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Abstract

One decisive factor for the success of symbolic search using
BDDs is whether or not the variable ordering is good. A gen-
eral intuition is that smaller BDDs result if inter-dependent
variables are close together. The most common means to cap-
ture variable dependencies in planning are causal graphs, and
consequently previous work defined variable orders based on
these. Starting from the observation that the two concepts
of “dependency” are actually quite different, we introduce
a framework for assessing the strength of variable ordering
heuristics in sub-classes of planning. It turns out that causal
graph based variable orders may be exponentially worse than
optimal even for very simple planning tasks. Experiments
with a broad range of such variable ordering variants indicate
that they are mediocre at best.

Introduction

The variable ordering is a decisive factor for BDD-based
planning. Roughly speaking, BDDs are small if “depen-
dent” variables are scheduled close to each other. The
planning literature contains a widely used notion to cap-
ture variable dependencies — causal graphs (Knoblock 1994;
Domshlak and Dinitz 2001) — so the straightforward ap-
proach is to plug that concept into a BDD variable ordering
heuristic. Indeed, that is the approach of Gamer (Kissmann
and Edelkamp 2011), the state of the art planner of this kind.

“So, what is the problem?” we hear the reader asking.
Our reply is that the use of the word “dependency” in the
above deserves a second inspection. In the causal graph,
it means that the variables appear in at least one common
action, entailing that we cannot, in general, change the value
of one variable without also changing the other. BDDs, on
the other hand, represent Boolean functions (. If many of
the possible assignments to a subset P of variables directly
entail the value of ¢, independently of the assignment to all
the other variables, then the variables P should be close to
each other. In planning,  will represent layers of states with
equal distance from the initial state (forward search) or the
goal (backward search). So the concept of “dependence”
here is one of being able to quickly determine whether or

*This is a slightly extended version of our paper at the In-
ternational Conference on Automated Planning and Scheduling
(ICAPS) 2013 having the same title. This version includes full
proofs in the appendix.

not a state is a member of such a layer. What, if anything,
does this have to do with causal graph dependencies?

We do not wish to claim that we close this question con-
clusively, but we contribute a number of insights suggesting
that the overall answer is “not much”. We introduce a sim-
ple formal framework for assessing the strength of variable
ordering heuristics in sub-classes of planning. Applying this
to causal graph based orders, it turns out that these may be
exponentially worse than optimal even for very simple plan-
ning tasks. (For readability, the main text contains proof
outlines only. The full proofs are given in an appendix.) We
complement these findings by a large experiment with many
variants of known variable ordering heuristics, showing that
these work better than random orders, but much worse than
off-the-shelf BDD reordering techniques.

Background

To minimize encoding size, it is essential for BDD-based
planning to use a finite-domain variable representation. We
therefore locate our investigation in that framework. A
finite-domain representation (FDR) planning task is a tu-
ple IT = (V, A, I, G), where V' are the state variables each
of which is associated with its finite domain D(v), A is a
finite set of actions a each of which is a pair (pre(a), eff(a))
of partial assignments to V, the initial state I is a complete
assignment to V, and the goal is a partial assignment to V.
To save space, we do not specify the (well-known) seman-
tics of this construction. By V(pa), for a partial assignment
pa, we denote the variables v € V where pa(v) is defined.

Binary decision diagrams (BDDs) represent Boolean
functions ¢. A BDD f is a directed acyclic graph with one
root and two terminal vertices, the O-sink and the 1-sink.
Each internal vertex corresponds to a binary variable p and
has two successors, one taken if p is true and one taken if p is
false. For any assignment to all variables p, the sink reached
is the value of the function ¢ represented by 5.

We consider BDD-based planning as implemented in
Gamer. The finite-domain variables V' of the FDR task are
encoded by replacing each v € V with a binary counter
~(v) using loga|D(v)| bits. Search is forward and/or back-
ward breadth-first. Each layer L of states during search —
a subset of states with identical distance to the initial state
(forward search) or the goal (backward search) — is then rep-
resented by a BDD for its characteristic function.



The BDDs are ordered, i.e., the ordering of the binary
variables on any path through 3 is fixed. The size of the
BDD may vary exponentially as a function of this ordering,
so it is crucial in practice to come up with good orderings.
BDD packages come with dynamic reordering algorithms,
but in planning their runtime overhead typically outweighs
the benefit (Kissmann and Edelkamp 2011). Hence practi-
cal systems employ variable ordering schemes. We define
these here as functions {2 mapping any planning task II to
a non-empty set Q(II) of variable orderings, i.e., order-
ings of the planning task’s finite-domain variables V. We
use sets, rather than unique Q(II), to capture the ambigu-
ity inherent in the ordering schemes we are interested in
here. Q(II) is computed in a pre-process, and one order
(V1,...,vn) = 0 € Q(II) is chosen arbitrarily (i.e., we do
not consider that latter step here). To obtain the actual BDD
binary variable order, we then simply replace each finite-
domain variable v; in o with its binary counter v(v;). In
other words, the BDD treats the counters +(v) like insepara-
ble fixed blocks. (Since the counter bits are not represented
at the level of the planning task II, it would be impossible for
) anyhow to make informed choices in such separations.)

Given this, for any layer L and ordering o of the planning
task’s finite-domain variables, the ordered BDD is unique.
We denote its size (number of vertices) by BDDSize(o, L).
By BDDSize* (L) := min, BDDSize(o, L), we denote the
size of the BDD for an optimal variable ordering; finding
such an ordering is computationally hard (Bryant 1986).

The state of the art ordering scheme is based on the causal
graph CGry of the planning task. CGryy is a directed graph
with vertices V, and an arc (v, v’) iff v # v’ and there exists
an action a € A such that (v,v’) € V(eff(a)) UV (pre(a)) x
V(eff(a)). Gamer’s scheme, denoted &, maps II to the
set of orderings o = (vy, ..., v,) that minimize the expres-
sion > (v:,0)€CGry (i — 7)2. The underlying intuition is that
adjacent variables are dependent, and should be scheduled
close to each other. In practice, Gamer approximates {25* by
a limited amount of local search in the space of orderings.

Apart from 28%, we also consider the scheme €2°¢, which
is defined only if CGyy is acyclic, and in that case maps II
to the set of topological orderings of the vertices in CGry.
We consider this to be of theoretical interest since it is the
straightforward way to “trust the causal graph completely”.

What’s in a Causal Graph: Theory

As discussed, it is doubtful whether the concept of “depen-
dency” in the causal graph has any real relation with the con-
cept of “dependency” relevant to BDD size. We now frame
this doubt in terms of a classification of the guarantees of-
fered, or rather, the guarantees not offered, by (28 and )¢
in restricted classes of planning tasks.

Definition 1 (Classification of Ordering Schemes). Let F =
{I1,,} be an infinite family of FDR planning tasks parame-
terized by n, where the size of 11, is bounded by a polyno-
mial in n. Let d € {forward, backward} be a search direc-
tion. A variable ordering scheme § is:

(i) perfect in F for d if for all 11,, € F, all d-layers L
in 11, and all o € Q(I1,,), we have BDDSize(o, L) =

BDDSize"(L).

(ii) safe in F for d if there exists a polynomial p s.t. for all
I, € F, all d-layers L in 11,,, and all o € Q(I1,,), we
have BDDSize(o, L) < p(BDDSize*(L)).

(iii) viable in F for d if there exists a polynomial p s.t. for
all 11,, € F and all d-layers L in 11,,, there exists o €
Q(11,,) with BDDSize(o, L) < p(BDDSize*(L)).

Perfect () guarantees to deliver perfect orderings, safe
) guarantees polynomial overhead, viable (2 always deliv-
ers at least one good ordering but runs the risk of super-
polynomial overhead. If €2 is not viable, then all its order-
ings are super-polynomially bad in some task and layer.

We extend our classification to arbitrary sub-classes C of
FDR by the worst case over all families F contained in C: if
C contains at least one F where §Q is not perfect, then () is
said to be not perfect in C, and so forth.

As we are interested in variable orderings derived from
the causal graph, it is natural to consider sub-classes of FDR
characterized by their causal graphs. For a set of directed
graphs G, by FDR(G) we denote the class of FDR planning
tasks whose causal graphs are elements of G. We investi-
gate widely considered causal graph special cases, namely
chains gMain forks Gk inverted forks G'* and DAGs
G422 (directed acyclic graphs). As simple limiting cases, we
consider causal graphs G? without any arcs, and unrestricted
causal graphs G". Figure 1 illustrates.
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Figure 1: Causal graph special cases (a) chains, (b) forks, (c)
inverted forks, and (d) their relation (arrows mean C).

Bad cases are inherited in the hierarchy of Figure 1 (d):
if G C @', then for any ordering scheme the classification
within FDR(G') is at least as bad as that in FDR(G).! We
start our investigation with empty causal graphs:

Theorem 1. For both search directions, any ordering
scheme is safe in FDR(G?). Q2 and Q°¢ are not perfect.

If the causal graph has no arcs, then all variables move in-
dependently. So any forward/backward layer with distance
d contains exactly the states in which the sum of individual
distances (from a variable’s initial value/to a variable’s goal
value) equals d. For any binary counter y(v) in the BDD, the
number of vertices needed is bounded by the number of pos-
sible individual-distance sums of the variables preceding v

'An interesting side remark is that, given a task II, we can al-
ways create a task IT" with arbitrarily complex causal graph without
affecting the classification of Q2°® and Q®": we add a separate part
to II, with a complex causal graph, but with no influence on the
layers L, and increasing BDD size constantly under 2° and Q#°.



(intuitively, that’s all we need to remember, to correctly eval-
uate the characteristic function). Thus BDD size is polyno-
mially bounded for any variable ordering. It is easy to find
examples where different orderings result in BDDs of dif-
ferent sizes. 28 and €2°¢ each return the set of all orders.
Putting these facts together, the claim follows.

Note that Theorem 1 is a “good case”, not for the schemes
Q& and )¢ — these are devoid of information — but for the
ability of causal graphs to entail anything for BDD order-
ings. Empty causal graphs entail that all orderings are safe.
That connection doesn’t carry any further than this trivial
case, though: in all other sub-classes considered, the space
of BDD orderings contains exponentially bad ones.

The news regarding the informedness of 28 and )¢ is
almost universally very bad, with a little bit of hope only for
chain causal graphs. Let us give you the bad news first:

Theorem 2. For both search directions, Q28 and Q€ are not
safe in FDR(Go™x),

Our negative results employ Boolean functions in
quadratic form. These have the variables {1, y1, ..., Tpn,
Yn }, and take the form (210p%y;)op™ . .. op" (2,0p'Vy,,),
where either op" € {V,®} and op®™¥ = A, or vice versa.
We denote these functions by Q(op", op'®¥). For each of
these functions, the ordering (x1,y1,...,Zn, yn) yields a
BDD whose size is polynomial in n, while the ordering
(X1, &TnyY1,--.,Yn) yields an exponential-size BDD.
(Wegener (2000) proves this for Q(V, A); similar arguments
apply to the other quadratic forms.)

To prove Theorem 2, consider now the function
Q(V,A) = Vi (@i Ay;). We design an FDR task II,,.
All variables are Boolean. We use {1, y1, - . ., Tn, Yn } plus
a new variable g that the goal requires to be true. There are
n actions achieving g, each of which requires x; and y; to
be true as the precondition. Then the first backward layer is
characterized by —gA\/|_, (z; Ay;), and it is easy to see that
0#(I1,,) and Q°8(I1,,) each contain some orders that are ex-
ponentially bad. Clearly, I1,, € FDR(G!), which proves
the claim of Theorem 2 for backward search.

For forward search, we consider the same function
Q(V,A), and construct II,, which has the same vari-
ables {g,21,y1,...,%n,yn}t but where the domains of
{z1,91,...,%n,yn} are ternary: unknown, true, false. All
x; and y; are initially unknown, and can be set to either true
or false. There are n actions achieving g, exactly as above.
Then the states with initial state distance 2n + 1 are exactly
those that satisfy g A Q(V, A). It is not difficult to verify that
this shows the claim as before.

Theorem 3. For both search directions, Q2% and €18 are not
safe in FDR(G™™),

For both search directions, we use the same function
Q(N,®) = N (z; © y;), and the same II,, with Boolean
variables {z1, Y1, - . -, Tn, Yn } plus a new variable z with do-
main {dla dmlv dylv d2a dev dy27 ey dn7 dl’n, dy’n; dn+1}~
The actions are such that, for 1 < ¢ < n, z can move from
d; to either dz; or dy;, and from each of these to d; 1. An
action preconditioned on dx; achieves z;; same for dy; and
y;. Initially z = d; and all z;, y; are false; the goal requires
that z = d, 41 and all z;,y; are true. The states with ini-
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Figure 2: Overview of our classification results. These hold for
each of Q% and Q°¢, and for each search direction.

tial state distance 3n are exactly those where z = d,, 11 and
Q(A, ®) is true, and the states with goal state distance 3n
are exactly those where z = d; and Q(A, @) is true. Since
neither 2%4(I1,,) nor Q°¢(1I,,) constrain the ordering of the
variables {1,y1, ..., Tn, Yn}, the claim follows as before.

For each of FDR(G*) and FDR(G™™%), it is an open
question whether Q8 (II,,) and Q°¢(II,) are viable. For
DAG causal graphs, that question is closed:

Theorem 4. For both search directions, Q2% and €18 are not
viable in FDR(G%¢).
Corollary 1. Q¢ is not viable in FDR(GY).

The proof modifies the constructions underlying Theo-
rem 2 to include additional causal graph arcs, forcing 28*

and ° to yield bad orderings grouping z1,...,x, and
Y1,- .., Yy into separate blocks. We arrange the root vari-
ables of the inverted forks as z1,..., Zn, ¥1,..., Yn, and

make the actions setting a variable dependent on its left-
hand side neighbor. That is easy to do without interfering
with the required properties. This proves the claim of The-
orem 4. Corollary 1 follows immediately (recall that 2°¢ is
defined only for acyclic causal graphs).

We close our investigation with the only somewhat posi-
tive case, chain causal graphs:

Theorem 5. For both search directions, (28 and Q¢ are not
perfect in FDR(GM). There exists an ordering scheme that
is not viable.

Cases where 28* and ()€ aren’t perfect are inherited from
FDR(G?): we can enforce causal graph arcs that are irrele-
vant to the initial state distance or the goal distance. To ob-
tain a non-viable ordering scheme in forward and backward
search, we employ the quadratic form functions Q (A, V) and
Q(V, N), respectively. In the chain causal graphs, ; and y;
are neighbors, rendering (28 and )¢ safe, whereas a non-
viable ordering separates x1, ..., Z, fromyy, ..., y,.

The two planning task families just described constitute
our only truly positive result: there, the ordering information
in the causal graph keeps us from making exponentially bad
mistakes. That positive message would be much stronger
if it pertained to the entire planning sub-class FDR(Gain),
i.e., if Q8 and Q° were safe for all families of tasks with
chain causal graphs. It remains an open question whether
this is true; we conjecture that it is.

Figure 2 overviews our results. The evidence speaks
against a strong connection between causal graph dependen-
cies, and dependencies as relevant for BDD size. Note: The
DAG causal graph underlying Theorem 4 has a very simple
form combining a chain with an inverted fork, and Theo-
rem 2 relies on planning tasks that fall into a known tractable
class for optimal planning (Katz and Domshlak 2010).



What’s in a Causal Graph: Practice

Poor performance in the worst case does not entail poor per-
formance in practice. To get a picture of where causal-graph
based variable ordering schemes stand, we run 11 variants
thereof, and compare them to practical “good”/*bad” delim-
iters. As the “bad” delimiter, we use random orderings. As
the “good” delimiter, we use the off-the-shelf dynamic re-
ordering algorithm of Gamer’s BDD package CUDD, which
is based on sifting (Rudell 1993). For better comparability
with our ordering schemes, we restrict the algorithm to not
separate the y(v) blocks. (As previously indicated, the algo-
rithm consumes too much runtime to be cost-effective; here,
we give it ample runtime, considering only BDD size.)

We use the IPC’11 benchmarks, and use Gamer as the
base implementation for all planners. We run Gamer’s orig-
inal ordering scheme, denoted Gamer, that approximates
Q2% We run 5 other schemes based directly on the causal
graph: GamerPre which is like Gamer but on an enriched
causal graph also featuring arcs between pairs of precon-
dition variables; WGamer and WGamerPre which are like
Gamer and GamerPre but with arcs weighted by the number
of relevant actions; Fast Downward’s (Helmert 2006) level
heuristic, denoted CGLevel, which approximates 2°¢; and
CGSons, another approximation of {2°¢, that always selects
a variable v all of whose parents have already been selected,
or at least one of whose parents has already been selected,
or an arbitrary variable if no such v exists. Further, we run 5
ordering schemes we adopted from the model checking lit-
erature, based on a structure called the abstract syntax tree
(basically listing all actions and variables they touch). We
do not have the space to describe these schemes; using their
first authors’ names for reference, we call them Butler (But-
ler et al. 1991), Chung (Chung, Hajj, and Patel 1993), Malik
(Malik et al. 1988), Maisonneuve (Maisonneuve 2009), and
Minato (Minato, Ishiura, and Yajima 1990).
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Figure 3: Coverage for random orders vs. ordering schemes.

First we compared the schemes against “random order-
ings”, where each of these corresponds to one run of all
IPC’11 benchmarks, using a random variable ordering for
each instance. We performed 5000 of these runs; the time-
out is one minute to make this feasible. Figure 3 shows cov-
erage, i.e., number of found solutions, on the x axis, and the
fraction of random orderings having that coverage on the
y axis. The coverage achieved by each of our 11 ordering
schemes is shown as vertical lines (scheme names in the fig-
ure are ordered top-to-bottom from worst to best coverage).

Malik and CGLevel lie in respectively below (!) the mid-
dle of the Gaussian distribution, so are quite bad indeed.
Matters are not as bad for the other 9 ordering schemes,
which are close together.> Compared to a best-of over the
random orders, all the ordering schemes appear rather hum-
ble. Let = be the number of instances solved by a scheme but
not by any random order, and y the number not solved by a
scheme but solved by some random order. Then z < y for
all but 2 cases (where z — y = 1 and © = y, respectively),
and the average over x is 3.00 while that over y is 9.73.
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Figure 4: BDD size for dynamic reordering vs. ordering schemes.

Figure 4 contains one data point for every pair (I,2) of
IPC’11 benchmark instance I and ordering scheme {2 that
were solved by both (a) Gamer using dynamic reordering
starting from an arbitrary variable order (the one returned
by Gamer’s grounding process), and (b) Gamer using order-
ing scheme () (without dynamic reordering). The time-out
is 6 hours for (a), and 30 minutes for (b). Data point (X, Y")
is the size of the largest BDD constructed for I by ((a),(b)).
The time-out is larger for dynamic reordering because such
reordering is not runtime effective: The question we are ask-
ing here is merely which of the two methods yields smaller
BDDs. Figure 4 shows that dynamic reordering is univer-
sally much better at this.

Conclusion

The proposed theoretical framework suggests that causal
graphs are not a good source of information for ordering
BDD variables. Even though one may not, in general, ex-
pect the ordering heuristic to not be exponentially bad in
the worst case, some of our results are quite striking. For
inverted fork causal graphs, in particular, there are expo-
nentially bad orderings in planning tasks so restricted as to
be tractable for domain-independent optimal planning. Our
empirical results corroborate this view, Fast Downward’s
level heuristic being worse than random, and all ordering
schemes lagging far behind off-the-shelf reordering.

We do not wish to claim that the present results provide
a conclusive answer to the question we started out with.
Rather, we view this research as a first step towards a sys-
tematic investigation of BDD variable orderings in planning,
which we hope will inspire other researchers as well.

Acknowledgments. We thank the anonymous ICAPS re-
viewers, whose comments helped to improve the paper.

>With a 30 minute time-out, we obtain a similar picture, Malik
and CGLevel lagging behind while all others are close.
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(a) x before y.

(b) y before x.

Figure 5: BDDs showing that not all orderings are perfect in
the proof of Theorem 1. Outgoing solid edges represent the
case that the corresponding variable is true, dashed ones that
it is false.

Proofs

Theorem 1. For both search directions, any ordering
scheme is safe in FDR(G?). Q2 and Q2 are not perfect.

Proof. If the causal graph has no arcs, then all variables
move independently. So any forward/backward layer with
distance d contains exactly the states in which the sum of
individual distances (from a variable’s initial value/to a vari-
able’s goal value) equals d. For any binary counter v(v) in
the BDD, the number of vertices needed is bounded by the
number of possible individual-distance sums of the variables
preceding v (intuitively, that is all we need to remember to
correctly evaluate the characteristic function). Thus BDD
size is polynomially bounded for any variable ordering.

For showing that 8 and €2°¢ are not perfect consider a
simple example. We design an FDR task II, that uses 2
variables x and y, each with a domain of size 4, represented
by the values 00, 01, 10, and 11. For forward search, initially
2 = 00 and y = 00 holds. For the x variable we have an
action setting it to 01 if it is currently 00, another setting
it to 10 from 00, and two setting it to 11 from 01 or 10,
respectively. For the y variable we have an action setting it
to 01 if it is currently 00, another setting it from 01 to 10 and
another setting it from 10 to 11. Thus, for the values of the
x variable we have distances of 0, 1, 1, and 2, respectively,
from the initial value of x, and for the y variable we have
distances of 0, 1, 2, and 3, respectively, from y’s initial value.
A similar task having the same distances to the goal values
can be defined for backward search.

Each variable is represented by two BDD variables, x,
x1, Yo, and y1. If we keep the order within the x and y
variables fixed, we have two possible orderings: x before y
or vice versa. For a distance of 1 from the initial (or goal)
state, we get the BDDs illustrated in Figure 5: Ordering x
before y results in a slightly bigger BDD. Thus, (28 and €2°¢,



(a) g at the front.

(b) g within a pair.

Figure 6: BDDs representing —g A Q(V, A) with different
positions of the g variable. Outgoing solid edges represent
the case that the corresponding variable is true, dashed ones
that it is false.

which correspond to all possible orderings, are not perfect,
which concludes the proof. O

Theorem 2. For both search directions, 08 and Q8 are not
safe in FDR(G™%),

Proof. To prove the claim for backward search, consider

the function Q(V,A) = VI (z; A y;). We design
an FDR task II, that uses 2n 4+ 1 Boolean variables,
{9,21,Y1,---,%n,yn} including an additional variable g

that the goal requires to be true. There are n actions achiev-
ing g, each of which requires a pair (x; A y;) to be true as
the precondition. Clearly, II,, € FDR(G'™). The first back-
ward layer is characterized by =g A /I, (z; A y;).

An optimal ordering for Q(V,A) consists of pairs of
(245,9:) or (y;, x;). Adding the g variable, an optimal or-
dering places it either at the front (as depicted in Figure 6a)
or at the end. These cases require exactly one node repre-
senting the g variable. Placing the g variable anywhere else
requires as many nodes representing g as there are edges
passing through that layer to different nodes (that are all dif-
ferent from the 0-sink). In this case, there are two g nodes if
g is placed between two pairs, and three nodes if it is placed
between two nodes constituting a pair (see Figure 6b for the
latter case).

Any ordering following Q& (II,,) places g in the middle
and the = and y variables in an arbitrary order around it.
Any ordering following 2°8(IL,,) places g at the end and the
x and y variables in an arbitrary order before it. In both cases
all z variables may be placed before all y variables, clearly
resulting in an exponential overhead. However, a pairwise
ordering of the x and y variables is also possible, resulting
in an overhead of at most three nodes in case of Q#(1I,,) and

Figure 7: Domain transition graph for variable z used in
the proof of Theorem 3. The dashed edges correspond to
preconditions for changes in the value of the corresponding
variable.

an optimal ordering in case of °¢(1I,, ), which concludes the
proof for backward search.

For forward search, we consider the same function
Q(V,A), and construct IT,, which has the same vari-
ables {g,z1,91,...,%n,Yn} but where the domains of
{z1,y1, ..., Zn,yn} are ternary: unknown, true (T), or false
(L). All z and y variables are initially unknown, and can
be set to either true or false if they are currently unknown.
There are n actions achieving g, exactly as above. Then in
the states with initial state distance 2n + 1 all x and y vari-
ables are either true or false and the states are exactly those
that satisfy g A Q(V,A) = g A Vi (zi = T) A (yi = T).
As the causal graph remains unchanged, the set of possi-
ble orderings following Q#*(II,,) and Q°¢(II,,) remains the
same as in backward search as well, so that again some or-
ders result in exponential overhead and others in at most
polynomial overhead, which concludes the proof for forward
search. O

Theorem 3. For both search directions, Q28 and €18 are not
safe in FDR(G™),

Proof. For both search directions, we use the same function
QA ®) = A, (z; ® y;), and the same FDR task II,, with
Boolean variables {1, ¥1,...,Zn,Yyn} plus an additional
variable z with domain {dy, dx1, dy1, da, dx2, dys, . . ., dp,
dxy, dYn, dpy1}. The actions are such that, for 1 < i < n, z
can move from d; to either dx; or dy;, and from each of these
to d;4+1 (see Figure 7). An action preconditioned on dz;
achieves ;. The same holds for dy; and y;. Initially z = d;
and all x;, y, are false. The goal requires that z = d,, 1 and
all x;,y; are true. This means that there is no solution to
the task, but we can use the same task for forward and back-



Figure 8: Causal graph for the planning task used in the
proof of Theorem 4.

ward search. In forward search, the states with initial state
distance 3n are exactly those where z = d,,11 and Q(A, )
is true, and in backward search the states with goal state dis-
tance 3n are exactly those where z = dy and Q(A, ®) is
true.

Any ordering following 2%*(IL,,) places z in the middle
and the x and y variables arbitrarily around it; any ordering
following Q°¢(I1,,) places z at the beginning and the x and
y variables arbitrarily after it. Thus, there is no constraint on
the variables {x1, y1, ..., Tn, Yn |, so that placing all x vari-
ables before all y variables is an ordering compatible with
both schemes, and clearly results in exponential overhead.
Furthermore, a pairwise grouping of the x and y variables
is also compatible with both schemes, resulting in at most
polynomial overhead following a similar argumentation for
the placement of the z variable as for the placement of the
g variable in the proof of Theorem 2, which concludes the
proof. O

Theorem 4. For both search directions, Q28 and Q°¢ are not
viable in FDR(G%¢).

Proof. To prove the claim for backward search we use the
combination of a chain causal graph and an inverted fork as
illustrated in Figure 8. We design an FDR task II,, that uses
2n+ 1 Boolean variables, {g, 1, Y1, - - - , Tn, Yn }» including
a variable g that the goal requires to be true. There are n
actions achieving g, each of which requires a pair (z; A y;)
to be true as the precondition (thus, this part of the task is
the same as the one we used in the proof of Theorem 2). We
add actions ensuring that in our two schemes all x variables
will be placed before all y variables (or vice versa). One
action has an empty precondition and sets x; to true in its
effect, another one requires z,, to be true in the precondition
and sets y; to true in its effect, the rest have x;_; (or y;—1)
in the precondition and set x; (or y;) to true in the effect.
All states with a goal distance of 1 are thus characterized by
g AQ(V, A).

Any order induced by 2%* places g in the middle, all =
variables in increasing order before it and all y variables in
increasing order after it, or all y variables in decreasing order
before it and all x variables in decreasing order after it. {2°¢
induces an order starting with all x variables in increasing
order, followed by all y variables in increasing order, fol-
lowed by g. Thus, in all cases we have two blocks, one con-
taining all x variables, the other containing all y variables,
and one block before the other, resulting in an exponential
overhead, which proves the claim for backward direction.

For forward search we use the same approach as in the
proof of Theorem 2, namely to extend the domain of all
and y variables to {true (T), false (_L), unknown}. All = and

Figure 9: Causal graph for the planning task used in the
proof of Theorem 5

y variables are initialized to the value unknown. There are n
actions setting g to true, all requiring a pair of (z; Ay;) to be
true. The additional actions are as follows. Two require x1
to be unknown and set it to true or false, respectively. Two
require x,, to be true and y; to be unknown and set y; to
true or false, respectively. Two require x,, to be false and
41 to be unknown and set y; to true or false, respectively.
In the same manner we have four actions for each z; and y;
(2 <€ i < n), requiring x;_1 (or y;—1) to be true or false
and z; (or y;) to be unknown and setting x; (or ;) to true or
false. Thus, all states with an initial state distance of 2n + 1
can be characterized by the function g A Q(V,A) = g A
Vi (z; = T) A (y; = T). The variable orders induced by
Q2 and Q¢ are the same as in backward search, grouping
the = and y variables in two blocks and placing one block
before the other. This results in an exponential overhead,
which concludes the proof for forward direction. O

Theorem 5. For both search directions, (2 and Q)¢ are not
perfect in FDR(G™"). There exists an ordering scheme that
is not viable.

Proof. Cases where 28 and (2°® may incur non-constant
overhead are inherited from FDR(G?): we can enforce
causal graph arcs that are irrelevant to the initial state dis-
tance or the goal distance.

To prove the claim of the existence of a non-viable or-
dering scheme for backward search, consider the function
Q(V,A) = Vi_(z; Ay;). We design an FDR task II,, that
uses 2n Boolean variables, {z1,y1,...,2Zn,yn}. The goal
requires all y variables to be false. We have an action with-
out precondition to set z; to true, actions with preconditions
requiring y; 1 to be false setting z; to true, and actions pre-
conditioned on x; being true setting y; to false. The causal
graph is depicted in Figure 9. Clearly, II,, € FDR(G¢hain),

The states with distance 1 from the goal are the ones
where all except one y; are false, and for the single true y;
we have z; true as well. This is characterized by the for-
mula ;7 yi A Q(V,A) = @iy yi A Vi (@i Ayi). Tt
is easy to see that the exclusive or part of this formula does
not change the relevant properties of BDDs for the quadratic
form, i.e., we still have orderings with polynomial and other
orderings with exponential number of nodes (see Figure 10).
Q¢ places the pairs in ascending order; {28* also allows for
the inverse ordering. Both result in BDDs of minimal size
(Figure 10a). However, there are orders, e.g., those placing
all x variables before all y variables, that result in exponen-
tial overhead (Figure 10b), which concludes the proof for
backward search.

For the forward case, we construct a planning task where
all z and y variables are ternary (unknown, true (T), false
(L)), and are unknown initially. The value of x; can be
set freely; y; can be set to true or false if z; is true, and
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(a) Optimal ordering (b) Exponential ordering

Figure 10: BDDs representing @?:1 yi A \/?Zl(xi A y;), as used in the proof of Theorem 5. Outgoing solid edges represent
the case that the corresponding variable is true, dashed ones that it is false.

can only be set to true if x; is false; x;+; can be set freely
once y; has been set to either true or false. In 2n steps,
we can reach exactly the states characterized by Q(A, V) =
Ai_i(z; = T)V (y; = T). The orderings following the
two schemes remain the same as in backward search. As
we know that a BDD representing Q (A, V) is of polynomial
size if the variables are grouped in pairs and exponential if
the = and y variables are placed in separate blocks, one after
the other, we know that the orderings of the two schemes are
optimal while orderings resulting in exponential overhead
exist, which concludes the proof for forward search. 0



