threads may interfere. This allows VCC
to perform sequential verification of code in between atomic blocks and to
consider other threads only in the beginning of these blocks.

Each atomic block requires a claim to the updated object as well as the
object itself to be passed as a ghost parameter4. This is necessary to guarantee
that the updated object will not be opened by other threads interfering with
the one being verified.

In the beginning of the atomic block VCC havocs information about the
shared state and about the sequential part of the state which is not owned by
a verified thread, over-approximating the interference of an arbitrary number
of steps of other threads. At the end of the atomic block VCC checks whether
the invariants of the updated objects are maintained. All knowledge required
to perform this check is derived from the sequential state, which includes the
claimed properties of any claim passed to an atomic block.

An atomic block may contain any arbitrary number of ghost statements
(including ghost updates), but only one implementation statement. Moreover,
this statement has to be consistent with atomic operations provided by the
underlying architecture (i.e., it has to compile into an instruction performing
an atomic memory update). To comply with our program safety for C-IL
semantics (see Section 5.3.3) one has to additionally guarantee that all memory
updates inside atomic blocks (i.e., all updates of volatile data) are compiled
into locked writes or atomic compare-exchanges instructions5. To weaken
this restriction one can consider a more sophisticated SB reduction theorem
[CS10], which requires less flushing of SB and which uses less memory fences
to guarantee sequential consistency of the shared memory. Nevertheless, VCC
currently does not perform a check for memory fences to be inserted correctly
though there are plans for extending it with this feature. Currently, one either
has to require all volatile updates to be compiled into SB-flushing instructions,
or one has to perform a manual check for store fences inserted correctly w.r.t
the chosen SB reduction strategy.

4Atomic blocks can actually take an arbitrary number of claims and objects, depending on
the number of objects being updated inside the block.

5Another option is to insert memory fences (draining the store buffer) after every update of
the volatile data, though we didn’t consider this option in our store buffer reduction proof.
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An implementation update being executed in the atomic block can be
either a regular write to a volatile field or involve an execution of a compiler
intrinsic or an external assembly function (e.g., an atomic compare-exchange
operation). Since the choice of available compiler intrinsics is platform specific,
VCC does not have support for built-in intrinsics. Hence, we have to manually
specify the effect of such an intrinsic/assembly function in VCC by writing a
ghost body of the function, which performs the same update of the C state as
the intrinsic does (for the semantics of an atomic compare exchange operation
refer to Section 5.1.8).

Note, that memory accesses with atomic blocks can also be performed in
the ghost code. Ghost atomic blocks obviously do not require any SB flushing
policy and do not enforce any restrictions on the compiler, but are used for
verification of programs which have shared ghost state (e.g., used for hardware
modelling).

10.1.5 Approvals

Admissibility checks force restrictions on the part of the state which can be
fixed in an object invariant. The check succeeds only if a given invariant is
stable under legal updates of all other objects. As a result, we cannot simply
write an invariant which talks about the state of another object, if this object
is not owned by the current one. To solve this problem, we have to add an
additional invariant to the observable object, which would explicitly require to
check the invariant of the observer if the object gets changed. We call such an
invariant approval and say that the observer approves the observable object.

Approval acts as a technique for semantic subclassing of concurrency in
VCC. An object which is not approved by anyone corresponds to a ‘‘closed’’
object (w.r.t concurrency), meaning that clients cannot strengthen invariants
of this object. An object which is approved by a client allows the client to
effectively strengthen its invariants to the extent allowed by the approval (i.e.,
restrict only those fields which are approved).

Approvals are very helpful in the design of a concurrent algorithm. For
instance, one can use approvals to make sure that a given object behaves in a
certain way described by an abstract specification data type (e.g., the abstract
hardware model).

Note, that approval is a 2-state invariant and it works only when the object
being approved stays closed (otherwise its invariants are not checked at the
update, but are only checked at the time when the object gets closed). Hence,
approvals cannot be stated for sequential fields. In order to overcome this
problem (e.g., if we want to restrict values of sequential fields of an observable
object), we can add a ghost volatile copy (residing in the closed group inside
the object) of sequential data in the object and add a coupling invariant for
this data, which has to hold when the object is closed. Now we can add
approvals on the volatile copy of the data. The observer in this case can
restrict the values of sequential fields of the client object, when this object is
in a closed state. When verifying our SPT algorithm we often use this trick
to state properties over multiple objects (e.g., when we state disjointness of
ASIDs and ASID generations of different VPs).

Approval of a volatile field of an object by a thread that owns the object
has the effect of making the field sequential from the standpoint of the owning
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thread, with the exception that it must still update the field in atomic blocks.
This is helpful e.g., in the approval scenario for sequential fields described
in the previous paragraph: the volatile copy of the data has to be approved
by the owning thread in order for the coupling invariant between volatile and
sequential data to hold at the time when the object gets closed.

10.1.6 Scheduling

The C-IL + Ghost and the C-IL + HW + Ghost semantics introduced in chapters
5 and 7 consider fine-grained scheduling (modular ghost steps), where threads
may interleave in between any implementation steps. VCC, however, considers
an I/O-block (coarse-grained) scheduling, which switches a thread only when
it is about to execute an atomic block (i.e., accessing shared data). Yet, one
can prove a theorem justifying this approach analogously to the hardware
reordering theorem from Section 5.4.3. More precisely, for any fine-grained
execution of a safe program there should exists coarse grained execution
resulting in the same state. It follows, that any program which can go
wrong under an arbitrary scheduler, can also go wrong under an I/O-block
scheduler. The proof of such a theorem for a simplified language can be found
in [CMST09].

10.2 Modelling Hardware

To verify the program where software steps are interleaved with the steps
of the hardware component of a thread (which we later also refer as the host
hardware state), we extend the program code with the (ghost) hardware thread,
which non-deterministically updates the state of the host hardware and the
memory of the program (w.r.t to the allowed hardware transitions defined in
Section 7.2.2). We locate the host hardware state in the ghost memory, but
we do allow limited information flow between some of its fields (e.g., registers
and TLB) and the memory of the concrete program. This is done for lack of
a dedicated hybrid type capturing implementation state other than the main
memory. As a result, the ghost code implementing the hardware thread does
not comply with the safety requirements for the ghost code stated in Section
6.6, and is treated as ‘‘hybrid’’ code, modelling the hardware actions of the
C-IL + HW semantics. In case if data flow between ghost and implementation
state occurs, VCC throws a warning rather than an error. By examining these
warning we can ensure that the data flow occurs only to/from the ‘‘hybrid’’
state and that the real ghost code satisfies all the restrictions.

The hardware transition relation of both the host and the virtual hardware
is formulated as a 2-state invariant of the corresponding hardware data
structure.

The state of the virtual hardware (excluding the memory) is also located in
the ghost memory. The memory of the VM is abstracted from the portions of
the C memory allocated to the machine w.r.t the function gpa2hpa. To ensure
that every update of the virtual memory is justified by the transition relation
of the VM, we model the memory of the VM as volatile data approved by the
virtual hardware.
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Updates of the virtual hardware, simulating steps of the VM, are performed
by the ghost code in atomic blocks, guaranteeing that the transition relation
and the coupling invariant are maintained by every update. When a step of the
virtual hardware involves accessing the implementation memory (e.g., fetching
of a GPTE by the #PF handler), the update to the virtual configuration is done
in the same atomic block as the memory access. This allows to simulate a step
of the VM on the virtual memory abstracted from the implementation memory.

10.2.1 Locating Invariants

The correctness (coupling) invariants from Section 8.3 are specified as 1-state
invariants over data structures of the hypervisor and over the simulated virtual
hardware. More precisely, invariants specific to a single virtual processor are
included in the invariant of the implementation data structure of type Vp and
invariants establishing properties over the VPs altogether (as e.g., invariant
distinct_asids) are specified in data structures of types Guest and Gm.

Properties of the overall system which have to be maintained by software
and hardware steps are specified in the so called hardware interface. For
instance, it specifies for each host processor a map walks[i] (Section 8.3.5),
which contains all walks possibly residing in the HTLB of that processor, and
states invariant inv-htlb-walks (Invariant 8.23). The hardware interface is
purely ghost, since it is only used for specification rather than to implement
concrete data structures or hardware components. To check that the
invariants of the hardware interface are maintained by all possible hardware
transitions, we have to explicitly invoke each of them in the hardware thread.
For more information on how we partition the coupling invariants between
different data structures see Section 10.4.

On Figure 10.1 we give a top-level overview on the ownership and approval
scenario for implementation and specification data structures, which we used
for verification of the SPT algorithm. An arrow from an object to another
object means that the second object is owned or approved by the first one.
Filled objects represent the volatile (i.e., shared) part of the state, which is
not thread-approved (thread approval makes the volatile data to behave like
sequential data).

10.2.2 Host Hardware

Host Processor

The state of a single host processor6 is modeled using the struct type
Processor (Listing 10.1).

All fields of a host processor are approved by the owning thread, which
makes them sequential in their nature, though still allowing only atomic
updates to be performed on these fields. (We make these sequential fields
volatile to allow them being controlled by the 2-state transition invariant of
the hardware.) A host processor is always owned by a thread which runs on

6The state of a processor includes the state of all processor local components (i.e., memory
core, TLB, and SB). As mentioned in the beginning of the chapter, our hardware model in VCC is
slightly simpler then the one used in the paper-and-pencil proofs in this thesis (SB and memory
request/result buffers are currently missing).
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Figure 10.1: Approval and ownership scenario for the SPT algorithm.

it (either by a hypervisor thread or by a hardware thread). This is sound,
because the hardware component of a thread can not perform steps on its
own if a processor is running in the hypervisor mode (see Section 7.2). At
the VMRUN statements the ownership of a processor should be passed from a
hypervisor thread to a hardware thread.

Additionally to thread approval, all fields of the host processor are approved
by the hardware interface, which couples the state of the hardware with the

1 _(ghost typedef struct _Processor {
2 Pid i; // Processor id

3 volatile Asid asid; // processor ASID

4 volatile Ppfn CR3; // Pfn field of the CR3 register

5 volatile bool tlb[AbsWalk]; // TLB (a map of walks)

6 Hardware *h; // pointer to the hardware container

7 Hwinterface *hwi; // pointer to HW interface

8 _(invariant \approves(h, tlb, CR3, asid)) // approval by hardware

9 _(invariant \approves(hwi, tlb, CR3, asid)) // approval by HWI

10 _(invariant \approves(\this->\owner, tlb, asid, CR3)) // thread approval

11 _(invaraint \on_unwrap(\this, \false) // remains always closed

12 } Processor;)
13 _(ghost typedef struct _Hardware {
14 Processor p[HP_CNT]; // array of processors

15 volatile Pid i; // index of acting processor

16 volatile Action act; // type of action

17 volatile AbsWalk w; // TLB walk for the action

18 _(invariant \forall Pid i; i < HP_CNT ==>
19 p.h == \this && p.h.\closed) // back link for approvals

20 _(invariant proc_unch(p) ||
21 act == TLB_SET_AD && tlb_setad(p, i, w, old(read_pte(w))) ||
22 act == CORE_INVLPGA && core_invlpga(p, i) || ... ) // transition relation

23 _(invaraint \on_unwrap(\this, \false) // remains always closed

24 } Hardware;)

Listing 10.1: Host hardware configuration.
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hypervisor data structures.

Host Hardware Transition Relation

The (ghost) data structure Hardware (Listing 10.1) encapsulates all
processors and defines via 2-state invariants all valid transitions of the
hardware component of a thread.

The parameters of the next hardware transition to be performed are
specified by variables i, act, and w, where i identifies the acting processor,
act the action type, and w the walk targeted by the action in case of a TLB
transition. In the hardware thread these variables allow us to explicitly go over
all possible transitions of the hardware component.

Note, that restricting transitions of host processors by the transition
relation stated in the Hardware data structure is not strictly necessary,
because all possible hardware steps are explicitly performed in the hardware
thread. Yet, having a hardware transition relation specified as a 2-state
invariant makes it easier to make sure that we have the desired semantics
of these steps.

We locate the configuration of the host hardware as a ghost field of the guest
manager (Section 9.1.2). Additionally, in the guest manager we maintain a map
hp2vp from the ID of the host processor and its ASID to a VP configuration,
which has the same active ASID and is assigned to this host processor.

1 typedef struct _Gm {
2 ...
3 _(ghost Hardware h) // host hardware component

4 _(ghost volatile Vp *hp2vp[Pid][ASID]) // pointers to assgined VPs

5 _(invariant \mine(h)) // ownership of hardware

6 _(invaraint \on_unwrap(\this, \false) // remains always closed

7 } Gm;

The map hp2vp is well defined only for valid ASIDs. For host processors
running in virtualization mode this mapping implements the function hp2vpc
from Section 8.2.2.

Hardware Interface

The hardware interface (Listing 10.2) is a container for properties which relate
the state of the hardware component of a thread with the hypervisor data
structures.

The hardware interface stores the following information:

• a collection of maps of reachable walks for all processors7,
• the set of valid ASIDs for every processor. This set is defined according

to Definition 8.11,
• the set of valid values of the CR3 registers for all processors. For every

VP scheduled to run on a given hardware processor with some ASID this
map returns the address of the top-level SPT,

• pointers to PLSes of all host processors. These pointers are used to
bound the current ASID of a given processor with the maximal ASID

7In our paper-and-pencil verification we store individual maps for every processor in the PLS
data structure. Here we collect all these maps in the hardware interface.
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1 _(ghost typedef struct _Hwinterface {
2 volatile bool walks[Pid][AbsWalk]; // overapproximation of HTLB

3 volatile bool valid_asid[Pid][Asid]; // map of valid ASIDs

4 volatile Ppfn gCR3[Pid][ASID]; // CR3 registers used by VPs

5 Pls *pls[Pid]; // map of pointers to PLSes

6 Processor *p[HP_CNT]; // pointers to processors

7 \object gm; // pointer to top−level data strucure of the hypervisor

8 _(invariant \approves(gm, rwalks, valid, gCR3)) // approval by GM

9 _(invariant \forall Pid i; i < HP_CNT ==>
10 p->hwi == \this && p->\closed) // back link for approvals

11 // fixing the content of host TLBs

12 _(invariant \forall AbsWalk w; Pid i; i < HP_CNT && p[i]->tlb[w] &&
13 valid_asid[i][w.asid] ==> rwalks[i][w])
14 // running ASID has to be valid

15 _(invariant \forall Pid i; i < HP_CNT ==> !h.p[i].asid ||
16 valid[i][h.p[i].asid])
17 _(invariant \forall AbsWalk w; Pid i; i < HP_CNT ==>
18 (p[i]->tlb[w] ==> w.asid <= pls[i]->max_asid))
19 // value of CR3 registers in guest mode

20 _(invariant \forall Pid i; i < HP_CNT ==> (p[i]->asid != 0 ==>
21 p[i]->CR3 == gCR3[i][p[i]->asid]))
22 _(invariant \on_unwrap(\this, \false))
23 } Hwinterface;)

Listing 10.2: Hardware interface.

allocated to this processor in the respective PLS, which is necessary for
verification of the TLB lazy flushing mechanism (see Section 9.4).

The top-level data structure which approves all fields of the hardware
interface in our case is a guest manager (Section 9.1.2), where we also locate
the hardware interface itself as a ghost field.

1 typedef struct _Gm {
2 ...
3 _(ghost Hwinterface hwi;) // pointer to HWI

4 _(invariant \mine(hwi) && hwi->gm == \this) // ownership of HWI

5 } Gm;

10.2.3 Virtual Hardware

Virtual Processor

The state of a single abstract VP is modelled by a struct type VProcessor
(Listing 10.3), similar to the state of a host processor. The difference to the
host processor model is that in the abstract VP configuration we don’t need to
have an ASID register, and we don’t have approval by a hardware interface.

For every abstract virtual processor (which is an instance of type
VProcessor) there is a corresponding implementation data structure of type
Vp, which stores the configuration of this processor and owns the state of the
abstract virtual processor. When a hypervisor thread is running on some host
processor it always owns configurations of all VPs assigned to this processor.
Hence, it also owns all abstract states of these VPs and can modify them
the way it likes (w.r.t to the transition relation of the virtual hardware), so
that the coupling invariant is always maintained. At the VMRUN statement
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1 _(ghost typedef struct _VProcessor {
2 Pid i; // Processor id

3 volatile Ppfn CR3; // Pfn field of the CR3 register

4 volatile bool tlb[AbsWalk]; // TLB (a map of walks)

5 Hardware *h; // pointer to hardware container

6 _(invariant \approves(h, tlb, CR3) // approval by hardware

7 _(invariant \approves(\this->\owner, tlb, CR3)) // thread approval

8 _(invariant \on_onwrap(\this, \false)) // remains always closed

9 } VProcessor;)
10 _(ghost typedef struct _VHardware {
11 VProcessor p[VP_CNT]; // map of virtual processors

12 Ppfn gpa2hpa[Ppfn]; // memory translation

13 volatile Pid i; // index of acting processor

14 volatile Action act; // type of action

15 volatile AbsWalk w; // TLB walk for the action

16 _(invariant \forall Pid i; i < VP_CNT ==>
17 p.h == \this && p.h.\closed) // back link for approvals

18 _(invariant \forall Ppfn a; gpa2hpa[a] ==>
19 ((Gpt *)page(gpa2hpa, a))->h == \this &&
20 ((Gpt *)page(gpa2hpa, a))->\closed) // back link for approvals

21 _(invariant p_unch(p) && m_unch(abs_m(gpa2hpa)) ||
22 act == TLB_SET_AD && tlb_setad(p, i, w, old(read_pte(w,gpa2hpa)))
23 && m_upd(abs_m(gpa2hpa), w) ||
24 act == CORE_INVLPGA && core_invlpga(p, i)
25 && m_unch(abs_m(gpa2hpa)) || ... ) // transition relation

26 _(invariant \on_onwrap(\this, \false)) // remains always closed

27 } VHardware;)

Listing 10.3: Virtual hardware configuration.

the ownership of these VPs has to be transfered to the hardware thread,
analogously to the ownership of the host processor state.

Virtual Hardware Transition Relation

Analogously to the host hardware model, we introduce a data structure
VHardware which approves individual transitions of every virtual processor
of a given VM (Listing 10.3).

Meta variables i, act, and w are now used to choose a certain step we want
to simulate at some point in the hypervisor execution or in the execution of a
hardware thread, if the hardware step involves simulation of a VM step (see
Section 8.4.1).

The main difference of the virtual hardware w.r.t the host hardware is the
treatment of memory. For the host hardware (which is a model of the hardware
component of a C thread introduced in Chapter 7), we do not need to explicitly
state framing for the memory. This is due to the fact that all (memory-writing)
steps of the host hardware are modelled explicitly in the hardware thread, and
there we guarantee that these steps perform only valid memory updates of the
C memory according to the C-IL + HW semantics.

In contrast to that, the memory of the VM is abstracted from a dedicated
portion of the C memory. Since this memory region can be also updated by
the hypervisor, we have to make sure that these memory updates comply
with the semantics of the virtual hardware machines. For this we require the
virtual hardware to approve all memory pages allocated to this VM. We obtain
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those pages using the map gpa2hpa translating guest physical addresses to
host physical addresses (which is a copy of the gpa2hpa map from the guest
configuration). An arbitrary memory page of the VM is modeled as a GPT
consisting of guest PTEs (GPTEs).

1 typedef struct _Gpt {
2 volatile Pte e[512]; // array of PTEs

3 _(ghost VHardware *h;) // pointer to the virtual hardware

4 _(invariant \approves(h, e)) // approval by virtual hardware

5 _(invariant \on_onwrap(\this, \false)) // remains always closed

6 } Gpt;

We locate the virtual hardware configuration as a ghost field of the partition
configuration (Section 9.1.2).

1 typedef struct _Guest {
2 ...
3 _(ghost VHardware g;) // pointer to the virtual hardware

4 _(invariant \mine(g)) // ownership of the virtual hardware

5 _(invariant \on_onwrap(\this, \false)) // remains always closed

6 } Guest;

10.3 Shadow Page Table

Shadow page tables are implemented as structs, consisting of 512 volatile
unsigned integers 64-bit long (Section 9.1.4). In our algorithm sharing of
SPTs is not supported and every SPT is owned by the VP to which it is
assigned, meaning that only this VP can modify this SPT. At the same time,
we further plan to extend our verification for a version of the SPT algorithm
with sharing. In that algorithm a single SPT which is owned by some VP, can
be also written by host TLBs of other processors. Hence, a hypervisor thread
operating with this VP might race with other TLBs when accessing this SPT. To
handle this situation, we introduce a ghost copy for every SPTE and make this
copy approved by the VP, which owns the SPT. Further, we add an invariant
saying that all the bits of the original SPTE, except A and D bits, are always
equal to the same bits of the ghost copy of this SPTE. As a result, we can be
sure that TLBs would never modify any bits of SPTEs, except A and D bits.

1 typedef struct _Spt {
2 volatile Pte e[512]; // array of PTEs

3 _(ghost volatile Pte ge[uint];) // owner−approved copies of PTEs

4 _(invariant \approves(\this->\owner, ge)) // owner approval

5 _(invariant sptes_eq_except_a_and_d(e, ge)) // relation between two copies of PTEs

6 _(invariant \on_onwrap(\this, \false)) // remains always closed

7 } Spt;

10.4 Virtualization Correctness

The way how we stated and proved virtualization correctness in Chapter 8 and
Chapter 9 is nice for a paper-and-pencil proof, but is not the best one for a
modular C verifier. In VCC after a step of the machine we want to check as
few invariants as possible and do not want to explicitly maintain all parts of
the coupling invariant after every step of the machine. Hence, we apply the
following modifications to our verification approach:
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1. we observe, that in our main correctness theorem (Theorem 8.1), the
coupling invariant is not mentioned at all. It is used not as a part of
the correctness criteria, but rather as an auxiliary invariant which is
necessary to derive the main property (i.e., equality of traces). Hence,
the coupling invariant is not strictly required to hold all the time,

2. we split all invariants from Chapter 8 into two sets: one set which gathers
‘‘global’’ properties over all VPs (this includes e.g., inv-memory-coupling
and inv-distinct-asids) and another one which fixes ‘‘local’’ properties of
VPs (this includes local version of inv-complete-walks, inv-partial-walks,
inv-reachable-root, inv-reachable-child, and inv-vtlb-walks),

3. we also observe, that for correct simulation of the steps of the hardware
component (Theorem 8.3) we don’t need to require all parts of the
coupling invariant, but only need the ‘‘global’’ invariants, and the ‘‘local’’
ones for the running VP. Moreover, since these steps can possibly modify
only SPTs belonging to the running VP, ‘‘local’’ invariants of other VPs
can not be broken,

4. when verifying an intercept handler, we require as a precondition that
the ‘‘global’’ and the ‘‘local’’ part of the coupling invariant for the handled
VP holds. We show that for all possible scheduling, the ‘‘global’’ part
of the invariant is maintained after every C step and the ‘‘local’’ part is
maintained in the end of the handler (though it could possibly break in
the middle of the function).

5. we show that all updates of the state of the virtual hardware (either by
the hardware component or by an intercept handler) comply with the
transition relation (i.e., form the sequence of valid guest steps),

6. we show that if ‘‘local’’ invariant of some VP holds, and the configuration
of this VP, as well as all SPTs and PTIs allocated to this VP, remain
unchanged in a machine step, then this ‘‘local’’ invariant also holds after
the step (this is done by the VCC admissibility check).

Finally, we can be sure that (i) the ‘‘global’’ part of the coupling invariant
holds for all steps of the machine (including the steps of the hardware
component), (ii) the ‘‘local’’ invariant of a handled VP holds in the end of the
intercept handler, and (iii) this local invariant is maintained afterwards if no
other thread is modifying its state, SPTs, and PTIs (which we guarantee to be
true, because of the ownership of these data structures by a thread).

To make sure that the ‘‘global’’ properties from the coupling invariant
always hold, we put them into data structures which are always closed (i.e.,
the hardware interface and the guest configuration). To be able to update
ghost fields mentioned in these invariants, we make them volatile. For the
implementation fields, which are sequential but are still mentioned in the
invariants (as e.g., ASID field of the VP configuration) we introduce a ghost
volatile copy, which we put in the closed object (see Section 10.1.2). We further
make sure that every time when we use a sequential copy of this field its value
is equal to the value of the volatile copy, which guarantees that invariant is
preserved.

The ‘‘local’’ properties of a VP are stored in the VP configuration. VP owns all
SPTs and PTIs assigned to it, as well as the state of the respective abstract VP.
As a precondition to an intercept handler we require the VP configuration to be
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wrapped, which means that it is owned by a thread and its ‘‘local’’ invariants
hold. This implicitly gives the thread ownership of all objects owned by the VP
itself. As a postcondition we guarantee that the VP is wrapped back and its
state corresponds to the action performed by a handler (see Section 9.5 for the
state of the abstract VP after the handler is executed).

When emulating the steps of the hardware component of a thread (Theorem
8.3) we require all VPs (including the running one) assigned to the host
processor to be wrapped8. The ownership of these VPs has to be passed to the
hardware thread from the hypervisor thread at the execution of the VMRUN
statement. At the VMEXIT step the ownership of the VP has to be passed back
to the hypervisor thread.

When we perform an update of the virtual hardware, we have to make
sure that it is valid w.r.t to the transition relation. For this we make the
state of the virtual hardware volatile, keep it in a closed object, and make it
approved by another object, which contains the hardware transition relation
(see Section 10.2.3). This guarantees that we simulate only valid steps of the
virtual hardware (Section 10.5).

VCC admissibility check guarantees that the ‘‘local’’ invariant of a VP
is stable under updates of other object. Note, that to state ‘‘local’’
invariants mentioning the set of host walks (pls->walks from Chapter 8
and hwi->rwalks from this Chapter), which is shared between different VPs,
we have to make this set volatile and to add 2-state invariants restricting its
transitions. For instance, we add an invariant which guarantees that any
thread can remove walks from this set only if it owns some VP configuration
belonging to the same host processor. Moreover, it can remove the walks only
in the current ASID of this VP configuration. From the uniqueness of ASIDs
(invariant inv-distinct-asids), we always know that no other VP can have the
same valid ASID as our VP does. Hence, all possible updates of the set of walks
by other threads would not break the invariant of our VP.

10.5 Virtual Hardware Simulation

As an example of a guest-memory accessing operation we consider the
setting of A/D bits and performing a walk extension in the inner loop of
the walkguest function (line 19 Listing 9.7). The version of this loop with
(simplified) VCC annotations is given in Listing 10.4.

The simulation is done in the same atomic block, where the writing of the
GPTE occurs and only if the compare-exchange operation was successful. As
parameters to the atomic block we pass the following objects:

• GPT gpt on which we operate,
• pointer to abstract configuration p of the VP which is used to justify the

access,
• virtual hardware configuration guest->g which contains the transition

relation of the VM,

8It would be sufficient to require ownership only for the running VP. Nevertheless, requiring
ownership of all VPs belonging to a given host processor is also sound.
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1 ...
2 while (!cmp_result)
3 _(writes vp)
4 _(invariant \thread_local(vp) && \claims(gc, guest->g) && ...)
5 _(invariant guest->g.p[vp->id].tlb[WALK_PTES(vp->gwo, vpfn, res)])
6 ...
7 {
8 _(atomic gpt){
9 old_pte = gpt->e[px]; //fetching GPTE

10 ... // here simulate PF step

11 }
12 _(unwrap vp) // opening thread−local object

13 _(ghost VProcessor *p = &guest->g.p[vp->id];) // pointer to the abstract VP

14 _(atomic gpt, p, guest->g, gc){ // setting A and D bits

15 if (can_wextend(old_pte, rw, ex, us, res.level)) {
16 cmp_result = (old_pte == asm_cmpxchg(&gpt->e[px], old_pte,
17 (res.level == 1 && rw && READ_PTE_RW(old_pte))
18 ? SET_PTE_AD(old_pte): SET_PTE_A(old_pte)));
19 _(ghost if (cmp_result) { // fixing step parameters

20 guest->g.i = vp->id; // setting ID of the abstract VP

21 guest->g.act = TLB_SET_AD_WEXT; // choosing the type of a step

22 guest->g.w = WALK_PTES(vp->gwo, vpfn, res); // walk that will be extended

23 Pte pte = (res.level == 1 && rw && READ_PTE_RW(old_pte))
24 ? SET_PTE_AD(old_pte): SET_PTE_A(old_pte); // PTE for a walk extension

25 Rights r = ACCUM_RIGHTS(guest->g.w.r, old_pte); // permissions

26 if (res.level == 1 && !rw && !READ_PTE_D(res.pte[1]) &&
27 RW_SET(res.level))
28 r[RIGHT_WRITE] = 0; // restricting writes for dirty bit propagation

29 AbsWalk new_walk = WEXT(guest->g.w, pte, r); // extended walk

30 guest->g.p[vp->id].tlb[new_walk] = 1; // adding new walk to VTLB

31 })
32 } else // don’t do update if the entry is not present

33 cmp_result = 1;
34 }
35 _(wrap vp) // closing thread−local object

36 }
37 ...

Listing 10.4: Simulating step of the virtual hardware.

• a claim on the virtual hardware which guarantees that VM configuration
is closed (it is not thread-local because one container is shared between
all VPs belonging to a given VM).

To show simulation, we have to choose an appropriate action by writing the
(volatile) meta-variables of the VM configuration. First, we choose the acting
VP by writing its ID to the field guest->g.i (line 20). Then we choose the
action of setting A/D bits and extending a walk (line 21). Note, that since
we are not able to simulate two different actions in one atomic block, we had
to extend our hardware transition relation with a step which performs both
setting of A/D bits and walk extension in a single transition.

Further, we assign the walk we are going to extend to the field
guest->g.walk (line 22). In order for the simulation to succeed, this walk
has to be already present in the virtual TLB (i.e., has to be added to the VTLB
on one of the previous iterations of the outer loop or has to be added to the
VTLB before the loop execution has started). To ensure this we maintain loop
invariants (on both inner and outer loops), which guarantee that the walk
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constructed through the GPTEs already fetched to res is present in the VTLB
(line 5).

After this, we calculate the value of the PTE which we are going to use
for the extension (line 23). It should be equal to the value of the GPTE in
the memory after the compare-exchange operation succeeds. Additionally, we
calculate the permissions for the new walk. To do this, we first calculate the
maximal possible rights through all fetched GPTEs, including the one fetched
on this loop iteration (line 25)9. Further, we decide whether we need to restrict
the write permission of the walk (line 28) for further dirty bit propagation
(see Section 9.5.3). Finally, using the walk guest->g.w, the PTE, and the
permissions for the extension we can calculate the new walk, which we add to
the VTLB (line 30).

The invariants of the virtual hardware are checked automatically at the
end of the atomic block, ensuring that a selected hardware step is performed
accordingly to the transition relation. Since in this atomic block we operate
only with the state of a single VP, VCC doesn’t need to check the invariants of
other VPs. The invariants of the hardware interface also are untouched here,
because the set of the reachable walks remains unchanged.

10.6 Hardware Thread

The hardware thread consists of a number of ghost functions each performing
a single step of the host hardware (see Section 7.2.2) in a single atomic block.
Depending on the type of a hardware step we either have to respectively
perform a step of the virtual hardware or to show that the coupling invariant
is maintained without changing the state of the VMs (see Theorem 8.3).

For a step which does require an update of the virtual hardware
configuration (i.e., all steps which are not TLB steps), the running VP performs
exactly the same kind of a step as the host hardware does and the proof is
trivial. Yet, the most complicated steps verification-wise are the ones where
the state of the VMs remains unchanged. These steps include walk creation,
walk extension, and setting of A/D bits by the host TLB.

As an example, we consider a step of setting A/D bits (Listing 10.5). The
ghost function mmu_step_setad takes as an input pointer to the guest
manager gm, the ID hp_idx of the host processor making a step, the walk
which will be used for the step, and claim gc which guarantees that the guest
manager always stays closed. This implies that the hardware container gm->h
and the hardware interface gm->hwi, which are owned by the guest manager,
also stay closed.

As a precondition, we require the claim to be valid, hp_idx to be less then
the number of processors in the system, and all VP configurations assigned to
this host processor to be wrapped (i.e., closed and owned by a thread). The
ownership of VPs guarantees that no other thread at the same time will modify
their configuration, SPTs, and PTIs.

As parameters to the atomic block (line 10) we pass the following objects:

9Note, that the ‘‘fetching’’ of a GPTE actually occurs at the time when the compare-exchange
operation succeeds. Later in the function we add the written value of the GPTE to the array
res.pte (line 28 in Listing 9.7).
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1 _(ghost void mmu_step_setad(Gm *Gm, \claim gc, uint hp_idx, AbsWalk w)
2 _(requires \claims(gc, Gm->\closed) && \wrapped(gc))
3 _(requires hp_idx < HP_CNT)
4 _(requires \forall uint i, j; i < VP_CNT && j < GUEST_CNT ==>
5 (gm->guests[i].vp[j].hp_idx == hp_idx ==>
6 \wrapped(&gm->guests[i].vp[j])))
7 {
8 Processor *hp = gm->h.p[hp_idx]; // pointer to a host processor

9

10 _(ghost_atomic gm, gc, hp, (Spt *)(w.pfn << 12)) {
11 Spt *spt = (Spt *)(w.pfn << 12);
12 uint px = compute_idx(w.vpfn, w.l);
13 _(assume hp->tlb[w] && w.l != 0 && w.asid == hp->asid
14 && hp->asid > 0 && spt->e[px].p) // assuming guard

15 Vp* vp = gm->hp2vp[hp->id][hp->asid]; // getting the running VP

16 _(assert \inv(vp)) // asserting invariant of the running VP

17 _(begin_update) // start of update in the block

18 spt->e[px] = (w.l == 1 && w.r[rw] && spt->e[px].rw)
19 ? SET_AD(spt->e[px]) : SET_A(spt->e[px]); // performing a write

20 gm->h.id = hp_idx; // setting ID of the acting host processor

21 gm->h.act = TLB_SET_AD; // choosing the type of a step

22 gm->h.w = w; // choosing a walk for the step

23 }

Listing 10.5: Step of the (host) hardware component.

• a pointer to the guest manager and a claim, which guarantees that the
guest manager stays closed,

• a pointer to the abstract configuration of the host processor performing
a step, and

• a pointer to the SPT which we are going to modify.

Inside the atomic block we start with getting the pointer to the SPT (line
11) and the page index of the updated PTE (line 12). Then we assume a guard
for the step (line 13). Next, we find the VP which is currently running on this
host processor (line 15) and assert invariant of that VP (line 16). Then we use
keyword begin_update, which tells VCC at which place to actually start the
atomic action by havocing information over the shared (volatile) state. Then
we perform a write to the SPT (line 19). Finally, we fix the parameters of the
step by setting the meta variables of the hardware configuration (lines 20-22).

With the help of the invariant of the running VP and the hardware interface
(particularly, inv-pls-walks, inv-partial-walks, and inv-complete-walks) VCC
derives that the memory write is performed to an SPT owned by that VP. The
write to the memory goes through, since the updated SPTE is volatile and we
update only A and D bits from it (which means that the invariant of the SPT,
which links SPTE with its owner-approved copy is maintained). All invariants
of the updated and approving objects, including the invariants of the updated
SPT, of the hardware container, and of the hardware interface, are checked by
VCC automatically at the end of the atomic block.
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Summary and Future Work

Up to our knowledge, this thesis presents the first functional verification of a
TLB virtualization algorithm, as well as the first verification of any kind against
a realistic model of a modern hardware MMU. We have presented a formal
model stack starting from an abstract hardware model up to the integrated
semantics of C-IL + HW + Ghost, providing a framework for functional
verification of the hypervisor code running in parallel with the guest code.
Though we have applied this framework only to prove TLB virtualization, it
can also be generalized for verification of the complete virtualization layer
of the hypervisor, by instantiating the instruction automaton of the hardware
machine and adding it to the hardware component of the C-IL + HW semantics
(see below for details). We have implemented our framework inside an
automatic C code verifier and have used it for the verification of a simple
SPT algorithm, written in C.

Our implementation of the SPT algorithm contains ca. 700 lines of C
code (including initialization of data structures which is not presented in this
thesis) and ca. 4K lines of the annotations which include function contracts,
loop invariants, data invariants, ghost code, and (proof) assertions. Roughly a
third of annotations comprise function and block contracts and another third
is ghost code for maintaining ghost fields, showing simulation, and running
the hardware thread. The overall proof time is ca. 18 hours on one core of
2GHz Intel Core 2 Duo machine1.

Finally, we outline the possible directions of future work.

1In our verification we used the second version of VCC from July 2011. Since then many
changes have been made to VCC, which dramatically improved its performance. The major
change was a new memory model introduced with the third version of VCC [BM11]. Certain
technical adaptations have to be made to our VCC annotations to make the proofs run through
with recent versions of VCC and making these adaptations remains a part of the planned future
work. From our experience with the third version of VCC we believe that after the necessary
adaptations are made we can improve the verification time by an order of magnitude and can
decrease the annotation overhead roughly by half (mainly by decreasing the number of assertions
in the code acting as ‘‘verification hints’’ for VCC).

237
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• In the model stack presented in this thesis we use a simple ownership
strategy, where we require all writes to shared data to be performed with
atomic interlocked instructions. Cohen and Schirmer in [CS10] prove
a store buffer reduction theorem for a much more elaborate ownership
strategy, aimed at showing absence of triangular data races. Though
they consider a quite general hardware model, its instantiation with our
model is tedious because of the presence of MMUs as separate actors,
which operate directly on the main memory, bypassing SBs. Hence,
to replace the simple ownership discipline in our framework with the
Cohen-Schirmer’s ownership, one has to adapt the models from [CS10]
to include MMUs, and to modify the proofs respectively. This work is
currently in progress at the chair of Prof. Paul in Saarland University.

• In Section 3.3.2 we introduce an abstract MOESI protocol. One might
prove, that our model simulates the concrete implementation of the
shared memory with the MOESI cache-coherency protocol implemented
in [Pau11].

• The TLB model presented in this thesis is lacking some widely-used
features, such as support for large and global pages. One might extend
our hardware model to support these features. Extension of the SPT
algorithm is also needed in this case, because one has to virtualize global
and large pages of the guest correctly.

• Currently in our work we do not consider memory-mapped devices. As
a result, we do not model memory writes with side effects and can set
the type of the whole guest memory to ‘‘write-back’’. One might add
support for memory mapped I/O to our model. In this case the caching
policy for the virtualized memory has to be changed either to mirror the
caching policy of the guest, or to split the memory region into two disjoint
portions, one with a write-back type and another with an uncacheable
memory type. With the first solution one would have to make caches
visible in the hardware machine running in the guest mode, as well as
to add caches to guest VMs.

• Another restriction which we have in our hardware model, is the absence
of interrupts. A possible way to integrate interrupts to our model is to
reorder the steps of interrupt handlers to consistency points, just as we
do with the guest steps. This requires proving another reduction theorem
in the style of [Bau12]. The work on the interrupt handling in hypervisor
verification in currently in progress at the chair of Prof. Paul in Saarland
University.

• For the hypervisor’s own translations we are currently considering only
identity-mapped page tables. One might generalize our theorems to be
applied for other mappings. Throughout the thesis we have given some
hints on how to do that (see Section 4.5.3 and Section 7.2.2).

• The formal framework, presented in this thesis, does not consider the
kernel layer of the hypervisor. Probably the most complicated part of the
kernel layer verification is the proof of a thread switch mechanism. To
integrate the results from this thesis with the correctness of the kernel
layer, one has to show that the kernel layer provides an abstraction of
the hardware machine, which we use in the bottom of our model stack.
The work on this problem is currently in progress at the chair of Prof.
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Paul in Saarland University.
• The hardware model which we used in our VCC proofs is slightly simpler

than the one introduced in this thesis. Particularly, we haven’t argued
about memory request/result buffers and SBs. We believe, that these
differences do not produce any additional obligations on the hypervisor
code itself and only reduce the number of unintercepted hardware steps,
for which we show correct virtualization in VCC (the paper-and-pencil
proof for all of these steps, including the ones which were not performed
in VCC, is given in Theorem 8.3). We plan to adapt our formal VCC
proofs so that they adhere to the paper-and-pencil verification presented
in this thesis as a part of the future work.

• When creating a new SPT, we currently assume that there is always at
least one free SPT available. To weaken this assumption one has to
implement a more sophisticated approach in management of free/used
SPTs. For instance, one can allocate SPTs dynamically from the heap
memory of the hypervisor and limit the number of SPTs which can be
allocated to a given VP to make sure that every VP will get its own portion
of the heap memory reserved for SPTs. Further, if the number of SPTs
allocated to a single VP exceeds the limit, one has to find some SPTs for
reclaiming (i.e., detaching and freeing). In our algorithm we do reclaiming
only at the time when we detach a subtree in the PF intercept handler,
but a similar reclaiming strategy can be applied to an arbitrary SPT of a
given VP.

• Using our verification framework, one might verify more complicated
versions of the SPT algorithm, for instance the version with sharing of
SPTs, pre-fetching, and selective-write protection of GPTs.

To complete verification of the virtualization layer of the hypervisor using
our framework, one has to do the following:

• instantiate the instruction automaton of the hardware machine with the
x64 ISA specification in the style of [Deg11],

• lift the part of the instruction automaton responsible for the guest
execution to the hardware component of the C-IL + HW machine,

• extend the consistency relation for C-IL + HW to couple the newly added
part of the state,

• for the abstract VM configuration use the automaton with both memory
and instruction parts, instead of just the memory automaton which is
used now,

• show simulation not only for memory actions, but for all hardware steps
in the guest mode.
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RedHardwca , 62
RedHardwsb, 62
RedMemHardw, 61
RegCr3, 51
Rights, 41
SB, 38
SBItem, 38
SharedAddr, 66
StackAddr, 67
Store, 38
Tid, 105, 107
Tlb, 44

TlbReq, 28
UC, 32
VmConfig, 171
VpConfig, 172
WB, 32
WC, 32
WP, 32
WT , 32
Walk, 41
[e]π,θc , 99, 101

g0 �
→ gn, 169

g
a
→ g′, 169

h0 �
→ hn, 15

� ≡ ω, 146
c

�
→
π,θ
c′, 140

TC, 90
TP , 90
MG, 128
MGE, 128
π, θ ` c → c′, 106, 139, 159
π, θ ` c →∗ c′, 106
π, θ ` c →t c′, 106
π, θ ` c →+

t c
′, 106

π, θ ` c →+ c′, 106
π, θ ` c

cil
−−→ c′, 139, 159

π, θ ` c
cil
−−→t c′, 140

π, θ ` c
cil(t)
−−−→ c′, 140

π, θ ` c
G
−→ c′, 132

π, θ ` c
hw
−−→ c′, 139

π, θ ` c
hw
−−→t c′, 140

π, θ ` c
hw(t)
−−−−→ c′, 140

π, θ ` c
I
−→ c′, 132

π, θ ` c(t)→ c′(t), 106, 139
Bpfn, 27
Bvpfn, 27
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Bbpa , 27
Bbva , 27
Bqpa , 27
Bqva , 27
Bgm , 117
E, 93
EG, 129
Fname, 93
Nspt-cnt , 175
O1, 93
O2, 93
S, 93
S′, 129
SG, 130
TGQ, 126
TQ, 91
σπθ , 101
τ, 99
τπ,θE , 100
τF , 100
τV , 99
τπfun, 99
zeroθ, 101
abs-pte, 43
affected-byte-addr, 68
bytei , 31
bytes2valθ, 97
c(t), 106
c.Mi , 102
c.Vtop, 100
c.fi , 102
c.loci , 102
c.rdsi , 102
cacheable, 32
callframe, 104
cg2cil, 133
cg2cil-prog, 133
cg2cil-sfπ , 133
cg2cil-stack, 133
chwg2cg, 160
chwg2chw, 160
cil, 138
cil2chw, 138
cil2chw0, 138
code-consis, 117
combine, 31
commit-store, 41
complete, 42
concrete-pte, 44
confC+G, 130

confC+HW+G, 159
confC+HW , 138
confC−IL , 95
confCC+G, 130
confCC+HW+G, 159
confCC+HW , 138
confCC−IL , 106
consis, 119
consisCC+HW , 149
contextC−IL , 96
control-consis-stablei , 118
control-consisi , 118
core-atomic-cmpxchng, 53
core-instr-step, 58
core-issue-mem-req, 51, 58
core-locked-memory-write, 54
core-memory-read, 52
core-memory-write, 52
core-mov2cr3, 56
core-prepare-page-fault, 54
core-send-mem-res, 51, 58
core-tlb-invlpga, 55
core-trigger-page-fault, 55
core-vmexit, 56
core-vmrun, 57
corec, 138
cosched, 115
countstmt , 134
cpoint, 114
cpointC−IL , 120
cpointk, 114
cr3-2-uint, 51
create-walk, 45
cwalksc, 184
decl, 99
drop-walks, 47
drop-line, 37
drop-sfence, 41
dropframe, 102
empty-sb, 40
empty-tlb, 50
ext(RedHardw), 146
ext(C-IL+HW), 146
extend-walk, 46
fetch-line-from-ca, 36
fetch-line-from-mm, 36
forward, 40
frameC+G, 130
frameC−IL , 95
funC+G, 131
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funC−IL , 96
gfunC+G, 131
ghost-safe-seqπ,θC+G, 134
ghost-safe-stmtπ,θC+G, 134
gid, 169
global-consis, 117
gm-consis, 117
guest-cpointk, 114
guest-iopointk(�, i), 113
guest-trace, 146
guestc, 172
hp2vpc, 170, 174
hw2gwc, 179
hw-consis, 148
hw-id-trace, 170
hw-step(a), 140
hw-trace, 146
hyp-cpointk, 114
hyp-iopointk, 112
idx2hpac, 175
impt-in-IMPTAddr, 75
incloc, 102
inject-dataπ,θ, 105
inv-complete-walks, 184
inv-core-buffers-coupling, 178
inv-coupling, 185
inv-cr3-cacheable, 77
inv-cr3-coupling, 177
inv-disjoint-ownership-domains,

68
inv-distinct-asids, 174
inv-htlb-complete-walks, 179
inv-htlb-walks, 181
inv-local-consis-stable, 119
inv-memory-types, 183
inv-mm-coupling, 176
inv-owned-atomic, 69
inv-owned-atomicr , 81
inv-owned-reads, 68
inv-owned-readsr , 81
inv-owned-stores, 69
inv-owned-writes, 68
inv-owned-writesr , 81
inv-ownership-discipline, 70
inv-ownership-discipliner , 81
inv-ownership-transferr , 82
inv-partial-walks, 183
inv-pls-walks, 181
inv-reachable-child, 183
inv-reachable-root, 183

inv-running-asids, 181
inv-sb-cacheable, 63
inv-sb-coupling, 177
inv-tlb-cacheable, 63
inv-tlb-coupling, 185
inv-tlb-ownership, 69
inv-tlb-ownershipr , 82
inv-tlb-walks-impts, 76
inv-valid-asids-range, 175
inv-valid-im-translations, 76
inv-vtlb-walks, 181
inval-tlb, 50
iopoint�,k, 113
iopoint�, 113
is-empty, 40
is-function, 96
isarray, 92, 126
isfptr, 92, 126
isptr, 92, 126
local-consisi , 119
local-seq, 115
make-exclusive, 37
masked-updatec, 143
memreq-eq, 178
memres-eq, 178
mt-combine, 33
mtrr-cacheable, 76
mtrr-mt, 33
next-cpoint, 114
next-instr-state, 58
no-page-fault, 49
non-aliasing-abstractions, 185
normal-writeπ,θ, 109
page-fault, 46
pass-ownership, 37
pat-mt, 33
pending-byte-store, 39
pending-qword-store, 39
pending-store, 39
pfn2bytes, 27
pfn2qwords, 27
ph-inval-tlb, 50
pid, 25
plsc, 174
progC+G, 131
progC−IL , 95
pte-addr, 43
pte-read, 43
pte-set-ad-bits, 47
pte-write, 43
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ptic, 176
qt2t, 91
qword2bytes, 27
read, 32, 34, 97, 98
read-ptec, 142
read√, 34
readvalMG

, 129
reduced-sb, 71
reduced-sb-mm, 70
reduced-ca-hw, 62
reduced-ca-mm, 62
reduced-hw, 79
reduced-sb-hw, 71
reduced-tlb, 77
reduced-tlb-hw, 77
reorder-store, 40
root-pt-memtype, 51
running-threadk, 115
rwalksc, 182
safe-assignmentπ,θ, 109
safe-cmpxchngπ,θ, 110
safe-conf , 83
safe-confr , 84
safe-conf π,θC+HW+G, 160
safe-conf π,θC+HW , 147
safe-expπ,θ, 108
safe-expsπ,θ, 108
safe-fcallπ,θ, 110
safe-hyp-confr , 84
safe-hyp-seqr , 85
safe-local-seqπ,θC−IL , 111
safe-locked-writeπ,θ, 109
safe-progπ,θCC+HW+G, 161
safe-progπ,θCC+HW , 147
safe-read, 107
safe-seq, 83
safe-seqπ,θCC+HW , 147
safe-seqr , 84
safe-stepπ,θC−IL , 111
safe-stmtπ,θ, 110
safe-tlbsc, 147
safe-tlbsr , 84
safe-transferπ,θ, 111
safe-vmrunπ,θ, 110
safe-writeπ,θ, 109
sb-cnt, 38
sb-data, 39
sb-memtype, 39
set-access-dirty, 47
setloc, 103

shared-readπ,θ, 119
shared-stmtπ,θ, 119
shared-writeπ,θ, 109
siG, 133
sizeθ, 97
sptc, 175
stack-consis-stablei , 118
stack-consisi , 117
stmtnext , 102, 132
sub-exprπ,θ, 108
tlb-empty-asid, 49
tlb-fault-ready, 49
tlb-invalidated, 49
tlb-invalidated-pf , 49
tlb-memtype, 50
tlb-transl-ready, 48
top, 102
traces-eq, 170
uint2cr3, 51
val, 92
val2bytesθ, 97
valG, 128
valid-asidc, 174
valid-im-transl-step, 76
vm-trace, 169
vpc, 172
walks-toc, 175
wext, 45
wext√, 46
write, 32, 35, 40, 97, 98
write-ptec, 142
write√, 35
writevalMG

, 129
writeback-line-to-mm, 37
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