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Zusammenfassung

In dieser Arbeit untersuchen wir die Rolle der k-teilbaren nicht-kreuzenden Partitionen
in der Freien Wahrscheinlichkeitstheorie.

Wir betrachten zunächst die kombinatorische Faltung ∗ auf den Gittern der nicht-
kreuzenden Partitionen NC und der k-teilbaren nicht-kreuzenden Partitionen NCk. Wir
zeigen, dass die k-fache Faltung mit der Zetafunktion in NC äquivalent ist zur einfachen
Faltung mit der Zetafunktion in NCk. Dies eröffnet neue Wege, um Objekte wie “k-
equal” Partitionen, k-teilbare Partitionen oder k-Multiketten zu zählen – sowohl in NC
wie auch in NCk. Darüber hinaus analysieren wir die Statistik der Größe von Blöcken in
k-teilbaren nicht-kreuzenden Partitionen.

Des Weiteren führen wir den Begriff der k-teilbaren Elemente in einem nicht-kommu-
tativen Wahrscheinlichkeitsraum ein und untersuchen diese. Ein k-teilbares Element ist
eine (nicht-kommutative) Zufallsvariable, deren n-te Momente null sind, für alle n, die kein
Vielfaches von k sind. Für solch k-teilbare Elemente x leiten wir eine Formel für die freien
Kumulanten von xk her, die sich auf die freien Kumulanten von x zurückführen lässt. Hier-
bei werden k-teilbare nicht-kreuzende Partitionen verwendet sowie unsere entsprechenden
kombinatorischen Resultate. Wir beweisen, dass sps und a frei sind, falls a und s frei
sind, s k-teilbar ist und p ein Polynom (in a und s) ist, dessen Grad in s gerade k − 2
ist. Anschließend definieren wir den Begriff R-diagonaler k-Tupel und erhalten ähnliche
Aussagen.

Ein weiteres Ergebnis dieser Arbeit ist, dass die freie additive Faltung eines Maßes auf
der positiven reellen Achse mit einem k-symmetrischen Wahrscheinlichkeitsmaß wohlde-
finiert ist. Analytische Methoden um diese Faltung zu berechnen werden entwickelt.

Wir konzentrieren uns dann auf Potenzen der freien additiven Faltung k-symmetrischer
Verteilungen und zeigen, dass µ�t ein wohldefiniertes Wahrscheinlichkeitsmaß ist, für alle
t > 1. Wir leiten zentrale Grenzwertsätze her und solche vom Typ Poissons. Etwas
allgemeiner untersuchen wir frei unbegrenzt teilbare Maße und beweisen, dass die frei
unbegrenzte Teilbarkeit unter der Abbildung µ→ µk erhalten bleibt.

Einige Beziehungen zwischen Potenzen der freien multiplikativen Faltung und k-teil-
baren nicht-kreuzenden Partitionen werden herausgearbeitet und auf das beliebige Pro-
dukt freier Zufallsvariablen verallgemeinert.

Schlussendlich nehmen wir (k-symmetrische) frei stabile Verteilungen in den Blick,
für die wir eine Eigenschaft der Reproduktion beweisen. Diese verallgemeinert die für
einseitige und reell-symmetrische frei stabile Gesetze bekannte.





Abstract

In this thesis we study the role of k-divisible non-crossing partitions in Free Probability.
First, we consider the combinatorial convolution ∗ in the lattices NC of non-crossing

partitions and NCk of k-divisible non-crossing partitions. We show that convolving k
times with the zeta-function in NC is equivalent to convolving once with the zeta-function
in NCk. This gives new ways of counting objects like k-equal partitions, k-divisible
partitions and k-multichains both in NC and NCk. We also consider some statistics of
block sizes in k-divisible non-crossing partitions.

Second, we introduce and study the notion of k-divisible elements in a non-commutative
probability space. A k-divisible element is a (non-commutative) random variable whose
n-th moment vanishes whenever n is not a multiple of k. For such k-divisible element x,
we derive a formula for the free cumulants of xk in terms of the free cumulants of x. For
this we use our combinatorial results on the lattice of k-divisible non-crossing partitions.

We prove that if a and s are free and s is k-divisible then sps and a are free, where
p is any polynomial (in a and s) of degree k − 2 in s. Moreover, we define a notion of
R-diagonal k-tuples and prove similar results.

Next, we show that free multiplicative convolution between a measure concentrated on
the positive real line and a probability measure with k-symmetry is well defined. Analytic
tools to calculate this convolution are developed.

We then concentrate on free additive powers of k-symmetric distributions and prove
that µ�t is a well defined probability measure, for all t > 1. We derive central limit
theorems and Poisson type ones. More generally, we consider freely infinitely divisible
measures and prove that free infinite divisibility is maintained under the mapping µ→ µk.

Relations between free multiplicative powers and k-divisible non-crossing partitions
are also found and generalized to any product of free random variables.

We conclude by focusing on (k-symmetric) free stable distributions, for which we prove
a reproducing property generalizing the ones known for one sided and real symmetric free
stable laws.
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INTRODUCTION

Introduction

This thesis is part of the theory of Free Probability, where the objects of interest are
not classical random variables but free (non-commutative) random variables and tensor
products are replaced by free products.

Free Probability started in the 80s with the work of Voiculescu [79, 80, 82] linked to
some questions in the context of operator algebras. The free additive convolution � and
free multiplicative convolution � of measures supported on the real line (explained in
Chapter 1) were introduced by Voiculescu [82] to describe the sum and the product of
free (non-commuting) random variables. These operations have many applications in the
theory of large dimensional random matrices, since they allow to compute the asymptotic
spectrum of the sum and the product of two independent random matrices from the
individual asymptotic spectra [36], [83].

Later, in the early 90s, Speicher [72] introduced purely combinatorial tools, relying
on the notion of free cumulants, to study Free Probability. A central object in this
combinatorial approach is the lattice of non-crossing partitions, since free cumulants are
related to the lattice of non-crossing partitions in the same way as classical cumulants are
related to the lattice of all partitions. The present work is based on this combinatorial
approach.

Nowadays, Free Probability has also significant relations with other branches of math-
ematics such as combinatorics, classical probability, representations of symmetric groups,
as well as some mathematical models in physics, communications and information theory.

Until recently, k-divisible non-crossing partitions have been overlooked in Free Prob-
ability and have barely appeared in the literature. However, their structure is very rich
and there are, for instance, quite natural bijections between k-divisible non-crossing par-
titions and (k+1)-equal non-crossing partitions which preserve a lot of structure, (see e.g.
[3]). In this work we explore k-divisible non-crossing partitions in connection to various
aspects of Free Probability.

This thesis is mainly based on the results of [3] where we introduce the notion of
k-divisible elements in a non-commutative probability space and study the combinatorial
structure of k-divisible non-crossing partitions. Statistical properties of the block struc-
ture of k-divisible partitions were considered in [2]. Connections to free multiplicative
convolution have been further explored in a joint work with Vargas [10]. The case k = 2,
that we briefly explain, was studied in more detail as part of a joint work with Hasebe
and Sakuma [8].

Before passing to a detailed description of the results, let us briefly explain their
setting. LetM andMC be the classes of all Borel probability measures on the real line R
and on the complex plane, respectively. Moreover, let Mb and M+ be the subclasses of
M consisting of probability measures with bounded support and of probability measures
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INTRODUCTION

having support on R+ = [0,∞), respectively.
For q a primitive k-th root of unity, consider the k-semiaxes Ak := {x ∈ C | x =

tqs for some t > 0 and s ∈ N} and denote by Mk the subclass of MC of probability
measures supported on Ak such that µ(B) = µ(qB), for all Borel sets B. A measure
in Mk will be called k-symmetric. We say that a measure in MC has all moments if
mk(µ) :=

∫
C |t|

n µ(dt) <∞, for each integer n ≥ 1.
In this thesis we will be interested in random variables whose distribution is k-

symmetric, which we will call k-divisible. We give a framework to these k-divisible ran-
dom variables from the free probabilistic point of view. We consider various aspects of
k-symmetric distributions including combinatorial, algebraic and probabilistic ones. It
will turn out that, as for the cases of even elements and even partitions, k-divisible non-
crossing partitions are exactly the objects involved in the combinatorics of k-divisible
elements.

These k-divisible (non-commutative) random variables appear naturally in Free Prob-
ability. A typical example of a k-divisible random variable is the so called k-Haar unitary
with distribution µ = 1

k

∑k
j=1 δqj . k-divisible free random variables appear not only in the

abstract setting but also in applications to random matrices. For instance, in [54] it is
shown that an independent family U1, U2, ..., Us of random N ×N permutation matrices
with cycle lengths of size k converges in ∗-distribution to a ∗-free family u1, u2, ..., us of
k-Haar unitaries.

Other interesting examples of k-divisible free random variables come from the context
of quantum groups. In Banica et al. [13], where free Bessel laws are studied in detail, a
modified k-symmetric version appears as the asymptotic law of the truncated characters
of certain quantum groups. Similarly, from their studies of the law of characters of
quantum isometry groups, Banica and Skalski [14] found k-symmetric measures which
are the analog of free compound Poissons, see Theorem 4.4 and Remark 4.5 in [14].

As we have mentioned the free additive convolution � and free multiplicative convolu-
tion � of measures are two of the main operations in Free Probability. Even though some
work has been done in the physics literature (see e.g. [31]) until now, this machinery could
only be used for selfadjoint random variables and, in general, k-divisible random variables
are not selfadjoint whenever k > 2. Let us mention that k-symmetric distributions were
considered by Goodman [35] in the framework of graded independence.

The Main Theorem (stated below) enables to define free multiplicative convolution
between a measure concentrated on the positive real axis and a probability measure with
k-symmetry. We extend the definition of Voiculescu’s S-transform to any k-symmetric
measure µ to calculate effectively the free multiplicative convolution µ � ν, between a k
symmetric measure µ and a measure ν supported on R+.

The Main Theorem also permits to define free additive powers for k-divisible measures
leading to central limit theorems and Poisson type ones. Once we have free additive
powers, the concept of free infinite divisibility arises naturally. We prove that for a k-
symmetric measure µ, free infinite divisibility is maintained under the mapping µ→ µk.

Moreover, interesting combinatorial implications regarding the combinatorial convolu-
tion in NCk (the poset of k-divisible non-crossing partitions) are derived from the Main
Theorem. This gives new ways of counting objects like k-equal partitions, k-divisible
partitions and k-multichains, both in NC and NCk.

From the combinatorial results on the poset of k-divisible non-crossing partitions we
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INTRODUCTION

derive a formula for the free cumulants of xk in terms of the free cumulants of x involving
k-divisible non-crossing partitions. Moreover, we define a notion of R-diagonal k-tuples
and prove similar results.

The thesis is organized as follows. The preliminaries on Free Probability needed in
this thesis are explained in Chapter 1. We study k-divisible partitions in Chapter 2. The
concept of k-divisible elements and more generally R-diagonal k-tuples is introduced in
Chapter 3, where we discuss some of the combinatorial aspects of their cumulants. In
Chapter 4, we present the Main Theorem of the thesis and its direct consequences, in-
cluding free multiplicative convolution and free additive powers. Chapter 5 is dedicated
to limit theorems: free central limit theorems, free compound Poisson, free infinite divisi-
bility and connections to limit theorems in free multiplicative convolution are made. The
role of k-divisible partitions in free multiplicative convolution has been further explored
in a joint work with Vargas [10]; this is the content of Chapter 6. Finally, Chapter 7 deals
with the case of unbounded measures, the S-transform of any k-symmetric probability
measure is defined and the free multiplicative convolution of distributions in Mk with
distributions in M+ is considered. We end by focusing on free stable distributions.

Statement of Results

Chapter 2 is devoted to combinatorics and statistics of k-divisible non-crossing partitions.
First, we study the poset NCk(n) and its associated combinatorial convolution ∗ and
translate the combinatorial convolution in NCk(n) to the convolution in NC(n) of dilated
sequences. Basically, we show that convolving k times with the zeta-function in NC is
equivalent to convolving once with the zeta-function in NCk.

Theorem 1. The following statements are equivalent.

(1) The multiplicative family f := (fn)n>0 is the result of applying the zeta-function k
times to g := (gn)n>0, that is,

f = g ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

.

(2) The multiplicative family f (k) := (f
(k)
n )n>0 is the result of applying the zeta-function

once to g(k) := (g
(k)
n )n>0, that is,

f (k) = g(k) ∗ ζ,

where, for a sequence (an)n>0, the sequence (a
(k)
n )n>0 denotes the dilated sequence

given by a
(k)
kn = an and a

(k)
n = 0 if n is not a multiple of k.

Then we study some statistics of the block structure of non-crossing partitions. In this
direction, a recent paper by Ortmann [61] studies the asymptotic behavior of the sizes of
the blocks of a uniformly chosen random partition. This lead him to a formula for the
right-edge of the support of a measure in terms of the free cumulants, when these are
positive. He noticed a very simple picture of this statistic as n→∞. Roughly speaking,
in average, out of the n+1

2
blocks of this random partition, half of them are singletons,

one fourth of the blocks are pairings, one eighth of the blocks have size 3, and so on.

3



INTRODUCTION

In trying to get a better understanding of this asymptotic behavior, the question of
the exact calculation of this statistic arose. We answer this question and refine these
results by considering the number of blocks given. Moreover, we generalize to k-divisible
partitions, as follows.

Theorem 2. The sum of the number of blocks of size tk over all the k-divisible non-
crossing partitions of {1, 2, .., kn} is given by(

n(k + 1)− t− 1

nk − 1

)
.

In particular, asymptotically, we have a similar phenomenon as for the case k = 1;
about a k

k+1
portion of all the blocks have size k, then a k

(k+1)2
portion have size 2k, then

k
(k+1)3

are of size 3k, etc.
In Chapter 3, we introduce the concept of k-divisible random variables. Noticing that,

when x is k-divisible, the moments of x are nothing other than the dilation of the moments
of xk and using the so called moment-cumulant formula of Speicher (see e.g. [60]) which
relates the moments and the free cumulants via the combinatorial convolution in NC(n)
we give a relation between the free cumulants of x and xk which generalizes results in [57].

Theorem 3. Let (A, φ) be a non-commutative probability space and let x be a k-divisible
element with k-determining sequence (αn = κkn(x, ..., x))n≥1. Then the following formula
holds for the free cumulants of xk.

κn(xk, xk, ..., xk) = [α ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

]n.

Second, we consider how freeness behaves when conjugating with k-divisible elements
in a non-commutative probability space. More precisely, if a and s are free and s is k-
divisible then a is also free from sps, where p is any polynomial in a and s of degree k− 2
on s.

Moreover, we generalize the concept of diagonally balanced pairs from Nica and Spe-
icher [57], which contains three of the most frequently used examples in Free Probability,
that is, semicircular, circular and Haar unitaries, and prove similar results for what we
call diagonally balanced k-tuples.

Theorem 4. Let (A, φ) be a non-commutative probability space, and let (s1, ..., sk) be
a diagonally balanced k-tuple free from a. Moreover, let h = s1a2s2a3s3 · · · sk−1ak−1sk,
where for all i = 1, ..., n the element ai is free from {s1, · · · , sk}. Then h and a are free.

Furthermore, we realize k-divisible random variables as R-cyclic matrices [55] with
diagonally balanced k-tuples as entries. Implications of these results to the theory of
Random Matrices is explained at the end of this chapter.

Chapter 4 deals with probability measures with k-symmetry and free convolutions �
and �. Given a k-symmetric probability measure µ on Mk, let µk be the probability
measure in M+ induced by the map t → tk. In other words if x is a k-divisible element
with distribution µ, then µk is the distribution of xk.

One of the main results of this thesis shows that it is possible to define a free mul-
tiplicative convolution µ � ν between a probability measure µ in M+ and k-symmetric
distribution ν.

4
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The Main Theorem, which enables to define this free multiplicative convolution is the
following.

Main Theorem. Let x, y ∈ (A, φ) with x positive and y a k-divisible element free from
x. Consider x1, ..., xk free positive elements with the same moments as x. Then (xy)k and
ykx1 · · ·xk have the same moments, i.e.

φ((xy)kn) = φ((ykx1 · · ·xk)n) ∀n ∈ N.

As a byproduct we show that this free multiplicative convolution gives a k-symmetric
distribution satisfying the relation (µ � ν)k = µ�k � νk. Using this identity we give a
formula for the moments of µ�k in terms of k-divisible partitions.

An important analytic tool for computing the free multiplicative convolution of two
probability measures is Voiculescu’s S-transform. It was introduced in [82] for non-zero
mean distributions with bounded support and further studied by Bercovici and Voiculescu
[22] in the case of probability measures in M+ with unbounded support, see also [21].

Raj Rao and Speicher [64] extended the S-transform to the case of random variables
having zero mean and all moments. Their main tools are combinatorial arguments based
on moment calculations.

We use the approach of [64] to extend the S-transform to random variables with first
k moments vanishing. After this, we specialize to the case of k-divisible random variables
where simple relations between the S-transforms of x and xk are found.

Another remarkable consequence of the Main Theorem is that we can define free
additive powers µ�t for t > 1 when µ is a k-symmetric distribution. This opens the
possibility to new limit theorems.

In Chapter 5, we prove new limit theorems on k-divisible elements and k-symmetric
measures: free central limit theorems, free compound Poisson and connections to limit
theorems in free multiplicative convolution are made.

Theorem 5 (Free central limit theorem for k-symmetric measures). Let µ be a k-symmetric
measure with finite moments and κk(µ) = 1 then, as N goes to infinity,

DN−1/k(µ�N)→ sk,

where sk is the only k-symmetric measure with free cumulant sequence κn(sk) = 0 for all
n 6= k and κk(sk) = 1. Moreover,

(sk)
k = π�(k−1),

where π is a free Poisson measure with parameter 1.

Free compound Poisson distributions exist in Mk and Poisson limit theorems also
hold. We give a framework to the results in [13] and, in particular, generalize Theorem
7.3 in [13], where ν = 1

k

∑k
j=1 δqj was considered in connection with free Bessel laws.

Theorem 6. Let ν be a k-symmetric distribution, then the Poisson type limit convergence
holds

((1− λ

N
)δ0 +

λ

N
ν)�N → π(λ, ν).
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We also address questions of free infinite divisibility. A measure µ ∈Mk is said to be
infinitely divisible if µ�t ∈Mk for all t > 0. For these measures, it is also shown that free
additive convolution is well defined. Moreover we show that µk is also freely infinitely
divisible.

Theorem 7. If µ is k-symmetric and �-infinitely divisible, then µk is also �-infinitely
divisible.

We end Chapter 5 by specializing to the case k = 2. The results for this case are part
of the joint work with Hasebe and Sakuma[8].

Chapter 6 explains results of the paper with Vargas [10]. As mentioned before, by
choosing ν to be a k-Haar measure in the relation (µ � ν)k = µ�k � νk one can give
a formula for the cumulants and moments of the free multiplicative convolution µ�k in
terms of k-divisible partitions. We generalize this formula for non-identically distributed
random variables in [10] where it was used to give new proofs of results in Kargin [40, 42]
and Sakuma and Yoshida [68] regarding the asymptotic behaviors of µ�k and (µ�k)�k,
respectively.

Theorem 8. Let a1, . . . , ak ∈ (A, τ) be free random variables. Then the free cumulants
and the moments of a := a1 . . . ak are given by

κn(a) =
∑

π∈NCk(n)

κKr(π)(a1, . . . , ak)

τ(an) =
∑

π∈NCk(n)

κKr(π)(a1, . . . , ak)

where NCk(n) and NCk(n) denote, respectively the k-equal and k-divisible partitions of
[kn]. Here Kr(π) denotes the Kreweres complement.

Finally, in Chapter 7, we consider the unbounded case. We are able to extend the S-
transform for the case of k-symmetric probability measures even if we have no moments.
To do this, we follow an analytic approach similar to [9] and show that this S-transform
allows the computation of the desired free multiplicative convolution between probability
measures on [0,∞) and general k-symmetric measures. As an important example of
distributions without finite moments and unbounded supports we consider free stable
laws and show reproducing properties similar to the ones found in [9] and [24].

Theorem 9. For any s, r > 0, let σk1/(1+r) be a k-symmetric strictly stable distribution

of index 1/(1 + r) and ν1/(1+s) be a positive strictly stable distribution of index 1/(1 + s).
Then

σk1/(1+t) � ν1/(1+s) = σk1/(1+t+s).
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Chapter 1

Preliminaries on Free Probability

In this chapter we give some basic definitions and results on Free Probability. We mainly
follow the monograph [60]. First, we recall basic concepts on probability. The reason
for this is that we believe the problems addressed in this thesis could be of interest to
readers not familiar with probability. Next, we introduce a structure known as a non-
commutative probability space, the appropriate framework for Free Probability. Later, the
notions of free independence and its associated additive and multiplicative convolutions
are reviewed. Free cumulants, an important object in the combinatorial approach to Free
Probability are explained in detail. We end by reviewing some facts about free infinite
divisibility that are mainly taken from [22]. For an introduction to Free Probability the
reader is advised to check the monograph by Voiculescu, Dykema and Nica [83] and the
book by Nica and Speicher [60]. The latter explains clearly the combinatorial approach
to Free Probability.

1.1 Classical Probability Spaces

Let us start recalling the basic notions of classical probability.

Definition 1.1.1. A probability space is a triplet (Ω,F ,P), where Ω is a non-empty set,
F is a σ-algebra of subsets of Ω and P is a probability measure. That is, F satisfies the
following properties:

(1) Ω ∈ F .
(2) If A1, A2, ... ∈ F , then

⋃∞
i=1Ai ∈ F .

(3) If A ∈ F , then Ac ∈ F .
While P : F →[0, 1] is such that
(4) P(Ω) = 1.
(5) P is σ-additive: If A1, A2, ... ∈ F and An ∩ Am = φ whenever n 6= m, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai).

In other words, the triplet (Ω,F ,P) is nothing other than a measure space with P (Ω) =
1. One may think of Ω as the set of possible event and for a set B ∈ F we think of P(B)
as the probability that this event happens. The collection of all Borel sets in R, that we

7



CHAPTER 1. PRELIMINARIES ON FREE PROBABILITY

will denote by B(R), is the σ-algebra generated by the open intervals in R. We say that
a function f : R→ R is measurable, if it is B(R)−measurable.

Definition 1.1.2 (Classic Random Variable). Let (Ω,F , P ) be a probability space. A
function X : Ω → R is a real random variable, if it is F -measurable in R, that is,
{w : X(w) ∈ B} ∈ F , whenever B ∈ B(R). We say that the measure µ in (R,B(R)) is
the distribution of X if

P(X ∈ A) = µ(A) =

∫
A

µ(dt) for all A ∈ B(R).

Definition 1.1.3 (Expectation). Let (Ω,F , P ) be a probability space and X a random
variable on (Ω,F ,P), then the expected value of X, denoted by E[X] is defined as the
Lebesgue integral

E[X] :=

∫
Ω

X(ω)P(dω) =

∫
R
xµ(dx) .

whenever it exists.

The expectation may be understood as the “average” value of the random variable X.
Not all random variables have a finite expected value, since the integral may not converge
absolutely; furthermore, it may be not defined at all (e.g., Cauchy distribution).

Remark 1.1.4. Note that the expectation E satisfies the following properties:
(i)E(1) = 1 (normalization).
(ii) E(f) ≥ 0 if f ≥ 0 (positivity).
(iii) E(X + λY ) = E(X) + λE(Y ) (linearity).

More generally, for a bounded measurable function f : R→ R, the expected value of
f(X) is given by

E[f(X)] :=

∫
Ω

f(X(ω))P(dω) =

∫
R
f(x)µ(dx) . (1.1.1)

In particular we define the moment of order n of X (with distribution µ on R) as

mn(µ) = E(Xn) =

∞∫
−∞

xnµ(dx).

Notice that, alternatively, we can define the distribution µ as the only measure that
satisfies (1.1.1) for all bounded measurable functions.

Let X and Y be random variables in a probability space and let f : R× R→ R be a
bivariate function. Under certain conditions, f(X, Y ) is also a random variable. In this
case the expectation E[f(X, Y )] is well defined and calculated as

E[f(X, Y )] =

∫
Ω

f(X(ω), Y (ω))P(dω)

if the integral exists.
It will be very useful to look at the notion of independence of random variables in

terms of the expectation, seen as a linear functional. In order to do this we first, recall
the concept of classical independence.

8
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Definition 1.1.5. Two classical random variables X and Y are said to be independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all A,B ∈ B(R).

More generally, we say that the random variables X1, ..., Xn are independent if for all
A1, A2, ..., An ∈ B(R) we have that

P

(
n⋂
i=1

(Xi ∈ Ai)

)
=

n∏
i=1

P(Xi ∈ Ai).

An infinite collection of random variables is said to be independent if any finite sub-
collection of them is.

If we assume that the random variables X and Y have distributions with bounded
support, then all moments ofX and Y exist and determine their distributions. In addition,
the condition that X and Y are independent is equivalent to the following

E[Xn1Y m1 ...XnkY mk ] = E[Xn1+...+nk ]E[Y m1+...+mk ], (1.1.2)

for each mi, ni ∈ N.
More formally, independence of X and Y is equivalent to the uncorrelation

E[(f(X)− E[f(X)]) · (g(Y )− E[g(Y )])] = 0, (1.1.3)

for any bounded Borel functions f, g : R→ R.
In this way, one can see from (1.1.2) that if X and Y are independent random variables

with compact support, the moments of the random variable X + Y can be obtained from
the moments of X and the moments of Y . Equivalently, we have that the distribution
µX+Y is determined by the distributions µX and µY . This is the classical convolution

µX ∗ µY = µX+Y .

The main tool to handle this convolution is the so called characteristic function or
Fourier transform of a random variable.

Definition 1.1.6. Let µ be a probability measure in R and X be a random variable with
distribution µ. We define µ̂X , the characteristic function of X, by

µ̂X(t) :=

∫
eitxµ(dx) = E[eitX ].

In the case that the distribution of X has bounded support we have the expansion

µ̂X(t) =
∞∑
n=0

(it)n

n!
E[Xn],

that is, the characteristic function is simply the exponential series of moments of X. The
importance of the characteristic function in probability theory is the fact that its logarithm
(when it exists) linearizes classical convolution. That is, if µX and µY are probability
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distributions of the independent random variables X and Y , then µ̂X+Y (t) = µ̂X(t)µ̂Y (t)
and then

log µ̂X+Y (t) = log µ̂X(t) + log µ̂Y (t).

Finally let us recall that a sequence (µn)n≥1 of measures converges weakly to the
measure µ, if for every continuous and bounded function f : R→ R we have that

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx).

In this case we will use the notation µn→µ. When (µn)n≥1 are probability measures,
this convergence is also known as convergence in distribution. The convergence µn→µ
is equivalent to the pointwise convergence of µ̂n → µ̂. Moreover, when µ is determined
by moments the convergence of all the moments implies the convergence µn→µ. As an
example we recall the so called Central Limit Theorem.

Example 1.1.7 (Classical CLT). Let {Xn}∞n=1 be a sequence of centered random vari-
ables, which are independent and identically (i.i.d), with variance σ2 and mean 0.

lim
N→∞

E

((
X1 + . . .+XN√

N

)n)
=

{
σ2k (2k)!

2kk!
, if n = 2k,

0, otherwise.

In other words if µ = µX1 = µXi then

lim
N→∞

DN−1/2(µ ∗ µ · · · ∗ µ)︸ ︷︷ ︸
N times

= N (0, σ2),

where, for a probability measure ν, the measure Dt(ν) denotes the dilation by t, such that
Dt(ν)(B) = ν(tB) for any Borel set B.

1.2 Non-Commutative Probability Spaces

In order to give a non-commutative analog of the triplet (Ω,F , P ) we need to rephrase
the notion of classical probability space. The main observation is that the knowledge of
the triplet (Ω,F , P ) is equivalent to the knowledge of L∞(Ω,P) (the algebra of random
variables) and E. Thus we can think of a classical probability space as a commutative
algebra with a linear functional. With this definition, from the operator algebraic point
of view, it is natural to consider a non-commutative algebra instead of L∞(Ω,P).

Non-Commutative Probability Spaces

Definition 1.2.1. (1) A non-commutative probability space is a pair (A, φ) where
A is a unital complex algebra and φ is a linear functional φ : A → C such that φ(1A) = 1.

(2)A non-commutative random variable (or simply random variable) is just an
element a ∈ A.

We will assume that A is a ∗-algebra. That is, A is endowed with an antilinear
involution *, an operation such that (αa + βb)∗ = αa∗ + βb∗, ∀ α, β ∈ C, a, b ∈ A,

10
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(a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. If we have that φ(a∗a) ≥ 0, for all a ∈ A, we
say that φ is positive and we will call (A, φ) a ∗-probability space. Moreover, if for all
a 6= 0 we have that φ(a∗a) > 0, we say that φ is faithful.

In the frame of a ∗-probability space we say that a random variable a ∈ A is normal
if aa∗ = a∗a. A normal random variable a ∈ A is called selfadjoint, if a = a∗. Moreover
if u ∈ A is such that u∗u = uu∗ = 1 we call u a unitary.

Example 1.2.2. (∗-probability spaces)
(1) Classical Probability Space. Consider the set L∞R (Ω,P) of real valued random

variables, then the set

L∞(Ω,P) = {X + iY : X, Y ∈ L∞R (Ω,P)}

is a ∗-algebra with the involution (X + iY )∗ = X − iY . The pair (A, E), where E is the
usual expectation extended by linearity to L∞(Ω,P, is a ∗-probability space.

(2) Classical Matrices. Let Md(C) be the space of complex d × d matrices with the
canonical involution given by transposing and conjugating entrywise. Then Md(C) is a
∗-algebra and the linear functional tr : Md(C)→ C defined by tr(A) = 1

d
Trace(A) makes

(Md(C), tr) a ∗-probability space.
(3) Random Matrices. Let (A, φ) be a ∗-probability space and let d be a positive

integer. Let Md(A) be the space of d × d matrices over A with the canonical involution
given by transposing and applying the involution * entrywise. Md(A) is a ∗-algebra and
the linear functional φd : Md(A → C defined by

φd(A) =
1

d

d∑
i=1

φ(aii), A = (aij)
d
i,j=1 ∈Md(A).

makes (Md(A), φd) a ∗-probability space.
A particularly important example of this kind of ∗-probability spaces comes when

taking A = L∞(Ω,P) since this corresponds to the algebra of random matrices. Many
applications have been encountered in this setting. We briefly touch these applications in
Section 1.5 and 3.5.

(4) Compressed space. Let (A, φ) be a non-commutative probability space and p ∈ A
a projection (p2 = p) such that φ(p) 6= 0, then we can consider the compressed space
(pAp, φpAp), where

pAp := {pap|a ∈ A}
and for an element b = pap ∈ pAp we define φpAp(b) = 1

φ(p)
φ(b). This makes the pair

(pAp, φpAp) a non-commutative probability space with unit element p = p · 1 · p.
(5) Group algebra. Let G be a discrete group with identity 1G and CG the group

algebra

CG := {
∑
g∈G

αgg | αg ∈ C, αg 6= 0 finitely many times}

with the canonical involution and multiplication. We consider the group trace φ, that is,
for g ∈ G ⊂ CG, φ(g) = 0 if g 6= 1G and φ(1G) = 1 and extend linearly. Then (CG, φ)
is a ∗-probability space and φ is a faithful trace. The same construction works with CG
replaced by the reduced group C∗-algebra of G, or the von Neumann algebra of G.
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(6) Let H be a Hilbert space and let B(H) be the algebra of bounded linear operators
on H. This is a ∗-algebra with the usual involution given by the adjoint. More explicitly,
for an element A ∈ B(H), the adjoint of A is the unique operator A∗ determined by the
property that 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ H.

If we take A a unital ∗-subalgebra of B(H) and a vector x0 ∈ H of norm one we can
form the ∗-probability space (A, φ), where φ : A → C is defined by φ(A) = 〈Ax0, x0〉.
The linear functional φ is usually called a vector-state.

Distributions and ∗-distributions

In the frame of a ∗-probability space, the notion of distribution of a random variable
will be given through its moments. More precisely, we will be interested in knowing the
∗-moments of a random variable a in (A, φ), that is, the values of

φ(am1(a∗)n1 ...amk(a∗)nk)

for mi, ni ∈ N, and in order to keep track of them we define the ∗-distribution of a.
Denote by C 〈x, y〉 the algebra of polynomials in two variables (no-commutative) with
complex coefficients

Definition 1.2.3. Given a random variable a in (A, φ), the ∗-distribution (in the
algebraic sense) of a is the linear functional µa : C 〈x, y〉 → C defined by

µa(x
m1(y)n1 ...xmt(y)nk) = φ(am1(a∗)n1 ...amk(a∗)nk)

for each mi, ni ∈ N.

In the case where a ∈ A is normal, alternatively, we define the ∗-distribution of a ∈ A
in the following way.

Definition 1.2.4. Let (A, φ) be a ∗-probability space and suppose that a ∈ A is a
normal element. If there is a measure µ in C with compact support, such that∫

C

zkzlµ(dz) = φ(ak(a∗)l), for all k, l ∈ N, (1.2.1)

we say that µ is a ∗-distribution (in the analytical sense) of a and denote it by µa.

Remark 1.2.5. (1) When µ satisfies the condition (1.2.1) then µ is unique due to Stone-
Weierstrass Theorem.

(2) Since φ is unital then (1.2.1) ensures that µ is a probability measure.
(3) When a is selfadjoint the ∗-distribution of a is supported on R and Equation (1.2.1)

takes the form ∫
R

tpµ(dt) = φ(ap), for all p ∈ N.

In this case we call µ the distribution of a.
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Since our notion of distribution is defined in terms of moments, we must phrase conver-
gence in distribution in terms of convergence of all the moments. As previously mentioned,
for distributions determined by their moments (e.g. random variables with compact sup-
port), this type of convergence is stronger than weak convergence.

Definition 1.2.6 (Convergence in distribution). Let (AN , φN)N∈N and (A, φ) be non-
commutative probability spaces and consider random variables aN ∈ AN for each N ∈ N
and a ∈ A. We say that aN converges in distribution towards a, as N →∞ if

lim
N→∞

φN(anN) = φ(an), ∀n ∈ N.

In this case we write aN → a.

Let us give some typical examples of normal random variables and their distributions
considered in the literature of non-commutative probability.

Example 1.2.7. (1) Projection. Let p be a projection (i.e p = p2 = p∗) such that
φ(p) = t. Then clearly all the moments of p satisfy the φ(pn) = φ(p) = t. The measure
(1− t)δ0 + tδ1 clearly has this moments and thus is the distribution of p.

2) Haar Unitaries. A unitary such that φ(un) = φ((u∗)n) = 0 for all n ∈ N is called
Haar unitary. The ∗-distribution is given by the Lebesgue Measure in the unit circle T,
also called Haar measure. Indeed since uk(u∗)l = uk−l for every k, l ∈ N we have that
φ(uk(u∗)l) = δkl which can be easily seen to coincide with the integral∫

T
zkz̄ldz.

3) Arcsine. Let u be a Haar unitary and consider the element a = u+u∗. The moments
of a are given by

φ(an) =

{ (
2k
k

)
, if n = 2k,

0, otherwise.

These are the moments of the arcsine distribution supported on (−2, 2) with density

1

π
√

4− t2
, |t| < 2.

4) Semicircle. In the framework of Example 1.2.2 consider the Hilbert space H =
l2(N ∪ 0) with orthonormal basis formed by elements of the form

xi = (0, ..., 0, 1, 0, 0, ...).

The one-sided shift operator L ∈ B(H) given by L(xi) = xi+1 has adjoint given by
L∗(xi+1) = xi, for i = 0, 1, ... and L∗(x0) = 0. One can see that for the vector-state
defined by φ(T ) := 〈Tx0, x0〉, we have that

φ(sn) =

{
1

k+1

(
2k
k

)
, if n = 2k,

0, otherwise.
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These are the moments of the semicircle distribution supported on (−2, 2) with density

1

2π

√
4− t2 |t| < 2.

5) Empirical distribution. Consider a selfadjoint N × N matrix A with eigenvalues
λ1, ..., λN , counted with multiplicity. Then the distribution (with respect of tr) of A is
given by probability measure that assigns mass 1/N to each eigenvalue. Indeed

tr(Ak) =
1

N
(λk1 + · · ·+ λkN) = E(

1

N

N∑
i=1

δλi)

C∗-probability spaces and W ∗-probability spaces

The most frequently used non-commutative probability spaces (A, φ) belong either to
the class of C∗-probability spaces or to the class of W ∗-probability spaces. These are
∗-probability spaces where A is given a structure of C∗-algebra (resp. von Neumann
algebra).

Working with C∗-algebras ensures the existence of ∗-distributions in the analytical
sense for any normal element. Moreover, the notion of affiliated operator to W ∗-algebras
permits to extend some of the operations in Free Probability to unbounded measures.

Let H be a Hilbert space and B(H) the algebra of bounded linear operators of H.
Recall that a ∗-subalgebra A of B(H) is called a C∗ algebra if it is closed in the operator
norm and taking adjoints. If, moreover, A is closed in the weak operator topology and
contains the identity operator it is called a W ∗-algebra or Von Neumann algebra. A
C∗-algebra is a W ∗-algebra if and only if it is equal to its bicommutant, that is, A = A′′.

The corresponding ∗-probability space is defined as follows.

Definition 1.2.8. (1) A ∗-probability space (A, φ) is called C∗-probability space if A is
a unital C∗-algebra.

(2) A ∗-probability space (A, φ) is called aW ∗-probability space ifA is a non-commutative
von Neumann algebra and φ is a normal faithful trace.

Let us review some of basic results in the theory of C∗-algebras. Recall that the
spectrum of a is the set

Sp(a) = {z ∈ C : z1A − a is not invertible}.

We denote by C(Sp(a)) the algebra of continuous functions f : Sp(a)→ C.

Theorem 1.2.9. Let A be a unital C∗-algebra.
(1) For any a ∈ A, Sp(a) is a non-empty set contained in the disc {z ∈ C : |z| ≤ |a|}.
(2) Let a ∈ A be a normal element. There is a mapping Φa : C(Sp(a))→ A with the

following properties:
(i) Φa is a homomorphism.
(ii) |Φ(f)| = |f |∞ for all f ∈ C(Sp(a)).
(iii) If id : Sp(a)→ C denotes the identity id(z) = z in C(Sp(a)), then Φa(id) = a.
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Φa is known as functional calculus with continuous functions for the element a. From
these properties we can obtain, for a normal element a and any function f ∈ C(Sp(a))
that

Sp(f(a)) = f(Sp(a))

where f(a) is defined by the functional calculus.
The importance of C∗-probability spaces lies in the existence of ∗-distributions in the

analytic sense.

Theorem 1.2.10. Let (A,φ) be a C∗-probability space such that φ is faithful and let a ∈ A
be a normal element. Then a has a ∗-distribution in the analytic sense. Moreover, if µ is
the ∗-distribution of a we have that

(i) The support of µ is contained in the spectrum of a.
(ii) For f ∈ C(Sp(a)) we have the formula∫

fdµ = φ(f(a)).

As seen from Theorem 1.2.10, so far we could only talk about measures with bounded
support. However, W ∗-algebras allow to consider random variables (and probability mea-
sures) with unbounded support. So let A be a W ∗-algebra. A self-adjoint operator X is
said to be affiliated with A if f(X) ∈ A for any bounded Borel function f on R. Given a
self-adjoint operator X affiliated with A, the distribution of X is the unique measure µX
in M satisfying

φ(f(X)) =

∫
R
f(x)µX(dx)

for every Borel bounded function f on R.

1.3 Free independence

The notion of free independence or freeness between non-commutative random vari-
ables was introduced in 1985 by Voiculescu [79], who noticed that freeness behaves in an
analogous way to the concept of classical independence, but replacing tensor products
with free products. In order to see this resemblance recall the notion of independence of
random variables in terms of expectation E.

Two random variables X and Y with bounded support, and thus with all moments,
are independent if and only if

E[Xn1Y m1 ...XnkY mk ] = E[Xn1+...+nk ]E[Y m1+...+mk ], ∀mi, ni ∈ N. (1.3.1)

That is if X and Y are independent and have bounded support, we can calculate the
mixed moments of X and Y . The general idea is that independence may be understood
as a “universal rule” for calculating moments.

We will be interested in so-called free independence, which is defined in a similar way
to formula (1.3.1) for the classical case of independence. However, in this case we will use
the linear functional φ and we deal with not necessarily classical random variables, but
rather non-commutative random variables, that is, elements of (A,φ).
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In the context of a ∗- probability space (A,φ) there are other notions of independence
or “rules for calculating moments”. Of course, these rules must satisfy some properties so
that they give rise to an interesting theory. There is an axiomatized concept of indepen-
dence leading to 5 notions of independence, namely, tensor (or classical), free, Boolean,
monotone and antimonotone. The interested reader is referred to [17], [53] and [73] for
this axiomatization.

In this frame we may define classical independence in the following way.

Definition 1.3.1. The non-commutative random variables a, b ∈ A are said tensor
independent (with respect to φ) if ab = ba and

φ(anbm) = φ(an)φ(bm) ∀n,m ∈ N.

Again, by linearity of φ (resp. E), the moments of the random variable a + b can be
obtained from the moments of a and the moments of b. In particular, we have that µa+b

is determined by the distributions µa and µa. This is the classical convolution

µa ∗ µb := µa+b.

Remark 1.3.2. If X = X1 × X2 and P = P1 × P2 (the product measure), then any
functions X, Y so that X depends only on the first coordinate and Y only on the second
coordinate are tensor independent. In other words, the random variables x1⊗1 and 1⊗y1

are (tensor) independent.

Just like the notion of a tensor product can be used to recover the notion of indepen-
dence and classical convolution, free products lead to the notion of free independence and
free convolution.

Definition 1.3.3. A family of subalgebras Ai, 1A ∈ Ai, i ∈ I in a non-commutative
probability space (A, φ) is said to be free if

φ(a1a2...an) = 0

whenever φ(aj) = 0, aj ∈ Ai(j), and i(1) 6= i(2) 6= ... 6= i(n). More generally, a family of
subsets Ωi ⊂ A, i ∈ I is free if the algebras generated by Ωi ∪ {1} are free.

Let us illustrate how the notion of free products is related to free independence. The
following example is taken from [70].

Example 1.3.4 (Free products of groups). In the context of Example 1.2.2 , let G1 and
G2 be two discrete groups. We regard the group algebra of the free product C(G1 ∗G2) as
a non-commutative probability space by letting φ be the group trace; for g ∈ G = G1∗G2,
φ(g) = 0 unless g = 1G.

Now, let w ∈ G1 ∗ G2 be a word. Thus w = g1 · · · gn with gj ∈ Gi(j). We may
assume, by reducing the word, that consecutive letters lie in different groups; i.e., i(1) 6=
i(2), i(2) 6= i(3) and so on,. The resulting word is non-trivial if all g1, ..., gn are non-trivial.

Remember that φ(g) = 0 unless g = 1G, thus, rephrasing in terms of φ, we have that

φ(g1g2...gn) = 0

whenever gj ∈ Gi(j), i(1) 6= i(2), i(2) 6= i(3) and φ(g1) = φ(g2) = ... = 0 (i.e. gi 6= 1G).
By linearity we get that if a ∈ C(G1 ∗ G2) has the form a = a1 · · · an, then φ(a) = 0

whenever aj ∈ C(Gi(j)), i(1) 6= i(2), i(2) 6= i(3) and φ(a1) = φ(a2) = ... = 0 , which is
nothing other than free independence between the algebras C(G1) and C(G2).

16



CHAPTER 1. PRELIMINARIES ON FREE PROBABILITY

To be more concrete, for two random variables a, b ∈ A free independence (with
respect to φ) is equivalent to the property that

φ(p1(a)q1(b)p2(a)q2(b)...pn(a)qn(b)) = 0 ∀n ∈ N,

whenever pi and qj are polynomials such that φ(pi(a)) = φ(qj(b)) = 0. As for the case
of classical random variables, this new relation of independence may be understood as a
”rule” for calculating mixed moments of a and b, this allows us to compute the moments
of a + b and ab in terms of the moments of a and b. Hence, if {a, b} is a free pair of
random variables with all moments, then the ∗-distributions µa+b of a + b and µab of ab
depend only on the ∗-distribution µa of a and the ∗-distribution µb of b. The free sum
and free product will be studied in the following sections.

As an example let us state the free version of the Central Limit Theorem.

Theorem 1.3.5 (Free CLT). Let (A, φ) be a C∗-probability space and let {an}∞n=1 be a
sequence of centered self-adjoint random variables, which are identically distributed and
independent in the free sense, with common variance 1 Then

lim
N→∞

φ

((
a1 + . . .+ aN√

N

)n)
=

{
1

k+1

(
2k
k

)
, if n = 2k,

0, otherwise.

In other words we have the convergence

a1 + . . .+ aN√
N

→ s

where s is the semicircle element on Example 1.2.7

1.4 Free Additive Convolution

If µ and ν are probability measures on R with compact support, we can find non-
commutative selfadjoint random variables a and b in a C∗-probability space such that
a has a ∗-distribution µ and b has ∗-distribution ν. If we ask a and b to be free, then
the ∗-distribution of a + b is called the free convolution of µ and ν, which is denoted by
µ� ν. For example, we can take a and b as multiplication operators with the identity in
the Hilbert spaces L2(µ) and L2(ν), respectively, and then take the free product of this
C∗-probability spaces to make a and b free; this can be seen in detail in the book by Nica
and Speicher [60, Lec. 6].

The fact that µ�ν does not depend on the choice of a and b follows from the fact that
the ∗-distribution of a+ b only depends on the moments of a and b, which are determined
by µ and ν. Moreover it is not hard to see that � is associative and commutative.

Given a finite measure µ on R (with the Borel σ-field B(R)), its Cauchy transform
Gµ is defined as

Gµ(z) =

∫ ∞
−∞

1

z − t
µ(dt), z ∈ C\R. (1.4.1)

It is well known that Gµ is an analytic function in C\R, Gµ : C+ → C−.
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CHAPTER 1. PRELIMINARIES ON FREE PROBABILITY

The Cauchy and the Fourier transform are related by the expression

Gµ(z) =

{
i
∫ 0

−∞ e
−itzµ̂(t)dt, Im(z) > 0

−i
∫∞

0
e−itzµ̂(t)dt, Im(z) < 0,

(1.4.2)

which already tells that that Gµ determines uniquely the measure µ.
Moreover, we can recover the measure µ via the Stieltjes inversion formula:

µ((t0,t1]) = − 1

π
lim
δ→0+

lim
y→0+

∫ t1+δ

t0+δ

=(Gµ(x+ iy))dx, t0 < t1. (1.4.3)

In particular, if µ is absolutely continuous with respect to the Lebesgue measure with
density fµ,

fµ(x) = − 1

π
lim
y→0+

=Gµ(x+ iy). (1.4.4)

From the above considerations we easily obtain the following properties.

Proposition 1.4.1. Let µ be a finite measure on R. Then
i) Gµ(C±) ⊂ C∓ and Gµ(z) = Gµ(z).

ii) |Gµ(z)| ≤ µ(R)

|=(z)|
.

iv) lim
y→∞

y |Gµ(iy)| <∞.

v) lim
y→∞

iyGµ(iy) = µ(R). In particular, if µ is a probability measure

lim
y→∞

iyGµ(iy) = 1.

The reciprocal of the Cauchy transform is the function Fµ (z) : C+ → C+ defined by
Fµ (z) = 1/Gµ(z). It was proved in [22] that there are positive numbers η and M such
that Fµ has a right inverse F−1

µ defined on the region

Γη,M := {z ∈ C; |Re(z)| < ηIm(z), Im(z) > M} . (1.4.5)

The Voiculescu transform of µ is defined by

φµ(z) = F−1
µ (z)− z (1.4.6)

on any region of the form Γη,M , where F−1
µ is defined, see [20], [22]. The free cumulant

transform is a variant of φµ defined as

C�µ (z) = zφµ(
1

z
) = zF−1

µ

(
1

z

)
− 1, (1.4.7)

for z in a domain Dµ ⊂ C− such that 1/z ∈ Γη,M where F−1
µ is defined, see [12].

The free additive convolution of two probability measures µ1, µ2 on R is defined as the
probability measure µ1 � µ2 on R such that φµ1�µ2(z) = φµ1(z) + φµ2(z) or equivalently

C�µ1�µ2(z) = C�µ1(z) + C�µ2(z) (1.4.8)

for z ∈ Dµ1 ∩Dµ2 . It turns out that µ1 � µ2 is the distribution of the sum a + b of two
free random variables a and b with distributions µ1 and µ2 respectively.
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1.5 Free Multiplicative Convolution

Free multiplicative convolution is a little bit more subtle that free additive convolution.
The reason is that, in general, if a, b are selfadjoint random variables in a C∗-probability
space (A, φ), then it is not true that ab is also selfadjoint. To fix this problem we need to
assume that a is positive and then, if a, b are free, the random variable ab has the same
moments as the selfadjoint random variable a1/2ba1/2. Indeed,

φ((a1/2ba1/2)n) = φ((a1/2b(ab)n−1a1/2) = φ((a1/2a1/2b(ab)n−1) = φ((ab)n),

where we used in the second equality the fact that a and b are free. Since µ is supported
on R+, a is a positive self-adjoint operator and µa1/2 is uniquely determined by µ. Hence
the distribution µa1/2ba1/2 of the self-adjoint operator a1/2ba1/2 is determined by µ and ν.

So free multiplicative convolution � on M is defined as follows, see [22].

Definition 1.5.1. Let µ, ν be probability measures on R, with µ ∈M+ and let a, b be free
random variables such that µa = µ and µb = ν. The free multiplicative convolution
of µ and ν is the distribution of µa1/2ba1/2 and it is denoted by µ� ν.

If we restrict to the case where both µ, ν ∈M+, the operation � is commutative since
the moments of a1/2ba1/2 equal the moments of b1/2ab1/2.

On the other hand it is clear that as for the free additive convolution we can find free
variables a, b in some C∗ -probability space (A, φ) with distributions µ and ν and that
µ� ν does not depend on the choice of a and b.

Finally note that a1/2ba1/2 is only used to ensure that we are dealing with moments of
a probability measure so we can define for µ, ν ∈ M+, µ� ν as the probability measure
whose moments are φ((ab)n). This measure is unique and has support in R+.

Free multiplicative convolution behaves nicely with respect to weak convergence.

Proposition 1.5.2 ([22]). Let {µn}∞n=1 and {νn}∞n=1 be sequences of probability measures
in M+ converging to probability measures µ and ν in M+, respectively, in the weak*
topology and such that µ 6= δ0 6= ν. Then, the sequences {µn � νn}∞n=1 converges to µ� ν
in the weak* topology.

An important analytic tool for computing the free multiplicative convolution of two
probability measures is Voiculescu’s S-transform. It was introduced in [82] for non-zero
mean distributions inMb and further studied by Bercovici and Voiculescu [22] in the case
of probability measures in M+ with unbounded support, see also [21].

The next result was proved in [22] for probability measures in M+ with unbounded
support.

Proposition 1.5.3. Let µ ∈M+ such that µ({0}) < 1. The function

Ψµ(z) =

∫ ∞
0

zx

1− zx
µ(dx), z ∈ C\R+ (1.5.1)

is univalent in the left-plane iC+ and Ψµ(iC+) is a region contained in the circle with
diameter (µ({0})− 1, 0). Moreover, Ψµ(iC+) ∩ R = (µ({0})− 1, 0).
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A sometimes useful relation between Ψ and the Cauchy transform is the following

Ψµ(z) =

∫
C

zt

1− zt
µ(dt) =

1

z
Gµ

(
1

z

)
− 1, z ∈ C\R+. (1.5.2)

Let χµ : Ψµ(iC+) → iC+ be the inverse function of Ψµ. The S-transform of µ is the
function

Sµ(z) = χ(z)
1 + z

z
.

The following result shows the role of the S-transform as an analytic tool for computing
free multiplicative convolutions. It was shown in [80] for measures in M+ with bounded
support and in [22] for measures in M+ with unbounded support.

Proposition 1.5.4. Let µ1 and µ2 be probability measures in M+ with µi 6= δ0, i = 1, 2.
Then µ1� µ2 6= δ0 and

Sµ1�µ2(z) = Sµ1(z)Sµ2(z)

in that component of the common domain which contains (−ε, 0) for small ε > 0. More-
over, (µ1� µ2)({0}) = max{µ1({0}), µ2({0})}.

Recently, Raj Rao and Speicher [64] extended the S-transform to the case of measures
in M having zero mean and all moments. Their main tools are combinatorial arguments
based on moment calculations. This allows them to compute interesting free multiplicative
convolutions of measures with bounded support, like the Marchenko-Pastur distribution
with the semicircle distribution.

The next proposition is a particular case of a recent result proved in [64] for probability
measures µ1, µ2 on R with all moments, when µ1 has zero mean and µ2 ∈M+.

Proposition 1.5.5. Let µ1 be a compactly supported symmetric probability measure on
R and let µ2 ∈ M+ have compact support, with µi 6= δ0, i = 1, 2. Then, µ1� µ2 6= δ0 and

Sµ1�µ2(z) = Sµ1(z)Sµ2(z).

As we proved in the joint paper with Perez-Abreu [9] the definition of S-transform
can be extended to symmetric probability measures µ on R (even without moments) as
follows. Consider the cones

H =
{
z ∈ C−; |Re(z)| < |Im(z)|

}
H̃ =

{
z ∈ C+; |Re(z)| < Im(z)

}
.

When µ({0}) < 1, the transform Ψµ has a unique inverse on H, χµ : Ψµ(H) → H and

a unique inverse on H̃, χ̃µ : Ψµ(H̃) → H̃. In this case there are two S-transforms for µ
given by

Sµ(z) = χµ(z)
1 + z

z
and S̃µ(z) = χ̃µ(z)

1 + z

z
(1.5.3)

and these are such that

S2
µ(z) =

1 + z

z
Sµ(2)(z) and S̃2

µ(z) =
1 + z

z
Sµ(2)(z) (1.5.4)

for z in Ψµ(H) and Ψµ(H̃), respectively.
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Thus, the free multiplicative convolution of a probability measure µ1 supported on
R+ with a symmetric probability measure µ2 on R may be defined as the symmetric
probability measure µ1 � µ2 on R such that

Sµ1�µ2(z) = Sµ1(z)Sµ2(z). (1.5.5)

It is easily shown then that

(µ1 � µ2)2 = µ1 � µ1 � µ
2
2. (1.5.6)

This expression and its generalization to k-symmetric distributions (that we prove in
Chapter 5) has many implications and will play a crucial role when considering multi-
plicative convolution between k-symmetric distributions and distribution supported on
the positive real line.

From (1.4.7) and the fact that Ψµ(z) = 1
z
Gµ(1

z
)− 1, one obtains the following relation

observed in [58] between the free cumulant transform and the S-transform

z = C�µ (zSµ(z)). (1.5.7)

This equation holds for measures in M+ or in Mb with zero mean. It was suggested
in [64] that (1.5.7) may be used to define S-transforms of general probability measures
on R.

As is readily seen from Equation (1.5.7), free additive powers may also be described
by the S-transform in the following way

Sµ�t(z) =
1

t
Sµ(z/t), (1.5.8)

while the S transform of a dilation is given by

SDt(µ)(z) =
1

t
Sµ(z), (1.5.9)

from where we can deduce the following equality (see [15])

(µ� ν)�t = Dt(µ
�t � ν�t) t > 1. (1.5.10)

1.6 Free cumulants

In this section we will define free cumulants and see the relation with free convolution. The
free cumulants (kn) were introduced by Roland Speicher in [72], in his combinatorial
approach to Voiculescu’s free probability theory. We refer the reader to the book of Nica
and Speicher [60] for an introduction to this combinatorial approach.

Free cumulants of a probability measure

Let us start by defining free cumulants for probability measures. If we only care about
probability measures and their convolutions, free cumulants can be defined in a very
simple way and for many purposes this definition is enough. Later, we will define the free
cumulants of random variables as a way to encode their joint distribution.
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We say that a measure µ has all moments if mk(µ) =
∫
R t

kµ(dt) <∞, for each integer
k ≥ 1. Probability measures with compact support have all moments.

Let µ ∈ M be a probability measure with all moments. The free cumulants are the
coefficients kn = kn(µ) in the series expansion

C�µ (z) =
∑∞

n=1
kn(µ)zn.

Since, by definition the free cumulant transform C�µ linearizes additive free convolution,
then free cumulants also additive with respect to the free convolution µ1 � µ2

kn(µ1 � µ2) = kn(µ1) + kn(µ2)

and
kn(µ�t) = tkn(µ).

The main object to describe the relation between the free cumulants and the moments
is the set of non-crossing partitions of {1, . . . , n}, denoted by NC (n) and described in
Chapter 2. A partition π is an equivalence relation on the set {1, . . . , n} . We say that
a partition π is non-crossing if a ∼π c , b ∼π d ⇒ a ∼π b ∼π c ∼π d, for all
1 ≤ a < b < c < d ≤ n. So, let us state the so-called moment-cumulant formula of
Speicher [72] which gives a relation between moments and free cumulants.

mn(µ) =
∑

π∈NC(n)

kπ(µ), (1.6.1)

where π → kπ is the multiplicative extension of the free cumulants to non-crossing parti-
tions, that is

kπ := k|V1| · · · k|Vr| for π = {V1, ..., Vr} ∈ NC(n).

We can calculate easily the first terms using (1.6.1)

m1 = k1

m2 = k2 + k2
1

m3 = k3 + 3k2k1 + k3
1

m4 = k4 + 4k3k1 + 2k2
2 + 6k2k

2
1 + k4

1

m5 = k5 + 5k4k1 + 5k2k3 + 10k3k
2
1 + 10k2

2k1 + 10k2k
3 + k5

1.

On the other hand, free multiplicative convolution may be described in terms of free
cumulants as follows.

kµ1�µ2(z) =
∑

π∈NC(n)

kπ(µ1)kK(π)(µ2) (1.6.2)

where K(π) is the Kreweras complement defined in the Remark 2.1.3. We also show the
first cumulants of µ1 � µ2:

k1(µ1 � µ2) = k1(µ1)k1(µ2)

k2(µ1 � µ2) = k2(µ1)k2
1(µ2) + k2

1(µ1)k2(µ2)

k3(µ1 � µ2) = k3(µ1)k3
1(µ2) + 3k2(µ1)k1(µ1)k2(µ2)k1(µ2) + k3(µ1)k3

1(µ2).
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Free cumulants for random variables

We want to extend the definition of free cumulants to random variables. We will use some
facts and definitions concerning non-crossing partitions.

Remark 1.6.1. The set NC (n) can be equipped with the partial order ≤ of reverse
refinement: for π, σ ∈ P (n) , π ≤ σ iff every block of π is completely contained in a
block of σ. This partial order turns NC (n) into a lattice. This allows us to consider
multiplicative functions and combinatorial convolutions on these families of partitions,
and the corresponding Möbius inversions. We refer to Chapter 2 for these definitions.

We adopt the general definition of cumulants described by Lehner [48].

Definition 1.6.2. Given a notion of independence in a non-commutative probability
space (A, φ) we say that a sequence of applications tn : A → C, which sends a → tn(a),
n = 1, 2, 3... is called the sequence of cumulants (with respect to some independence) if
the following properties hold

a) tn(a) is a polynomial in the first n moments of a with greatest term mn(a).
b) Homogeneity of degree n: tn(λa) = λntn(a).
c) Additivity with respect to independence: if a and b are independent random vari-

ables, then tn(a+ b) = tn(a) + tn(b).

Definition 1.6.3. Let A be a unital algebra and let τ : A → C be a unitary linear
functional. Given a sequence of multilinear functionals (pn)n∈N in A,

pn : An → C,
(a1, ..., an) 7−→ pπ[a1, ..., an]

we extend this sequence to a family (pπ)n∈N,π∈NC(n) of multilinear functionals by the
formula

pπ[a1, ..., an] :=
∏
V ∈π

p(V )[a1, ..., as] for a1, ..., an ∈ A

where
p(V )[a1, ..., as] := ps(ai1 , ..., ais )

for V = {i1, i2..., is} and i1 < i2... < is.

The family (pπ)n∈N,π∈NC(n) is called the multiplicative family of functionals in NC(n)
determined by the sequence (pn)n∈N. The multiplicativity of the family (pπ)n∈N,π∈NC(n)

means that we have a factorization according to the block structure of NC(n).

Notation 1.6.4. Let A be a unitary algebra and let φ : A → C be a unitary linear
functional. Define the multilinear functionals (φn)n∈N in A by the formula

φn(a1, ..., an) := φ(a1 · · · an).

We extend this notation for the corresponding multiplicative functionals in the non-
crossing partitions via the formula

φπ[a1, ..., an] :=
∏
V ∈π

φ(V )[a1, ..., an] for a1, ..., an ∈ A.
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Now we define the free cumulants through the Möbius Inversion.

Definition 1.6.5. Let (A, φ) be a non-commutative probability space. The corresponding
free cumulants (kπ)π∈NC(n) are, for each n ∈ N , π ∈ NC(n), multilinear functionals

kπ : An → C,
(a1, ..., an) 7−→ kπ[a1, ..., an]

where
kπ[a1, ..., an] :=

∑
σ∈NC(n)
σ≤π

φσ[a1, ..., an]µ(σ, π),

and µ is the Möbius function in NC(n). (See Section 2.1 below)

Because of the canonical factorization in intervals of NC(n) free cumulants may also
be described as follows.

Proposition 1.6.6. The mapping π 7−→ kπ is a multiplicative family of functionals, that
is

kπ[a1, ..., an] :=
∏
V ∈π

k(V )[a1, ..., an].

Moreover, the Definition 1.6.5 is equivalent to the following statements
i) π 7−→ kπ is a multiplicative family of functionals and for each n ∈ N and all the

a1, ..., an ∈ A we have that

kπ(a1, ..., an) =
∑

σ∈NC(n)

φσ[a1, ..., an]µ(σ, 1n). (1.6.3)

ii) π 7−→ kπ is a multiplicative family of functionals and for each n ∈ N and all
a1, ..., an ∈ A, we have

φ(a1, ..., an) =
∑

σ∈NC(n)

kσ[a1, ..., an]. (1.6.4)

The importance of free cumulants is given by the next theorem by Speicher [72], which
says that free independence is equivalent to the vanishing of mixed free cumulants.

Theorem 1.6.7. Let A, φ) be a C∗-non commutative probability space and let (kn)n∈N
be the free cumulants. Consider a family (Ai)i∈I of unital subalgebras of A. Then the
following statements are equivalent.

i) (Ai)i∈I are in free relation.
ii) For any n ≥ 2 and for any aj ∈ Ai(j), (j = 1, ..., n) with i(1), ..., i(n) ∈ I we have

that kn(a1, ..., an) = 0 whenever there are 1 ≤ l, k ≤ n with i(l) 6= i(k).

Recall that we were interested in the moments and distribution of a random variable.
Now, we will be more interested in the free cumulants of these random variables. So let
us fix some notation.
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Notation 1.6.8. Let (ai)i∈I be random variables in a non-commutative probability space
(A, φ) and let (kn)n∈N be their corresponding free cumulant functionals

(1) The free cumulants of (ai)i∈I are all the expressions of the form kn(ai(1), ..., ai(n))
for n ∈ N and i(1), ..., i(n) ∈ I.

(2)If (A, φ) is a ∗-probability space, then the ∗- free cumulants of (ai)i∈I are the free
cumulants of (ai, a

∗
i )i∈I .

(3) If we have only one random variable a we use the notation kan := kn(a, a, ..., a).
(4) When the probability measure µ is the ∗-distribution of a we say that its cumulants

are (kn)n∈N := kan.

The fact that (4) agrees with the definition given before is a consequence of the fol-
lowing theorem which shows that free cumulants linearize free additive convolution.

Corollary 1.6.9. Lat a and b be free random variables in some non-commutative proba-
bility space. Then we have

ka+b
n = kan + kbn for all n ≥ 1.

Proof. From Theorem 1.6.7 we have that all the cumulants that have both a and b as
arguments must vanish and then

ka+b
n = kn(a+ b, ..., a+ b) = kn(a, ..., a) + kn(b, ..., b) = kan + kbn.

We will often use the formula for product as arguments, first proved by Krawczyk
and Speicher [44]. For a proof see Theorem 11.12 in Nica and Speicher [60]

Theorem 1.6.10 (Formula for products as arguments). Let (A, φ) be a non-commutative
probability space and let (kπ)π∈N be the corresponding free cumulants. Let m,n ∈ N and
1 ≤ i(1) < i(2) · · · < i(m) = n be given and consider the partition

0̂m = {{1, ..., i(1)}, ..., {i(m− 1) + 1, ..., i(m)}} ∈ NC(n)

and the random variables a1, ..., an ∈ A then the following equation holds:

km(a1 · · · ai(1), ..., ai(m−1)+1 · · · ai(m)) =
∑

π∈NC(n)

π∨0̂m=1n

kπ(a1, ..., an). (1.6.5)

Let a, b be two random variables we want to be able to calculate the free cumulants
of ab in terms of the free cumulants. This is the content of next theorem.

Theorem 1.6.11. Let (A, φ) be a non-commutative probability space and consider ran-
dom variables a1, ..., an, b1, ...bn ∈ A such that {a1, a2, ..., an} and {b1, ..., bn} are freely
independent. Then we have

φ(a1b1a2b2...anbn) =
∑

kπ[a1, a2, ..., an]φK(π)[b1, b2, ..., bn]

and
kn(a1b1, a2b2, ..., anbn) =

∑
kπ[a1, a2, ..., an]kK(π)[b1, b2, ..., bn].

25



CHAPTER 1. PRELIMINARIES ON FREE PROBABILITY

In particular, one should note that in the case when a = a1 = a2 = ... = an and
b := b1 = b2 = ... = bn the last formula gives

kabn =
∑

π∈NC(n)

kaπk
b
K(π)

which is exactly the formula (1.6.2) for the free multiplicative convolution.

1.7 Free Infinite divisibility

In this section we recall the notion of infinite divisibility and give some basic proper-
ties. In classical probability it is a well known fact that the infinitely divisible laws are
characterized based on a Lévy-Khintchine representation for the classical cumulant func-
tion (the logarithm of its Fourier transform), see Sato [69] or Steutel and Van Harn [75].
Similarly, we can find a Lévy-Khintchine type characterization for free infinitely divisible
distributions in terms of the Voiculescu transform. This was proved in 1993 by Bercovici
and Voiculescu [22]. More recently Barndorff-Nielsen and Thorbjønsen [12] proposed a
variant that is more similar to the classical case.

Definition 1.7.1. Let µ be a probability measure in R. We say that µ is freely infinitely
divisible, if for all n, there exists a probability measure µn such that

µ = µn � µn � ....� µn︸ ︷︷ ︸
n times

. (1.7.1)

We denote by ID(�) the class of freely infinitely divisible measures . If µ ∈ ID(�) we also
say that µ is �-infinitely divisible or infinitely divisible with respect to the convolution
�.

Any freely infinitely divisible distribution defines a continuous �-semigroup of mea-
sures (µt)t≥0 in the space of probability measures on R with the weak topology of proba-
bility measures.

Proposition 1.7.2 ([22]). Let µ be a �-infinitely divisible probability measure. There is
a family (µt)t≥0 of probability measures on R such that

i) µ0 = δ0, µ1 = µ.
ii) µt+s = µt � µs for s, t ≥ 0
iii) The mapping t→ µt is continuous with respect to the weak topology.

From the Voiculescu Transform and its variants it is possible to characterize the mea-
sures µ ∈ ID(�), with a representation analogous to Lévy-Kintchine´s. The first char-
acterization for general measures (even with unbounded support) was given by Bercovici
and Voiculescu [22] in terms of the characteristic pair (γ, σ).

Theorem 1.7.3 ([22, Th. 5.10]). Let µ be a probability measure in R. The following
statements are equivalent

i) µ is �-infinitely divisible.
ii) φµ has an analytic extension defined in C+ with values in C− ∪ R.
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iii) There a finite measure σ on R and a real constant γ such that

φµ(z) = γ +

∫
R

1 + tz

z − t
σ(dt), z ∈ C+.

In case that (i), (ii) and (iii) is satisfied, the pair (γ, σ) is called generating pair of µ.

Recall that a probability measure µ is infinitely divisible in the classical sense if and
only if its classical cumulant transform log µ̂ has the Lévy-Khintchine representation

log µ̂(u) = iηu− 1

2
au2 +

∫
R
(eiut − 1− iut1[−1,1] (t))ν (dt) , u ∈ R, (1.7.2)

where η ∈ R, a ≥ 0 and ν is a Lévy measure in R, that is
∫
R min(1, t2)ν(dt) < ∞ and

ν({0}) = 0. If this representation exists, the triplet (η, a, ν) is uniquely determined and
is called the characteristic triplet of µ.

The corresponding Lévy-Khintchine representation of µ in terms of a triplet (η, a, ν)
for a measure µ which is infinitely divisible was suggested by Barndorff-Nielsen and
Thorbjørnsen [12].

Theorem 1.7.4 ([12]). A probability measure µ on R is �-infinitely divisible if and only
if there are η ∈ R, a ≥ 0 and a Lévy measure ν on R such that

Cµ(z) = ηz + az2 +

∫
R

(
1

1− zt
− 1− tz1[−1,1] (t)

)
ν (dt) , z ∈ C−. (1.7.3)

In this case the triplet (η, a, ν) is determined in a unique way and is called the free char-
acteristic triplet of µ.

An important class of freely infinitely divisible measures is the class of free compound
Poisson distributions, since any freely infinitely divisible measure on R can be approx-
imated by free compound Poissons. This fact is often used since sometimes proving
properties for free compound Poisson is easy and then these properties are extended to
all ID(�) by approximation arguments.

Definition 1.7.5. A probability measure µ whose free cumulants are of the form

kn(µ) = λmn(ν).

for some λ > 0 and some distribution ν is called a free compound Poisson with rate λ
and jump distribution ν.

Remark 1.7.6. The case when ν = δα, α ∈ R, corresponds to the distribution

µ(A) =

{
(1− 1

λ
)10∈A + ν(A), if λ > 1

ν(A), if 0 ≤ λ ≤ 1,

with

dν(x) =
1

2πσ2

√
(λ+ − x)(x− λ−)

λx
1[λ−,λ+] dx

and
λ± = σ2(1±

√
λ)2.
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The justification for the name of free Compound Poisson is the following limit theorem.

Proposition 1.7.7. Let λ ≥ 0 and ν a probability measure on R with compact support.
The limit in distribution as N→∞ of

((1− λ

N
)δ0 +

λ

N
ν)�N

has free cumulants (kn)n≥1 which are given by

kn = λmn(ν), (n ≥ 1).

It is remarkable that if π is the distribution of a free Poisson (1) and ν a measure with
all moments. Then the free cumulants of π � ν are given by

kn(π � ν) = mn(ν).

Indeed, since the cumulants of a free Poisson are just 1 then by the formula for the
free cumulants of a product we get that if b has a free Poisson distribution then

kabn =
∑

π∈NC(n)

kaπk
b
K(π) =

∑
π∈NC(n)

kaπ = mn(a).

Thus we have the following relations between the three concepts.

Proposition 1.7.8. Let π be a free Poisson and let ν be a probability measure with all
moments. Then the following statements are equivalent

i) µ = π � ν
ii) µ is a free compound Poisson with rate 1 and jump distribution ν.
iii) mn(µ) =

∑
σ∈NC(n)

mσ(ν).

Notice from relation 1.5.6 that

(π � ν)2 = π � π � ν2.

Thus the square of compound Poisson with rate 1 is also a compound Poisson with rate 1.
This has some consequences in free infinite divisibility of squares of symmetric measures
which were explored in further detail in a paper with Hasebe and Sakuma which we
explain in Chapter 5.

As in classical probability, free infinite divisibility is preserved under convergence in
distribution.

Proposition 1.7.9. Let {µn}∞n=1 be a sequence of �-infinitely divisible probability mea-
sures on R and suppose that the sequence µn converges in distribution to a probability
measure µ. Then µ is �-infinitely divisible.

Freely infinitely divisible distributions are typically very different to classical ones. For
instance if µ is �-infinitely divisible then µ has at most one atom. In particular, there is no
non-trivial discrete distribution which is �-infinitely divisible, as opposed to the classical
case where there are a lot of them. Also, there are many examples of distributions with
compact support that are �-infinitely divisible, while in the classical case only the Dirac
measures are. For this reason, one may have the intuition that their intersection is very
small. One of the consequences of the results in the paper [8] is that we find new examples
of probability distribution which are both classically and freely infinitely divisible. More
recently in the joint work with Hasebe [7] we exhibit an infinite family of distributions
with this property.
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1.8 Random Matrices

Random Matrix Theory started in the 20s, with the work of Wishart [77]. Later, in the
50s random matrices gained some interest in the physics literature due to the work of
Wigner [78] . Wigner’s idea was to replace the Hamiltonian, an operator in a Hilbert
space of infinite dimension which describes the energy levels of a system, by a symmetric
random matrix of large size. This idea was the beginning of the study of large random
matrices.

Two of the most celebrated results in random matrix theory of large size are, on one
hand, Wigner’s Semicircle Law, which states that the eigenvalue distribution of random
matrices with independent entries converges in the limit as N → ∞ to the semicircle
distribution s of Example 1.2.7, and on the other hand, the Marchenko-Pastur Law,
which says that the limit of the empirical spectral measure of Wishart matrices coincides
with the free Poisson law having rate λ and jump size α. Figure 1.1 shows a simulation
of this convergence.

Now, since the semicircle distribution appears from the free central limit theorem
(Theorem 1.3.5) and the Marchenko-Pastur law corresponds to the free version of the
law of small numbers it is natural to ask if this is just a coincidence or if there is a
deeper connection. Voiculescu discovered, in 1991, that certain random matrices are
asymptotically free. This observation established a connection between what apparently
seem to be quite different fields and lead to important implications on operator algebras.
We shall briefly describe this connection between Free Probability and Random Matrices.

Figure 1.1: Histograms of the eigenvalues of 1 realization of a 1200×1200
sized random matrices of the form W (left) and WW ∗(right) where W
is a Wigner matrix with Gaussian independent entries. The black lines
show the semicircle and free Poisson densities.

By “random matrices” we mean matrices whose entries are classical random variables.
We want to consider families of random matrices whose size is growing. We will call a
family {A(N)}N∈N an ensemble if for each N ∈ N, A(N) is a random matrix of size N ×N .
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Before passing to asymptotic freeness let us review the basic results mentioned above for
Large Random Matrices.

An important example in the theory random matrices is the class of Wigner matrices.

Definition 1.8.1. A real Wigner matrix is an N ×N random matrix W (N) = (Wij)
N
i,j=1

with W = W ∗ and such that the entries (Wij)
N
i,j=1 are independent and identically dis-

tributed with mean zero. The family {W (N)}N∈N is called a Wigner ensemble.

Wigner’s Theorem is stated as follows.

Theorem 1.8.2 (Wigner’s Semicircle Law). Let W
(N)
N∈N be a Wigner ensemble whose en-

tries have variance 1. Then WN converges in distribution as N →∞, towards a semicir-
cle,

W (N) → s.

Probably the most important class of random matrices are the Gaussian random ma-
trices whose entries consist of Gaussian classical random variables.

Definition 1.8.3. A selfadjoint Gaussian random matrix is an N × N random matrix
G(N) with G(N) = (G(N))∗ and such that the entries aij = G

(N)
ij (i, j = 1, ..., N) form a

Gaussian Family which is determined by the covariance

E[aijakl] =
1

N
δi,lδj,k (i, j, k, l = 1, ..., N)

An ensemble consisting of selfadjoint Gaussian random matrices is called a GOE( Gaussian
Orthogonal Ensemble).

Wigner’s semicircle law is also valid for Gaussian random matrices.

Theorem 1.8.4. Let {G(N)}N∈N be GOE. Then G(N) converges in distribution as N →
∞, towards a semicircle,

G(N) → s.

Definition 1.8.5. A Wishart matrix is an N × N random matrices of the form MN =
XX∗, where X is an M ×N random matrix with independent entries.

The special case considered by Wishart assumes the entries to be identically distributed
Gaussian random variables. The limiting distribution, now known as the Marchenko-
Pastur law, was calculated by Marchenko and Pastur and coincides with the free Poisson.

Theorem 1.8.6 (Marchenko-Pastur law). If X denotes a M ×N random matrix whose
entries are independent identically distributed random variables with mean 0 and variance
σ2 < ∞, let YN = XX∗ Assume that M, N → ∞ so that the ratio M/N → λ ∈
(0,+∞). Then µM → µ (in weak* topology in distribution), where

µ(A) =

{
(1− 1

λ
)10∈A + ν(A), if λ > 1

ν(A), if 0 ≤ λ ≤ 1,

and

dν(x) =
1

2πσ2

√
(λ+ − x)(x− λ−)

λx
1[λ−,λ+] dx

with
λ± = σ2(1±

√
λ)2.
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Before stating the main results of Voiculescu we shall define convergence in distribution
for a family of random variables.

Definition 1.8.7 (Convergence in distribution). Let (AN , φN) (N ∈ N) and (A, φ) be

non-commutative probability spaces and consider families of random variables a
(N)
1 , ..., a

(N)
k ∈

AN for each N ∈ N and a1, ...ak ∈ A. We say that aN converges in distribution to-
wards a1, ...ak, as N →∞ if we have

lim
N→∞

φN(a
(N)
i(1) · · · a

(N)
i(m)) = φ(ai(1) · · · ai(m))

and denote this by a
(N)
1 , ..., a

(N)
k → a1, ..., ak.

Definition 1.8.8 (Asymptotic Freeness). Let (AN , φN)N∈N be non-commutative proba-

bility spaces and consider families of random variables a
(N)
1 , ..., a

(N)
k ∈ AN for each N ∈ N.

The random variables a
(N)
1 , ..., a

(N)
k are said to be asymptotically free if a

(N)
1 , ..., a

(N)
k →

a1, ..., ak for some free variables a1, ..., ak in a non-commutative probability space (A, φ)
aN → a.

Theorem 1.8.9. Let Xn be a selfadjoint Wigner matrix, such that the distribution of
the entries is centered and has all moments, and let AN be a random matrix which is
independent from Xn. If AN has almost surely an asymptotic eigenvalue distribution and
if we have

sup
∈N
‖AN‖ <∞.

Then AN and XN are almost surely asymptotically free.

Theorem 1.8.10. For each N ∈ N, Let AN and BN N×N independent random matrices,
such that both AN and BN almost surely have an asymptotic eigenvalue distribution, as
N → ∞ and BN is a unitarily invariant ensemble. Then AN and BN are almost surely
asymptotically free.

In particular if AN and BN are diagonal matrices with asymptotic eigenvalue distribu-
tions, as N →∞, and U is a Haar unitary matrix then A and UBU∗ are asymptotically
free. By Haar Unitary random matrices we mean the compact group U(N) of unitary
N × N matrices with its Haar Measure. This observation has been used repeatedly in
order to go from free probability to random matrices and viceversa.
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Chapter 2

Combinatorics in k-divisible
Non-Crossing Partitions

In this chapter we recall the partially ordered set (poset) of the k-divisible non-crossing
partitions and study the combinatorial convolution of the associated incidence algebra.
The poset of k-divisible non-crossing partitions was introduced by Edelman [33] and
reduces to the poset of all non-crossing partitions for k = 1. A first systematic study of
non-crossing partitions was done by Kreweras [47]. More recently, much more attention
has been paid to non-crossing partitions because, among other reasons, they play a central
role in the combinatorial approach of Speicher to Voiculescu’s free probability as we
explained in the previous chapter.

2.1 Preliminaries on non-crossing partitions

Basic properties and definitions

Definition 2.1.1. (1) We call π = {V1, ..., Vr} a partition of the set [n] := {1, 2, .., n}
if and only if Vi (1 ≤ i ≤ r) are pairwise disjoint, non-void subsets of S, such that
V1 ∪ V2... ∪ Vr = {1, 2, .., n}. We call V1, V2, .., Vr the blocks of π. The number of
blocks of π is denoted by |π|.

(2) A partition π = {V1, ..., Vr} is called non-crossing if for all 1 ≤ a < b < c < d ≤ n
if a, c ∈ Vi then there is no other subset Vj with j 6= i containing b and d. We denote
the set of non-crossing partitions of [n] by NC(n), t

Remark 2.1.2. The following characterization of non-crossing partitions is sometimes
useful: for any π ∈ NC(n), one can always find a block V = {r+ 1, . . . , r+ s} containing
consecutive numbers. If one removes this block from π, the partition π \ V ∈ NC(n− s)
remains non-crossing.

There is a graphical representation of a partition π which makes clear the property of
being crossing or non-crossing, usually called the circular representation. We think of [n]
as labelling the vertices of a regular n-gon, clockwise. If we identify each block of π with
the convex hull of its corresponding vertices, then we see that π is non-crossing precisely
when its blocks are pairwise disjoint (that is, they do not cross).
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Figure 2.1: Non-Crossing and Crossing Partitions

Figure 2.1 shows the non-crossing partition {{1, 2, 5, 9}, {3, 4}, {6}, {7, 8}, {10, 11, 12}}
of the set [12], and the crossing partition {{1, 4, 7}, {2, 9}, {3, 11, 12}, {5, 6, 8, 10}} of [12]
in their circular representation.

The set NC(n) can be equipped with the partial order ≤ of reverse refinement (π ≤ σ
if and only if every block of π is completely contained in a block of σ), making it a lattice.
With this order, the poset (NC(n),≤) is self-dual (see Figure 2.2).

Figure 2.2: The poset NC(4)

Moreover, there exists a very natural order reversing isomorphism, called the Kreweras
complement.

Remark 2.1.3 (Definition of Kreweras complement). Let π be a partition in NC(n).
Then the Kreweras complement K(π) is characterized in the following way. It is the
only element σ ∈ NC(1, 2, ...n) with the properties that π ∪ σ ∈ NC(1, 1, 2, 2, ..., n, n} w
NC(2n) is non-crossing and that

π ∪ σ ∨ {(1, 1), (2, 2), ..., (n, n)} = 12n.

The map Kr : NC(n)→ NC(n) is an order reversing isomorphism. Furthermore, for all
π ∈ NC(n) we have that |π|+ |Kr(π)| = n+ 1, see [60] for details.
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Figure 2.3: Kreweras complementation map

We recall the following result which gives a formula for the number of partitions with
a given type [47].

Proposition 2.1.4. Let r1, r2, ..., rn be nonnegative integers such that r1+2r2...+nrn = n.
Then the number of partitions of π in NC(n) with r1 blocks of size 1, r2 blocks of size 2,
. . . , rn blocks of size n equals

n!

pr(n−m+ 1)!
, (2.1.1)

where pr = r1!r2! · · · rn! and r1 + r2...+ rn = m.

We say that a partition π is k-divisible if the size of all the blocks is a multiple of k.
If all the blocks are exactly of size k we say that π is k-equal.

Figure 2.4: 3-equal and 2-divisible non-crossing partitions

The set of k-divisible non-crossing partitions of [kn] is denoted by NCk(n) and the
set of k-equal non-crossing partitions of [kn] by NCk(n)1.

It is well known that the number of non-crossing partition is given by the Catalan
numbers 1

n+1

(
2n
n

)
. More generally we can count k-divisible partitions, see [33].

1The notation that we follow is the one of Armstrong [11] which does not coincide with Nica and
Speicher [60] for 2-equal partitions.
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Proposition 2.1.5. Let NCk(n) be the set of non-crossing partitions of [nk] whose sizes
of blocks are multiples of k. Then

#NCk(n) =

(
(k+1)n
n

)
kn+ 1

.

On the other hand, from Proposition 2.1.4, one can easily count k-equal partitions.

Corollary 2.1.6. Let NCk(n) be the set of non-crossing partitions of nk whose blocks
are of size of k. Then

#NCk(n) =

(
kn
n

)
(k − 1)n+ 1

.

Definition 2.1.7. Given a partially ordered set, a k-multichain (or multichain of length
k − 1) is a sequence x0 ≤ x1 ≤ · · · ≤ xk−1 of elements of P . We denote by NC [k](n) the
set of k-multichains in NC(n).

The number of k-multichains in NC(n) was given by Edelman in [33].

Proposition 2.1.8. Let NC [k](n) be the set of k-multichains in NC(n). Then

#NC [k](n) =

(
(k+1)n
n

)
kn+ 1

.

The reader may have noticed from Proposition 2.1.5 and Corollary 2.1.6 that the
number of (k+ 1)-equal non-crossing partitions of n(k+ 1) and the number of k-divisible
non-crossing partitions of nk coincide with the number of k-multichains on NC(n). This
will be of relevance for this work, and we will give a proof in Example 2.3.1 as an applica-
tion on how the zeta-function in NCk(n) is related to ζ∗k in NC(n). We derive a bijective
proof of this fact and study further consequences in Section 2.6.

Similar to Proposition 2.1.4, one can count the number of partitions π, such that π
and Kr(π) have certain block structures. Let (ri)1≤i≤n, (bj)1≤j≤n be tuples satisfying

1r1 + 2r2 + · · ·+ nrn = n = 1b1 + 2b2 + · · ·+ nbn, (2.1.2)

|π|+ |Kr(π)| = r1 + · · ·+ rn + b1 + · · ·+ bn = n+ 1. (2.1.3)

Then the number of partitions such that π has ri blocks of size i and Kr(π) has bj blocks
of size j is given by the formula

n
(|π| − 1)!(|Kr(π)| − 1)!

r1! . . . rn!b1! . . . bn!
. (2.1.4)

When π is k-equal, Equation (2.1.4), reduces to

k
((k − 1)n)!

b1! · · · bn!
.

As a consequence, we can show that for large k, the Kreweras complements of k-equal
partitions have “typically” small blocks. More precisely, for n, k ≥ 1 let

NC(k, n)2,1 := {π ∈ NCk(n) : Kr(π) contains only pairings and singletons} ⊆ NCk(n).
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In this case, the only possibility is that b1 = n(k− 2) + 2, b2 = n− 1 and bi = 0 for i > 2.
So

|NC(k, n)2,1| = k
((k − 1)n)!

((n(k − 2) + 2)!(n− 1)!
. (2.1.5)

An easy application of Stirling’s approximation formula shows that

lim
k→∞

|NC(k, n)2,1|
|NCk(n)|

= 1. (2.1.6)

Incidence algebra in NC

Let us recall the main concepts about posets and incidence algebras first introduced by
Rota et al. [32]. The incidence algebra I(P ) = I(P,C) of a finite poset (P,≤) consists of
all functions f : P (2) → C such that f(π;σ) = 0 whenever π � σ. We can also consider
functions of one variable; these are restrictions of functions of two variables as above to
the case where the first argument is equal to 0, i.e. f(π) = f(0, π) for π ∈ P .

We endow I(P,C) with the usual structure of vector space over C. On this incidence
algebra we have a canonical multiplication or (combinatorial) convolution2 defined by

(F ∗G)(π, σ) :=
∑
ρ∈P

π≤ρ≤σ

F (σ, ρ)G(ρ, σ).

Moreover, for functions f : P → C and G : P (2) → C we consider the convolution
f ∗G : P → defined by

(f ∗G)(σ) :=
∑
ρ∈P
ρ≤σ

f(ρ)G(ρ, σ).

The convolutions defined above are associative and distributive with respect to taking
linear combinations of functions in P (2) or in P . It is easy to verify that the function
δ : P (2) → C defined as

δ(π, σ) =

{
1 π = σ
0 π 6= σ

is the unity with respect to the convolutions, making I(P,C) a unital algebra. Two
other prominent functions in the in incidence algebra I(P,C) are the zeta-function and
its inverse the Möbius function.

Definition 2.1.9. Let (P,≤) be a finite partially ordered set. The zeta function of P ,
ζ : P (2) → C is defined by

ζ(π, σ) = 1, for all π ≤ σ ∈ P.

The inverse of ζ under the convolution is called the Möbius function of P , which will
be denoted by µ.

2Not to be confused with the concept of convolution of measures.
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Remark 2.1.10. Note that

ζ ∗ ζ(π, σ) =
∑
π≤ρ≤σ

1 = card[π, σ],

and, more generally,

ζ ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

(π, σ) =
∑

π=ρ0≤ρ1···≤ρk=σ

1

counts the number of (k + 1)-multichains from π to σ.

Definition 2.1.11. Let (αn)n≥1 be a sequence of complex numbers. Define a family of
functions fn : NC(n)→ C, n ≥ 1, by the following formula: if π = {V1, ..., Vr} ∈ NC(n)
then

fn(π) = α|V1| · · ·α|Vr|.
Then (fn) is called the multiplicative family of functions on NC determined by
(αn)n≥1.

To emphasize the fact that the αn encode the information of the multiplicative family
of functions fn we will use the following notation.

Notation 2.1.12. Let (αn)n≥1 be a sequence of complex numbers, and let (fn) be the
multiplicative family of functions on NC determined by (αn)n≥1. Then we will use the
notation

απ := fn(π) for π ∈ NC(n),

and we will call the family of numbers (απ)n∈N,π∈NC(n) the multiplicative extension of
(αn)n∈N.

Finally, for g := (gn)n≥1 and f := (fn)n≥1 multiplicative families in the lattice of non-
crossing partitions we can define the combinatorial convolution f ∗ g := ((f ∗ g)n)n≥1 in
NC by the following formula:

(f ∗ g)n :=
∑

π∈NC(n)

fn(π)gn(K(π)).

The importance of this combinatorial convolution is that the multiplicative family
((f ∗ g)n)n≥1 can be used to describe free multiplicative convolution, in the following
sense, see Equation (1.6.2):

κn(ab) =
∑

π∈NC(n)

kπ(a)kK(π)(b).

Moreover, the so-called moment-cumulant formula (see Equation (1.6.1)) may be stated
as follows:

mn(x) =
∑

π∈NC(n)

κπ(a) (2.1.7)

which in our notation (if m := mn(x) and κ : κn(x)) is nothing other than m = k ∗ ζ or
k = m ∗ µ. There is a functional equation for the power series two multiplicative families
(fn)n≥1 and (gn)n≥1 on NC, related by

g = f ∗ µ (or equivalently: f = g ∗ ζ). (2.1.8)

This is the content of next proposition.
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Proposition 2.1.13 (Speicher [72]). Let (fn)n≥1 and (gn)n≥1 be two multiplicative families
on NC, which are related as in Equation (2.1.8). Let (αn)n≥1 and (βn)n≥1 be the sequences
of numbers that determine the multiplicative families; that is, we denote αn := fn(1n) and
βn := gn(1n), n ≥ 1. If we consider the power series

A(z) = 1 +
∞∑
n=1

αnz
n and B(z) = 1 +

∞∑
n=1

βnz
n.

Then A and B satisfy the functional equation

A(z) = B(zA(z)) and B(z) = A(
z

B(z)
)

2.2 The poset NCk(n)

In this section we study the poset NC(k)(n) of k-divisible non-crossing partitions and the
combinatorial convolution associated with this poset.

Recall that a partition π ∈ NC(nk) is called k-divisible if the size of each block in
π is divisible by k. As we have done for non-crossing partitions, we can regard the set
NC(k)(n) as a subposet of NC(nk).

Definition 2.2.1. We denote by (NCk(n),≤) the induced subposet of NC(kn) consisting
of partitions in which each block has cardinality divisible by k.

This poset was introduced by Edelman [33], who calculated many of its enumerative
invariants. Observe that coarsening of partitions preserves the property of k-divisibility,
hence the set of k-divisible non-crossing partitions form a join-semilattice. However
NCk(n) is not a lattice for k > 1 since, in general, some elements π, σ ∈ NC(k)(n) do not
have a meet in NCk(n) (for instance, two different elements of the type λ = (k, k, ..., k)).

Since NC(k)(n) is a finite poset we can define the incidence algebra I(NC(k)(n),C).
Recall that for a poset P and functions f : P → C and G : P (2) → C the convolution
f ∗G : P → C is defined as

(f ∗G)(σ) :=
∑
ρ∈P
ρ≤σ

f(ρ)G(ρ, σ).

In particular, when P = NCk(n) and G is the zeta function ζ (in NCk(n)) we have that

f ∗ ζ(σ) =
∑

π∈NC(k)(n)
π≤σ

f(π).

We will be interested in the case when f(π) is part of a multiplicative family on NCk.
So let us define a multiplicative family on NCk in analogy to the case of NC.

Definition 2.2.2. Let (αn)n≥1 be a sequence of complex numbers. Define a family of

functions f
[k]
n : NCk(n) → C, n ≥ 1, by the following formula: if π = {V1, ..., Vr} ∈

NC(k)(n) then
f [k]
n (π) = α|V1|/k · · ·α|Vr|/k.

Then (f
[k]
n )n≥1 is called the multiplicative family of functions on NC(k)(n) determined

by (αn)n≥1.
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Figure 2.5: The Hasse Diagram of the poset NC2(3)

Observe, on one hand, that if π = {V1, ..., Vr} is a k-divisible partition then the value

fnk(π) = α|V1| · · ·α|Vr|

only depends on the αi’s such that k divides i and thus the values of αi for i not divisible
by k can be chosen arbitrarily. In particular, we can choose them to be 0.

On the other hand, if (fn)n≥1 is the multiplicative family on NC(n) determined by a
sequence (αn)n≥1 such that αi = 0 when i is not divisible by k then for π /∈ NCk(n) we
have that α|V1| · · ·α|Vr| = 0 and thus, in I(NC(kn),C), we have

(f ∗ ζ)nk(σ) =
∑

π∈NC(kn)
π≤σ

f(π) =
∑

π∈NCk(n)
π≤σ

fnk(π).

and
(f [k] ∗ ζ)nk(σ) =

∑
π∈NCk(n)

π≤σ

f [k]
n (π) =

∑
π∈NCk(n)

π≤σ

fnk(π).

So, for multiplicative families on NC determined by sequences such that αi = 0 whenever
i is not divisible by k, the convolution with the zeta function ζ is exactly the same in
I(NC(kn),C) as in I(NC(k)(n),C).

Let us fix some notation to encode the information in sequences of this type.

Notation 2.2.3. We call a sequence α
(k)
n the k-dilation of αn if α

(k)
kn = αn and α

(k)
n = 0 if

n is not a multiple of k.
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By the arguments given above we can deal with the convolution between (f
[k]
n )n≥1

(a multiplicative family on NC(k)(n)) and ζ ∈ I(NC(k)(n),C) by just considering the
k-dilations of the original sequence and work with the usual convolution in NC(n). In
particular, we can use the functional equation in Proposition 2.1.13 to get a functional
equation for multiplicative families in NC(k)(n).

Proposition 2.2.4. Let g
[k]
n be a multiplicative family in NC(k)(n) determined by the se-

quence (βn)n≥1 and f
[k]
n be a multiplicative family in NC(k)(n) determined by the sequence

(αn)n≥1. Suppose that f [k] = g[k] ∗ ζ. If we consider the power series

A(z) = 1 +
∞∑
n=1

αnz
n and B(z) = 1 +

∞∑
n=1

βnz
n.

then
A(z) = B(zA(z)k).

Proof. Since f [k] = g[k] ∗ ζ is equivalent to f (k) = g(k) ∗ ζ then, by Proposition 2.1.13, the
power series Ak(z) = 1 +

∑∞
n=1 α

(k)
n zn and Bk(z) = 1 +

∑∞
n=1 β

(k)
n zn are related by the

functional equation
Ak(z) = Bk(zAk(z)).

Note that Ak(z) = A(zk) and Bk(z) = B(zk), hence

A(zk) = B(zkA(zk)k).

Making the change of variable zk = y we get

A(y) = B(yA(y)k).

as desired.

2.3 Motivating example

Consider the following three objects.

(i) NCk+1(n): Non-crossing partitions in NC((k + 1)n) with each block of size k + 1.

(ii) NCk(n) : Non-crossing partitions in NC(kn) with blocks of size a multiple of k.

(iii) NC [k](n) : Multichains of order k + 1 in NC(n).

It is well known that the Fuss-Catalan numbers count all three of them. Different
ways to count them are now known. The first ones were counted by Kreweras [47]. Also
bijections between them have been given in [2] and [33] . Moreover in [11] an order has
been given to (ii) makings the objects in (ii) and (iii) isomorphic as posets and generalized
to other Coxeter groups.

We want to show we can use Proposition 2.2.4 to derive the same functional equation
for the three of them without counting them explicitly.
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Example 2.3.1. Denote the cardinality of NCk(n) by the number Zk
n. Let (βn = 0)n≥2,

β1 = 1 and (αn)n≥1 be two sequences with respective multiplicative families (g
[k]
n )n>0

and (f
[k]
n )n>0 on NCk related by the formula f [k] = g[k] ∗ ζ. Then αn equals Zk

n and
A(z) = 1 +

∑∞
n=1 αnz

n satisfies

A(z) = 1 + zA(z)k.

Indeed,

αn = f (k)
n (1nk) = g(k)

n ∗ ζ(1nk) =
∑

π∈NC(nk)
π≤1nk

g(k)
n (π) =

∑
π∈NCk(n)
π≤1nk

1 = Z(k)
n .

Then, by Proposition 2.2.4 the power series A(z) = 1 +
∑∞

n=1 αnz
n and B(z) = 1 +∑∞

n=1 βnz
n are related by

A(z) = B(zA(z)k).

The power series for the sequence (βn)n≥1 is B(z) = 1 + z and then

A(z) = 1 + zA(z)k.

Example 2.3.2. Denote the cardinality of NCk(n) by the number C
(k)
n . Let (βn = 1)n≥1

and (αn)n>1 be two sequences with respective multiplicative families on NCk related by

the formula f [k] = g[k] ∗ ζ. Then f
(k)
n equals C

(k)
n and

A(z) = 1 + zA(z)k+1.

Indeed,

αn = f (k)
n (1nk) = g(k)

n ∗ ζ(1nk) =
∑

π∈NCk(n)
π≤1nk

gkn(π) =
∑

π∈NC(k)(n)
π≤1nk

1 = C(k)
n .

Again, by Proposition 2.2.4 the power series A(z) = 1 +
∑∞

n=1 αnz
n and B(z) = 1 +∑∞

n=1 βnz
n are related by

A(z) = B(zA(z)k).

The power series for the sequence (βn = 1)n≥1 is

B(z) =
∞∑
n=0

zn =
1

1− z

and then

A(z) =
1

1− zA(z)k

or equivalently
A(z) = 1 + zA(z)k+1.

Finally, for k-multichains we have the following.
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Example 2.3.3. Let ckn (n, k ≥ 1) denote the number of k-multichains in NC(n). For
every k ≥ 1 let (fn,k)n≥1 be the multiplicative family of functions on NC determined by
the sequence ckn. As we have noticed in Remark 2.1.10, for every poset P , the number of
(k + 2)-multichains from π ∈ P to σ ∈ P is given by

(ζ ∗ ζ ∗ · · · ∗ ζ)︸ ︷︷ ︸
k+1 times

(π, σ). for all k ≥ 1

In particular, for NC(n), if we plug π = 0n and π = 1n we get the that the number of
(k + 1)-multichains is given by

(ζn ∗ ζn ∗ · · · ∗ ζn)︸ ︷︷ ︸
k+1 times

(0n,1n) for all n, k ≥ 1.

In other words
fn,k = ζn ∗ ζn ∗ · · · ∗ ζn︸ ︷︷ ︸

k+1 times

for all n, k ≥ 1,

or equivalently
fn,k+1 = fn,k ∗ ζn for all n, k ≥ 1.

Now, consider for each k ≥ 1, the power series

Ak(z) := 1 +
∞∑
n=1

cknz
n.

From the Proposition 2.1.13, the power series Ak(z) and Ak+1(z) must satisfy the func-
tional equation

Ak+1(z) = Ak(zAk+1(z)).

It is easy to see that power series of c2
n (the Catalan numbers) satisfy the relation

A1(z) = 1 + zA1(z)2.

By induction we see that Ak satisfies the functional equation

Ak(z) = 1 + zAk(z)k+1.

Indeed, since Ak(y) = 1 + yAk(y)k+1 plugging y = zAk+1 we get

Ak+1(z) = Ak(zAk+1(z)) = 1 + zAk+1(z)Ak(zAk+1))k+1

= 1 + zAk+1(z)(Ak+1(z))k+1

= 1 + zAk+1(z)k+2.

We have seen that all of the three objects satisfy the same functional equation and
then must be counted by the same sequence. So the multichains of length k + 1 in
NC(n) are in bijection with the k-divisible non-crossing partitions in NC(nk) and with
the (k+1)-equal partitions in NC(n(k+1)). This result is known and was already in [33]
but we emphasize that our derivation never used the explicit calculation of the cardinality
of these objects but rather relies on deriving a functional equation. These ideas will be
used later in this thesis.

Remark 2.3.4. This bijection goes further. In fact, one can give an explicit order to
k-multichains so that NCk(n) w NC(k)(n) as ordered sets. We will not give details about
this but rather refer the reader to Chapters 3 and 4 of [11]. The point here is that we
may think of both object as the same.
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2.4 The convolution of k-dilated sequences in NC

Since the convolution with ζ in NC(k)(n) is equivalent to convolution with ζ in NC(n) for
sequences dilated by k we can forget about the former and focus on how convolution with
k-dilated sequences behave in NC(n). From now on, we will prefer to use the notation
απ = α|V1| · · ·α|Vr| instead of f(π) since there is no confusion.

The first result gives a relation between the formal power series of the k-dilation of
the sequence (mn)n≥1 and the (k + 1)-dilation of the sequence (βn)n≥1, when the two
sequences related mn = βn ∗ ζ, namely,

mn =
∑

π∈NC(n)

βπ

Proposition 2.4.1. Let k be a positive integer and let

A(z) = 1 +
∑

αnz
n

B(z) = 1 +
∑

βnz
n

M(z) = 1 +
∑

mnz
n.

Then any two of the following three statements imply the third

(i) M(z) = B(zM(z)).

(ii) M(z) = A(zM(z)k).

(iii) B(z) = A(zB(z)k−1).

Equivalently, each two of the following three statement imply the third.

(i) The sequences mn and βn are related by the formula

mn =
∑

π∈NC(n)

βπ.

(ii) The sequences αn and mn are related by the formula

m(k)
n =

∑
π∈NC(kn)

α(k)
π .

(iii) The sequences αn and βn are related by the formula

β(k−1)
n =

∑
π∈NC((k−1)n)

α(k−1)
π .

Proof. (i) & (ii) ⇒ (iii). Evaluating in B in zM(z) we get

B(zM(z)) = M(z) = A(zM(z)k) = A(zM(z)M(z)k−1) = A(zM(z)B(zM(z))k−1),
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making the change of variable y = zM(z) the result holds.
(i) & (iii) ⇒ (ii). The relation (i) is equivalent to B(z) = M(z/B(z)) so

M(z/B(z)) = B(z) = A(zB(z)k) = A(
z

B(z)
B(z)s+1) = A(

z

B(z)
M(z/B(z))k),

making the change of variable y = z/B(z) we get the result.
The last equality follows along the same lines. The equivalence of the next three

statements in terms of sums on non-crossing partitions follows from Proposition 2.2.4..

We can use the last result recursively to get a formula for the k-fold convolution with
the zeta function ζ.

Corollary 2.4.2. Let M(z), A(z), Bi(z) formal power series and such that

(i) M(z) = A(zM(z)k)

(ii) M(z) = B1(z(M(z))

(iii) Bi(z) = Bi+1(zBi(z)), for i = 1, ..., k − 1.

Then Bi(z) = A(zBi(z)k−i), in particular Bn(z) = A(z).

Proof. We will use induction on i.
For i = 1, we use i) and ii) and Proposition 2.4.1 to get

B1(z) = A(zB1(z)k−1).

Now suppose that the statement is true for i = n. Then

Bn(z) = A(zBn(z)k−n)

and by iii) Bn(z) = Bn+1(zBn(z)), so again by Proposition 2.4.1 we get

Bn+1(z) = A(zBn+1(z)k−n−1).

The last proposition may look rather artificial. But it explains how the successive
convolution with the zeta-function in NC(n) is equivalent to the convolution with the
zeta-function in NC(k)(n), as we state more precisely in the following theorem.

Theorem 2.4.3. The following statements are equivalent.

(1) The multiplicative family f := (fn)n>0 is the result of applying the zeta-function k
times to g := (gn)n>0, that is

f = g ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

.

(2) The multiplicative family f (k) := (f
(k)
n )n>0 is the result of applying the zeta-function

once to g(k) := (g
(k)
n )n>0, that is

f (k) = g(k) ∗ ζ.
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Proof. This is just a reformulation of Corollary 2.4.2 in terms of combinatorial convolu-
tion.

Example 2.4.4. To make the previous theorem more clear let us calculate the first
elements of a sequence g ∗ ζ ∗ ζ, first directly and then by applying the last theorem for
k = 2. So, let h = g ∗ ζ, and f = g ∗ ζ ∗ ζ = h ∗ ζ. That is

hn =
∑

π∈NC(n)

gπ and fn =
∑

π∈NC(n)

bπ.

explicitly

h1 = g1

h2 = g2 + g2
1

h3 = g3 + 3g1g2 + g3
1

h4 = g4 + 4g3g1 + 2g2
2 + 6g2g

2
1 + g4

1

and

f1 = h1

f2 = h2 + h2
1

f3 = h3 + 3h1h2 + h3
1

f4 = h4 + 4h3h1 + 2h2
2 + 6h2b

2
1 + h4

1

combining this equations we get

f1 = g1 (2.4.1)

f2 = g2 + 2g2
1 (2.4.2)

f3 = g3 + 6g2g1 + 5g3
2. (2.4.3)

f4 = g4 + 8g3g1 + 4g2
2 + 28g2

1g2 + 14g4
1

On the other hand let αn = a
(2)
n and let γn = αn ∗ ζn. That is, γ1 = γ3 = γ5 = γ7 = 0.

While
γ2n =

∑
π∈NC(2n)

απ =
∑

π∈NC2(n)

απ.

which explicitly is written, (for γ6 it is instructive to look at Fig 2.1 , but the coefficients
are easily calculated from Theorem 2.1.4)

γ2 = α2

γ4 = α4 + 2α2
2

γ6 = α6 + 6α4α2 + 6α3
2

γ8 = α8 + 8α6α1 + 4α2
2 + 28α2

1α2 + 14α4
1

verifying that indeed γn = f
(2)
n , since this agrees with equality (2.4.3).

Remark 2.4.5. This phenomenon is very specific for the non-crossing partitions. For
instance, it does not occur if we change NC(n) by P (n) the lattice of all partition nor
IN(n) the lattice of interval partitions.
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To finish this section let us see how Theorem 2.4.3 may be applied to our motivating
example to give a shorter proof of the fact that (k+1)-multichains, k-divisible non-crossing
partitions and (k + 1)-equal non-crossing partitions have the same cardinality.

Example 2.4.6. Let an be the sequence determined by a1 = 1 and an = 0 for n > 1
(notice that this is just the sequence associated with the delta-function δ). Next, consider

c = a ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k+1 times

.

By Remark 2.1.10, cn counts the number of (k + 1)-multichains of NC(n). Now, by
Theorem 2.4.3 applied to an

cn = c
(k+1)
(k+1)n =

∑
π∈NC((k+1)n)

a(k+1)
π =

∑
π∈NCk+1(n)

1 = #NCk+1(n)

and we get the number of (k + 1)-equal noncrossing partitions. Finally, for k-divisible
partitions, consider b = a ∗ ζ. Then

c = b ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

and
bn =

∑
π∈NC(n)

aπ = 1.

So, again by Theorem 2.4.3, applied to bn,

cn = c
(k)
kn =

∑
π∈NC(nk)

b(k)
π =

∑
π∈NCk(n)

1 = #NCk(n).

Thus we have proved that cn counts k-divisible non-crossing partitions of [kn], (k + 1)-
equal non crossing partitions of [(k + 1)n] and (k + 1)-multichains on NC(n). We will
give a bijective proof in the next section.

We can push more this example to also recover Theorem 3.6.9 of Armstrong [11] for
the case of classical k-divisible non-crossing partitions. The proof is left to the reader.

Corollary 2.4.7. The number of l-multichains of k-divisible noncrossing partitions equals
the number of lk multichains of NC(n) and is given by the Fuss-Catalan number Ckl,n.

It would be very interesting to see if similar arguments can be used to count invariants
for non-crossing partitions in the different Coxeter groups. To the knowledge of the author
this is not known.

2.5 Statistics of blocks in k-divisible non-crossing par-

titions

In this section we present part of the paper [3], concerning statistics of the block struc-
ture of non-crossing partitions. As can be seen in [3] and [10], k-divisible non-crossing
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partitions play an important role in the calculation of the free cumulants and moments of
products of k free random variables. Moreover, in the approach given in [10] for studying
asymptotic behavior of the size of the support when k →∞ understanding the asymptotic
behavior of the sizes of blocks was a crucial step.

In this direction, a recent paper by Ortmann [61] studies the asymptotic behavior
of the sizes of the blocks of a uniformly chosen random partition. This lead him to a
formula for the right-edge of the support of a measure in terms of the free cumulants,
when these are positive. He noticed a very simple picture of this statistic as n → ∞.
Roughly speaking, in average, out of the n+1

2
blocks of this random partition, half of them

are singletons, one fourth of the blocks are pairings, one eighth of the blocks have size 3,
and so on.

Trying to get a better understanding of this asymptotic behavior, the question of
the exact calculation of this statistic arose. In this section, we answer this question and
refine these results by considering the number of blocks given. Moreover, we generalize
to k-divisible partitions, as follows.

Theorem 2.5.1. The sum of the number of blocks of size tk over all the k-divisible non-
crossing partitions of {1, 2, .., kn} is given by(

n(k + 1)− t− 1

nk − 1

)
. (2.5.1)

In particular, asymptotically, we have a similar phenomena as for the case k = 1;
about a k

k+1
portion of all the blocks have size k, then a k

(k+1)2
portion have size 2k, then

k
(k+1)3

are of size 3k, etc.
Another consequence is that the expected number of blocks of a k-divisible non-

crossing partition is given by kn+1
k+1

. An equivalent formulation of this result was also
observed by Armstrong [11, Theorem 3.9] for any Coxeter group. It is then a natural
question if this simple formula can be derived in a bijective way. We end with a bijective
proof of this fact, for type A and B k-divisible non-crossing partitions.

Let us finally mention that there exists a type B free probability. Free probability
of type B was introduced by Biane, Goodman and Nica [27] and was later developed by
Belinschi and Shlyakhtenko [16], Nica and Février [34] and Popa [63].

Some combinatorial lemmas

The following two summation lemmas will enable us to use Proposition 2.1.4 to get the
number of blocks of size t subject to the restriction of having a fixed number m of blocks.

Lemma 2.5.2. The following identity holds∑
r1+r2+···rn=m

r1+2r2+···(n)rn=n

m!

r1! · · · rn!
=

(
n− 1

m− 1

)
. (2.5.2)

Proof. This is proved easily by counting in two ways the number of paths from (0, 0) to
(n− 1,m− 1) using the steps (a, b)→ (a, b+ 1) or (a, b)→ (a+ 1, b) by observing that

(m+ 1)!

r1! · · · rn!
=

(
m+ 1

r1

)(
m+ 1− r1

r2

)
· · ·
(
m+ 1− (r1 + · · · rn−1)

rn

)
.
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Lemma 2.5.3. The following identity holds∑
r1+r2+···rn=m
r1+2r2+···nrn=n

(m− 1)!rt
r1! · · · rn!

=

(
n− t− 1

m− 2

)
. (2.5.3)

Proof. We make the change of variable r̃t = rt − 1 and r̃i = ri for i 6= t. Then∑
r1+r2+···rn=m
r1+2r2+···nrn=n

(m− 1)!rt
r1! · · · rn!

=
∑

r̃1+r̃2+···r̃n=m−1
r̃1+2r̃2+···(n−t)r̃n−t=n−t

(m− 1)!

r̃1! · · · r̃n!

=

(
n− t− 1

m− 2

)
,

where we used the Lemma 2.5.2 in the last equality.

We remind the so-called Chu-Vandermonde’s identity which will enable us to remove
the restriction of having a number of blocks given.

s∑
m=0

(
y

m

)(
x

s−m

)
=

(
x+ y

s

)
. (2.5.4)

Number of blocks in k-divisible non-crossing partitions.

First we calculate the expected number of blocks of a given size t, subject to the restriction
of having m blocks from which the main result will follow.

Proposition 2.5.4. The sum of the number of blocks of size tk of all non-crossing par-
titions in NCk(n) with m blocks (

nk

m− 1

)(
n− t− 1

m− 2

)
. (2.5.5)

Proof. First we treat the case k = 1. In order to count the number of blocks of size t of a
given partition π with r1 blocks with size 1, r2 blocks of size 2, . . . , rn blocks of size n,
we need to multiply by rt. So we want to calculate the following sum∑

r1+r2+···rn=m
r1+2r2+···nrn=n

n!rt
(n+ 1−m)!pr

=

(
n

m− 1

) ∑
r1+r2+···rn=m
r1+2r2+···nrn=n

(m− 1)!rt
pr

=

(
n

m− 1

)(
n− t− 1

m− 2

)
.

We used Lemma 2.5.3 in the last equality. This solves the case k = 1.
For the general case we follow the same strategy. In this case we need (r1, . . . , rn)

such that ri = 0 if k does not divide i. So the condition r1 + r2 + · · · + rn = m is
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really rk + r2k + · · · + rnk = m and the condition r1 + 2r2 + · · · + nrn = nk is really
krk + 2kr2k + · · ·+ (nk)rnk = nk, or equivalently rk + 2r2k + · · ·+ nrnk = n. Making the
change of variable rik = si we get.∑

rk+r2k+···+rnk=m
krk+2kr2k+···+(nk)rnk=nk

(nk)!rtk
(nk + 1−m)!rk!r2k! . . . rnk!

=
∑

s1+s2+···+sn=m
s1+2s2+···+nsn=n

(nk)!st

(nk + 1−m)!
n∏
i=0

si!
.

(2.5.6)
Now, the last sum can be treated exactly as for the case k = 1, yielding the result. This
reduction to the case k = 1 will be obviated for types B and D.

Now we can prove Theorem 2.5.1, which we state again for the convenience of the
reader.

Theorem 2.5.5. The sum of the number of blocks of size tk over all the k-divisible
non-crossing partitions of {1, ..., kn} is given by(

n(k + 1)− t− 1

nk − 1

)
. (2.5.7)

Proof. We use Proposition 2.5.4 and sum over all possible number of blocks. Letting
m̃ = m− 1, we get

nk∑
m=1

(
nk

m− 1

)(
n− t− 1

m− 2

)
=

nk−1∑
m̃=0

(
nk

nk − m̃

)(
n− t− 1

m̃− 1

)
.

Now, using the Chu-Vandermonde’s identity for s = nk − 1, x = n(k + 1) − t − 1 and
y = nk − 1 we obtain the result.

Corollary 2.5.6. The expected number of blocks of size tk of a non-crossing partition
chosen uniformly at random in NCk(n) is given by

(nk + 1)
(
n(k+1)−t−1

nk−1

)(
(k+1)n
n

) . (2.5.8)

Moreover, similar to the case k = 1, asymptotically the picture is very simple, about
a k

k+1
portion of all the blocks have size k, then k

k+1
of the remaining blocks are of size

2k, and so on. This is easily seen using (2.5.8).

Corollary 2.5.7. When n→∞ the expected number of blocks of size tk of a non-crossing
partition chosen uniformly at random in NCk(n) is asymptotically nk

(k+1)t+1 .

The following is a direct consequence of Theorem 1.

Corollary 2.5.8. The sum of the number of blocks of all the k-divisible non-crossing
partitions in NCk(n) is (

n(k + 1)− 1

nk

)
.

Proof. Summing over t, in (2.5.7), we easily get the result.

50



CHAPTER 2. K-DIVISIBLE NON-CROSSING PARTITIONS

Finally, from Corollary 2.5.8 one can calculate the expected number of block of k-
divisible non-crossing partition.

Corollary 2.5.9. The expected number of blocks of a k-divisible partition of [kn] chosen
uniformly at random is given by kn+1

k+1
.

Remark 2.5.10. 1) Corollary 2.5.9 was proved by Armstrong [11] for any Coxeter group.
2) When k = 1 there is a nice proof of Corollary 2.5.9. Recall from Remark 2.1.3 that

the Kreweras complement Kr : NC(n)→ NC(n) is a bijection such that |Kr(π)|+ |π| =
n+ 1 . Then summing over all π ∈ NC(n) and dividing by 2 we obtain that the expected
value is just n+1

2
. This suggests that there should be a bijective proof of Corollary 2.5.9.

This is done in Section 2.6.

2.6 The bijection

In this section we give a bijective proof of the fact that NCk(n) = NCk+1(n). From this
bijection we derive Corollary 2.5.9.

Lemma 2.6.1. For each n and each k let f : NCk+1(n) → NCk(n) be the map induced
by the identification of the pairs {k+ 1, k+ 2}, {2(k+ 1), 2(k+ 1) + 1}, . . . , {n(k+ 1), 1}.
Then f is a bijection.

Proof. First, we see that the image of this map is in NCk(n). So, let π be a (k+ 1)-equal
partition.

(i) Every block has one element on each congruence mod k+1. Indeed, because of the
characterization of non-crossing partitions on Remark 2.1.2, there is at least one interval,
which has of course this property. Removing this interval does not affect the congruence
in the elements of other blocks. So by induction on n every block has one element of each
congruence mod k + 1.

(ii) Note that for each two elements identified we reduce 1 point. So suppose that m
blocks (of size k) are identified in this bijection to form a big block V . Then the number
of vertices in this big block equals m(k+ 1)−#( identified vertices)/2. Now, by (i), there
are exactly two elements in each block to be identified with another element, that is 2m.
So

|V | = m(k + 1)−#(identified vertices)/2

= m(k + 1)− (2m)/2 = mk.

this proves that f(π) ∈ NCk(n).
Now, it is not hard to see that by splitting the points 1, k+2, ..., nk+1 of π ∈ NCk(n)

we get a unique inverse f−1(π) ∈ NCk+1(n). More specifically, f−1 is defined as follows.
Let π = {Vi, ...Vt} be a k-divisible partition and Vi = {e1,1, ..., e1,k, e2,1, ...esi,1, ..., esi,k}, a
block with k(si) elements arranged clockwise and ej,l = kaj + l for some aj ∈ N (which
is possible by a similar argument as (i) above). Then f−1(π) has, for each Vi, si blocks
V 1
i , V

2
i , ...V

si
i with V j

i = {êj,1, ..., êj,k, êj,k+1} consisting of the elements êj,l = (k+1)aj+l for
l = 1, ..., k and êj,k+1 comes from the splitting of ej+1,k, that is, êj,k+1 = (k+1)aj+l−1.

Now we can prove Corollary 2.5.9.
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Figure 2.6: Bijection f between 3-equal and 2-divisible non-crossing par-
titions

Proof of Corollary 2.5.9. For each n and each k and each 0 < i ≤ k+1 let fi : NCk+1(n)→
NCk(n) the map induced by the identification of the pairs {k+1+i, k+1+i+1}, . . . {2(k+
1) + i, 2(k+ 1) + i+ 1}, ...{n(k+ 1) + i, n(k+ 1) + i+ 1} (we consider elements mod nk).
Then by the proof of the previous lemma, each fi is a bijection. So, let π be a fixed
(k + 1)-equal partition. Considering all the bijections fi on this fixed partition, we see
that every point j is identified twice (one with fj−1 and one with fj). Note that each
block obtained by the identification corresponds to a block in the Kreweras complement.
So, for each partition π in NCk+1(n), the collection (fi(π))ki=1 consists of k+ 1 partitions
in NCk(n) whose number of blocks add kn+ 1.

Figure 2.7: Bijections f1,f2 and f3 applied to π =
{{1, 8, 9}, {2, 6, 7}, {3, 4, 5}, {9, 10, 11}}
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Remark 2.6.2. Note that for a k-divisible partition on [2kn] points, the property of
being centrally symmetric is preserved under the bijections fi (see e. g. Fig.6), and then
the arguments given here also work for the partitions of type B. We expect that a similar
argument works for type D.

In the following example we want to illustrate how the bijection given by Lemma 2.6.1
allows us to count k-divisible partitions with some restrictions by counting the preimage
under f .

Example 2.6.3. Let NCk
1→2(n) be the set of k-divisible non-crossing partitions of [kn]

such that 1 and 2 are in the same block. It is clear that π ∈ NCk
1→2(n) if and only if

f−1(π) satisfies that 1 and 2 are in the same block.
Now, counting the (k + 1)-equal non-crossing partitions of [(k + 1)n] such that 1 and

2 are in the same blocks is the same as counting non-crossing partitions of [(k + 1)n− 1]
with n− 1 blocks of size k+ 1 and 1 block of size k containing the element 1, since 1 and
2 can be identified. From Proposition 2.1.4, the size of this set is easily seen to be

k

(k + 1)n− 1

(
(k + 1)n− 1

n− 1

)
=

k

n− 1

(
(k + 1)n− 2

n− 2

)
where the first factor of the LHS is the probability that the block of size k contains the
element 1.

Figure 2.8: A 3-equal and its Kreweras complement divided mod 3.

Let us finally mention that the bijections fi are closely related to the Kreweras com-
plement of a (k + 1)-equal non-crossing partitions, which was considered in [10]. Indeed
Kr(π) can be divided in a canonical way into k + 1 partitions of [n], π1, ..., πk+1, such
that |πi| = |fi(π)|. Fig. 6 shows the bijections f1, f2 and f3 for k = 3, n = 4 and
π = {{1, 8, 9}, {2, 6, 7}, {3, 4, 5}, {9, 10, 11}}, while Fig. 7 shows the same partition as
Fig. 6 with its Kreweras complement divided into the partitions π1, π2 and π3.

53





Chapter 3

k-divisible elements

We introduce the concept of k-divisible elements and study some of the combinatorial
aspects of their cumulants. The main result in this section describes the cumulants of the
k-th power of a k-divisible element.

3.1 Basic properties and definitions

Let (A, φ) be a non-commutative probability space.

Notation 3.1.1. 1) An element x ∈ A is called k-divisible if the only non vanishing
moments of x are multiples of k. That is

φ(xn) = 0 if k - n

2) Let x ∈ A be k-divisible and let αn := κkn(x, ..., x). We call (αn)n≥1 the k-
determining sequence of x.

It is clear that x ∈ A is k-divisible if and only if its non-vanishing free cumulants are
multiples of k.

Example 3.1.2. 1) As a first example of a k-divisible element we consider the k-Haar
unitary. An element u ∈ A is said to be a k-Haar Unitary if it is a unitary, if up = 1, and
if

φ(uk) = 0 unless k|n.
k-Haar unitaries appear naturally in the framework of Example 1.2.2 since they correspond
to elements of order k. Also superdiagonal matrices of the form

A :=


0 1 0 · · · 0
...

. . . 1
. . .

...
. . . 0

0 0 1
1 0 · · · 0


are k-Haar unitaries. We will come back to this realization of k-Haar unitaries later. It
is easily checked that a k-Haar unitary has ∗-distribution

µ =
k∑
i=1

δwi
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where wi = wi and w is a k-th primitive root of unity.
2) Consider X1, X2, ..., Xk free positive random variables identically distributed and

for w a k-th primitive root of unity, denote wi = wi i = 1, ...k. Then

X =
k∑
i=1

wiXi

is a k-divisible element. Indeed let suppose the n does not divide k. Then

kn(X, ...X) = kn(
k∑
i=1

wiXi, ...,

k∑
i=1

wiXi) =
k∑
i=1

κn(wiXi, ..., wiXi) (3.1.1)

=
k∑
i=1

wni κn(Xi, ..., Xi) = κn(X1, ..., X1)
k∑
i=1

win = 0 (3.1.2)

Note that in the case when Xi are Poisson distributed with parameter 1/k the non-
vanishing cumulants of X are 1, thus we may think of X as a free compound Poisson with
jump distribution uniformly distributed in the roots of unity. Similar argument applies if
we take classical random variables. We will come back to this example in Chapter 6.

The following is a generalization of Theorem 11.25 in Nica and Speicher [60] where,
for an even element x, the free cumulants of x2 are given in terms of the moments of x.

Theorem 3.1.3 (Free cumulants of xk, First formula). Let (A, φ) be a non-commutative
probability space and let x be a k-divisible element with k-determining sequence (αn)n≥1.
Then the following formula holds for the cumulants of xk.

κn(xk, xk, ..., xk) =
∑

π∈NC((k−1)n)

α(k−1)
π . (3.1.3)

First proof. Set αn = κkn(x), βn = κn(xk, ..., xk), mn = mn(xk) = mkn(x) and let

A(z) = 1 +
∑

αnz
n

B(z) = 1 +
∑

βnz
n

M(z) = 1 +
∑

mnz
n

The moment-cumulant formula for xk gives

M(z) = B1(z(M(z))

and the moment-cumulant formula for x says

M(z) = A(zM(z)k)

so by Proposition 2.4.1 we get

B(z) = A(zB(z)k−1)

or equivalently,

κn(xk, xk, ..., xk) =
∑

π∈NC((k−1)n)

α(k−1)
π .

56



CHAPTER 3. K-DIVISIBLE ELEMENTS

Second proof. This proof is more involved but gives a better insight into the combinatorics
of k-divisible elements and works for the more general setting of diagonally balanced k-
tuples (defined later). The argument is very similar as in the proof in [60] for k = 2. The
formula for products as arguments Eq. (1.6.5) yields

κn(xk, xk, ..., xk) =
∑

π∈NC(kn)
π∨σ=1kn

κπ(x, x, ..., x, x)

with σ = {(1, 2, 3, ..., k), (k + 1, k + 2, ..., 2k), ..., (kn− n+ 1, ..., kn)}.
Observe that since x is k-divisible, we have∑

π∈NC(kn)
π∨σ=1kn

κπ(x, x, ..., x, x) =
∑

π∈NC(kn), π k-divisible
π∨σ=1kn

κπ[x, x, ..., x, x].

The basic observation is the following

{π ∈ NC(kn) | π k-divisible, π ∨ σ = 1kn} =

{π ∈ NC(kn) | π k-divisible, 1 ∼π kn, sk ∼π sk + 1 ∀s = 1, ..., n− 1}

Let V be the block of π which contains the element 1. Since π is k-divisible, in order that
the size of all the blocks of π to be a multiple of k the last element of V must be sk for
some s ∈ {1, ...n}. But if k 6= n then sk would not be connected to sk + 1 in π and
neither in σ.

1 2 · · ·
V� -

sk-1 sk sk+1 · · ·

This of course means that π ∨ σ 6= 1kn. Therefore 1 ∼π kn. Relabelling the elements
in {1, . . . , kn} by a rotation of k does not affect the properties of π being k-divisible or
π ∨ σ = 1kn, so the same argument implies that sk ∼π sk + 1, ∀k = 1, ..., n− 1.

Now, the set {π ∈ NC(kn) | π k-divisible, 1 ∼π kn, sk ∼π sk + 1 ∀s = 1, ..., n− 1} is
in canonical bijection with {π̃ ∈ NC((k − 1)n) | π̃ is (k − 1)-divisible } induced by the
identification sk ≡ sk + 1, for s = 1, ..., n− 1, and 1 ≡ kn.

And since

α
(k)
kn = κxkn
α(k)
n = 0 if k - n

Then κπ(x, x, ..., x, x)→ α
(k−1)
π̃ . So

κn(xk, xk, ..., xk) =
∑

π̃∈NC(kn)
π̃ k-divisible

α
(k−1)
π̃ =

∑
π∈NC((k−1)n)

α(k−1)
π

as desired.
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Proposition 3.1.4 (Free cumulants of xk, Second formula). Let (A, φ) be a non-commutative
probability space and let x be a k-divisible element with k-determining sequence (αn)n≥1.
Then the following formula holds for the cumulants of xk.

κn(xk, xk, ..., xk) =
∑

π∈NC(n)

βπ

where
βk =

∑
π∈NC((k−1)n)

απ. (3.1.4)

Proof. This follows from Proposition 2.4.1 and Theorem 3.1.3.

The last theorem gives a moment-cumulant formula between βn and κn(xk..., xk) which
says, for example, that when βn is a cumulant sequence then xk+1 is a free compound
Poisson and thus �-infinitely divisible. This will be explained in detail in Section 5.

Proposition 3.1.5 (Free cumulants of xk, Third formula). Let (A, φ) be a non-commutative
probability space and let x be a k-divisible element with k-determining sequence (αn)n≥1.
Then the following formula holds for the cumulants of xk.

κn(xk, xk, ..., xk) = [α ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

]n. (3.1.5)

Proof. This follows from Corollary 2.4.2 and Proposition 3.1.4.

3.2 Freeness and k-divisible elements

Recall the definition of diagonally balanced pairs from Nica and Speicher [57].

Definition 3.2.1. Let (A, φ) be a non-commutative probability space, and let a1, a2 be
in A. We will say that (a1, a2) is a diagonally balanced pair if

φ(a1a2 · · · a1a2a1︸ ︷︷ ︸
2n+1

) = φ(a2a1...a2a1a2︸ ︷︷ ︸
2n+1

) = 0. (3.2.1)

Two prominent examples of diagonally balanced pairs are (u, u∗) where u is a Haar
unitary and (s, s) where s is even. It is well known in free probability that if a is free
from {u, u∗} then uau∗ is free from a, and similarly if a is free from s then it is also free
from sas.

More generally, it was proved in [57] that if (b1, b2) is a diagonally balanced pair and a
is free from {b1, b2} then b1ab2 is free from a. Now, notice that if s is k-divisible then the
pair (si, sk−i) is diagonally balanced and then sask−1, s2ask−2, ..., sk−1as and a are free.
Instead of siask−i, we can consider any monomial on a and s of degree k on s and freeness
will still hold. Furthermore, we see that if a and s are free and s is k-divisible then shs
and a are free, where p is any polynomial in a and s of degree k on s. This is the content
of the next proposition for monomials. The general case follows trivially from it.

Proposition 3.2.2. Let s be k-divisible and a be free of s. And let h = sa1sa2sa3s...sak−1s,
where for all i = 1, ..., n the element ai is free from s. Then h and a are free.
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Proof. Consider a mixed cumulant of h and a and use the formula for cumulants with
products as arguments.

κn(..., h, ..., a, ...) =
∑

π∈NC(n)
π∨σ=1n

κn(..., s, a1, s, a2, s, ...s, ak−1, s︸ ︷︷ ︸
h

, ..., a, ...). (3.2.2)

Let us analyze the summands of the RHS and show that they must vanish. In order to
satisfy the minimum condition a must be joined with some element on h. Now, for this
h = sa1s, a2s...sak−1s, a can not be joined with some s, since they are free. So it must
join with some ai as follows.

κn(...,
h︷ ︸︸ ︷

s, a1, s, ...s, ai, s, ...s, ak−1, s, ..., s, a, ...)κn(..., s, a1, s, ...s, ai, s, ...s, ak−1, s, ..., s︸ ︷︷ ︸
km−i number of s

, a, ...)

In this case there must be a block of size not a multiple of k containing only s´s (since
s is free from {a, a1, ...an}) and then κn(..., s, a1, s, a2, s, ...s, ak−1, s, ..., a, ...) must vanish
for all summands in RHS. So any mixed cumulant of h and a vanishes and hence a and
h are free.

3.3 Diagonally balanced k-tuples

We may generalize the concept of diagonally balanced pairs to k-tuples.

Definition 3.3.1. Let (A, φ) be a non-commutative probability space, and let a1, . . . , ak
be in A. We will say that (a1, . . . , ak) is a diagonally balanced k-tuple if every ordered
sequence of size not a multiple of k vanishes with φ, i.e.

φ(ajaj+1 · · · aka1 · · · aka1 · · · ai−1ai) = 0 (3.3.1)

whenever aj−1 6= ai (the indices are taken modulo k).

The proof of Proposition 3.2.2 can be easily modified for diagonally balanced k-tuples,
and is left to the reader. We have a more general result.

Theorem 3.3.2. Let (A, φ) be a non-commutative probability space, and let (s1, . . . , sk)
be a diagonally balanced k-tuple free from a. And let h = s1a2s2a3s3 · · · sk−1ak−1sk, where
for all i = 1, ..., n the element ai is free from {s1, . . . , sk}. Then h and a are free.

A special kind of diagonally balanced pair which is very important in the free probabil-
ity literature is the one of R-diagonal pair, introduced in [57]. There is a lot of structure in
these elements and their relation to even elements is well known [60]. Moreover a big class
of invariant subspaces have been studied by Speicher and Sniady [71] and their relation
to R-cyclic matrices was pointed out in [55].

Definition 3.3.3. Let (A, φ) be a non-commutative probability space, and let a1, · · · , ak
be in A. We will say that (a1, · · · , ak) is an R-diagonal k-tuple if the only non-vanishing
free cumulants have increasing order, i.e. they are of the form

κkn(a1, a2, ..., ak, a1, a2, ..., ak, ..., a1, a2, ..., ak) = κkn(ai, ai+1, ..., ak, a1, ..., ak, a1, ..., ak−i+1).
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Remark 3.3.4. The case k = 2 was well studied in [57]. An element a is R-diagonal if
and only if the pair (a, a∗) is R-diagonal.

Theorem 3.3.5 (cumulants of R-diagonal tuples). Let (a1, . . . , as) be an R-diagonal k-
tuple in a tracial state and denote by

αn := κkn(a1, . . . , ak, . . . , a1 . . . ak). (3.3.2)

Then, if a = a1a2 · · · ak, we have

κn(a, . . . , a) =
∑

π∈NC(n)

α(k−1)
π . (3.3.3)

Proof. Again, the formula for products as arguments yields

κn(a, a, . . . , a) =
∑

π∈NC(kn)
π∨σ=1kn

κπ(a1, a2, ..., ak−1, ak)

with σ = {(1, 2, 3, ..., k), (k + 1, k + 2, ..., 2k), ..., (k(n− 1) + 1, ..., nk)}.
Observe that by the fact that (a1, . . . , ak) is an R-diagonal k-tuple∑

π∈NC(kn)
π∨σ=1kn

κπ(a1, a2, ..., ak−1, ak) =
∑

π∈NC(kn), π k-divisible
π∨σ=1kn

κπ(a1, a2, ..., ak−1, ak).

From this point, the argument is identical as in the second proof of Theorem 3.1.3.

Similar formulas as in Theorems 3.1.4 and 3.1.5 hold for R-diagonal tuples.

Proposition 3.3.6. Let (a1, . . . , ak) be an R-diagonal k-tuple in a tracial state and denote
by

αn := κkn(a1, . . . , ak, . . . , a1, . . . , ak). (3.3.4)

The following formulas hold for the cumulants of a = a1a2 · · · ak

κn(a, . . . , a) = [α ∗ ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
k times

]n

and
κn(a, . . . , a) =

∑
π∈NC(n)

βπ

where
βk =

∑
π∈NC((k−1)n)

α(k−1)
π .

Remark 3.3.7. (1) Theorem 3.3.5 and Proposition 3.3.6 are also true for diagonally
balanced k-tuples. One can easily modify the proofs by using Remark 2.1.2.

(2) Notice that the determining sequence of a diagonally balanced k-tuple is deter-
mined by the moments of a = a1a2 · · · ak but the same is not true for the whole distribution
of (a1, a2, . . . , ak).

60



CHAPTER 3. K-DIVISIBLE ELEMENTS

3.4 R-cyclic matrices and R-diagonal tuples

Let (A, φ) be a non-commutative probability space, and let d be a positive integer. Con-
sider the algebra Md(A) of d× d matrices over A and the linear functional φd on Md(A)
defined by the formula

φ((ai,j)
n
i,j=1) =

1

d

d∑
i=1

φ(aii). (3.4.1)

As explained in Example 1.2.2 the pair (Md(A), φd) is itself a non-commutative probability
space.

Definition 3.4.1. Let (A, φ) and let A ∈ (Md(A), φd). A is said to be R-cyclic if the
following conditions holds

κn(ai1,j1 , . . . , ain,jn) = 0 (3.4.2)

for every n > 0 and every 1 ≤ i1, j1, ... ≤ d for which it is not true that j1 = i2, . . . , jn−1 =
in, jn = i1.

We can realize k-divisible elements as R-cyclic matrices with R-diagonal k-tuples as
entries. A formula for the distribution of an R-cyclic matrix in terms of its entries was
given in [55]. However, in the case treated here, this formula will not be needed in full
generality and we will rather use the special information we know to obtain the desired
distribution.

Proposition 3.4.2. Let (a1, a2, ...ak) be a tracial diagonally balanced k-tuple in (A, φ)
and consider the superdiagonal matrix

A :=


0 a1 0 · · · 0
...

. . . a2
. . .

...
. . . 0

0 0 ak−1

ak 0 · · · 0


as an element in (Mk(A), φk).

(1) A is k-divisible.
(2) Ak has the same moments as a := a1 · · · ak. In particular, if a is positive A has

moments as a k-symmetric distribution.
(3) A has the same determining sequence as (a1, a2, ...ak).
(4) A is R-cyclic if and only if (a1, . . . , ad) is an R-diagonal tuple.

Proof. (1) A is k-divisible since the powers of A which are not a multiple of k have zero
entries on the diagonal.

(2) This is clear since

Ak :=


a1 · · · ak 0

a2 · · · aka1

. . .

0 ak · · · ak−1


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which by traciality has moments φ((a1...ak)
n) = φ(an).

(3) By Theorems 3.1.3 and 3.3.5, the determining sequence of A depends on the
moments of Ak in the same way as (a1, a2, ..., ak) so by (2) the determining sequences
must coincide.

(4) The definition of R-cyclicity says that κn(ai1 , a12 , . . . ain) = 0 whenever is not true
that i2 = i1 + 1, i3 = i2 + 1,...,i1 = in + 1. This is equivalent to the fact that n is a
multiple of k and the indices are increasing, which is exactly the definition of R-diagonal
tuples.

Example 3.4.3 (Free k-Haar unitaries). The simplest example of the last theorem is
given by taking ai = 1.

A :=


0 1 0 · · · 0
...

. . . 1
. . .

...
. . . 0

0 0 1
1 0 · · · 0


Clearly, this matrix is a k-Haar unitary, with distribution µA = 1

k

∑k
j=1 δqj as an element

in (Mk(A), φk). Notice that, instead of the upperdiagonal matrix, we can choose any
permutation matrix of size nk × nk in which any cycle has length k. Of course, if we
choose one of them at random, we still get a k-Haar unitary. Moreover, Neagu [54] proved
that if we let N →∞ we get asymptotic freeness in the following sense.

Theorem 3.4.4. Let {UN
1 , U

N
2 , ..., U

N
r }N>0 be a family of Nk × Nk independent ran-

dom permutation matrices with cycle lengths of size k. Then as N goes to infinity,
{UN

1 , U
N
2 , ..., U

N
r } converges in ∗-distribution to a ∗-free family u1, u2, ..., ur of random

variables with each ui k-Haar unitary.

This gives a matrix model for u1, ..., ur free k-Haar unitaries. Moreover, Neagu showed
asymptotic freeness with Gaussian Ensembles.

Theorem 3.4.5. Let {UN
1 , U

N
2 , ..., U

N
r }N>0 be a family of Nk×Nk independent random

permutation matrices with cycle lengths of size k and {GN
1 , G

N
2 , ..., G

N
l }N>0 be a family of

Gaussian Matrices. Then as N goes to infinity, {UN
1 , U

N
2 , ..., U

N
r } and {GN

1 , G
N
2 , ..., G

N
l }N>0

are asymptotically free.

3.5 Random Matrices

In this section we want to show how our results combined with the asymptotic freeness
results of Neagu can be used in the theory of Random Matrices. One important realization
of freeness by random matrices is done using the so-called Haar unitary random matrices.
Recall from Section 1.8 that if AN and BN are two sequences of constant matrices, each
of which has a limit distribution with respect to the normalized trace, and if UN is a
Haar Unitary N ×N random matrix, then AN and UNBNU

∗
N are asymptotically free as

N →∞. This observation has been used repeatedly in order to go from Free Probability
to Random Matrices and vice versa.
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Now, in practice, it is not so easy to generate Haar unitary random matrices; the most
frequent method relies on the polar decomposition of Gaussian Matrices. We want to show
that in certain cases, simpler methods may be used. The main observation is that we can
replace a Haar unitary by a permutation matrix with cycles of size k (corresponding to
k-Haar unitaries), which are fairly easy to generate.

Selfadjoint random variables

First, we consider some typical examples of selfadjoint random variables.

Example 3.5.1. Consider two free Bernoulli random variables b1 and b2 with distribution:

µ =
1

2
δ−1 +

1

2
δ1.

The free additive convolution µ�µ may be easily shown to be an arcsine law with density
given by

1

π
√

4− t2
|t| < 2

By considerations of the previous section, one may realize this as b1 = v2 and b2 =
ukv2uk

∗, where v2 is a 2-Haar unitary (i.e a Bernoulli) and uk is a k-Haar unitary free
from b (conjugating with unitaries does not change the distribution). This means that
the distribution of b1 + b2 = v2 + ukv2u

∗
k is µ� µ.

Moreover, Theorem 3.4.4 gives us a random matrix approximation for this convolution
by considering the ensemble U

(N)
k V

(N)
2 U

(N)
k + V

(N)
2 where U

(N)
k and V

(N)
2 are independent

random Nk × Nk permutation matrices with cycle lengths of size k and 2, respectively.
Figure 3.1 shows the accuracy of this approximation, for different values of k.

Figure 3.1: Histograms of the eigenvalues of a 1200× 1200 sized random
matrices of the form U

(N)
k V

(N)
2 U

(N)
k + V

(N)
2 where U

(N)
k and V

(N)
2 are

independent random permutation matrices with cycle lengths of size k
and 2, respectively. From left to right we show samples for k = 3, 5, 12
compared to the arcsine density.

Example 3.5.2 (multiplication with a projection). Consider a Bernoulli random variable
b with distribution:

µ =
1

2
δ−1 +

1

2
δ1.
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and a free projection p with distribution

ν =
1

2
δ0 +

1

2
δ1.

The free multiplicative convolution µ� ν may be easily shown to be 1/2(δ0 + a) where a
arcsine law with density given by

1

π
√

4− t2
|t| < 2

One may realizebp with b = v2 and p = uk(v2 + 1)uk
∗, where v2 is a 2-Haar unitary (i.e a

Bernoulli) and uk is a k-Haar unitary free from b.
Theorem 3.4.4 gives us a random matrix approximation for this convolution by con-

sidering the ensemble U
(N)
k (V

(N)
2 + I(N))U

(N)
k +V N

2 where U
(N)
k and V

(N)
2 are independent

random Nk × Nk permutation matrices with cycle lengths of size k and 2, respectively
and I(N) is the identity matrix. Figure 3.2 shows the accuracy of this approximation, for
k = 5.

Figure 3.2: Arcisne distribution(left) and symmetric Beta distribution
(right) compared with histograms of the eigenvalues of their respective
random matrix models. The histograms correspond to a realization
1200× 1200 sized random matrix.

One may want to combine additive and multiplicative convolution. For instance, in
the setting of free compound Poissons we can multiply the arcsine distribution from the
previous example with a free Poisson of parameter 1.

Example 3.5.3 (Symmetric Beta distribution). Let π be a free Poisson distribution and
a be an arcsine distribution on (−2, 2), respectively. The free multiplicative convolution
π � a has been shown in [4] to have a symmetric distribution with density

1

2π
|x|−1/2 (2− |x|)1/2dx, |x| < 2.

Since Gaussian random matrices converge to a Wigner semicircle and a free Poisson is
the square of a semicircle then we can model π � a with A(N)(G(N))2 where A(N) =
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U
(N)
k V

(N)
2 U

(N)
k + V2 from the last example and G(N) is a Gaussian Orthogonal Ensemble

independent of A(N). Figure 3.2 compares theory with simulation.

In a similar fashion we can model other distributions coming from free multiplicative
convolutions.

Example 3.5.4. Now we give examples that can be considered in our framework using
k-Haar unitaries to obtain freeness. Figure 3.3 shows their approximations with random
matrices.

1) Powers of free Poisson. The free multiplicative powers of a free Poisson π�k are
determined by the equation Sπk(z) = Skπ(z). The case k = 2 has an explicit density given
by

21/3
√

3(21/3(27 + 3
√

(81− 12x))2/3 − 6x1/3)

((12π)x2/327 + 3
√

(81− 12x))1/3)

2) Product of free Poisson with a centered free Poisson. The free multiplicative convo-
lution µ = π � π̂λ between a free Poisson of parameter λ shifted by λ with a free Poisson
with parameter 1 is determined in terms of the Cauchy transform g = Gµ by the equation

1 + g4λz2 − (2λz − z2 − 2λ2z)g3 + (λ3 + λz + λ− 2λ2)g2 − (λ+ z − 1)g = 0

3) Wigner with Poisson. The free multiplicative convolution µ = w � πλ between a
Wigner semicircle with a free Poisson with parameter λ is determined in terms of the
Cauchy transform g = Gµ by the equation

1 + g4z2 − (2z − 2λ)g3 + (−2λ+ λ2 + 1)g2 − gt = 0

Figure 3.3: Histograms of the eigenvalues of random matrices of size
1200 × 1200 modeling the free multiplicative convolution π � π(left),
w�πλ (center) and π� π̂λ (right) for λ = 2 compared with their density.

In the next example we consider different ensembles that converge to the same distri-
bution.

Example 3.5.5. The three following examples have the same distribution, namely the
probability measure with density

f(t) =

√
3

2π | t |

(
3t2 + 1

9h(t)
− h(t)

)
, | t |≤

√
(11 + 5

√
5)/2, (3.5.1)
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where

h(t) =

√
18t2 + 1

27
+

√
t2(1 + 11t2 − t4)

27
.

1) Free Sum of Compound Poisson. Let π be a free Poisson distribution and b be a
Bernoulli distribution. Then the density of (π� b)� (π� b) is given by (3.5.1) . We may
approximate this distribution by matrices of the form UkGV2GU

∗
k +GV2G.

2) Free difference of free Poissons. Let P1 and P2 be two free random variables with
Marchenko-Pastur distribution (or free Poisson). The difference P1−P2 has a distribution
π(b, 2) a free compound Poisson with a jump distribution a Bernoulli and rate 2. The
density of this measure is also given by (3.5.1). We can model this distribution by matrices
of the form UkG

2Uk
∗ −G2.

3) Free commutator. Let w be the Wigner semicircle distribution, and denote by w�w
the free commutator of w, that is, the distribution of i(S1S2−S2S1) where S1 and S2 are
free semicircle variables; w�w is given in [59] and coincides with the distribution (3.5.1).
We may model w�w with matrices of the form UkGU

∗
kG+GUkGU

∗
k .

Figure 3.4: Histograms of the eigenvalues of random matrices of size
1200×1200 of the form UkGV2GUk

∗+GV2G(left), UkG
2Uk

∗−G2(center)
and UkGUk

∗G+GUkGUk
∗ (right) compared with the density of the free

commutator w�w.

Non selfadjoint random variables

Now, let us consider some non selfadjoint operators, more specifically R-diagonal ones.
For non-normal operators the right notion of spectral distribution is given by the Brown
Measure introduced by Brown in 1893 [30]. The Brown Measure of R-diagonal operators
in a von Neumann algebra was computed by Haagerup and Larsen [38]. We will use their
results without further comments.

Example 3.5.6 (Product of centered Bernoullis). By a well known result of Nica and
Speicher ([59]), the product of two free Bernoullis b1b2 is R-diagonal and moreover it is dis-
tributed as a Haar unitary, that is, the Brown Measure of b1b2 is the uniform distribution
on the circle. So let UN

2 , V
N

2 be a pair of ensembles of random permutations with cycles
of size 2. Then for all N the distribution of UN

2 and V N
2 is a Bernoulli b = 1

2
(δ−1 + δ1).

Since UN
2 and V N

2 are asymptotically free, one expects that the asymptotic distribution
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of UN
2 V

N
2 is also the Haar measure on the unit circle. Figure 3.5 shows a simulation of

this using random matrices.

Figure 3.5: Eigenvalues of a 1200×1200 random matrix of the type B1B2

with B1 and B2 independent permutation matrices with cycles of size 2
(left) and of the type U5G with U5 a permutation matrix with cycles of
size 5 and G is an independent Gaussian matrix (right).

Theorem 3.5.7. Let b1 be a k1-Haar unitary and b2 a k2-Haar unitary with {b1, b
∗
1} free

from {b2, b
∗
2} and k1, k2 > 1. Then b1b2 is a Haar unitary.

Proof. The proof is identical as the one of Nica and Speicher [60, Theorem 15.17] where
they prove this for k1 = k2 = 2 and general even elements a and b. For x = b1b2 we have
x∗ = bk1−1

2 bk2−1
1 . The cumulants of odd length clearly vanish because of divisibility. Then

to show that the free cumulants of κn(..., ab, ab, ...) = 0, using the formula for products as
arguments, we can write these cumulants as

κn(..., b1b2, b1b2, ...) =
∑

π∨σ=1n

κπ[..., b1, b2, b1, b2, ...],

where σ = {(1, 2), (3, 4), ..., (2n − 1, 2n)}. We conclude by an argument of divisibility,
similar as in the proof of Theorem 3.2.2

Example 3.5.8 (Product of semicircle and Bernoulli). Let UN
2 be a random permutation

matrix with cycles of size 2 (a 2-Haar unitary) and GN a Wigner Matrix with Gaussian
entries. Then for all N the distribution of UN

2 is a Bernoulli b = 1
2
(δ−1 + δ1) and the

distribution of GN is asymptotically a semicircle. The product of free random variables b
and s, b being a Bernoulli and s a semicircle, is also R-diagonal and moreover a circular
operator with Brown measure a uniform distribution on the unit disk. Again, one expects
that the empirical distribution of UN

2 G
N approximates the uniform distribution on the

unit circle, as N →∞. Figure 3.5 shows a simulation using random matrices.

Similar arguments as in Theorem 3.5.7 show the following result which generalizes
example 3.5.8.
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Theorem 3.5.9. Let uk be k-Haar unitary and s be an even operator free from {uk, u∗k}.
Then uks is an R-diagonal with determining sequence as s.

Figure 3.6: Eigenvalues of a 1200×1200 random matrix of the type UkG
with G a selfadjoint Gaussian matrix and Uk an independent permutation
matrix with cycles of size k = 5 (left) and k = 12 (right).

As a final example let us consider sums of free k-Haar unitaries.

Figure 3.7: Eigenvalues of a sum of two independent random permutation
matrices of size 1200× 1200 with cycles of length 4,5 and 6.

Example 3.5.10 (Sum of uk Haar unitaries). Let U (N), V (N) be a pair of ensembles of
random permutations of size Nk×Nk with cycles of size k. Then for all N the distribution
of U (N) and V (N) is a k-Haar. One may ask what is the asymptotic distribution of
U (N) + V (N). By asymptotic freeness one expects that, as N → ∞, the eigenvalues
concentrate in the spectrum of un + vm, for un and vm free n- and m-Haar unitaries.

As shown by Lehner [49], for n,m ∈ N if un and vm are free m- and n-Haar unitaries
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the spectrum of un + vm may be calculated as follows. Consider the equations

s(1− tm)− t(1− sn) = 0 (3.5.2)

λt− 1− sn−1t = 0 (3.5.3)

(|s|2 + · · ·+ |s|2n−2)(|t|2 + · · ·+ |t|2m−2) < 1 (3.5.4)

Then λ is not in the spectrum if there is a solution for the system above. Figure 3.8
below shows the case k = 3 compared with a random matrix approximation.

Figure 3.8: Eigenvalues of the sum of two independent random permuta-
tion matrices of size 1200× 1200 with cycles of length 3 (left) compared
with the curve describing the spectrum of the sum of two free 3-Haar
unitaries

Recall that for q a primitive k-th root of unity, we consider the k-semiaxes Ak :=
{x ∈ C | x = tqs for some t > 0 and s ∈ N} and denote by Mk the subclass of MC of
probability measures supported on Ak such that µ(B) = µ(qB), for all Borel sets B. A
measure in Mk will be called k-symmetric.

From these last examples one may have the impression that trying to define a free
convolution on the k-symmetric distributions might not make sense, since the spectrum
of the sum of two operator with k-symmetric distribution in general leaves the k semiaxes
Ak. However, as we will see in the next chapter, if we only care about moments (and
not ∗-moments) it does make sense to define free powers and we can define free additive
convolution for a big class of measures.

One may also ask about free multiplicative convolution. As can be seen above, even if
we care only about moments it makes no sense to consider a free multiplicative convolution
between a k1 and k2 symmetric distribution, whenever k1 and k2 are greater than 1. This
is not a surprise since even in the real case (as pointed in [64]) when both random variables
have mean zero the moments of the product are all 0. However if we consider one of the
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variables to be positive and the other k-symmetric we will define the free multiplicative
convolution between them. Figure 3.9 shows the matrix approximation for the product of
a 5-Haar unitary with free Poisson. Again, as for the case of the sum, we will only deal
with moments and not ∗-moments.

Figure 3.9: Eigenvalues of the product U5P of two independent random
matrices of size 1200× 1200 with U5 a permutation with cycles of size 5
and P the square of a Gaussian Matrix
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Chapter 4

Main Theorem and first
consequences

In this, the main chapter of the thesis, we will prove the Main Theorem. This theorem
will not only allow us to define free multiplicative convolution between k-symmetric dis-
tributions and probability measures in M+ but, moreover, will permit us to define free
additive convolution powers for k-symmetric distributions. Also, on the combinatorial
side, we generalize Theorem 2.4.3 to any multiplicative family.

The main tool that we will use is the S-transform. This S-transform is not defined
uniquely for k-divisible random variables, the principal problem is choosing an inverse for
the transform ψ.

4.1 The S-transform for random variables with k van-

ishing moments

We will start in the general setting of an algebraic non-commutative probability space
(A, φ) and define an S-transform for random variables such the first k − 1 moments
vanish.

Recall the definition of the S-transform for positive measures. For a probability mea-
sure µ on R, we let ψµ(z) :=

∫
R

zx
1−zxµ(dx). ψµ coincides with a moment generating

function if µ has finite moments of all orders. Denoting by χµ the inverse under compo-
sition of ψµ, the S-transform is defined as

Sµ(z) :=
1 + z

z
χµ(z), z ∈ ψµ(iC+). (4.1.1)

In general, when x is a selfadjoint random variable with non-vanishing mean the S-
transform can be defined as follows.

Definition 4.1.1. Let x be a random variable with φ(x) 6= 0. Then its S-transform is
defined as follows. Let χ denote the inverse under composition of the series

ψ(z) :=
∞∑
n=1

φ(xn)zn, (4.1.2)
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then

Sx(z) := χ(z)
1 + z

z
. (4.1.3)

Here, φ(x) 6= 0 ensures that the inverse of ψ exists as a formal power series. The
importance of the S-transform is the fact that Sxy = SxSy whenever x, y are free random
variables with φ(x) 6= 0 and φ(y) 6= 0.

We want to consider the case when φ(x) = 0. The case when x is selfadjoint and
φ(x2) > 0 was treated in Raj Rao and Speicher in [64]. The main observation is that
although ψ cannot be inverted by a power series in z it can be inverted by a power series
in
√
z. This inverse is not unique, but there are exactly two choices.

The more general case where φ(xn) = 0 for n = 1, 2, ..., k − 1 and φ(xk) 6= 0 can be
treated in a similar fashion. In this case there are k possible choices to invert the function
ψ. We include the proof for the convenience of the reader.

Proposition 4.1.2. Let ψ(z) be a formal power series of the form

ψ(z) =
∞∑
n=k

αnz
n (4.1.4)

with αk > 0. There exist exactly k power series in z1/k which satisfy

ψ(χ(z)) = z. (4.1.5)

Proof. Let

χ(z) =
∞∑
i=1

βiz
i/k (4.1.6)

The equation ψ(χ(z)) = z is equivalent to

∞∑
n=k

αn(
∞∑
n=1

βiz
i/k)n = z. (4.1.7)

This yields the system of equations

1 = αkβ
k
1

and

0 =
r∑

n=k

r∑
i1+···+in=r

αnβin . . . βin

for all r > 2. Clearly the solutions of the first equation are

β1 = α
1/k
k

while the other equations ensure that βn is determined by β1 and the α’s.

Now, we can define the S-transform for random variables having vanishing moments
up to order k − 1.
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Definition 4.1.3. Let x be a random variable with φ(xn) = 0 for n = 1, 2, . . . , k− 1 and
φ(xk) > 0. Then its S-transform is defined as follows. Let χ(z) =

∑∞
i=1 βiz

i/k be the
inverse under composition of the series

ψ(z) =
∞∑
n=k

φ(xn)zn (4.1.8)

with leading coefficient β1 > 0. Then

Sx(z) = χ(z)
1 + z

z
. (4.1.9)

The following theorem is a generalization of Theorem 2.5 in [64] and shows the role of
the S-transform with respect to multiplication of free random variables.

Theorem 4.1.4. Let x ∈ (A, φ) such that φ(xn) = 0 for n = 1, 2, ..., k− 1 and φ(xk) > 0
and let y ∈ (A, φ) be such that φ(y) 6= 0. If Sx and Sy denote their respective S-transforms,
then

Sxy(z) = SxSy(z),

where Sxy is the S-transform of xy.

Proof. The proof is exactly the same as in [64]. The only observation to be made is that
xy also satisfies the conditions in Definition 4.1.3. Indeed, by freeness φ((xy)n) = 0 for
n = 1, 2, ..., k− 1 and φ((xy)k) = φ(xk)φ(y)k > 0 and then all the manipulations are valid
for the case when k > 2. The key point is to verify that Cxy(Sxy(z)) = z.

Remark 4.1.5. We cannot drop the assumption φ(y) 6= 0 in Theorem 4.1.4. As pointed
out by Rao and Speicher [64], freeness would yield φ((yx)n) = 0, for all n ∈ N.

4.2 Free Multiplicative convolution of k-symmetric

distributions

Recall the notion of free multiplicative convolution of two measures µ inM and ν inM+.
The idea is to consider a selfadjoint random variable x and a positive random variable
y (free from x) with distributions µ and ν, respectively, and call µ � ν the distribution
of y1/2xy1/2. This element is selfadjoint so we can be sure that µ � ν is a well defined
probability measure on M, but moreover y1/2xy1/2 and xy have the same moments. In
other words, µ � ν can be defined as the only distribution in M whose moments equal
the moments of xy.

Following these ideas, the strategy for defining a free multiplicative convolution µ�ν,
for µ k-symmetric and ν with positive support, is clear. We consider a k-divisible random
variable x and a positive element y (free from x) with distributions µ and ν, respectively.
Given a k-divisible random variable x and a positive element y, it is clear that xy is a also
k-divisible in the algebraic sense. The interesting question is how to find an element with
a k-symmetric distribution with the same moments as xy. In this section we prove that
this element does exist. Observe that in this case taking the random variable y1/2xy1/2

does not work since it is not necessarily normal.
Recall that given a k-symmetric probability measure µ in Mk, we denote by µk the

probability measure in M+ induced by the map t→ tk.
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Example 4.2.1. 1) Let X be a k-divisible random variable with Xk positive and Y
a positive operator. Moreover suppose that X and Y are classically independent (in
particular they commute). Now, XY is also k-divisible since φ((XY )n) = φ(Xn)φ(Y n)
and (XY )k = XkY k is also positive. So the property of X of being k-divisible with Xk

positive is maintained when multiplying with a (tensor) independent positive operator.
2) Let µ be a k-symmetric distribution. We see that µ can be realized as the distri-

bution of XY , where X is a k-Haar element and Y is an independent positive operator.
Indeed consider the pushforward µk of µ, then there exist some positive operator Z

distributed as µk. Now, let Y be the positive operator with Z = Y k. By (1) if Y is
a k-Haar unitary independent from X then XY has also a k-symmetric distribution.
Moreover (XY )k = Xk. So the distribution of (XY )k is µk.

Remark 4.2.2. 1) In view of Example 4.2.1 we can easily define the classical multi-
plicative convolution between a k-symmetric distribution and a positive one. In the free
probability setting this requires much more work, since free random variables do not
commute.

We start by stating a relation between the S-transform of a k-divisible element x and
the S-transform of xk.

Lemma 4.2.3. Let x ∈ (A, φ) be a k-divisible element. Then the S-transforms of x and
xk are related by the formula

Sxk(z) = Sx(z)k(
z

1 + z
)k−1.

Proof. By definition mn(xk) = mnk(x) and ms(x) = 0 if k - s. So

ψx(z) =
∞∑
n=1

mn(x) =
∞∑
n=1

mnk(x)znk

and

ψxk(z) =
∞∑
n=1

mn(xk) =
∞∑
n=1

mnk(x)zn.

Thus ψx(z) = ψxk(z
k), or equivalently, χxk(z) = χx(z)k and then

Sx(z)k = (
1 + z

z
)kχx(z)k = (

1 + z

z
)kχxk(z) = (

1 + z

z
)k−1Sxk(z).

So
Sxk(z) = Sx(z)k(

z

1 + z
)k−1.

Now we are in position to prove the Main Theorem.

Main Theorem. Let x, y ∈ (A, φ) with x positive and y a k-divisible element free from
x. Consider x1, ..., xk free positive elements with the same moments as x. Then (xy)k and
ykx1 · · ·xk have the same moments, i.e.

φ((xy)kn) = φ((ykx1 · · ·xk)n) ∀n ∈ N. (4.2.1)
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Proof. It is enough to check that the S- transforms of (xy)k and ykx1 · · · xk coincide. Now

S(xy)k(z) = Sxy(z)k(
z

1 + z
)k−1 = Sx(z)kSy(z)k(

z

1 + z
)k−1

= Sx(z)k · Syk(z) = S(x1)(z) · · ·Sxk(z) · Syk(z)

= Sykx1···xk(z)

Note that if x positive and y is k-divisible element free from x, then xy is also a
k-divisible element.

Remark 4.2.4. In the tracial case, Theorem 3.2.2 gives another proof of Main Theorem.
Indeed, consider the moments of sas...sasa when s is k-divisible; since sas...sas, and a
are free, by Theorem 3.2.2, then these moments coincide with the moments of sas..sasa1

where a1 is free from s and a. Now by, traciality the moments of sas...sas coincide with
the moments of s2as...sa, which again, by Theorem 3.2.2 coincide with the moments of
s2as...sa2 where a2 is free from s and a. So the moments of sas...sasa coincide with the
moments of s2as...sa2a1 with a1, a2, a and s free between them. Continuing with this
procedure we see that the moments of sas...sasa = (sa)k coincide with the moments of
ska1a2 · · · ak, with ai’s and s free between them.

Corollary 4.2.5. Let x be k-divisible with xk positive and let y be positive. For Z = (xy)k

there is a positive element Ẑ with φ(Zn) = φ(Ẑn) for all n ∈ N.

Proof. This is a straightforward consequence of the Main Theorem.

The previous corollary allows us to define free multiplicative convolution between a
k-symmetric distribution and probability measure in M+.

Definition 4.2.6. Let µ ∈ M+ and let ν ∈ Mk be a k-symmetric probability measure.
Suppose that µ and ν are the distributions of X and Y , free elements in some probability
space (A, φ), respectively. We define µ � ν = ν � µ to be the unique k-symmetric
probability measure with the same moments as XY .

Remark 4.2.7. Notice that the last definition does not depend on the choice of X and Y
since the distribution of X and Y (by freeness) determine the moments of XY moments
uniquely.

Finally, we obtain the mentioned relation.

Corollary 4.2.8. Let µ ∈M+ and let ν ∈Mk. The following formula holds:

(µ� ν)k = µ�k � νk. (4.2.2)

Remark 4.2.9. One may ask if any k-divisible symmetric can be represented as the free
multiplicative convolution of a k-Haar νk = 1

k

∑k
j=1 δqj and a positive measure. However,

Corollary 4.2.8 shows that this is not the case since

(µ� νk)
k = µ�k.
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4.3 Free additive powers

Just as in the multiplicative case, it is not straightforward to show that free additive
convolution of k-symmetric distributions is well defined. In fact, at this point this is an
open problem.

Open Question. Can we define free additive convolution of k-symmetric probability
measures?

We will give a partial answer in the next section, see Theorem 5.3.9. However, another
important consequence of the Main Theorem is the existence of free additive powers µ�t,
when µ is a probability measure with k-symmetry and t > 1.

The framework of a compressed space from Example 1.2.2 allows to define a convolu-
tion semigroups for probability measures on R, see [56] .

Recall that given a non-commutative probability space (A, φ) and a projection p ∈ A
such that φ(p) = t 6= 0, we can form the space (pAp, φpAp). When p is free from x, we
can obtain the distribution of pxp from the distribution of x.

More explicitly Speicher and Nica [56] proved the following:

Theorem 4.3.1. Let (A, φ) be a non-commutative probability space and p ∈ A a projec-
tion (p2 = p) such that φ(p) = λ > 0 then we have that

kpApn (pxp, . . . , pxp) =
1

λ
kn(λx, ..., λx)

We will use the same ideas used in [56] combined with the Main Theorem to prove
the existence of additive powers for t > 1.

Theorem 4.3.2. Let µ ∈ Mk be a k-symmetric distribution. Then for each t > 1 there
exists a k-symmetric measure µ�t with κn(µ�t) = tkn(µ).

Proof. Let x ∈ (A, φ) be a tracial C*-probability space and let x ∈ (A, φ) be such that xk

is positive and with distribution µ and let p ∈ (A, φ) be a projection such that φ(p) = 1
t
,

with x and p free. Now consider the compressed space (pAp, φpAp) and the element
xt := pXp ∈ (pAp, φpAp), with X = tx. By Theorem 14.10 in [60] the cumulants of xt
(with respect to φpAp) are

κpApn (xt, . . . , xt) = tκn(
1

t
X, . . . ,

1

t
X) = tκn(x, . . . , x). (4.3.1)

Now, X is k-divisible, Xk is positive and p is positive. Thus, by the Main Theorem, the
moments of Xp also define a k-symmetric distribution. Also, since φ is tracial we have

φ(pXppXp · · · pXp) = φ(pXpXp · · · pXpXp) = φ(XpX · · ·Xp). (4.3.2)

This means that the moments of (pXp)k define a measure ν on R+ with an atom at 0 of
size at least (1− 1/t). Now consider the compressed (pXp)k. Then

φpAp(pXppXp · · · pXp) = tφ(pXppXp · · · pXppXp). (4.3.3)

Writing the measure ν = (1−1/t)δ0 +1/tµt we see that µt has moments mn(µt) = tmn(ν)
which are the moments of xt in the compressed space, as desired.

Although we are not able to define free additive convolution for all k-symmetric mea-
sures, having free additive powers is enough to talk about central limit theorems and
Poisson type ones. This will be done in Chapter 5.
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4.4 A combinatorial consequence

The following theorem of Nica and Speicher [56] gives a formula for the moments and free
cumulants of product of free random variables.

Theorem 4.4.1. Let (A, φ) be a non-commutative probability space and consider the free
random variables a, b ∈ A. The we have

φ((ab)n) =
∑

π∈NC(n)

κπ(a)φK(π)(b
n)

and
κn(a) =

∑
π∈NC(n)

κπ(a)κK(π)(b).

The observation here is that we can go the other way. Indeed for two multiplicative
families fn and gn we can find a probability space (A, φ), and elements a and b in A
such that κan = fn and φ(bn) = gn and then we can calculate (f ∗ g)n by the formula
(f ∗ g)n = φ((ab)n). Using this idea and the Main Theorem we can generalize broadly
Theorem 2.4.3 to any multiplicative family whose first element is not zero.

Theorem 4.4.2. Let fn be a multiplicative family in NC, with f1 6= 0. The following
statements are equivalent.

1) The sequence fn is given by the k-fold convolution

fn = gn ∗ hn ∗ · · · ∗ hn︸ ︷︷ ︸
k times

.

2) The dilated sequence f
(k)
n is given by the convolution

f (k)
n = g(k)

n ∗ hn.

Proof. In the proof of the Main Theorem, from the combinatorial point of view, positivity
is not important. So let X, Y be in (A, φ) with Y a k-divisible element, and assume
that X has cumulants κxn = hn and Y k has moments φ((Y k)n) = gn (and therefore

φ(Y n) = g
(k)
n ). Let X1, ..., Xk be free elements with the same moments as X. Then

(XY )k and X1 · · ·XkY
k have the same moments, i.e.

φ((XY )kn) = φ((X1 · · ·XkY
k)n). (4.4.1)

Now, the moments of X1 · · ·XkY
k are given by

fn := φ((Y kX1 · · ·Xk)
n) = gn ∗ hn ∗ · · · ∗ hn

and the moments of XY are given by

f̃n := φ((XY )n) = g(k)
n ∗ hn.

Now Equation (4.4.1) implies that f̃n = f
(k)
n .
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Chapter 5

Limit theorems and free infinite
divisibility

In this chapter we will address questions regarding limit theorems. First, we prove central
limit theorems for k-symmetric measures. Next, we consider free infinite divisibility.
Finally, we study the free multiplicative convolution of measures on the positive real line
from the point of view of k-divisible partitions and its connections to the free multiplicative
convolution between k-symmetric measures and probability distributions in the positive
real line.

5.1 Free central limit theorem for k-divisible mea-

sures

We have a new free central limit theorem for k-symmetric measures. Recall that for a
measure µ, Dt(µ) denotes the dilation by t of the measure µ.

Theorem 5.1.1 (Free Central limit theorem for k-symmetric measures). Let µ be a k-
symmetric measure with finite moments and κk(µ) = 1. Then as N goes to infinity,

DN−1/k(µ�N)→ sk,

where sk is the only k-symmetric measure with free cumulant sequence κn(sk) = 0 for all
n 6= k and κk(sk) = 1. Moreover,

(sk)
k = π�k−1,

where π is a free Poisson measure with parameter 1.

Proof. Convergence in distribution to a measure determined by moments is equivalent to
the convergence of the free cumulants. Now, for i = 1, 2, ..., n− 1 the i-th free cumulant
κi(µ

�N) equals zero and for i > k, the i-th free cumulant

κi(DN−1/k(µ�N)) = (N−1/k)iκi(µ
�N) =

N

N i/k
κi(µ) = N1−i/kκi(µ)→ 0

when N goes to infinity. So, in the limit, the only non vanishing free cumulant is
κk(DN−1/k(µ�N)) = κk(µ) = 1. This means that sk is the only k-symmetric measure

79



CHAPTER 5. LIMIT THEOREMS AND FREE INFINITE DIVISIBILITY

with free cumulant sequence κn = 0 for all n 6= k and κk = 1. For the second statement,
on one hand, we calculate the moments of sk using the moment cumulant formula:

mn(skk) = mnk(sk) =
∑

π∈NC(nk)

κπ(sk) (5.1.1)

=
∑

π∈NCk(n)

1 (5.1.2)

=

(
kn
n

)
kn− 1

. (5.1.3)

On the other hand, the moments of π�k−1 are known to be (See [13] or Example 5.2.4
below).

mn(π�k−1) =

(
kn
n

)
kn− 1

.

Remark 5.1.2. We can derive properties of the limiting distribution sk from the fact
that (sk)

k = π�k−1. Indeed, let B(0, r) = {z ∈ C : |z| < r}. The measure sk satisfies the
following properties.

(i) There are no atoms.
(ii) The support is B(0, K) ∩ Ak, where K = k

√
(k)k/(k − 1)k−1.

(iii)The density is analytic on (0, K).

Remark 5.1.3. (1) Note from the proof of Theorem 5.1.1 that in the algebraic sense we
only need the first k − 1 moments to vanish. For k = 1, this is the law of large numbers
and for k = 2 we obtain the usual free central limit theorem.

(2) Observe that sk satisfies a stability condition. Indeed,

s�2
k = D21/k(sk)

from where we can interpret sk as a strictly stable distribution of index k. This raises
the question whether there are other k-symmetric stable distributions. Of course, in the
presence of moments we can only get a sk from the free central limit theorem above.
Hence, if we expect to find other stable distribution we need to extend the notion of free
additive powers to k-symmetric measures without moments. This will be done in Section
7.

(3) The law of small numbers and more generally free compound Poisson type limit
theorems are also valid for k-symmetric distributions. Moreover, a notion of free infinite
divisibility will be given and studied. This is the content of next parts of this section.

5.2 Compound free Poissons

The analogue of compound Poisson distributions and infinite divisibility are the subjects
of this section. Recall the definition of a free compound Poisson on R.

Definition 5.2.1. A probability measure µ is said to be a free compound Poisson of rate
λ and jump distribution ν if the free cumulants (κn)n≥1 of µ are given by κn(µ) = λmn(ν).
In this case, λν coincides with the Lévy measure of µ.
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The most important free compound Poisson measure is the Marchenko-Pastur law π
whose R-transform is Rπ(z) = z

1−z . π is also characterized by Sπ(z) = 1
z+1

in terms of the
S-transform.

Following the definition of a free compound Poisson for selfadjoint random variables
we can define their analogues for k-symmetric distributions.

Definition 5.2.2. A k-symmetric distribution µ is called a free compound Poisson of rate
λ and jump distribution ν if the free cumulants (κn)n≥1 of µ are given by κn(µ) = λmn(ν),
for some ν a k-symmetric distribution.

The existence of these measures can be easily proved by finding explicitly π(λ, ν)k.As
announced we have a limit theorem for the free compound Poisson distributions. We shall
mention that, implicitly, Banica et al. [13] treated the case ν = 1

k

∑k
j=1 δqj

Theorem 5.2.3. We have the Poisson type limit convergence

((1− λ

N
)δ0 +

λ

N
ν)�N → π(λ, ν).

Proof. The proof is identical as for the selfadjoint case, see for example [60]. The main
observation is that if νN = ((1− λ

N
)δ0 + λ

N
ν)�N then

κn(νN) =
λ

N
mn(ν) +O(1/N2)

and then κn(ν�NN ) = Nκn(νN) converges to λmn(ν).

Example 5.2.4 (Free Bessel laws). Free Bessel laws introduced in [13], are defined by

πkt = π�k � π�k.

We restrict attention to the case t = 1, for simplicity. They proved using a matrix model
that the free Bessel law πk1 with k ∈ N is given by

πk1 = law

[
k∑
j=1

[
Pjq

j
]]k

, (5.2.1)

where P1, ..., Pk s are free random variables, each of them following the free Poisson law
of parameter 1/k. So they were lead to consider the modified free Bessel laws π̂s1, given
by

π̂k1 = law

[
k∑
j=1

[
Pjq

j
]]
. (5.2.2)

It is important to notice that
∑k

j=1 [Wjq
j] is not a normal operator so the equalities in

(5.2.1) and (5.2.2) are just equalities in moments (and not ∗-moments). In our notation
means that

πk1 = π̂kk1.
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A modified free Bessel law is k-symmetric, but moreover it is a compound free Poisson
with rate λ = 1 and jump distribution a k-Haar measure. So we have the representation

π̂k1 = π(1, ν) = π �
1

k

k∑
j=1

δqj

Combining these identities we see that

(π �
1

k

k∑
j=1

δqj)
k = π̂kk1 = πk1 = π�k.

which is nothing but Equation (4.2.2) for µ = π and ν =
∑k

j=1 δqj . Moreover the free

cumulants and moments of π�k are given by

mn(π�k) =

(
(k+1)n
n

)
kn+ 1

kn(π�k) =

(
kn
n

)
(k − 1)n+ 1

.

This is easily seen since the free cumulants of π are given by kn(π) = 1 for all n ∈ N.
So calculating the moments and cumulants of π�k amounts counting the number of k-
multichains of NC(n) which was done in Example 2.3.1.

To end this example let us see how the matrix models for free Bessel and modified free
Bessel laws given in Theorem 6.2 and 6.3 of [13] are straightforward from our results.

Corollary 5.2.5. If W is a W (kN, kN, I(kN)2) complex Wishart matrix and

D =


1N 0

w1N
. . .

0 wk−11N


then the mean empirical distribution of the eigenvalues of (DW )k converges to π�k,

as N →∞.

Proof. By the Main Theorem if Y is k-divisible and X is positive. then (XY )k and
X1 · · ·XkY

k have the same moments, i.e.

φ((XY )kn) = φ((X1 · · ·XkY
k)n). (5.2.3)

In particular when Y is a k-Haar unitary and X is a free Poisson, then Y k are has
distribution δ1 and then the moments of (XY )k are just the moments of π�k.

Now DN is a deterministic matrix k-Haar distributed, while it is well known W con-
verges the Marchenko Pastur distribution. Moreover DN and W are asymptotically free
and then DW converges in distribution to XY .
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5.3 Free infinite divisibility

Given the limit theorems above, the concept of free infinite divisibility in Mk arises
naturally.

Definition 5.3.1. A k-symmetric measure is �-infinitely divisible if for any N > 0 there
exist µN ∈ Mk such that µ�NN = µ. We will denote the set of freely infinitely divisible
distribution in Mk by ID�(Mk)

It is easily seen the ID�(Mk) is closed under convergence in distribution. Free com-
pound Poissons are �-infinitely divisible, since π(λ, µ)�t = π(λt, µ). Moreover any free
infinitely divisible measure can be approximated by free compound Poissons. The proof
of this fact follows the same lines as for the selfadjoint case. We will give the main ideas
of this proof for the convenience of the reader.

The following is a special case of Lemma 13.2 in Nica Speicher [60].

Lemma 5.3.2. Let {aN}N > 1 be random variables in some non-commutative probability
space (A, φN) and denote by κN the free cumulants w.r.t φN , then the following statements
are equivalent.

(1)For each n ≥ 1 the limit
lim
N→∞

N · φN(anN)

exists.
(2)For each n ≥ 1 the limit

lim
N→∞

N · κNn (aN , ..., aN)

exists.
Furthermore the corresponding limits are the same.

Now, we can prove the approximation result.

Proposition 5.3.3. A k-symmetric measure is freely infinitely divisible if and only if it
can be approximated (in distribution) by free compound Poissons.

Proof. On one hand, since free compound Poissons are freely infinitely divisible any mea-
sure approximated by them is also infinitely divisible. On the other hand, let µ be �-
infinitely divisible. Then for any N > 0 there exist µN such that µ�NN = µ. So by Lemma
5.3.2 we have

κn(µ) = N · κn(µN) = lim
N→∞

N · κn(µN) = lim
N→∞

N ·mn(µN) (5.3.1)

Now, let νN be a free compound Poisson with rate N and jump distribution µN then
κn(νN) = Nmn(µN).

lim
N→∞

κn(νN) = lim
N→∞

N ·mn(µN). (5.3.2)

So νN → µ in distribution.

Next, the results of Chapter 3 can be interpreted in terms of free compound Poissons.
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Proposition 5.3.4. Suppose that x is a k-divisible element and αn = κkn(x) is the free
cumulant sequence of a positive element (κn(a) = αn) with distribution ν. Then

distr(xk) = π�k−1 � ν.

Proof. By Proposition 3.1.5 we have that the free cumulants of xk are given by

κn(xk) = [α ∗ ζ · · · ∗ ζ]n.

On the other hand, by successive application of Equation (1.6.2), we can see that the
cumulants of π�(k−1) � ν are given by

κn(π�(k−1) � ν) = [α ∗ ζ · · · ∗ ζ]n,

as desired.

Corollary 5.3.5. If x is a k-symmetric compound Poisson with rate λ and jump distribu-
tion ν, then the distribution of xk is a compound Poisson with rate 1 and jump distribution
π�k−1 � νk .

Proof. If x is a k-symmetric compound Poisson with Lévy measure µ, then κn(x) = mn(ν).
So, αn = κkn(x) = mkn(ν) = mn(νk), that is, αn is the free cumulant sequence of π � νk.
By Proposition 5.3.4

distr(xk) = π�k � νk.

That is, µxk is a free compound Poisson with rate 1 and Lévy measure π�k−1 � νk.

We prove that free infinite divisibility is maintained under the mapping µ→ µk; this
generalizes results of [8] where the case k = 2 was considered.

Theorem 5.3.6. If µ is k-symmetric and �-infinitely divisible, then µk is also �-infinitely
divisible. Moreover, µk has the representation π�k−1 � ν for some measure ν supported
on the positive real line.

Proof. Suppose that µ is infinitely divisible. Then µ can be approximated by free com-
pound Poissons which are k-symmetric. Say µ = limn→∞ µn where µn = π � νn. By the
previous corollary there µkn = π�k � νn. Now µkn → µk and since ID�(Mk) is closed in
the weak convergence topology we have that µ is infinitely divisible. The representation
follows from the representation of the approximating measures.

Remark 5.3.7. Similar arguments as in the proof of Theorem 5.3.6 yield that if µ is k-
symmetric and �-infinitely divisible, then µn is �-infinitely divisible whenever n divides
k.

Corollary 5.3.8. A k-symmetric �- infinitely divisible measure has at most 1 atom.

Proof. This follows from the well known result of Bercovici and Voiculescu [25] that a
freely infinitely divisible measure on R has at most 1 atom (which already contains k = 1
and k = 2).

84



CHAPTER 5. LIMIT THEOREMS AND FREE INFINITE DIVISIBILITY

Indeed, for k ≥ 3, let µ be k-symmetric �- infinitely divisible measure. From Theorem
5.3.6 we can represent µk as π�k−1 � ν. Now, we may write µk as

µk = π�2 � π�k−3 � ν = (π �
√
π�k−3 � ν)2,

where, for a measure ρ, the measure
√
ρ denotes the symmetric square root of the measure

µ. Noticing that π �
√
π�k−3 � ν is freely infinitely divisible and thus has at most one

atom (at 0 because of symmetry), we see that µk and µ have at most one atom (at 0).

Finally we come back to the question of defining free convolution. We give a partial
answer to the question raised in previous chapter.

Theorem 5.3.9. Let µ and ν be k-symmetric freely infinitely divisible measures. Then
there exists a k-symmetric µ� ν such that

κn(µ� ν) = κn(µ) + κn(ν).

Moreover µ� ν is also freely infinitely divisible.

Proof. Since the free convolution of k-divisible free compound Poisson is also a k-divisible
free compound the by Theorem 5.3.3 this is also true for k-symmetric freely infinitely
divisible measures.

It would be interesting to give a Lévy-Kintchine Formula and study triangular arrays
for k-symmetric probability measures.

5.4 Free multiplicative powers of measures on R+ re-

visited

In this section, for a probability measure µ ∈ M+ with compact support we will denote
by µ1/k the positive measure with mnk(µ

1/k) = mn(µ) and µ[1/k] the k-symmetric measure
such that mnk(µ

[1/k]) = mn(µ). Consider Remark 4.2.9 for ν = 1
k

∑k
j=1 δqj , a k-Haar

measure. Then

(µ�
k∑
j=1

δqj)
k = µ�k. (5.4.1)

Using this fact, the moments of µ�k may be calculated using k-divisible non-crossing
partitions as we show in the following proposition.

Theorem 5.4.1. Let µ be a measure with positive support. Then the moments of µ�k are
given by

mn(µ�k) =
∑

π∈NCk(n)

κKr(π)(µ), (5.4.2)

where NCk(n) denotes the k-divisible partitions of [kn].
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Proof. Let ν =
∑k

j=1 δqj , the moments of µ� ν can be calculated using Theorem 4.4.1:

mn(µ� ν) =
∑

π∈NCk(n)

κKr(π)(µ)mπ(ν) =
∑

π∈NCk(n)

κKr(π)(µ)

where the last equality follows since mπ(ν) = 0 unless π is k-divisible.

This formula has been generalized for non-identically distributed random variables in
[10], where it was used to give new proofs of results in Kargin [40, 42] and Sakuma and
Yoshida [68] regarding the asymptotic behaviors of µ�k and (µ�k)�k, respectively. Results
in [10] will be explained in next chapter.

Moreover, from results of Tucci [76] we know that the k-th root of the measure µ�k

converges to a non-trivial measure. More precisely, he proved the following.

Theorem 5.4.2. Let µ be a probability measure with compact support. If we denote by
µk = (µ�k)1/k, then µk converges weakly to µ̂, where µ̂ is the unique measure characterized
by µ̂([0, 1

Sµ(t−1)
]) = t for all t ∈ (0, 1). The support of the measure µ̂ is the closure of the

interval

(α, β) = ((

∫ ∞
0

x−1dµ(x))−1,

∫ ∞
0

xdµ(x)),

where 0 ≤ α < β ≤ ∞

On the other hand, for R-diagonal operators, Haagerup and Larsen [38] proved the
following.

Theorem 5.4.3. Let T be an R-diagonal operator and t ∈ (0, 1). If ν := µ|T |2 is not a
Dirac measure then µT (B(0, 1√

Sν(t−1)
)) = t where B(0, r) = {z ∈ C : |z| < r}

If we combine these two results with 5.4.1 we obtain the following interesting inter-
pretation of the limiting distribution.

Theorem 5.4.4. Let a, u ∈ A be free elements where a is positive and u a Haar unitary.
Moreover, let µ be a probability measure with compact support distributed as a2. If we
denote by

µ̃k = µ�
1

k

k∑
j=1

δqj (5.4.3)

then µ̃k converges weakly to µ∞ where µ∞ is the rotationally invariant measure such that
µ∞(B(0, t2)) = µau(B(0, t)), where µau is the Brown measure of au.

Proof. Let T = au, then |T |2 = a2, so µ|T |2 = µ. Now, since (µ�k)1/k converges to µ̂,

then µ �
∑k

j=1 δqj = (µ�k)[1/k] converges to the rotationally invariant measure µ∞ with
µ∞(B(0, t)) = µ̂(0, t). This implies that

µ∞(B(0,
1

Sµ(t− 1)
)) = t = µT (B(0,

1√
Sµ(t− 1)

))

and then µ∞(B(0, t2)) = µau(B(0, t)), as desired.
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Remark 5.4.5. (1) Haagerup and Möller [37] have generalized results of [76] to un-
bounded operators. The previous theorem can be generalized to unbounded operators
using the analytic methods of next section.

(2) Recall from Example 3.4.3 that random permutation matrices with cycles of size
k are asymptotically free k-Haar unitaries. One can think of a Haar unitary as a limit of
k-Haar unitaries. From the previous theorem R-diagonal elements can be thought as the
limit of k-divisible ones of the type (5.4.3).

Example 5.4.6 (∞-semicircle). Let sk be the k-semicircle distribution from Theorem
5.1.1. Then there exist a measure s∞ such that

lim
k→∞

sk → s∞.

Combining Theorems 5.1.1, and 5.4.4 one can see that s∞(B(0, t)) = t.
Indeed, since (sk+1)k+1 = π�k = (π� 1

k

∑k
j=1 δqj)

k then by Theorem 5.4.4, s∞(B(0, t2)) =

µau(B(0, t)) = t2, where a is a quarter circular (see Example 5.2 of [38]).

5.5 Squares of random variables with symmetric dis-

tributions in I�

We now specialize in the case k=2. This is part of a joint work with Hasebe and Sakuma
[8]. Given a probability measure µ, we recall that µp for p ≥ 0 denotes the probability
measure inM+ induced by the map x 7→ |x|p. For a measure λ on R we denote by Sym(λ)
the symmetric measure 1

2
(λ(dx) + λ(−dx)).

A particularly important class of freely infinitely distribution are the free regular
ones since they correspond to free Lévy processes with positive increments known as free
subordinators.

Definition 5.5.1. A probability measure ν is called free regular if ν�t ∈M+ for all t > 0.

We denote by I� the freely infinitely divisible measures and by I�r+ the class of free
regular measures. Free regular measures are closed under free multiplicative convolution
as proved in [8].

Proposition 5.5.2. Let µ ∈ I�r+ and ν ∈ I�, then µ � ν is freely infinitely divisible.
Moreover if ν ∈ I�r+ then µ� ν ∈ I�r+.

We quote a result from Sakuma and Pérez-Abreu [62, Theorem 12].

Theorem 5.5.3. A symmetric probability measure µ is �-infinitely divisible if and only
if there is a free regular distribution σ such that C�µ (z) = C�σ (z2). Moreover, the free

characteristic triplets (0, aµ, νµ) and (ησ, 0, νσ) are related as follows: νµ = Sym(ν
1/2
σ ) (or

equivalently νσ = ν2
µ ), aµ = ησ.

The following proposition implies that the square of a symmetric measure which is
�-infinitely divisible is also �-infinitely divisible. A similar result is proved in [18] for
the rectangular free convolution of Benaych-Georges.
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Theorem 5.5.4. Let µ be a �-infinitely divisible symmetric measure then µ2 = m � σ,
the compound free Poisson with rate 1 and jump distribution σ, where σ is the free regular
distribution of Theorem 5.5.3. Conversely, if σ is free regular, then Sym

(
(m� σ)1/2

)
is

�-infinitely divisible.

Proof. We prove that the following are equivalent:
(a) µ2 = m� σ,
(b) C�µ (z) = C�σ (z2).

Indeed, if µ2 = m�σ, then Sµ2(z) = Sm(z)Sσ(z) = 1
1+z

Sσ(z). Combined with the relation
Sµ2(z) = z

1+z
Sµ(z)2, this implies zSσ(z) = (zSµ(z))2. Since the inverse of zSλ(z) is equal

to C�λ for a probability measure λ, we conclude that (C�σ )−1(z) = ((C�µ )−1(z))2, which is
equivalent to (b). Clearly the converse is also true. The desired result immediately follows
from the above equivalence and Theorem 5.5.3.

Now the following result of Sakuma and Pérez-Abreu [62, Theorem 22] follows as a
consequence of Theorem 5.5.4.

Theorem 5.5.5. Let σ ∈ M+ and w be the standard semicircle law. Then σ � σ ∈ I�r+
if and only if µ = w � σ ∈ I�.

Remark 5.5.6. It is not true that the square of a symmetric infinitely divisible distri-
bution in the classical sense is also infinitely divisible. For instance, if N1 and N2 are
independent Poissons then SN = N1 − N2 is also infinitely divisible and (SN)2 is not
infinitely divisible since the support of (SN)2 is {0, 1, 4, 9, 25...}. (See [75, pp. 51.])

There are two interesting consequences of Theorem 5.5.4. First, Proposition 5.5.4
allows us to identify some non trivial free regular measures which are in I∗ ∩ I�: χ2 and
F (1, 1). This will be explained in example 5.5.11.

The second consequence concerns the commutator of two free even elements.

Corollary 5.5.7. Let a1, a2 be free, self-adjoint and even elements whose distributions
µ1, µ2 are �-infinitely divisible. Then the distribution of the free commutator µ1�µ2 :=
µi(a1a2−a2a1) is also �-infinitely divisible.

Remark 5.5.8. If a1, a2 are free, even and self-adjoint, the distribution of the anti-
commutator µa1a2+a2a1 is the same as µi(a1a2−a2a1) [59].

Proof. It was proved by Nica and Speicher [59] that µ1�µ2 is also symmetric and satisfies

((µ1�µ2)�1/2)2 = µ2
1 � µ

2
2. (5.5.1)

Since, for i = 1, 2, the distribution µi is symmetric and belongs to I�, by Theorem 5.5.4, we
have the representation µ2

i = m�σi, for some σi free regular. Then ((µ1�µ1)�1/2)2 = m�σ
with σ = m� σ1 � σ2. Now, by Theorem 5.5.2, σ is free regular and then (µ1�µ2)�1/2 is
�-infinitely divisible. The desired result now follows.

When we restrict µ1 to the standard semicircle law, we obtain the analog of Theorem
5.5.5 for the free commutator.

Corollary 5.5.9. Let σ be a symmetric measure and w be the standard semicircle law.
Then σ2 ∈ I�r+ if and only if µ = w�σ ∈ I�.
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Proof. It is well known that the w2 = m and then we get from Equation (5.5.1) that
((w�σ)�1/2)2 = m� σ2. The result now follows from Theorem 5.5.4.

Moreover, Nica and Speicher reduced the problem of calculating the cumulants of
the free commutator to symmetric measures. A further analysis of this reduction in
combination with Corollary 5.5.7 enables us to omit the assumption of evenness.

Theorem 5.5.10. Let a1 and a2 be free and self-adjoint elements, and let µ1 := µa1
and µ2 := µa2 be �-infinitely divisible distributions. Then the distribution of the free
commutator µ1�µ2 := µi(a1a2−a2a1) is also �-infinitely divisible.

Proof. By an approximation similar to Proposition 5.3.6, it is enough to consider µ1 and
µ2 compound free Poissons. Let µ1�µ2 be the free commutator and κn(µi) = λimn(νi)
the free cumulants of µi, for i = 1, 2. It is clear that m2n(νi) = m2n(Sym(νi)) and
m2n+1(Sym(νi)) = 0. Now, by Theorem 1.2 in [59], the free cumulants of µ1�µ2 only
depend on the even free cumulants of µ1 and µ2, and therefore we can change µi by
the symmetric compound Poisson with Lévy measure Sym(νi). Thus by Corollary 5.5.7
µ1�µ2 is �-infinitely divisible as desired.

Examples

As a first example we use Theorem 5.5.4 to identify measures in I∗ ∩ I�r+.

Example 5.5.11. The following measures are both classically and freely infinitely divis-
ible.

(1) Let χ2 be a chi-squared with 1 degree of freedom with density

f(x) :=
1√
2πx

e−x/2, x > 0.

It is well known that χ2 is infinitely divisible in the classical sense. It was proved in
[23] that a symmetric Gaussian Z is �-infinitely divisible. Hence, by Theorem 5.5.4,
Z2 is free regular. Z2 ∼ χ2 and then χ2 ∈ I∗ ∩ I�r+

(2) Let F (1, n) be an F -distribution with density

f(x) :=
1

B(1/2, n/2)

1

(nx)1/2

(
1 +

x

n

)−(1+n)/2

, x > 0.

F (1, n) is classically infinitely divisible,as can be seen in [41]. On the other hand
F (1, n) is the square of a t-student with n degrees of freedom t(n). In particular t(1)
is the Cauchy distribution, hence by Theorem 5.5.4, F (1, 1) belongs to I∗ ∩ I�r+.

Remark 5.5.12. Numeric computations of free cumulants have shown that the chi-
squared with 2 degrees of freedom is not freely infinitely divisible. However, the free
infinite divisibility of t-student with n degrees of freedom is still an open question.

Next, we give some examples of free regular measures from known distributions in
non-commutative probability.
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Example 5.5.13. (1) Free one-sided stable distributions with non-negative drifts. These
distributions are found by Biane in Appendix in [20].

(2) The square of a symmetric �-stable law. By Theorem 5.5.4 it is free regular, and
moreover, by the results of [9] we can identify the Lévy measure σ of Theorem 5.5.4
with a �-stable law. Indeed, any symmetric stable measure has the representation
w � ν 1

1+t
and then by Equation (1.5.6) the square is w2 � ν 1

1+t
� ν 1

1+t
= m� ν 1

1+2t
.

(3) Free multiplicative, free additive and Boolean powers of the free Poisson m. In par-
ticular, for t ≥ 1the free Bessel laws m�t �m�s studied in [13] are free regular.

(4) The free Meixner laws, which are introduced by Saitoh and Yoshida [66] and Anshele-
vich [1], whose Lévy measures are given by

νa,b,c(dx) = c

√
4b− (x− a)2

πx2
1a−2

√
b<x<a+2

√
b(x)dx.

If a−2
√
b ≥ 0, then the Lévy measure is concentrated on [0,∞) and

∫
R min(1, |x|)νa,b,c(dx) <

∞. Thus, if the drift term is non-negative, then it will be free regular. This case
includes the free gamma laws, which come from interpretation by orthogonal polyno-
mials not the Bercovici-Pata bijection.

Example 5.5.14. Let w be the standard semicircle law. Then w2 and w4 are both
free regular. It is well known that w2 = m, which is free regular. From [4], if bs is
the symmetric beta (1/2, 3/2) distribution, bs is freely infinitely divisible and then, by
Theorem 5.5.4, (bs)

2 is free regular.
The symmetric beta distribution bs has density

bs(dx) =
1

2π
|x|−1/2 (2− |x|)1/2dx, |x| < 2.

Clearly m2n (bs) = m4n(w) and then (bs)
2 = w4. Since w4 = (bs)

2, we see that w4 is free
regular.

Remark 5.5.15. It is not known if w2n is �-infinitely divisible for all n > 0, as in classical
probability.

Example 5.5.16 (free commutators). (1) Let σs and σt be two symmetric free stable
distributions of index s and t, respectively. Then by Corollary 5.5.7 the free commu-
tator σs�σt is �-infinitely divisible. For the case t = s = 2 (the Wigner semicircle
distribution) the density of w�w is given by [59]

f(t) =

√
3

2π | t |

(
3t2 + 1

9h(t)
− h(t)

)
, | t |≤

√
(11 + 5

√
5)/2, (5.5.2)

where

h(t) =

√
18t2 + 1

27
+

√
t2(1 + 11t2 − t4)

27
.
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(2) Let w be the standard semicircle law and let ν 1
1+2s

be a positive free stable law, for

some s > 0. If we denote ν̂ 1
1+2s

= Sym(ν
1/2

1
1+2s

) then µ := w�ν̂ 1
1+2s

is a symmetric free

stable distribution with index 2
1+2s

. Indeed, by Equation (5.5.1), µ satisfies

(µ�1/2)2 = ((w�ν̂ 1
1+2s

)�1/2)2 = w2 � ν 1
1+2s

= m� ν 1
1+2s

.

From Equation (1.5.6) and results in [9] we see that m � ν 1
1+2s

= (w � ν 1
1+s

)2. This

means that µ�1/2 = w� ν 1
1+s

which is a symmetric free stable distribution with index
2

1+2s
. The case s = 1/2 was treated in [59, Example 1.14].

(3) Assume that b is a symmetric Bernoulli distribution 1
2
(δ−1+δ1). Let µ, ν be symmetric

distributions. Then the free commutator µ�ν is 2-�-divisible, but when µ = ν we
can identify (µ�µ)�1/2. Indeed, by Eq. (5.5.1), (µ�µ)�1/2 =

√
µ2 � µ2. On the other

hand, by Equation (1.5.6), (µ2 � b)2 = µ2 � µ2. Hence (µ2 � b)�2 = µ�µ.

When µ = w a strange thing happens: w2 = m, and m�b is a compound free Poisson
with rate 1 and jump distribution b. This implies that w�w = m � m̃, where m̃ is
defined by m̃(B) = m(−B). It is a free symmetrization of the Poisson distribution
(not to be confused with the symmetric beta of Example 5.5.14). As pointed out in
[59], this gives another derivation of the density of w�w given in Equation (5.5.2).

(4) For the free Poisson with mean 1, the free commutator becomesm�m = (m�m�b)�2,
the compound free Poisson with rate 2 and jump distribution m � b. Indeed, if we
define m̂ := m � b, we have that m�m = m̂�m̂ since the even free cumulants of
m̂ are all one, the same as those of m, and since the free commutator of measures
depends only on the even cumulants of the measures [59, Theorem 1.2]. By Equation
(1.5.6) we have m̂2 = m�m, and therefore by Equation (5.5.1), we have

((m�m)�1/2)2 = m�m�m�m.

Again using Equation (1.5.6) we see that m�m�m�m = (m�m� b)2. The claim
then follows.
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Chapter 6

Products of free random variables
and k-divisible non-crossing
partitions

As we have seen in Theorem 5.4.1 the moments of µ�k may be computed using k-divisible
non-crossing partitions. In this chapter we explain results of the joint work with Vargas
[10], where we derive formulas for the moments and the free cumulants of the product
of k free random variables in terms of k-equal and k-divisible non-crossing partitions.
Basically, we exploit the fact that k-divisible and k-equal partitions are linked, by the
Kreweras complement, to partitions which are involved in the calculation of moments
and free cumulants of the product of k free random variables.

These formulae lead to a very simple proof for the bounds of the right-edge of the
support of the free multiplicative convolution µ�k, given by Kargin in [40], which show
that the growth of this support is at most linear. Moreover, this combinatorial approach
generalize the results of Kargin since we do not require the convolved measures to be
identical. We also give further applications, such as a new proof of the limit theorem of
Sakuma and Yoshida [68].

6.1 Introduction

Recall that given a, b ∈ A free random variables, with free cumulants κn(a) and κn(b),
respectively, one can calculate the free cumulants of ab by

κn(ab) =
∑

π∈NC(n)

κπ(a)κKr(π)(b). (6.1.1)

where Kr(π) is the Kreweras complement of the non-crossing partition π. Therefore,
we are able to compute the free cumulants of the free multiplicative convolution of two
compactly supported probability measures µ, ν, such that Supp(µ) ⊆ [0,∞) by

κn(µ� ν) =
∑

π∈NC(n)

κπ(µ)κKr(π)(ν). (6.1.2)

In principle, this formula could be inductively used to provide the free cumulants and
moments of the convolutions of k (not necessarily equal) positive probability measures.

93



CHAPTER 6. PRODUCTS OF FREE RANDOM VARIABLES

This approach, however, prevents us from noticing the deeper combinatorial structure
behind such products of free random variables.

Our fundamental observation is that, when π and Kr(π) are drawn together, the par-
tition π∪Kr(π) ∈ NC(2n) is exactly the Kreweras complement of a 2-equal partition (i.e.
a non-crossing pairing). Furthermore, one can show using the previous correspondence
that Equation 6.1.1 may be rewritten as

κn(ab) =
∑

π∈NC2(n)

κKr(π)(a, b, . . . , a, b), (6.1.3)

where NC2(n) denotes the 2-equal partitions of [2n].
Since 2-equal partitions explain the free convolution of two variables, it is natural to

try to describe the product of k free variables in terms of k-equal partitions.
The main result of this chapter is the following.

Theorem 6.1.1. Let a1, . . . , ak ∈ (A, τ) be free random variables. Then the free cumu-
lants and the moments of a := a1 . . . ak are given by

κn(a) =
∑

π∈NCk(n)

κKr(π)(a1, . . . , ak) (6.1.4)

τ(an) =
∑

π∈NCk(n)

κKr(π)(a1, . . . , ak) (6.1.5)

where NCk(n) and NCk(n) denote, respectively the k-equal and k-divisible partitions of
[kn].

The main application of our formulas is a new proof of the fact that for positive
measures centered at 1, the support of the free multiplicative convolution µ�k grows at
most linearly. More precisely,

Theorem 6.1.2. Let σ, L > 0 be given. There exist universal constants C, c > 0 such that
for all k and any µ1, . . . , µk probability measures supported on [0, L], satisfying E(µi) = 1
and V ar(µi) > σ2, for i = 1, . . . , k, the supremum Lk of the support of the measure
µ1 � · · ·� µk satisfies

ck < Lk < Ck.

In other words, for positive free random variables Xi such that E(Xi) = 1, and
V ar(Xi) > σ2, (not necessarily identically distributed) we have that

lim supn−1||X1 ◦ · · · ◦Xn|| < C

and
lim inf n−1||X1 ◦ · · · ◦Xn|| > c > 0,

where, for X, Y positive random variables, we write X ◦ Y := X1/2Y X1/2.
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6.2 Main formulae

The following characterization plays a central role in this work. The proof, elementary
but cumbersome, will be detailed in the last section of the present chapter.

Proposition 6.2.1. i) π ∈ NC(kn) is k-preserving if and only if π = Kr(σ) for some
k-divisible partition σ ∈ NCk(n).

ii) π ∈ NC(kn) is k-separating if and only if π = Kr(σ) for some k-equal partition
σ ∈ NCk(n).

Remark 6.2.2. In view of the previous characterization, for a k-divisible partition π,
the Kreweras complement Kr(π) may be divided into k partitions π1, π2 ..., πk, with πj
involving only numbers congruent to j mod k. In this case we will write π1 ∪ · · · ∪ πk =
Kr(π) for such decomposition.

Figure above shows the 3-equal partition {(1, 8, 12), (2, 6, 7), (3, 4, 5), 9, 10, 11)} and
its Kreweras complement Kr(π) = π1 ∪ π2 ∪ π3, with π1 = {(1, 7)(4), (10)}, π2 =
{(2, 5), (6, 11)} and π3 = {(3), (6), (9), 12)}

We are ready to prove the Main Theorem.

Proof of Theorem 6.1.1. By the formula for products as arguments, we have that

κn(a) =
∏

π∈NC(kn)

π∧ρkn

κπ(a1, . . . , an).

Since the random variables are free, the sum actually runs over k-preserving partitions
(otherwise there would be a mixed cumulant). But then by Proposition 6.2.1 ii), the
partitions involved in the sum are exactly the Kreweras complements of k-equal partitions,
and the formula follows.

For the first formula for the moments, we use the moment cumulant formula

τ(an) =
∑

π∈NC(kn)

κπ(a1, . . . , an).

Again, the elements involved are free, so only k-preserving partitions matter, and these are
the Kreweras complements of k-divisible partitions by Proposition 6.2.1 i). Thus (6.1.5)
follows.
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Corollary 6.2.3. Let µ1, . . . , µk be probability measures with positive bounded support
and let µ = µ1 � · · ·� µk. Using the notation above, we may rewrite our formulas,

κn(µ) =
∑

π∈NCk(n)

κπ1(µ1) . . . κπk(µk) (6.2.1)

mn(µ) =
∑

π∈NCk(n)

κπ1(µ1) . . . κπk(µk) (6.2.2)

where π1 ∪ · · · ∪ πk = Kr(π) is the decomposition described in Remark 6.2.2.

Remark 6.2.4. From Equation (6.2.2) it is easy to see that for compactly supported mea-
sures with mean 1, the variance is additive with respect to free multiplicative convolution,
that is

V ar(µ1 � · · ·� µk) = κ2(µ1 � · · ·� µk) =
k∑
i=1

κ2(µi) =
k∑
i=1

V ar(µi)

6.3 Supports of free multiplicative convolutions

Our main result, Theorem 6.1.1 can be used to compute bounds for the supports of
multiplicative free convolutions of positive measures. We recall that the number of non-
crossing partitions in NC(n) is given by the Catalan number Cn ≤ 4n. We also know
that the Möbius function µ : NC(n) × NC(n) → C is bounded in absolute value by
Cn−1 ≤ 4n−1. Then we can control the size of the free cumulants.

Lemma 6.3.1. Let µ be a probability measure supported on [0, L] with variance σ2, such
that E(µ) = 1. Then κ2 = σ2 ≤ L− 1 and |κµn| < (26L)n−1.

Proof. Its easy to see that L ≥ 1 and

mµ
n =

∫ L

0

xndµ(x) ≤
∫ L

0

Ln−1xdµ(x) = Ln−1.

Then we have that κµ1 = 1, 0 < κµ2 ≤ L− 1 < 26L, and |κµ3 | ≤ L2 + 3L+ 1 < 262L2, and
for n > 4 we have

|κµn| =
∑

π∈NC(n)

|mµ
π||µ[π, 1n]| ≤

∑
π∈NC(n)

Ln−14n−1 ≤ 42n−1Ln−1 < (26L)n−1

since 47 < 263.

Now, we easily see that the growth of the support is no less than linear.

Proposition 6.3.2. Let µ1, . . . , µk be compactly supported probability measures on R+,
satisfying E(µi) = 1, V ar(µi) = σ2 and Let Lk be the supremum of the support of µ :=
µ1 � · · ·� µk. Then Lk ≥ kσ2 + 1.

Proof. It is clear that E(µ) = 1, and hence by Remark 6.2.4 we know that κ2(µ) =
V ar(µ) = kσ2. By Lemma 6.3.1 we have that κ2(µ) = kσ2 ≤ Lk − 1.
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Now we give an upper bound for the support.

Proposition 6.3.3. There exists a universal constant C such that for all k and all
µ1, . . . , µk probability measures supported on [0, L], satisfying E(µi) = 1, i = 1, . . . , k
,the measure µ := µ1 � · · ·� µk satisfies

Supp(µ) ⊆ [0, CL(k + 1)].

In general, C may be taken to be 26e. If the measures µi, 1 ≤ i ≤ k have non-negative
free cumulants, C may be taken to be e = 2.71...

Proof. By Equation 6.2.2 we get

mn(µ) =
∑

π∈NCk(n)

κπ1(µ1) . . . κπk(µk). (6.3.1)

Since a k-divisible partition π ∈ NCk(n) has at most n blocks, we know that

|π1|+ · · ·+ |πk| = |Kr(π)| = kn+ 1− |π| ≥ (k − 1)n+ 1.

Now, let L̃ = 26L. By Lemma 6.3.1, we know that κπi(µi) ≤ (L̃)n−|πi|. Hence∑
π∈NCk(n)

κπ1(µ1) . . . κπk(µk) ≤
∑

π∈NCk(n)

(L̃)kn−(|π1|+···+|πk|) (6.3.2)

≤
∑

π∈NCk(n)

(L̃)n (6.3.3)

=

(
(k+1)n
n

)
kn+ 1

(L̃)n (6.3.4)

By taking the n-th root and the use of Stirling approximation formula, we obtain that

lim sup
n→∞

(mn(µ))1/n = lim sup
n→∞

(√
(k + 1)n

2πkn2

((k + 1)n)(k+1)ne−(k+1)n

(kn)kne−knnne−n(kn+ 1)
(L̃)n

)1/n

(6.3.5)

=
(k + 1)(k+1)

kk
(L̃) (6.3.6)

≤ (k + 1)eL̃. (6.3.7)

If µ has non-negative free cumulants we may replace L̃ by L.

6.4 More applications and examples

In this section we want to show some examples of how Theorem 5.5.4 may be used to
calculate free cumulants.

Example 6.4.1. (Product of free Poissons) Theorem 5.5.4 takes a very easy form in the
particular case µi = m, where m is the Marchenko-Pastur distribution of parameter 1.
Indeed, since κn(m) = 1, we get

κn(m�k) =
∑

π∈NCk(n)

1 =

(
(k)n
n

)
(k − 1)n+ 1

,
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and

mn(m�k) =
∑

π∈NCk(n)

1 =

(
(k+1)n
n

)
kn+ 1

.

Moreover, from the last equation one can easily calculate Lk = (k + 1)k+1/kk.

Example 6.4.2. (Product of shifted semicirculars) For σ2 ≤ 1
4
, let ω+ := ω1,σ2 be the

shifted Wigner distribution with mean 1 and variance σ2. The density of ω+ is given by

ω1,σ2(x) =
1

2πσ2

√
4σ2 − (x− 1)2 · 1[1−2σ,1+2σ](x)dx,

and its free cumulants are κ1(ω+) = 1, κ2(ω+) = σ2 and κn(ω+) = 0 for n > 2.
We want to calculate the free cumulants of ω�k+ , k ≥ 2. So let a1, . . . , ak be free random

variables with distribution ω+. By Theorem 5.5.4, the free cumulants of a := a1 · · · ak are
given by

κn(a) =
∑

π∈NCk(n)

κKr(π)(a1, . . . , ak). (6.4.1)

If Kr(π) contains a block of size greater than 2, then κKr(π) = 0. Hence the sum runs
actually over NC(k, n)2,1. Therefore each summand has the common contribution of
(σ2)n−1 and by Equation (2.1.5) we know the number of summands. Hence the free
cumulants are

k
((k − 1)n)!(σ2)n−1

(n− 1)!((k − 2)n+ 2)!
. (6.4.2)

Note that in this example mn(a) ≥ κn(a) (since all the free cumulants are positive)
and L = 1+2σ. By Proposition 6.3.3 and an application of Stirling’s formula to Equation
(6.4.2) the supremum Lk of the support of ω�k+ satisfies

(k + 1)e(1 + 2σ) ≥ Lk = lim sup
n→∞

(mn(a))1/n ≥ lim sup
n→∞

(κn(a))1/n ≥ (k − 1)eσ2.

Hence we obtain a better estimate than the rough bound provided by Proposition 6.3.2.

As another application of our main formula, we show that the free cumulants of µ�k

become positive for large k. This is of some relevance if we recall that our estimates of
the support of µ�k are better with the presence of non-negative free cumulants.

Theorem 6.4.3. Let µ be a probability measure supported on [0, L] with mean α and
variance σ2. Then for each n ≥ 1 there exist a constant N such that for all k ≥ N , the
first n free cumulants of µ�k are non-negative.

Proof. Clearly it is enough to show that, for each n ≥ 1, there exist N0 such that the n-th
free cumulant of µ�k is positive for all k ≥ N0.
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Let n > 1 and α̃ := max{αn−1, 1}. By the same arguments as in Lemma 6.3.1 one can
show that |κn(µ)| ≤ 16(Ln). Then by Theorem 5.5.4 we have

κn(µ�k) =
∑

π∈NC(k,n)2,1

κKr(π)(µ) +
∑

π∈NCk(n)
π/∈NC(k,n)2,1

κKr(π)(µ)

≥ α(k−2)n+2

 ∑
π∈NC(k,n)2,1

σ2n−2 −
∑

π∈NCk(n)
π/∈NC(k,n)2,1

(16L)n−1α̃


= α(k−2)n+2(|NC(k, n)2,1|σ2n−2 − (|NCk(n)| − |NC(k, n)2,1|)(16L)n−1α̃).

The factor α(k−2)n+2 is positive and the rest of the expression becomes positive for all k
larger than some N0, since, by Equation (2.1.6), NC(k, n)2,1/NCk(n)→ 1 as k →∞.

It would be interesting to investigate whether or not all free cumulants become positive.
Finally, we give a new proof to the recent limit theorem by Sakuma and Yoshida [68,
Theorem 9]. We will restrict to the case E(µ) = 1, the general case follows directly from
this.

Proposition 6.4.4. Let µ be a probability measure on supported on [0, L], with E(µ) = 1
and V ar(µ) = σ2, then

lim
k→∞

D1/k

(
(µ�k)�k

)
= hσ2

where hσ2 is the unique measures such that κn(hσ2) = (σ2n)n−1

n!
.

Proof. First, we see by Stirling’s Formula that

lim
k→∞

1

kn−1

∑
π∈NC(k,n)2,1

κKr(π)(µ) = lim
k→∞

1

kn−1

∑
π∈NC(k,n)2,1

σ2n−2 =
nn−1

n!
σ2n−2. (6.4.3)

Therefore, by Equation (2.1.6), |NC(k, n)2,1| and |NCk(n)| are of order kn−1 as k → ∞
and

|NCk(n)| − |NC(k, n)2,1|
|NCk(n)|

→ 0.

By using the bound |κn(µ)| ≤ 16(Ln), we obtain that

lim
k→∞

1

kn−1

∑
π∈NCk(n)

π/∈NC(k,n)2,1

κKr(π)(µ) ≤ lim
k→∞

1

kn−1

∑
π∈NCk(n)

π/∈NC(k,n)2,1

(16L)n = 0. (6.4.4)

Hence

lim
k→∞

κn
(
D1/k

(
(µ�k)�k

))
= lim

k→∞

1

kn−1
κn(µ�k)

= lim
k→∞

1

kn−1

∑
π∈NC(k,n)2,1

κKr(π)(µ)

+ lim
k→∞

1

kn−1

∑
π∈NCk(n)

π/∈NC(k,n)2,1

κKr(π)(µ)

=
nn−1

n!
σ2n−2.
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6.5 Proof of Proposition 6.2.1

For a partition π ∈ NC(n) will often write r ∼π s, meaning that r, s belong to the same
block of π.

Let us introduce two operations on non-crossing partitions. For n, k ≥ 1 and r ≤ n,
we define Ikr : NC(n) → NC(n + k), where Ikr (π) is obtained from π by duplicating the
element in the position r, identifying the copies and inserting k − 1 singletons between
the two copies. More precisely, for π ∈ NC(n), Irk(π) ∈ NC(n+ k) is the partition given
by the relations

• for 1 ≤ m1,m2 ≤ r,
m1 ∼Irk(π) m2 ⇔ m1 ∼π m2

• for r + k ≤ m1,m2 ≤ n+ k,

m1 ∼Irk(π) m2 ⇔ m1 − k ∼π m2 − k

• for 1 ≤ m1 ≤ r and r + k + 1 ≤ m2 ≤ n+ k,

m1 ∼Irk(π) m2 ⇔ m1 ∼π m2 − k

• r ∼Irk(π) r + k,

The operation Ĩkr : NC(n)→ NC(n+ k) consists of inserting an interval block of size
k between the positions r − 1 and r in π. We will skip the explicit definition.

The importance of these operations is that they are linked by the relation

Kr(Ikr (π)) = Ĩkr (Kr(π)). (6.5.1)

Our operations preserve properties of partitions, as shown in the following lemma.

Lemma 6.5.1. Let π ∈ NC(nk), r ≤ nk, s ≥ 1. Then
i) π is k-preserving if and only if Iskr (π) is k-preserving.
ii) π is k-separating if and only if Ikr (π) is k-separating.
iii) π is k-divisible if and only if Ĩskr (π) is k-divisible.
iv) π is k-equal if and only if Ĩkr (π) is k-equal.

Proof. i) By definition of Irk(π), the relations indicated by Irk(π) are obtained by relations
indicated by π, with possible shifts by ks (which do not modify congruences modulo k).
Hence the equivalence follows.

ii) One should think of the block intervals of ρkn as vertices of a graph. For π ∈ NC(nk),
an edge will join two vertices V,W , if there are elements r ∈ V , s ∈ W such that r ∼π s.
Then π ∧ ρkn = 1nk if and only if the graph is connected.

It is easy to see that the effect of Ikr on the graph of π is just splitting the vertex
corresponding to the block V containing r into 2 vertices V1, V2. The edges between all
other vertices are preserved, while the edges which were originally joined to V will now
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be joined either to V1 or V2. Finally, the last additional relation r ∼Ikr (π) r + k means an
edge joining V1 to V2. Therefore, it is clear that the connectedness of the two graphs are
equivalent.

iii) and iv) are trivial.

Now we want to show that we can produce all partitions of our interest by applying
our operations to elementary partitions.

Lemma 6.5.2. i) Let π ∈ NC(kn) be k-preserving. Then there exist m ≥ 0 and numbers
q0, q1, . . . , qm, r1, . . . , rm such that

π = Ikqmrm ◦ · · · ◦ I
kq1
r1

(0q0). (6.5.2)

ii) Let π ∈ NC(kn) be k-separating. Then there exist m ≥ 0 and numbers r1, . . . , rm
such that

π = Ikrm ◦ · · · ◦ I
k
r1

(0k).

iii) Let π ∈ NC(kn) be k-divisible. Then there exist m ≥ 0 and numbers q0, q1, . . . , qm,
r1, . . . , rm such that

π = Ĩkqmrm ◦ · · · ◦ Ĩ
kq1
r1

(1q0).

iv) Let π ∈ NC(kn) be k-equal. Then there exist m ≥ 0 and numbers r1, . . . , rm such
that

π = Ĩkrm ◦ · · · ◦ Ĩ
k
r1

(1k).

Proof. i) We use induction on n. For n = 1 the only k-preserving partition is 0k, so the
statement holds. So assume that i) holds for n ≤ m. For π ∈ NCk(m) suppose that there
exist 1 ≤ r < r + sk ≤ km such that r ∼π r + sk and ,r + 1, . . . r + sk − 1 are singletons
of π (if no such pair (r, s) exist, necessarily π = 0mk and we are done). Then its easy to
see that π = Iskr (π′) for some π′ ∈ NC((n − s)k). By Lemma 6.5.1 i) π′ is k-preserving.
By induction hypothesis π′ has a representation as in Equation (6.5.2) and hence, so does
π = Iskr (π′).

The proof of ii) is similar. The proofs of iii) and iv) are trivial using Remark 2.1.2.

Now we can prove Proposition 6.2.1.

Proof. We only show the first implication of i). The converse and ii) are similar.
Let π ∈ NC(n) be k-preserving. Then by Lemma 6.5.2 i) we can express it as

π = Ikqmrm ◦ · · · ◦ I
kq1
r1

(1q0)

but then we can apply Equation 6.5.1 at every step, obtaining

Kr(π) = Kr(Ikqmrm ◦ · · · ◦ I
kq1
r1

(0q0)) (6.5.3)

= Ĩkqmrm ◦Kr(I
kqm−1
rm−1

· · · ◦ Ikq2r2
◦ Ikq1r1

(1q0)) (6.5.4)

= Ĩkqmrm ◦ Ĩ
kqm−1
rm−1

◦Kr(Ikqm−2
rm−2

◦ · · · ◦ Ikq2r2
◦ Ikq1r1

(1q0)) (6.5.5)

... (6.5.6)

= Ĩkqmrm ◦ · · · ◦ Ĩ
kq2
r2
◦ Ĩkq1r1

(Kr(1q0)) (6.5.7)

= Ĩkqmrm ◦ · · · ◦ Ĩ
kq2
r2
◦ Ĩkq1r1

(0q0), (6.5.8)

which, by Lemma 6.5.1 iii) is k-divisible.
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Chapter 7

The unbounded case

We end by generalizing some of our results to k-symmetric measures without moments.
The free multiplicative convolution � for general measures inM+ was defined in [22] using
operators affiliated with a W ∗-algebra. This convolution is characterized by S-transforms
defined as follows. Recall that for a general probability measure µ on R we define

Ψµ(z) =

∫
R

zt

1− zt
µ(dt) =

1

z
Gµ

(
1

z

)
− 1, z ∈ C\R+. (7.0.1)

Recall also that, for χµ : Ψµ(iC+) → iC+ the inverse function of Ψµ, the S-transform
of µ is the function

Sµ(z) = χ(z)
1 + z

z
.

The importance of the S-transform is the following.

Proposition 7.0.3 ([22]). Let µ1 and µ2 be probability measures in M+ with µi 6= δ0,
i = 1, 2. Then µ1� µ2 6= δ0 and

Sµ1�µ2(z) = Sµ1(z)Sµ2(z)

in that component of the common domain which contains (−ε, 0) for small ε > 0. More-
over, (µ1� µ2)({0}) = max{µ1({0}), µ2({0})}.

Free multiplicative convolution µ1�µ2 can be defined for any two probability measures
µ1 and µ2 on R, provided that one of them is supported on [0,∞). However, it is not
known whether an S-transform can be defined for every probability measure.

In this chapter we will define the free multiplicative convolution between measures
µ ∈ Mk and ν ∈ M+. We generalize the S-transform to k-symmetric measures; we
follow similar strategies as in [9] and show the multiplicative property still holds for this
S-transform.

7.1 Analytic aspects of S-transforms

Recall that for a k-symmetric probability measure µ on R, we denote by µk be the prob-
ability measure in M+ induced by the map t → tk and q a primitive k-th root of unity,
we consider the k-semiaxes Ak := {x ∈ C | x = tqs for some t > 0 and s ∈ N}.
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We define the Cauchy transform a k-symmetric distribution µ by the formula

Gµ(z) =

∫
C

1

z − t
µ(dt) z ∈ C\Ak.

and the function Ψ in a similar way as (7.0.1),

Ψµ(z) =

∫
C

zt

1− zt
µ(dt) =

1

z
Gµ

(
1

z

)
− 1. (7.1.1)

The following two important relations between the Cauchy transforms and the Ψ
functions of µ and µk were proved in [9] for k = 2. The proof presented here is the same
with obvious changes; we present it for the convenience of the reader.

Proposition 7.1.1. Let µ be a k-symmetric probability measure µ on R. Then
a) Gµ(z) = zk−1Gµk(z

k), z ∈ C\Ak.
b) Ψµ(k) = Ψµk(z

k), 1/z ∈ C\Ak.

Proof. a) Use the k-symmetry of µ twice to obtain

Gµ(z) =

∫
R

1

z − t
µ(dt) =

κ∑
i=1

∫
R+

1

z − tωi
µ(dt)

= kzk−1

∫
R+

1

zk − tk
µ(dt) = z

∫
supp(µ)

1

zk − tk
µ(dt)

= zk−1

∫
R+

1

zk − t
µk(dt) = zGµk(z

k).

b) Use (7.1.1) twice and (a) to obtain

Ψµ(z) =
1

z
Gµ

(
1

z

)
− 1

=
1

zk
Gµk

(
1

zk

)
− 1 = Ψµk(z

k)

which shows (b).

An important consequence is that the function Gµ determines the measure µ uniquely
since the Cauchy transform Gµk determines µk and thus µ. Also, the function Ψµ deter-
mines the measure µ uniquely since the Cauchy transform Gµ does.

Theorem 7.1.2. Let µ be a k-symmetric probability measure µ on R.
a) If µ 6= δ0, the function Ψµ is univalent on Hk := {z ∈ C+ : arg z ∈ π/2k < arg z <

3π/2k}. Therefore Ψµ has a unique inverse on Hk, χµ : Ψµ(Hk)→ Hk.
b) If µ 6= δ0, the S-transform

Sµ(z) =
1 + z

z
χµ(z) (7.1.2)

satisfies

Skµ(z) = (
1 + z

z
)k−1Sµk(z) (7.1.3)

for z in Ψµ(Hk).
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Proof. a) On one hand, let f : C→ C be the function f(z) = zk. Then f(Hk) = iC+ and
therefore f is univalent in Hk. On the other hand, since µk ∈ M+, by Proposition 1.5.3,
Ψµk(z) is univalent in iC+ and therefore Ψµk(z

k) is univalent in Hk.
b) Since µk ∈ M+, from Proposition 1.5.3, the unique inverse χµk of Ψµk is such

that χµk : Ψµk(iC+) → iC+. Thus, use (a) to obtain Ψµk(χ
k
µ(z)) = Ψµ(χµ(z)) = z for

z ∈ Ψµ(Hk) and the uniqueness of χµk gives χµk(z) = χkµ(z), z ∈ Ψµ(Hk). Hence

Skµ(z) = χkµ(z)(
1 + z

z
)k = χµk(z)(

1 + z

z
)k

= Sµk(z)
1 + z

z
, z ∈ Ψµ(H).

as desired.

7.2 Free multiplicative convolution

Now, we are in position to define free multiplicative convolution for measures with un-
bounded support. We will use Equation (4.2.2) as our definition.

Definition 7.2.1. Let µ be k-symmetric and ν be a measure in M+. The free multi-
plicative convolution of µ and ν is defined to be the unique k-symmetric measure µ � ν
such that

(µ� ν)k = µk � ν�k

Remark 7.2.2. The fact that the last definition makes sense is justified as follows: µk

and ν�k are in M+ and then µk � ν�k also belongs to M+. So the symmetric pull back
under xk of the measure is unique and well defined. Moreover, clearly this definition is
consistent to the one for compactly supported measures given above.

Now we show how to compute the free multiplicative convolution of a k-symmetric
probability measure and a probability measure supported on [0,∞). No existence of
moments or bounded supports for the measures are assumed.

Theorem 7.2.3. Let µ be k-symmetric and ν be a measure in M+ with respective S
transforms Sµ(z) and Sν(z) then

Sµ�ν(z) = Sµ(z)Sν(z)

Proof. From Equation (7.1.3) and the multiplicative property of the S-transform for mea-
sures in M+ we see that

Skµ�ν(z) = (
1 + z

z
)k−1S(µ�ν)k(z) = (

1 + z

z
)k−1Sµk�ν�k(z)

= (
1 + z

z
)k−1Sµk(z)Skν = Skµ(z)Skν .
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7.3 Free additive powers

In this short section we define free additive powers for k-symmetric distributions. The tool
that permits to define free additive powers is the S-transform. This is not the standard
approach but it is the most suitable for our purposes.

Definition 7.3.1. Let µ be a k-symmetric distribution and t > 1. The free additive
power µ�t is defined to be the unique k-symmetric measure such that

Sµ�t(z) =
1

t
Sµ(z/t)

Remark 7.3.2. (1) As mentioned above, this definition is consistent to the one for com-
pactly supported measures.

(2) The fact that there is a k-symmetric measure µ�t is proved as follows: The S-
transform is continuous with respect to weak convergence. Thus taking a sequence of
k-symmetric measures µn with compact support such that µn → µ we easily see that
µ�tn → ν for some ν and that µ�t := ν satisfies the desired equation.

As we mentioned, free infinite divisibility is closed under convergence in distribution.
By standard approximation arguments all the theorems regarding freely infinite divisibility
are valid for the unbounded case. Let us state again the most important results of Section
5.3. The first explains how free infinite divisibility is preserved under the push-forward
t→ tk.

Theorem 7.3.3. If µ is k-symmetric and �-infinitely divisible, then µk is also �-infinitely
divisible.

The second considers free additive convolution.

Theorem 7.3.4. Let µ and ν be k-symmetric freely infinitely divisible measures. Then
there exists a k-symmetric µ� ν such that

φµ�ν(z) = φµ(z) + φν(z).

Moreover µ� ν is also freely infinitely divisible.

Note here that we have not defined the Voiculescu’s transform φ, but this can be done
without any problem following arguments of [22].

7.4 Stable distributions

Now we come back to the question of stability. A real probability measure σα is said to
be �- stable of index α if σ�2

α � δt = D21/α(σα) for some t. If t = 0, we say that σα is
�-strictly stable. Note that among k-symmetric stable measures we can only have strictly
stable laws since adding non-trivial Dirac measure to a k-symmetric distribution would
not yield another k-symmetric measure.

Closely related to the notion of stability is that of domains of attraction. Recall that
for a probability measure µ we say that ν is in the free domain of attraction of ν if there
exists α such that DNα(µ�N)→ νi. The following theorem explains the relation between
domains of attraction and stable laws.
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Theorem 7.4.1. Assume that µ ∈ M is not a point mass. Then ν is �-stable if and
only if the free domain of attraction of ν is not empty.

As we have mentioned before, sk is strictly stable of index k. We begin by showing
that for each k and each α ∈ (0, k] there is a k-symmetric strictly stable law of index
α (that we will denote σk,α). In fact, we have an explicit representation of σk,α as the
free multiplicative convolution between a k-semicircular distribution and strictly stable
distribution on R. This result was proved in [9] for symmetric distributions on the real
line and in [24] for positive measures.

Theorem 7.4.2. For k > 0and 0 < α ≤ 1, let β = kα
α+k−kα . The measure σkβ := wk � να

is stable of index β. The S-transform of σkβ is given by

Sβ = θβe
i(1−β)π

β . (7.4.1)

Proof. The S-transform for positive strictly stable laws is found in [9] and can be easily
derived from the appendix in [20]:

Sα = θαe
i(1−α) π

α z
1−α
α .

A direct calculation shows that the S-transform of wk is

Swk = z
1−k
k .

Thus, the S transform of wk � να is given by

Swk�να(z) = θαe
i(1−α) π

α z
1−α
α

+ 1−k
k .

Hence, on one hand, from (1.5.8) we get

S(wk�να)�2(z) =
1

2
S(wk�να)(z/2) (7.4.2)

= 1/2 · θαei(1−α) π
α (
z

2
)
1−α
α

+ 1−k
k (7.4.3)

= 1/21/β · θαei(1−α) π
α z

1−α
α

+ 1−k
k . (7.4.4)

On the other hand, from (1.5.9) we have

SD
21/β

(wk�να)(z) =
1

21/β
· θαei(1−α) π

α z
1−α
α

+ 1−k
k .

Conjecture 7.4.3. For k > 2, the k-symmetric measures σkβ defined in Theorem 7.4.2
are the only k-symmetric �-stable distributions.

The following reproducing property was proved in [24] for one sided free stable distri-
butions:

ν1/(1+t) � ν1/(1+s) = ν1/(1+t+s), (7.4.5)

while for the real symmetric free stable distribution the analog relation was proved in [9].

σ1/(1+t) � ν1/(1+s) = σ1/(1+t+s). (7.4.6)

A generalization for k-symmetric distributions is also true. The proofs in [9] and
[24] rely on an explicit calculation of the S-transform and can be easily modified to this
framework.
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Theorem 7.4.4. For any s, r > 0, let σk1/(1+r) be a k-symmetric strictly stable distribution

of index 1/(1 + r) and ν1/(1+s) be a positive strictly stable distribution of index 1/(1 + s).
Then

σk1/(1+t) � ν1/(1+s) = σk1/(1+t+s). (7.4.7)

Proof. This follows from Theorem 7.4.2, indeed letting β = (k − t+ kt)/(tk)

σk1/(1+t) � ν1/(1+s) = wk � ν1/(1+β) � ν1/(1+s)

= wk � ν1/(1+β+s)

= σk1/(1+t+s).

We used 7.4.5 in the second inequality.

We have the following conjecture regarding domains of attraction.

Conjecture 7.4.5. Assume that µ ∈Mk is not a point mass. Then ν is �-stable if and
only if the free domain of attraction of ν is not empty.

Now, Theorem 7.4.4 may be explained by the following observation.

Lemma 7.4.6. Let µ1 and µ2 be in the �-domain of attraction of ν1 and µ2, respectively.
Then µ1 � µ2 is in the �-domain of attraction of ν1 � ν2.

Proof. For i = 1, 2, since µi ∈ D�(νi), there are some αi´s such that DNαi (µ�N) → νi.
Now using Equation (1.5.10) we have

(µ1 � µ2)�N = DN(µ�N1 � µ�N2 )

and dilating by Nα1+α2−1 we get

DNα1+α2−1((µ1 � µ2)�N) = DNα1+α2 (µ�N1 � ν�N2 ) = DNα1 (µ�N1 )�DNα2 (µ�N2 ). (7.4.8)

The RHS of the Equation (7.4.8) tends to ν1 � ν2, and then also the LHS. This of
course means that µ1 � µ2 ∈ D�(ν1 � ν2).

Remark 7.4.7. A closer look at the proof of Lemma 7.4.6 gives another proof of the
reproducing property for k = 1, 2 and for general k if Conjectures 7.4.3 and 7.4.3 are true.

Indeed, for any s, t > 0, let σk1/(1+t) a k-symmetric strictly stable distribution of index

1/(1 + s) and ν1/(1+s) be a positive strictly stable distribution of index 1/(1 + t). The
measure σk1/(1+t) � ν1/(1+s) is clearly k-symmetric and strictly stable since D(σk1/(1+t) �
ν1/(1+s)) is non-empty by the last lemma. The index of stability can be easily calculated
from Equation (7.4.8), since in this

DN1+s+1+t−1(σk1/(1+t) � ν1/(1+s))→ σk1/(1+t) � ν1/(1+s)

which means that σk1/(1+t) � ν1/(1+s) is a k-symmetric strictly stable distribution of index

1/(1 + s+ t).

Finally, recall from Theorem 5.3.6 that the k-power of a freely infinitely divisible
measure inMk is also freely infinitely divisible. In the case of stable laws we can identify
explicitly the Lévy measure, for k ≥ 2. Indeed, since

(wk � ν1/(1+s))
k = wkk � (ν1/(1+s))

�k = π�k−1 � ν1/(1+ks),

the Lévy measure is given by π�k−2 � ν1/(1+ks).
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[23] S.T. Belinschi, M. Bożejko, F. Lehner and R. Speicher, The normal distribution is
�-infinitely divisible, Adv. Math. 226, No. 4 (2011), 3677–3698.

[24] H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability
theory (with an appendix by Philippe Biane), Ann. of Math. (2) 149, No. 3 (1999),
1023–1060.

[25] H. Bercovici and D. Voiculescu, Free convolution of measures with unbounded sup-
port, Indiana Univ. Math. J. 42, No. 3 (1993), 733–773.

[26] D. Bessis, The dual braid monoid, Ann. Sci. Ec. Norm. Super. 36 (2003) 647–683

[27] P. Biane, F. Goodman and A. Nica. Non-crossing cumulants of type B, Trans. Amer.
Math. Soc. 355 (2003), 2263–2303.

[28] P. Biane, Processes with free increments, Math. Z. 227 (1998), 143–174.

[29] T. Brady, C. Watt, Non-crossing partition lattices in finite reflection groups, Trans.
Amer. Math. Soc. 360 (2008) 1983–2005.

[30] L. G. Brown, Lidskiis theorem in the type II case, Geometric methods in operator
algebras (Kyoto, 1983), Longman Sci. Tech., Harlow, 1986, pp. 1-35.

[31] Z. Burda, R. A. Janik and M. A. Nowak, Multiplication law and S transform for
non-hermitian random matrices

110



BIBLIOGRAPHY

[32] Doubilet, P., Rota, G.-C. and Stanley, R., On the foundations of combinatorial the-
ory. VI. The idea of generating function, Proceedings of the Sixth Berkeley Sympo-
sium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), Vol. II: Probability theory (Berkeley, Calif.), Univ. California Press,
1972, pp. 267318.

[33] P. H. Edelman, Chain enumeration and non-crossing partitions,Discrete Math. 31
(1980), 171–18

[34] M. Février and A. Nica. Infinitesimal non-crossing cumulants and free probability
of type B.J. Funct. Anal. 258 (2010), no. 9, 29833023.

[35] F. M. Goodman, Zn–graded Independence, Indiana University Mathematics Jour-
nal, 53 (2004), 515–532;

[36] F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy,
Mathematical Surveys and Monographs 77, Amer. Math. Soc., Providence, 2000.
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[69] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge University
Press, (1999).

[70] D. Shlyakhtenko, Notes on Free Probability Theory. (ArXiv: 0504063)
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