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A better CAT made-in-Belgium: CHAT*
(or KAT*)

Bart Demoen and Konstantinos Sagonas

Department of Computer Science
Katholieke Universiteit Leuven
B-3001 Heverlee, Belgium
e-mail: {bmd,kostis}@cs.kuleuven.ac.be

Abstract. The Copying Approach to Tabling, abbrv. CAT, is an al-
ternative to SLG-WAM and based on total copying of the areas that the
SLG-WAM freezes to preserve execution states of suspended computa-
tions. The disadvantage of CAT as pointed out in a previous paper is that
in the worst case, CAT must copy so much that it becomes arbitrarily
worse than the SLG-WAM. Remedies to this problem have been studied,
but a completely satisfactory solution has not emerged. Here, a hybrid
approach is presented: CHAT. Its design was guided by the requirement
that for non-tabled (i.e. Prolog) execution no changes to the underlying
WAM engine need to be made. CHAT combines certain features of the
SLG-WAM with features of CAT, but also introduces a technique for
freezing WAM stacks without the use of the SLG-WAM’s freeze registers
that is of independent interest. Empirical results indicate that CHAT is
a better choice for implementing the control of tabling than SLG-WAM
or CAT. However, programs with arbitrarily worse behaviour exist.

1 Introduction

In (2], we developed a new approach to the implementation of the suspend/resume
mechanism that tabling needs: CAT. The essential characteristic of the approach
is that freezing of the stacks (as in SLG-WAM [4]) was replaced by copying the
state of suspended computations. One advantage is that this approach to im-
plementing tabling does not introduce new registers, complicated trail or other
inefficiencies in an existing WAM: CAT does not interfere at all with Prolog
execution. Another advantage is that CAT can perform completion and space
reclamation in a non-stack based manner without need for memory compaction.
Finally, experimentation with new strategies seems more easy within CAT. On
the whole, CAT is also easier to understand than SLG-WAM. The main draw-
back of CAT, as pointed out in [2], is that its worst case performance renders it
arbitrarily worse than SLG-WAM: CAT might need to copy arbitrary large parts
of the stacks; the SLG-WAM’s way of freezing in contrast is an operation with

* the Copy-Hybrid Approach to Tabling (to be pronounced in French).
** the K.u.leuven Approach to Tabling (to be pronounced in Flemish).



coustant cost. Although this bad behaviour of CAT has not shown up as a real
problem in our uses of tabling (see [2] and the performance section of this paper),
in [3] we have described a partial remedy for this situation. Restricted to the
heap, it consists of performing a minor garbage collection while copying; that is,
preserve only the useful state of the computation by copying just the data that
are used in the continuation of the consumer. The same idea can be applied to.
the environment stack as well. [3] contains some experimental data which show
that this technique is quite effective at reducing the amount of copying in CAT.
This is especially important in applications which consist of a lot of Prolog com-
putation and few consumers. However, even this memory-optimised version of
CAT suffers from the same worst case behaviour compared to SLG-WAM. Nev-
ertheless, for most applications CAT is still a viable alternative to SLG-WAM.

We therefore felt the need to reconsider the underlying ideas of CAT and
SLG-WAM once more. In doing so, it became quite clear that all sorts of hybrid
methods are also possible, e.g. one could copy the environment stack while freez-
ing the heap, trail and choice point stack, etc. However, we are convinced that
the guiding principle behind any successful design of a (WAM-based) tabling
implementation must be that the necessary extensions to support tabling should
not impair the efficiency of the underlying abstract machine for (strictly) non-
tabled execution, and support for tabled evalnation should be possible without
requiring difficult changes: CAT was inspired by this principle and provides such
a design. CHAT, the hybrid CAT we present here enjoys the same property.

If the introduction of tabling must allow the underlying abstract machine
to execute Prolog code at its usual speed, we have to preserve and reconstruct
execution environments of suspended computations without using SLG-WAM's
machinery; in other words we have to get rid of the freeze registers and the
forward trail (with back pointers as in the SLG-WAM). The SLG-WAM has
freeze registers for heap, trail, environment stack (also named local stack) and
choice point stack. These are also the four areas which CAT selectively copies.
What CHAT does with each of these four areas is described in Section 3 which is
the main section of this paper. Section 4 shows best and worst cases for CHAT
compared to SLG-WAM. Section 5 discusses the combinations possible between
CHAT, CAT and SLG-WAM. Section 7 shows the results of some empirical tests
with CHAT and Section 8 concludes.

2 Notation and Terminology

Due to space limitations we assume familiarity with the WAM (see e.g. [1,3]),
SLG-WAM [4] and CAT [2]. We also assume a four stack WAM, i.e. an imple-
mentation with separate stacks for the choice points and the environments as
in SICStus Prolog or in XSB. This is by no means essential to the paper and
whenever appropriate we mention the necessary modifications of CHAT for the
original WAM design. We will also assume stacks to grow downwards; i.e. higher
in the stack means older, lower in the stack (or more recent) means younger.



We will use the following notation: H for top of heap pointer; TR for top
of trail pointer; E for current environment pointer; EB for top of local stack
pointer; B for most recent choice point; the (relevant for this paper) fields of
a choice point are H and EB, the top of the heap and local stack respectively
at the moment of the creation of the choice point; for a choice point of type T
pointed by B, these fields are denoted as Br[H] and B7[EB] — T is either
Generator, Consumer or Prolog choice point. The SLG-WAM uses four more
registers for freezing the WAM stacks; however only two of them are relevant for
this paper. We denote them by HF for freezing the heap, and EF for freezing
the environment stack.

In a tabling implementation, some predicates are designated as tabled by
means of a declaration; all other predicates are non-tabled and are evaluated as
in Prolog. The first occurrence of a tabled subgoal is termed a generator and
uses resolution against the program clauses to derive answers for the subgoal.
These answers are recorded in the table (for this subgoal). All other occurrences
of identical (e.g. up to variance) subgoals are called consumers as they do not
use the program clauses for deriving answers but they consume answers from
this table. Implementation of tabling is complicated by the fact that execution
environments of consumers need to be retained until they have consumed all
answers that the table associated with the generator will ever contain.

To partly simplify and optimize tabled execution, implementations of tabling
try to determine completion of (generator) subgoals: i.e. when the evaluation has
produced all their answers. Doing so, involves examining dependencies between
subgoals and usually interacts with consumption of answers by consumers. The
SLG-WAM has a particular stack-based way of determining completion which
is based on maintaining scheduling components; that is, sets of subgoals which
are possibly inter-dependent. A scheduling component is uniquely determined
by its leader: a (generator) subgoal G with the property that subgoals younger
than G, may depend on G, but G depends on no subgoal older than itself.
Obviously, leaders are not known beforehand and they might change in the
course of a tabled evaluation. How leaders are maintained is an orthogonal issue
beyond the scope of this paper; see [4] for more details. However, we note that
besides determining completion, leaders of a scheduling component are usually
responsible for scheduling consumers of all subgoals that they lead to consume
their answers.

3 The Anatomy of CHAT

We describe the actions of CHAT by means of an example. Consider the following
state of a WAM-based abstract machine for tabled evaluation. A generator G
has already been encountered and a generator choice point has been created for
it immediately below a (Prolog) choice point Fy; then execution continued with
some other non-tabled code (P and all choice points shown by dots in Figure 1).
Eventually a consumer C was encountered and let us, without loss of generality,



assume that G is its generator and G is not completed.! Thus, a consumer choice
point is created for C; see Figure 1. The heap and the trail are shown segmented
according to the values saved in the corresponding fields of choice points. The
same segmentation is not shown for the environment stack as it is a spaghetti
stack; however the EB values of choice points are also shown by pointers.

local stack choicepoints heap trail

@l o
2

Fig. 1. CHAT stacks immediately upon laying down a consumer choice point.

Without loss of generality, let us assume that C is the only consumer. The
whole issue is how to preserve the execution environment of C. CAT does this
very simply through (selectively and incrementally) copying all necessary in-
formation in a separately allocated memory area — see [2]. The SLG-WAM
employs freeze registers and freezes the stacks at their current top; allocation of
new information occurs below these freeze points — see [4]. We next describe
what CHAT does.

3.1 Freezing the heap without a heap freeze register

As mentioned, we want to prevent that on backtracking to a choice point P that
lies between the consumer C and the nearest generator G (included), H is reset
to the Bp[H] as it was on creating P. However, the WAM sets:

H := Bp[H]
upon backtracking to a choice point pointed to by Bp. We can achieve that
no heap lower than B¢[H] is reclaimed on backiracking to P, by manipulating
its Bp[H] field, i.e. by setting:

Bp[H] := B¢[H]
at the moment of backtracking out of the consumer. Note that rather than
waiting for execution to backtrack out of the consumer choice point, this can
happen immediately upon encountering the consumer (see also [4] on why this
is correct).

! Otherwise, if G is completed, the whole issue is trivial as a completed table optimiz-
ation can be performed and execution proceeds as in Prolog; see [4].



More precisely, upon creating a consumer point for a con-

sumer C the action of CHAT is: g R
for all choice points P between C and its generator (included) = ;
Bp[H] := B¢[H] Y
The picture on the right shows which H fields of choice points
are adapted by CHAT in our running example. [+ ]
To see why this action of CHAT is correct, compare it with
how the SLG-WAM freezes the heap using the freeze re- 8|

gister HF:
when a consumer is encountered, the SLG-WAM sets HF := B¢ [H]
on backtracking to a choice point P, the SLG-WAM resets H as follows:
if older(Bp(H],HF) then H := HF else H := Bp[H]
In this way, CHAT neither needs the freeze register HF of the
SLG-WAM, nor uses copying for part of the heap as CAT.

The cost of setting the B[H] fields by CHAT is linear in the number of choice
points between the consumer and the generator up to which it is performed. In
principle this is unbounded, so the act of freezing in CHAT can be arbitrarily
more costly than in SLG-WAM. However, our experience with CHAT is that
this is not a problem in practice; see the experimental results of Section 7.

3.2 Freezing the local stack without EF

The above mechanism can also be used for the top of the local stack. Similar to
what happens for the H fields, CHAT sets the EB fields in affected choice points
to B¢[EB]. In other words, the action of CHAT is:

for all choice points P between the consumer C and its generator (included)

Bp[EB] := B¢[EB]
The top of the local stack can now be computed at any moment as in the WAM:

if older(B[EB],E) then E+length(environment) else B[EB]
and no change to the underlying WAM is needed.

Again, we look at how the SLG-WAM employs a freeze register EF to achieve
freezing of the local stack: EF is set to EB on freezing a consumer. Whenever
the first free entry on the local stack is needed, e.g. on backtracking to a choice
point B, this entry is determined as follows:

if older(B[EB],EF) then EF else B[EB|
The code for the allocate instruction is slightly more complicated as a three-way
comparison between B[EB], EF and E is needed.

It is worth noting at this point that this schema requires a small change to
the retry instruction in the original three stack WAM, i.e. when choice points
and environments are allocated on the same stack. The usual code (on back-
tracking to a choice point B) can set EB := B while in CHAT this must become
EB = B[EB].

As far as the complexity of this scheme of preserving environments is con-
cerned, the same argument as in Section 3.1 for the heap applies. In the sequel



we will refer to CHAT’s technique of freezing a WAM stack without the use of
freeze registers as CHAT freeze.

3.3 The choice point stack and the trail

CHAT borrows the mechanisms for dealing with the choice point stack and.
the trail from CAT: from the choice point stack, CAT copies only the consumer
choice point. The reason is that at the moment that the consumer C is scheduled
to consume its answers, all the Prolog choice points (as well as possibly some
generator choice points) will have exhausted their alternatives, and will have
become redundant. This means that when a consumer choice point is reinstalled,
this can happen immediately below a scheduling generator which is usually the
leader of a scheduling component (see [2] for a more detailed justification why
this is so). CHAT does exactly the same thing: it copies in what we call 2 CHAT
area the consumer choice point. This copy is reinstalled whenever the consumer
needs to consume more answers.

Also for the trail, CHAT is similar to CAT: the part of the trail between the
consumer and the generator is copied, together with the values the trail entries
point to. However, as also the heap and local stack are copied by CAT, CAT can
make a selective copy of the trail, while CHAT must copy all of the trail between
the consumer and the generator. This amounts to reconstructing the forward trail
of the SLG-WAM (without back-pointers) for part of the computation.

For a single consumer, the cost of reconstructing the forward trail (only
partly) is not greater (in complexity) than what the SLG-WAM has incurred
while maintaining the forward trail. Figure 2 shows the state of CHAT imme-
diately after creating the consumer and doing all the actions described above;
the shaded parts of the stacks show exactly the information that is copied by
CHAT.

local stack  choicepoints heap trail
: @l] «
- P, 2l B
G @3f vy CHAT ureu
P\ \e4 5

Pig. 2. Stacks and CHAT area after making the CHAT copy and adapting the choice
points.



3.4 More consumers and change of leader: a more incremental
CHAT

The situation with more consumers, as far as freezing the heap and local stack
goes, is no different from that described above. Any time a new consumer is
encountered, the B(EB] and B[H] fields of choice points B between the new
consumer and its generator are adapted. Note that the same choice point can be
adapted several times, and that the adapted fields can only point lower in the
corresponding stacks. From now on, we will drop the assumption that there is
only one consumer.

It is also worth considering explicitly a coup: a change of leaders. Note that
as far as the heap and local stack is concerned, nothing special needs to be done
if each consumer performs CHAT freeze till its current leader at the time of its
creation. For the trail, a similar mechanism as for CAT applies: an incremental
part of the trail between the former and the new leader needs to be copied.
In [2] it is shown that this need not be done immediately at the moment of the
coup, but can be postponed until backtracking happens over a former leader
so that the incremental copy can be easily shared between many consumers. It
also leads directly to the same incremental copying principle as in CAT: each
consumer needs only to copy trail up to the nearest generator and update this
copy when backtracking over a non-leader generator occurs.

The incrementality of copying parts of the trail, also applies to the change
of the EB and H fields in choice points: instead of adapting choice points up
to the leader, one can do it up to the nearest generator. In this scheme, if
backtracking happens over a non-leader generator, then its EB and H fields have
to be propagated to all the choice points up to the next generator. Our current
implementation employs incremental copying of the trail and non-incremental
adaptation of the choice points.

3.5 Reinstalling a consumer

As in CAT, CHAT can reinstall a consumer C by copying the saved consumer
choice point just below the choice point of a scheduling generator G. Let this copy
happen at a point identified as B¢ in the choice point stack. The CHAT trail is
reinstalled also exactly as in CAT by copying it from the CHAT area to the trail
stack. There remains the installation of the correct top of heap and local stack
registers: since the moment C was first copied, it is possible that more consumers
were frozen, and that these consumers are still suspended (i.e. their generators
are not complete) when C is reinstalled. It means that C must protect also the
heap of the other consumers. This is achieved by installing in B¢ the EB and H
fields of G at the moment of reinstallation. This will lead to correctly protecting
the heap, as G cannot be older than the leader of the still suspended consumers
and G was in the active computation when the other consumers were frozen.
Figure 3 gives a rough idea of a consumer’s reinstallation; shaded parts of the
stacks show the copied information.
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Fig. 3. Memory areas upon reinstalling the CHAT area for a consumer C.

3.6 Releasing frozen space and the CHAT areas upon completion

The generator choice point of a leader is popped only at completion of its com-
ponent. At that moment, the CHAT areas of the consumers that were led by
this leader can be freed: this mechanism is again exactly the same as in CAT.
Also, there are no more program clauses to execute for the completed leader
and backtracking occurs to the previous choice point, say Py.2 P, contains the
correct top of local stack and heap in its EB and H fields: these fields could
have been updated in the past by CHAT or not. In either case they indicate the
correct top of heap and local stack.

The SLG-WAM achieves this space reclamation at completion of a leader by
resetting the freeze registers from the values saved in the leader choice point.
Indeed, the SLG-WAM saves HF, EF, etc. in all generator choice points; see [4].

4 Best and Worst Cases

As noted in [2], a worst case for CAT can be constructed by making CAT copy
and reinstall arbitrary often, arbitrary large amounts of heap to (and from) the
CAT area. Since CHAT does not copy the heap, this same worst case does not
apply. Still, CHAT can be made to behave arbitrarily worse than SLG-WAM.
We also show an example in which the SLG-WAM uses arbitrary more space
than CHAT.

4.1 The worst case for CHAT
There are two ways in which CHAT can be worse than SLG-WAM:

1. every time a consumer is saved, the choice point stack between the consumer
and the leader is traversed; such an action is clearly not present in SLG-WAM
neither CAT

2 If there is no previous choice point, the computation is finished.



2. trail chunks are copied by CHAT for each save of a consumer; the inefficiency
lies in the fact that consumers in the SLG-WAM can share a part of the
trail even strictly between the consumer and the nearest generator; this is a
direct consequence of the forward trail with back pointers; both space and
time complexity are affected. Note that the same source of inefficiency is
present in CAT.

The following example program shows both effects. The subscripts ¢ and ¢
denote the occurrence of a subgoal that is a generator or consumer for p(.).

query(Choices,Consumers) :-
P (),
make_choices(Choices,),
make_consumers (Consumers, []).

make_choices(N,trail) :-
N >0, Mis N - 1, make_choices(M,.).
make _choices(0,_).

make_consumers{(N,Acc) :-

N>0, Mis N - 1,

P.(.), make_consumers(M, [alAccl).
:- table p/1.
p(1).

Predicate make_choices/2 is supposed to create choice points; if the com-
piler is sophisticated enough to recognize that it is indeed deterministic, a more
complicated predicate with the same functionality can be used. The reason for
giving the extra argument to make_consumers is to make sure that on every
creation of a consumer, H has a different value and an update of the H field of
choice points between the new consumer and the generator is needed — other-
wise, an obvious optimization of CHAT would be applicable. The query is e.g.
?- query(100,200). CHAT uses (Choices * Consumers) times more space and
time than SLG-WAM for this program. If the binding with the atom trail were
not present in the above program, CHAT would also use (Choices * Consumers)
times more space and time than CAT.

At first sight, this seems to contradict the statement that CHAT is a better
CAT. However, since for CHAT the added complexity is only related to the trail
and choice points, the chances for running into this in reality are lower than for
CAT.

4.2 A best case for CHAT

The best case space-wise for CHAT compared to SLG-WAM happens when lots
of non tabled choice points get trapped under a consumer: in CHAT, they can
be reclaimed, while in SLG-WAM they are frozen and retained till completion.
* The following program shows this:



query (Choices,Consumers) :-—
pg(.), create(Choices,Consumers), fail.

create(Choices,Consumers) :- Consumers > 0,
( make choicepoints{Choices), p.(Y), Y = 2
; C is Consumers - 1, create(Choices,C) ).

make_choicepoints(C) :-
C >0, Cl is C - 1, make choicepoints(C1).
make_choicepoints(0).

:- table p/1.

p(1).

When called with e.g. ?- query(25,77). the maximal choice point usage
of SLG-WAM contains at least 25 x 77 Prolog choice points plus 77 consumer
choice points; while CHAT's maximal choice point usage is 25 Prolog choice
points (and 77 consumer choice points reside in the CHAT areas). Time-wise,
the complexity of this program is the same for CHAT and SLG-WAM.

One should not exaggerate the impact of the best and worst cases of CHAT:
in practice, such contrived programs rarely occur and probably can be rewritten
so that the bad behaviour is avoided.

5 A Plethora of Implementations

After SLG-WAM and CAT, CHAT offers a third alternative for implementing
the suspend/resume mechanism that tabled execution needs. It shares with CAT
the characteristic that Prolog execution is not affected and with SLG-WAM
the high sharing of execution environments of suspended computations. On the
other hand, CHAT is not really a mixture of CAT and SLG-WAM: CHAT copies
the trail in a different way from CAT and CHAT freezes the stacks differently
from SLG-WAM, namely with the CHAT freeze technique. CHAT freeze can be
achieved for the heap and local stack only. Getting rid of the freeze registers for
the trail and choice point stacks can only be achieved by means of copying; the
next section elaborates on this.

Thus, it seems there are three alternatives for the heap (SLG-WAM freeze,
CHAT freeze and CAT copy) and likewise for the local stack, while there are
two alternatives for both choice point and trail stack (SLG-WAM freeze and
CAT copy). The decisions on which mechanism to use for each of the four WAM
stacks are independent. It means there are at least 36 possible implementations
of the suspend/resume mechanism which is required for tabling !

It also means that one can achieve a CHAT implementation starting from
the SLG-WAM as implemented in XSB, get rid of the freeze registers for the
heap and the local stack, and then introduce copying of the consumer choice
point and the trail. This was our first attempt: the crucial issue was that before
making a complete implementation of CHAT, we wanted to have some empirical
evidence that CHAT freeze for heap and local stack was correct. As soon as we
were convinced of that, we implemented CHAT by partly recycling the CAT
implementation of [2] which is also based on XSB as follows:



— replacing the selective trail copy of CAT with a full trail copy of the part
between consumer and the closest generator

— not copying the heap and local stack to the CAT area while introducing
the CHAT freeze for these stacks; this required a small piece of code that
changes the H and EB entries in the affected choice points at CHAT area
creation time and consumer reinstallation

It might have been nice to explore all 36 possibilities, with two or more
scheduling strategies and different sets of benchmarks but unlike cats, we do not
have nine lives.

6 More Insight

One can wonder why CHAT can achieve easily (i.e. without changing the WAM)
the freezing of the heap and the environment stack (just by changing two fields
in some choice points) but the trail has to be copied and reconstructed. There
are several ways to see why this is so. In WAM, the environments are already
linked by back-pointers, while trail entries (or better trail entry chunks) are not.
Note that SLG-WAM does link its trail entries by back-pointers; see [4]. Another
aspect of this issue is also typical to an implementation which uses untrailing
(instead of copying) for backtracking (or more precisely for restoring the state
of the abstract machine): it is essential that trail entry chunks are delimited by
choice points; this is not at all necessary for heap segments. Finally, one can
also say that CHAT avoids the freeze registers by installing their value in the
affected choice points: The WAM will continue to work correctly, if the H fields
in some choice points are made to point lower in the heap. The effect is just
less reclamation of heap on backtracking. Similarly for the local stack. On the
other hand, the TR fields in choice points cannot be changed without corrupting
backtracking.

T Tests

All measurements were conducted on an Ultra Sparc 2 (168 MHz) under Sol-
aris 2.5.1. Times are reported in seconds, space in KBytes.® Space numbers
measure the maximum use of the stacks (for SLG-WAM) and the total of max.
stack + max. C(H)AT area (for C(H)AT). The benchmark set is exactly the same
as in [2] where more information about the characteristics of the benchmarks and
the impact of the scheduling can be found.

3 While writing this paper, we are finding on an almost daily basis new opportunities
for better memory reclamation in XSB’s implementation of the SLG-WAM; this
affects also CAT's and to a lesser extent CHAT’s implementation; therefore, the
space figures are bound to improve.

Il



7.1 A benchmark set dominated by tabled execution

Tables 1 and 2 show the time and space performance of SLG-WAM, CHAT
and CAT for the batched (indicated by B in the tables) and local scheduling
strategy (indicated by L). The benchmark set is dominated by tabled execution,
i.e. minimal Prolog execution is going on.

( cs.o| cs.r |disjo|gabriel[kalah_c[peep] pg [read o]|
SLG-WAM(B)]|0.23]0.45] 0.13 | 0.17 | 0.15 |0.44[0.12] 0.58
CHAT(B)|[0.21]0.42] 0.13 | 0.15 | 0.15 |0.46]0.14] 0.73
CAT(B)[[0.22[0.41] 0.13 | 0.15 | 0.14 |0.50[0.15] 0.92
SLG-WAM(L)]|0.23]0.43] 0.13 | 0.16 | 0.16 |0.42[0.12] 0.61
CHAT(L)||0.22[0.42] 0.12 | 0.15 | 0.14 |0.40[0.11] 0.53
CAT(L)|[0.22[0.42| 0.12 | 0.15 | 0.14 [0.40]0.11] 0.55

Table 1. Time performance of SLG-WAM, CAT & CHAT under batched & local
scheduling.

For the local scheduling strategy, CAT and CHAT are the same time-wise and
systematically better than SLG-WAM. Under the batched scheduling strategy,
the situation is less clear, but CHAT is never worse than the other two. Taking
into account the uncertainty of the timings, it is fair to say that except for read_o
all three implementation schemes perform the same time-wise in this benchmark
set.

| ||es—o| cs_r |disj_o|gabriel[kalah o[ peep| pg [reado]
SLG-WAM(B)|| 9.7 |11.4] 88 | 206 | 40 |317|119] 512
CHAT(B)|| 9.6 |11.6] 8.4 | 24.7 | 35.1 [ 770|276 ] 1080
CAT(B)|[13.6{19.4] 11.7 | 45.3 84 |3836{1531| 5225
SLG-WAM(L)|[6.7 |76 5.8 | 17.2 | 13.3 | 19 [15.8| 93
CHAT(L)|[5.8]|7.2| 56 | 19 8.2 16 |13.2} 101
CAT(L)|[7.9]10.7] 7.1 | 20.5 | 125 | 17 |23.5] 246

Table 2. Space performance of SLG-WAM, CAT & CHAT under batched & local
scheduling.

Space-wise, CHAT wins always from CAT and 6 out of 8 times from
SLG-WAM (using local scheduling). However, as noted before, the space fig-
ures should be taken cum grano salis.

7.2 A more realistic mix of tabled and Prolog execution

The next set of programs is more balanced, i.e. 75-80% of the execution concerns
Prolog code. We consider this mix a more “typical” use of tabling. We note at



this point that CHAT (and CAT) have faster Prolog execution than SLG-WAM
by around 10% according to the measurements of [4] — this is the overhead that
the SLG-WAM incurs on the WAM. In the following tables all figures are for the
local scheduling strategy; batched scheduling does not make sense for this set of
benchmarks — see [2] on why this is so.

( [[ akl [eolor] bid [deriv|read|browse|serial|rdtok|boyer|plan[peep]]
SLG-WAM|(|1.48{0.67(1.11|2.56(9.64| 32.6 |1.17(3.07 |10.02|7.61]9.01
CHAT|([1.25{0.62{1.03{2.54|9.73] 32 |0.84|2.76 [10.17)|6.14|8.65
CAT||1.24]0.62(0.97{2.50]9.56| 32.2 |0.83]|2.75|9.96 |6.38|8.54

Table 3. Time Performance of SLG-WAM, CHAT & CAT.

Table 3 shows that CAT wins on average over the other two. CHAT comes
second.

0 [[ akl[color| bid [deriv] read [browse][serial|rdtok]boyer] plan[peep]|
SLG-WAM([998] 516 [530] 472 |5186] 9517 | 279 |1131|2050{1456/1784
CHAT||433| 204 |198| 311 |4119| 7806 | 213 | 746 | 819 | 963 (1187
CAT||552| 223 |206| 486 |8302| 7847 | 227 | 821 {1409/1168|1373

Table 4. Space Performance (in KBytes) of SLG-WAM, CHAT & CAT.

Space-wise, CHAT wins from both SLG-WAM and CAT in all benchmarks.
It has lower trail and choice point stack consumption than SLG-WAM and saves
considerably less information than CAT in its copy area.

8 Conclusion

CHAT offers one more alternative to the implementation of the suspend/resume
mechanism that tabling requires. Its main advantage over SLG-WAM’s approach
is that no freeze registers are needed and in fact no complicated changes to the
WAM. As with CAT, the adoption of CHAT as a way to introduce tabling to
an existing logic programming system does not affect the underlying abstract
machine and the programmer can still rely on the full speed of the system for non-
tabled parts of the computation. Its main advantage over CAT is that CHAT’s
memory consumption is lower and much more controlled. The empirical results
show that CHAT behaves quite well and CHAT is a better candidate for replacing
SLG-WAM (as far as the control goes) than CAT. CHAT also offers the same
advantages as CAT as far as flexible scheduling strategies goes.
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Abstract. Constraint-based grammars based on Head Driven Phrase
Structure Grammar (HPSG) employ typed feature structures as the
representation language. Although the unification operation over typed
feature structures can be implemented in Prolog, this is significantly
inefficient. A recent abstract machine [18] for typed feature structures
translates grammatical descriptions into abstract code sequences, reduc-
ing parse times by a factor of 11 to around 1 second for 12 words as
compared to an earlier Prolog parser.

We present a new method for compiling typed feature structure gram-
mars that can bring significant improvement in parsing times. A Prolog
prototype of our abstract machine described in this paper already parses
faster than the existing abstract machine. Qur approach is based on cre-
ating composite types which are a combination of bitmaps and pointers.
Composite types are created for lexical and phrasal categories. Precom-
piled tables reduce speculative unification, and built-in predicates achieve
further speed-ups by more efficient array representations of tables and
phrases. Applicability to constraint programming in general is discussed.
Keywords: Constraints, types, feature structures, parsing, HPSG, ALE,
abstract machine.

1 Introduction

Modern grammars for natural languages based on the Head-driven Phrase Struc-
ture Grammar (HPSG) [1] [2] employ typed-feature structures [3] as their de-
scription language. Feature structures such as the one in Figure 1 are employed
for describing linguistic objects. Feature structures consist of a conjunction of
feature-value pairs where features are atomic symbols and values can be either
atomic or a feature structure. Feature structures can be thought of as the analog
of Prolog terms used in linguistic descriptions, and were popularised by unifica-
tion grammar implementations such as PATR [4][5]. Features can be thought of
as indexes to argument positions of a complex term.

Tvped feature structures (TFS) are complex terms with functors organised
into a type hierarchy: this makes unification more complex than for Prolog terms.
In this paper, by a TFS we mean a well-formed formula in a typed-feature logic.
Typed feature logic can be viewed as a constraint language that extends feature
logic [6] by providing types (as in [7]) and appropriateness constraints [3].
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1.1 TFS Grammars

A typed feature structure grammar is best understood as an extension of the
familiar context free grammar (CFG) where terminal and non-terminal symbols
are replaced by TFSs. We assume that a TFS is given by the following definition:

(TFS) — (FS) | (type) &(FS) | (type)
(FS) — (path): (value) | (FS)&(FS)

where
(value} — (T FS) | (constant) | (variable)
(path) — (feature) | (feature) : (path)

Figure 1 shows the TFS for the category of a verb in an HPSG grammar
for English (8] (9], in attribute value matrix (AVM) notation. Types and feature
names are in lower and upper-case respectively. In the example shown in figure
1 the values of SUBJ and COMPS are each a list of structures of type synsem.
Appropriateness [3] is employed to restrict the types that a feature can take,
and is defined by a function Approp: F x T — T where F' denotes the set of
feature symbols and T denotes the set of types T'.

A feature appropriate to any type is also appropriate to all its sub-types.
For example, in the type hierarchy at the bottom left of Figure 4, tb is the
appropriate type of f1 which is appropriate to t2, t5 and t10. ALE uses the
restriction that each feature should uniquely determine the most general type for
which it is appropriate. Where all features appropriate to a type are supplied, the
TFS is said to be totally well-typed, as in Figure 3 but not 6, where comparison
with Figure 5 shows additional features for the value of index.

A typed feature formalism, such as ALE, has a type inference system, a TFS
definite clause theorem prover, and a bottom-up chart parser.

1.2 Bottom-up chart parsing

The bottom left of Figure 7 shows a phrase structure analysis of the sentence
“Peter likes Paul” using the grammar rules and lexical entries as given below:
vp — v np s — np wp
np — “Peter” np — “Paul” v — “likes”
In this example np and v are lerical categories or terminal symbols and vp and
s are phrasal categories or non-terminal symbols.

The nodes in the phrase structure analysis are known as constituents and
the immediate children of a given constituent will be referred to as its sub-
constituents. The sub-string dominated by a constituent is called a phrase, and
the structure of that phrase is given in the tree-structure rooted in the con-
stituent. A paerser constructs the phrase structure analysis of a sentence. This
paper will refer to bottom-up parsing where an analysis is constructed, a phrase
at a time, upwards from the words. In chart parsing, illustrated in Figure 2,
completed constituents are entered into a table or chart, which indexes them by
the start and end positions of their associated strings, so in this case the chart



will contain:

0

np 1

1

v 2 2np 3

lvp3 0s3

Chart parsers are treated in Prolog in [10][11] and in pseudocode in [12].

SYNSEM
synsem

| word

PRD boolean
MOD none
HEAD verb| yVFORM bse
AUX minus
INV minus i
SPR LOC |:CAT cat [MARK]NG comp]]
ne_list_synsem| Joc ]
HEAD noun[CASE nouil
SPR e_list
SUBJ LoOC [CAT|SUBIJ e_list
ne_list_synsem| joc| cat|COMPS e_list
MARKING unmarked |
CONTENT [INDEX Indl
CAT i | nom_obj ]
rocar| ™ | F 1l
oL HEAD noun|CASE acc]
cAT| SPR e_list
COMPS LOC| cat SUBJ e_list_
ne_list_synsem| joc COMPS ¢_list
MARKING unmarked
co [INDEX Ind2]
nom_obj
| MARKING unmarked )
. LIKER Indl
NUCLEUS like
CONTENT psoa [LKEE In d2:l
QUANTS e_list
LASH t
NONLOCAL nonlocal | TVFERITED nonlocl [SLAS e_se]
TO_BIND nonlocl [SLASH e_set

Fig. 1. The verb “like” in HPSG, shown as an attribute value matrix
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np v np

0 Peter 1 likes 2 Paul 3

Fig. 2. The conventional view of a chart in the parse of a simple sentence

2 Existing Abstract Machine Techniques

Use of the chart or “well-formed sub-string table” avoids multiple computa-
tion of the same constituent arising from ambiguities in natural language. A
sub-constituent in the chart can have multiple parent constituents in a forest of
phrase structure trees, reflecting its combination with alternative phrases making
differing feature bindings. An efficient solution, by J.A.Carroll, [12] that min-
imises copying for unification grammars and appears extensible to TFS gram-
mars, is to keep these bindings in the parent, and copy them temporarily into
the sub-constituent during retrieval.

The ALE environment [16] makes a complete copy of the TFS of a new
constituent including its components in the sub-constituents: the computational
cost is considerable. For the constituents in the chart to be globally addressable
which a bottom-up algorithm requires, in Prolog they must be represented by
dynamically asserted clauses. Many unifications fail, so it is desirable to delay
copying until a rule has successfully unified with a sub-constituent. This means
making bindings in the sub-constituent and then undoing them on failure or after
copying. However, the WAM code [14] [15] or interpreted Prolog representing an
asserted clause cannot be modified. One CFG parser in Prolog [17] passed the
chart as an argument in a recursive algorithm: extended to TFS unification this
would allow bindings in a sub-constituent without copying, but removing these
on backtracking would also remove any new edge copied to the chart. A clause
cannot be partially invoked either, so when a rule unifies with an asserted clause,
a complete copy of its TFS is made on the heap, even if unification fails early in
the structure.

These problems can be easily overcome in an abstract machine, such as
Amalia (18], illustrated in Figures 3 and 4. This parses a subset of ALE 10
times faster, although a faster Prolog version, ALE 3.0! is in beta release.

2.1 The Amalia Abstract Machine for ALE

Figure 3 shows the abstract code generated by Amalia for a single TFS prammar
rule {also shown in 3). Before any abstract code is generated, consistency of every

! Details of ALE 3.0 on http://www.sfs.nphil.uni-tuebingen.de/ gpenn/ale.html



TFS in a rule is checked against inheritance and appropriateness declarations.
This process completes partial structures by adding omitted types and features.
Unification is more complex than in Prolog. Two TFSs also unify if they both
have a common join (as with tg and th, t5 and t10 in Figure 4).

_ = Abstract Code for Rule

td td ts L1: get_structure t4/2, X1
f1: [1]| = | f1:[1] fl: [1]| rule unify_variable X2
f2: [2] f4: [3] unify_variable X3

t7 get_structure tb/0, X2

f2: [2]| fl:tc get_structure t7/2, X3
2: [3] unify variable X4
i unify variable X5

get_structure tc/0, X4

- get_structure tb/0, X5

t4 t10 copy active edge X1
fl: tg fl: th Code in rule: 2nd. daughter
f4: te get_structure t5/2, X6
t7 f7: ti unify _value X2
f2:| fl:tc unify value X5
2:4 Code in rule: mother
J put_node t4, X7

Complete constituent ~ Complete constituent ~ PUt-2rc X7,1, X2
for daughter 1 for daughter 2 put_arc X7,2, X3

X1 copy_complete_edge 7
A/ﬂ £ fl 2

i 1+l 2 1+3 i+4 i+5 i+6 i+7 i+8
STRI|REF [REF|STR|STR|REF|REF|STR| STR
td | i+3|itd| tg | t7 | i+7|i+8| tc | 4

Fig. 3. A rule with constituents, and their underlying abstract code and heap repre-
sentations in the Amalia abstract machine for ALE

For simplicity in coding, Amalia stores all arguments (i.e. the value of ap-
propriate features) of a TFS structure separately on the heap, referenced from
argument positions inside the structure (for example, STR node i4-3 in Figure
3), in contrast to WAM that does this only for non-atomic arguments. Regis-
ters are used to address these arguments in both cases. On the first occurrence
of a co-indexed variable in a rule, unify_variable sets a register referencing the
appropriate REF node. On subsequent occurrences unify_value initiates full re-
cursive unification of two dereferenced structures. Trailing of bindings in Amalia
involves the original value so this can be restored. This contrasts with the WAM
where variables are simply unbound.
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daughter 1 | daughter 2 \ fl f2
Stack X1 X2 X3 X4 X5/X6 m n o+l n+2

act'ion address STR STR|REF|REF
unify
unify

Stack
action| address |
unify
unify |

S
fl f2 fl f2 fl 4 {7
§OGFL 42 43 44 45 746 4T 7#8 | k  kHl k+2 ki3 ki4 kiS5 k+6

STR|REF|REF|REF|STR|REF|REF|STR| STR| | |STR|REF [REF|REF|REF|REF|STR|

t4 | m | t7 tc | § tl0] m | j+8| ti
| LN A M. A
X e \‘_
struct  atom R
TRAIL STACK

2 N P
G I N address |old vé{“‘"- e

t5 te i :

T WAN

[ |- STRte

_— STR th
STR tg

Fig. 4. The heap after the application of the rule of Figure 2, showing the stacks during
its application

The get_structure instruction differs from that in the WAM in that it must
cope with possibly differing numbers of features in the rule and sub-constituent.
It addresses a table of procedures using two types: one from the instruction,
arising from the rule, and one found in the sub-constituent by dereferencing the
register appearing in the instruction. Abstract code instructions in the procedure
push references onto a stack, as shown in 4, and each one is popped off the
stack by one of the following wunify_* instructions. Where the type in the sub-
constituent is equal to (e.g. t4), or is subsumed (e.g. t10) by the type in the
rule, the references are to all, or to some of the features respectively in the sub-
constituent. By this means, the unify_* instructions in the rule always reference
the correct features, whatever the type in the sub-constituent.

Abstract instructions corresponding to the mother (the LHS of a rule ) build
a structure on the heap, with features referencing nodes in the sub-constituents,
this co-indexing being achieved using registers. The final operation is to copy



the structure that is rooted in the mother, after which the bindings in the sub-
constituents are undone using the trail stack.

Significant overheads in Amalia include building (invoked by gel_structure)
and reducing the stacks, as well as fetching and decoding a considerable num-
ber of abstract instructions, including those within the procedure addressed by
get_structure. The final copying operation (e.g copy_complete_edge 7) is consid-
erable, since for example the lexical entry of Figure 1 contains 53 nodes (STR
cells) and 54 incoming arcs (REF cells), occupying 428 bytes, where structures
labelled with Ind1 or Ind have features number, gender and person. In 6 out of
7 of the HPSG rules in [9], a synsem structure in the first or second daughter, as
in subj and comps in Figure 1, ensures agreement with another sub-constituent.
Co-indexing demands a path as deep as this structure, involving many abstract
instructions to traverse it, and more in unifying the structure. Following success,
all of the TFS less this structure is expensively copied into the mother: for a verb
this occurs twice in forming the sentence.

Peter/Paul —

word, | source of composite
cat: ( head: noun, type

subj: [ ],

comps: [ ]),

cont: ( index: Ind, ( gen: male,
num: singular,

per: third,
human: yes, I:I bit-map
nature: solid ),
nucleus: Peter/Paul ). semantics
_ syntax _semantics
tc2 | Bit-map |tc2 | tc2 ( bit-map, tc2* ("Peter" ))
v
”Peterl!
tc2 | Bit-map |tc2 I tc2 ( bit-map, tc2* ("Paul" ))
v
'IPaul"

Fig. 5. Two noun lexical entries in simplified HPSG, shown in constraint and in com-
pressed forms

3 Compressed Categories

Much of the structure in a category is invariant during parsing, a crucial ob-
servation exploited in our approach. This implies that most of these struc-
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tures can be stored in a suitable data structure retrieved after parsing, avoiding
multiple copying. HPSG partitions the category into syntactic structure reach-
able by the synsem: local: category path, and semantic structure rcachable by
synsem: local: content. Structure is usually discarded once unification has been
checked between sub-constituents, so there is often less and never more struc-
ture in a phrase than in either of its subconstituents. Therefore unique phrasal
syntactic structures number less than unique lexical structures, ignoring the or-
thographic string identifying the word, which does not affect combination with
other categories.

Current grammars do not generally examine semantic structure to decide
if a phrase is well-formed, so this does not affect the applicability of a rule
to sub-constituents. An exception is the ind structure of a nominal. Semantic
structure grows as words are added to the analysis, by combining semantic graphs
criginating from the lexical categories, so lexical categories must contain some
skeleton representation of these graphs so the semantics of the sentence can later
be retrieved. This skeleton involves a composite type to enable full semantic
structure to be re-built from the refrieval graph, discussed in section 4, and a
pointer for each node in the structure that could be co-indexed with semantic
structure in another constituent. There is also a one-byte reference to the string,
indirectly through an array with one entry per word in the sentence.

likes — )
source of composite

type

word,
cat; ( head: verb,
subj: [ ( sign,
cat: ( head: noun,
subj: [ ],

comps: []), bit-map
cont: index: Indl, ( human: yes) ], [I
comps: [ ( sign,
cat: { head: noun,
subj: [],
comps: []), bit-map
cont: index: Ind2) 1), |:|
cont: nucleus: ( likes, semantics
liker: Indl, H
liked: Ind2 ).
syntax semantics
T
te4 | Bit-map |tc4| | ]l tc4 ( bit-map, tc4* ("likes", Ind1, Ind2 ) )
v
ltlikes"

Fig. 6. A verb lexical entry in simplified HPSG, in constraint and compressed forms



Figures 5 and 6 show examples of compressed catcgories for lexical entries
with their constraint expressions in a simplified HPSG. The compressed syntac-
tic component comprises a composite type, from which the invariant syntactic
structure ¢an be retrieved, and an optional bit-map for a subset of paths not in-
cluded in the type. The scmantic skeleton has just been described. An equivalent
Prolog representation, used in the working prototype, is shown alongside.

Current grammars allow encoding of complete syntactic structure in an ac-
ceptable number of composite types, without a bit-map. To reduce the number of
types, some fcatures would be encoded in a compressed bit-map in the category
as in [10]: features usually have only 2 or 3 possible values.

In Figure 5, both noun categories have identical composite types since only
the orthographic string varies, and the semantic components contain only the
reference to this string. Figure § illustrates the verb “likes” again. The subj
and comps features each specify a noun, involving a bit-map of features. The
semantics has a pointer for the subject category and one for the complement
category, irrespective of the complexity of the semantic structure.

4 Parsing Using Compressed Categories

Figure 7 shows a phrase structure analysis by the proposed abstract machine,
with a CFG summary at bottom left. A verb phrase derives “likes Paul”, and
combines with the preceding noun to produce a sentence phrase deriving “Peter
likes Panl”. Each compressed phrase has a composite type reflecting its syntac-
tic structure. [ts semantic structure is formed by copying the semantic structure
from the semantic head, here the verb, followed by a grammar rule identifier,
here 83, and the semantic structure from the other sub-constituent: the appro-
priate pointer is set to point to this structure. Concise categories allow small
self-relative pointers, and block copying rather than expensive graph traversal.
Modern CPU’s support fast block copying for high-speed graphics.

The figure shows a complete semantic structure being copied into the new
phrase, as in Amalia. The Prolog prototype uses an alternative approach, where
only the structure from the semantic head is copied, and this references semantic
structure in the sub-constituents via pointers bound to edge numbers. This is
possible without excessive copying since bindings are made mostly in the root
node, or in semantic nodes close to the root. This second case will involve edge
copving to allow for shared subtrees, which has low overheads for compact edges.

After parsing, each complete semantic structure can be re-created by access
to a precompiled retrieval graph, following arcs chosen by the composite type.
The current prototype implements this with dynamically asserted Prolog clauses:

arc(Composite.type, Arcno, Type, Type_node_no)

type.node (Typenodeno, Type, Arc.mo.list)

The semantic structure in a composite type starts at a known node in the re-
trieval graph, and contains nodes that a rule will bind to nodes in structures
of other types. The prototype contains a table recording these associations and
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during retrieval this is referenced to link together lexical semantic structures to
build that of the sentence.

tc7 | tc4 | §3 | Bit-map2 | tc2 | sl | Bit-map2 | tc2 |

"likes" "Paul" "Peter”

4 v

tc2 | Bit-map2|tc2 | tc6| Bit-map4 | tcd | ! s3 | Bit-map2 | tc2 |
L) + 1) " '+ " +
(17 Peter’ likes Paul"
tc6
vp 4 4
tc4 | Bit-mapl |tc4 | H tc2 | Bit-map2 | tc2 |
tc2 tcd tc2 ¢ ¢
np v np
Peter  likes Paul "likes" "Paul"

Fig. 7. Building a complete phrase structure analysis in the proposed abstract machine

4.1 Avoiding Unification During Parsing

The prototype parser developed in SWI Prolog is similar to the chart parser in
(16] or [10], except that precompiled tables indicate which sequences of consec-
utive constituents in the chart can be combined. The following code is invoked
after selecting an edge of composite type Typel from the chart, spanning words
between Start1 and Right1, where Seml is its semantic structure: the edge is
identified by the unique integer Edge nol. An edge to combine with this is being
sought by the code.
apply.rule(Edge nol,Startl,Rightl,Typel,Seml,N):-
compact._edge(Edge no2,Rightl,Right2,Type2,Sem2,_,.),
double_tuple(Typel, Type2, Rule, Mother_type),
update_compact_edge no(J),
Edges = [Edge_nol,Edge _no2],
build semantics([Seml,Sem2],Rule,Edges,Sem),
assert(compact.edge(J,Startl,Right2,Mother_type,Sem,Edges,Rule)),

— compact._edge/7 references another edge in the chart, starting at Righti
where the first edge ends: arguments resemble those in the clause head.
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— double_tuple/4 invokes clauses implementing precompiled tables, indicat-
ing if edges of Typel and Type2 combine under Rule to make a phrase of
Mother_type.

— update_compact.edge_no/1 increments the edge-count in a dynamic clause.

— the next clause builds a list of edge numbers once, to be referenced later.

— build_semantics/4 builds the semantic structure of a new cdge from Semi
and Sem?2.

— assert (compact._edge/7) stores a new edge numbered J, made by combin-
ing Edge nol and Edge no2 under Rule.

Indexing on the first two arguments of double_tuple/4 specds access, but
hash tables are completely re-addressed with both types when only the second
edge is changed on backtracking. All arguments of compact_edge/7 are instanti-
ated although Right1 has been checked by indexing, and only Type2 is immedi-
ately needed. A wide-coverage grammar and an ambiguous sentence can generate
hundreds of edges with the correct Right1 that will not combine, making this
a bottleneck. The less frequent assertion of edges and the edge-count are also
computationally expensive.

A solution is to write new built-in predicates in imperative code, supporting
parse tables structured into a tree of arrays, and the more compact edge repre-
sentations of Figure 7. Overall table size for a full-scale grammar is estimated
at < 1Mbyte, based on the number of combinations of linguistic feature values
under cach rule. Tables are small mainly because complements agree only with
the verb and not each other, and phrase structures derive from a single head
daughter, so tables need not treat a full cross-product of 3 categories. The hash
tables generated in Prolog indexing could not exploit these restrictions.

5 Precompilation

The precompilation method should be:

e insensitive to the type signature/feature geometry employed.

e portable across different typed feature formalisms (apart from ALE).
Composite type mapping should not be onto CFG categories, or rely on specific
paths governing agreement. For example, a verb phrase typically has:

synsem: local: category: ( head: verb, subj: not(elist), comps: e list)
but such structure geometry can vary between grammars. Composite types can
be integers arbitrarily assigned to distinct structures, ignoring orthographic
strings and semantic structure except for ind in nominals, and in categories
combining with nominals to make nominals. In time Ofn.m) a discrimination
network can treat n categories of m nodes, allocating a new type to any cate-
gory that differs in any respect from those already treated: a full-scale lexicon
would take a few minutes with an efficient imperative implementation. In the
Prolog prototype, network arcs are dynamically asserted clauses of the form:

arc.disc(Node_no_source, Type.destination, Nodeno_destination)
whilst nodes appear only in the source or destination fields of the arcs. Since
structures are totally well-typed, feature names can be derived and only types
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are stored. An arc and node are added when no destination node reachable from

the current source node matches the type of the next node in the feature struc-

ture. Terminals are labelled with the composite type using dynamic clauscs:
type node disc(Leaf node.no, Composite_type)

Then compilation involves recursively applying each rule to every combi-
nation of categorics, generating tuples like double_tuple of the last section.
Mother_type is assigned using the discrimination network when a new phrasal
category is generated. Compilation is a bounded task, since the discharge of subj
and comps lists results in there being fewer phrasal than lexical cateporics.

The second objective is important so general linguistic principles of HPSG
like the head-feature principle can be implemented in new ways by the linguist,
rather than by the explicit invocation of definite clauses used in current ALE
grammar rules. Principles could be attached to the type hierarchy and invoked
when a rule treats a particular type, or be globally declared and automatically
implemented in every rule [20]. Whatever the method the heap shown in Figure
4 will reflect the principle following the successful application of a grammar
rule to a category sequence. Currently ALE compiles grammar rules into Prolog
clauses, and further compilation in our system adds a list of arguments accessing
the rule daughters, so the feature structure of each daughter on the heap can be
traversed and analysed after rule application.

Each co-indexed node is tagged with a unique integer reflecting the first
daughter in which it is referenced and the tag number in that daughter, for
example 203 for tag 3 in daughter 2. Tag detection during TFS ¢raversal in a
later daughter or the mother determines which daughter provides the semantic
structure in the mother, or the paths in other daughters that unify with pointers
in that structure, like Ind1 in Figure 6. Such inter-daughter unification is clearly
seen in Figure 4. Computational cost is small compared to unsuccessful rule
application, and the technique is implementable in Prolog without recourse to the
heap data structure at WAM level, although this would speed-up compilation.

6 Experiments and Results

Initial tests have used an abbreviated version of a small HPSG grammar [9], with
six schemas, and 83 types. The type signature is realistic for a wide-coverage
grammar as described in [2]. Tests were made with varying length unambiguous
sentences of the form "kim believes kim believes ... kim likes sandy”. Parscs
contain all generated edges in a vine structure which is an extension of Figure
7, with 2 arcs per node. By repeatedly parsing 100 and 1000 times respectively
for sentences of 31 and 5 words, on a Pentium IT 266MHz machine, Table 1 was
obtained. Both parsers destroyed edges using retractall: the shortest time was
rechecked with 10,000 repetitions.

Neither parser adds null edges, the ALE code being modified to ensure this,
and the lexical rules that generate slashes and the head-filler schema that resolve
them were removed from the grammar. Inequality constraint checking was left in
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Table 1. Relative experimental parse times for a Prolog prototype high-speed parser

Parse Parse + Retrieve Parse + Retrieve + Co-index
5-words(ms)/31-words{ms)
ALE parser 58/434
High-speed parser 1.1/7.5 5.1/22 9.2/52
Speed-up 53/58 11/20 6.3/8.3

ALE, since it is inherent in the compiled grammar rules, but since the grammar
does not usc this feature the execution overhead of checking for empty lists is
small. A call was added to the ALE parser to traverse the feature structure of
the sentence to number co-indexed nodes, since further processing would demand
this: without this ALE times would be 26%/16% shorter for the two sentences.
Co-indexing itself is automatic in the graph-based approach of ALE, but must be
generated in the high-speed parser by detecting revisited nodes in the retrieval
graph. Currently, recursive serial search is used, as with numbering in ALE,
leading to the higher parse times shown. Implementation in an imperative code
built-in predicate will eliminate this cost, marking visited nodes in a sparse array.

Although retrieval costs appear high, programming effort in Prolog could
not reduce them, and they are realistic since the ALE parser copies the grow-
ing semantic structure at each phrase, while the high-speed parser traverses the
largest structure once after parsing, leading to calculated ratios of 3 and 15 for
the copying overheads for the short and long sentences respectively. Most sen-
tences treated by wide-coverage grammars are ambiguous [12], and so generate
both unincorporated and shared sub-trees, increasing the potential speed-up of
the high-speed parser which delays traversal and does not repeat it.

Imperative built-ins will further increase speed-up as discussed in section
4.1, and block-copying of an array representation of an edge will be faster than
compiling a Prolog clause to WAM: in space alone, a binary edge can be coded
in 16 bytes rather than the 52 bytes of Prolog arguments. Adding semantic
structure and asserting edges each form 25% of parse times, leaving 50% for the
recursive algorithm with argurnent passing and clause reference. An imperative
solution allows edge details to be randomly extracted given the edge number,
climinating most of the algorithm costs,

6.1 Estimated Size of Retrieval Graph for a Wide-Coverage
Grammar

Because a new composite type is allocated to each distinct structure, an upper
bound on the number of composite types can be calculated independently of
the lexicon size. It is equal to the number of different combinations of linguistic
feature values in each category, including those controlling agrecment. Assum-
ing that a verb agrees with its subject in number and person but not with its
complements, and that a specifier and adjunct agree with the noun on number,
gender, and case which is assumed to have four values, the number of composite

2%
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types can be shown to be <45,000. Further reasonable assumptions arc a limited
range of HPSG structures, a branching factor of 3 in the type hierarchy, and 53
arcs in a large structure like Figure 1.

Encoding transitive verbs then requires 500Kbytes, involving mainly 53 sparse
arrays, in an imperative inplementation: this assumes each arc in the retrieval
graph has an OR node with a sparse array of arc numbers, packed 4 to a byte,
addressed with the composite type. Ditransitive verbs are assumed to be 20%
larger, repeating the synsem structure. For a noun, arcs leading to e_list for subj
and comps are added, with some minor case data reachable by head, and the
small semantic structure illustrated in Figure 5. Assuming a generous 20% ex-
tension for each of 20 CFG categories, a total of 2.5Mbytes would be required,
and a lot less if binary search replaced direct access.

7 Conclusions and Wider Application of the Techniques

The high-speed parser in its Prolog prototype is about 50 times faster than
the ALE parser in Prolog, ignoring retrieval costs: implementing key sections in
imperative code will improve this and also the retrieval costs which should be
relatively smaller with commonly occurring ambiguous grammars and sentences.
The time-cost of implementing HPSG principles is already included. Adding
these to Amalia is likely to increase its parse times. The speed-up of the high-
speed parser relative to ALE therefore compares favourably with the 11 times
speed-up of Amalia.

7.1 Application of the Techniques to Constraint Programming

The pre-compilation of TFSs into compact representations with composite types,
and of constraints into tables, can be applied to constraint logic programming
over typed feature structures, CLP{TFS), provided that:

— There is some strategy governing the combination of constraints, and the
number of intermediate steps over all possible programs is closely bounded.

— Recursion is not precluded, but decisions about which constraints to combine
next do not increase in complexity with the number of recursions.

This wonld allow the precompilation of a fixpoint of TFSs over the clauses start-
ing with the ground ones, as in [21] for Prolog, and composite types to be passed
as terms at run-time. However, this is an area for further study.
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Abstract. This article describes the derivation of an abstract machine from an interpreter describing
the operational semantics of a source language. This derivation process relies on the application of
a set of gradual transformations to the interpreter written in a functional language. Through pass
separation, the derivation process leads to the extraction of a compiler and an abstract machine from
the transformed interpreter.

1 Introduction

The increasing interest in abstract machines consecutive to their portability, advocated by the popularity of
the Java language [AG96), raises the problem of their design. The design of an abstract machine intended to
the compilation and the execution of a high-level language is an arduous task. Generally, it needs an empiric
survey of the semantics of the high-level language to study. In other words, one analyses the working of an
interpreter embodying the operational semantics of the language to find the data structures and an emulator
for an intermediate language constituting the abstract machine.

Some propositions have been made aiming at organizing this conceptual study. Among the methods
suggested, we put forward those proposing an interpreter or an operational semantics as starting point and
a set of gradual transformations as principle.

The rest of the paper is organized as follows: first we discuss about existing design methods. Section 3
presents the concepts supporting the derivation process. In section 4, we illustrate the method through a
concrete example. Section 5 deals with abstract machine improvements.

2 Design methods of abstract machines

An abstract machine is composed of an interpreter for the intermediate language that it defines and of a
run-time environment [ASU87] on which relies the interpreter. In what follows, the instructions of the
language interpreted by the abstract machine will be called abstract instructions and their interpreter will
be called emulator. To design an abstract machine, we must conceive an abstract data type environment,
a suited instruction set and an emulator for this instruction set using the environment.

In this section, we present studies connected to the design of an abstract machine and present the guiding
lines of the derivation process.

2.1 Principles of existing methods

In the framework of Prolog, we can note the work of Kursawe [Kur87] and Nilsson [Ni193]. Kursawe designs an
abstract machine dedicated to the compilation of unification. However, abstract instructions are discovered
through the partial evaluation of the interpreter on a given user program: some instructions may not be
discovered. Nilsson performs pass separation [JS86] on an interpreter of the control of Prolog and obtains an
exhaustive set of instructions but his methodology is still dedicated to Prolog. .
Concerning functional languages, Hannan and Miller [HM90] propose an ad hoc progressive transforma-
tion of an operational semantics described by inference rules over lambda terms. The obtained result is an
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abstract machine defined by rewriting rules over the source language. Hannan [Han91] pursues this work
and proposes a systematic way to perform pass separation over rewriting rules: the result is an intermediate
target language and its emulator.

Sestoft [Ses97] transforms, in only one stage, the natural operational semantics of a lazy functional
language in an abstract machine. Then, he introduces within the machine optimizations derived from the
observation of its working. The final result is a machine similar to the TIM machine [FW87], but the
derivation steps are still ad hoc.

Diehl [Die96] introduces a specification formalism, the two level big-step semantics (2BIG), over first order
Jjudgments. He defines and validates a set of progressive and automatic transformations leading to a compiler
and an emulator. His pass separation step relies on Hannan'’s proposition. ’

All these approaches use natural semantics as specification language and rewrite rules as target language.
Wand [Wan82] uses a continuation-based denotational semantics applied on the derivation of an abstract
machine for a procedural language. He introduces combinators to eliminate free variables from the semantic
equations. Then, each combinator is replaced by a first order term, and so the interpreter becomes a compiler
with these terms as target language. An emulator associates to each term its semantics defined by its
corresponding combinator. However, all these steps are highly empiric.

In conclusion, the starting point of these studies is a simple expression of the semantics of a language.
It is simple because some mechanisms of the language to be implemented are implicitly taken into account
by the power of the implementation language. Then, gradually, by finer steps, the implementation of these
mechanisms is clarified while relying less and less on the power of the implementation language. Consequently,
data structures constituting the abstract machine appear. Finally pass separation extracts a compiler and
an emulator.

2.2 Overview of the derivation process

The derivation followed along this paper shares the same fundamental principles as most of the works cited
above i.e. writing a first simple interpreter, giving a gradual clarification of its mechanisms and extracting an
emulator and a compiler through pass separation. These works can be classified according to the specifica-
tion formalism used to express the semantics of the source language [Die96]: natural semantics, translational
semantics, denotational semantics, action semantics, operational semantics, etc. Here, we consider an exe-
cutable formalism for operational semantics description which is a functional language. Thus, we join Wand’s
approach [Wan82] concerning the choice of the description formalism, altogether stating more precisely each
transformation step.

Thus, an initial interpreter is written in a high-level language allowing to get a simple and quickly
comprehensible expression of it. In a functional framework, the first writing makes heavy use of lexical
bindings, recursion and higher order constructs. Then, we try not to rely on the high-level features of the
implementation language in order to write new versions of the same interpreter. For that, step by step, we
provide an implementation of the previous capabilities using low level constructs. The use of continuation
passing style allows a uniform expression of the control flow which is rather machine like. However, the power
of lexical binding still allows a high level description of the data flow, similar to recursion for the control flow.
This mechanism must be eliminated in order to obtain low level machine code, thus enlightening internal
data structures of the abstract machine. This step is completed by introducing a run-time environment
encapsulating dynamic data. Therefore, abstract instructions and their emulator can be extracted through
pass separation.

To surmn up, the derivation of an abstract machine will proceed according to the following steps:

Writing of a first interpreter.

Binding time analysis which annotates dynamic variables.

Elimination of lexical bindings of dynamic variables.

Normalization of the interpreter which introduces the environment abstract data type.
Elimination of the environment through 7-reduction.

Pass separation.

|



3 Concepts supporting the derivation process

The derivation process uses techniques issued from compilation, partial evaluation (binding time analysis)
and program transformation (pass separation). In this section, we present the most specific concepts: pass
separation used in the derivation of a compiler and an emulator, and the notion of abstract machine and its
representation in a functional language.

3.1 Pass separation

Pass separation [JS86] consists in dividing a program into two distinct programs achieving two different
activities of the initial program. Let us consider a program P and its data composed of s and d. Applying
pass separation to P consists in building P; and P2 such as eval P s d = eval P; (eval P, s) d. There are
several solutions for P; and P3, but our purpose is that Py does as much work as possible. For example, if
s is the static data of P, P> will be limited to computations from the dynamic data d.

If P denotes an interpreter for a given language, P, is then the compiler applied to the static data (the
program) and P» the compiled code emulator.

3.2 The implementation language

The implementation language must be sufficiently powerful to get a clear and concise writing of the first
interpreter of the language to implement. Functional languages have some features allowing this first real-
ization. They are suitable to a natural implementation of a transition system that describes our abstract
machine. We kept for our survey Caml, a dialect of ML, whose features are [Ler96]:

strong typing and possibility to define abstract data types,
pattern matching,

higher order functions,

lexical binding of identifiers.

Among the transformations applied to the first interpreter, some of them aim at abandoning the use of
the high-level features of the implementation language. Hence, this leads to explicit, in a lower level fragment
of the language, mechanisms of interpretation of the language to implement. Consequently, the complexity of
the interpreter structure will be gradually increased, hence, leading to the emergence of the abstract machine
structure.

3.3 Caml expression of an abstract machine

An abstract machine is defined by two kinds of transition rules:

(D) {i;C,e) = {ig;...;in; C, ") with ¢’ = fie
(1) (7;C,e) = (C,¢') with &’ = fje

where i are terms of T with X a first order signature, and e and e’ run-time environments. The first type
of rule (I} adds new instructions to the sequence of code to be interpreted while modifying the run-time
environment, whereas the second (II} only modifies the environment. In a general way, such a system can
result in an continuation passing style interpreter of the form:

let rec eval = fun
(* type I rules x)
i -> fun cont env -> eval ip (eval iy (...(eval i, cont}...) (fj env)
(* type II rules *)

| j -> fun cont env -> cont (fj env);;
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4 Design of abstract machines

We now present in detail the derivation steps leading to the definition of an abstract machine. As a demon-
stration example, we consider all along this section an interpreter of arithmetic expressions.

4.1 The example of a calculator

We illustrate the different transformations through a simple example dealing with an interpreter for arith-
metic expressions. This interpreter includes a construction try ... with ... allowing to catch exceptions
raised during the computation. In this example, the only exception that can be raised is the attempt of divi-
sion by zero. The expression try expri with expr2 means: “return the result of the evaluation of expri,
or the one of expr2 if the evaluation of expri raises a division by zero exception”.

The abstract syntax of the language interpreted by this calculator is expressed by the following Caml
abstract data type:

type expression =

ID of string (* Identifier of a variable *)
| INT of int (* Integer value *)
| TRY of expression * expression (* Construction try ... with ... *)
| ADD of expression * expression (* Operator + *)
| SUB of expression * expression (* Operator - )
| MUL of expression * expression (* Operator * *)
| DIV of expression * expression;; (% Operator / ¥)

4.2 Writing a first interpreter

The first stage consists in writing an interpreter for the language to implement. This interpreter is either
written in continuation passing style if special control flow must be specified, or results of the transformation
of a direct style interpreter into continuation passing style [Plo75].

In our example, the first interpreter of the calculator described by figure 1 defines the function evall
having the following arguments:

— a term of the abstract syntax of type expression described at section 4.1, which is the expression to be
evaluated.

— a forward continuatiuon cont associated to the normal progress of the computation. It returns an integer
and has three arguments: an escape continuation, a value corresponding to the result of the previous
evaluation of a sub-expression of the current expression and the list of variable bindings. However, the
use of n-reduction may hide the third argument of some continuations.

— an escape continuation exs, which takes as argument the list of variable bindings and returns an integer.

It pursues the computation from the inclosing try ... with ... if an exception is raised.
— a list bnds of couples (name, value) where name is the name of a variable identifier and value is the
value associated to this variable i.e. an integer.

Note that the variable bindings remaining unchanged during the computation are transmitted from
continuations to continuations, avoiding useless duplications. The same holds for escape continuations. A
more natural writing of this first interpreter, corresponding to the translation of a recursive writing using
the Caml try-with construct, would be the following:

let rec evall = fun
INT(n) -> fun cont exs bnds -> cont n
| ADD(el,e2) ->
fun cont exs bnds ->
evall el
(fun vl -> evall e2 (fun v2 -> cont (vl + v2)) exs bnds) exs bnds
[
| TRY(el,e2) ->
fun cont exs bnds -> evall el cont (fun () -> evall e2 cont exs bnds) bnds



let rec evall = fun
INT(n) -> fun cont exs -> cont exs n
| ID(i) => fun cont exs bnds -> cont exs (List.assoc i bnds) bnds
| ADD(el,e2) ->
fun cont ->
evall el
(fun exs1 vl -> evall e2 (fun exs2 v2 -> cont exs2 (vl + v2)) exsl)
DIV(el,e2) ->
fun cont ->
evall e2
(fun exs2 v2 ->
if v2 = 0 then exs2
else evall el (fun exsl vi -> cont exsl (vl / v2)) exs?2)
TRY(el,e2) ->
fun cont exs -> evall el (fun _ -> cont exs) (evall e2 cont exs)

Fig. 1. The first interpreter

However, exs and bnds are lexically transmitted to nested abstractions entailing duplications. We also
note the use of the unit parameter () to delay the evaluation of the escape continuation, as specified by the
operational semantics of the try-with construct. Thus, the use of the continuation passing style allows a
precise management of data and control flows.

The eval function of figure 2, which uses the continuation passing style interpreter, transmits to evali
two functions: a forward continuation (line 1) which takes three arguments, among which the result of the
evaluation, and an escape continuation (line 2) which displays an error message.

let eval term bnds =
evall term

1 (fun _ v _ -> v)
2 (fun _ -> print_string "Uncaught exception" : 0)
bnds

Fig. 2. Top level evaluation function

4.3 Binding-time analysis

This stage performs binding-time analysis in order to identify variables whose values are known at compile-
time and at run-time. For this purpose, we introduce two annotations related to the binding-time classification
of [JGS93] introduced for the study of a partial evaluator for Scheme:

- v% designates a dynamic variable only known at run-time,
— v~ designates a partially static closure whose code part is statically known and whose binding environ-
ment is known at run-time.

The values of unmarked variables are thus supposed to be known at compile-time. Furthermore, annota-
tions are positioned on the declaration point of lambda variables.

Supposing that evall is called with compile-time known values term, cont and exs, a handmade mark-
ing of our interpreter is illustrated by figure 3.

4.4 Lexical bindings elimination

This stage eliminates the use of lexical bindings te access annotated variables. These variables depend on
the run-time environment of the interpreted program. If a continuation has access to such a data through
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let rec evall = fun
S_INT n -> fun cont™ exs™ => cont exs n
| S_ID id -> fun cont™ exs™ bnds® -> cont exs (List.assoc id bnds) bnds
| S_ADD(el,e2) -> fun cont™ ->
evall el
(fun exs1™ 1% -> evall e2 (fun exs2™ v2?¢ -> cont exs2 (vl + v2)) exsl)

| S_DIV(el,e2) -> fun cont™ ->
evall e2
(fun exs2™ v2
if v2 =0
then exs?2
else evall el
(fun exs1™ vi? -> cont exsi (vl / v2)) exs2)
| S_TRY(el,e2) -> fun cont™ exs™ ->
evall el (fun _ -> cont exs) (evall e2 cont exs)

4>

Fig. 3. Binding-time annotations

lexical binding, it implicitly makes an access to a previous computation state and not to the current one.
Eliminating lexical bindings allows to put forward new components of the run-time environment.

In order to eliminate lexical bindings of annotated data in a typed context, we use a variant of Reynolds’s
proposal [Rey72] where only the environment part of the closure is transmitted to nested abstractions. Thus,
the code part, as well as static data, remain lexically accessed. We proceed as follows:

— We introduce the recursive sum type stack with a variant for each abstraction having free annotated
variables. The variant associated to an abstraction contains the type of statically accessed annotated
data where closures are represented by the type stack. For simplification purpose, a variant with one
entry of type stack is not considered. Furthermore, variants of equal types are not duplicated.

— Each annotated functional variable becomes a pair build from the original variable and a stack variable.
Then, for each application, the code part of the pair must be applied to its stack part in order to transmit
lexical information.

— Each nested function is associated to its stack environement encapsulating lexical data. Consequently,
a new formal parameter of type stack is added to these functions and is bound at call time to their
lexical environment.

In our example, we introduce the type stack of figure 4. It defines three variants: Empty for abstractions
without lexical data, PushInt for (fun exs2™ v2¢ ...) that lexically access to the two annotated variables
v1 and cont, and PushStack for (fun _ -> cont exs) which lexically access to cont and exs. Other nested
functions use one of these variants.

type stack =
Empty
| PushInt of int * stack
| PushStack of stack ¥ stack

..
N

Fig. 4. The type stack

The code of the evali function is then transformed as shown by figure 5. Note that the functional
variable cont becomes the pair (cont,cs) when applied (line 1). Similatly, exs becomes (exs,xs) (line
4). Lexical data are transmitted by building closures (line 3). An abstraction extracts its lexical data using
pattern-matching on its new formal parameter PushInt(vi,cs) (line 2).



let rec evall = function
1 INT(n) -> fun (cont,cs) exs -> cont ¢cs exs n
| ID(i) -=> fun (cont,cs) exs bnds -> cont cs exs (List.assec i bnds) bnds
| ADD(el,e2) —>
fun (cont,cs) ->

evall el
((fun cs exsl vl ->
evall e2
2 ((fun (PushInt (vi1,cs)) exs2 v2 -> cont cs exs2 (vl + v2)),
3 (PushInt (vi,cs)))
exsl),
cs)

| DIV(el,e2) —>
fun (cont,cs) ->
evall &2
4 ((fun cs (exs2,xs2) v2 => if v2 = 0 then exs?2 xs2
else evall el
((fun (PushInt (v2,cs)) exsl vi => cont c¢s exsl (vl / v2)),
(PushInt (v2,cs)))
(exs2,xs2)), cs)
| TRY(e1,e2) ->
fun {(cont, cs) (exs, xs) ->
evall el
((fun (PushStack (xs,cs)) _ -> cont cs (exs,xs)), (PushStack (xs,cs)))
({(fun (PushStack (xs,cs)) -> evall e2 (cont,cs) (exs,xs)), (PushStack (xs,cs8)))

T

let eval e bnds
evall e ((fun _ _ v _ -> v), Empty)
((fun _ _ -> print_string "Uncaught exception"; 0), Empty) bnds

Fig. 5. Lexical bindings elimination

4.5 Normalization of the interpreter

The normalization step aims at gathering all dynamic data inside a unique data structure, the run-time
environment. For this purpose, a sum type is introduced where the type of each variant is the cartesian
product of the dynamic parameter types of the functions used by the interpreter. Then, accessing to individual
data is now performed through the environment. Thus, the interpreter will have the type

static data -> continuation -> enviromment -> answer,
where

continuation = static data -> environment -> answer.
This corresponds to the type of an interpreter equivalent to a transition system.

In our example, for the sake of simplicity, we only consider one variant. The environment defined by
figure 6 is introduced as a record type including dynamic data detected by the binding time analysis: the
environment part of closures (cs and xs), the variable bindings (bnds) and the integer accumulator v which
stores the result of previous computations (v1 and v2).

The primitives of the abstract data type environment, having the current environment as parameter,
are introduced as follows:

— For each call, a primitive computes the environment representing its dynamic arguments.
— For each call where the function is dynamic, a primitive returns the function to be called.
— For each if statement, a primitive returns a boolean value corresponding to the condition of the test.

In our example, the functions of figure 7 are introduced.
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type environment = {
cs: stack; (* execution stack *)
xs: stack; (* backup of the execution stack x)
bnds: (string * int) list; (% variable bindings *)
v: int; (* accumulator *)
E

Fig.6. The type environment

let load n env = {cs=env.cs; xs=env.xs; bnds=env.bnds; v=n};;

let loadv v env = {cs=env.cs: Xxs=env.xs; bnds=env.bnds; v=List.assoc v bnds};;

let push env = {c3=PushInt(env.v,env.cs); xs=env.xs; bnds=env.bnds; v=env.v};;

let add {cs-PushInt(vi,cs); xs=xs; bnds=bnds; v=v} = {cs=cs; x8=x8; bnds=bnds; v=v+v1};;
let div {cs=PushInt(v1,cs); xs=xs;bnds=bnds;v=v} = {cs=cs; xs=xs; bnds=bnds; v=v/v1};;

let restore env = {¢s=env.xs; xs=env.xs; bnds=env.bnds; v=env.v};;

let pushex env = let s = PushStack(env.xs,env.cs) in {cs=s; xs=s; bnds=env.bnds; v=env.v};;
let popex {cs-PushStack(xs,cs); xs=_; bnds=bnds; v=v} = {cs=cs; xs=x3; bnds=bnds; v=v};;
let zerop {cs=cs; xs=xs; bnds=bnds; v=v} = (v=0);;

Fig. 7. Environment access functions

The normalized interpreter including the so-defined environment access functions is given by the figure
8. All dynamic data is now encapsulated inside a unique variable env of type environment which is locally
accessed.

let rec evall = function
INT(n) -> fun cont exs env -> cont exs (load n env)
| ID(i) -> fun cont exs env —> cont exs (loadv i env)
ADD(el,e2) ->
fun cont ->
evall el (fun exsl env -> evall e2 (fun exs2 env -> cont exs2 (add env))
exs1l (push env))
DIV(el,e2) ->
fun cont ->
evall e2
(fun exs?2 env ->
if (zerop env) then exs2 (restore env)
else evall el (fun exsl env -> cont exsl (div env))
exs2 (push env))
TRY (el,e2) ->
fun cont exs env ->
evall el
(fun _ env —-> cont exs (popex env)) (fun env -> evall e2 cont exs (popex env))
(pushex env)

Fig. 8. The normalized interpreter

Introducing this run-time environment implies to modify the eval function as defined by figure 9. It
transmits to evall a forward continuation cont0 which gets a result from the accumulator, an escape
continuation (ex0) and an initial run-time environment initialized using the bnds parameter.



let cont0 env = env.v;;
let ex0 env = (print_string "Uncaught exception"; 0);;

let eval term bnds = evali term (fun _ -> cont0) ex0 {cs=Empty; xs=Empty: bnds=bnds; v=0};;

Fig. 9. Top level for normalized evaluation function

4.6 n-reduction of the interpreter

This step eliminates from the interpreter all explicit references to the environment: all variables of type
environment are discarded through n-reduction. For this purpose, we must consider sequence, selection, and
indirect jumps control structures:

— For the sequence, we introduce a composition combinator, noted ++ and defined by:
let (++) £ g env = g (f env);;
— For each test function of a selection, a combinator is defined as follows:

let if_test true_cnt false_cnt env =
if (test env) then true_cnt env else false_cnt env;;

— For each indirect jump corresponding to the application of a function computed from the current environ-
ment, we introduce a combinator having as many parameters as the function. The combinator performs
the jump and all the actions previously done on the environment.

After the introduction of these combinators, #-reduction eliminates all occurrences of parameters of type
environment. In our example, the obtained code is described by figure 10.

let rec evall = function
INT(n) -> fun cont exs -> (load n) ++ (cont exs)
| ID(i) -> fun cont exs -> (loadv i) ++ (cont exs)
| ADD(el,e2) ->
fun cont ->
evall el (fun exsl -> push ++ (evall e2 (fun exs2 -> add ++ (cont exs2)) exsl))
| DIV(el,e2) —>
fun cont ->
evall e2
(fun exs2 ->
if_zerop
{(restore ++ exs2)
(push ++ (evall el (fun exsl -> div ++ (cont exsl)) exs2)))
| TRY(el,e2) —>
fun cont exs ->
pushex ++ (evall el (fun _ -> popex ++ (cont exs)) (popex ++ (evall e2 cont exs)})

Fig.10. The n-reduced interpreter

4.7 Pass separation

This stage splits the interpreter into a compiler and an emulator. Until now, the interpreter is a function
which, given a program and a continuation, returns a function taking an environment as parameter. It
must now return a sequence of abstract instructions which is the compiled code for the program. It can be
transmitted to an emulator to get the final result of the computation.

In other words, the initial type of the interpreter was:
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static data -> continuation -> environment -> answer

We split the interpreter into the two functions comp and emul with respective types:

comp : static data -> continuation -> abstract code
emul : abstiract code -> environment -> answer

The function comp compiles a program into abstract code, and the function emul interprets this abstract code
and updates the environment to compute the result. We have performed a pass separation and extracted a
compiler and an emulator from the initial interpreter.

The method used here for pass separation consists in generalizing the interpreter with respect to all the
introduced combinators: we define a new generic interpreter having all the combinators as formal parameters.
In such a way, the type environment no more occurs within the type of the generic function. Furthermore,
the type environment -> environment is abstracted into a polymorphic Caml type ’a. In the same way,
environment -> answer is abstracted into 'b.

In our example, we get the interpreter of figure 11, whose type is described by figure 12.

let geval e load loadv (++) push pushex popex add div if_zerop cont0 ex0 =
let rec evall = function
INT(n) -> fun cont exs -> (load n) ++ (cont exs)
| ID(i) => fun cont exs -> (loadv i) ++ (cont exs)
| ADD(el,e2) —>
fun cont ->
evall el
(fun exsl ->
push ++ (evall e2 (fun exs2 -> add ++ (cont exs2)) exsl))
| DIV(el,e2) ->
fun cont ->
evall e?2
(fun exs2 ->
if_zerop (push ++ (evall el (fun exsl -> div ++ (cont exsl)) exs2))
exs2)
| TRY(el,e2) ->
fun cont exs ->
pushex ++ (evall el (fun _ -> popex ++ (cont exs)) (popex ++ (evall e2 cont exs)))
in evall e (fun _ -> cont0) ex0

.
e

Fig.11. The generic interpreter

It remains to notice that the type of the generic interpreter defines the signature of an abstract data
type. Each type parameter defines a sort, and the type of each argument defines the signature of an operator.
Names must be chosen for each sort and each operator. Hence, the abstract instruction set is defined.

In our example, we introduce two types: instruction and control and their associated constructors, as
defined by the figure 13.

We are now able to perform pass separation. The compiler of figure 14 is obtained by instanciating the
generic interpreter with the operators of the introduced abstract data type. The emulator of figure 15 is an
interpretation of the abstract data type. It associates to each operator its meaning given by the corresponding
combinator. The abstract data type defining two sorts, the emulator is composed of two functions emul and
ins_emul. Finally, we get the caracteristic equation of pass separation:

let eval e bnds = emul (comp e) {cs=Empty; xs=Empty; bnds=bnds; v=0};;

We now illustrate the result of the transformation process through the compilation of an arithmetic
expression:



geval;;

- : exp ->
(int -> 'a) -> (* load x)
(string -> ’a) -> (> loady x)
(‘a =>'b => 'b) -> (% ++ ®)
‘a =-> (* push *)
‘a => (* pushex =)
‘a > (* popez *)
‘a —> (* add x)
‘a => (* daiv *)
(’b => 'b => 'b) -> (* if_zerop *)
h =3 (t contO ‘)
b -> (* ex0 *)
'b = <fun>
Fig. 12. Synthetized type of the generic interpreter
type instruction = type control =
I_LOAD of int I_SE of instruction * control
| I_LOADV of string | I_IFZEROP of control # control
| I_ADD | I_CDNTO
| I_DIV | I_EX0
| I_PUSH HH
| I_PUSHEX
| I_POPEX

Fig. 13. The abstract instruction set

let comp e = geval e
(fun n -> I_LOAD n)
(fun s -> I_LDADV s)
(fun i ¢ -> I_SEQ (i,c)) I_PUSH I_PUSHEX I_POPEX I_ADD I_DIV
(fun c1 ¢2 -> I_IFZEROP (c1,c2)) I_CONTO I_EXO;;

Fig. 14. The compiler

let ins_emul = function
I_LOAD n => load n
I_LOADY 8 => loadv s
I_ADD -> add

I_DIV -> div

I_PUSH -> push
I_PUSHEX -> pushex
I_POPEX -> popex

let rec emul = function
I_SEQ(i,c¢) => (ins_emul i) ++ (emul ¢)
| I_IFZEROP(c1,c2) -> if_zerop (emul c1) (emul c2)
| I_CONTO -> cont0
| I_EX0O -> ex0

Fig. 15. The emulator



# comp (ADD(INT 1,TRY(ADD(INT 2,DIV(INT 3,INT 0)),INT 4)));;
- : control =
I_SEQ (I_LOAD 1, I_SEQ (I_PUSH, I_SEQ (I_PUSHEX, I_SEQ (I_LOAD 2,
I_SEQ (I_PUSH, I_SEQ (I_LOAD 0, I_IFZEROP (
I_SEQ (I_PUSH, I_SEQ (I_LOAD 3, I_SEQ (I_DIV, I_SEQ (I_ADD,
I_SEQ (I_POPEX, I_SEQ (I_ADD, I_CONT0)))))),
I_SEQ (I_POPEX, I_SEQ (I_LOAD 4, I_SEQ (I_ADD, I_CONT0))))))))))

5 Towards an efficient abstract machine

By a set of gradual transformations, we attempt to extract what exists potentially in the initial interpreter.
It makes it possible to separate from the interpreter the static part, the compiler, of the dynamic part, the
emulator. The degree of realism of the compiler and of the obtained machine is related to the writing of the
initial interpreter.

Let us consider a problem raised because the initial interpreter is not optimized by taking into account
all the information contained in the abstract syntax. The evaluation of an addition, whose code is:

| ADD(el,e2) -> fun cont excp ->
eval el (fun exsl vl -> eval e2 (fun exs2 v2 -> cont exs2 (vl + v2)) exsl) excp

performs two recursive calls to eval which in certain cases could be completely avoided. Indeed it is enough
to operate an unfolding of these calls in the particular cases where either el or e2 are integers. Thus we
could have written the four following clauses:

| ADD(INT n1, INT n2) -> fun cont excp -> cont excp (nl + n2)
| ADD(INT n1, e2) -> fun cont -> eval e2 (fun exs2 v2 -> cont exs2 (nl + v2))
| ADD(el, INT n2) -> fun cont -> eval el (fun exsl vl -> cont exsl (vi + n2))
| ADD(el,e2) -> fun cont ->

eval el (fun exsl v1 -> eval e2 (fun exs2 v2 -> cont exs2 (vi + v2)) exsl)

Consequently, applying the same method would have led to an abstract machine with one more instruc-
tion, ADD_INT(n), which adds a constant to the accumulator.

From an operational point of view, the semantics defined by this optimized interpreter is not the same as
that defined by the basic interpreter. Indeed, if these two semantics calculate the same result, they proceed
in a different way. Thus, the operational specification of the language to be implementied heavily governs the
obtained result.

6 Conclusion

We have presented a process for deriving an abstract machine from a source language whose operational
semantics is defined by an interpreter written in a functional language. It is based on a progressive transfor-
mation of this interpreter into a compiler and an emulator of abstract code.

The initial interpreter is written by means of a high level functional language. Then it is transformed
gradually so that it does not rely on the features of the implementation language. So, we must explicit
mechanisms of interpretation that were taken implicitly into account. These transformations lead to the
emergence of data structures which will be the heart of the abstract machine.

Pass separation is then applied to the interpreter, aiming at splitting it into two complementary activities:
on the one hand the compilation of the source language that produces the intermediate code, and on the
other hand the interpretation of this intermediate code. Thus, we get a compiler and an emulator of abstract
code.

The formalism used along this paper is functional and higher order continuation-based, as Wand’s. The
guideline of the transformations is similar but the details differ in our framework as Wand’s work is untyped.
Furthermore, Wand’s transformations are only studied with respect to his examples.



We now plan to study the automatization of the presented study and its correctness. Mainly, a specific
binding time analyser must be implemented. The second step will be the design of a validated abstract
machine development tool on top of a proof assistant [HKPM97]. Then more realistic languages could be
considered, and more precisely a subset of Java and AProlog [NM38].
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Brunette: Brute Force Rewriting Engine

Makoto Ishisone, Atarn T. Nakagawa

SRA Software Engineering Laboratory

Abstract. This paper presents an order-sorted conditional term rewrit-
ing engine which supports equational theories such as associativity and
commutativity. It is designed to be simple and fast. Rewriting is per-
formed by executing bytecode instructions specialised for pattern match-
ing, term construction and sort (re)computation. To be simple enough,
a brute force method is used for matching modulo equational theories.
This may lead to inefficiency, but with some technique and in most cases
the rewriting speed is pretty good.

1 Introduction

Term rewriting([1] is a simple but powerful mechanism to compute functions and
to prove equality. At the simplest level, given a rewrite rule set B and a term t,
term rewriting proceeds as

L. find in R a rule whose left-hand side matches a subterm (redex) of ¢,
2. if such a rule was found, substitute the corresponding instance of the right-
hand side into t, and go back to 1. Otherwise stop.

In terms of implementation, therefore, all you need are

— A manager of a rewrite rule set,
— A unification procedure, and
— A substitution procedure.

In case of ground term rewriting, the mechanism is simpler, requiring only a
pattern matching procedure, instead of a general unification algorithm.

In useful applications, however, there tend to arise a couple of complications,
depending on the definition of terms and the admissible form of rules. Several
term rewriting engines that have been developed (OBJ3[3], Maude(2], ELAN[4I,
CafeOBJ[5]) attempt to accommodate those complications without compromis-
ing efficiency. For example, in the case of CafeQBJ,

— Each term is sorted; moreover, each term may have more than one sort; 1 is
a natural number, an integer, and a rational, at the same time.

— Several distinct terms may be identified, due to associativity, commutativity,
identity, and/or idempotency of operators; 1 + (2 + 3) is identical to (3 +
1)+ 2
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— An arbitrary evaluation strategy may be associated to an operator; in eval-
uating a conditional operator if-then-else, the then part and the else part
need not be evaluated before reducing the entire term. Thus you may have
lazy operators, eager operators, and partially lazy operators.

— A rewrite rule may be conditional, and such a rule is applicable only when
the condition evaluates to true.

Our goal has been to develop a term rewriting engine that covers as many
of these features as possible, yet is fast enough and scalable. For that purpose,
we defined an abstract machine architecture, where to evaluate a term is to
execute bytecode instructions corresponding to the basic procedures of term
rewriting. The idea of using an abstract machine was originated from TRAM][7],
which, however, uses a quite different architecture, and could not handle asso-
ciative/commutative matching.

In the rest of the paper, we first give an overview of our approach (Section
2), followed by an explanation of the machine architecture (Section 3). Then
we give an account of implementation {Sections 4 and 53). Section 6 shows the
results of preliminary evaluation and future works.

2 Overview

Our term rewriting engine, called Brunette, works via standard i/o interface. A
rewrite rule set is written in the form of Lisp’s S-expressions, and is preceded
by a signature (sort and operator declarations). For example, a definition of
addition over natural numbers may be supplied as

(sort Zero PosNat Nat)

(sort-order (Zero Nat) (PosNat Nat))

(op 0 O Zero (0))

(op s (Nat) PosNat (1 0))

(op + (Nat Nat) Nat (1 2 0) (:assoc :comm}))
(rule ((M Nat)) (+ (0) M) M)

(rule ((M Nat) (N Nat)) (+ (s M) N) (s (+ M N)))

where

— sort introduces a set of sorts.

— sort-order imposes an order over the introduced sorts. In the above, Zero
is included in Nat; so is PosNat.

— op declares an operator with an arity, a coarity, an evaluation strategy,
and an optional list of equational attributes. In the above, + has the arity
Nat Nat, the coarity Nat, the strategy 1 2 0 — evaluate the first argument
first, the second second, and then the whole term (0) —, and is associative
and commutative.

— rule introduces a rewrite rule, which is a list of a variable declaration, a left-
hand side, a right-hand side, and an optional condition term. For example,
the last rule consists of variables M and N of sort Nat and two terms s(M)+N
and s (M+N) (if we use the usual notation). This rule is unconditional.



To summarise, Brunette admits (1) ordered sorts, (2) equational attributes such
as associativity, (3) evaluation strategies, and (4) conditional rules. The following
restrictions are imposed on rules.

- The right-hand side or condition must not contain variables that do not
appear in the left-hand side. Brunette is strictly for ground term rewriting.

- The left-hand side and right-hand side may be of different sorts, but these
sorts must belong to the same connected component with respect to sort
orders.

Given a sequence of S-expressions as above, the Brunette compiler translates the
left-hand side of each rule into a bytecode sequence, as explained in Section 4.
Given a term to evaluate, then, the Brunette rewrite engine runs the sequence to
see whether the term matches the left-hand side of a rule. The right-hand side of
a rule is compiled into another bytecode sequence (for a substitution procedure).
Thus rewriting is essentially an execution of bytecode sequences.

To provide a more pleasant interface, the Brunette compiler and its engine
were incorporated in CafeOBJ language processor, so that you may act entirely
within CafeQOBJ codes (Figure 1).

CafeOBJ Processor

[Modula to TRS definition ]

translator

! TRS definition

term-m-be-reduced reduced term
Brunette
Engine
Brunette

Fig. 1. Brunette as an CafeOBJ engine

In using Brunette in this setting, you may dispose of lots of parentheses, like
a code equivalent to the above addition example shows:

[ Zero PosNat < Nat ]

op 0 : -> Zero

op s : Nat -> PosNat { strat: (1 0} }

op + : Nat Nat -> Nat { strat: (1 2 0) assoc comm }
eq +(0, M:Nat) = M .

eq +(s(M:Nat), N:Nat) = s(+(M, N))
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For legibility, in the sequel the examples are written in a CafeQBJ-like syntax.

3 Architecture

Figure 2 shows the architecture of Brunette. It consists of two major components,
the bytecode compiler and the rewrite engine.

- N
( A g B
Bytecode Compiler Rewrire Engine
—_—— matching code
v interpreter
matching code Rule Memory i
generalor \ /
EN
G —— .
. | === term construction code
term construction code |1 interpreter
generator /
| e
 EEEE—
sort computation code sort computation code
generator interpreter
L i et IENSTRIIRRIRS
\. _J - »
L S

Fig. 2. Brunette architecture

3.1 Bytecode Compiler

The bytecode compiler parses the given rewrite rules and produces bytecode'
sequences to be interpreted by the rewrite engine. There are 3 types of bytecodes:
m-code for pattern matching, r-code for term construction, and s-code for sort
computation. They will be explained in detail in Section 4.

3.2 Rewrite Engine

The rewrite engine contains 4 major components, (1) a redex selector, (2) a
pattern matcher, (3) a term constructor, and (4) a sort calculator, and the
engine pursues rewriting as follows. Given a term to evaluate,

1. Let the redex selector see the evaluation strategy of the dominant operator.
An evaluation strategy is a list of non-negative integers, suchas102. n > 0
means the n-th argument, and 0 means the whole term.

! Each code is a 32-bit word, so strictly, what is produced is “wordcode”.



2. If the list is empty, stop. Otherwise, the selector takes the first number. Call
it n.
a. If n is 0, invoke the pattern matcher to find a rewrite rule applicable to
the term.
i If there is no rule to apply, go to 3.
ii Otherwise, call the term constructor to perform the substitution.
Additionally, if the sort of the newly created term is not determined,
call the sort calculator. Then go back to 1.
b. Otherwise, the selector chooses the n-th immediate subterm, and recur-
sively call this procedure with this subterm.
3. Go back to 2. with the rest of the list.

In case of a conditional rule, after the match succeeds, the condition itself is
evaluated with this procedure.

4 Implementation in Detail

4.1 Term Representation

A term is internally represented as a directed acyclic graph, where each node
contains (1) an operator symbol, (2) a sort identifier, (3) a set of flags, (4) the
number of subnodes (arity), and (5) pointers to subnodes (Figure 3).

+.N.N.N
Nat G.N
Zero
2 s.N.N normal
PosNat —“""’;’“‘-"
nomal
1

Fig. 3. an internal representation of "0 + s(0)"

Each operator symbol is qualified with a rank — a list of sort families? —
that distinguishes different operators with the same name. For example, if the
sorts Nat and Int are in the same sort family while String is not, the first two
operators are recognised as the same, which is distinct from the last one:

op + : Nat Nat -> Nat
op + : Int Int -> Int
op + : S5tring String -> String

% A sort family is a connected component of sorts ordered by inclusion.
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The sort identifier represents the sort of the term. Since an operator symbol
is always qualified by sort families, the sort family of the term is self-evident.
The role of the sort identifier is to indicate which exact sort in the family the
term belongs to. Continuing the example above, given a term dominated by +,
the identifier indicates whether the term belongs to Nat or Int>.

The flags indicate the state of the term:

— whether the term is already in a normal form,
— whether its sort is already computed, and
— whether it is shared, i.e., is pointed to by more than one nodes.

4.2 Pattern Matcher

As previously stated, the Brunette rewrite engine contains a pattern matcher, a
term constructor, and a sort calculator. These parts are realised as interpreters
of bytecode instructions. '

In the following three sections, these 3 parts and their instruction sets are
described briefly, with some examples. We focus on their basic features first,
and the issue of associative/commutative matching is to be treated in a separate
section (Section 5).

The pattern matcher is an interpreter of m-code. It has a register called
NODE and a binding table called BIND. NODE points to the current node
which many m-code instructions operate on, and is initialised to the node passed
from the redex selector. The table BIND is an array of registers, used to store
variable bindings as well as to store temporary values as a scratch memory.

Table 1 lists the basic m-code instructions.

Instruction Description

match_sym SYM  [If symbol of NODE is not SYM, matching will fail.
match_sort SORTS|If sort of NODE is not included in SORTS, matching
will fail.

match_var INDEX |If NODE is not equivalent to BIND's INDEXth ele-
ment, matching will fail.

¢hild N Go to Nth child - i.e. set NODE to ¥th argument of
NODE.

bind INDEX Save NODE in BIND’s INDEXth element.

ref INDEX Set NODE to BIND’s INDEXth element.

reset Reset NODE to its initial value.

ret N Return from the interpreter with success. N is the number

of valid elements in BIND.

Table 1. basic m-code instructions

3 In all the actual examples we have examined, a sort family consists of rather small
number of sorts. Hence Brunette uses a small integer for a sort identifier.



For example, suppose we have the following rewrite rule:
+(X:Nat, 0) -> X

The left-hand side of this rule will be translated into the following m-code.

match_sym + ; Top-most operator must be ‘+72,

child © : Go to the first subnode.

match_sort Nat ; This node must be of sort Nat.

bind 0 ; Bind this node to variable X.

reset ; Go to the top node.

child 1 ; Go to the second subnode this time.
match_sym 0 ; The operator of this node must be ‘0’.
ret 1 ; Matching succeeds. BIND contains 1

; entry (X).

For a more complicated example, the m-code corresponding to
foo(X:8, bar(X:S, Y:8))

is

match_sym foo ; Is the top-most operator ‘fco’?
child 0 ; Go to the first subnode.
match_sort S ; Is the sort 87

bind © ; Bind this node to X.

reset i Go back to the top nocde.

child 1 ; Got to the second subnode.
match_sym bar ; Is the operator ‘bar’?

bind 2 ; Save NODE to get back here later.
child 0 ; Go to the first subnode.
match_var O ; Is this nede equivalent to X7
ref 2 ; Go back to the parent ncde.

child 1 ; Then go to the 2nd subnode.
match_sort S ; Is the sort 87

bind 1 ; Bind this node to Y.

ret 2 ; Success with 2 valid entries (X and Y)

Optimising The bytecode sequence of the last example is rather long. Since the
length of the sequence is a major factor that affects the interpreter performance,
it is important to reduce the number of instructions whenever possible. Brunette
has many macro instructions which perform sequences of basic instructions in
one go. The last example is actually compiled into this m-code:

match_sym foc
match_and_bind0 S 0 ; Is the sort of first subnode S§7
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; If so, bind it to X. Otherwise, fail.

childil ; Go to the 2nd subnode.
match_sym bar ; Is the operator ‘bar’?
match_varO 0 ; Is 1st subnode equivalent to X7

match_and_bindl S 1 ; Is the sort of 2nd subnode S7
;s If so, bind it to Y.
ret 2 ; Matching is succeeded.

4.3 Term Constructor

The term constructor is an interpreter of r-code. It is used for creating a new term
according to the right-hand side of a matched rule. It is also used to construct
terms that appear in the condition part of a conditional rule.

The constructor has registers called NODE and TOP, and a binding table
BIND. NODE is a working register and points to the current node. TOP points
to the topmost node. After execution, the node pointed by TOP is returned as
the result.

The table BIND is an array of registers, and is shared between the pattern
matcher and the term constructor. Some of its entries have been initialised by
the matcher, which has the main responsibility of determining variable bindings.

Table 2 lists the basic r-codes.

Instruction Description
cr_top SYM Create a node with symbol SYM. Set NODE and TOP
to the node.

crchild N SYM  |Create a node with symbol SYM. Set it as Nth argument
of the node pointed by NODE, then set NODE to the
node.

put_top INDEX Set NODE and TOP to INDEXth element of BIND.
put_child N INDEX|Set NODE’s Nth argument to point I[NDEXth element
of BIND, then set NODE to the node.

bind INDEX Save NODE in BIND’s INDEXth element.
ref INDEX Set NODE to BIND's INDEXth element.
reset Set NODE to TOP.

Table 2. basic r-code instructions

As an example, suppose we have a rewrite rule
+(X:Nat, s(Y:Nat)) -> s(+(X, Y))

and assume the pattern matcher stores the values of X, ¥ in the first 2 elements
(index 0 and 1) of BIND. Then the right-hand side of this rule will be translated
into the following r-code.



Instruction | Description

set SORT Set the node’s sort to SORT and
return.

jump_unless match N SORTS OFFSET|If the sort of the node’s Nth argument
doesn’t match SORTS, skip OFFSET
words.

Table 3. basic s-code instructions

cr_top s ; Create a node with operator ‘s’

; and make it top.
cr_child 0 + ; Create a node with + as its 1st subnode.
put_child 0 0 ; Set contents of X as the 1st subnode.
put_child 1 1 ; Set contents of Y as the 2nd subnode.

4.4 Sort Calculator

The sort calculator is an interpreter of s-code. It is used for computing the sort
of a specific node. Such computation is necessary since, for example, if Nat is
a subsort of Int, a term originally of sort Int may become a term of sort Nat
(as well as of Int) during computation. Such a change affects applicability of
rewrite rules.

Table 3 lists the basic s-code instructions.

Before executing a given r-code, the calculator checks if the sort of each subn-
ode has already been computed. If it hasn’t, the calculator calls itself recursively
to compute it.

Unlike m-code and r-code, which are generated for each rewrite rule, s-code
is generated for each operator. For example, suppose we have an operator +
declared as

+ : Nat Nat -> Nat
+ ; Int Int -> Int

where, as usual, Nat is a subsort of Int. Then s-code for + is

jump_unless_match 0 Nat L1 ; Jump te L1 if arg0 is not Nat.
jump_unless_match 1 Nat L1 ; Jump to L1 if argl is not Nat.

set Nat ; Set Nat and return.
L1:jump_unless_match 0 Nat,Int ; Jump to L2 if arg0 is
L2 ; neither Nat nor Int.
jump_unless_match 1 Nat,Int ; Jump to L2 if argl is
L2 ; neither Nat nor Int.
set Int ; Set Int and return.
L2:set ErrorSort ; Invalid. Mark it as ErrorSort.
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Fig. 4. Flattened representation

5 Associative/Commutative Matching

In this section we describe a matching procedure modulo equational theories.
As the name implies, Brunette resorts to brute force, except for a couple of
heuristic tricks. To simplify the explanation, we restrict ourselves to associativity
and the combination of associativity and commutativity, although Brunette also
deals with identities and other combinations. And to save space, we say just AC
instead of associative and commutative.

5.1 Flat Term Representation

To make associative or AC matching faster, every node with an associative or AC
operator is flattened, as if the operator accepts an arbitrary number of arguments
(Figure 4).

5.2 Matching Instructions

In Brunette, AC matching is done on trial-and-error basis with hacktracking. To
support this procedure, the semantics of some m-code instructions described in
Section 4 are slightly changed. For example, the instruction match_sym does not
make the match fail, but causes backtracking.

In addition, several new instructions are added, some of which are listed in
Table 4.

For example, if + is AC, m-code for the pattern “a + X + Y’ is

match_sym + ; top-most operator must be +,
try_ac 0 ; Prepare AC match.

ac_find_sym 0 a ; Find a subnode with operator a.
ac_bind_nodes 0 0 1 ; Bind a combination of subnodes

; to variable X, leaving at least one
; subnode unmatched for Y.
ac_bind_nodes 0 1 0 ; Bind a combination of subnodes to



Instruction Description

try-ac ID Prepare AC matching on NODE.

acfind_sym ID SYM Find an unmatched subnode of AC node identified
by ID having symbol SYM, mark it as matched
and set NODE to it. Do this to all the unmatched
nodes via backtracking.

ac_bind_node ID INDEX Mark one of the unmatched subnodes of ID
as matched and save it in BIND’s INDEXth
element. Process all of them repeatedly via
backtracking.

ac_bind nodes ID INDEX MIN|Get a combination of unmatched subnodes of ID
and mark them matched (but leaving at least
MIN subnodes unmatched), and save the com-
bined node to BIND[INDEX]. Process every pos-
sible combination through backtracking.

Table 4. Instructions for AC matching

; variable Y.
ret 2 ; Matching succeeds. BIND contains 2
: entries (X, Y).

Note that matching with the instruction ac_bind_nodes can become ex-
tremely inefficient as the number of subnodes increases.

5.3 Avoiding Excessive Search

Brute-force AC matching can result in an excessive search. Which, moreover, is
often futile. It is most important to aveid such an excess as much as possible.

An excessive search occurs when an argument to an AC operator is a plain
variable. For example, if + is AC, suppose the pattern

foo(X) + Y

is being matched against a term ¢, +...+¢, (n arguments when flattened). The
number of possible matches is at most n for foo(X), which is tolerable even by
trial-and-error basis; but it is 2" —2 for Y!. Thus we should prepare a disciplinary
action for such an unwieldy variable.

Brunette uses the following techniques to avoid an excessive search with such
a variable:

— Optimising the matching strategy,
— Use of sort information,

* You may choose any number, up to n — 1, of #’s, so the number of possibilities is
m(n,1) + m(n, 2} + ... + m(n,n — 1) where m(n, k)'s are binomial coefficients.
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— Use of shared information, and
— Cutting useless candidates.

We explain below the first two techniques, which are useful in many cases.

Optimising the Matching Strategy Even if a variable is placed directly un-
der an AC operator, an excessive search is unnecessary (1) if it is already bound.
or (2) when a variable must match to the rest of the term,

For example, assuming + is AC, consider the following rewrite rule.

foo(X + ¥, bar(X)) -> bar(X + Y)

If the matching of the second argument bar (X) of foo is tried first (instead of
X + Y), the variable X is already bound when X + Y is to be matched; thus an
excessive search with X is avoided. Moreover, since X is already bound, binding
for Y is also determined uniquely — to match X + Y against ¢; +...+#,, if X is
bound to, say, £;, Y have to match the “rest” of the term, i.e. t2 +... +t,. Soin
this case, no excessive search is needed.

Brunette generates the matching code for each subpattern in the following
order®:

subpatterns that have no variables and no AC operators.
subpatterns that have variables but no AC operators.
subpatterns that have AC operators but no variables.

e i DoE e

subpatterns that have both variables and AC operators.

Using Sort Information Consider the following rule for sorting natural num-
bers:

[ Nat < NatList ]

op . : NatList NatList -> NatList { assoc }
vars N N’ : Nat

N . N> ->N> . Nif N> < N

The operator “.” requires associative matching. If the sort information were not
used and if — when flattened — a long term were given, a large number of
trial-and-errors would occur. For example, the term “0.1.2.3” has 10 possible
matches for the variables N and N?, if their sorts were not taken into account.

% In fact. it is a little more complicated.



N N’
¢ 1
¢ 1.2
0 1.2.3
0.1 2
0.1 2.3
0.1.2] 3
i 2
1 2.3
1.2 3
2 3

However, Brunette uses the sort information and deduces that any term whose
outer-rost operator is “.” can match neither N nor N’ — since N is of sort Nat,
which is not the coarity of “.”. Hence Brunette generates a code sequence that
try only 3 matches (with “0.1”, #1.2", and %2.3").

6 Performance and Future Works

Brunette is written in C, and the machine instructions are compiled into struc-
tures in C. All the declarations and evaluations are processed via a simple com-
mand interpreter. Thus Brunette is fairly portable.

We made a preliminary assessment of Brunette using Ackermann’s function
and factorial. The measurements below were obtained on a PC with Pentium-Pro
200MHz running FreeBSD-2.2.2.

Firstly, Ackermann’s function as shown below gives a measurement of Brunette’s

simple rewriting (i.e. rewriting in which no equational theories are involved) per-
formance.

ack(0, M) ~> s(M)
ack(s(M), 0) —> ack(M, s(0))
ack(s(M), s(N)) -> ack(M, ack(s(M), N))

Table 5 shows CPU time for computation. It also has some measurements of
the original CafeQOBJ engine[5], and of some other popular interpreters (Scheme
VM48 and Perl 5.00401). Brunette achieves 450-460k rewrite/sec.

Brunette {# of rewrites){CafeOBJ|Scheme| Perl
ack(3, 4) 24ms (10307) 640ms| 47ms|164ms
ack(3, 3) 99ms (42438) 2.39s| 17T1ms|664ms
ack(3. 6)| 374ms (172233) 10.2s| 687ms| 2.953s
ack(3, 7)| 1520ms (693964) 42.0s}2900ms| 11.0s

Table 5. ackermann's function

.



Secondly, the factorial function is used to see the performance of the AC
matching. The function is defined with addition and multiplication declared or
not declared AC. Column “non-AC” and “AC” in Table 6 shows the result. You
may notice the big difference in the number of rewrites between non-AC version
and AC version. Where does it come from? Consider these rules:

a) X *0 >0
b) X = s(Y) > (X =Y) +X

In the non-AC version, the term “s(0) * 0” only matches the rule a), so that it
is always rewritten to “0”. But in the AC version, this term can also match the
rule b), rewritten to “(0 * Q) + 0", which would require two more rewrites to
become “0”. Rules for + also has a similar problem.

You can remedy this situation by modifying the rules as:

a) X *x0->0
b’) s(X) * s(Y) -> (s(X) * Y) + s(X)

Now terms of the form “s(..) * 0” would not match with the rule b’), so
unnecessary rewriting explained above won’t happen. Note that these rules no
longer work without AC attributes (commutativity, to be more precise). The
“opt-AC” column of Table 6 shows the result using this optimised program.

non-AC #rewrites AC ffrewrites|opt-AC #rewrites
fact(7)] 17ms 7676 248ms 41087 5Tms 7643
fact(8)| 147ms 58078|2484ms 368372 469ms 58042

Table 6. factorial number

The last example is a sorting algorithm, where an associative operator is
involved. It has a conditional rule

N .N ->N.Nif N2 < N

and “.” is associative. For sorting 20 numbers in reverse order, it took 40ms
with 13680 rewrites, which is about 340k rewrite/sec.

Brunette is a result of an attempt to make a small, simple, portable and fast
term rewriting engine. Compared with the original CafeOBJ engine, Brunette
runs 10 to 50 times as faster; it also compares well with other similar engines.
Even with associative/commutative matching, where Brunette resorts to a brute
force method, its performance seems not too bad.

We began to use Brunette on larger and larger rule sets and terms, but so far
found no problem. At the same time, we are improving Brunette’s performance
based on those experiments. Among other things, we are investigating how a
memoisation mechanism, where the results of previous evaluation of subterms are



cached, affects its performance. It is almost obvious that, with this mechanism,
some recursively defined functions, such as factorial, are computed much faster.
What we want to know is how much advantage workaday examples will gain.

The one major issue we have not confronted is modularisation, where a

rewrite rule set is compiled incrementally, or separately compiled rule sets are
merged into a whole. For a large rule set, this issue is as important as the speed
of rewriting, if not more so. The current design of Brunette is difficult to modify
to allow modular compilation, and a thorough revision is necessary.
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Abstract. We propose abstract machines for lazy functional programming languages, based on the
Krivine machine, and initially designed for eliding the creation of useless closures. We introduce the
notion of super-closure, a data structure representing a list of closures in a compact way. We give four
machines: the first three of them implement call by name. They illustrate a basic issue not directly
related to sharing, namely splitting, and two possible solutions to this problem. Then, we give the proofs
of correctness of these machines, using a weak A-calculus with explicit substitution. Finally, we propose
a machine implementing call by need and claim that it is correct w.r.t. the call-by-need strategy of
environment machines. However, we also show that against our naive expections, our system has many
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1 Introduction

Functional abstract machines that perform weak normal order evaluation - 1.e. call by name (Plotkin 1975)
or call by need (Launchbury 1993) — use closures to store unevaluated arguments (Fairbairn and Wray 1987;
Crégut 1991; Curien 1991; Peyton Jones 1992). A closure is made of two parts, namely a pointer to a piece
of code, and an environment which is a snapshot (possibly trimmed) of the configuration of the machine at
the time the closure was built. Therefore, there are as many closure creations in a particular environment
as unevaluated arguments encountered in this particular environment. We think that this number may be
big in some applications, for instance automatically generated programs, and that therefore, such a strategy
may be very expensive. We propose here to exploit this observation by investigating a new direction.

To present our ideas, we use a well known machine performing call by name and designed for pedagogy,
namely the Krivine machine (Krivine 1985). This is a very straightforward machine not intended to design
efficient and realistic implementationssince e.g., sharing, data-structures, recursion, etc. are missing. However
its simplicity just makes it easier to point out the essence of our work. Then, we add sharing and discuss the
related problems.

After some preliminaries in Section 2, we present the Krivine machine and develop the problematics in
Section 3. Section 4 shows what exactly super-closures are and how the Krivine machine can be modified to
handle them. We will see that this new machine raises a difficulty, namely spliiting. In Section 5, we propose
two solutions to address it: The first one is based on a program transformation close to what is known in
the A-calculus as expansion to n-long normal form. Unfortunately, this transformation is only applicable to
simply typed terms. This is too restrictive in programming languages where expressivity really needs type
polymorphism. The second solution is much more satisfactory, and uses what we call access windows. We
then show in Section 6 that all our machines are sound w.r.t. the A-calculus, and compute terms until weak
head normal form. We then propose in Section 7 a machine performing call by need, i.e. in which evaluation
is shared.

2 Preliminaries

In this section we set our notations. Naturals are denoted by n,m, p, ¢. If not stated otherwise, they denote
any natural greater or equal to 0. In general, n + 1 denotes any natural greater or equal to 1 if n is not
bound to any value, and n + ¢ denotes any natural greater or equal to n and/or ¢ if at least one of them is
not bound to a value.

In the following sections we use vectors. A vector of elements of type A denoted by a,b,¢,...,aq,...,a5
may be denoted by @ (any vector), or {@n;@n41...;am} (any vector of size m — n 4 1, empty if m < n),
also denoted by &'. The empty vector is denoted by €. Vectors may be appended such that @ +a,, = @ or
single elements may be added to vectors such that ap - @ = &@. The access to the n’" element of a vector is
denoted by @(n) and defined such that &*"+™(n) = a;1n. The modification of the n** element of a vector
is denoted by @(n « b) and defined such that & "™ (n — b) = {ai;... ;@Gitn-1:5 Gitnt15 . ; Gitntm}

We talk about A-terms in (classical) de Bruijn notation (de Bruijn 1972). A A-term in de Bruijn notation
is either a variable or index n with n a natural, an abstraction AM with M a term, or an application M| M2
with M; and M, two terms. The index n represents the variable bound by the (n+ 1)** X encountered when
looking backwards in the current context.

A-terms may also be denoted in vector notation. The A-term M Ny ... N, where M is not an application is
denoted by Mf\":. Abstractions are grouped as well, in which case the term A...AM (n nested abstractions)
where M is not an abstraction is denoted by A" M. A°M denotes a term M that is not an abstraction.
For parenthesis, we use the same convention as Barendregt (1984), i.e. A has the lowest precedence and
the application is left associative. Thus a S-redex has the form (/\““ﬂx[)ﬂ', and A"*'M N must be read
AR+ N,



(AM[e] ; N[e'l-s) = (M[N[e'] -] ; s) (Lam)
(MN[e] ; s) = (Mle] ; N[e] - 5) (App)
(n[Moleo] - ... - Malen] - €'] 5 5) = (Mnlen) ; s) (Access)

Fig. 1. The Krivine machine.

77 is the renaming operator of de Bruijn A-terms, defined as follows on terms in vector notation:

(M Ng) = (M) {7 (No); ... s 7 (Nn)}
7 (A"M) = A", (M)

; _Jn+jifn>d
i (n) = { n otherwise

We define mappings as applications from elements aj,...,a, of a set A to elements by,...,b, of a
set B, and denote it by [a; — by1;...;a, — b,]. We call the set of the a; the domain of the mapping.
A mapping with empty domain is denoted by [ ]. Mappings may be applied to elements of A, such that
[ar = b1;... ;80 = bs]a;i = b;. A mapping p of type A = B may also be extended or updated with
anew map p' = [ap — bo;...;an v b,] where VO < i < n:a; € A and b; € B. This is denoted by
plao = by; ... ;an — by] or pp’ where pp'a = b; if a = a;,0 < i < n and pp’ a = pa otherwise. We may write

pla® — by] instead of plag — bo;...;8n > by, and p G ={p co;...;p ca}.

3 The Krivine machine

The Krivine machine is shown on Figure 1. It works on states (M[e] ; s) made of:

— The code M, a A-term in the classical de Bruijn notation.
— The environment e, a vector of closures.
— The stack s, with the same structure as environments.

A closure is a pair of a code M and environment ¢ written M[e]. When evaluating an application (App), a
closure is built with the code of the argument and the current environment, and pushed on the stack. An
abstraction AM represents a function that takes at least one argument. When evaluating (Lam), the closure
on top of the stack is popped and bound to the variable 0. Any value which was at index n in the previous
environment is now at index n 4 1.

As one can see, if an application has n arguments, then n closures are built, which is illustrated by the
following derivation:

(MNy...Nple]; s) = ... = (Mle]; Nile]-...- Nnle]-s)

These closures all have the same structure, but their code. That feature happens in most existing machines:
many similar data structures are built. We believe this work could be saved. For instance in STG, a let binding
of n expressions involves the creation of n closures. We thus aim to study the behaviour of a machine in
which those closures are grouped in a single structure, which we call super-closure. Therefore, our main aim
is not to share e (even if it is actually partially shared) but to make the creation of n closures a unique task
which can be done in a time which does not depend on n.
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(MNe]; s) = (M[e]; (N,e)-s) (App)

AT MLl (N T ) - 5) = (MUNG, £) el 5 (Wair T, 7)) (Split)
A+ L] 5 (R, ) -5) = (A MUNg  f) -¢] ; 9) (Lam)
(N, ) e 5 8) = (Nmlf] 5 5) (Access)
(ntm+1[(Ng,f) el s s) = (ale] ; s) (Skip)

Fig. 2. The sc-machine.

4 A first machine using super-closures

First of all, we define super-closures. A super-closure is a structure composed with a code vector JV, and an
environment e, denoted by (N, e). In general we will not deal with super-closures where N is empty. Super-
closures may appear in stacks or in environments. In a stack, (N;, e) can be interpreted as Nole] -...- Ny[e]
in the Krivine machine, and in an environment as the reverse Ny[e]- ...  Np[e]. The sc-machine is defined on
Figure 2. If one compares it to the Krivine machine, one sees that only one super-closure is built instead of n
closures. This means that only one structure is built, thus saving n units of time. Therefore, the environment
e is instanciated only once for the n + 1 arguments.

The sc-machine is thus a machine in which environements are (at least partially) shared. In that, it has
to be compared with the TIM (Fairbairn and Wray 1987) which also shares environments. However, there
are some differences between the two approaches: first of all, our machine inherits from the Krivine machine
that it can reduce any term whereas the TIM is designed to only reduce supercombinators. However, we can
imagine extensions of the TIM which reduce any term, using e.g., linked environments: both machines would
still be quite different. In our sc-machine, environments are shared by the mean of super-closures, whereas
in the TIM they are shared through a heap of frames. This heap of frame is the structure that allows sharing
of computations, whereas we still need to introduce a heap of (super-)closures to enable sharing. In fact our
environments are shared with some limitation (see Section 7).

Super-closures are an obvious optimisation of the Krivine machine for call by name w.r.t. the number of
steps of reduction performed to reduce a term. However, some steps of reduction are now more expensive,
since for instance rules (Lam) and (Split) imply an n-ary abstraction check on whether the super-closure on
top of the stack is smaller in size than n. For the same reason, access to variables is more expensive, since
it may not be performed in a single step (rules (Access, Skip)). At last, our super-closures do not allow a
classical optimisation that avoids the creation of closures of the kind n[...- Ma[en] - ...], which are replaced
by the already allocated closure My [e,]. This loss may be a flaw since this optimisation would avoid many
useless updates.

Moreover, we are aware that our vision is yet too simplist for a good analysis on call by need. Indeed,
one trouble with sharing is in the (Split) rule. Suppose an abstraction needs less arguments than those
available in the super-closure on top of the stack. Therefore, the super-closure has to be split to return
only the required number of arguments to the environment. The risk is that super-closures are eventually
split into super-closures of unitary code vectors, namely closures! This is not what we expect, since we have
in mind to create closures only when necessary, i.e., only when they are accessed (See Section 7 for more
details on sharing). Moreover, because of (Split), a super-closure may not be shared since it may change
after its creation, into a particular environment. We present in the next section two solutions to avoid the
inconveniences of such a rule.



5 Avoiding split: two solutions

In this section, we propose two solutions to the split problem: The first one is based on a static transformation
inspired from expansion to 5-long normal form. However, this solution is not satisfactory in the case of a
polymorphic typed language, and we give another solution that we call access windows.

5.1 First attempt: A static program transformation

A straightforward solution to the split problem is to consider only programs that fit super-closures. By fit,
we mean that we impose abstractions to take as many or more arguments than provided in the super-closure
on top of the stack. In other words, there is no more acceptable term of the form (A"M)J-\'T.M'm*'
n > 0. The question is whether such a program transformation exists.

In the simply typed A-calculus, there exists a transformation known as expansion to 7-long normal
form (Snyder and Gallier 1989), which is a type directed transformation. It is defined on F-normal forms, as
a way to unify them modulo n-conversion. To describe it, we first need to define what simple types are: a
simple type (or, in what follows, a type) is either a constant type <, or a functional type a; — a3 where o
and « are simple types. Every expression e of the simply typed A-calculus has a type, which can be denoted
by a1 = ... = a, — . We then say that e has arity n, that we denote by ar(e) = n. This means that e can
not be applied to more than n arguments. The expansion to n-long normal form is defined as follows: Let

/\“_mﬁ': be a simply typed term of arity n 4 ¢ in S-normal form, then its n-long normal form is the term

ANHm 4 g {(r§(V1); .. 518 (Np);9—=1;... 50}

1
where

This transformation inspires us to define an extended transformation, generalized on all simply typed
terms, not only on A-normal forms. We call it the generalized expansion to n-long normal form, that for
brevity we denote by gel. Let M be a simply typed term, we define gel(3f) as follows:

— If M is A\"N N}, with ar(M) = n+ g, then

gel(M) = A**gel(rJ (N)) {gel(§(No)); - - . s gel (v (Np));4—1; ... ; 0}

— If M is A"*!m with ar(M) = n+ ¢+ 1, then
gel(M) = A"t myq {g—1;...;0}
— If M is n, then gel(M) =M

We make here two remarks: First of all, the reader should easily convince oneself that any term in vector
notation can be transformed by this transformation, i.e. it matches one of these three cases. Second, it
is worth to notice that variables are not expanded when they are not the body of an abstraction. This is
because expansion of variables is useless for our purpose: a variable is only a code to access a closure, and
has nothing to do with operations on the stack. Therefore, gel is not a strict generalization of expansion to
n-long normal form.

Ezample I. Consider the term (AQ){AQ; AQ} of type ¢ — ¢ where ¢ is a basic type.

gel((A0){A0; A0}) = gel(A0) {gel(A0); gel(A0)}
= (A%gel(2){1; 0}){A%gel(1){0}; A0}
= (A32{1;01){A%1{0}; A0}

Now dealing with n-expanded terms, we can define our new machine, called scr-machine (Figure 3). In
fact, this is no more than the sc-machine, without (Split).

However, this machine is not fully satisfactory. Indeed, as mentioned earlier, it is designed for simply
typed terms, in particular terms without type variables. This means that our machine can not be used
as basis for the implementation of a type polymorphic language. It is well known that typed functional
programming without type polymorphism is not expressive enough to be of interest. See (Leroy 1992) for a
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(MN[e]; s) = (M[e] ; (N,e)-9) (App)
..n+1 -n+1

(AL AL (e] Y os) o APMUN"T fy el s 8) (Lam)
(ﬂ[(No ") f]; 5) = (Nmle] 5 5) (Access)
(ntm+1[(Ng e} f]5 8) = (alf]; 9) (Skip)

Fig. 3. The scn-machine.

good introduction to type polymorphism in functional languages. Now the question is whether there exists
a similar transformation to a more powerful type system, as a polymorphic one? The answer is no, since one
does not know the actual arity of a type expression ag — ... = a, where a, is a type variable.

At last, notice that any expression of functional type -thus of non null arity- is transformed to an
abstraction, i.e. a value. Thus, its evaluation through the machine is trivial! This may have a bad effect on
sharing, since a term M of arity n+ 1 whose evaluation might be shared can be transformed to an abstraction
A0 (n;...;0} in weak head normal form. Thus, the value of M can not be shared anymore.

5.2 Second attempt: Access windows

We propose here an alternative, called access windows. The main idea is that in (Split), there is no need
to actually split the super-closure. Only the access into the super-closure must be restricted. Thus a super-
closure may be shared, and the bounds between which access is permitted in the code vector of the super-
closure is the specificity of a super-closure. We call these bounds an access window. In what follows, we
are not going to express sharing, and we define a machine in which super-closures are copied. But we keep
in mind that the ultimate goal is an actual implementation. We invite the reader to see super-closures as
pointers to super-closures and to accept waiting til Section 7.

Let (Nn e) be a super-closure on which we want to restrict access to the part (N e) We denote it by

(N5,e)it where i*/ is the access window of the super-closures. Figure 4 gives the dynamics of our machine
with access windows.

(MNG[e]; ) = (M[e] ; (Ng,e) (App)

(A" Me]; (N, it s) — (M[(N, f>‘+"- ]- cN Dt -9) (Split)
(ARFMHLALT] (N PP 5) o (A M(N, HI" ] ;5 5) (Lam)
(al(N, &)™ ™ - f1; 8) =+ (Nigmle] ; 3) (Access)
(ntm+ 1N, HI*™ ] ; 5) = (ale] ; o) (Skip)

Fig. 4. The sc-machine with access windows.




Syntaz.
M,N,P =AM | MN | n| M[s] (Code)
s,tu=id|M-s (Substitution)

Rules.
(AM)[s] N ———> MIN - (Bw)
(MN)[s] — MsIV) (App)
OM - 5] =+ M (FVar)
n+ 1M - 5] ~— nls (RVar)
Fig. 5. Aoy-calculus

Ezample 2. Here is the example of the reduction of the term (AQ){A0; AQ}:

((A0){A0; A0} e] 5 €) = (A0[e] 5 ({AQ; A0}, €)g - ) (App)
= (Q[({A0; A0}, €)g - €] 5 ({A0; A0}, €)1 - ) (Split)
= (AQ[e] 5 ({A0; A0}, €)1 - €) (Access)
= (Q[({A0; A0}, €) - €] ; €) (Lam)
= (A0[e] 5 €) (Access)

Access windows are undoubtly a better solution than transformation to generalized 7 long normal form,
since it does not result in a loss in the amount of sharing that can be performed, and it is not tied to
a particular type system. However, access windows are not for free, since they will increase the size of
environments, each reference to an argument being made of two integers (an access window) in addition to
a reference to a super-closure.

6 Correctness

We give in this section proofs of the soundness of our machines. Moreover, we prove that they reduce
terms to their weak head normal form. To this aim, we need to translate states to terms (readback), and
show that these properties are satisfied. Working with the A-calculus would be quite laborious, since the
substitution process is a meta-operation, thus making the translation non trivial. Instead, we use an explicit
substitution calculus especially designed for weak reduction, namely Aoy, (Curien 1991; Hardin, Maranget
and Pagano 1996). Since this calculus is sound w.r.t. the A-calculus, soundness w.r.t. Ao, implies soundness
w.r.t. the A-calculus. Aoy, is presented on figure 5. Notice that it is a weak calculus, i.e. not performing
B-reduction under abstractions: Indeed, consider a pure A-term M (here pure means without substitution)
and give it a substitution [id]. Then M [id] may not be reduced under abstractions. Moreover, unlike the weak
A-calculus, Aoy, is confluent (there is no critical pairs) and the Aoy-normal form of a pure term M, if it
exists, is called the weak normal form of M. A head normal form is a Aoy, term of the form nfid|M; ... M,
or (A" M)[s].
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6.1 Correctness of the sc-machine
Definition1l. We define the function g translating states of the sc-machine to terms of Agy, as follows:
n(Mle] 5 5) = &({M)[p(e)], 5)
where k(M,e) = M
w(M, (NG, £) - 5) = K(M Nolp(f)].... Nalo(f)].5)
and p is a function from environments of the sc-machine to substitutions of Aey,:
ple) =id
P((No.e) - ) = Nulp(e)] - .. Nolp(e)] - o()
We need the following lemma to establish the main property:

Lemma?2. If M - M' then (M, s) St &(M',s).
T Cw

Proof. Easy induction on s, to show that M is a subterm of k(M| s).

Theorem 3 (soundness). If (M[e] ; s) = (M'[e'] ; &'} then u(M[e] ; s) - p(M'e]; §).

Proof. Systematic verification of each rule of the sc-machine. We give the proof for (Split) and leave the easy
verification of the other rules to the reader.

1) -8) = s M)[p(e)], (Np T £) - 8)
= k(A" M)[p(e)] Nolo(£)] - - - Nnyme1[o(f)], 5)
e &(M[Nalp(£)] - ... Nolo(£)] - p()] Nnsr[p(£)] - . - Nagmar[p(f)], 8)

(by Lemma 2)

p(A* T M(e] ; (1V8+m+1

= K(MIp((N}, £) - ) ANaiT* 1) - 8)
= u(M[(Ny, f) €] ; (Nagr | 2 f)-3)

To show that the sc-machine computes terms to their weak head normal form, we first establish the
following lemma.:

Lemmad4. The stopping states of the sC-machine are of the form (X" M[e] ; €) or (n[e] ; s).
Proof. Trivial since there exists a rule for every other state.

Thus we can state the following:

Corollary 5. The sc-machine reduces terms until reaching a state representing a Aoy, head normal form.

Proof. Direct from Theorem 3, Lemma 4 and the translation function p.

6.2 Correctness of the scy-machine

Soundness of the machine and soundness of gel are straightforward:
Theorem 6. The scn-machine is sound.
Proof. Trivial, its rules are rules of the sc-machine.

Theorem 7. Let M be a simply typed term. M and gel(M) are n-equivalent.



Proof. This is trivial since gel only performs n-expansions.

Therefore, the only thing to show is that the machine computes terms to their Ao, head normal form.
The main lemma is the following:

. . ~n+m+1
Lemma8. The machine may not stop in a state of the form (A"t M|e] ; (N; ™

) - s).

Proof. Suppose there exists such a state. It is easy to show that A"*'M has arity n + 1. Thus, since the
machine is sound w.r.t. B-reduction in the A-calculus, and since S-reduction preserves simple types, there
may not be more than n + 1 arguments on the stack.

Corollary 9. The scn-machine reduces terms to their Aoy, head normal form.

6.3 Correctness of the sc-machine with access windows

The correctness for the sc-machine with access windows is very easy to prove with the following function:

Definition10. ( is the translation function from states of the sc-machine with access windows to states of
the sc-machine defined as follows:

((Mle] ; s) = (M[&(e)] ; £(s))
where £ is the translation function from environments or stacks of one machine to the other.

() =¢

-.i+j+k, e):+J . s) - (N:‘]'J’e) f(s)

£({Ng
Theorem 11. If (M[e] ; s} = (M'[e'] ; §') then {(M]e] ; 8) = ((M'[e'] ; &).
Proof. Trivial verification on each rule of the sC-machine with access windows.

Lemma 12. The stopping states of the sC-machine with access windows are of the form (A™M(e] ; €) or

(nle] ; 9)-
Proof. Same argument as for the sc-machine.

Corollary 13. The sc-machine with access windows reduces terms to their Aoy head normal form.

7 Sharing

In this section, we add sharing to the sc-machine with access windows. We use a common technique, namely
a heap, and addresses that allows sharing data structures representing arguments, with a notion of update.
This is the same technique as used by e.g. Crégut (1991) or Peyton Jones (1992)!, adapted to the use of
super-closures.

States have now five components:

The code M, still a A-term in de Bruijn vector notation.

The environment e, a vector of addresses with access windows.
— The argument stack s, like an environment, but a stack ...
The update stack u, a stack of update frames.

The heap h, a mapping from addresses to heap objects.

! Crégut uses actually marks on the heap, like in the TIM, instead of an update stack. But the difference is small.
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Access windows are now associated to addresses of super-closures. a;f denotes the super-closure at address
a, restricted to the access window 7. For sharing, we need to manipulate closures and super-closures. We
call them heap objects. Indeed, a super-closure is a data structure that represents several closures sharing the
same environement. When a member of a super-closure is evaluated, it has to be updated in the heap. Since
its environment has changed, it cannot anymore be shared with the other members of the super-closure.
Thus, one has to create a closure, and an indirection from the super-closure to the closure to enable sharing.
Therefore, super-closures are a bit different as before: They are now composed of a vector of items that are
either code or addresses of closures. Elements of this union type are denoted by [, l;,... {5, .. ..

We need an operation on the heap which provides fresh addresses, where fresh intuitively means unused.
In astate (M[e] ; s; u; h), a fresh could be taken such that a does not belong to the domain of h. However,
this is a bit too restrictive since in a real implementation, one also would like to reuse addresses pointing to
useless heap objects.

We first give the easy rules, namely the rules that are immediate translations from rules of the machine
without sharing: '

(MNgle]; 55 u; h) = (Mle]; af -5 u; hlams (V,e)))  a fresh (App)

()\"+11W[e] 5 a:+"+m+1 85 u; k)= (.M[a::"'" -e] ; a::I:i’i"“ -s; u; h) (Split)
(AP Me] s it s uy h) o (AP M[aiT" €] s u; k) (Lam)
(ntm41ait™-e]; s; u; h)—(nle]; s; u; h) (Skip)

The less trivial rules are the rules to update and access to data. The first rule of access is quite classical,
as follows:

(nfa*™*™ . f]; s;u; h) = (N[e]; €; (s,a,i4m)-u; h) (Accessl)
where ha = ({,¢) and [(i + m) = N

Since the argument may be updated, we push an update frame on the update stack, memorizing the current
argument stack and the reference of the argument in the super-closure : the address of the super-closure
and an index in this super-closure. However, one can imagine that the argument is not updatable, since it
is already a value, or it is proven used at most once (Launchbury, Gill, Hughes, Marlow, Peyton Jones and
Wadler 1993). In this case one can imagine an optimisation as follows:

(mlaf™+™ 115 55 us h) = (N[e] 5 55 u; h) (Access1’)
where k a = (I,¢) and 1(i + m) = N not updateable, e.g., a value

Anyway, in (Access1) or in {Accessl’), the environment e needs to be copied, since it has to be modified with
respect to the evaluation of this particular argument N. This could be yet another flaw of our machine, since
until now we have tried to avoid copying environments. However, since copies of environments are performed
by need, we may hope that that will not happen too often.

Update frames have to be popped from the update stack when the evaluation has reached a value, thus
leading to the (Update) rule. Let A"*! M/ be the value of the closure. There, we have to create a closure, since
the environment changed with respect to the shared environment.

AP Me] ;s €5 (s,a,8) -us h) = (A" M[e]; s; u; k[am (7, f);a" = A" Me]]) o fresh  (Update)
where ha=(I, f) and I =1(i « a')
In this last rule, the environment e is once again copied since it is going to be modified in the particular
context of evaluation of the function A"t!M. This is one of the main differences with the TIM, in which
environments are always kept shared.

As suggested by rule (Update) there is now a second case to consider when accessing the argument bound
to a variable: the case of an indirection to a closure. If a closure is already built for the argument to evaluate,
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then one can consider that it is already updated. Thus, the following rule:
(nlait"+™ . f]; s; u; h) = (N[e]; s; u; h) (Access2)
where h a = (I, ¢')
I(i+m)=d and ha’ = N[e]

That last rule thus suggests that to perform an access, the machine has to check whether there is an
indirection or not. That unfortunately may lead to a severe loss in the performance of the machine. Moreover,
the indirection itself is expensive since it necessitates two accesses in the heap instead of only one.

We do not give the correctness proof of the sc-machine with sharing, since this would uselessly extend
this paper. However, the reader should convince oneself that one can easily define a translation function
from the sc-machine with sharing to KP and show that one simulates the other. There already exist proofs
of the correctness of KP, like in (Crégut 1991) or in (Sestoft 1997). Moreover, we are currently working on a
new elegant proof of KP using the calculus Acf (Benaissa, Rose and Lescanne 1996; Benaissa 1997), which
is Acy, with global addresses. Ae] is a good tool to reason about implementations, since it makes a clear
distinction between the description of the calculus, and the description of the actual strategy. In this sense
it is generic. The proof of Sestoft uses the natural semantics of Launchbury (Launchbury 1993) which is
tied to a particular class of strategies (namely call-by-need strategies) and is not intended to modelize some
important aspects of implementations like global addresses in particular. Therefore, one of the particularities
of our proof is that not only we prove the correctness of our machine w.r.t. (lazy) A-calculus, but also w.r.t.
a particular call-by-need strategy, namely the call-by-need of environment machines. The whole proofs will
be part of the first author’s Phd, soon to be published.

&8 Conclusion

We have proposed a new concept for implementing lazy functional languages, namely super-closures, and we
have shown in a simple framework that it is correct.

However, we have left open issues of efficiency. We have shown that our machine may have severe flaws,
but we have not compared the gains to the losses in practice. Are there cases in which super-closures are
really an optimization? We are not yet able to answer this question as it strongly depends on the structure of
programs and only experiments would prove its efficiency. It seems an evidence that super-closures may only
be efficient for programs defining functions with a large number of arguments. This makes us think that use
of closures and super-closures should be mixed in the same implementations, i.e. some applications should
be allowed to create closures (small number of arguments and little environment) whereas other applications
should create super-closures as a consequence of a static analysis. We are aware that there already exists
static program transformations that try to avoid the creation of closures, such as strictness analysis, or
deadcode analysis. Qur future work must take them into consideration.

Moreover, we did not talk about memory allocation, namely trimming and garbage collection, which are
big issues in real implementations. In particular we think that trimming is made difficult by the use of super-
closures. It has been shown by Benaissa et al. (1996) that the Spineless Tagless G-machine of Peyton Jones
(1992) does not leak space. Would it be the same with super-closures, and if not, what would be the loss on
memory allocation? Indeed, super-closures may be very harmful for space consumption, since environments
are bound to vectors of code. Therefore, it may be very difficult, if possible, to determine whether an
address is garbage or not, or whether even a part of a super-closure is garbage or not. Consider the following
example (due to an anonymous referee), namely the term (in the A-calculus with names for readability)
(Af-2g.f)M[z] N[y] in an environment p = [x — C};y — C2] where M[z] is a term that has only = as free
variable and N[y] a term that has only y as free variable. A super closure {({M[z]; N[y]}, p) is built but only
the first component M [z] is used. Moreover, p still contains 2 and y whereas the mapping to the value of y
is useless and will remain. Now if y is bound to a large data-structure, this could dramatically increase the
cost in space by introducing space leaking.

At last, we have not addressed recursion and data structures. We think that this problem is quite orthog-
onal to the creation of closures. Indeed, recursion can be realized with a u operator that does not involve
closure creation. The instruction (letrec z = e; in ez) compiles to something like ((AM3) pM;) where M
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and M, are the compiled versions of e; and e3, in which 0 is the representation of z. Then, the rule for u
binding is

(uMl[e]; €; (s,a)-u; h) = (Mla-€]; €; (s,a)-u; h)
which does not involve closure creation. Moreover, super-closures can be very easily generalized to data
structures, since they can be handled exactly like other arguments. Thus we have chosen not to address
them in this paper.

To conclude, we may say that super-closures are probably not a good many purpose optimization for
abstract machines since they raise many problems with costly solutions. However, we believe that there may
exist specific cases in which super-closures are an optimization, and they are worth to be studied further.
Anyway, we have tried to exploit this simple idea that closures could be grouped, and have shown the
problems it raises. On another hand, we have shown after Hardin et al. (1996) that an explicit substitution
calculus like Aay, is a very useful tool for reasoning with implementations and proving their correctness. Its
limitation is on its unability to express sharing, recursion and data structures. We are currently working
on machine proofs that use the calculus Ac§ (Benaissa et al. 1996; Benaissa 1997), and that allow to prove
correctness of implementations with respect to particular and precise strategies with sharing.
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Abstract. In this paper we define an abstract machine model for the mA
typed intermediate language. This abstract machine is used to give a
formal description of the operation of run-time module replacement from
the programming language Dynamic ML. The essential technical device
which we employ for module replacement is a modification of two-space
copying garbage collection.

1 Introduction

We have previously presented the high-level design of Dynamic ML, a variant
of the Standard ML programming language which incorporates a facility for the
replacement of modular components during program execution [1]. This useful
facility builds upon existing compiler technology which permits the separate
compilation of modular units of a Standard ML program. A suitable application
problem for Dynamic ML would be the implementation of a distributed system
where it is necessary to correct errors, improve run-time performance or reduce
memory use, without interrupting the execution of the system.

Standard ML has a formal definition [2]. The Definition of Standard ML acts
as a solid scientific platform where experiments in programming language design
may be conducted. Any alteration to the Standard ML language such as ours
should be investigated in the terms of the Definition. However, as readers of the
Definition will know, it is silent on the topic of memory management except
to say that “there are no (semantic) rules concerning disposal of inaccessible
addresses” [2, page 42]. The Definition also separates the static and the dynamic
semantics in such a way that the typing information inferred at compile-time is
discarded before run-time. However, Dynamic ML needs some type information
at run-time. These differences from Standard ML have motivated our work on a
novel semantic model that would form a suitable setting for the formal definition
of Dynamic ML. That model is presented in this paper.

Other authors have argued for the usefulness of a semantic model of memory
management in making precise implementation notions such as memory leaks
and tail recursion optimisation, developing suitable abstract machine models
of memory management for this purpose [3]. Our abstract machine model for
Dynamic ML serves a different purpose and this has led to the creation of a
significantly different abstract machine than those used by previous authors. An
essential feature of our machine is the modelling of user program excepticns,
which other authors do not include.
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2 A Model for Module Replacement

We introduce our first-order module-level replacement by an example to give
the reader an informal understanding of its use in practice. Standard ML has
interfaces called signatures and modules called structures. In our replacement
model we allow the replacement of signatures by other signatures and structures
by other structures, under reasonably generous conditions [1]. As our running
example we consider the replacement of one implementation of a name table
with another which is functionally equivalent but offers improved performance.
Both implementations match the TABLE signature shown below.

signature TABLE = sig
type table
type name = string
val empty: table
val insert: name x table — table
val member: name x table — bool
end;

We provide a facility for expressing such a replacement which ensures that the
data values already present in memory cannot be used in ways which are not
allowed by their type. The replacement operation is expressed by allowing the
user to abstract over a Thl structure which is specialised to implement a name
table as a list of character strings. The Standard ML terminology for a structure
abstraction is a functor. The functor body describes a structure which imple-
ments name tables as binary search trees and in addition contains functions to
convert from the types of the given structure to the types of the new. We place
the conversion functions inside an Install structure and follow a convention of
mapping values from their old representation to their new one using functions
which have the same identifier as the type which they update. This method of
structure replacement is encoded as a Dynamic ML functor below.

functor InstallTable (Ttl: TABLE where type table = string list) :> TABLE =
struct

type name = string

datatype table = empty | node of table x name x table

fun insert (s, empty} = node (empty, s, empty)
| insert (s, node (I, v, r)) =
if s < v then node (insert (s, I}, v, r)
else if s > v then node (I, v, insert (s, r)) else node (I, v, r)

fun member (s, empty) = false
| member (s, node (I, v, r)) =
if s < v then member (s, I}
else if s > v then member (s, r) else true

structure Install = struct
val name: Tbhl.name — name = fn x = x
val table: Tbi.table — table = List.foldr insert empty
end
end;



to semi-space

1 1 true
2 node(4,"a" 3)
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6 " symbol table 6
7 nil 7
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128 12

before replacement after replacement

and collection

Fig. 1. Code replacement with type update

Through the use of the InstallTable functor, a Dynamic ML programmer could
replace a structure which implemented tables as (either sorted or unsorted) lists
with one which implemented them as binary search trees. This is an example of a
very simple modification which would improve the performance of the insert and
member operations. However, more sophisticated improvements would be made
by the same method: defining a functor which maps the old implementation to
the new one and provides functions to convert from the old types to the new.
In both cases, it is critical that the types under replacement are abstract ones
(with only the type identifier given in the signature) in order that functions
outside the structure were not able to depend on a particular choice of concrete
representation for a type, thereby preventing its replacement later.

We propose to perform the code replacement operation during garbage collec-
tion. A functor, such as the one shown above, is compiled separately. We then
invoke the garbage collection operation extended with the application of the
replacement functions from the Install structure to any values of the type under
replacement. After completion of the copying with replacement, it is possible
to dispose of the outdated version of the structure under modification (in the
from semi-space), and switch to use the new version (in the o semi-space) which
now contains the data values of the newly introduced replacement types. This
is illustrated in Fig. 1 where a list representation of a name table containing the
names b and a is replaced by the corresponding tree representation. Values of
types not under replacement are unaltered: this includes values of built-in types
such as booleans and real numbers.

The functions which are executed during code replacement are unrestricted
Standard ML functions which may diverge upon application or raise an excep-
tion to signal an inability to continue processing. Our method of recovery is to
rollback the garbage collection operation when any exception is raised. We revert
to using the from semi-space of data values and the old types and we continue

- with the execution of the old program code.

2



Types T = | () | {F*} | non

Program P = (D*, X)
Datatype D 1= datatype tn of (con, 7) k
Expression X scon scon

con con | con (con, X)

decon (con, X)

excon excon | excon (excon, X)
dexcon {ezcon, X)

record X *

select (i, X)

var v

let v = X; in X;

fix(v, N =X1*in X,

fn(v, n 2 m)=X

app (X1, X3)

switch X case (¢ —% X3, Xa)
exception (ezcon, 7)in X
raise X

handle X; with X,

S e ]

Fig. 2. Syntax of mX language

3 The mA Language

In order to formalise the replacement operation described in the previous section
we first define a call-by-value lambda language mA. This language is represen-
tative of a typical typed intermediate language used in the current state-of-
the-art Standard ML compilers [4-7]. By basing replacement on such an inter-
mediate language, we obtain an operation that is applicable to the whole of
Standard ML, yet avoid a great deal of the complexity. For example, pattern
matching is converted into switch statements by the higher-level match compiler.
Furthermore, we can assume that the mA program is well-typed. For brevity, we
have restricted our attention here to a purely-functional monomorphic lambda
language. However, we note that including polymorphism and side-effects does
not change the resulting replacement operation. '

The syntax of the mA language is given in Fig. 2. The syntactic categories
of the language include special constants of types unit, integer, real, and string;
value constructors such as c.true; exception constructors such as e_match; and
type names such as t.bool. Variables are bound uniquely to values generated
by the evaluation of expressions. The types are constructor types (which may
be either nullary or unary), record types, and function types. Constructor types



include the basic types, as required by the special constants; value constructor
types; and exception constructor types.

A program consists of a sequence of datatype declarations followed by a single
expression. A datatype declaration consists of a unique type name and a sequence
of typed constructors. The expressions divide into those for constructing and
de-constructing values, defining and manipulating variables, and controlling the
order of evaluation.

Notation: A set is defined by enumerating its members in braces, for example,
Z = {a, b, ¢, d} with @ for the empty set. A sequence is an ordered list of
members of a set, e.g. T = (a, b, ¢, a). The ith element of a non-empty
sequence is written z*, where 0 < i < k. A finite-map from Z* to 7* is defined:
z m% y={z' = ¢, ..., ¥ = y*} (the elements of T* must be unique).
The domain (Dom) and range (Rng) are the sets of elements of T* and F*
respectively. A stack is written as a dotted sequence, e.g. S = (a-b-c). The left-
most element of the sequence is the top of the stack, and a pair of adjacent
brackets () is used to represent the empty stack.

We use the meta-variables scon for special constants, con and excon for value
and exception constructors with ¢ ranging over all three of these and ¢ over special
constants of integer type. We use tn for type names and v for variables. We use p
for type heap pointers and I for value heap locations.

4 The m Abstract Machine

The dynamic semantics of mA is formalised in this section by a transition relation
between states of an abstract machine. The organisation of our abstract machine
has some features in common with the AzLY abstract machine [3] which is used in
the formal description of the behaviour of the TIL/ML compiler. However, the
resulting transitions differ considerably as m.A is significantly different from Ag&v.
One important way in which it differs is that mA does not adopt the named-form
representation of expressions and types.

The syntax of the abstract machine is given in Fig. 3. The state of the machine
is defined by a 4-tuple (H, E, ES, RS) of a heap, an environment, an exception
stack, and a result stack. The heap is used to store all the run-time objects of
the program, while the environment provides a view of the heap relevant to the
fragment of the program being evaluated (for example, a mapping between the
bound variables currently in scope, and their values on the heap). The exception
stack stores pointers to exception handling functions (closures). The result stack
holds pointers to temporary results.

The heap consists of a type-heap mapping pointers to allocated types, and
a value-heap mapping locations to allocated values. The heap types correspond
directly to types in the mA language, and the heap values correspond to the
heap types. Nullary constructors scon, con, and excon all have type tn. Unary
constructors con(l) and excon(l) have type tn(p). Records {{*} have type {5*},
and closures {F, v, X))} have type p; = p2. The type heap and value heap are

+*



Machine State M = (H, E, ES, RS)
Heap H = (TH, VH)
Type Heap TH = P b ty
Heap Types ty = tn | ta(p) | {B*} | ;1= pe
Value Heap VH u= [ =% val
Heap Values val = scon

| con | con(l)

| excon | ezcon(l)

I {1*}

| (E, v, X)) | 2
Environment E = (TE, CE, EE, VE)
Type Env. TE = n
Constructor Env. CE = con —% P
Exception Env. EE = excon —3 p
Variable Env. VE 1= v =% (I, p)
Exception Stack ES . O { p)ES
Result Stack RS 2= O { p)-RS

Fig. 3. Syntax of mA abstract machine

represented by finite-maps, as locations and pointers may be bound only once.
It is important to note that we can only determine the shape of the data at a
particular location by examining its corresponding type. Thus, each heap loca-
tion will be paired with a heap pointer: (I, p). This is essential for implementing
tag-free garbage collection in the following section.

The following syntactic conventions are used for allocating heap objects:
H[ly — waly, ..., It — valg] allocates values valy, . .., valy on the value heap,
binding them to fresh locations ly,...,lx, and H[py = 11, ..., pr = 7] allo-
cates types 7q,..., Tk on the type heap, binding them to fresh pointers py,...,ps.
There are no corresponding operations for removing objects from the heap as
this is achieved through garbage collection. However, the implementation of the
fixed-point expression which is used to implement recursive functions requires a
heap-update operation. As a special case, H[l — (2] allocates a dummy closure
on the value heap bound to a fresh location . This location can subsequently be
updated with a mapping to a new closure.

The environment records the allocation of mA values, mapping them to heap
locations/pointers. As identifiers and variables are unique, their corresponding



= (H, E, ES, RS)
H = (TH, VH)
TH = {1 — t_unit — t_bool, p» — t_unit = t_exn}
vH = 2
E = (TE, CE, EE, VE)
TE = {t_unit, t_int, t_real, t_string, t_bool, t_exn}
CE = {ctrue — pi1, cfalse — p1}
EE = {e-match — p3, e.bind — p2}
VE = '}
ES,RS = (), ()

Fig. 4. Initial machine state

environments are represented by finite-maps with the exception of the type envi-
ronment where it is sufficient just to use a set for type names. The following nota-
tional conventions are used for extending the environment: E[tn] adds fn to the
type environment, E[con ~ p] binds the constructor con to the heap pointer
p in the constructor environment. Similarly, E[ezcon + p], and E{v — (I, p)]
denote the binding of exception constructors and lambda variables respectively
to heap pointers/locations in the environment. There are no operations for
removing objects from the environment. However, unlike the heap, a copy of
the current environment may be made at any time, for example by creating
a closure. Thus, objects can effectively be removed from the environment by
reverting to an old copy of the environment.

Execution of the abstract machine is defined by a transition system between
machine states. The individual transitions are listed in Appendix A. The top-
level transition has the form (H, E, ES, RS, P)= (H', E', ES', RS"),
where P is an mA program, (H, £, ES, RS) is the initial machine state
(as illustrated in Fig. 4), and (H', E', ES', RS') is the final machine state.
This top-level transition decomposes into a sequence of transitions of the form
(H, E, ES, RS, D)= (H', E', ES', RS') for processing the datatypes D,
followed by a sequence (H, E, ES, RS, X)= (H', E', ES’, RS') for evalu-
ating the expression X.

There are three possible outcomes which can result from evaluating this
expression. Firstly, the sequence may terminate normally yielding a single pair
(I, p) in the result stack which references the result. Secondly, the sequence may
terminate prematurely, through an uncaught exception, yielding a pair (I, p) at
the top of the result stack which references the exception. Thirdly, the machine
may encounter an infinite sequence of transitions and fail to terminate.
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5 Garbage Collection with Replacement

In Section 2 we have explained how we extend the traditional two-space copying
garbage collection to implement our replacement operation. In this section, we
give the formal definition of this extended garbage collection used in the abstract
machine defined in Section 4. The replacement operation has been presented in
terms of the use of the modular constructs of Standard ML. However, for brevity
we restrict our discussion here to the simpler non-modular language presented
in Section 3.

We will consider the case where we are equipped with the information repre-
sented by a semantic object defined as follows:

RM == Pold .Tif (trep: 'Prep)

The domain of the replacement map Dom(RM) is the set of the pointers to the
types that are to be dynamically replaced. Each element poq of the domain is
mapped to a location/type-pointer pair (lrep, Prep). The location contains the
closure of the function which is to execute the replacement operation and the
type-pointer points to the type which is to replace the old type.

In Dynamic ML this information is extracted from the result of the evaluation
of the sub-structure Install which contains the user defined functions dedicated
to the replacement operation. The replacement map obtained from the Install
structure of our example would be as follows:

{prLname - (Inamegpname); PTbl.table F (Itabtepptabte)}

We define garbage as the objects that are not reachable either directly or indi-
rectly from the environment, exception stack, or result stack. Garbage collection
may take place before or after any transition of the mA abstract machine drop-
ping the bindings of the unreachable objects provided that this does not change
the observable behaviour of the program.

Garbage collection is defined as a rewriting system between the configurations
of our abstract machine (S, RM, Hy, H;). The replacement map denoted by
RM is the auxiliary data structure which provides the information necessary for
the replacement operation. The traditional two-space copying garbage collection
corresponds to the case where RM is empty.

Initially, the scan stack § contains all of the pointers p and (I, p) pairsin FE,
ES, and RS. Heap objects are copied from the semi-space Hy to the semi-space
H; until the scan stack is empty according to the rules listed in Appendix B.

We can incorporate the garbage collection operation in the dynamic seman-
tics of our language explicitly by means of the following evaluation rule:

(ES-RS-FE(E), RM, Hy, 0) =4 (0, 9, Hy, H)
(Hg, E, ES, RS, X) = (H1, E, ES,, RS1)
(H;, E, ES, RS, X) = (Hi, E1, ES:, RS))




where =7 stands for the repeated application of the = rules. The informal
understanding of the =g rules is as follows:

Rule RO is applied when the scan stack is empty. This signals the end of
the garbage collection operation. The replacement map is discarded in order for
subsequent garbage collections to operate correctly.

Rules R1,R1' and R1! are applied when the top of the scan stack is a
location/type-pointer pair (I, p) and the value in the location has not yet been
copied to the H, semi-space, i.e. | ¢ Dom(H;).

In R1 the type of the value reveals that it need not be replaced. As a result,
the value in the H; semi-space is copied to the H; semi-space. The free locations
and the type pointers of the allocated value are added to the scan stack.

R1' and R1? are variants of R1 where the type of the value indicates that
the value is to be replaced i.e. p € Dom(RM). Consecutive lookups in the
replacement map and the heap yield the closure of the replacement function
that is to be applied to the value currently being scanned. The code of the
closure is evaluated in the environment extended by the binding of the scanned
value. Note also that the disjoint union of the two semi-spaces is assumed as the
heap because the code may be referring to some location or type-pointer that
has already been copied.

There are two possible outcomes for the garbage collection operation. Either
evaluation ends successfully or an exception is raised by one of the functions
which is updating the values from the old type to the new one. These two cases
are distinguished by inspecting the type of the most recent result which is at
the top of the result stack. The first case is captured by R1!. The new value is
copied to the H; semi-space and the scan stack is arranged as in R1. The second
case is captured by R1* where the top of the stack indicates that a top level
exception has been raised. According to our implementation model we rollback
the garbage collection operation and revert to using the H; semi-space values.
This is indicated by setting the scan stack to empty and identifying H; with H.
The replacement map is discarded as in RO.

R2 is applied when the top of the scan stack is a location/type-pointer pair
and the value in the location has already been copied to the H, semi-space. It
simply skips this location and continues with the rest of the scan stack. R4 is
exactly like R2 but skips over a type pointer instead of a location.

R3 and R3' are applied when the top of the scan stack is a type pointer and
the type pointer has not yet been copied to the H; semi-space. R3 deals with
the case where the type need not be replaced. The free pointers of the allocated
type are added to the scan stack and the old representation of the type is copied
to the H, semi-space. R3! deals with the case where the old representation of
the type is to be replaced by the new representation.

The functions FE, FP and FL employed in the rewriting rules compute the
free location/type-pointer pairs (!, p) and type-pointers p. They are given in
Fig. 5.



FE(E) = Rng(CE)-Rng(EE)-Rng( VE)

FP(itn) = ()
FP(tn(p)) = (p)
FP({E*}) = (p'---p*)
FP(p1 — p2) = FP(p)-FP(p2)

FL(H, I, tn) = ()

FL(H, I, ta{p)) = (I2, p) where tn = t_exn and H(!,) = ezcon(lz)
FL(H, L1, tn(p)) = (I2, p) where tn # t_exn and H(l;) = con(l2)
FL(H, I, (5*}) = (I}, p")--- (1%, p*) where H(]) = {I*}

FL(H, I, p1 = p2) = FE(E) where H(l) = (E, v, X))

Fig. 5. Auxiliary functions for garbage collection

6 Practicality

Users of state-of-the-art compilers for modern programming languages have
become accustomed to complex program analyses which safely deliver impressive
performance benefits in terms of run-time and memory usage while simultane-
ously offering greater access to a more sophisticated model of computation which
incorporates advanced features such as remote evaluation or code mobility. In
this setting it is all too easy to invent a new paradigm for program execution and
to claim that it can be implemented efficiently because modern compilers and
run-time systems offer so much functionality and convenience. In this section we
would like to provide a more concrete explanation of the key implementation
technology which could be used to provide an efficient implementation of the
code replacement operation which we have described.

Languages in the Standard ML family are strongly typed. In order to enforce
the application of the type-checking stage these language make a strict distine-
tion between elaboration and evaluation, insisting that programs which have not
successfully elaborated cannot be evaluated at all. The rigid ordering of these two
stages prohibits the execution of any programs which attempt to use data values
in ways which are not allowed by their type and thus eliminates a large number
of software errors which would manifest themselves at run-time if working in an
untyped programming language. However, several authors have observed that
two stages are not enough for complex applications such as program generators.
This has led to approaches such as the multi-stage programming paradigm for
MetaML (8], staged type inference [9] and the staged compilation paradigm for
the language Modal ML [10]. The last of these is the most closely related to our
own approach because it has demonstrated the effectiveness of the use of run-
time code generation by Lee and colleagues in the development of the Fabius
compiler for ML [11]. Using this technology it is possible for us to eliminate



the run-time penalties incurred by the use of abstract types in module spec-
ifications by exploiting the underlying representation of an abstract type and
re-compiling at run-time when the replacement module is available. Further,
many other benefits come from the use of run-time code generation including
those associated with partial evaluation [12] since it is possible to take advan-
tage of values which are not known until run-time. Other standard compiler
optimisations such as elimination of array-bounds checking and loop unrolling
also become more profitable in this setting.

Our discussion of module replacement has been exclusively framed in the
context of Standard ML but the same idea has recently been investigated by
other authors working with other languages. Andersson and colleagues [13] have
considered the dynamic replacement of loaded classes in the Java run-time
system. Their approach to implementation differs from ours in that they perform
replacement of objects of the outdated class as they are accessed, meaning that
both versions of the class are active at the same time. Replaced objects are
garbage-collected as the computation proceeds and whenever all of the objects
of the old version of the class have been replaced the class object will have no
more references and it can then be garbage-collected also.

It might seem that the idea of dynamic replacement is better suited to
an embedded systems language for a system with a high availability require-
ment, making Java the better choice for investigating dynamic code replace-
ment because that its intended application domain. Although we admire Java
as a useful, soundly-engineered product the absence of a well-understood theory
for the language makes it less well-suited for this issue. Other researchers are
also considering the use of Standard ML in areas such as these [14].

7 Conclusions

Modern compilers for higher-order typed programming languages use typed
intermediate languages to structure the compilation process. We have provided
an abstract machine definition of a small functional language which is represen-
tative of these. This has allowed us to define precisely the operation of dynamic
module replacement which is used in Dynamic ML.

In composing the Definition of Standard ML, the authors chose not to give
an account of the operation of garbage collection, which most compilers for that
language provide. This was the right decision when focusing upon the abstract
description of a sophisticated high-level language such as Standard ML. Our
concern was to describe part of the operation of an executing computation, with
access to values described by concrete manifestations.

The use of an abstract machine notation has allowed us to isolate the novel
feature of interest from our language. We have presented its definition separately
from other aspects such as syntax and type-correctness. For our purposes, the
use of an abstract machine has established the right level of detail. In addition,
it provides an implementor with an unambiguous and precise description of the
operation of module-level code replacement.

J3



Acknowledgements

Dilsun Kirh is supported by a University of Edinburgh scholarship from the
Department of Computer Science. Chris Walton is supported by an EPSRC
postgraduate studentship.

References

1.

10.

11.

12.

13.

14.

S. Gilmore, D. Kirh, and C. Walton. Dynamic ML without Dynamic Types. Tech-
nical Report ECS-LFCS-97-378, Laboratory for Foundations of Computer Science,
The University of Edinburgh, 1997.

. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML: Revised 1997. The MIT Press, 1997.

. G. Morrisett and R. Harper. Semantics of Memory Management for Polymor-

phic Languages. Technical report, School of Computer Science, Carnegie Mellon
University, 1996. Also published as Fox Memorandum CMU-CS-FOX-96-04.

. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A

type-directed optimising compiler for ML. In ACM SIGPLAN 36 Conference on
Programming Language Design and Implementation, pages 181-192, Philadelphia,
1996.

. Z. Shao. An Overview of the FLINT/ML Compiler. Technical report, Department

of Computer Science, Yale University, 1997.

M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. Olesen, P. Sestoft, and
P. Bertelsen. Programming with Regions in the ML-Kit. Technical Report DIKU-
TR-97/12, Department of Computer Science, University of Copenhagen, 1997.

N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java bytecodes.
In Third ACM SIGPLAN International Conference on Functional Programming,
Baltimore, 1998.

W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In
Partial Fvaluation and Semantics-Based Program Menipulation, pages 203-217,
Amsterdam, The Netherlands, June 1997.

. M. Shields, T. Sheard, and S. Peyton Jones. Dynamic typing as staged type

inference. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, January 1998.

P. Wickline, P. Lee, and F. Pfenning. Run-time code generation and Modal-ML.
In Proceedings of the 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation {PLDI), pages 224-235, Montreal, Canada, June 1998.
P. Lee and M. Leone. Optimising ML with run-time code generation. In Proceedings
of the 1996 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 137-148, Philadelphia, Pennsylvania, May 1996.
N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Progream Generation. Prentice-Hall, 1993.

J. Andersson, M. Comstedt, and T. Ritzan. Run-time support for dynamic Java
architectures. In ECOOP98 Workshep on Object-Oriented Software Architectures,
Brussels, July 1998.

R. Pucella. Reactive programming in Standard ML. In Proceedings of the IEEE
International Conference on Computer Languages, pages 48-57, Chicago, USA,
May 1998. IEEE Computer Society Press.



A Abstract Machine Definition

A.1 Programs

P =(D* Xx)

(H, E, ES, RS, D') = (H,, E\, ES, RS) ...

... (Hk=1, Ex-1, ES, RS, D*) = (Hx, Ew, ES, RS)
(He, Ex, ES, RS, X) = (Hi+1, Ex+1, ES1, RS)
(H, E, ES, RS, P) = (Hi4+1, Erx+1, ES1, RS5:)

A.2 Datatypes

(H, E, ES, RS, datatype tn of (con, 7)*%) =
(Hlpr = ' = tn, ..., pp = 75 5 tn],
Eftn][con’ — p1, ..., con* = pi], ES, RS)

A.3 Expressions

(H, E, ES, RS, scon scon) = (H[l — scon][p = Tuon], E, ES, (I, p)-RS)

E(con)=p1  H(p1) =p2 = pa
(H, E, ES, RS, con con) = (H[l, — con], E, ES, (1, ps}-RS)

(H, E, ES, RS, X) = (H, E, ES, (i, p1)-RS)
E(con) = p2 Hi(p2) =ps = ps
(H, E, ES, RS, con (con, X)) = (Fi[la = con(l)], E, ES, (I2, ps)-RS)

(H, E, ES, RS, X) = (H\, E, ES, (I, p1)-RS)
E(con) =p2  Hi(pz) =pa = p«  Hi(h) = con(lz)
(H, E, ES, RS, decon (con, X)) = (H1, E, ES, (l2, ps)-RS)

E(excon) = p; H(p1) =p2—ps
(H, E, ES, RS, excon excon) = (H[l} — ezcon|, E, ES, (L1, p3)-RS)

(H, E, ES, RS, X)= (Hy, E, ES, (I, ;)-RS)
E(excon) = p2 Hi(p2) =p3s — p4
(H, E, ES, RS, excon (excon, X))} =

(Hi[lz — excon(ly)], E, ES, (I2, pa)-RS)

(H, E, ES, RS, X) = (H, E, ES, (I, p1)-RS)
E(exzcon) = p:» Hi(p2) =p3s = pa Hi(hh} = excon(l2)
(H, E, ES, RS, dexcon (excon, X)) = (H1, E, ES, (2, p3)-RS)
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(H, E, ES, RS, X'} = (H., B, ES, (i1, p1)-RS) ...
.o (Hi-1, E, ES, (-1, pr-1)--- (i, ;)-RS, X*) =
{Hkl Et ES) (Ika Pk)‘ "(Ils pl)RS)
(H, B, ES, RS, record X*) =>
(H{t = {h, ..., L}llp = {p1, ..., px}], E, ES, (I, p)-RS)

(H, B, ES, RS, X) = (Hi, E, ES, (l, p1)-RS)
Hu)={*Y Hp)={p")
(H, E, ES, RS, select (i, X)) = (H1, E, ES, (I', p)-RS)

E(v) = (I, p)

(H, B, ES, RS, var v) = (H, E, ES, (I, p/RS)

(H, E, ES, RS, X1) = (H,, E, ES, (I, ;)-RS)
(Hl, E[’U = (11, Pl)]. ES, RS, Xz) = (Hg, Ez, ES, RSz)

(H, E, ES, RS, let v= X, in X3) = (Ha, E, ES, RS2)

(Hil; » 2, ..., » O} » 7, ..., p§ = %], BES, RS, X}) =
(Hi, B, ES, (I1, p1)-RS)

(Hi[l} #2 1], B\, ES, RS, X}) = (Ha, By, ES, (&2, p2)-RS) ...

oo (Hioa[t57Y 283 14_y), Bu, ES, RS, XE) = (Hw, By, ES, (s, ps)-RS)

(Hills 23 I, E1, ES, RS, X2) = (Hi41, Ba, BS, RSis1)

(H, E, ES, RS, fix (v, 7) = X1 * in X3) = (Hi41, E, ES, RSi41)

(H, B, ES, RS, fn(v, n 9 ) =X) =
(H{l = (E, v, X)llp = n = 7], E, ES, (I, p)-RS)

(H, E, ES, RS, X,)= (H\, E, ES, (l1, m)-RS)

(Hlv E: ES: (h, P[)'RS, Xz) = (Hzl E: ES) (121 P2)(Il, pl)'RS)
Hz(h) = (B, v, Xs))

(Hz2, Brlv = (&, p2)], ES, RS, X1) = (H3, E;, ES, RS;)

(H, E, ES, RS, app (X1, X2)) = (Hs, E, ES, RS3)

(H, E, ES, RS, X\)= (H1, E, ES, (L, p1)-RS)
cmap=c¢ 3 X H(li) = val

X4 =if val € Dom(cmap) then emap(val) else X;
(Hi, E, ES, RS, X,) = (H2, E, ES, RS2)

(H, E, ES, RS, switch X case (cmap, X3)) = (H», E, ES, RS»)

(H[p — 7], Elezcon — p|, ES, RS, X) = (H1, E:, ES, RS1)
(H, E, ES, RS, exception (excon, ) in X) = (H,, E, ES, R5)

(H, E, (), RS, X) = (H1, E, (), RS1)
(H, E, (), RS, raise X) = (H, E, (), R51)




(H, E, (I, m)-ES, RS, X) = (H\, E, (l1, p1)-ES, RS1)
Hl{ll-} = «Elg v, Xl»

(Hi, Erlv » (L, ;)), ES, RS, X\) = (Hz, Ez, ES, RS;)
(H, E, (L, p1)-ES, RS, raise X) = (H, E, ES, RS2}

(H, E, ES, RS, X:) = (H, E, ES, (b, p)-RS)
(Hl: E, (lls pl)ES) RS! x'—’) = (H2: E! ESz, RSz)
(H, E, ES, RS, handle X, with X,) = (Ha, E, £S5, K53

B Garbage Collection with Replacement

(()l RM, Hfl H‘) =gc ((): @, Hfr Ht) (RO)

! ¢ Dom(H:) p ¢ Dom(RM) H(l) = val
({I, p)-S, RM, Hy, H:) =4 (p-FL(Hy, I, p)-S, RM, Hy, Hi[l — wal])

(R1)

l¢ Dom(H:) pe€ Dom(RM)

RM(p) = (lrep; Prep) H(lrep) = (E1, v, X))

(H;w H,, Er[v = (i, p)], ES, RS, X) = (Ha, E2, ES, (Inew, Pnew)-RS) (R1')
H>(lnew) = val H2(pnew) # t-exn

((I, p)-S, RM, Hy, H:) =g (p-FL(Hy, I, p)-S, RM, H;, Hl — val])

l ¢ Dom(H,) p € Dom(RM)

RM(p) = (leep, Prew) H(liep) = (E1, v, X))

(H;@ He, Esfv — (I, p)], ES, RS, X) = (H2, E2, ES, (lnew, Pnew)-RS) (R1%)
Hi(pnew) = texn

((1, p)-S, RM, Hy, H:) =g ((), 9, Hy, Hy)

l € Dom(H,) B (R2)
(I, p)-S, RM, Hy, Hy) =4 (S, RM, Hy, H:)
p¢ Dom(H:) p¢ Dom(RM) Hs(p)=ty (R3)

(»-S, RM, Hy, H.) =g (FP(ty)-S, RM, Hy, Hip = ty))

p ¢ Dom(H,) p € Dom(RM)
RM(p) = (lrep, Prep)  Hy(prep) =ty (R3")
(P'S: RM: Hf! H‘) =ge (FP(ty)°S: RM: H.f: HE[P — ty])

p € Dom(H;)

(R4)
(p-S, RM, H_f, Hg) '—"bgc (S, RM, Hf, Hg)
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Visualizing Principles of Abstract Machines by
Generating Interactive Animations

Stephan Diehl, Thomas Kunze *

Abstract

In this paper we describe the design rationale of GANIMAM, a web-based sys-
tem which generates interactive animations of abstract machines from specifications.
Common principles of abstract machines come into play at three levels: the design of
the specification language, the choice of graphical annotations to visualize higher-level
abstractions and the use of the system to explore and better understand known and
detect new principles.

Introduction

In the GANIMAL project we develop learning software for compiler design. Conceptually the
computations performed by a compiler can be divided into several phases. For most of these
phases there exist specification languages to define such a phase and generators which given
the specification generate an implementation of the phase (e.g. LEX for lexical analysis,
BISON for syntax analysis and PAG for semantical analysis). As a part of our project
we develop generators, which do not only generate implementations, but also visualizations
of the compiler phase from a standard specification. In this paper we describe the design
rationale of GANIMAM, our web-based generator for interactive animations of abstract
machines. Figure 1 shows a snapshot of such an animation. GANIMAM was designed to
help students to learn about and experiment with abstract machines.

Abstract machines provide intermediate target languages for compilation. First the com-
piler generates code for the abstract machine, then this code can be interpreted or further
compiled into real machine code. By dividing compilation into two stages, abstract ma-
chines increase portability and maintainability of compilers. The instructions of an abstract
machine are tailored to specific operations required to implement operations of a source
language or even better for languages of the same language paradigm.

In the following sections we describe how to use GANIMAM and what is generated by the
system. Then we discuss the design of the specification language. Next we explain how we
enhance animations by introducing annotations. Finally we discuss the benefits of using
GANIMAM and its generated interactive animations both as a development tool and as a
part of a learning software.

GANIMAM
GANIMAM can be accessed on a web page (http://www.cs.uni-sb.de/ diehl/GANI/). The

user can enter a specification of an abstract machine, which is then send to the server. A

*FB 14 - Informatik, Universitit des Saarlandes, Postfach 15 11 50, 66041 Saarbriicken, GERMANY,
Email: diehl@cs.uni-sb.de, Www: http://www.cs.uni-sb.de/ " diehl
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CGI script on the server generates Java code and using a Java compiler it translates this code
into class files. In combination with the GANIMAM base package classes these class files
form an interactive Java applet. This applet can be loaded over the internet and the user can
enter machine programs, modify the layout of the different parts of the visualized abstract
machines and control the animation of the execution of his abstract machine programs.

[£22 Main Applicatio i T — gx

et

| Vahw | Ty |2
00 <mll>  |Undefined
. 01 smll> | Undefined fi 1
4 02 <mll> |Undefined | |
03 <mall> | Undefined |/
04 <mlls' | Undefined
0s <rmll> | Undefined
06 <mll> | Undefined
07 <mll> |Undefined ||
08 emil> |Undefined ||
09 <mill>  |Undefined || «
10 <mll> |Undefined ||
$EL amll> | Undefined
12 <mull> |Undefined |f
13 <mil> |Undefined ||
14 <mll> | Undefined |f
15 | =mill> |Undefined ||
18 <mll> | Undefined ||
17 <mll> |TUndefined ||
18 <mills | Undefined
19 | =mll> |Undefined |l' §
20 <mll>: | Undefined ||

21 | <mll> |Undefimed | |
22 | «mll> | Undefined 5

Figure 1: Screenshot of an animated abstract machine

The automatic layout groups the different memories around the accumulator (those ellipses
in the middle). Source code and stacks are placed to the left, stacks to the right, local
variables above and registers below the accumulator. Associated with the accumulator is
an accumulator window (see Figure 6), which shows the expressions which are currently
evaluated and the definitions of the instructions or functions which are currently executed.
Double clicking with the right mouse button at an instruction in the source code window,
loads its definition into the accumulator window. Double clicking with the left mouse button
at an instruction sets the value of the program counter to the address of that instruction,
i.e. the execution of the abstract machine program continues at that address. Clicking at
a cell of a stack, heap or register opens a window. In this window the user can change the
value and type of that cell. For registers only the value can be changed.



program_unit
declarations
declaration
decl_REG
decl_HEAP
decl_STACK
array
definitions
definition

command
funcommand
arguments
identifiers
type
instructions
instruction|

predefinedEvents

assignment
lval

rval
condition
for

forinit
case

expressionlists
expressionlist

defaultlist
call

f_arguments

]

n

declarations definitions

[declaration {; declaration}]

REGISTER. decl_REG | HEAP decl_HEAP | STACK decl_STACK
IDENTIFIER [, decl_REG]

array with IDENTIFIER {, array with IDENTIFIER }
array with IDENTIFIER

IDENTIFIER [ CONSTANT ]

{definition}

def command = instructions fed

| fun funcommand = instructions nuf

IDENTIFIER arguments

type IDENTIFIER arguments

[( [identifiers] )]

type IDENTIFIER {, type IDENTIFIER}

int | boolean | address | pointer | real |
[instruction {; instruction}]

assignment | condition | for | case | call

| return expression | je ( predefinedEvents )
markProcedureStackFrame ( register s CONSTANT )
| comment ( commenttext ) | ... -
lval := rval -

register | memory

expression

if condit then instructions [else instructions] fi
for forinit to expression do instructions od

| for forinit downto expression do instructions od
IDENTIFIER := expression

case expression of expressionlists +esac
expressionlist expressionlists | defaultlist
CONSTANT : begin instructions end

[otherwise : instructions]

IDENTIFIER ( f_arguments )

(expression {, expression}]

Figure 2:

Syntax of abstract machine specification language



Specification Language

Finding low-level principles and casting them into language constructs is the first step to-
wards a specification language. A well-designed specification language enables us to generate
implemenations and visualizations. A crucial point of our specification language is that it
applies to abstract machines for programming languages of different paradigms. Our speci-
fication language is based on the notation used in the compiler design text book by Wilhelm
and Maurer [9] to define abstract machines for imperative, logical and functional program-
ming languages. Recently the notation was also used to describe the Java Virtual Machine
[4]. The core of our specification language is an imperative language with assignments,
expressions, conditionals and loops. Control flow languages are a standard specification
method for imperative, functional and logical programming languages, e.g. (9, 1, 7]. For the
specification of abstract machines for functional languages sometimes rewriting rules have
been used, e.g. for the CAM [6], but usually they can be easily reformulated in a control
flow languagef(5].

At the heart of our specification language is a general machine model. An abstract machine
consists of a set of instructions, a program store, heaps, stacks® and registers. The machine
runs in a loop executing the instruction currently pointed at by a special register, the
program counter (PC).

while(true) {

PC :=PC + 1;

execute instruction at CODE[PC-1]
}

In this model an abstract machine can be specified by declaring its heaps, stacks and registers
and defining its instructions.

In Figure 2 the syntax of our specification language is given. A specification starts with
declarations of stacks, heaps and registers. Then auxilliary functions (with fun) and machine
instructions (with def) are defined. Functions must be defined before they are used. The
predefined datatypes currently include integers, booleans, reals, addresses and pointers.
Addresses refer to positions in the program code, whereas pointers point to cells in the
stacks or heaps. One could imagine to have pointers to registers, but we haven’t found an
abstract machine which needs this. There is also a construct to declare structured data
types:

OBJECT FUNVAL  (cf,fap,fgp),
CLOSURE (cp.gp),
VECTOR [1 (w);

It was heavily used in the specification of the MAMA, a variant of the G-machine, which is
used as a target architecture for functional programming languages. In Figure 3 instances
of these structured data types are visualized in the heap window.

The careful reader will notice, that labels are not part of the specification language, but
that they occur in abstract machine programs (see source code window in Figure 1). Labels
are used instead of concrete addresses and a preprocessor contained in the runtime system
of GANIMAM maps these labels onto concrete addresses.

To initialize the state of an abstract machine, we allow initialization sequences in the abstract
machine code:

In some abstract machines there are several stacks, e.g., in the WAM we have the environment stack,the
trail and the PDL for recursive implementations of unification.



.init_prog

#

source: S
offsetregister: MP
0: 3.14 Real

1: -3 Int
2: true Boolean
#

In the above example the Stack S is initialized as follows: S[MP+0]=3. 14 and its tag is set to
Real, S[MP+1]=-3 and its tag is set to Int and S[MP+2]=true and its tag is set to Boolean.
This means, that an abstract machine starts with all registers set to the default values given
in the abstract machine specification and stacks and heaps are empty. But in addition each
abstract machine program can have its own initialization sequence.

@Main Applialion [Sle AR e : TR

Local Vars

Pointer
Pointer
Pointer

Figure 3: Screenshot of the animated MAMA

An Example Specification

In Figure 4 we show an excerpt of the specification of an abstract machine for imperative
languages [9], a variant of the P-Machine. In this example the instruction mst (mark stack) is
defined which pushes a frame for a procedure on top of the stack. In the specification a stack
S, a heap H and the register PC, MP and EP are declared. The stack and heap declarations
contain declarations of the special purpose registers SP and HP, which point to the top of the
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currently used memory area. The special purpose register PC is automatically defined by
GANIMAM and its declaration is optional. Next auxilliary functions are defined. Here it
is a function, which computes the static predecessor or the current procedure, in the WAM
for example such functions include unify () or deref ().

// declarations

STACK S[100] with SP=-1;
HEAP H[100] with HP=-1;
REGISTER PC,MP,EP;

// specification of auxilliary functions

fun int base (int p, int dv) = // computes the static predecessor
if (p=0) then // of the current procedure
return dv;

else
return base(p-1,S[dv+1]);

fi;

nuf

// specification of an instruction

def mst (int p) = // create a procedure frame

S(SP+2] :=base(p,MP); // pointer to the frame of the static predecessor
S[SP+3]:=MP; // pointer to the frame of the dynamic predecessor
S[SP+4]:=EP; // max. depth for evaluation of expressions

SP:=SP+5; // procedure frame has at least 5 cells

fed

Figure 4: Example specification

Principles

Many principles are hard to define and explain verbally. There are many aspects (what, how,
why) which belong to a principle. One has to distinguish principles of the programming
language, e.g., inheritance of methods in Java, and principles to implement these in an
abstract machine, e.g., chains of method tables. In the abstract machine we can only
visualize the implementation principles. When visualizing a principle, we can visualize
its different aspects:

o Show the information used and produced by the principle.

» Animate operations performed by the principle, e.g. dereferencing of variables in the
WAM.

¢ Visualize properties and invariants enforced by the principle, e.g. in the WAM variables
of higher addresses always reference that of lower addresses.

Visualizing Higher-Level Abstractions

Some of the principles of an abstract machine are not explicit at the abstraction level of our
specification language. For example stack frames are common to all abstract machines we



considered. Stack frames are a means to implement recursion. Usually the stack cells of a
stack frame are allocated by a sequence of one or more instructions, which push values on
top of the stack.

Other instructions access information relative to the beginning of the stack frame or release
the stack frame as a whole 2. There is no single construct in our specification language to
allocate a stack frame. When visualizing an abstract machine it is important that we do
not only draw low-level abstractions captured by our specification language constructs, but
also higher-level abstractions. In order to do this we added visualization annotations to our
specification language. These annotations can be compared to interesting events in some
algorithm animation systems{2].

// instruction including animation annotation

def mst (int p) =

ie(markProcedureStackFrame(SP,5));

// Starting a cell S[SP], the following 5 cells are
// graphically marked as a procedure frame

S[SP+2] :=base(p,MP);

S[SP+3] :=MP;

S[SP+4] :=EP;

SP:=5P+5;
fed

A very general and useful annotation is a runtime comment. It produces a textual output
which is shown in a console window. Using runtime comments the output in the console
window can be used as a trace of the execution of the abstract machine, see Figure 5.

// instruction including animation annotation

def mst (int p) =
ie{comment("Initialize procedure stack frame at SP="+SP+" and PC="+PC));
S[SP+2] :=base(p,MP);

S[SP+3] :=MP;

S[SP+4] :=EP;

SP:=8P+5;
fed

The Benefits of Interactive Animations

GANIMAM provides several ways of user interaction. First the user can enter or modify
the specification of an abstract machine. After generating an implemenation of the abstract
machine, the user can input an abstract machine program, execute it step by step and inspect
the contents of each register or memory cell. When executing an instruction animations show
the flow of information from registers or memory cells to a conceptual operation unit, called
accumnulator, and from the accumulator back to registers or memory cells. The evaluation
done in the accumulator is shown in a special window, see Figure 6.

Annotations only help to visualize principles which we know upfront. GANIMAM can also
be used to detect new principles by experimenting with specifications and abstract machine
programs. Such an experimental approach can be used for two purposes:

?In the WAM stack frames are called environments and a special optimization called environment trim-
ming decreases the number of stack cells of an environment during its live span.

Vi)



|n1t|al|ze procedure stackframe at SP=0 and F’C 43 ?@3
linitialize procedure stack frame at SP=5 and PC=23

e e

7 e o e T D O T S e e T

Figure 5: Screenshot of console window

o As part of an explorative learning software it enables students to formulate hypotheses
and validate or invalidate them by changing specifications or abstract machine pro-
grams. Additional text guides the learner, to make sure he doesn’t miss the important
issues. Such issues could be caller-save-registers vs. callee-save-registers, finding the
frame of the static predecessor or lazy vs. eager evaluation.

» As a development tool it can help to detect errors and optimizations. As an example
of such an optimization consider tail recursion optimization. By tracing the execution
of example programs it might become apparent that the information stored in a frame
is not needed after certain recursive calls.

GANIMAM is not meant to replace classical teaching or development approaches, but to
supplement and enhance these. GANIMAM can also be used by researchers to present their
new implementation techniques or for rapid prototyping.

Current and Future Work

In the GANIMAL project? we will also develop generators for interactive animations of other
compiler phases. We are currently looking into how to evaluate the software produced in the
GANIMAL project. Those evaluations of algorithm animations we are aware of [8, 3] lack
a serious approach both for collecting and evaluating the data. To avoid these problems we
plan to cooperate with cognitive psychologists.

In the current version of GANIMAM structured datatypes like records, objects or ML
datatypes can be built with the help of pointers but a coherent visualization does not yet
exist. In a later version we will use the graph layouter which is currently under development
in the GANIMAL project to visualize structured data types.

Conclusion

We introduced GANIMAM, a web-based system to generate interactive animations of ab-
stract machines from specifications. During the development of GANIMAM common princi-
ples of abstract machines have been considered at three levels: the design of the specification
language, the choice of graphical annotations to visualize higher-level abstractions and the

3This project is funded by the Deutsche Forschungsgemeinschaft and started in summer 1998.



def mst (int p) =
1 S[EP+2]:=base(p,MP);
{ S[SP+3]:=MP,

| S[SP+4]:=EP;

{ SP:=5P+5,

|fed

fun int base(int p, int a) =
1 if (p=0) then

{ retarn a;

g else

{ returnbase(p-1,5[a+17]);

Figure 6: Screenshot of the accumulator window

I+
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use of the system to explore and better understand known and detect new principles. Qur
final goal is to integrate GANIMAM into a learning software for compiler design and thus
enabling students to solve exercises related to abstract machines by an experimental and
explorative approach.

Acknowledgements The authors want to thank Andreas Placzek, who helped to imple-
ment a first prototype of GANIMAM.
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Abstract. We give a formal specification of the dynamic semantics of
Java byte-code, in the form of an operational semantics for the Java Vir-
tual Machine (JVM). For each JVM instruction we give a rule describing
the instruction’s effect on the machine state, and the conditions under
which the instruction will execute without error.

This paper outlines the formalization of the JVM machine state, and
illustrates our specification approach with a few select JVM instructions.
Our full specification, covering the entire JVM instruction instruction set
except for synchronization instructions, is available in (2].

Keywords: Java, JVM, formal specification, semantics.

1 Introduction

The Java Virtual Machine (JVM) is a virtual machine for safely implement-
ing object oriented languages. It is rather complicated because each instruction
must check a number of conditions. For instance, the getstatic instruction,
which accesses a static field of a class, must check that the class is accessible to
the current method, that the class has been loaded, that the class declares the
requested field, that the field is accessible to the current method, etc.

The ‘official’ definition of the JVM is given in the baok by Lindholm and
Yellin [9]. To describe the pre-conditions and the effect of JVM instructions, the
book uses natural language, pseudo-C constructs and runtime stack pictures.
Consequently, Lindholm and Yellin’s book is rather long (475 pages) and it is
hard to fully understand the semantics of the JVM, e.g. the precise conditions
for executing an instruction.

The objective of the present work was to gain a thorough understanding of
the JVM as described by Lindholm and Yellin, and to express that understanding
clearly and compactly. Another goal was that of uncovering possible omissions
and ambiguities in the JVM specification. Hence, we describe the JVM at a
higher level of abstraction, using ordinary mathematical concepts, and we use a
semi-formal notation rather than natural language. Our full specification (2] is
less than 80 pages long.
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1.1 What is covered by our specification

We formalize the JVM machine state, and for every JVM instruction, we describe
the conditions for its successful execution and its precise effect on the machine
state. We do not describe the following aspects of the JVM:

class file verification: what checks can or must be done at class loading time;
multiple threads, the monitorenter and monitorexit instructions:

what exception to throw when a pre-condition of an instruction fails;

the Java Class Library, native methods, and garbage collection.

The JVM instruction set does not include any instructions for starting, suspend-
ing, or stopping a thread; these mechanisms are supported only via methods in
the Java Class Library. Hence, a formalization of the JVM semantics with re-
spect to multi-threading would have to cover the semantics of (parts of) the
Java Class Library as well. In our specification, we focus solely on the JVM and
consider only one single thread of execution.

1.2 Format of the specification

Our formalization uses ordinary mathematical concepts: partial functions!, sets,
sequences, disjoint sums, etc.

Alternatively, one could use a particular specification language, such as VDM
8], or develop a theory within a theorem prover, such as HOL (7], Isabelle [11]
or PVS [10]. This would make the specification even more precise but probably
less accessible to the general reader.

2 Modelling the JVM machine state

In this section we outline a formal specification of select JVM instructions. The
details of our notation and the precise definition of auxilliary functions used in
the following sections are presented in the full report [2].

Qur specification is more abstract than that described in the ‘official’ JVM
specification [9], yet describes the JVM semantics at a level very close to the
actual instruction set, including many details of the byte-code instructions.

The run-time state of the JVM has two parts: the global environment, which
remains fixed, and the thread state, which changes during execution.

Note that we model only a single thread of execution.

2.1 The global environment

The global environment maps class names to class files. Concretely, the global
environment represents the file system and the network, from which class files
may be loaded. A class file has eight components in our modelling:

C = P(Acc.) x [Id;] x P(Id.) x FD x CV x MD x MIx CP

! We use the notation A — B to designate a partial function from A to B.



The components of a class or interface C are its access modifiers (e.g. public),
the name of its direct superclass (optional), the names of its direct superin-
terfaces, its field declarations, its constant values, its method declarations, its
method implementations, and its constant pool. The constant pool holds string
literals, other constants and symbolic references to classes and class members.

The precise definitions of the sets P(Acc.), [Id.], etc. are given in the full
report [2] in the same style.

2.2 The thread state

The thread state is the state of an executing thread. We model the thread states
TS as follows:

TS = Frame® x Heap x Env

The thread state consists of a frame stack (Frame'), a heap (Heap), and an
environment (FEnv). Each frame in the frame stack corresponds to a method
invocation. The topmost frame is the frame of the method currently executing.

A frame f € Frame contains a program counter pc € PC, an operand stack
s € Oper®, a local variable table [ € Locals, and the current method’s class name
id, € Id, as well as its signature (method name and argument types) sig € Sig:

Frame = PC x Oper™ x Locals x (Id, x Sig)

An operand (Oper) is either a word (W) or a double-word (DW). A word is
either a proper word (W,) or a program counter value (PC). A proper word is
either an integer? (Int), a float (Float) or a reference (Ref,) which is possibly
null. A double-word is either a long integer (Long) or a double (Double).

A local variable table (Locals) maps a non-negative integer index to the (one-
word or two-word) local variable value (Oper) at that index. A two-word value
occupies two entries in the table.

A heap h € Heap maps a non-null reference (Ref) to an object:

Heap = Ref —+ Obj
Obj = Obj, U Obj. U Obj,
Obj, = Id, x IV
Obj, = Id, x IV
IV = (Id, x Idg) = V
V= W,uDwW

An object (Obj) is either an uninitialized (Obj,) or initialized (Obj,) instance of
a class type, or an instance {Obj,) of an array type.

An object (Obj, or Obj,) of class type consists of the name (Id.) of the class,
and its instance field values (V). The latter maps a pair of a class name (Jd.)
and a field name (Idy) to the value ( V) of that instance field. That value must be

2 The JVM uses integers (Int) to represent Java’s boolean, byte, char, short, and
int types.
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a proper value (V'): either a proper word ( W,) or a double-word (DW). Hence,
program counter values (PC) cannot be stored in an instance field.

Array objects are described similarly, as maps from non-negative indices to
proper values (V). Multi-dimensional arrays are arrays of arrays: each element
is itself an array object.

The environment e € Env in a thread state holds the classes that have been
loaded by the JVM from the global environment (e.g. from the file system). It
maps a class or interface name to its declaration (C) and static field values table
(SV):

Eny = Id, = (C x SV)
SV=1Iy =V

A static field values table (SV') maps a field name (fdy) to its value.

3 Formalizing the effect of JVM instructions

The effect of JVM instruction execution on the thread state is described in the
style of small-step operational semantics [13]. Each JVM instruction is defined
by an inference rule, as illustrated by rule (1) below. The premises above the line
describe the conditions that must hold for the instruction to execute successfully,
that is, without throwing an exception. The conclusion ts = ts' below the line
says that execution of the instruction will change the thread state from ts to ts'.

In each of the rules, the symbols s, I, m, fr, h, and e refer to the components
of the thread state ts = ((pc, s,{,m) =: fr, h,e).

By convention, the premises are read from the top down and from left to
right. Although immaterial from a logical point of view, this supports a more
operational interpretation of the rules.

3.1 Example 1: the dup instruction
The dup instruction duplicates the operand stack’s topmost value:

instr(ts) = dup

s=(v: W) :sr

size(s) + size(v) < maz,(ts)

suce(ts) = pc'

ts = ((pc',v v sr,l,m):: froh,e)

(1)

If all of the premises above the line hold, then the current thread state s will
change into the state specified after the = symbol.
The premise instr(ts) = dup says that this rule applies to the dup instruction.
The premise s = (v : W) :: sr asserts that the operand stack s in ts has
top-most element v and remainder sr, and that v is a word {( W), not a double-
word?.

3 The dup instruction cannot be used for duplicating a double-word stack operand.
Instead, the JVM instruction dup2 must be used.



The premise size(s) + size(v) < maz,(is) asserts that the stack will not
overflow: the combined sizes of the old stack s and the duplicated value v does
not exceed the maximal size maz,(ts) of the stack.

The premise succ(ts) = pc' asserts that there is a successor instruction and
that its address is pc’.

For brevity, the rules use a number of semantic utility functions. For instance,
instr finds the current instruction in the current thread state ts, size computes
the size (in words) of a semantic object, maz, finds the declared maximal stack
size for the method currently executing, succ finds the address of the next byte-
code instruction to execute, etc. Formal definitions of these functions (and those
used below) are given in the full report [2].

The notation v : Win the second premise means that the value v has type
W. This notation is used in two ways: (1) to assert a condition, and (2) to tag
a value with a given type. For instance, 117 : Double is the number 117 of type
Double (as opposed to e.g. Int or Long).

3.2 Example 2: the istore instruction

The istore instruction removes the stack’s top-most (integer) value and stores
it in a local variable:

instr(ts) = istore j

s=(k:Int): sr

7 < maz(ts)

succ(ts) = pc' 5

ts = ((pc', sr,rmDW(,5) + {j — k},m) = fr,h,e) (2)

The premises state that this rule concerns the istore instruction, that the top-
most value on the stack s must exist and be an integer k, that j must be within
the declared range of local variable indexes, and that the current instruction must
have a successor at pc'. If so, the thread state changes to ({pc’, sr, rmDW(l, j) +
{j » k},m) :z fr,h,e) in which k has been popped off the stack, and local
variable j has been changed to k.

If writing into local variable j happens to destroy the second half of a double-
word value, then the first half of that double-word must be removed from {. This
is handled by the semantic function rmDW(l, 7).

3.3 Example 3: the baload instruction

The baload instruction loads the value from an array of element type byte or
boolean:

instr(ts) = baload
s=1(k:Int): (r: Ref)::sr
h(r) = ((1,byte), ¥', av) : Obj,
av(k) = k" : Int

suce(ts) = pe'

ts = ((pc', k" iz sr,l,m) :: fr h,e) (3)
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If the top-most stack operand is an integer k, if the second top-most stack
operand is a reference r to a one-dimensional array object of element type byte
or boolean and if k is a valid index into the array, then the value k£ and the
array reference r are popped off the stack, the array component k" at index k
is pushed onto the stack and execution continues with the next instruction.

The component k' of the array object at position r in the heap h is the
length of the array object. It is immaterial in the rule for baload since the
premise au{k) = ... ensures that & is in the domain of av (which maps an array
index to the corresponding array element).

Note that an integer value (Int) is loaded from the array. It is assumed that
a component of a byte or boolean array has already been truncated to a byte
or boolean value, respectively, and then expanded back into an integer value®.

3.4 Example 4: the new instruction
The new instruction instantiates the class specified by constant pool index i:

instr(ts) = new 4

pool(ts)(i) = id,’ : Id,

e(id,") = ({ace, 1d.", is, fd, cv, md, mi, cp), sv)
acc. N {interface, abstract} = 0
access(id,’, ace., id.)

r € Ref\dom(h)

fields(id,', e) = v

(id.', iv) = o: Obj,

size(s) + size(r) < maz,(ts)

succ(ts) = pc'

ts = ((pc',r ::5,0,m) :: froh+ {r — o}, e)

If it holds that

(4)

— i is a valid index into the constant pool of the current class,

— the constant pool entry at index i is a class (or interface) reference id,’,

— the declaration of id.’ is in the domain of the environment e (i.e., has been
loaded),

— id.' is an instantiable class (not abstract or interface),

— the current class id. can access class id.’, and

— there is an unused location r in the heap,

then the execution of the new instruction proceeds:

— the instance fields of class id.’ and all its superclasses are prepared using the
auxiliary function flelds;
— an instance o of class id,’ with instance field values év is created;

4 In our modelling, the truncation and expansion to/from byte and boolean values
is specified in connection with the bastore instruction. See the full report (2] for
details.



— the reference r is pushed onto the operand stack;
— o is bound at location r in the heap; and
— execution continues with the instruction at pe'.

The new object o is tagged with type Obj,, which means that it is uninitial-
ized. Members of the object cannot be accessed until it has been initialized by
invocation of a constructor.

Note that the above rule does not specify any details with respect to memory
allocation or garbage collection®. Instead, we assume an infinite heap in which
a fresh heap location r is always available.

3.5 Example 5: the getstatic instruction

The getstatic instruction pushes the value of a class or interface field onto the
stack:

instr(ts) = getstatic i

pool(ts) (i) = (id.', idy,d) : Consty

e(id,’) = ((acee, id,", is, fd, cv, md, mi, cp), sv)
access(id,’, acee, id,)

fd(idy) = (aecy,d)

d=d

static € acey

private € aecy = id, = id,’

protected € accy = id,' € supers(id.,e)

su(idg) =v: V

size(s) + size(v) < maz,(ts)

succ(ts) = pc' 5
ts = ((pc’,v:s,i,m) :: fr h,e) (5)

If it holds that

— i is a valid index into the constant pool of the current class,

— the constant pool entry at index ¢ is a symbolic field reference, referring to
a field id; with type descriptor d in class or interface id.’,

— the name id,.’ is in the domain of the environment e (i.e., the declaration of
a class or interface of that name has been loaded),

— the current class id, can access class/interface id,’,

— class/interface id.' declares a field id; of the same type as that specified by
the descriptor d,

— the field idy is static,

— the fleld idy is not private unless the current class is the same as that
declaring the field,

5 The JVM specification [9] does not prescribe any particular memory management

technique, but assumes some sort of automatic memory reclamation, e.g. garbage
collection.
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— the field id; is not protected unless the current class is the same as that
declaring the field or a subclass thereof, and
— the value of field idy in the static values sv is v,

then the value v is pushed onto the operand stack, and execution proceeds with
the next instruction.

It is possible to get a value from a field before putting anything into it; the
value loaded from the field will then be the initial (default) value for the field’s
type.

3.6 Example 6: the getfield instruction

This example demonstrates one of the object-oriented features of the JVM. The
getfield instruction pushes the value of an instance field onto the stack:

instr(ts) = getfield

pool(ts)(i) = (id.', ids,d) : Consty

e(id.') = ((acee, id.", i3, fd, cv, md, mi, cp), sv)

interface € acc,

access(id,’, acee, id,)

fd(idg) = (accy, d’)

static & acey

private € accy = id, = id,'

d=d

s =(r: Ref) :: sr

h(r) = (id,", iv) : Obj,

id.' € supers(id,"”’e)

protected € accy = (id.' € supers(id;,e) A id. € supers(id.'’ e))
w(id,idf) =v: V

size(sr) + size(v) < magz,(ts)

sucec(ts) = pc’ (6)
ts = ((pc’,v :: sr,l,m) :: fr h,€)

The getfield instruction differs from the getstatic instruction in that the
referenced field cannot be an interface or class field and that the value of the
field is retrieved from a specific class instance rather than via the environment
e of the thread state.

If it furthermore holds that

the top-most stack operand is a non-null reference r to an initialized object,
the object is an instance of the class id,’ that declares the referenced field
idy 8.

the field is not protected unless the current class is the same as id;' or a
subclass thereof and the object is an instance of the current class, and

the value of the field idy in the instance values v of the object is v,

8 The field id; must be declared in class id.’; it is not sufficient for class id.’ to inherit
the field from a superclass.



then the object reference r is popped off the stack, the value v is pushed onto
the stack and execution continues with the next instruction.

3.7 Example 7: the invokespecial instruction

This example shows one of the four JVM instructions for method invocation. The
invokespecial instruction may be used for invoking a constructor, a private
instance method, or a method of the current class’:

instr(ts) = invokespecial ¢
pool(ts)(3) = (id,’', sig’,d) : Const,,
e(id,’) = ({acee, 1d.", is, fd, cu, md, mi, cp), sv)
interface ¢ acc,
access(id,', acce, id.)
siy’ = (idp, <dy,ds2,ds, . .., dp>)
id,, # <clinit>
md(sig') = (acem, d', ezes)
(tdy = <init> V private € acep, V id, = id,’
V id,' & supers(id,,e) V super & acc.)
acem N {static, abstract,native} =0
private € aceq, = ide = id,’
mi(sig') = (ns,ny, code', hdls')
3 = as@sr
a8 = <0k, Bk—1, k-2, - -, 02,01 >Q<Lr : Ref>
size(as) < nyg
V1 < j £ k.(initialized(a;j, h) A compatVal(d;,a;j, h,e))
h(r) = o: (Obj, U Obj,) = (id,", iv)
(idm = <init>Ao € Obj,) V (idn # <init>A o € Obj,)
id,' € supers(id.'",e)
protected € acc, = (id,' € supers(id.,e) A id, € supers(id."”,e))
(mingc(code'), <>, args(as), (id,', sig")) = f' : Frame
initObj(id.’, sig’, 7, h) = A’ @)
ts = (f' = (pe,sr,l,m) :: fr,h',e)

If it holds that

i is a valid index into the constant pool of the current class

— the constant pool entry at index ¢ is a symbolic method reference, referring
to a method in class id,' with signature sig’ and return type descriptor d

— the declaration of class id.' is in the environment e

— the current class has permission to access class id,’

— the referenced method is not a static initializer (with the special method
name <clinit>)

— class id.' declares and implements a method with signature sig’ and the same

return type descriptor as that specified by the symbolic method reference

7 The invokespecial instruction may also be used for invoking other ‘special’ instance
methods; this is described in a separate rule in our full report [2].

[0F



the method is not declared to be either static, abstract or native

— the method is not declared to be private, unless the current class is the
same as that declaring the method

— the first stack operand is a reference 7 to a class instance o in the heap h

— the next k stack operands are the method arguments ag,...,a; which are
assignment compatible with the corresponding k& parameter type descriptors
of the method signature sig’

— the total size of the method arguments as is less than or equal to the local
variable limit n; of the method

— the referenced object o is either uninitialized, in which case the method to
be invoked must be a constructor (with the special method name <init>);
or it has been initialized, in which case the invoked method must not be a
constructor

— the class id."” of the object o must be the same as id.’, or a subclass thereof

— if the method is declared to be protected, then the current class must be

the same as class id.’, or a subclass thereof, and the class id,"”" implementing

the method must be the same as the current class, or a subclass thereof.

then the method arguments as are popped from the operand stack of the current
frame, a new frame f’ representing the invoked method is pushed onto the frame
stack, and execution continues with the first instruction in the invoked method.

The new frame f' initially contains an empty operand stack and the values
of the method parameters in the first local variables (initialized by means of the
utility function args).

The utility function initObj is used for tagging the object referenced by the
stack operand r as initialized (that is, as having type Obj.) in case the method
being invoked is the constructor of class java.lang.0Object (the superclass of
all other classes).

3.8 Other instructions

Above we have given examples of instructions operating on the stack, the local
variables, arrays, the constant pool, the static fields of a class and the instance
fields of an object. Our full specification comprises 62 rules of which the most
complicated one is the method invocation rule for invokespecial shown above.

We do not define separate rules for each of the 201 JVM instructions since
many of these are very similar to other instructions. Instead, we define rules for
instructions representing the different ‘families’ of instructions and describe (in
less formal terms) how the remaining instructions in the JVM instruction set
differ from those.

4 Future work

Topics for further work towards a complete JVM specification include:



— Specify which exception is thrown when a given premise of a rule fails to hold.
For each instruction, and for each premise that can fail, one may introduce
an additional rule which lists those premises that do hold, a single premise
that fails and the exception that must be thrown in that case.

This will considerably increase the number of rules, but should not affect
the overall structure of our specification.

— Specify the semantics of parallelism (threads). This would require rethinking
the specification, although many parts of the current specification could be
reused (specifically, all parts not related to field or method access).

— Specify the byte-code verification conditions. The informal specification is
rather unclear, especially concerning the verification conditions for local sub-
routines (the jsr and ret instructions), exceptions handlers, and their in-
teraction, as discussed in [14].

— Find the ‘early’ premises for each JVM instruction: those that may be
checked by a byte-code verifier at load-time. Prove that byte-code which
passes such a verifier cannot fail the ‘early’ premises, and then remove those
premises from the rules.

5 Related work

Borger and Schulte give a formal semantics of Java byte-code, factorized into a
number of sub-languages [3]. Their JVM semantics serves as a basis for defining
a compilation scheme from Java source programs to Java byte-code. In their
specification, Borger and Schulte assume that the Java byte-code has already
been verified by a byte-code verifier. Hence, they deal with fewer details in the
JVM instruction set, although their approach resembles ours to some extent.

Also closely related to our work is Cohen’s Defensive Java Virtual Machine,
an executable specification expressed in ACL2, developed at Computational
Logic Inc. [4]. Cohen’s specification is fully formal and hence more precise than
ours, but leaves out many aspects of the JVM, yet is far longer than ours (385
pages). It is probably better suited for machine manipulation and less suited for
human readers.

Stata and Abadi show how to formalize some aspects of Java byte-code ver-
ification as a type system [14]. Thus while our work concerns the dynamic se-
mantics of Java byte-code, their work concerns its static semantics.

We are also aware of other related work, e.g. the Alves-Foss book on Java
semantics [6] and Diehl’s formalization of Java compilation [5], but have not yet
compared our work to theirs.

6 Conclusion

We have gained a thorough understanding of the JVM in a relatively short time.
This has been an invaluable aid when subsequently implementing Java byte-code
generators. Concretely, the present work has served as a basis for the design of
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the SML-JVM Toolkit (1], a toolkit for manipulating Java class file and Java
bytecode.

Moreover, several ambiguities in the ‘official’ JVM specification [9] have been
revealed, some of which are now being addressed by JavaSoft. These ambiguities
in the informal specification (and more) are listed in the unofficial Java Spec
Report [12], whose section on the JVM specification owes much to the present
work.

The dynamic semantics of Java byte-code presented here has not yet been
validated formally. It shows, however, that the JVM, although it is a fairly com-
plicated virtual machine, can be given a precise yet comprehensible description
using well-known mathematical concepts and notation.

We believe that the standardization of the JVM would benefit from using a
specification style similar to that presented here.
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