
Anna Katharina Dehof
Novel Approaches for Bond Order Assignment

and NMR Shift Prediction

Novel Approaches for Bond Order
Assignment and NMR Shift Prediction

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

der Naturwissenschaftlich–Technischen Fakultät I

– Mathematik und Informatik –

der Universität des Saarlandes

vorgelegt von

Anna Katharina Dehof, M.Sc.

Saarbrücken
2011

c© 2011 Anna Katharina Dehof
Covergestaltung und Titelbild: c© 2011 Anna Katharina Dehof, BALL developer team,
http://www.ball-project.org

Herstellung und Verlag: Books on Demand GmbH, Norderstedt
ISBN 978-3-8482-0773-2
Bibliografische Informationen der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliographie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d-ndb.de abrufbar.

Tag des Kolloquiums 15.03.2012
Dekan Prof. Dr. Holger Hermanns
Berichterstatter Prof. Dr. Hans-Peter Lenhof

Prof. Dr. Sebastian Böcker
Vorsitz Prof. Dr. Philipp Slusallek
Akad. Mitarbeiter Dr. Oliver Müller

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen oder indirekt
übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde
bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung
eines akademischen Grades vorgelegt.

Saarbrücken, den 17. November 2011

(Anna Katharina Dehof)

Abstract
Molecular modelling is one of the cornerstones of modern biological and pharmaceutical research.
Accurate modelling approaches easily become computationally overwhelming and thus, different levels
of approximations are typically employed. In this work, we develop such approximation approaches for
problems arising in structural bioinformatics. A fundamental approximation of molecular physics is the
classification of chemical bonds, usually in the form of integer bond orders. Many input data sets lack
this information, but several problems render an automated bond order assignment highly challenging.
For this task, we develop the BOA Constructor method which accounts for the non-uniqueness of
solutions and allows simple extensibility. Testing our method on large evaluation sets, we demonstrate
how it improves on the state of the art. Besides traditional applications, bond orders yield valuable
input for the approximation of molecular quantities by statistical means. One such problem is the pre-
diction of NMR chemical shifts of protein atoms. We present our pipeline NightShift for automated
model generation, use it to create a new prediction model called Spinster, and demonstrate that it
outperforms established manually developed approaches. Combining Spinster and BOA Constructor,
we create the Liops-model that for the first time allows to efficiently include the influence of non-
protein atoms. Finally, we describe our work on manual modelling techniques, including molecular
visualization and novel input paradigms.

German Abstract
Molecular Modelling-Methoden gehören zu den Grundpfeilern moderner biologischer und pharmazeu-
tischer Forschung. Akkurate Modelling-Methoden erfordern jedoch enormen Rechenaufwand, weshalb
üblicherweise verschiedene Näherungsverfahren eingesetzt werden. In dieser Arbeit entwerfen wir sol-
che Näherungen für verschiedene Probleme aus der strukturbasierten Bioinformatik. Eine fundamentale
Näherung der molekularen Physik ist die Einteilung chemischer Bindungen in wenige Klassen, meist in
der Form ganzzahliger Bindungsordnungen. In vielen Datensätzen ist diese Information nicht enthalten
und eine automatische Zuweisung ist hochgradig schwierig. Für diese Problemstellung entwickeln wir
die BOA Constructor-Methode, die sowohl mit uneindeutigen Lösungen umgehen kann als auch vom
Benutzer leicht erweitert werden kann. In umfangreichen Tests zeigen wir, dass unsere Methode dem
bisherigen Stand der Forschung überlegen ist. Neben klassischen Anwendungen liefern Bindungsord-
nungen wertvolle Informationen für die statistische Vorhersage molekularer Eigenschaften wie z.B. der
chemischen Verschiebung von Proteinatomen. Mit der NightShift-Pipeline stellen wir ein Verfahren
zur automatischen Generierung von Vorhersagemodellen vor, generieren damit das neuartige Spinster-
Modell und zeigen, dass es bisherigen manuell entwickelten Verfahren überlegen ist. Die Kombination
mit BOA Constructor führt zum sogenannten Liops-Modell, welches als erstes Modell die effiziente
Berücksichtigung des Einflusses von nicht-Proteinatomen erlaubt. Abschließend stellen wir unsere Ar-
beiten zu manuellen Modelling-Methoden vor, welche z.B. die molekularen Visualisierung oder neue
Eingabemethoden beinhalten.

v

German Summary
Methoden des

”
Molecular Modelling“ gehören heute zu den wichtigsten Grundpfeilern der moder-

nen biologischen und pharmazeutischen Forschung. Dabei haben diese Techniken auch weit über die
Lebenswissenschaften hinaus wichtige Anwendungsfelder, die z.B. die physikalische Chemie oder die
Materialwissenschaften umfassen.

Grundlage der Modelling-Methoden ist eine Betrachtung der zu untersuchenden Systeme auf moleku-
larer, meist sogar auf atomarer Ebene. Dies erfordert im Allgemeinen eine möglichst genaue Vorhersage
molekularer und atomarer Wechselwirkungen, die als Basis zur Berechnung vieler weiterer Eigenschaf-
ten dienen können. Die genauesten Methoden zur Vorhersage solcher Wechselwirkungen basieren auf
der Quantenmechanik und sind damit physikalisch fundiert. In der Praxis jedoch sind sie für viele biolo-
gische Anwendungen erheblich zu aufwändig: Die akkurate Simulation quantenmechanischer Systeme
gehört zu den größten Herausforderungen des wissenschaftlichen Rechnens.

Erheblich erschwert wird die Situation durch die enorme Größe typischer biomolekularer Systeme,
die oft mehrere Tausend bis mehrere Millionen Freiheitsgrade aufweisen. Da schließlich in vielen An-
wendungen in der Praxis wiederum mehrere Tausend bis mehrere Millionen Auswertungen benötigt
werden, müssen meist Näherungsverfahren bemüht werden. Dabei wird die ab-initio Simulation atoma-
rer und molekularer Eigenschaften aus quantenmechanischen Gesetzmäßigkeiten durch approximative
Modelle ersetzt, die entweder auf vereinfachten physikalischen Gesetzen, auf statistischen Inferenz-
methoden oder auf einer hybriden Kombination beider beruhen. In dieser Arbeit werden wir solche
Näherungsverfahren für verschiedene Probleme der strukturbasierten Bioinformatik entwickeln.

Zu den grundlegendsten Näherungen an die Molekülphysik gehört sicherlich die Klassifikation chemi-
scher Bindungen in eine kleine Menge verschiedener Bindungstypen wie z.B. den Einfach-, Doppel-,
Dreifach- oder Vierfach- sowie den delokalisierten oder aromatischen Bindungen. Obwohl diese Klas-
sifikation die tatsächlichen Verhältnisse nicht perfekt beschreibt und viele Fälle nicht eindeutig in eine
der Klassen eingeteilt werden können, hat sie sich in der Praxis hervorragend bewährt und ist in der
gesamten Chemie weit verbreitet.

Beim Molecular Modelling wird diese Menge von Bindungstypen jedoch typischerweise weiter redu-
ziert, so dass nur noch Einfach-, Doppel-, Dreifach- und manchmal noch Vierfachbindungen betrachtet
werden. In diesem Fall wird jede Bindung durch eine natürliche Zahl beschrieben, die als Bindungsord-
nung bezeichnet wird und Werte zwischen eins und vier annehmen kann. Diese Bindungsordnungen
liegen allen Kraftfeldmethoden zugrunde, die in vielerlei Hinsicht das Rückgrat des Molecular Mo-
delling bilden. In der Praxis beschreiben Bindungsordnung eine Vielzahl an Phänomenen sehr gut,
doch führen sie auch zu einer Reihe von Problemen. Das vielleicht schwerwiegendste dieser Proble-
me ist die Uneindeutigkeit der Zuordnung von Bindungsordnungen zu einem gegebenen Molekül. Da
Bindungsordnungen nur eine recht grobe Approximation der tatsächlichen molekularen Eigenschaften
darstellen, können verschiedene Effekte, wie z.B. delokalisierte oder aromatische Elektronen, nur durch
Kombinationen verschiedener Bindungsordnungszuweisungen beschrieben werden. Hinzu kommt, dass
die Vorhersage der Bindungsordnungen für ein gegebenes Molekül ein schwieriges Problem darstellt
und im allgemeinen nur über komplexe Regelsysteme, die von chemischen Experten entworfen werden,
gelöst werden kann. Durch diese Probleme bleibt die automatische Zuweisung von Bindungsordnun-
gen eine hochgradig schwierige Herausforderung. Andererseits enthalten viele wichtige Eingabedaten
für das Molecular Modelling keine, unvollständige oder falsche Bindungsordnungen, so dass deren
automatische Bestimmung eine wichtige Komponente aller Modelling-Systeme darstellt.

In dieser Arbeit entwickeln wir neue Ansätze zur automatischen Zuweisung von Bindungsordnungen,
die so genau wie möglich sind, gleichzeitig aber mit der inhärenten Uneindeutigkeit umzugehen wissen.
Um sich den veränderlichen Anforderungen der Anwender und persönlichen Präferenzen anpassen zu
können, erlaubt unser System die einfache Modifikation des zugrundeliegenden Regelsatzes, wenn
gewünscht sogar zur Laufzeit. Die Grundlage unseres Zugangs ist dabei ein Ansatz, der ursprünglich
für das

”
Generalized Amber Force Field (GAFF)“ entwickelt wurde. Dieser Ansatz wurde von uns

stark erweitert und in Form eines exakt lösbaren diskreten Optimierungsproblems neu gefasst. In dieser

vi

Dissertation werden wir sowohl dieses Optimierungsproblem als auch verschiedene Algorithmen zu
seiner effizienten exakten Lösung vorstellen. Darüberhinaus besprechen wir die Implementierung der
Methode, die wir als BOA Constructor bezeichnen, im Rahmen der BALL-Bibliothek und zeigen,
wie diese in eigenen Programmen oder mit Hilfe der graphischen Benutzerschnittstelle verwendet
werden kann. Schließlich demonstrieren wir anhand umfangreicher Evaluationsdatensätze, dass BOA
Constructor dem bisherigen Stand der Forschung überlegen ist.
BOA Constructor liefert valide Eingaben für alle traditionellen Anwendungen der Bindungsordnungs-
zuweisung. Dies beinhaltet z.B. die Atomtypisierungsprozeduren molekularmechanischer Kraftfelder,
die u.a. für die energetische Bewertung, Strukturoptimierung und Molekulardynamiksimulationen ein-
gesetzt werden, aber auch die Detektion flexibler Gruppen oder aromatischer Bindungen für QSAR-
Applikationen oder die rechnergestützte kombinatorische Chemie. Doch über diese klassischen Anwen-
dungen hinaus liefert die zuverlässige Zuweisung von Bindungsordnungen auch wertvolle Informationen
für die Vorhersage molekularer Eigenschaften durch statistische Methoden.
Ein wichtiges Beispiel einer solchen Anwendung ist die rechnergestützte Vorhersage chemischer Ver-
schiebungen von Proteinatomen im NMR-Experiment, die für die Aufklärung biomolekularer Struktu-
ren immer wichtiger wird. Chemische Verschiebungen hängen sehr sensitiv von der chemischen und
räumlichen Nachbarschaft der betrachteten Atome ab, weshalb sie wichtige Informationen über den
räumlichen Aufbau des Moleküls liefern. Zur Vorhersage chemischer Verschiebungen für eine Kandi-
datenstruktur verwendet man üblicherweise eine Kombination effizienter semi-klassischer Approxima-
tionen der Physik des NMR-Experiments in Verbindung mit statistischen Regressionsmethoden.
Zur Entwicklung neuer Vorhersagemethoden für chemische Verschiebungen von Proteinatomen stellen
wir die Pipeline NightShift vor, die die Erzeugung aktueller Trainings- und Evaluationsdatensätze, das
Training neuer hybrider Vorhersagemodelle und deren Evaluierung umfasst. Während alternative Mo-
delle einen enormen, größtenteils manuellen Arbeitsaufwand bei der Entwicklung und Anpassung neuer
Daten erzeugen, erlaubt NightShift die automatische Generierung eines aktuellen Modells, basierend
auf der aktuellen Datenlage. Die von uns durch NightShift automatisch erzeugten Modelle erzielen
dabei eine teils erheblich höhere Genauigkeit als die etablierten manuell generierten Methoden. Das
erfolgreichste unserer neuen Modelle basiert auf einer Kombination semi-klassischer Terme mit einem
Random-Forest-Modell und wird von uns als Spinster bezeichnet.
Die Kombination von NightShift und Spinster mit BOA Constructor erlaubt uns schließlich, ein wich-
tiges ungeklärtes Problem des Molecular Modelling zu betrachten: die Vorhersage des Einflusses von
nicht-Proteinatomen – z.B. aus einem eventuellen Liganden – auf die chemische Verschiebung der Ato-
me im Protein. Abgesehen von enorm rechenaufwändigen quantenchemischen Modellen ignorieren alle
derzeit vorhandenen Vorhersagemodelle diesen Einfluß völlig. In unserem neuartigen Modell, welches wir
als Liops bezeichnen, verwenden wir Atomtypisierungen, die wiederum auf unseren Bindungsordnungen
beruhen. Die resultierenden Typen dienen uns als Eingaben in statistische Regressionsverfahren für die
Vorhersage der chemischen Verschiebung. Obwohl Liops derzeit eher als

”
proof-of-concept“ denn als

fertiges Vorhersagemodell betrachtet werden sollte, zeigt es bereits jetzt den Wert bindungsordnungs-
und atomtypbasierter Deskriptoren für schwierige Vorhersageprobleme.
Zusätzlich zu diesen Beiträgen zum automatisierten Molecular Modelling waren wir stark in mehre-
re Projekte auf dem Gebiet der manuellen Modelling-Verfahren involviert. Auch diese Projekte, die
u.a. Arbeiten auf dem Gebiet der Molekülvisualisierung und der neuartigen Eingabemethoden umfas-
sen, werden wir in dieser Arbeit kurz vorstellen.

vii

Danksagung
Meinen Dank für großartige Hilfe und Unterstützung während der Erstellung der vorliegenden Arbeit
möchte ich an dieser Stelle vielen Menschen, vor allem meinen Betreuern, Kollegen, Freunden und mei-
ner Familie aussprechen. In allen Phasen der Arbeit an dieser Dissertation standen mir sehr geschätzte,
professionelle und hilfsbereite Menschen zur Seite. Diesen möchte ich für ihre Anregungen und ihre
Unterstützung ganz herzlich danken.
In allererster Linie möchte ich hier meinem Doktorvater Herrn Prof. Dr. Hans-Peter Lenhof für die
Heranführung an die Bioinformatik und die hervorragende wissenschaftliche Betreuung meinen Dank
aussprechen. Ohne sein herausragendes Engagement hätte ich mich wohl nicht für die Bioinformatik
entschieden.
Für eine großartige Kooperation und andauernde Unterstützung möchte ich als nächstes Herrn Prof. Dr.
Sebastian Böcker und seinen Mitarbeitern am Lehrstuhl für Bioinformatik der Universität Jena, insbe-
sondere Herrn Dr. Quang Anh Bui Bao, danken.
Eine ähnlich enge Zusammenarbeit bestand zum Lehrstuhl für Computergraphik an der Universität des
Saarlandes, bzw. dem Deutschen Forschungszentrum für künstliche Intelligenz. Besonders bedanken
möchte ich mich hier bei Herrn Prof. Dr. Philipp Slusallek, Lukas Marsalek, Iliyan Georgiev, Mike
Phillips, Dr. Hilko Hoffmann, Georg Demme, Rainer Jochem und Michala Rehorova.
Auch Herr Prof. Dr. Oliver Kohlbacher und Herr Prof. Dr. Peter Bayer haben meine Arbeit wissen-
schaftlich begleitet und standen mir jederzeit mit Rat und Tat zur Seite. Auch dafür möchte ich
mich herzlich bedanken. Die vielen fachlichen Diskussionen und die daraus entstandenen Ideen waren
prägend für diese Arbeit.
Nicht fehlen dürfen an dieser Stelle meine Kolleginnen und Kollegen am Zentrum für Bioinformatik
Saar, besonders das BALL-Team, mit dem ich unzählige Codingsessions, teils bis früh morgens, ver-
bracht habe: Andreas Hildebrandt, Daniel Stöckel, Stefan Nickels, Sabine Müller, Wolfgang Herget,
Simon Loew und Lara Schneider. Auch Benny Kneissl, Alexander Rurainski, Sophie Weggler, Jana
Panning, Matthias Dietzen und Lars Hildebrandt haben wertvolle Beiträge zu meiner Arbeit geliefert.
Ein ganz besonderer Dank gebührt meinen Freunden, deren Begleitung durch meine Promotionszeit,
ihre Ratschläge und ihre mentale Unterstützung ich nicht missen möchte. Besonders beigetragen zu
dieser Arbeit haben Beate Radics, Stefanie Collin, Linda Wolters, Judith Radics und der Chorfahrdienst
Schreiber.
Herzlich danken möchte ich auch meiner Familie, die mich über die verschiedenen Stationen meiner
Ausbildung hinweg langmütig mitgetragen und unterstützt und mir nicht nur orthopädisch den Rücken
gestärkt hat!
Zum Entstehen dieser Arbeit hat in besonderem Maße auch Andreas beigetragen, der mich stets
bestärkt und ermutigt hat. Bei ihm bedanke ich mich für seine Geduld, seinen Zuspruch und seine
liebevolle Unterstützung während meiner Promotion, den Höhen und besonders den Tiefen. Danke.

viii

Contents

1. Introduction 5

2. Optimal Bond Order Assignment 11
2.1. Introduction . 11
2.2. Problem Definition . 13
2.3. Former Approaches . 15
2.4. The Antechamber Approach . 16

2.4.1. The Heuristic Trial-and-Error Approach of Antechamber 17
2.5. Aims of our Work . 19
2.6. Solution Schemes . 19

2.6.1. An A* Approach . 20
2.6.2. An Integer Linear Program Approach . 24
2.6.3. A Fixed Parameter Tractability Approach . 27

2.7. Extensions of our Approach . 33
2.7.1. Introducing Structural Information . 34
2.7.2. Hybrid Penalty Score . 35
2.7.3. Hydrogens . 36
2.7.4. Selective Bond Order Assignment . 37

2.8. New Penalty Table . 38
2.9. Results . 40

2.9.1. Data Sets for Validation . 41
2.9.2. Comparison to Antechamber . 41
2.9.3. Comparison to Reference Assignments . 44
2.9.4. Comparison of Running Times . 45
2.9.5. Comparison of Penalty Tables . 45
2.9.6. Incorporating Structural Information . 49

2.10. Summary . 50
2.11. Outlook . 50

3. NMR Shift Prediction 53
3.1. Introduction . 53
3.2. NMR Spectroscopy . 57

3.2.1. The Magnetic Field . 57
3.2.2. The NMR Experiment . 59
3.2.3. Chemical Shift Contributions . 60

3.3. Former Approaches for Chemical Shift Prediction . 64
3.4. Aims of our Work . 67
3.5. Materials and Methods . 68

3.5.1. Data Set Construction . 69
3.5.2. A new Hybrid Model . 73

3.6. Results . 87
3.6.1. The NightShift Pipeline . 88

1

Contents

3.6.2. The Data Set . 94

3.6.3. The Features . 96

3.6.4. The Pure Protein Models . 97

3.7. Application to Protein-Ligand Complexes: A Proof of Principle Study 99

3.7.1. General Methodology . 101

3.7.2. The Underlying Protein Model . 101

3.7.3. Towards a Model of the Ligand Influence . 101

3.7.4. Features for the Influence of the Ligand on Protein Atoms 102

3.7.5. Performance Evaluations . 103

3.7.6. Results . 103

3.7.7. Discussion . 107

3.8. Summary . 108

3.9. Outlook . 109

4. The BALL Project: A Framework for Biomolecuar Modelling 111
4.1. Introduction . 111

4.2. The Implementation of BOA Constructor . 112

4.2.1. The GUI . 115

4.2.2. Python Interface . 115

4.3. Implementation of NightShift, Spinster, and Liops . 115

4.3.1. A Grammar for CIF . 115

4.3.2. Features Required for the Models Spinster and Liops 116

4.4. Manual Molecular Modelling . 116

4.4.1. Molecular Visualization . 117

4.4.2. Stereoscopic Visualization . 118

4.4.3. Multitouch Interaction Functionality . 119

4.5. Application of Ray Tracing to Automated Molecular Modelling 122

4.5.1. Geometric Molecular Properties Through Ray Casting 122

4.5.2. Results . 123

5. Conclusion 127

6. Authors Contributions 129
6.1. Bond Order Assignment . 129

6.2. NMR Shift Prediction . 129

6.3. BALL Project . 129

A. Supplementary Information on BOA Constructor 131
A.1. A New Penalty Table for Bond Order Assignment . 131

A.2. Molecular Structures for the new Rules in the Penalty Table 137

A.3. New Heuristic Approaches for Bond Order Assignment 139

A.3.1. K-Greedy . 139

A.3.2. Branch & Bound . 139

A.4. Selected Aspects of the Implementation of BOA Constructor 142

A.4.1. Python Interface . 142

A.4.2. Graphical User Interface . 143

A.4.3. BOA Constructor Options . 146

A.4.4. Distribution of Penalty Rules . 147

A.5. A* Performance Measures . 148

2

Contents

B. Supplementary Information on NightShift, Spinster, and Liops 155
B.1. Parameters for Semi-Classical NMR Chemical Shift Predictors 155
B.2. Lexer and Parser for CIF - Files . 155

B.2.1. A FLEX-based Lexer for CIF - Files . 155
B.2.2. A Grammar for CIF - Files . 161

C. Copyrights of Figures and Quotations 163

D. Publications and Talks by the Author 165
D.1. Journal Publications (peer-reviewed) . 165
D.2. Conference Proceedings (peer-reviewed) . 165
D.3. Conference Proceedings (not peer-reviewed) . 166
D.4. Posters . 166
D.5. Talks at International Conferences . 167
D.6. Talks at Research Institutions . 167
D.7. Technical Demonstrations at International Events . 167
D.8. Publications in Preparation . 167

3

1. Introduction

Counteracting the effects of diseases has always been one of the major driving forces behind the
development of science. For thousands of years, humans have attempted to alleviate their ailments
through the use of more or less effective substances, and today, medical spending easily belongs to the
largest classes of expenditures. In the year 2010 alone, worldwide spending on prescription drugs arrived
at a volume of $865 billion, and it is expected to cross the $1 trillion mark by 2014 [DFS+11, Ait11].
Consequently, vast investments are made annually to try and design novel therapeutics: according
to recent estimates, the pharmaceutical industry spent $67.4 billion on research and development in
2010, up from $47.6 billion in 2004 [Pha11]. But despite these enormous global efforts, the tangible
output is surprisingly small: the amount of new chemical entities approved by the american Food and
Drug Administration per year has remained stable for decades at an average of roughly 20. Comparing
these huge investments with the number of produced drugs, it becomes obvious that the development
of a single drug is a very expensive enterprise [DGM+09]. Estimates vary widely, depending on
which factors are taken into account. Including failed attempts and marketing costs, a recent survey
computed an average cost of $1.778 billion per drug [PMD+10]. The rates of failure are high – [AB03]
states that roughly 1 in 1000 drugs pass the pre-clinical stage – and it is assumed that only three
out of twenty approved drugs generate more revenue than the costs their development incurred. In
addition, development times are exceedingly large, with typical estimates ranging between 10-15 years
[DiM01, DHG03, DG04, DGM+09].

These numbers raise the question whether the amount of effort put into drug design is really worth
its while for society as a whole. Obviously, the treatment of previously incurable diseases, as could be
observed with the advent of the first medication against HIV, has a tremendous effect on the afflicted
population. But there are strong indications that better drugs profit society in general: according to
a recent study by Lichtenberg, life expectancy at birth in the United States of America increased by
2.37 years in the period from 1991 to 2004. Of these, advances in medical imaging technology were
found responsible for 0.62-0.71 years, while newer drugs accounted for 1.44-1.8 years [Lic09] and some
factors were strongly related with a decrease, i.e., prevented a further increase in life expectancy, such
as growing obesity and declining quality in medical education.

The increase in life expectancy will impact the age class structure of society as well. The average life
expectancy is assumed to increase from 68 in the years 2005-2010 to 76 in the years 2045-2050 and
the number of people older than 60 years are assumed to increase from 667 million (2005-2010) to
about two billion (2045-2050) [Uni09]. In addition, with the work force becoming increasingly older
on average, special care will be needed to keep productivity high. Taking average development times
into account, suitable medication targeting such age-related demands [LDH82, Col10] needs to be
researched as soon as possible and will thus likely evolve into a main research focus in the near future.

To understand how Bioinformatics can help to develop novel therapies, it is important to analyse the
inner workings of drugs in the body. The general mechanism behind the action of drugs has only
been understood very recently. Today, we know that most drugs work by inhibiting the action of
biological macromolecules, mostly proteins [Koc76]. The basic principle behind this inhibition was
first described – albeit in a simpler fashion – by Emil Fischer in 1894 [Fis94a, Fis94b], who coined the
term “Lock and Key” principle. This principle hinges upon the idea that molecules need to come into
close physical contact if they are to exert an effect on each other. Sensitivity can be ensured if the
contact area is maximized for the desired binding partner. Vice versa, sensitivity can be achieved by
minimizing the contact area for other molecules. To this end, one of the two binding partners features

5

1. Introduction

a clearly structured binding site (the lock), the other one a negative imprint of the lock (the key), so
that part of one molecule fits well into a part of the other. In drug design, a small molecule mimics
the macromolecule’s natural binding partner in a way that allows it to enter the binding pocket. It
is designed to bind stronger than the natural ligand and to remain chemically stable in the bound
conformation. Hence, it blocks the protein’s binding site, inhibiting whatever action the protein would
perform on its ligand (or vice versa) otherwise.
Since the days of Emil Fischer, the basic principle was complemented with further insights and addi-
tions, such as the “induced fit” model proposed by Koshland [Kos58]. Rational drug design thus tries
to understand and predict these processes in order to guide the drug development instead of using a
purely trial-and-error based approach. This, however, turns out to be very difficult. The history of As-
pirin can serve as an illustrative example for the time scales involved in understanding drug mechanisms
at an atomic level: Aspirin has been marketed since 1897, but its mechanism was only elucidated in
1971 by John Vane [Van71], for which he was awarded with a Nobel prize in 1982. Even with modern
rational approaches, drug design is still a very difficult, lengthy, and expensive process. Recent predic-
tions indicate that the speed and efficiency of the development process need to improve substantially
in the future for drug design to remain profitable and for innovations to continue [PMD+10]: at the
current rate of drug development, the revenue generated by novel drugs is insufficient to replace the
amount lost due to patent expiration [Goo08]. This clearly highlights the need for more efficient and
more successful drug design techniques. Previous experience in other fields of science and industry
indicates that the most promising route towards a sufficient productivity boost lies in the consequent
adoption of computer based techniques.
In the life sciences, the computer has already become an invaluable tool in handling and assessing the
huge amount of data that is produced. The size and diversity of the data as well as the complexity of
the related questions demand sophisticated, efficient, and accurate processing techniques that often
push the frontiers of research in the computer sciences. This thesis is devoted to one particularly im-
portant application of computer science methods to medical research – the so-called field of molecular
modelling.

Figure 1.1.: The drug design pipeline and our molecular modelling techniques.

Molecular modelling is the art of visualizing, simulating, and editing molecular systems on a computer.
Even though molecular modelling techniques have already evolved into a main cornerstone of many
fields of science, such as computer aided drug design, theoretical chemistry, and materials science,

6

the current state of the art is still far from realizing the full potential of computer based modelling
techniques.
If we compare this situation with other fields of science where computer aided techniques have had
a significant impact in the past, we can see that improved molecular modelling techniques should
lead to important breakthroughs. Before the advent of modern simulation techniques, designing, e.g.,
a new car or a new airplane required the physical generation of several prototypes that were then
subjected to wind tunnel testing, crash tests, and similar experiments. The results of these were then
used to optimize the design until the design goals were sufficiently met. Today, though, most of the
design work happens on the computer, using sophisticated modelling and simulation packages. Usually
starting from a model of a previous product, aerodynamics, crash test behaviour, and many additional
properties are simulated and optimized for.
But while in computational engineering, computer aided techniques have greatly reduced and in many
cases entirely replaced the need for physical experimentation in many stages of the development,
molecular modelling is still often relegated to the role of a crude pre-experimental filtering technique.
The main reason for this difference lies in the complexity of the underlying simulation tasks: in the
engineering field, scientists are usually interested in macroscopic properties for which the underlying
physics is well understood and highly accurate simulation techniques that scale well to many processor
nodes have been researched extensively. In the molecular modelling field, on the other hand, we are
interested in microscopic properties of the molecules under study for which we cannot make use of
macroscopic averaging techniques. We thus need to describe the systems on an atomic level, leading
to easily overwhelming numbers of degrees of freedom. To make matters worse, simulating the theory
that describes the behaviour of molecular systems at the atomic level, quantum mechanics, belongs
to the most difficult fields of computational science. Finally, in biological applications, we are often
required to apply the simulation techniques not only to tens or thousands of molecular systems, but
to hundreds of millions.
The typical strategy to overcome these challenges is thus to replace the ab-initio simulation of
atomic and molecular properties from the laws of quantum mechanics by approximate models, ei-
ther based on simplified physics [Hil05], on statistical inferences [HTF09], or on a hybrid combination
of both [NNZW03]. In this work, we will develop such approximation approaches for several different
problems arising in structural bioinformatics.
One of the most basic and fundamental approximations of molecular physics is the classification of
chemical bonds into several different types, such as single, double, triple, delocalized, or aromatic.
While this classification is not perfect, in the sense that there are several cases that cannot unambigu-
ously be classified into one of the common types, it works very well in practice, and is widely used
throughout Chemistry.
In molecular modelling applications, this set of bond types is typically further reduced, and only the
bond types single, double, triple, and possibly quadruple are taken into account. Each bond is thus
described by an integer bond order, varying between one and four. These bond orders lie at the heart
of all force field based molecular modelling approaches and describe a wealth of molecular phenomena
very well, but also lead to several problems. Most importantly, since bond orders only approximate the
true molecular situation, the assignment is not necessarily unique and several bond order combinations
are needed to correctly capture the effects of, e.g., delocalized electrons. In addition, inferring bond
orders for a given molecule is a difficult task and is usually guided by a number of complex rules
designed by experts from chemistry. These problems render an automated bond order assignment
highly challenging, but unfortunately, many input data sets for molecular modelling applications lack
bond order information. Thus, automated assignment strategies are a very important component of
modelling frameworks.
In this work, we develop new approaches for automated bond order assignment that are as accurate
as possible, yet account for the inherent non-uniqueness. To address changing requirements in the
chemical rules or individual preferences, the system allows simple modification of the underlying rule

7

1. Introduction

set, even at run time. As basis for our approach, we used an ansatz originally designed for the
Generalized Amber Force Field (GAFF) [WWC+04], which we greatly extended by recasting it in
the form of an exactly solvable optimization problem. Our method is to the best of our knowledge
the only one that is provably correct even for input molecules with missing bond order information
and incorrect coordinates. In Chapter 2, we will present both the optimization problem and several
algorithms we developed for its efficient optimal solution. Furthermore, we present a framework that
connects these methods with an interface for adapting the approximation rules by experts in chemistry
and demonstrate on extensive evaluation data sets how our exact approaches improve on the state of
the art.
Our bond order assignment strategy, which we call BOA Constructor, provides valid input for all
traditional applications. Among many others, this includes the atom typing procedures of force fields
used for energy estimation, structural optimization, and molecular dynamics simulations. Thus, BOA
Constructor enabled us to implement the GAFF force field in a way that not only guarantees for the first
time a provably exact typization, but also greatly improves extensibility. Other classical applications of
bond order assignment that can be addressed using BOA Constructor include the detection of flexible
groups or aromatic bonds as needed for QSAR applications, or computational combinatorial chemistry.
In addition to these established application scenarios, we will demonstrate that reliable bond order
assignment and the resulting reliable atom typization also build valuable input for the approximation
of molecular quantities by statistical means.
As we will see in more detail later in this work, the type of approach that is used for approximating such
properties typically differs for different kinds of molecules. In drug design, we are mainly interested in
three different variants: small ligand-like molecules, proteins, and DNA or RNA strands. While each
of these classes is very diverse in itself, there are several intrinsic properties that set them apart from
the others.
Ligand molecules, for instance, are usually relatively small - much smaller, at least, than most proteins
- but feature a very diverse chemistry. This diverse chemistry requires computationally expensive
techniques for modelling, such as quantum mechanics or sophisticated force fields, which fortunately
can often be afforded due to their small size. Proteins and DNA/RNA, on the other hand, are usually
much larger than ligands, but are chemically very regular, since these molecules are made from a
small number of well-defined building-blocks (neglecting post-translational modifications). Hence, for
these molecules, the level of approximation of the physical effects is often much greater than for
ligands. Combining these two fields - the diverse ligand chemistry with the more restricted protein
and DNA/RNA chemistry - is a formidable task.
As we will demonstrate in this thesis, molecular descriptors based on bond- and atom types provide
valuable information about the local chemical environment of atoms. This information can be used
in statistical regression techniques or in a hybrid combination of such statistical approaches with the
simulation of simplified physical laws. For systems composed of proteins and ligands, this hybrid
approach allows to exploit the chemical regularity of proteins and at the same time include the non-
protein atoms in statistical models based on bond- and atom types.
An important example of such an application, discussed in Chapter 3, is the computer-aided prediction
of NMR chemical shifts, which becomes increasingly important for the resolution of biomolecular
structures. One crucial attribute of NMR shifts is their strong dependence on the local chemical and
spatial neighborhood which is then used to infer structural information about the system at hand. To
predict chemical shifts from a putative structure, efficient semi-classical approximations of the physics
of NMR are usually combined with statistical regression techniques.
To address NMR chemical shift prediction, we first build a fully automated pipeline called NightShift
for the generation of training and test data sets and the training of hybrid shift prediction models.
NightShift can automatically adapt to the availability of new experimental data. Thus, the tedious
manual work of generating data sets and new models for chemical shift prediction that used to take
months to years will be greatly simplified and can be reduced to calling a single shell script to re-train

8

the pipeline, or write a few lines of code to implement novel descriptors.
Using NightShift, we automatically generate models for protein shift prediction that outperform es-
tablished manually generated approaches. The best of these models, which we call Spinster, uses a
hybrid combination of simplified physical laws with a random forest model. Combining NightShift
and Spinster with our work on bond order assignment then finally allows us to address an important
unsolved problem in molecular modelling: the prediction of the influence of non-protein atoms on
protein chemical shifts. Apart from computationally extremely expensive quantum chemical models,
all currently available methods for shift prediction fail to include the influence such non-protein atoms,
such as ligand atoms, entirely. In our new model, which we call Liops, we used bond types computed
with BOA Constructor and the resulting atom types as features for regression techniques for NMR shift
prediction. While Liops should currently be seen as a proof-of-concept rather than a final model, it
demonstrates that features based on bond orders and atom types carry useful information for difficult
prediction tasks.
Since the current state of automated modelling still makes manual preparation, assessment, and
correction indispensable, we further investigated techniques to visualize and manipulate biomolecular
structures and their properties. As shown in Chapter 4, this led to a number of developments, in
particular in the field of real time ray tracing of molecular systems, which are tangential to this work
and will only be covered briefly. In the course of these projects, we found that modern visualization
techniques can also help in computing molecular properties in a very general, albeit very efficient way.
A first application, the estimation of molecular areas, volumes, and cavities, will be introduced briefly
in Section 4.5.
All the developments described above can benefit computer aided drug design, as was our main goal
in this thesis. In Fig. 1.1, we show how our contributions map to the different stages of the drug
discovery pipeline.
Creating such techniques for molecular modelling requires a powerful framework for solving routine
recurring tasks efficiently and correctly, such as reading or writing common file formats, representing
molecules in efficient data structures, or applying established molecular modelling techniques. Our work
is thus based on the Biochemical Algorithms Library (BALL) [HDR+10], which provides hundreds of
pre-coded solutions to common modelling problems. In the course of this thesis, we greatly extended
BALL’s functionality to support our research. In addition, all techniques developed in this thesis have
been integrated into BALL, allowing automatic dissemination to thousands of users world wide.

9

2. Optimal Bond Order Assignment

2.1. Introduction

Many algorithms in Computational Biology and Chemistry are concerned with the analysis or manipu-
lation of molecular structures. Often, mere knowledge about the connectivity of the molecule is insuffi-
cient and has to be supplemented with information about the bond orders: imagine, e.g., the detection
of flexible groups in a molecule, or explicit (non-aromatic) bond orders needed for atom typization in
force fields. Unfortunately, this information is often neglected in molecular databases and file formats.
Even important molecular databases, such as the Protein Data Bank (PDB) [BWF+00, BHN03] and
the Cambridge Structural Database [All02], are known to contain erroneous data for connectivity and
bond order information [Lab05]. Hence, we cannot rely on its availability, explaining the need for
accurate and efficient algorithms for bond order assignment.
For proteins and nucleic acids, bond orders can be easily deduced due to their building block nature,
but this does not hold for other kinds of molecules such as ligands. The problem is made much worse
by the fact that quite often, the bond order assignment for a given molecule is not unique, even
when neglecting symmetries in the molecule. The chemical reasons for this effect are complex and
out of scope of this work. Here, we just want to state that the concept of integer bond orders is
only an approximation to a full quantum chemical treatment and cannot explain all effects occurring
in molecules. Important examples are aromatic or delocalized bonds, leading to different resonance
structures (an example is shown in Fig. 2.1). In addition, formal charges are often not contained in
the input files, but atoms carrying a formal charge will obviously show a different bonding pattern.
One school of thought tries to overcome these problems and errors through hand-curation, which clearly
provides the highest reliability. On the other hand, manual curation does not scale well to large numbers
of molecules, and it does not help in situations where modifications are programmatically applied to
the molecules, e.g., in computational combinatorial chemistry, where small molecules are automatically
built up from certain templates by connecting molecular fragments to pre-defined positions.

Figure 2.1.: Different resonance structures of 4-(N,N-dimethylamino)pyridine. A bond order assign-
ment program should optimally be able to compute all of these configurations.

An illustrative example demonstrating the influence of different bond orders on the biological activity is
given by the Fibromyalgia (FMS) inhibitors, whose inhibition potency has been studied in [MWC+08].
Selected investigated inhibitors are shown in Fig. 2.2. For example, cases 18g and 18h only differ in
a single bond order, but yield significantly different IC50 values. A comparison of cases 13a and 13g
even shows a difference of one order of magnitude.

11

2. Optimal Bond Order Assignment

Figure 2.2.: Influence of bond orders on the IC50 values of FMS inhibitors as presented in the work of
Meegalla and coworkers [MWC+08].

Further examples that demonstrate the influence of bond orders on relevant properties are given in
Fig. 2.5, which exemplarily shows two cases where wrong bond orders lead to a wrong interpretation
of two important molecular properties: flexibility and aromaticity.
In this chapter, we describe a new combinatorial optimization approach for bond order assignment,
which we call BOA Constructor. BOA Constructor was designed as the new bond order component for
our BALL library (c.f. Chapter 4). As a general technique, it does not make any a-priori assumptions
about the quality of the input data. From a theoretical point of view (see Section 2.2), there are several
shades of the bond order assignment problem, depending on the characteristics of the input. In essence,
there are two important types of information that may or may not be reliable: the molecular topology,
which we define as the atoms of a molecule and the atom pairs that are covalently bonded to each
other, as well as the atomic coordinates. If the topology is incorrect, only a coordinate based approach
can usually succeed, and hence, reliable atomic positions are required in these cases. However, in
most use-cases in practice, the molecular topology is assumed as given, but atomic coordinates may
be unreliable (c.f. Fig. 2.3). In these cases, a connectivity based approach is much more stable than
a position based one. Consequently, our bond order assigner is built upon an established connectivity
based approach by Wang and collaborators [WWKC06]. On the other hand, to support cases where
the molecular topology is incorrect, incomplete, or missing entirely, or where the user knows the degree
of reliability of input coordinates, we extended the original approach to allow the user to continuously
switch between a purely connectivity and a purely position based approach.

To ensure high computational efficiency and simple extensibility, we separated the theoretical formu-
lation of bond order assignment as a combinatorial optimization problem from the solution strategies
used. This allowed us to implement and test different solvers, each with their own advantages and
disadvantages. Three of these solvers, an A-Star (A*) algorithm, an Integer Linear Program (ILP),

12

2.2. Problem Definition

Figure 2.3.: Classes of input molecules for the bond order assignment problem.

and a Fixed-Parameter Tractability (FPT) approach, solve the problem to provable global optimality.
Two additional heuristic optimization techniques, a K-Greedy and a Branch-and-Bound strategy, usu-
ally provide good approximations. As a great advantage compared to previous approaches, our exact
solvers can not only enumerate all co-optimal solutions, but also sub-optimal ones, if so desired.

Finally, the separation between problem formulation and solution strategy allows to extend the approach
in several directions, such as the inclusion of structural information, the addition of missing hydrogens,
or even the inference of the molecular topology.

In Section 2.3 and Section 2.4, we present former approaches and research on automated bond order
assignment. In Section 2.5 and Section 2.6, we describe our aims and our formulation of the bond
order assignment problem and discuss provably exact algorithms to solve it. We then turn to possible
extensions to our algorithms with respect to including structural information, adding missing hydrogens
(c.f. Section 2.7), and a new penalty table (c.f. Section 2.8). Finally, Section 2.9 presents the results of
our approaches on several evaluation data sets. While this chapter focusses mostly on the conceptual
and algorithmic aspects of bond order assignment, details of the implementation of BOA constructor
will be described in Section 4.2.

Most of the results presented in this section have been published in the Proceedings of GCB 2009
[DRLH09] as well as in a Bioinformatics publication [DRB+11].

2.2. Problem Definition

The concept of bond orders is only a rough, yet widely accepted, approximation to the quantum
mechanical concept of a chemical bond. The idea behind this approach is to count the number of
electrons shared between the two bonded atoms. In this approximation, the bond order is assumed
to be an integer number between, typically, 1 and 4. But with this approximation, it is not possible
to explain all effects occurring in molecules. An extension thus also allows cases where electrons are
shared by more than two atoms, e.g., so-called delocalized systems like carboxyl groups, or aromatic
rings. But here, electrons cannot be uniquely mapped to individual bonds. Hence, most modelling
approaches use the approximation as integers. But this immediately poses the problem of assigning
such approximated bond orders to a molecule.

The connectivity based bond order assignment problem is defined as follows: given a molecule with
topology information, i.e., the connection between atoms in the molecule, compute its most probable
bond order assignment. In the coordinate or position based bond order assignment problem, we are
instead given the atomic coordinates and want to infer the bond orders from these. Due to the

13

2. Optimal Bond Order Assignment

individual chemical properties of atoms that are part of a molecule, not all theoretical possible bond
order assignments are valid. Also, the valid bond order assignment is not necessarily unique, e.g. in
aromatic ring systems, c.f. Fig. 2.1 and Fig. 2.5.

Figure 2.4.: Classes of the bond order assignment problem. Crucial pieces of information are topology
(atoms and bonds) and atomic distances.

Unfortunately, several additional shades of the bond order assignment problem exist as shown in
Fig. 2.4. This is due to the different possible levels of given connectivity information and reliability of
the atomic positions for general molecular input. A number of former approaches for solving the bond
order assignment problem thus further restrict the problem to require the correctness of given atomic
positions.
For the general case, we can distinguish three major classes of input molecules:

1. molecules with reliable atom coordinates, bond lengths, and angles.

2. manually ’drawn’ molecules with roughly accurate positions (e.g. 2D sketches).

3. molecules with highly unreliable atom positions.

For the first case, heuristic classifiers based on order dependent statistics about bond lengths and
angles are known to work well in practice and are wide-spread (see, e.g., [ZCW07]). But extending
this technique to molecules from the second class produces highly unreliable results, and application to
the latter class is obviously bound to fail. Alternative approaches have thus focused on inferring bond
orders from connectivity information alone. In cases where atom positions are known to be sufficiently
accurate, though, position based approaches typically yield more accurate results. Consider, e.g., two

14

2.3. Former Approaches

molecules differing only by their bond orders. A connectivity based approach can never distinguish
between the two, while a position based approach employs the different lengths and angles induced by
the different bond orders.

Unfortunately, given an arbitrary molecule from an arbitrary source, there is no way to reliably classify
into which category it falls. In addition, in many application scenarios, the information how many hy-
drogen atoms are bonded to an atom is missing as well; common databases often lack this information
since it is not always experimentally accessible.

In the worst case, we lack connectivity as well as distance information (see Fig. 2.4). In this case,
the number of possible connections to create a single molecule for the given set of atoms is already
exponential in the number of atoms and we cannot easily decide between the different solutions. If,
on the other hand, the distance information is fairly correct, which is a reasonable assumption for
typical molecular data as discussed above, connectivity information can be deduced. Thus, in this
work we assume to be given at least the full molecular topology. Please note that we consider the
information how many hydrogens are connected to an atom as connectivity information as well, but
we will show how this additional problem can be elegantly addressed at additional computational
cost in our approaches later. Finally, we will show how the approach can additionally use positional
information if this is available.

2.3. Former Approaches

The problem of assigning bond orders has been addressed by different types of approaches since the
advent of large molecular ligand databases made manual data curation infeasible. Very different strate-
gies have been applied to derive bond order information in combination with a broad range of other
structural information, such as atomic connectivity [BH92, ZCW07], hybridization states [HRB97], ion-
ization states and charges [Lab05], and atom typing [WWKC06]. In the following, we briefly describe
the most important of these approaches.

One of the first approaches for automated bond order assignment was developed by Baber and
Hodgkin [BH92]. Based on reference bond lengths and valence angles, these authors assigned initial
bond orders and coordination states (linear, trigonal, tetrahedral, and octahedral), each weighted with
a confidence value. Conflicts between the atom’s valence and the connectivity are solved iteratively in
a greedy manner by adjusting the assignment with smallest confidence value.

The BALI program by Hendlich and coworkers [HRB97] extends this ansatz by additionally consider-
ing hybridization, aromaticity, and information that is independent of the geometric data: functional
groups. BALI proceeds in a stepwise manner, first deriving bond orders based on connectivity informa-
tion, then recognizing functional groups, followed by comparing the bonds against known bond length
and angles, and recognizing aromatic rings. Finally, a heuristic conflict resolution is applied.

A completely different solution is proposed by Labute [Lab05], who represents the bond order assign-
ment problem as a Maximum Graph Matching. Sophisticated geometric tests are applied to generate
probable bond orders that are weighted based on statistics deduced from a large collection of organic
molecules. The solution of the resulting combinatorial optimization problem leads to a consistent
bond order assignment. However, this approach still strongly relies on the availability of correct
three-dimensional atom positions.

The program I-interprete [ZCW07] focuses on correct file format conversion. Since in some file formats,
the bond order information is missing, the authors instead rely on atomic coordinates to solve the
bond order assignment problem. In a stepwise procedure, connectivity, hybridization states, functional
groups, and aromatic rings are recognized, yielding an initial atom and bond type assignment. All
remaining unsolved bonds are typed based on standard bond lengths and dihedral angles before, finally,
a priority based conflict resolver is applied.

Another approach that formulates the bond order assignment problem as an abstract optimization

15

2. Optimal Bond Order Assignment

problem is presented in the work of Froeyen and Herdewijn [FH05]. The general idea here is to find
assignments that satisfy the octett rule [Lan19], and hence represent a valid Lewis structure [Lew16].
Based on atom types and connectivity information, the octett rules for all atoms are formulated and
combined into a linear programming problem that can be solved by an external solver. This approach
follows a very elegant idea and can be used in principle without requiring three-dimensional coordinates.
However, it still suffers from a number of drawbacks. First, it can only generate a single valid Lewis
structure, even though in non-trivial cases, many valid solutions exist. While this could be changed in
principle – even though at large computational expense – the problem is fundamentally much worse:
valid Lewis structures fulfilling the octett rule are a nearly1 necessary, but not a sufficient condition
for a chemically sound bond order assignment. To illustrate this, imagine a six-ring of carbon atoms
without attached hydrogens. Setting all ring bonds to be double bonds leads to a valid Lewis structure
that fulfills the octett rule, but is chemically forbidden: such a system of double bonds would require
bond angles of 180 ◦ each, which is clearly inconsistent with a ring topology. Hence, fulfilling the
octett rule is insufficient, since it cannot distinguish between different isomers that are unequally likely
due to their chemical environment.

In summary, all of the approaches discussed before suffer from several drawbacks: to the best of our
knowledge none of the alternative approaches offers enumeration of all optimal or even sub-optimal
bond order assignments for a given topology, i.e. equally likely or only slightly more unlikely solutions.
The key algorithms often contain hard-coded heuristics for fragments and functional groups that cannot
be easily changed or updated. In addition, the source code is often not available, while the heuristics
are not described in the publications, rendering re-implementation impossible. Furthermore, most of
these approaches strongly rely on the correctness of structural data, which is usually not given and
thus cannot be assumed for general applications.

2.4. The Antechamber Approach

Instead of relying on the correctness of the atom coordinates as many of the previously presented
approaches do, our work extends a connectivity based approach proposed by Wang et al. [WWKC06]
that uses the flexible and extensible notion of molecular penalty scores: each atom in the molecule is
assigned to one of several possible classes based on its element, degree of connectivity, and element
and degree of its neighbours. For each atom, the sum over the degree of its bonds is defined as its
valence, and for each class, each valence is assigned an individual atomic penalty score. The sum
over all atomic penalty scores defines the total penalty of the molecule; minimization of this score is
supposed to yield the most realistic assignment of bond orders. The approach has been implemented in
the popular Antechamber package [WWKC01, Wan10]: Antechamber, now a part of the AmberTools
suite, is a program used to prepare input structures for use with the Amber molecular mechanics
package. In particular, it is used to generate input for the GAFF force field [WWC+04], a generalized
version of Amber.

In Antechamber’s bond typing approach, a chemically motivated, expert generated penalty function
is used to score bond order assignments. This function is then heuristically optimized. This procedure
works well for small molecules without, e.g., convoluted ring structures, where it usually finds one
of the optimal assignments. Unfortunately, application to larger or more complex molecules suffers
from two drawbacks: the score of the resulting assignment is not guaranteed to be optimal and the
algorithm provides only one solution while there can be more than one assignment with optimal score.
Fig. 2.5 exemplarily shows two cases where these two drawbacks may lead to a wrong interpretation
of two molecular properties: flexibility and aromaticity. The top structures represent valid bond order
combinations for the 2-amino-2,3-dihydroquinazolin-4(1H)-iminium molecule, yet rotation of an NH2

1 The problem is aggravated by several exceptions from the octett rule which we do not discuss here. In this sense, it
is not even a necessary condition.

16

2.4. The Antechamber Approach

group is restricted due to double bonds. The lower structures show valid bond order combinations for
the 4-azido-1,2,5-thiadiazol-3-amine molecule, yet only one structure meets the AM1-BCC aromaticity
criterion [JJB02]. Finally, the heuristic nature of the approach leads to a complex implementation.

More formally, the bond order assignment problem as addressed in [WWKC06] is defined as finding
the most probable consistent bond order assignment for a given molecule by minimizing a total penalty
score tps, where each atom is assigned an atomic valence av that is defined as the sum over all bond
orders bo of all bonds connected to the atom under consideration:

av =
con∑
i=1

boi.

Here, con denotes the number of bonded atoms. The distance of the calculated av to the atom’s
most desirable valence value is measured by the atomic penalty score aps. The possible valences of
an atom and the corresponding distance penalty scores are stored in a penalty table that uses a rule
based atom type classification as derived in [WWKC06]. The sum over all atomic penalty scores of a
molecule now yields the total penalty score

tps =
n∑

i=1

apsi

where n denotes the number of atoms. The smaller the tps of a given bond order assignment, the more
reasonable it is. Finding the most probable consistent bond order assignment for a given molecule
can thus be addressed by minimizing the total penalty score. Recently, Böcker and coworkers showed
that exact minimization of the tps is NP-hard [BBST09]. Thus, in [WWKC06], minimization then
proceeds in a heuristic and greedy manner.

2.4.1. The Heuristic Trial-and-Error Approach of Antechamber

The approach taken by Antechamber tries to solve the problem by separating the assignment of atomic
valences from the assignment of bond orders. The rationale behind this idea is as follows: neglecting
feasibility, the assignment of atomic valences can be done independently for each atom, and hence is
trivial. From this point on, the problem reduces to finding a valid bond order assignment that leads to
the chosen atomic valences. From a computational perspective, though, not much is gained: there are
exponentially many atomic valence assignments of the molecule that have to be tested, and each bond
order assignment for each valence state is still a hard problem as soon as ring systems are present in
the molecule. However, this separation lends itself to being implemented a simple heuristic approach:
first, for a given atomic valence assignment, all bond orders that can be immediately decided are
directly inferred. Those that are still undetermined after this step are then addressed by a so-called
trial-and-error test discussed below.

Since it is not immediately clear if a given atomic valence assignment will lead to a feasible bond
order assignment, the program typically has to test a large number of these, in order of ascending
total penalty score. However, due to the combinatorial explosion of atomic valence assignments, the
program generates a list of such assignments sorted with respect to their tps and pruned after a fixed
number of entries. With default settings, Antechamber tests 2000 assignments for feasibility.

The pseudo code in Alg. 1 describes how bond orders are assigned for a given atomic valence combi-
nation.

Unfortunately, the algorithm described above is not guaranteed to return an optimal solution. First,
the restriction to a relatively small number (2000 in the default implementation) of atomic valence
assignments leads to failures as soon as complex ring structures are involved. Second, the trial-and-
error test as described above lacks backtracking capabilities. While these can be integrated into the

17

2. Optimal Bond Order Assignment

Algorithm 1 Bond order assignment for given atomic valences of molecule M
1:

2: def Antechamber(M):
3: while M contains unassigned bonds: do
4: assignTrivialBonds(M)
5: if M contains unassigned bonds: then
6: result ← trialAndError(M)
7: if result == “infeasible”: then
8: return “infeasible”
9: end if

10: end if
11: end while
12:

13: def trialAndError(M):
14: b← first unassigned bond in M
15: for all o ∈ {1, 2, 3}: do
16: setOrder(b, o)
17: if assignTrivialBonds(M) != “infeasible”: then
18: return “feasible”
19: end if
20: end for
21: return “infeasible”
22:

23: def assignTrivialBonds(M):
24: for all atoms a in M : do
25: if (con(a) == 0 and av(a) �= 0) or (con(a) �= 0 and av(a) == 0): then
26: return “infeasible”
27: end if
28: for all unassigned bonds b of a: do
29: if con(a) == av(a): then
30: setOrder(b, 1)
31: else if con(a) == 1: then
32: setOrder(b, av(a))
33: end if
34: end for
35: end for
36:

37: def setOrder(b, o):
38: order(b)← o
39: (a1, a2)← atoms(b)
40: for all i ∈ {1, 2}: do
41: av(ai)← av(ai)− o
42: con(ai)← con(ai)− 1
43: end for

18

2.5. Aims of our Work

Figure 2.5.: Top: Different co-optimal bond order assignments. In the left structure, both NH2 groups
are connected to the molecule via a single bond and are thus freely rotatable. In the middle
and right structure, one NH2 group is connected via a double bond.
Bottom: Heuristic and optimal bond order assignments. The left structure is the solution
provided by Antechamber with a tps of 4. Its 5-ring does not fulfill the aromaticity criterion
of AM1-BCC [JJB02]. The right structure is the solution computed with our exact solvers.
Its tps is 0 and the 5-ring meets the AM1-BCC aromaticity criterion.

algorithm, the step increases the worst case run time exponentially. Table 2.1 shows cases where this
procedure leads to sub-optimal solutions.

2.5. Aims of our Work

We found that all of the problems described in Section 2.4 can be circumvented by re-formulating the
total penalty score minimization as a combinatorial optimization problem.
To this end, we have expressed the combinatorial optimization problem by a suitable objective function
and designed heuristics to solve the assignment problem by an A* approach. In addition, we designed
an Integer Linear Program (ILP) for bond order assignment and collaborated closely with the group of
Prof. Dr. Sebastian Böcker in their efforts to develop a Fixed-Parameter Tractability (FPT) solution.
We then continued to extend the basic algorithms in several different directions, such as the addition
of missing hydrogens, the inclusion of structural information into the otherwise purely connectivity
based approach and a new penalty table.

2.6. Solution Schemes

Given the new formal definition of the bond order assignment problem, we now present our different
solution schemes, each with its own set of advantages and shortcomings. In addition to the three
exact solvers, we have also tested different heuristic strategies. To focus the presentation on the most
important results, discussion of these heuristic approaches has been deferred to Appendix A.3.

19

2. Optimal Bond Order Assignment

2.6.1. An A* Approach

In order to be able to efficiently enumerate all feasible solutions – optimal and sub-optimal ones alike –
we formulated the bond order assignment problem as an A* search algorithm. This allows enumeration
of all assignments in order of increasing penalty and hence, for instance, to compute the assignments
of all solutions for a given molecule up to a user defined penalty threshold.
As a combinatorial optimization problem, the bond order assignment problem can be represented by
a tree, where each layer stands for one of the decisions that have to be made. In our case, the tree
has k layers, where k is the number of bonds that have to be assigned. A node at layer i has μ
children, where μ is the number of possible bond orders, typically 3, and each edge is labeled with its
corresponding order. Hence, by tracing the path from the root to a node w at layer i, we can determine
the values of the first i bonds in this particular partial assignment represented by the node w. Thus, the
root node corresponds to a completely unassigned molecule with only unknown bond orders, while the
leaf nodes correspond to complete bond order assignments. Adding a child node only if the resulting
valence state is valid guarantees the leaf nodes to correspond to feasible bond order combinations. In
order to further discriminate between the different combinations, each leaf is assigned its total penalty
score describing the likelihood of the bond order assignment due to the heuristic penalty function.
Visiting all nodes in the tree, the optimal bond order assignment can be found in a brute-force manner
with exponential running time. A heuristically good (but not necessarily optimal) result can be found
in linear time in a greedy manner if all intermediate nodes are assigned the atomic penalty score of the
partial bond order assignment they represent. Greedily expanding the locally optimal solution will then
yield the heuristic assignment. An exact solution can be found in worst-case exponential, but much
better expected running time, if at each intermediate node, more information is provided. This leads
to the popular A*-search algorithm [HNR68], which employs a search heuristic to guide the algorithm
in descending the tree.
More formally, the algorithm associates with each node w a function f(w) = g∗(w) + h∗(w) where
g∗(w) describes the score corresponding to the decisions already made and h∗(w) is the so-called search
heuristic. For the purposes of the A*-search algorithm, the search heuristic must be an admissible
estimate of the score of the best leaf that can be reached starting from node w and descending further
down the tree. Here, admissible means that it needs to be ’optimistic’: for all nodes w, the estimated
cost h∗(w) may never be greater than the lowest real cost to reach a goal node when starting at w.
Given the additional information provided by h∗, the A*-search algorithm always expands one of the
nodes with the most promising score, ensuring that the first leaf reached is optimal. Roughly speaking,
if the algorithm would visit a leaf with worse score first, the search-heuristic would have overestimated
the penalty of the real optimal solution, which an admissible heuristic never does.
Alg. 2 shows the general A*-search algorithm, where r denotes the root node, f(w) the search heuristic
of a node w, which returns the sum of the score corresponding to the partial solution represented by
w and the admissible heuristic estimate of the score corresponding to the upcoming decisions.
In practice, the A*-search algorithm is typically implemented with a priority queue PQ, so that line 3
is in O(1). As long as PQ is not empty, the algorithm can compute further solutions in the order of
optimality. When replacing line 6 with:

print w̄

the algorithm will return all solutions in the order of increasing score.
Alg. 3 shows the adaption of the A*-search algorithm to the bond order assignment problem. To this
end, we represent a molecule M by a set of its bonds, which are visited in an arbitrary but fixed order.
Let r denote an artificial root node, corresponding to the empty assignment. During the algorithm,
bonds not denoted as free will keep their original bond orders. As long as the priority queue is not
empty, the algorithm computes further solutions in the order of optimality. When replacing line 10
with:

store bond order configuration as denoted in w̄

20

2.6. Solution Schemes

Algorithm 2 A*-search algorithm

1: PQ ← {r}
2: while PQ �= ∅ do
3: w̄ ← argmin

w∈PQ
f(w)

4: PQ ← PQ \ {w̄}
5: if w̄ is leaf then
6: return w̄
7: else
8: for all c ∈ children(w̄): do
9: PQ ← PQ ∪ {c}

10: end for
11: end if
12: end while

the algorithm will return all bond order configurations in order of increasing penalty.

Obviously, the order in which the bonds are considered during the A*-search has a strong influence
upon the number of nodes that have to be expanded before finding the first solution. Considering
bonds in the order of decreasing certainty about the most probable order will keep the expanded tree
slim, whereas considering bonds in the order of increasing bond order certainty leads to a very broad
tree.

A schematic sketch of the A*-algorithm for bond order assignment is given in Fig. 2.6. To map the
bond order assignment problem formally to an A*-search, we need further notations that are adapted
to the partial bond order assignments corresponding to each node w in the search tree.

We denote the set of all assigned bonds in the node w by W (B), the assigned bonds connected to
atom a in node w by W (a), and the set of atoms for which all bonds are already assigned a bond
order by K. We further define the valence of atom a in node w as

vw(a) :=
∑

b∈W (a)

bo(b).

Then, the functions g∗ and h∗ can be defined as:

g∗ =
∑
a∈K

P (a, vw(a)) (2.1)

h∗ =
∑

a∈A\K
min

i∈V (a)
{P (a, i)} (2.2)

where V (a) ⊂ N contains the possible valences of atom a according to the penalty table P .

The function g∗ sums the atomic penalties of all completely assigned atoms in the partial bond order
assignment represented by node w, whereas h∗ considers all atoms with bonds of unassigned bond
order. For the atoms in this set, we compute the minimal atomic penalty possible under the current
partial assignment independently of the other atoms in the set: each atom can choose its preferred
value for each unassigned bond without considering overall consistency. Obviously, h∗ is optimistic.

Indeed, the search heuristic given in (2.2) is far too optimistic and can be tightened significantly. Thus,
we define the bond order of an assigned bond by bo(b). A partial bond order assignment induces a
simple lower bound vw(a) for the valence of atom a.

21

2. Optimal Bond Order Assignment

Algorithm 3 A*-bond order algorithm (molecule M with n bonds)
1:

2: def A*-BOA(M):
3: PQ ← {r}
4: b1 := first free bond in M
5: for all bond orders i do
6: PQ ← PQ ∪ bondOrders({b1 ← i})
7: end for
8: while PQ �= ∅ do
9: w̄ ← argmin

w∈PQ
f(w)

10: PQ ← PQ \ {w̄}
11: if w̄ is leaf then
12: assign bond orders as denoted in w̄
13: else
14: bx := is next free bond in M
15: for all bond orders i do
16: PQ ← PQ ∪ bondOrders(w̄, {bx ← i})
17: end for
18: end if
19: end while
20:

21: def bondOrders(w̄,t):
22: O ∈ {0, . . . , μ}n
23: for all i ∈ {1, . . . , n} do
24: Oi ←

{
0 bond i unassigned in w̄ and t

k bond i assigned order k in w̄ or t
25: end for
26: return O

22

2.6. Solution Schemes

CH3 O

OH

O

N

N

N

H

CH3

Any

Any

Any
Any

CH3 O

OH

O

N

N

N

H

CH3

Any

Any

Any

CH3 O

OH

O

N

N

N

H

CH3

Any

Any

Any

CH3 O

OH

O

N

N

N

H

CH3

Any

Any

Any

CH3 O

OH

O

N

N

N

H

CH3

Any

Any

Any

g*= 0
h* = 0

g*= 4
h* = 1

g*= 2
h* = 32

g*= 0
h* = 0

...

...

CH3 O

O

H

H

OH

N

N

N

H

CH3

Any
Any

Any

Any

Any
Any

Any

Any

Any

Any

Any

...

Figure 2.6.: Schematic sketch of the A*-bond order algorithm.

23

2. Optimal Bond Order Assignment

Assuming at least a single bond for each unassigned bond of atom a, a tighter lower bound for the
valence is given by

lo(a) := vw(a) +
∑

b∈B(a)\W (a)

1 = vw(a) + |B(a)\W (a)|

Thus, we can formulate a tighter search heuristic by

g∗ =
∑
a∈K

P (a, vw(a)) (2.3)

h∗ =
∑

a∈A\K
min

lo(a)≤i≤Vmax(a)
{P (a, i)} (2.4)

where Vmax(a) denotes the maximal allowed valence of a according to penalty table P .
An even tighter version of the search heuristic would also take the already assigned bond orders of the
neighbouring atoms of a in w into account. The maximum order of an unassigned bond with respect
to atom a is given by

t(a) := Vmax(a)− lo(a) + 1

Denoting by a1, a2 the atoms connected by an unassigned bond b, its maximum bond order equals

bomax(b) := min{t(a1), t(a2)},

yielding an upper bound for the atomic valence of an atom a

up(a) := min

⎧⎨
⎩Vmax(a), vw(a) +

∑
b∈B(a)\W (a)

bomax(b)

⎫⎬
⎭

Thus, a tighter version of the search heuristic is given by:

h∗ =
∑

a∈A\K
min

lo(a)≤i≤up(a)
{P (a, i)} (2.5)

We implemented all three heuristics in our code, where we default to the last since it is the tightest
of the three. A detailed comparison of the performance of the different heuristics can be found in
Appendix A.5.

2.6.2. An Integer Linear Program Approach

While the tree based approaches described before are very flexible, simple to implement and to extend
(as we will see in Section 2.7) the problem can be solved even more efficiently by using Integer Linear
Programming (ILP) techniques [PS98].
The key idea of Integer Linear Programming is to describe and solve an optimization problem by
integer variables and linear relationships between those variables. These relationships take the form
of equality or inequality constraints which the feasible solutions to the problem have to fulfill. Due to
the linearity, the function to be optimized in an ILP can be written as cTx+ β where c ∈ R

n denotes
a vector of coefficients which is called the “cost vector” and β ∈ R is an additive constant. This
linear construct is called the objective function. The linear relationships between the variables are then
modelled by a set of linear equality or inequality constraints.
Two particular forms of ILPs – the canonical and the standard form – are important in theory and
practice, and it can be shown that each ILP can be cast into either of them. In the canonical case,

24

2.6. Solution Schemes

which was introduced by Danzig, the ILP takes on the following form:

min
x

cTx

s.t. Ax ≥ b
x ≥ 0
x ∈ Z

n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

where A ∈ R
m×n is a matrix of coefficients and b ∈ R

m a vector, while in the standard form, the ILP
looks as follows

min
x

cTx

s.t. Ax = b
x ≥ 0
x ∈ Z

n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

To convert one form into the other, or to convert an arbitrary ILP into standard or canonical form, a
combination of several standard transformations has to be performed. For instance, switching between
minimization and maximization, or ‘greater-than’ and ‘less-than’ can be achieved through a simple
change of sign. Equality and inequality constraints can be converted by the use of so-called ‘slack
variables’, and the positivity constraint on x can be avoided by choosing from a set of new variables
which can be either positive or negative only.

An intuitive picture for solving ILPs use a geometric perspective: the variables x span a multi-
dimensional space. The objective function represents all valid combinations of the variables and
defines a set of planes within the full domain of the variables. Each constraint given in A defines
a half space, and thus further limits the variable space by a plane. If the ILP is feasible, i.e., if it
is possible to fulfill all constraints simultaneously, the combination of all constraints builds a convex
polyhedron.

For a linear program without the integer constraint, it is easy to see that an optimal solution can always
be found at a “best intersection” of the constraint polyhedron and the set of objective functions: from
any point inside the polyhedron, we can always decrease the value of the objective function by walking
along −c until we hit a constraint. Then, we can traverse this constraint by walking along the
component of −c perpendicular to the constraint’s normal (if this is parallel to −c, we can proceed
in any direction along the constraint). This procedure will at some point terminate in a corner of
the polyhedron, and since the polyhedron is convex, we will have reached the lowest feasible objective
value.

In the integer case, however, the corners of the polyhedron will not necessarily be feasible solutions,
since they might not be integer themselves. This complication renders the problem considerably harder
in the worst case. Thus, while Linear Problems can be solved efficiently by traversing the corners of
the solution polyhedron in a suitable manner, solving an Integer Linear Problem is NP-hard.

Fortunately, several sophisticated strategies for the solution of ILPs have been developed. While
none of these can guarantee polynomial running time in the worst case, these techniques often work
surprisingly well in practice. For instance, in the branch and cut - approach, the problem is first
relaxed to a linear program without the integer constraint. If the solution of this problem is integer,
the optimal ILP solution has been found. If it is fractional, instead, the next step consists in searching
for an additional constraint that is fulfilled by all feasible integer points, but not by the fractional
solution just found. Then, the relaxed problem, augmented by this constraint, is solved again in
the hope that the solution becomes “less fractional” with each iteration and finally converges to the
integer one in a finite number of steps. If no such constraint can be found, the problem is split
into two independent subproblems instead which split the solution space in half. For instance, if the
relaxed LP solution determined an optimal x1 = 12.4, two independent problems will be set up with

25

2. Optimal Bond Order Assignment

x1 <= 12 and x1 > 12, respectively, and the procedure will be run recursively in each of them. This
leads to a binary tree of sub-problems, and will finally yield the desired solution. This combination of
a branch-and-bound approach with a cutting-plane technique has proven particularly useful in practice
and is realized in many open-source and commercial solvers.

We will now continue with our formulation of the bond order assignment problem as an Integer
Linear Problem. Since this work was done in collaboration with Dr. Alexander Rurainski, some of
these discussions can also be found in his dissertation [Rur10]. Hence, we will focus on the higher
level concepts behind our approach instead of the details of its implementation. We will start our
discussion with a formal introduction of our Integer Linear Program.

We use the following notations: Let P be the penalty table, then

• A is the set of all atoms of the molecule under consideration.

• B(a) is the set of bonds of atom a ∈ A and B denotes the set of all bonds of the molecule.

• V (a) ⊂ N contains the possible valences of atom a ∈ A.

• P (a, v) is the penalty value for atom a ∈ A and valence v ∈ V (a).

Our approach uses two different classes of variables. For each bond b ∈ B we introduce indicator
variables xbi ∈ {0, 1}, symbolizing whether the corresponding bond b is set to the bond order i ∈
{1, . . . , μ}. Here, μ is the maximum bond order considered. In the following, we will set μ to 3,
allowing single, double, and triple bonds.

To ensure that each bond b ∈ B is assigned exactly one bond order, we add the linear constraints

μ∑
i=1

xbi = 1

for all b ∈ B. Then, the sum over all bond orders of all bonds b ∈ B(a) of an atom a can be computed
as ∑

b∈B(a)

(
μ∑

i=1

xbi · i
)

The second class of variables focuses on the atomic valences: for all atoms a and corresponding possible
valences v according to the penalty table P , we introduce indicator variables ya,v ∈ {0, 1}. Each ya,v
symbolizes whether the corresponding valence is chosen or not, i.e., penalty P (a, v) contributes to the
score if and only if ya,v = 1. Thus, the objective function of our score minimization problem can be
formulated as a linear function in y with penalty prefactors:

min
y

∑
a∈A

∑
v∈V (a)

P (a, v) · ya,v.

To ensure that each atom is assigned exactly one valence state, we add the additional linear constraints∑
v∈V (a)

ya,v = 1

for all a ∈ A. In addition, we have to ensure that for each atom, the sum of its bond orders equals its
chosen valence. These constraints can be formulated as

∑
v∈V (a)

ya,v · v =
∑

b∈B(a)

(
μ∑

i=1

xbi · i
)

26

2.6. Solution Schemes

for all a ∈ A, because the left hand side evaluates to valence v if and only if ya,v = 1.

In summary, the score minimization problem can be formulated as the following integer linear program:

min
x,y

∑
a∈A

∑
v∈V (a)

P (a, v) · ya,v

s.t.
∑

v∈V (a)

ya,v · v =
∑

b∈B(a)

(
μ∑

i=1

xbi · i
)
∀a ∈ A,

∑
v∈V (a)

ya,v = 1 ∀a ∈ A,

μ∑
i=1

xbi = 1 ∀b ∈ B,

ya,v ∈ {0, 1} ∀a ∈ A, ∀v ∈ V (a),

xbi ∈ {0, 1} i ∈ {1, . . . , μ}, ∀b ∈ B.

Additional solutions can be found if for each bond order assignment s = {xbi |xbi = 1} computed so
far we add the constraint(s) ∑

xbi∈s
xbi < k ∀s

where k denotes the number of bonds in the molecule. Please note that this is the reason that we used
xbi ∈ {0, 1} instead of xb ∈ {1, . . . , μ} to model the bond orders, since it simplifies the enumeration
of additional solutions.

For the solution of ILPs to provable global optimality, several strategies can be chosen, such as the pop-
ular pure branch & bound approaches or branch & cut methods [PS98]. We employed the open source
solver lp solve [BEN04] which uses a simplex-algorithm based branch & bound approach [PS98]. In
our experiments, we have seen a drastic increase in running time if more than one solution is com-
puted. Thus, the ILP approach is not well suited for obtaining co-optimal or sub-optimal bond order
assignments.

2.6.3. A Fixed Parameter Tractability Approach

In [BBST09], Böcker and coworkers were able to prove the NP-hardness of the bond order assignment
problem in the form discussed in this work by a reduction of the 3-SAT* problem [BKS07]. And
even though the hypothesis that P �=NP has still not been proven, NP-hardness implies that we should
not expect to find a polynomial-time exact solver for bond order assignment. To make matters
worse, [BBST09] also shows that the problem is inapproximable, meaning that every guaranteed ε-
approximation to the problem will again be NP-hard. Thus, it seems as if we could not expect to
find an exact solution strategy with a runtime that can compete with the simple, albeit heuristic and
inexact, Antechamber approach.

For some classes of NP-complete problems, however, efficient solutions can be found, given that the
problem instances occurring in practice fulfill some formal restrictions on the input. These experiences
lead to the concept of fixed-parameter tractability [DF99, FG06, Nie06, Bui10].

The general idea behind fixed-parameter tractability is the following: the NP-completeness of the
problem suggests that each exact algorithm will have at least exponential runtime. If we can formulate
the algorithm in such a way that the exponential terms in the runtime are exponential only in some
parameter k of the input, and if this parameter k can be chosen in such a way that it will be bounded
for all expected problem instances, the algorithm will indeed behave polynomial, not exponential. As
an example, if we might find an algorithm for the bond order assignment problem that would be

27

2. Optimal Bond Order Assignment

exponential only in the number of rings contained in the input solution, and if we would restrict
ourselves to input molecules with less than, e.g., 10 rings, we would have found a polynomial time
algorithm, albeit with a very large constant prefactor.

In the following, we will briefly describe such a fixed-parameter approach for the bond order assignment
problem which Prof. Dr. Sebastian Böcker and coworkers developed in collaboration with us. The
parameter k of this approach will be significantly more complex than the number of rings used in the
example above. On the other hand, the actual parameter (the width of a tree-decomposition of the
molecule) will lead to a typically very small bound for realistic input molecules.

The idea behind the approach is as follows: many NP-hard graph based problems can be solved in
polynomial time if the underlying graph is a tree. In general, graph algorithms often perform much
faster on trees than on cyclic graphs because the deletion of an inner node partitions the tree into
independent subgraphs. Algorithms for solving the independent, smaller, and simpler problems can be
applied, and in the end, the solutions of all subgraphs have to be combined, which is often efficiently
possible. These observations lead to the concepts of Divide & Conquer approaches and Dynamic
Programming.

A popular approach to transform a cyclic graph into a tree is to perform a tree-decomposition [RS86].
In the following, we will describe how we transform a molecule into a tree and how we applied dynamic
programming to compute a bond order assignment.

In our FPT approach, each molecule is considered as a molecule graph G = (U,E), where each vertex
represents an atom and each edge represents a bond. A tree decomposition of a molecule graph
G = (U,E) consists of an index set I, a set of bags Xi ⊆ U for i ∈ I, and a tree T with node set I
such that:

1. every vertex u ∈ U is contained in at least one bag Xi;

2. for every edge {u, v} ∈ E, there is at least one bag Xi such that u, v ∈ Xi;

3. for two nodes i, k of the tree T , if u ∈ Xi and u ∈ Xk, then u ∈ Xj also holds for all nodes j
of the tree along the path from i to k in T .

Fig. 2.8 shows a molecule, its graph representation, and a corresponding tree decomposition. The
reason why a tree decomposition helps with applying ideas from Divide & Conquer strategies can be
intuitively understood from the fact that, if all atoms contained in one bag were removed from a
molecule, it would be partitioned into independent parts, just as a tree is partitioned into independent
parts by removing one inner node. Hence, the bags in the tree decomposition allow to distinguish
between an ’up’ and a ’down’ direction for the Divide & Conquer strategy by using one of the resulting
parts as the ’upper’, the other parts as the ’lower’ set. By definition of a tree decomposition, in
particular, by property (3), this separation into ’upper’ and ’lower’ will always be consistent.

One important property of a tree decomposition is its width: the width of a tree decomposition is a
measure of how far a graph differs from a tree and equals ω − 1 for ω := max{|Xi| | i ∈ I}. The
treewidth of a graph G is the minimum width of any tree decomposition of G. With this definition,
the treewidth of a tree equals one, while the treewidth of a clique of size n equals n-1.

Given a molecule graph G, we first compute a tree decomposition. We will see below that the
running time and the required space of our algorithm grow exponentially with the width of the decom-
position. Unfortunately, computing a tree decomposition with minimum width is again an NP-hard
problem [ACP87]. But fortunately, heuristic and exact algorithms to compute such tree decompositions
efficiently in practice exist [GD04, BFK+06].

28

2.6. Solution Schemes

Figure 2.7.: A molecule (left), its graph representation (middle) and a corresponding tree decomposi-
tion (right) with width 2.

Figure 2.8.: The corresponding nice tree decomposition.

29

2. Optimal Bond Order Assignment

To simplify the description of our algorithm, we use the special case of nice tree decompositions: here,
we assume the tree T to be rooted. A nice tree decomposition is a tree decomposition satisfying the
following additional requirements:

1. Every node of T has at most two children.

2. If a node i has two children j and k, then Xi = Xj = Xk; in this case, i is called a join node.

3. If a node i has one child j, then one of the following two conditions must hold:

a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi; in this case, Xi is called an introduce node.

b) |Xi| = |Xj | − 1 and Xi ⊂ Xj ; in this case, Xi is called a forget node.

Here, introduce nodes and forget nodes are viewed as moving bottom-up from the leaves to the root.
We can easily transform a tree decomposition into a nice tree decomposition, in time linear in the size
of the tree decomposition. Let T denote a tree decomposition of a graph G with bags Xi. As a first
step, we root the decomposition T at an arbitrary node Xr. Now, we need to ensure that each node
is either a join, introduce, or forget node. To create suitable join nodes, we consider every node Xi

with more than one child. A join node has exactly two children with the same content as itself. Thus,
we first remove all n children of Xi and store them for later usage. Then, we add a binary tree at Xi

with n leaves rooted at Xi, where every node has the same content as Xi. Finally, we reconnect one
of the stored original children with each leaf of the binary tree. After this binarization, every inner
node of T has at most two children and two children of an inner node contain the same vertices as
their parent node. The only violation of the niceness that can still occur is to forget or to introduce
more than one atom in a node. This can be fixed by replacing the node by a path of introduce or
forget nodes. The result will be a nice tree decomposition.
Interestingly, it can be shown [Bui10] that by this algorithm, the size of T increases by a factor of
at most dmax × ω, where dmax is the maximum degree in the original tree decomposition. Also, the
width of T remains unchanged.
Fig. 2.8 illustrates a tree decomposition and a corresponding nice tree decomposition of a graph. It
can be easily verified that the union of all bags in the tree decomposition, as well as of all bags in the
nice tree decomposition, contain every vertex of the graph, and every edge of the graph exists in at
least one bag of the tree decompositions. Furthermore, all bags sharing a common vertex induce a
connected subgraph in the tree decomposition.
In addition to the conversion into a nice tree decomposition, we apply further extensions: the tree T
is rooted at an arbitrary bag. Above this root, we add additional forget nodes, such that the new root
contains a single vertex. Let Xr denote the new root of the tree decomposition and vr denote the
single vertex contained in Xr. Analogously, we add additional introduce nodes under every leaf of T ,
such that the new leaf also contains a single vertex.
As stated above, with a tree decomposition we now know how to define at each node in the graph an
’up’ and ’down’ subgraph, where we can apply the ideas of dynamic programming. A crucial idea is
to delay the scoring of each atom until it is forgotten. On the path from the root to any leaf, this can
happen only once for any atom because of property 3. Hence, the decision is unique for every atom
on each path.
To use the above facts efficiently, we introduce for every node i in the (extended nice) tree decompo-
sition a scoring matrix Di. For bag i with atoms {a1, . . . , ak}, the scoring matrix will have the form
Di[v1, . . . , vk; b1,2, . . . , bk−1,k], i.e., we assign one index for each atom in the bag, and one index for
each of the bonds between atoms in the bag.
Intuitively, the scoring matrix will answer for every node (i.e., bag) i the following question: what is
the best total penalty score that can be reached if all previous decisions lead to the valences v1, . . . , vk
for the atoms in bag i, and if the atoms in bag i form bond orders b1,2 . . . , bk−1,k between them.
The optimization in this node thus occurs over all possible previous decisions, where previous is to

30

2.6. Solution Schemes

be understood in the sense of our idea of a decomposition into ’lower’ and ’upper’ (see Fig. 2.9): all
atoms that have been forgotten in the subtree Ti rooted at node i have already been scored, i.e., their
best possible scores for all their valence combinations have already been computed and stored in the
corresponding score matrices in the subtree. Hence, in computing the new scoring matrix, we can
simply refer to these values and combine them in a suitable manner.

With this definition, it is immediately clear how to initialize the values of the leaves: in each leaf, we
only have one atom a1. Thus, we have no bonds to optimize over, and the valence so far assigned to
the atom is 0. Thus, the matrix Di[v1; ·] will be 0 if v1 equals 0 and ∞ otherwise.

Now, we can deduce the recursion formulas. Here, using a nice tree decomposition finally comes in
handy: we only need to distinguish between three possible cases, depending on the type of the current
node.

If this node is an introduce node, it contains one atom more than its only child. In this case, we
only have to carry over the scores from the subtree for all feasible combinations: since, according to
proposition 3, the new atom ak never appeared in the subtree below it, the new score matrix will
contain a value of ∞ for all combinations with a non-zero vk. For zero vk, we can simply copy over
the scores from the subtree.

If the node is a forget node, we will have to perform the mentioned optimization over the bond orders
and resulting valences for the atom that is to be forgotten, i.e., the atom that is to be scored.

Finally, if the father is a join node, it has two children with different sets of forgotten atoms. For
both children, we have already computed the optimal ways to achieve valences v1, . . . , vk for every
feasible valence combination through bonds to their respective sets of forgotten atoms. If we want to
determine the best way to assign, for example, a valence of 2 to atom a1, we could either take a full
valence of 2 from the first child, and a valence of 0 from the second, or a valence of 1 from first and
second, or a valence of 0 from the first and 2 from the second child. The optimization thus takes the
minimal resulting score over all these combinations.

In the following, we give the corresponding formulas in full mathematical detail. For this, a few
definitions are required.

Let {ai,1, ai,2, . . . , ai,k} be the atoms inside bag Xi, where k ≤ ω. In our presentation below, we
want to avoid double indices, so we refer to the atoms inside bag Xi as a1, a2, . . . , ak. It should be
understood that these are different atoms for each bag. For simplicity of presentation, we also assume
that the molecular subgraph induced by a1, a2, . . . , ak is fully connected and, thus, contains all bonds
a1a2, a1a3, . . . , ak−1ak. In our implementation, of course, we do not make this assumption.

Let Yi denote the atoms in the molecule graph G that are contained in the bags of the subtree Ti of T
below bag Xi: Yi =

⋃
j∈Ti Xj (see Fig. 2.9). To simplify the formulation of the dynamic programming

below, we will not use the bond order b̃i,j between atoms ai, aj but, instead, the free bond order

bi,j := b̃i,j − 1 ∈ {0, 1, 2}

Then, the valence of an atom a is the sum of free bond orders over all incident bonds, plus the degree
deg(a) of the atom in the molecule graph, i.e., the number of bonds it participates in. We assign a
score matrix Di to each bag Xi of the tree decomposition: let Di[v1, . . . , vk; b1,2, . . . , bk−1,k] be the
minimum score over all valence assignments to the vertices (i.e., the atoms) in Yi \ Xi if for every
l = 1, . . . , k, vl valences of atom al have been consumed by the atoms in Yi \ Xi, and free bond
orders b1,2, . . . , bk−1,k are assigned to bonds a1a2, a1a3, . . . , ak−1ak. Using this definition, we delay
the scoring of any vertex to the forget node where it is removed from a bag. We can compute the
minimum score among all assignments using the root bag Xr = {ar} as

min
vr∈V (ar)

{P (ar, vr) +Dr[vr]} .

The algorithm starts at the leaves of the tree decomposition and computes the score matrix Di for

31

2. Optimal Bond Order Assignment

Figure 2.9.: Definition of a subtree: the subtree Ti of a tree decomposition T contains all bags below
node i; Yi denotes the set of all atoms within the subtree Ti.

every node Xi when score matrices of its children nodes have been computed. We initialize the matrix
Dj of each leaf Xj = {a1} with Dj [v1; ·] = 0 if v1 = 0, and Dj [v1; ·] = ∞ otherwise. During the
bottom-up traversal, the algorithm then distinguishes whether Xi is a forget node, an introduce node,
or a join node, and computes Di as follows:

Introduce nodes. Let Xi be the parent node of Xj such that Xj = {a1, . . . , ak−1} and Xi =
{a1, . . . , ak}. Then

Di[v1, . . . , vk; b1,2, . . . , bk−1,k] =

{
Dj [v1, . . . , vk−1; b1,2, . . . , bk−2,k−1] if vk = 0,

∞ otherwise.

Forget nodes. LetXi be the parent node ofXj such thatXj = {a1, . . . , ak} andXi = {a1, . . . , ak−1}.
Then

Di[v1, . . . , vk−1; b1,2, . . . , bk−2,k−1] =

min
b1,k,...,bk−1,k∈{0,1,2}

vk∈{0,...,max{V (ak)}−deg(ak)}

{
P
(
ak, vk + deg(ak) +

∑k

l=1
bl,k

)

+Dj [v1 − b1,k, . . . , vk−1 − bk−1,k, vk; b1,2, . . . , bk−1,k]

}

where deg(ak) denotes the degree of vertex ak.

32

2.7. Extensions of our Approach

Join nodes. Let Xi be the parent node of Xj and Xh such that Xi = Xj = Xh. Then

Di[v1, . . . , vk; b1,2, . . . , bk−1,k] = min
v′l=0,...,vl
for l=1,...,k

{
Dj [v

′
1, . . . , v

′
k; b1,2, . . . , bk−1,k]

+Dh[v1 − v′1, . . . , vk − v′k; b1,2, . . . , bk−1,k]

}

For simplicity of the presentation of our algorithm, we assumed above that every two vertices in each
bag of the tree decomposition are connected by an edge, but in reality, the degree of a vertex in
a molecule graph cannot exceed the maximum valence d ≤ 7 of an atom in the molecule graph.
Therefore, the number of edges in a bag is upper-bounded by ωd. Given a nice tree decomposition
of a molecule graph G, the algorithm described above computes an optimal assignment for the bond
order assignment problem on G in time O(α2ω · 3β ·ω ·m), where

α = 1 +max
a∈A
{maxV (a)}

is the maximum (open) valence of an atom plus one, m and ω − 1 are size and width of the tree
decomposition, d is the maximum degree in the molecule graph, and β := min{(ω2), ω d} [BBST09].
Obviously, the exponential behaviour is restricted to the treewidth parameter ω.

The implementation of this approach, created in the group of Prof. Dr. Sebastian Böcker, was done
in Java. For the optimal tree decomposition of molecular graphs, it used the method QuickBB in
the library LibTW implemented by van Dijk et al. (http://www.treewidth.com). The result is then
transformed into a nice tree decomposition in linear time. Running times reported for the FPT
algorithm (c.f. table 2.4) include the running times of computing the optimal nice tree decomposition.
Full details of the implementation – such as the use of hash maps instead of arrays – can be found
in [BBST09]. Here, we only want to note one interesting common approach to reduce the runtime
in practice: the program initializes an integer u = 0 and does not store matrix entries with score
exceeding u. If the score of the optimal solution is at most u, this optimal solution will be found.
Otherwise, the algorithm is called again with increasing u, until an optimal solution is found. If not only
the optimal solutions but also a certain number of sub-optimal solutions are required, the algorithm
is called repeatedly with increasing u, until all required sub-optimal solutions are found or u arrives at
its upper bound ∑

a∈A
max
v∈V (a)

P (a, v).

Recently, we have converted the initial Java implementation to C++, based on an initial conversion
by Kai Dührkop. Details on this implementation can be found in Section 4.2.

2.7. Extensions of our Approach

In addition to solving the basic bond order assignment problem as defined in Section 2.2, we further
augmented BOA Constructor to approach related problems, i.e., scoring by structural information
instead of connectivity, combining structural and topological information for scoring, deducing addi-
tionally missing hydrogens, and generalizing the scoring scheme for partial bond order assignment. All
but the last represent more difficult problems and add further complexity. We exemplarily present and
discuss the extensions for the A* scoring scheme.

In principle, most extensions discussed here can be adapted to the ILP or FPT as well. However, the
simplicity of the A* algorithm greatly facilitates such extensions and hence, it is of great use as a
sounding board for novel ideas.

33

2. Optimal Bond Order Assignment

Figure 2.10.: Including bond length information into bond order assignment.

In addition to these extensions, we also improved the penalty table. This, however, is completely
independent from our solvers and will be discussed in Section 2.8.

2.7.1. Introducing Structural Information

So far, the search algorithms neglect structural information such as bond lengths or angles. But for
input molecules with rather reliable positions, using structure derived information may further assist
in improving the bond order assignment (see Fig. 2.10).

To show how this can be achieved, we extend the penalty scoring of a molecule M ’s bond order
configuration ci by a bond length penalty term.
Similarly, bond angles or hybridization states can be taken into account. The overall bond length
deviation of all bonds in configuration ci compared to averaged bond lengths, computed for all orders
and atom pairs, is given by

bd =
∑

b∈W (B)

(len(b)− lt(b),o)
2

where len(b) denotes the bond length of bond b, and lt(b),o denotes the averaged bond length of
reference bonds connecting the same atom types and having the same bond order o as bond b in
configuration ci. We already introduced the notation of W (B) to give the set of all assigned bonds
of molecule M in configuration ci, i.e., node w, that are already assigned a bond order.
The average values len(b) can either be statistically derived from a data set, or taken from alternative
sources. Here, we opted for the bond length definitions of the MMFF94 force field [Hal96a].
In order to compare two bond length penalties of two bond order configurations of the same molecule
M , we normalize the bond length deviation by the sum over all its atoms’ maximally possible bond

34

2.7. Extensions of our Approach

length deviations. Thus, the normalization factor for the bond length penalty of molecule M is given
by

bdmax =
∑
b∈B

max
o∈{1,...,μ}

(len(b)− lt(b),o)
2.

If a bond b is assigned to a bond order for which no averaged length is available, the deviation is
set to the maximally possible bond length deviation over all other bond orders for this bond type. If
there is no such other bond order set, the bond is excluded from computation both in the bond length
deviation and the normalization factor. In all other cases, the normalized bond length penalty can
then be defined as

bp =
bd

bdmax
.

The problem of finding a most probable bond order assignment for a molecule based on its atom
connectivity can be translated into the problem of finding a bond order assignment with minimal bond
length penalty, which can be further mapped onto an A*-search algorithm in a very similar manner
as for the atom-penalty approach presented in Section 2.6.1: a node w in layer l of the search tree
represents a partial bond order assignment of the first l − 1 bonds. It has ml children, where ml is
the number of possible bond orders of bond l. For the evaluation of a node w in the search tree that
represents a partial bond order conformation ci, we define a function f = g∗4 + h∗4 as follows:

g∗4 = bp (2.8)

h∗4 =
∑

b∈B\W (B)

min
o∈{1,...,μ}

(len(b)− lt(b),o)
2 (2.9)

where B again denotes the total set of bonds of molecule M . W (B) denotes the subset of bonds in
B contained in configuration ci (corresponding to node w) that are already assigned a bond order.
t(b) denotes the type of bond b, and lt(b),o denotes the average length of all bonds of type t and order
o in the data set.

Given this heuristic, the first leaf reached by an A* search algorithm has minimal bond length penalty,
i.e., the proposed bond orders have minimal deviation from comparable reference bond orders.

The heuristic (2.9) can be further tightened by considering the atom’s minimal and maximal valences,
which leads to the following evaluation function:

f =

⎧⎨
⎩
g∗4 + h∗4 ∀a ∈ A :

∑
b∈B(a)

v ∈ [Vmin(a),Vmax(a)]

∞ else
(2.10)

where B(a) denotes the set of bonds of atom a ∈ A and Vmin(a) (Vmax(a)) denotes the minimal
(maximal) possible valences for atom a, which we deduced from the given atom penalty table P .

In our experiments we found that pure bond length information does not suffice to clearly distinguish
between reasonable bond order assignments in the A* approach. We thus developed a strategy to
combine structural and connectivity information which we call fine penalty (fp): whenever two nodes
in the atom penalty based A* bond order search tree (see Alg. 3) are evaluated by the function f to
the same value, we additionally applied the search heuristics (2.8), (2.9), (2.10) to decide which
node to expand first. This strategy has the advantage that it does not change the optimality of the
solutions, but simply re-orders co-optimal ones according to decreasing likelihood.

2.7.2. Hybrid Penalty Score

The fine penalty corresponds to a subsequent application of connectivity and structure based penalty
scores. Including both, connectivity and structural information, in a more general fashion than a

35

2. Optimal Bond Order Assignment

subsequent application can be done by combining both the atom penalty and the bond length penalty
approach to a linear function, providing a tunable hybrid score. To this end, a normalization of the
atom type penalty is necessary as well.

We define the atom type normalization factor of a molecule M as

apmax =
∑
a∈A

max
v∈V (a)

{P (a, v)}.

Thus, the normalized atom type penalty can be expressed by

ap =
1

apmax

⎛
⎝∑

a∈A
P

⎛
⎝a, ∑

b∈B(a)

bo(b)

⎞
⎠
⎞
⎠ .

Combining the normalized atom type penalty with the normalized bond length penalty gives the hybrid
penalty function α (bp) + (1− α) (ap). where α ∈ [0, 1] denotes the tuning factor.

Applying the idea of a hybrid penalty also to the search heuristic, we end up with the following hybrid
evaluation function f∗ = g∗hybrid + h∗hybrid :

g∗hybrid =
α

bdmax

⎛
⎝ ∑

b∈W (B)

(len(b)− lt(b),o)
2

⎞
⎠ (2.11)

+
(1− α)

apmax

⎛
⎝∑

a∈K
P

⎛
⎝a, ∑

b∈B(a)

bo(b)

⎞
⎠
⎞
⎠

h∗hybrid =
α

bdmax

⎛
⎝ ∑

b∈B\W (B)

min
o∈{1,...,μ}

(len(b)− lt(b),o)
2

⎞
⎠ (2.12)

+
(1− α)

apmax

⎛
⎝ ∑

a∈A\K
min

lo(a)≤i≤Vmax(a)
{P (a, i)}

⎞
⎠

In cases where structural information is included (α > 0), further speed up can be gained by splitting
the search tree at trusted bonds into a number of independent smaller search trees, computing for
each subtree the optimal solution(s), and finally combinatorially combining those independent optimal
solutions to yield the set of all optimal full solutions. Such trusted bonds can, e.g., be single bonds
between two carbons that can be identified relatively reliably by their characteristic tetrahedral bond
angles.

As shown in the previous section, further speed up can be reached by applying the tighter heuristic
(2.5) to the atom type based term.

Very similar to the aforementioned inclusion of bond length information, torsional angle information
can be included into our algorithm in order to additionally guide to the most probable bond order
assignment. This, however, has not yet been implemented and is the subject of future work.

2.7.3. Hydrogens

Experimental structure elucidation is often blind to hydrogen positions. Consequently, many structural
databases such as PDB [BWF+00, BHN03], often lack hydrogens, which renders, e.g., the discrimi-
nation between hydroxyl oxygens and carbonyl oxygens difficult. Due to the diversity of possible input
molecules, our A*-search algorithm offers the functionality to add additional hydrogens. To this end,
we extended the standard A*-bond order algorithm by adding further virtual hydrogen bonds whenever

36

2.7. Extensions of our Approach

the maximal valence is not reached. These bonds have the special property that they are restricted to
having bond orders 0 or 1. The resulting algorithm is presented in Alg. 4.

Let va denote the current atomic valence of atom a, Vmax(a) the maximal allowed atomic valence
according to the atom penalty table P (see penalty table in [WWKC06]), and f(w) the search heuristic
of a node w. Please note that in principle all search heuristics (2.2), (2.4), (2.5), (2.9), (2.10), or
(2.12) can be used.

Line 10 of the algorithm iterates over all possible bond orders, i.e., for the virtual hydrogen atoms the
possible bond orders are 0 and 1. The solutions of Alg. 3 are a subset of the solutions produced by
Alg. 4.

Algorithm 4 A*-bond order algorithm with adding of hydrogen atoms (molecule M with n bonds)

1: for all a ∈ atoms(M) do
2: va ←

∑
b∈bonds(a)

1

3: while va < Vmax(a) do
4: create virtual bond bnew for atom a
5: va ← v + 1
6: end while
7: end for
8: PQ ← {r}
9: b1 := is the first free bond in M

10: for all bond orders i do
11: PQ ← PQ ∪ bondOrders({b1 ← i})
12: end for
13: while PQ �= ∅ do
14: w̄ ← argmin

w∈PQ
f(w)

15: PQ ← PQ \ {w̄}
16: if w̄ is leaf then
17: store or assign bond orders as denoted in w̄
18: else
19: bx := is next free bond in M
20: for all bond orders i do
21: PQ ← PQ ∪ bondOrders(w̄ ∪ {bx ← i})
22: end for
23: end if
24: end while

2.7.4. Selective Bond Order Assignment

For some applications, it makes sense to consider not all bonds of a molecule, but rather to keep some
trusted bond orders fixed. In a combinatorial chemistry application, e.g., the core fragment’s bond
orders should remain unchanged while the newly added parts of the molecule need to be assigned
reasonable bond orders. All aforementioned algorithms work perfectly with BALL’s sophisticated
selection mechanisms. Selection filters can be defined by BALL predicates, SMILES, and SMARTS
strings to restrict BOA Constructor’s scope. Thus, bond order assignment restricted to selected parts
of a molecule is easily possible.

37

2. Optimal Bond Order Assignment

Figure 2.11.: Resonance structures of a carboxylic group.

2.8. New Penalty Table

The original heuristic implementation of the bond order assigner as presented in Wang et al. [WWKC06]
used a fixed, hard-coded set of 35 atom classes. Adding even a single class, or splitting one existing
class into two, for instance, would require large-scale changes in the code base. However, changing
the classes would often be desirable. An important example is given by the carboxylic group (see
Fig. 2.11), for which the original approach proposed two double bonds, i.e. a charged carbon. For
most purposes, though, one would prefer a single-bond/double-bond combination. To this end, the
corresponding rule for carbon allowing valence 5 (former Antechamber rule 8) has to be deleted and
an additional atomic valence has to be introduced for oxygens, allowing one oxygen in a carboxylic
group to have valence 1 instead of being mapped to former rule 20.

Fortunately, BALL provides us with a simple, yet very flexible, way of grouping atoms dynamically
into classes: the expression mechanism, which supports simple predicates as well as complex ones
like SMARTS [SMA] expressions. These predicates can be combined with boolean operators to form
powerful selection patterns. Hence, we decided to harness this functionality for bond order assignment
as well. In our implementation, rules and atom classes are not hard coded, but rather read from an
XML-file that contains BALL-expressions for selecting the atoms corresponding to their penalty classes
and the corresponding penalty data. The full table of expressions and penalty values can be found in
table A.1 in Appendix A.1. Here, we will exemplarily discuss the meaning of one entry of the penalty
table, namely rule 12, which looks as follows:

SMARTS([#7D3](∼[#8D1,#16D1])(∼[!#8&!#16,!D1])(∼[!#8&!#16,!D1]))

The keyword SMARTS indicates to BALL’s expression parser that the expression in parentheses should be
forwarded to the SMARTS matcher. A full description of the SMARTS language would be well out of
scope of this work. The interested reader is referred to the official SMARTS homepage [SMA] instead.
Here, we briefly describe the SMARTS subset used for our penalty table. In a SMARTS expression,
individual atoms can be described in several different ways, such as their element type, connectivity,
aromaticity, and bonds. Individual properties can be combined by logical operators, such as and,
which is denoted by &, or, which is denoted by ,, and not, which is denoted by !. The element of
an atom can be denoted by its symbol, where lower- and upper case are used to discriminate between
aromatic and non-aromatic atoms, or by its atomic number prefixed with a hash symbol #, which
matches irrespective of aromaticity. The degree of an atom, i.e., the number of bonds it participates
in, is denoted by the symbol D, followed by the desired number.

Thus, in the expression above, the first subexpression in square brackets describes a single atom of
atomic number 7 – a nitrogen – that is bound to three other atoms. The following terms in parentheses
describe the environment of this atom further. In our case, we describe its three neighbour atoms. In
this description, the symbol ∼ denotes a bond of arbitrary order. Since we do not know the correct
bond orders yet, this is the only connection type we can employ in our rules. Considering that the rules
for the second and third partner in the above expression are the logical complement of the rule for the
first, we can finally see that the rule requires exactly one of the binding partners to be an oxygen or

38

2.8. New Penalty Table

a sulfur participating in only one bond. In total, the rule thus matches only for nitrogen atoms with
three bonds, where exactly one of these bonds connects to a singly-bonded oxygen or sulfur.

Given the editable configuration files, adjusting the former penalty table to cover also previously
unrecognized or wrongly assigned molecules is simple. E.g., the MMFF94 validation suite includes
a file DIGCOL (see Fig. A.1(g)) containing a charged CSS−-group, which was treated in a very
unconventional fashion by the Antechamber table. Instead of a single/double bond combination,
Antechamber used two double bonds. Hence, using default parameters will not produce a suitable
solution in this case.

Extending the rule set via our user-adaptable penalty table framework for sulphur (S) atoms within
such a functional group can be simply achieved by adding the entry

<entry id="37">

<elementstring>S</elementstring>

<smartstring>SMARTS([$([#16D4](~[#8D1-, #16D1-])

(~[#8D1 , #16D1])

(~[#8D1 , #16D1])

(~[!#8 & !#16, !D1]))])

</smartstring>

<penalty valence="6">0</penalty>

</entry>.

This is a good example of the power provided by our user-adaptable configuration files, since a single
additional rule will lead to the desired result.

Similarly, 4 additional molecules of the MMFF94 validation suite (H3OPW1, FE2PW3, FE3PW3,
VIMHII see Fig. A.2(c), Fig. A.2(a), Fig. A.2(b) and Fig. A.2(d)) are not well covered by the original
Antechamber rules either, but can be simply treated by adding rules for ions and oxygen with three
neighbours (rule 22, rule 45, and rule 54 in table A.1).

Please note that rules 16, 23, and 40 do not make sense chemically, but have been included as fallback
default rules or to handle some degenerate cases sometimes occurring in the input when the molecules
are automatically generated. Depending on the application scenario, it may be preferable to disable
these rules and abort if one of these cases is encountered.

The original Antechamber set contained 35 atom classes. We adapted this set by extending existing
rules and adding rules for non-covered atomic bond situations, ions, and charged atoms, yielding a
new penalty class set containing 54 atom classes. Three rules of the original Antechamber set (new
rule 12, 15, 45) were adapted by simply extending the atomic valences. In addition, we added 21 rules
covering additional molecular fragments as denoted in the column ”description” of table A.1. Eight
rules out of these 21 were added to cover unbound ions that might occur in molecular files. Five rules
(1, 10, 26, 37, and 44) were added to cover charged atoms. Handling of charged atoms does not
always need the creation of a new rule. E.g., rule 18 simply allows two valences av1 and av2 with
assigned penalty scores of 0.

In addition to the aforementioned extensions, we simplified a number of Antechamber rules in cases
where the atom class definition implied restrictions to the reachability of valence states, but these
valence states were nevertheless allowed. Column ”description” in table A.1 denotes the corresponding
rules (2, 13, 15, 21,25, 29, 34). The former rules 33 and 34 stated equal allowed valence states for
two molecular sets, where one was a subset of the other one. Since in the new rule 38, we can forgo
the distinguishing SMARTS expression, additional speed up in the SMARTS matching was gained.

Please note that the definition of the former Antechamber rule 30 in the respective publication differs
from its implementation in the Antechamber package. For our work, we chose the version found in
the implementation.

39

2. Optimal Bond Order Assignment

2.9. Results

Of these algorithms, the A* is clearly the simplest and most straight-forward approach to implement,
and is highly efficient for small to medium sized input data. Its most striking advantage, however, is
the ease with which it can be modified or extended. Hence, we use the A* algorithm as our test bed
for novel ideas, such as the introduction of structural features.

In contrast, the ILP approach requires the availability and integration of an ILP solver such as CPlex,
Gurobi (http://www.gurobi.com/) or lp solve [BEN04], and is difficult to extend. On the other
hand, its computational efficiency, in particular for larger molecules, is much higher than that of the
A*.

Finally, the FPT approach requires a complex implementation and is the hardest of the three to extend.
On the other hand, it has unparalleled efficiency for an exact approach and is typically the fastest of
our algorithms.

Apart from the guaranteed optimality of the solution returned by our solver, we found a second
advantage of our more formal approach to be just as important: all of the exact solvers are able to
not only return one, but rather all optimal solutions for a given molecule2. This allows downstream
techniques to work with ensembles of bond order assignments, e.g., different resonances instead of
a single fixed representation. If even more information about potential bond order assignments is
required, sub-optimal solutions can be enumerated as well.

All algorithms were extensively tested on large data sets of small molecular entities, with greatly
improved results over earlier approaches. At this point, we also introduced a novel penalty table that
increases the accuracy of the method even further, while it simultaneously extends the applicability to
further classes of molecules.

Having thus established the superiority of exact optimization techniques for bond order assignment over
earlier heuristic approaches, we continued to extend the basic algorithm in several different directions,
such as the addition of missing hydrogens, the inclusion of structural information into the otherwise
purely connectivity based approach, and the proper handling of charges. All of these extensions were
implemented and tested on the basis of our A* method.

For proteins and DNA, bond orders can be simply inferred by matching the given state to a database
containing the bond orders for all amino acids and nucleotides. Hence, we focus the evaluation of our al-
gorithms on small and medium-sized molecules, e.g., drug-like molecules. Such molecules can be found
in large numbers in several established ligand databases, such as ZINC [IS05], ASTEX [NMH+02],
KEGG Ligand and KEGG Drug Database [GOH+02], the MMFF94 validation suite [Hal96b], or the
Cambridge Structural Database [All02]. But evaluating the correctness of our bond order algorithms
poses certain constraints: we need ligand structures that contain not only the connectivity information,
but also pre-assigned bond orders and explicit hydrogens. As a further requirement, aromatic bonds
should be given in kekulized form, i.e., replaced by a suitable pattern of single and double bonds. In
contrast to structure based bond assignment approaches, however, we can use databases that contain
three-dimensional ligand structures as well as those only storing structure diagrams or SMILES expres-
sions. To provide a diverse test data set fulfilling those constraints, we chose the MMFF94 validation
suite and the KEGG Drug set to provide our ground truth.

The following sections are organized as follows: Section 2.9.1 describes the data sets used for evalution.
In Section 2.9.2, we compare the total penalty score tps of the results of our exact solvers with that
of the results of the original Antechamber approach. In Section 2.9.3, we compare the results of the
different approaches to the expert generated, hand-crafted reference assignments, while Section 2.9.4
shows typical running times on realistic input examples. The different penalty tables are evaluated
against each other in Section 2.9.5 before we end the section with a discussion of a first integration
of structural information in Section 2.9.6.

2 For the ILP solver, computing all optimal solutions greatly spoils the running times, though.

40

2.9. Results

2.9.1. Data Sets for Validation

The MMFF94 validation suite [Hal96b] provides 761 small drug-like molecules, mainly derived from the
Cambridge Structural Database [All02]. The molecules were thoroughly prepared by the authors of the
MMFF94 force field by assigning bond orders, adding hydrogens where valences had to be completed,
and minimizing the resulting complexes. The MMFF94 validation suite was originally designed to
test the MMFF94 force field parameters, and thus yields a diverse set of molecules with hand-curated
connectivity information, hydrogens, and bond order assignment, and 3D positions that we found very
reasonable for testing bond order perception.
The KEGG Drug Database [GOH+02], provided by the Kanehisa Laboratories, offers a remarkable
number of drug-like molecules for diverse applications in bioinformatics. The molecular coordinates
are two dimensional, which is suitable for representation by structure diagrams, but is unsuited for
structure based bond order assignment as performed by most of the former approaches. It thus
represents a perfect test scenario for bond order assignment from topology alone. Unfortunately,
hydrogens are missing in the KEGG Databases, and were added for our tests using standard rules
for completing free valences as performed by OpenBabel [GHH+06]. Furthermore, 2550 files of the
KEGG Drug set contain more than one molecule, and each molecule may appear in more than one file.
To prevent a skewed analysis, we split up the data set into unique connected components. Ignoring
molecules with less than 4 atoms (e.g. water), this preparation led to a test set of 7424 molecules
from the KEGG Drug set.
All exact algorithms – A*, ILP, FPT – and the inexact Antechamber approach were applied to the
two test sets – MMFF94 and KEGG Drug – and the resulting assignments compared to the reference
state. Please note that a comparison to other bond order assignment programs is not easily possible,
since most are commercial and none of them was available to us.

2.9.2. Comparison to Antechamber

In order to evaluate whether solving the optimization exactly makes a difference in practice, we first
focus on the following properties:

1. how often do manual, heuristic, and exact approaches produce an optimally scored solution;

2. how often do the exact approaches find a solution with a smaller tps than the heuristic;

3. how often does each approach fail to find a feasible solution.

Evaluation on the MMFF94 validation suite (761 molecules in total) was done as follows: the An-
techamber bond perception algorithm as well as our own algorithms – A*, ILP, and FPT – were run
for each input molecule. Note that all exact algorithms will in principle compute the same solutions,
and only the order of co-optimal solutions can differ. If both Antechamber and our algorithms com-
puted bond order assignments (i.e., none of the approaches failed), we compared these to test if the
Antechamber assignment is optimal.
For 734 molecules (96.45%) the solution found by the heuristic Antechamber approach is optimal. For
9 molecules (1.18%) as shown in table 2.1, the exact algorithms indeed find bond order assignments
with a total penalty score less than that of the solution provided by Antechamber. For 14 cases (1.83%),
our algorithms computed an optimal bond order assignment whereas the heuristic Antechamber bailed
out. In 4 cases (0.53%), neither Antechamber nor our algorithms computed a bond order assignment,
due to missing atom types in the penalty table. In no case, Antechamber computed a solution but our
algorithms did not. In total, Antechamber bailed out in 18 cases (2.30%), and in 23 cases (3.02%)
we improved upon Antechamber (no solution by Antechamber, or better solution by our algorithms).

41

2. Optimal Bond Order Assignment

score number of
molecule

heuristic exact solvers optimal solutions

DAKCEX 1 0 2
GETFIU 1 0 1
GIDMEL 2 1 7
KEWJIF 4 0 1
SAFKAL 1 0 1
JECYIZ 4 0 1
FENYIG 1 0 1
GETFOA 1 0 1
VIRBON 1 0 1

Table 2.1.: Comparison of the total penalty score (tps) for selected molecules of the MMFF94 valida-
tion suite where our algorithms computed bond order assignments with smaller tps than
the assignment heuristically computed by Antechamber.

MMFF94 KEGG

Heuristic solution is optimal 734 (96.45%) 7202 (97.01%)
Heuristic solution is sub-optimal 9 (1.18%) 15 (0.20%)
Heuristic found no feasible solution 18 (2.37%) 207 (2.79%)
Exact solvers found no feasible solution 4 (0.53%) 180 (2.42%)
Reference assignment is optimal 599 (78.71%) 6326 (85.21%)

Table 2.2.: Comparison of our exact solvers with the original heuristic implementation of Antechamber
and the expert generated solutions (“reference solution“) for the molecules of the MMFF94
validation set and the KEGG Drug set.

42

2.9. Results

BALL Antechamber

DAKCEX

GETFIU

GIDMEL

KEWJIF

SAFKAL

JECYIZ

penalty: 0

penalty: 0

penalty: 1

penalty: 1

penalty: 2

penalty: 4

penalty: 0

penalty: 0

penalty: 0 penalty: 1

penalty: 0 penalty: 4

Rule 14

Rule 20

Rule 14

Rule 17

Rule 17

Rule 20

Figure 2.12.: Comparison of the bond order assignments for molecules of the MMFF94 validation suite
where the first solution found by BALL has lower penalty score than the solution found
by Antechamber.

43

2. Optimal Bond Order Assignment

The comparison of our algorithms to the Antechamber approach on the KEGG Drug set (7424
molecules in total) looks very similar. For 7202 molecules (97.01%), the bond order assignment
found by Antechamber is optimal. For 13 molecules (0.18%) containing PO4, Antechamber repro-
ducibly provided infeasible solutions, whereas our algorithms computed optimal assignments. For 27
cases (0.36%) our algorithms computed an optimal assignment but Antechamber bailed out. In 180
cases (2.42%), both approaches bailed out, as not all atom types are contained in the original penalty
table given in [WWKC06]. In total, Antechamber bailed out in 207 cases (2.79%), and we improved
upon Antechamber in 40 cases (0.54%).

A complete comparison for both test sets is given in table 2.2. Please note that the test data sets
were chosen such that they are relatively well-suited to the heuristic Antechamber approach, e.g., they
contain relatively few large or complex ring systems.

2.9.3. Comparison to Reference Assignments

As a second step in the analysis, we compare the results produced by all approaches to the reference
assignment. For our own solvers, which are able to enumerate all optimal (FTP, ILP) or even all
feasible solutions (A*), we only recorded the first one for this test.

Since the MMFF94 validation suite contains 316 molecules with more than one optimal bond order
assignment we also compared all optimal solutions computed by our algorithms with the “reference”
bond order assignment to handle cases where our algorithms reproduced the “reference” bond order
assignment, yet returned another equally scored bond order assignment on the first position.

As can be seen in table 2.3, our methods are able to reproduce significantly more bond order assign-
ments of the MMFF94 validation suite than the original Antechamber approach. While Antechamber
correctly recomputed 37.05% of the molecules, the exact methods reconstructed between 53.88% and
61.89% of the reference bond order assignments as the first solution. Similar results can be seen
on the KEGG Drug set: Antechamber correctly reproduced 41.96% of the bond order assignments,
compared to 49.95% and 56.9% for the exact methods. Obviously, all results returned by the exact
solvers are optimal and hence, the deviations in these numbers are due to systematic differences in the
order in which each algorithm enumerates the solutions. In the case of the A* algorithm, this order
can easily be tweaked by adapting the heuristic part of the scoring functions (c.f. Section 2.7.1). By
design, our A* heuristics tend to avoid the occurrences of larger bond orders, but this strategy could
be further fine tuned. Note that the FPT algorithm can easily be modified to simulate this behaviour
as long as the number of optimal solutions remains small, as computing all optimal solutions does not
significantly increase running times. For the ILP approach, in contrast, running times would increase
considerably. In the future, we plan to sort co-optimal solutions with respect to another objective
function before writing the output. This might possibly further increase the quality of our results, and
is the topic of ongoing research.

Considering that bond order assignments need not be unique, it makes sense to provide the user not
only with the first solution, but with all optimal ones, or even sub-optimal ones. Taking all optimal
solutions into account, we find that our algorithms find the reference solution in 78.71% of the cases
on the MMFF94 validation suite and in 85.21% on the KEGG Drug set. A complete comparison is
given in table 2.3.

Obviously, the performance of all approaches is limited by the quality of the penalty table: the definition
of the atom classes, their allowed valence states, and the choice of the valence state’s penalties have
a significant influence on the performance. As can be seen in table 2.2, the current penalty table does
not cover all molecules in the reference data sets – for four molecules in the MMFF94 set and for 180
in the KEGG Drug set, the required atom classes are missing. Hence, in our own implementations, we
use SMARTS expressions stored in an XML file to define the penalty classes, which allows a user to
easily add atom types, or tune the rule set to his needs. To guarantee a fair comparison between the
solvers, we ensured that for all tests in this thesis, our implementation used exactly the same penalty

44

2.9. Results

data set method reference is 1st solution solver reproduces reference

Antechamber 282 (37.05%) 282 (37.05%)
MMFF94 ILP 471 (61.89%)

A∗ 455 (59.79%) 599 (78.71%)
FPT 410 (53.88%)

Antechamber 3115 (41.96%) 3115 (41.96%)
KEGG ILP 4224 (56.90%)

A∗ 3708 (49.95%) 6326 (85.21%)
FPT 3777 (50.88%)

Table 2.3.: Performance of the original Antechamber implementation and our exact solvers on the
test sets using the penalty table as defined in [WWKC06]. The third column denotes the
number of molecules for which the algorithms return the original bond order assignment as
first solution, the fourth column the number of molecules for which the algorithms return
it at as any of their co-optimal solutions.

file # bonds ILP A* FPT Antechamber

DEBMOM01 10 0.026 0.028 0.005 0.0045
COTMON 20 0.165 0.138 0.016 0.0055
DEDSIO 30 0.165 0.151 0.017 0.0060
DEGRIQ 40 0.469 0.422 0.115 0.0090
DUYPES 48 1.163 0.569 0.025 0.0055
BEWCUB 61 2.152 0.780 0.039 0.0075

all files 17658 252.048 227.070 24.883 7.85

Table 2.4.: Running times in seconds for computing all optimal solutions of selected molecules of the
MMFF94 validation suite. Molecules were chosen according to their number of bonds.

classes as Antechamber where not explicitly mentioned otherwise. Improvements to the penalty table,
and a systematic study of their influence, will be discussed in Section 2.9.5.

2.9.4. Comparison of Running Times

As can be seen in table 2.4, computing all optimal solutions for all 761 molecules of the MMFF94
data set, the total running time was 252.0s for the ILP, 227.1s for the A* algorithm, and 24.9s for
the FPT algorithm. The Antechamber heuristic took 7.9s to compute one solution for all molecules
(c.f. table 2.4). All reported running times were averaged over 20 repetitions and were measured on
an Intel R© Pentium R© E5200 (2M Cache, 2.50 GHz, 800 MHz FSB) dual core processor with 2Gb of
RAM. Thus, the ability to provide all optimal exact solutions and to use user-editable SMARTS strings
for penalty class assignment takes its toll: the heuristic Antechamber approach is the fastest of the
methods, about an order of magnitude faster than ILP and A*. On the other hand, it is comparable
to the running time of the FPT. Still, all running times are sufficiently small to allow the routine usage
in high-throughput applications.

2.9.5. Comparison of Penalty Tables

As pointed out in Section 2.4, the penalty table defines the atom classes between which the algorithm
can distinguish, the allowed valence states for each such atom class, and the penalties associated with

45

2. Optimal Bond Order Assignment

data penalty reference is
set table

method
1st solution optimal

no solution

Antechamber 282 (37.05%) 282 (37.05%) 18 (2.36%)

Wang ILP 471 (61.89%)

MMFF94 A∗ 455 (59.79%)
599 (78.71%) 4 (0.53%)

ILP 467 (61.37%)
improved

A∗ 459 (60.32%)
639 (83.97%) 0 (0.00%)

Antechamber 3115 (41.96%) 3115 (41.96%) 207 (2.79%)
Wang ILP 4224 (56.90%)

KEGG A∗ 3708 (49.95%) 6326 (85.21%) 191 (2.57%)
ILP 4255 (57.31%)

improved
A∗ 4391 (59.15%)

7167 (96.54%) 180 (2.42%)

Table 2.5.: Performance of the original Antechamber implementation, our ILP formulation, and our A∗-
search algorithm on the MMFF94 validation suite (top) and the KEGG Drug set (bottom)
using the penalty table as defined in Wang et al. [WWKC06] and the improved BALL
penalty table (see table A.1.)

each classes’ valence states. Thus, the quality of the penalty table strongly influences the performance
of our algorithms.
The quality of a penalty table manifests itself in its ability to reproduce natural bond order assignments.
We approximate being a natural bond order assignment by its similarity to reference assignments from
high quality manually curated molecular databases. To this end, we use the MMFF94 validation suite
and the KEGG Drug set and compare all optimal solutions with the reference bond order assignment.
The quality of a penalty table can be further specified by the following properties:

1. the number of reference molecules that are assigned optimal penalty (should be large).

2. the number of co-optimal bond order assignments that differ from the reference assignment
(should be small).

3. the number of reference molecules whose reference bond order configuration was assigned a
non-optimal total penalty score (should be small).

4. the bailing out rate (should be small).

Note that even in a perfect penalty table, the number of co-optimal solutions can never be zero in
general, since there will be a significant amount of bond order assignments that denote the same ’true’
solution due to, e.g., spatial symmetry or kekulization of aromatic groups. We thus first discuss the
other three quality measures given above. An overview of these quantities, measured for the original
and our novel penalty table, is given in tables 2.5 and 2.6.
It is immediately apparent that the new penalty table improves all three quality measures, even though
the table was not fitted against these quantities. Instead, we merely added rules that make individual
sense from a chemical perspective (c.f. Section 2.8). With these new rules, the number of sub-
optimally scored reference assignments drops considerably on both data sets and consequently, the
number of optimally scored ones increases. Also, the new rules allow to solve problem instances for
which all solvers – including Antechamber – previously failed since penalty values were missing. To
give an example of how this was achieved, Fig. A.2(a) to Fig. A.2(d) show the four molecules of the
MMFF94 validation suite on which all solvers failed due to missing types, namely FE2PW3, FE3PW3,
H3OPW1, and VIMHII.

46

2.9. Results

reference is
table data set

optimal sub-optimal
bailing out

MMFF94 599 (78.71%) 153 (20.10%) 4 (0.53%)
Wang

KEGG 6326 (85.21%) 850 (11.54%) 191 (2.57%)

MMFF94 639 (83.97%) 117 (15.37%) 0 (0.00%)
improved

KEGG 7167 (96.54%) 74 (1.00%) 180 (2.42%)

Table 2.6.: Comparison between the penalty table as defined in Wang et al. [WWKC06] and the
improved BALL penalty table (compare table A.1). Column three denotes the number of
reference molecules that are assigned optimal penalty and column four denotes the number
of reference assignments with sub-optimal score.

The remaining causes for bailing out on the KEGG Drug set are the atom types Co, Cr, Cs, Ba, As,
*, Au, Ag, Pt, Ag, Sb, La, Hg, Kr, In, Gd, Ir, Tl, Tc, Ti, Ga, Xe, B, and R (an arbitrary fragment).
In principle, most of these could be easily remedied (apart from * and R), by introducing penalty
values for these types as well. However, since the rule matching of atoms to penalty classes is a
time-consuming step, we decided not to include rules for these cases, which are highly unusual in drug
design situations.

Having established that the new penalty tables allows application to more molecule classes than
previously possible, and that it improves the quality of the solutions, we now turn to evaluate the
number of co-optimal solutions.

Fig. 2.13 shows a histogram of the distribution of the number of optimal solutions on the KEGG Drug
set using the penalty table as defined in Wang et al. and our new penalty table (see table A.1). As
can be seen from the graph, ≈60% of the input structures in the test set have more than two optimal
solutions. Large numbers of optimal solutions are relatively rare, however, with only ≈6% of the
structures featuring more than five and ≈ 1% featuring more than 10 optimal assignments. Fig. 2.14
shows six molecules of the KEGG Drug set for which both penalty tables - the one by Wang et al. and
our improved penalty table, produce more than 100 co-optimal bond order assignments. This is due to
the fact that these structures contain a large number of aromatic rings. Each such ring has in general
two possible bond order assignments due to the alternating single-double bonds. Thus, each aromatic
ring multiplies – in the worst case – the number of optimal solutions by a factor of 2. Again, the new
penalty table improves the situation by resolving previously degenerated cases into individual penalties,
hence reducing the number of co-optimal solutions. But obviously, the combinatorial aspects cannot
be avoided and the number of co-optimal solutions is still large as soon as ring systems occur.

Another interesting aspect is the distribution of rules. Fig. A.8 in Appendix A.4 shows percentage and
absolute number of the most frequently used rules. Obviously, the hydrogen rule is used most often,
the second rank is non-carboxylic carbon, followed by oxygen. All rules are covered at least once in
the KEGG Drug set (data not shown), indicating that the tables could not be pruned further without
spoiling the quality.

In summary, we can conclude that the new penalty table indeed improves the quality of bond order
assignment considerably without introducing any negative side-effects. Every single quality measure
improved, and the incurred cost in run-time for the small number of new rules is insignificant. We
thus unconditionally recommend the new penalty table over the original one in all applications.

47

2. Optimal Bond Order Assignment

Figure 2.13.: Histogram of the distribution of the number of optimal solutions, given as absolute values
and percentages, for the KEGG Drug set using the improved penalty table A.1 and the
penalty table as defined in [WWKC06].

Figure 2.14.: Molecule in the KEGG Drug set with more than 100 co-optimal bond order assignments.

48

2.9. Results

reference is
table method

1st solution optimal
no solution

Antechamber 282 (37.05%) 282 (37.05%) 18 (2.36%)

Wang A∗ (no FP) 455 (59.78%)

A∗ (with FP) 472 (62.02%)
599 (78.71%) 4 (0.53%)

A∗ (no FP) 459 (60.32%)
improved

A∗ (with FP) 493 (64.78%)
639 (83.97%) 0 (0.00%)

Table 2.7.: Influence of the fine penalty on the performance of our A∗-search algorithm on the MMFF94
validation suite using the penalty table as defined in Wang et al. [WWKC06] and the
improved BALL penalty table (see table A.1).

reference is
table method

1st solution optimal
no solution

Antechamber 3115 (41.96%) 3115 (41.96%) 207 (2.79%)

Wang A∗ (no FP) 3708 (49.95%)

A∗ (with FP) 3561 (47.97%)
6326 (85.21%) 191 (2.57%)

A∗ (no FP) 4391 (59.15%)
improved

A∗ (with FP) 4168 (56.14%)
7167 (96.54%) 180 (2.42%)

Table 2.8.: Influence of the fine penalty on the performance of our A∗-search algorithm on the KEGG
Drug set using the penalty table as defined in Wang et al. [WWKC06] and the improved
BALL penalty table (see table A.1).

2.9.6. Incorporating Structural Information

Fine Penalty

As a first step towards integrating bond length information into the penalty scoring scheme, we used
the bond length information to reorder partial bond order assignments with equal total atomic penalty
score tps in the priority queue of the A* algorithm (c.f. Section 2.7.1). For the evaluation, we applied
the A* algorithm with and without fine penalty to the MMFF94 set. The KEGG Drug set was not used
for this first test, since it does not provide 3D positions. To evaluate the impact of the fine penalty,
we counted how often the reference assignment was returned as first solution. Since we assume the
bond lengths in the MMFF94 set to be fairly accurate, the fine penalty should help the prediction
quality in this case.

Table 2.7 shows that, for data sets with reliable atomic positions, performance improvement can be
gained taking also bond length deviations into account: for the MMFF94 validation suite we see an
increase from 455 (59.78%) references assignments on first position to 472 (62.02%) when using the
former penalty table of Wang et al. Using our improved penalty table, we see an increase from 459
(60.32%) to 493 (64.78%).

In a second step, we tested the influence of the fine penalty on the KEGG Drug set, which does not
provide reasonable atom coordinates. Our assumption, as stated in the beginning of this chapter,
was that in these cases, using a structure based approach will spoil the performance. This is clearly
supported by table 2.8: even with the non-intrusive addition of structural information in the form of
the fine penalty, i.e., as a simple re-ordering of co-optimal solutions, performance on the KEGG Drug
set decreases.

49

2. Optimal Bond Order Assignment

2.10. Summary

Automated bond order assignment is an important problem when working with user generated molecules,
molecular data bases, or computational combinatorial chemistry. Especially fully automated pipelines
in high throughput applications depend on reliable bond order assignments. The modern and ex-
tensible approach realized in Antechamber is based on sound chemical principles and has proven to
be a very valuable tool. In this work, we have shown three different exact solvers as alternatives
to the heuristic approach pursued by Wang et al. [WWKC06]: an A* algorithm, an integer linear
program formulation, and a fixed-parameter approach. Appendix A.3 also discusses two systematic
approximate solvers. While we found in our evaluations that Wang’s heuristic solver works surprisingly
well – in roughly 97% of all cases in our tests, Antechamber computed a solution with optimal score
– it still can be significantly improved using exact techniques. If we keep in mind that bond order
assignments are in many cases non-unique – different resonance structures, for instance, might have
the same probability to occur – the ability to further systematically enumerate all solutions becomes
an invaluable tool. When bond order assignments are important, it might be worthwhile to enumerate
all optimal assignments, run whatever procedure is supposed to work with the results in the next step,
and average over the results.

Comparing the three different exact strategies, each of them has its advantages and disadvantages.
If computational efficiency is required, the best choice is clearly the fixed parameter approach, where
running times are almost on par with the Antechamber heuristic. The A* algorithm, on the other
hand, is even simpler to implement than the heuristic and can be very easily extended through the
heuristic cost function. Both approaches can compute co-optimal and sub-optimal solutions without
greatly increasing running times in our experiments, and geometric information can be employed to
provide a more sensible ordering of the results. Such an inclusion has been prototypically performed
and evaluated with the fine penalty, which provides a re-ordering of co-optimal solutions during the
exploration phase of the A* algorithm. This strategy was found to aid prediction significantly for
molecules with accurate input positions, but to spoil the results otherwise. The ILP approach, finally,
is relatively simple to implement when external solvers can be used. However, in our experiments,
enumerating all solutions typically spoiled the running time. An additional advantage of our methods
is their easy extensibility. For example, adding missing hydrogens or even bonds is possible but will
require more elaborate, e.g. structure based, scoring to handle the exponential number of combinations.
Such a scoring scheme only requires modifications of the tps definition.

Obviously, the quality of the results strongly depends on the quality of the atom type classification
and the choice of the corresponding valence penalties. Expert-determined values for the scores were
presented in [WWKC06] and are of great practical value, but extending the system for special appli-
cations would be highly desirable. Here, the use of BALL in our implementation proves to be very
helpful: using its internal SMARTS parser, the user can easily extend the penalty table and atomic
classification in order to include additional expert knowledge about the molecules of interest.

Similarly, further extensions to the algorithm are easily possible. It has been designed in a modular
fashion, allowing to improve or replace each of its individual components. The implementation has
been made available as open source in BALL version 1.3 [HDR+10].

2.11. Outlook

The achievements described in this chapter allow to address a number of new questions and interesting
extensions in the field of bond order assignment.

Besides solving the bond order assignment problem efficiently and optimally, the underlying penalty
table can be further investigated. In this chapter, we already described a new penalty table which we
designed manually. However, training a penalty table using machine learning techniques for a given

50

2.11. Outlook

data set promises new insights and improved performance. In addition, extending the penalty table
to estimate charges and the number of attached hydrogens might further improve the performance of
our approach for less reliable input structures and can be addressed by the same learning methods.
On the other hand, hydrogens pose a challenging problem that will not be entirely solvable by new
penalty tables: since “missing” valences can simple be filled by adding additional hydrogen atoms, any
non-optimal assignment that differs from an optimal one by smaller valences only can be made optimal
through hydrogen addition. This obviously leads to an explosion of the space of co-optimal solutions
and hence, probability measures for the expected number of hydrogens will be needed. One source
of these could be structural information that leads to an inference of hybridization states, if atom
positions are sufficiently reliable. A more promising source of probability estimates, even for structures
with inaccurate or entirely incorrect atom coordinates, would be to use predicted pKa values. In an
ongoing project, we investigate such a combination of a simple pKa predictor with BOA Constructor.
A different area of future work concerns the structural scoring terms, for which we so far introduced
a simple bond length criterion. This simple function can be extended to encompass angles as well.
These might allow to reliably distinguish hybridization states, e.g., 109 ◦ of sp3 and 120 ◦ of sp2, which
would be highly useful information. To fully integrate the new score, the weighting function allowing
a linear switch between pure and mixed scores would have to be adapted as well.
A fascinating future perspective for molecular modelling that is enabled by our work is the use of
ensembles of resonance structures: since in many cases, all assignments of optimal penalty are equally
likely, not only according to our penalty table but also to the expert, returning a single representative
is dubious at best. In such situations, working with an ensemble of co-optimal solutions might lead
to more stable and more accurate results, e.g., in a docking context, where the flexibility of individual
groups as determined by the bond order assignment has a strong influence on the outcome.
Aside from the bond assignment problem itself, we believe that the methodology introduced in this
work might help in entirely different fields of structural bioinformatics through the use of our tree
decomposition. While such decomposition algorithms have been available for some time – indeed, our
own implementation is based on the QuickBB library – BALL greatly simplifies their application to
molecular systems. In addition, the nice tree decomposition returned by our approach is often much
simpler to use than a more general one.
Algorithmically, the bond order assignment problem bears close resemblance to the side chain opti-
mization problem, where similar solution strategies have been developed ([AKLM02, LL98, XJB05]).
Future work will study whether modern probabilistic approaches (see, e.g. [YSFW08]) for this problem
will also be appropriate for bond order assignment.

51

3. NMR Shift Prediction

3.1. Introduction

Nuclear Magnetic Resonance (NMR) chemical shift prediction has developed into a valuable tool for
computational structural biology and biomolecular NMR spectrometry. Out of all structures in the
Protein Data Bank (PDB), about 88% were resolved by an X-ray experiment and about 11% by solution
NMR, counted at the time of writing (Q1 of 2011). While the number of NMR resolved structures is
significantly smaller than the number of X-ray resolved ones, many of these structures could not have
been resolved by any other method but NMR (e.g. [BAM+98]). While X-ray crystallography requires
crystallization of the protein of interest, NMR experiments allow to study protein structures as well as
their dynamics under nearly physiological conditions. NMR is routine for small proteins up to 15kDa,
yet problems arise with increasing protein size, and NMR typically yields lower resolution compared to
X-ray.

The experimental details of NMR will be introduced in Section 3.2. Here, we will just present a
short description. The idea of NMR spectroscopic experiments is to measure magnetic properties of
atom nuclei to gain information about the topology (which atom is bound to which other atom) and
the structure (which atom is close to which other atom) of a molecule. The experiment actually
measures the properties of only a selection of atoms, all at the same time. The nature of this selection
will be covered later in Section 3.2.2. An individual atom’s response in this experiment is denoted
its “chemical shift”, the collection of all chemical shifts plus some experimental noise the “NMR
spectrum”. In practice, usually combinations of NMR responses of different atom types are recorded,
leading to multi-dimensional NMR measurements, such as the 1H-15N HSQC spectrum shown in
Fig. 3.3. However, for the purposes of chemical shift prediction, the differences between one and
higher dimensional NMR are irrelevant. Hence, we will not discuss multi-dimensional NMR in this
work.

The prediction of the chemical shifts based on structural information is known as the shift prediction
problem and the work described in this chapter aims at protein chemical shift prediction. A related
problem is the shift assignment where we are given an experimentally measured NMR spectrum and
are interested in mapping individual atoms to the spectrum’s chemical shifts. Fig. 3.1 illustrates the
terms.

The chemical shifts depend very sensitively on the three-dimensional structural details. While this
renders their prediction a formidable task, it simultaneously makes them a very valuable source of
structural information. Hence, historically1, the first aim of chemical shift prediction was structure
elucidation: if sufficiently accurate and complete shift prediction rules were known, this would mean
that the physical effects influencing the spectra would be understood. This would then allow for a
full theoretical interpretation of NMR spectra. For example, a certain shift value might be understood
to be related to a particular torsion angle, so that from its value, the torsion angle might be directly
inferred. Alternatively, the structure could be solved by optimizing its positions such that simulated
and measured shifts were in optimal agreement.

1 For a more complete discussion of the history of chemical shift prediction, the interested reader is referred to the review
by Wishart [Wis11].

53

3. NMR Shift Prediction

Figure 3.1.: The NMR chemical shift of a single atom and a molecule, the resulting NMR spectra, and
the chemical shift prediction and assignment problem. The protein spectrum was taken
from [RSH+10] with kind permission from Springer (c.f. C) and resulted in PDB entry
2KLB.

But those efforts towards structure elucidation by NMR shift prediction were overtaken by methods
based on the Nuclear Overhauser Effect2 (NOE). This effect allows to derive distance constraints from
multi-dimensional NMR spectra, which can be used to solve protein structures more effectively in a
distance geometry setting.

However, NOE-based approaches turned out to have some drawbacks as well: distance constraints
offer only indirect information, the NOE experiments are error prone and time consuming, and they
impose a size constraint, as for proteins larger than 200 amino acids, the complexity is usually too high
to be solvable. The most obvious disadvantage, however, is that NOE-based methods are not fully
automated and are useless without shift assignment. On the other hand, such shift assignment can
greatly profit from accurate shift prediction. Hence, even NOE-based methods rely to some degree on
the availability of shift prediction methods.
Although chemical shift prediction is thus currently not the method of choice for direct structure elu-
cidation, the great sensitivity of the shifts to structural variations has led to a variety of applications
in different contexts that require structural information. In the past, shift prediction has been suc-
cessfully employed in fields as diverse as structure determination [Wil90, WSR91, KCB04, BTL+09],
structure optimization [LdDO93], shift referencing [WBY+95, ZNW03, Wan10], molecular flexibil-
ity [BW05, BW06, BW08], and protein-protein docking [KBM+01, MCS+08, CMV11]. Particularly
important was the recent discovery that chemical shifts can be used to produce highly resolved struc-
tures of globular proteins [CSDV07, SLD+08, WAB+08]. Chemical shift prediction also enables a

2 A further description of the Nuclear Overhauser Effect would require a lengthy discussion of the theory behind NMR
without any further crucial insights for the purposes of this work.

54

3.1. Introduction

Figure 3.2.: 1D 1H NMR spectra of NsR431C as published in [RSH+10] with kind permission from
Springer (c.f. C).

Figure 3.3.: 2D 1H-15N HSQC spectrum of NsR431C as published in [RSH+10] with kind permission
from Springer (c.f. C).

55

3. NMR Shift Prediction

technique known as chemical shift perturbation [LMP04], where a ligand is titrated with a protein and
a series of NMR spectra is recorded. Predicting the protein’s chemical shifts and assigning them to
the spectra, the atoms which are influenced by the ligand can be determined, yielding the interface of
the protein-ligand complex.
The application we are mostly interested in this work is protein-ligand docking. In 2001, Kohlbacher
and coworkers developed a scheme for using experimentally obtained one-dimensional 1H NMR spectra
in a protein-protein docking context [KBM+01]: chemical shifts for the putative complexes generated
by the docking procedure were predicted and converted into a spectrum using a simple sum of Gaussian
or Lorentzian curves. The spectral similarity to an experimentally obtained spectrum was then used as
a scoring function in the docking process. In a proof-of-concept study, it was shown that the method
is in principle able to distinguish between low- (< 5Å) and high-rmsd (> 10Å) structures. In [Deh07],
we extended this scheme by implementing shift prediction for 1H, 13C, and 15N and by testing on
further scenarios.
Montalvao et al. [MCS+08, CMV11] used a strategy very similar to [KBM+01] albeit with the more
recent CamShift shift prediction program [KRC+09].
However, none of the previous approaches is applicable to the field of protein-ligand docking: for
reasons we will describe in more detail later in this chapter, shift prediction usually works on either
small molecules such as ligands, or pure protein- or DNA-molecules, but not on complexes of these. In
this work, we lay the foundation for extending NMR-based scoring to protein-ligand docking. Our idea
is to measure the influence of the ligand atoms onto the protein atom shifts. This influence is due to
the ligand atoms as well as their bonds. However, the effects of ligand atoms on the protein shifts are
subtle, and hence, we need to solve two problems: first, we need to improve the quality of the pure
protein models themselves, and second, find a way to include ligand information into the prediction.
The development of novel NMR chemical shift prediction techniques is a challenging task. Pre-
vious approaches either focus on full quantum mechanical ab–initio models (e.g. [HK64, XC01,
OKK04, FOME11]) which are computationally very expensive, or settle for approximations borrowed
from classical physics [ÖC94, WA93, KBM+01, NNZW03]. As a third option, prediction techniques
can use statistical models based on semi-classical, structural, or sequential features of the proteins
(e.g. [Mei03, NNZW03, AL06, KRC+09, AAFA10]). For medium- to high-throughput applications,
the most successful approaches today offer good prediction accuracy with relatively low computational
cost by combining semi-classical and statistical approaches. These techniques are known as hybrid
methods.
Developing a new hybrid method, or extending an existing one, is a hard and complex task for which
three questions have to be addressed: (a) which data set can be used to train a model, (b) which
features should be included into it, and (c) which statistical technique should be employed.
The question of the data set in particular is a very difficult one. The required information for creating
such a data set is spread over several data bases, such as the Biological Magnetic Resonance Bank
(BMRB) [UAD+08] and the Protein Data Bank (PDB) [BWF+00, BHN03] and is stored in different,
notoriously hard-to-parse, file formats. To make matters worse, real-life data sets often contain se-
rious syntactical, semantical, and logical errors or inconsistencies [ZNW03, GGCH07, RV10, Wan10,
HLGW11, Wis11].
Due to these complications, most former approaches rely on hand-curated data sets created by the
application of non-standardized sequences of restriction and correction methods.
Another challenge when training prediction models is the choice and computation of the semi-classical
terms and the structural and sequential features to learn from. Computing these terms and molecular
features correctly, reliably, and efficiently requires complex molecular data structures and algorithms.
In this work, we present an extensible automated pipeline, called NightShift – NMR shift Inference
by General Hybrid model Training for data set generation and training of hybrid NMR chemical shift
prediction methods. Several semi-classical terms for shift prediction are implemented and readily
available. As of now, we include random coil contributions, aromatic ring current effects, electric

56

3.2. NMR Spectroscopy

field contributions, and hydrogen bonding effects. In addition, the feature set for the training of the
statistical term encompasses sequential, structural (angles, surface, and density), force-field based, and
experimental properties. All features are computed using our open source library BALL [HDR+10],
and can be easily extended.

Based on recent research [AL06, HLGW11], we propose a random forest model for the statistical
contribution which in our experiments has demonstrated to yield very accurate and stable results.
In general, however, the pipeline is model-agnostic and can be used with any regression technique
implemented in R [R D11].

The first result of NightShift is a pure protein NMR shift prediction model called Spinster - Single
ProteIn NMR Shift deTERmination.

We further investigated a first model for protein shift prediction in the presence of ligands called Liops –
Ligand Influence On Protein Shifts. To this end NightShift itself was extended to handle a combination
of a pure protein model, our Spinster model, and several ligand-related features. For the definition of
such features that capture relevant information about the diverse chemistry of possible protein ligands,
we relied on our work on atom- and bond-typing, as described in Chapter 2. In particular, we made
use of the information encoded in the GAFF atom types computed by the procedures described earlier.

The organization of this chapter is as follows: in Section 3.2, we give a brief introduction into NMR
spectroscopy. Section 3.3 introduces the state of the art in chemical shift prediction, while Section 3.5
discusses a number of relevant issues that guided us while creating our pipeline and designing our
models. Finally, in Section 3.6, we present the pipeline NightShift, the data set, and the evaluation
of our Spinster model. A first proof-of-principle application to the protein-ligand case is described
in Section 3.7 before we close this chapter with questions that can be further addressed given our
research.

Most of the results of this chapter have been disseminated in peer-refereed publications: our work on
the NightShift pipeline and the pure protein model Spinster has been presented at the 25th Molecular
Modelling Workshop 2011 in Erlangen, Germany. A manuscript on this work has also been submitted.
The protein-ligand model Liops was presented at the German Conference on Computational Biology
(GCB) 2011 in Weihenstephan, Germany [DLH11]. Further, our work has been the topic of a scientific
poster at the joint 19th Annual International Conference on Intelligent Systems for Molecular Biology
and 10th European Conference on Computational Biology (ISMB/ECCB) 2011 in Vienna, Austria.

3.2. NMR Spectroscopy

Nuclear magnetic resonance (NMR) experiments manipulate the nuclear spin of a molecular system in
order to deduce information about its chemical composition and three-dimensional arrangement. The
nuclear spin is a magnetic property and to understand its meaning we need to familiarize ourselves
with the principles of magnetic fields.

3.2.1. The Magnetic Field

A number of charged particles moving in direction I
|I | , are called an electric current I, where the

magnitude |I| of I describes the amount of charge traversing a plane perpendicular to I. For the
remainder of this section, we use following notation I := |I|.
The current I always creates a magnetic field B, a vector field that is perpendicular everywhere to
I, i.e., it is located in the plane with normal I/I. If the current follows a straight line, for instance,
if we consider a long straight piece of wire, the field lines, i.e., the tangent curves, to B are circles
around I.

57

3. NMR Shift Prediction

Figure 3.4.: Left: Linear current I induces a magnetic field B perpendicular to I.
Right: Circular current I induces a magnetic dipole field B with magnetic moment μ.
Note that A and μ point into the same direction.

At a point with distance r from the wire, the strength B of B will be given by B = μ0I
2πr , where

μ0 = 4π × 10−7T m
A is the vacuum permeability, and where B is measured in Tesla (T).

If we could force the current to run in a circle itself, the superposition of the magnetic fields created
in each point of this circle would lead to the well-known field of a magnetic dipole (c.f. Fig. 3.4 right).

This magnetic dipole can be described by a vector μ, the so-called magnetic dipole moment or, in
brief, magnetic moment. To define μ, we imagine a vector A with its origin in the center of the
circular current and a direction perpendicular to the circle. Whether the vector points upwards or
downwards is decided by the right hand rule, i.e., the thumb of the right hand shows the direction of
A if the other four fingers point into the direction of the circular current. As magnitude of A, we use
the area enclosed by the circular current, πr2. Then, the magnetic moment μ is given by μ := IA.

If a magnetic dipole is placed in an external magnetic field of strength B, it feels a torque τ = μ×B.
This torque vanishes only if the dipole moment μ is parallel or antiparallel to B, i.e., the torque will
align the magnetic dipole with the magnetic field. The antiparallel alignment is energetically unstable,
i.e., if it occurs, even small thermal distortions will lead to a torque that will finally yield a parallel
alignment.

Figure 3.5.: Torque τ of a magnetic field B and magnetic moment μ.

58

3.2. NMR Spectroscopy

If two magnetic dipoles are located close to each other, they will feel their respective magnetic fields.
Thus, the influence of each magnetic dipole on the other is given by a torque so that both dipoles will
rotate until they are aligned.

3.2.2. The NMR Experiment

Experimentally, it has been shown that subatomic particles such as electrons or protons show behaviour
that is consistent with that of small magnetic dipoles, i.e., they create a corresponding magnetic field
and they react to magnetic fields just as a dipole would. Intuitively, we could imagine these particles
to move on a circle incessantly. While this picture is physically impossible, the real reason for the
existence of these magnetic moments lies deep in the combination of quantum physics with the theory
of relativity, and cannot be discussed here. Instead we will just presume its existence. This magnetic
moment of a subatomic particle – in the above picture, the moment introduced by the circular motion
of the particle – is known as its spin. Not only electrons feature spins, but also nucleons.

In nuclear magnetic resonance (NMR) spectroscopy, the behaviour of these nuclear spins is measured
to infer knowledge about their chemical environment. But not all atoms have a total nuclear spin:
according to Pauli’s principle (which also holds for nucleons), nuclear particles try to pair in antiparallel
spin direction. Thus, the total nuclear spin can only differ from zero (each pair of parallel and
antiparallel spins adds up to zero) if the nucleus contains an odd number of protons. For 1H, this
obviously holds, but for 12C, for instance, it does not. Hence, NMR on carbon atoms can only succeed
if the carbon is exchanged with its 13C isotope. Similarly, 14N will be exchanged by 15N.

In principle, each NMR experiment follows the same scheme: using a strong uniform external magnetic
field B, the nuclear spins are aligned into the same direction. In practice, only a small fraction will
align due to random thermal movements. Then, energy is injected into the system in the form of
an electromagnetic wave, which will excite some of the spins: they will flip from the energetically
favorable parallel alignment to the unstable antiparallel one if the energy required for the flip equals
the energy provided by the wave. Since this state is unstable, the spins will flip back again. The
energy that is emitted during this process is measured as the response of the system and converted
into a difference, the so-called chemical shift δ, from the responses in a well-defined standard chemical
environment. Since the energy of the electromagnetic wave E = hν is proportional to the frequency
ν, the shift can be computed as

δ =
νprobe − νstandard

νstandard
(3.1)

where νstandard denotes the responses in the standard chemical environment. All shifts of a sample
yield the NMR spectrum, which shows the measured intensity as a function of the chemical shift (in
practice, two-dimensional spectra are often constructed by exciting different atoms at the same time;
however, this is out of scope of our current treatment). In a real-world spectrum, each of this shifts
leads to a curve of finite width, a so-called peak. In addition to these peaks – which correspond to the
useful information content – the spectrum contains so-called ’parasitics’ such as high-frequent noise or
low-frequent baseline that do not correspond to the chemical shift of any atom in the system. Instead,
they occur due to imperfections in the measurement process.

In the case of NMR based protein structure prediction, which has to cope with such imperfect real-
world spectra, the next step is thus to identify peak positions. The shift values corresponding to these
peaks (in the simplest case, the median value of the peak) are then mapped to atoms in the protein
(the assignment), and these mapped shifts are then stored in a so-called NMRStar file [HC95] and
uploaded to the Biological Magnetic Resonance Data Bank (BMRB) [UAD+08].

59

3. NMR Shift Prediction

3.2.3. Chemical Shift Contributions

The chemical shifts strongly depend on the chemical environment in a three-dimensional neighbour-
hood of each atom, and hence, they can be used in turn to infer information about this neighbourhood
and all derived quantities. In particular, it is possible to derive distance constraints from the relation-
ships between different shifts, and this can be used to solve the structures of proteins.

The chemical environment influences the shift for a number of reasons: as mentioned before, other
subatomic particles have the magnetic spin property as well. Thus, in addition to nuclear spins, all
atoms have electronic spins as well. Since the electrons are far away from their nucleus, the direct effect
of their magnetic moment on the nuclear spins is relatively small. However, the nucleons experience
magnetic fields and magnetic moments of electrons as well. If two atoms form a chemical bond
(covalent or ionic alike) they share certain electrons with their binding partner. In contrast to ’regular’
electrons, these bonding electrons change their spatial distribution relative to their nuclei. Thus, the
resulting magnetic field seen by a bonded nucleon differs from that of an unbound one.

The presence of ions or large partial charges in close spatial proximity to a bond, or electronegative
or electropositve substituents of the bonding atoms, influence the bonding electrons further and yield
an unequal electron distribution between both bond partner atoms: positive charges attract electrons
while negative charges repel them. For carbon atoms, the hybridization state affects the chemical shift
as well, since for different hybridization states, the electrons distribute differently over the valence
shells.

Similar to chemical charges, hydrogen bonds affect the nuclear spin. In a hydrogen bond, a proton
is shared between a hydrogen donor and an acceptor atom, e.g., a nitrogen of a peptide bond might
share its hydrogen with a second peptide bond’s oxygen. Unfortunately, while it is intuitively clear
(and supported by experiment) that such hydrogen bonds have an impact on the nuclear spin, this
effect seems less well understood than most of the others.

Another common source for magnetic fields that often occurs in proteins are aromatic rings. The
carbon atoms of an aromatic ring have delocalized π-electrons that form circular clouds parallel to
the ring carbon atom plane and that induce an aromatic ring current. The ring current’s magnetic
field is directed perpendicular to the carbon atom plane and may change the influence of the external
magnetic field onto the ring atoms and close neighbors.

In the following, we want to discuss some of the models that have been developed in the past to
describe individual contributions to chemical shift values in proteins. The models will be at the semi-
classical level, which means that they are approximate classical models of effects that are known from
a full quantum-mechanical treatment. At this point, we want to address an aspect of the terminology
that commonly leads to confusion: in chemical shift prediction, the term “ab–initio” refers to methods
computing shifts from physical theories, including the semi-classical ones. In quantum mechanics, on
the other hand, the term “ab-initio” refers to methods that directly solve the Schrödinger-equation
without resorting to heuristics or empirically derived parameters, such as semi-empirical methods. In
this thesis, we will try to minimize confusion by using the term “semi-classical” instead of “ab-initio”
exclusively.

Semi-Classical Models for NMR Chemical Shift Contributions

Although the concept of magnetic spin is far from being completely understood at a molecular level,
some quantum mechanical phenomena are well–characterized by classical equations. The semi-classical
terms for NMR chemical shifts encompass the following: random coil contributions, the ring current,
electric field, magnetic anisotropy, and hydrogen bond effects. In the description of these semi-classical
terms, we closely follow the presentation given in our previous work [Deh07].

60

3.2. NMR Spectroscopy

Random Coil The random coil contribution or reference chemical shift δcoil can be understood as
an intrinsic shift value mainly dependent on the amino acid type. In [WBH+95], it is defined as “the
experimentally measured chemical shift of an amino acid residue within a peptide, which is free to
access all sterically allowed regions of its conformational space”. Traditionally, peptides with sequence
Gly–Gly–X–Ala or Gly–Gly–X–Gly–Gly or short random coil sequences are chosen, as they remain
unstructured under varying solvent conditions and prevent neighboring residues from generating steric
perturbations in the measured residue X.

Ring Current In aromatic rings, found in the amino acids as found in the amino acids Phe, Tyr, His,
and Trp (Trp contains two aromatic rings, Trp1 and Trp2), the overlapping delocalized p-orbitals form
so-called π-bonds above and below the ring. In general, movement of the electrons through these
π-bonds will have no preferred direction and hence, the total current through the ring will be zero. If a
magnetic field is applied, however, the electrons will tend to rotate in a clockwise or counter-clockwise
direction, where the strength and direction of the rotation are determined by the component of the
magnetic field normal to the ring plane. This then gives rise to circular current, called the ring-current,
which induces its own magnetic field in the direction of the axis of rotation, according to the principles
laid down in Section 3.2.1.

Due to the small number of electrons involved, the ring current is small in magnitude and hence, the
induced magnetic field is much smaller than the external field that created the circular motion. Thus,
it is only of local relevance and decays faster then many of the other terms: it only affects hydrogen,
carbon, and nitrogen atoms (e.g. Hα, HN , Cα, Cβ , C’, and N atoms), the so-called target atoms, in
close spatial proximity.

In the following, we focus on the approaches that have been used by chemical shift prediction models
(c.f. Section 3.3): the method of Haigh and Mallion [HM72, HM79], used in the ShiftX approach,
the Johnson–Bovey model [JJB58] used by Kohlbacher and coworkers, and a classic point–dipole
model [Pop58] used by the CamShift approach.

As presented in [KRC+09], the CamShift model for the ring current contribution can be written as:

δring =
∑
i

⎛
⎝αi

∑
k∈rings(i)

[
1− 3 cos2(θk)

r3k

]⎞⎠ (3.2)

where i iterates over the five different ring types (Phe, Tyr, His, Trp1, and Trp2), αi is a fitting
parameter of the CamShift model, rings(i) denotes the set of all rings of type i in a protein, θk
denotes the angle between the vector perpendicular to the ring plane and the vector connecting the
ring center and the target atom, rk the distance between target atom and the ring center.

In its functional form, this approach is similar to the Haigh–Mallion method, which in turn is closely
related to the Johnson–Bovey model. These latter two models can be formalized as:

δring =
∑

k∈rings
Ik BG(Rk) (3.3)

where Ik denotes a ring specific intensity factor of the k-th aromatic ring, B a specific constant of
the target atom’s type, Rk gives the distance of the target atom from the ring center, and G(Rk) is
a geometric factor. The difference between the Haigh–Mallion and the Johnson–Bovey model lies in
the definition of the geometric factor G(Rk). In the Haigh–Mallion model, the factor is derived from
an approximate solution of the quantum mechanical treatment, leading to

G(R) =
∑
i<j

Si,j

(
1

r3i
+

1

r3j

)
(3.4)

61

3. NMR Shift Prediction

Figure 3.6.: Geometric parameters of the geometric factor G as defined in the Haigh–Mallion model.

where i and j iterate over all ring members in the sum, ri and rj give the distances of a target atom
- projected into the ring plane - from two neighboring atoms i and j of the aromatic ring, and Sij

denotes the area of the triangle (projected target atom, atom i, atom j). Fig. 3.6 shows the geometric
parameters needed in more detail, table B.1 gives the intensity factors and table B.2 the constant
factor values per target atom type.

The Johnson–Bovey model, on the other hand, follows a semi–classical approach: here, quantum
mechanics is used to derive the intensity of the ring current, but the result is then inserted into
classical electrodynamics, leading to

G(R) =
1√

(a2 + ρ2)2 + z2

{
K +

a2 − ρ2 − z2

(a− ρ)2 + z2
E

}
(3.5)

Here, R is the distance of the target atom from the ring center, ρ and z are the components of R in
cylindrical coordinates, a is the radius of the aromatic ring, K is the complete elliptic integral of the
first and E that of the second kind (c.f. [AS64]).

Electric Field As described in Section 3.2.3, polar groups in the spatial proximity of a nucleus
influence the magnetic field experienced by that nucleus, a phenomenon that is called electric field
effect. Roughly speaking, the electrons in a bond can move along the bond vector and thus come
closer to or move farther away from the nucleus we are currently interested in. Positive charges in
the area will attract the electrons while negative ones will repel them. A charged atom influencing
an atom in this way is called the source atom, the influenced atom is called the target atom of the
electric field effect. For each charge q in the vicinity, we can compute the resulting electric field at the
position R of the target nucleus as (remember that quantities denoted in bold face are vector valued)

E(R) = α
q

d2
d

d
(3.6)

where d is the distance vector between charge and target nucleus, and α is a constant prefactor. The
effect on each bond of the target atom can now be computed independently of each other. Assuming
without loss of generality that the currently considered bond is aligned with the z-axis, projection of
the electrostatic field onto the bond vector yields

Ez = |E| cos(ϑ) (3.7)

where ϑ is the angle between field and bond. This then gives a measure for the direction into which
the electrons will want to move.

62

3.2. NMR Spectroscopy

Using this formula, Buckingham [Buc60] approximated the effect on the chemical shift of an atom
due to one of its bonds as follows:

δEF = ε1Ez + ε2‖E‖2 (3.8)

For each atom, the effects of each of its bonds are then simply added up to yield to total electric field
contribution.
Often, the fields involved are quite small, and hence, the quadratic term in the above equation is often
neglected by setting ε2 = 0, yielding in total

δEF =
q ε1 cos(θ)

d2
× 1022 (3.9)

where ε1 equals 1 × 10−12, q denotes the partial charge associated with the source atom, θ denotes
the angle formed by each triple 〈 source atom, target atom, target atom partner〉, and d denotes the
distance between source and target.
While most authors keep the functional form due to Buckingham, different parameterizations have
been proposed, e.g. Kohlbacher et al. [KBM+01] mentions [ÖC94, WA93]. As a result, Kohlbacher
and coworkers and Wishart and coworkers [NNZW03] use the same formula for the electric field effect,
but with different values for the charges q: Kohlbacher et al. use values taken from the Amber 94 force
field [CCB+95], and Wishart et al. use −0.9612×10−10 esu for O, OD, and OE nuclei, 1.3937×10−10

esu for all C nuclei and 0.7209× 10−10 esu for N nuclei, where the target atoms are all Cα and all H
atoms.

Magnetic Anisotropy Some, but not all, approaches try to model the magnetic anisotropy of certain
chemical groups as well. Magnetic anisotropy describes the situation where the magnetic field is not
only shielded but also rotated due to the presence of a certain chemical group, e.g., the peptide group.
While the ShiftX method neglects anisotropy, Kohlbacher and coworkers used the model proposed by
McConnell [McC57], which uses an approximation of the peptide bond’s magnetic susceptibility tensor
χ to yield

δA =
1

3NA r3

∑
i=x,y,z

χii

(
3 cos2(θi)− 1

)
(3.10)

where r denotes the distance between the target atom (in principle all nuclei are affected, but the
Kohlbacher approach is limited to hydrogens) and the anisotropic bond, NA is Avogadro’s constant,
and θi is the angle between the distance vector r and the i-th axis. The parameters used by Kohlbacher
et al. were those proposed by Williamson and Asakura [WA93].

Hydrogen Bond Effect Similar to the anisotropy term, the effects of hydrogen bonds are often
neglected as well. A hydrogen bond is a bond–like phenomenon, where the proton of a hydrogen bound
to a so-called donor atom tunnels between the potential wells formed by the electrons of its donor and
an acceptor atom in close spatial neighbourhood. Most of this effect is already captured by the electric
field effect. However, some authors still prefer to include an implicit hydrogen bond contribution. For
instance, Wishart and collaborators [NNZW03] use the model by Wagner et al. [WPW83] and Wishart
et al. [WSR91] to improve the prediction for the influence on Hα and HN atoms in their ShiftX
program. For HN , the resulting formula reads

δHB =
0.75

r3
− 0.99 (3.11)

where r is the distance between hydrogen and oxygen. For Hα atoms, the corresponding formula is

δHB =
15.69

r3
− 0.67 (3.12)

63

3. NMR Shift Prediction

Figure 3.7.: Comparison of model complexities for selected NMR chemical shift prediction methods.

Interestingly, the term implemented in ShiftX differs significantly from the original ShiftX model as
described in the ShiftX publication [NNZW03]. Instead, the implementation uses

δHB =

{
c1
r3

+ c2 for H atoms
c3
r + c4

r
3
2
+ c5

r2
+ c6

r
5
2
+ c7

r3
+ c8 for Hα atoms

(3.13)

where r denotes the distance between acceptor and hydrogen, and ci, i = 1 . . . 8 are given in table B.4.
A more complex model has been proposed by Morozov and coworkers [MKTB04] and is used, e.g.,
by CamShift. However, this model is correlated with the electrostatic term used in ShiftX and by
Kohlbacher and coworkers and thus should not be simply used in combination with these terms.
With these insights into NMR spectroscopy, and into models for some of the contributions to chemical
shifts, we can now turn to the question of how to predict chemical shifts for atoms of a given molecule.
If required, an NMR spectrum can then be simulated from the individual shift values by placing
Gaussians of a fixed width around each measured chemical shift, and potentially adding noise.

3.3. Former Approaches for Chemical Shift Prediction

The field of NMR chemical shift prediction has been addressed by a variety of diverse approaches.
Thus, it is difficult to present an exhaustive overview of former approaches. In this section, we present
the most important ones instead. For an overview on protein chemical shift prediction, the interested
reader is referred to an excellent review by Wishart [Wis11].
As mentioned in Section 3.2.2, NMR spectroscopy is sensitive to 1H, 13C, and 15N atoms. However,
proteins contain several atoms of these types and in the remainder of this chapter, we use the following
nomenclature borrowed from the PDB file format conventions as defined in table B.3.
As customary, we distinguish between the following classes of prediction approaches: Full Quantum
Mechanics, Sequence Homology, Semi-Classical Models, Statistical Models, and Mixed or Hybrid
Models (see Fig. 3.7). These terms will now be explained in more detail.

Quantum Mechanics Approaches If computational complexity would be irrelevant, full quantum
mechanics would always be the method of choice. From the wave functions, all chemical shifts
can be predicted. However, for proteins in solution, this approach is usually too costly. Still, a
number of quantum mechanical approaches targeting proteins has been proposed, each using different
approximations (e.g. [HK64, KS65, PB82, HGPF88, OKK04, GYK+07, KO07, BKO11, FOME11]).
For example, the SHIFTS [XC01] approach from the group of Case predicts 15N, 13Cα, 13Cβ , and
13C’ chemical shifts by using backbone torsional angle patterns to query a database of pre-computed

64

3.3. Former Approaches for Chemical Shift Prediction

density functional theory (DFT) calculations. The underlying database was trained on more than 2000
peptides.

Sequence Homology Models The other extreme on the computational scale are homology based
methods. Here, chemical shifts are inferred from known shifts of homologous proteins. A typical exam-
ple is the program ShiftY [WWBS97], which collects homologous sequences from the BMRB [UAD+08]
to derive a set of similar fragments and to deduce chemical shifts for the query protein. Other exam-
ples for homology based shift prediction are the approach of Gronwald and coworkers [GBS+97], the
TALOS program [CDB99], and the SPARTA program [SB07, SB10].

Statistical Models Similar in spirit to homology based models, but more general, are the Statistical
Models: here, techniques from statistical learning are used to train a predictive model for the chemical
shift from a large set of known training data values. Statistical learning is a very wide field with a
diverse set of methods, and hence, many different approaches for shift prediction have been attempted.
Most notably, Meiler proposed the artificial neural network approach PROSHIFT [Mei03], Arun and
Langmead presented a random forest model [AL06], and Atieh and coworkers used a polynomial
expansion in their BioShift program [AAFA10].

A great advantage of the PROSHIFT approach is that, in contrast to most prediction models, it does
not restrict spatial proximity to sequential vicinity. It is also worth mentioning that PROSHIFT is one
of the few publications besides ShiftX [NNZW03] in this field that explicitly described the preparation
of its training data set and made it freely available. In contrast to most data sets, the Meiler set
also contains protein structures that have been resolved by NMR. In 2003, Meiler had access to 322
BMRB–PDB pairs for training and evaluation. At the time of writing of this thesis (Q1 of 2011), we
already had access to 2029 PDB–BMRB pairs with NMR resolved PDB files.

A statistical learning method that tries to remedy the overfitting problem of neural networks is the
work of Arun and Langmead. The authors employed random forests, a modern non-linear regression
ensemble machine learning method that is provably robust against overfitting (a detailed description
can be found in Section 3.5.2).

The BioShift model, on the other hand, follows a more general goal, namely the chemical shift
prediction for atoms of any type of biological molecules: proteins, DNA, RNA, polyamines, etc. alike.
To provide a simple and computationally fast model, its parameters depend only on Amber [CCB+95]
atom types, bond lengths, angles, dihedrals, and non-bonded terms using generic polynomial functions.
Although the generic functions seem complex at first glance, the number of parameters in practice
is small (see table 3.3). Unfortunately, the parameter training was limited to shift information of 5
proteins and 4 polyamines only.

The method, we would like to mention is the Preceding Residue Specific Individual (PRSI) method by
Wang et al. [WWC+04], which uses a hypersurface similar to the one of the ShiftX approach described
in the next paragraph. The PRSI model was trained for backbone nitrogen shift prediction, and only
uses features derived from the preceding residue in the sequence.

Semi-Classical Models The idea of combining several semi-classical approximations to the full
quantum mechanics problem into an additive model for chemical shift prediction leads to the so-called
Semi-Classical Models. Here, different effects known from full quantum mechanics are approximated
using simpler classical models such as ring-current effects or hydrogen bonding. Typical semi-classical
terms are discussed in Section 3.2.3.

Important examples of these models are the approaches by Ösapay and Case [ÖC94], Williamson and
Asakura [WA93], and Kohlbacher and coworkers [KBM+01]. The models differ in the effects taken
into account, the exact approximations used, and the parameters used to combine them. For example,

65

3. NMR Shift Prediction

the Kohlbacher approach computes the shift as

δ = δcoil + δA + δJB + δEF (3.14)

where δcoil denotes the random coil shift, δA the magnetic anisotropy contribution, δJB gives the
ring current effect in Johnson–Bovey approximation, and δEF is the effect of the electric field (these
terms are discussed in Section 3.2.3). Please note that Kohlbacher et al. modelled chemical shifts for
hydrogen atoms only.

Unfortunately, semi-classical approximations do not reflect the full nature of chemical shifts, which
leads to the idea of hybrid models.

Mixed- or Hybrid Approaches Over the years, experience has shown that some of the effects
governing chemical shifts can be well-represented by semi-classical terms while others cannot. Hence,
good semi-classical models are today often combined – usually in a simple, additive form – with a
specially trained statistical model to improve the prediction with only small increase in computational
complexity. And indeed, most modern approaches for chemical shift prediction in proteins seem to use
such a mixed- or hybrid approach. In this way, those effects that are well-explained by semi-classical
approximations will be well captured, while the remaining effects that cannot easily be translated to
analytical formulae or predicted via classical means can be estimated by a statistical model.

The most prominent example of such an approach is the ShiftX model by Wishart and collabora-
tors [NNZW03] for predicting 1H, 13C, and 15N chemical shifts. ShiftX combines semi-classical equa-
tions for ring current, electric field, and hydrogen bonds with empirically derived hypersurfaces. These
chemical shift hypersurfaces were pre-calculated and capture dihedral angle, side chain orientation, sec-
ondary structure, and nearest neighbor effects. Recently, a novel approach called ShiftX2 [HLGW11]
has been presented, a combination of two improved versions of former programs: ShiftY+ and ShiftX+.
The improvement of ShiftY+ over the earlier ShiftY was achieved by employing a local alignment
method instead of global alignment.

The second component, ShiftX+, differs from the earlier ShiftX model mainly in the choice of the
statistical component, which was originally a hypersurface. The new model is still a hybrid model, but
not in the classical sense: while semi-classical and statistical prediction are usually just added together
to form the final value, ShiftX+ now uses the values of the semi-classical terms as additional features
for the statistical model. In total, the approach uses 63 features, trains separate tree-based predictors
on these, and uses bagging and boosting methods to combine the individual predictions into the final
outcome.

As customary, ShiftX2 trains different models for each atom type it supports, leading to a total of 6
backbone and 34 side chain models.

A model that is very similar to ShiftX2 is the SPARTA method of Shen and Bax [SB07, SB10]. The
key idea of the SPARTA method is to use ring current and hydrogen bonding effects to correct the
result of a homology search, which employs local sequence and structure similarity of a residue and its
sequential nearest neighbors to predict its backbone chemical shifts. A database is searched to find
and average over the 20 best matches for a given sequence triple and torsion nine-tuple. Statistical
optimization was employed to determine the weighting factors for the torsional angles and for sequence
similarity. The backend database contains 1HN , 1Hα, 13Cα 13Cβ , 13C’, and 15N chemical shifts for 200
proteins for which a high resolution X-ray structure (< 2.4Å) was available at the time of construction.
The recent new development SPARTA+ [SB10] additionally uses an artificial neural network.

The CamShift prediction model of Kohlhoff and coworkers [KRC+09] strongly focuses on conforma-
tional information as well. The approach combines a random coil term with a polynomial expansion in
terms of interatomic distances and angles. The parameters of this expansion were trained on a data
set extracted from the RefDB [ZNW03] and depend on atom type, residue type, and hybridization
state. The resulting function is differentiable and, as the authors state, can hence be used as restraint

66

3.4. Aims of our Work

in molecular dynamic simulations [KRC+09]. The resulting shift prediction can be applied to Hα, HN ,
Cα, Cβ , C’, and N backbone atoms.

An extended version of CamShift additionally offers distance and angle dependent polynomial terms
for hydrogen bonds, ring currents, and disulfide bridges. Note that while the simple version is a nearly
linear model, the extended version involves more complex functions, e.g., cosines of the dihedral angles.

Non-Protein Models Until now, we have described the state of the art in protein chemical shift
prediction. But the importance of NMR extends to other kinds of molecules as well, such as DNA,
RNA, and ligands. As we have seen repeatedly in this thesis, the computational approaches that can
be applied to the different molecular classes differ most fundamentally between the cases of proteins,
DNA, and RNA on the one side and ligands on the other. Again, the typically small size of ligand
molecules allows to use computationally expensive approaches from quantum mechanics, while their
diverse chemistry prevents the use of most simpler techniques. For proteins, DNA, and RNA, on the
other hands, their regular composition and building block nature favors fragment based approaches.

For the sake of completeness, we will restrict ourselves to naming the most important approaches for
DNA and ligand chemical shift prediction here.

In the field of DNA shift prediction, the web server of Lam [Lam07] and the methods of Wijmenga
et al. [WKH97] and Altona and collaborators [AFWH00] are available. The BioShift [AAFA10] model
mentioned earlier is also applicable to DNA.

For ligand molecules, a detailed review of prediction methods is given in [SBC+08]. Popular exam-
ples are NMRPredict [NMR], the ACD/CNMR Predictor suites, the approach by Kuhn and cowork-
ers [KENS08], the databases NMRShiftDB [SKK03, SK04] and SpecInfo [BG91], and the approach by
Abraham and coworkers [ABGP06, ABGK05]. An exhaustive analysis of statistical methods for metabo-
lite hydrogen chemical shift prediction was performed in the work of Kuhn and coworkers [KENS08].

3.4. Aims of our Work

Our work on NMR chemical shift prediction described in this thesis has two major goals: establishing
a fully automated pipeline for training and evaluating new shift prediction models (including the
generation of the underlying data sets), and extending protein shift prediction to the case of protein
ligand complexes. The reasoning behind our interest in these goals will be described in the following.

When we started our work, our initial motivation was to extend the NMR-guided protein-protein
docking approach by Kohlbacher et al. [KBM+01] to the case of protein-ligand docking. But after
evaluating the former approaches described in the last section, and considering our own experiences
described in [Deh07], we realized that the current state of protein-only shift prediction does not yet
allow this extension. The reason for this shortcoming is not so much the prediction quality per se,
but rather problems with consistency, applicability, and extensibility. For example, as discussed later
in this thesis, previous prediction approaches concentrate on input that was derived from X-ray crystal
structures instead of using NMR structures for the training and test sets. We will later demonstrate that
the performance of state-of-the-art methods drops considerably when applied to non-X-ray structures,
but in the scenario we have in mind, the characteristics of the input are more consistent with the NMR
than with the X-ray case: the results of a docking run usually have imperfectly placed atoms, which
is more consistent with a lower-resolution structure than with highly resolved X-Ray. In addition, the
docking is simulated in solution rather than in a crystal.

A second problem with former approaches concerns the fact that most of them have been trained
on data sets that include protein-ligand complexes, but the ligand has merely been ignored during
training. To avoid overfitting, we would thus have to take particular care to exclude any protein-ligand
complex that is homologous to one of those contained in the original training set of the protein model

67

3. NMR Shift Prediction

at hand. This, however, would greatly reduce the amount of available training data for protein-ligand
shift prediction.

We thus wanted to train a protein shift prediction model on a ligand-free data set of NMR resolved
structures in order to base protein chemical shift prediction on NMR structures with a prediction
quality that is sufficient to later on detect the sometimes minute influences of ligand atoms on the
protein.

In a first step, we evaluated whether one of the established programs could form the basis of our
extension. Unfortunately, this turned out to be impossible. Current shift prediction code is not written
with extensibility or adaptation in mind, and indeed, re-training the existing models to account for new
features – if such can even be implemented into the system – is a cumbersome and time-consuming
manual process. Similarly, data set generation is usually performed by hand in order to guarantee
optimal input quality of the training and test sets.

As a consequence, previous approaches for NMR protein chemical shift prediction are usually only very
rarely improved upon or trained on new data sets. Instead, a more or less complete rewrite is often
necessary.

We thus decided to not only create a new prediction method, but to also attack the problem at
its roots instead: we want to develop a fully automated pipeline that can generate up-to-date data
sets, perform the training of a new hybrid model using a choice of statistical learning techniques, and
evaluate the model without the need of manual intervention. The pipeline also encapsulates a large
number of necessary pre-processing steps, which will be described in detail in Section 3.6.1. Using
this pipeline, we created two different hybrid models, which will be discussed in Section 3.6.4 and
Section 3.7

In the process of creating the pipeline, we noticed that many of the solutions for the pure protein
NMR chemical shift prediction case can easily be applied to the protein-ligand and protein-DNA case
as well. To this end, we designed additional features based on our work in atom- and bond-typing
(see Chapter 2), and thus extended the pipeline to the protein-ligand case. Finally, we performed a
proof-of-principle study that demonstrates its potential.

3.5. Materials and Methods

In this chapter, we present the materials and methods for the development of a pipeline for au-
tomatically generating and evaluating data sets and prediction models for new hybrid protein and
protein-ligand chemical shift prediction. The latter, NMR chemical shift prediction for protein-ligand
complexes, has, to the best of our knowledge, not been investigated so far.

Typical hybrid models combine semi-classical terms with a statistical model. We, however, use the
semi-classical terms as features in addition to molecular features in a fully statistical model. Another
innovation of the presented work is the size and breadth of features (semi-classical, sequential, struc-
tural, force field based, and experimental) provided in the pipeline by implementing known features and
introducing new ones. Independently from our approach, the recently published ShiftX2 [HLGW11]
program extended its set of features considerably as well. However, we invented and implemented
many additional features that are not covered by the ShiftX2 model. These include, e.g., rotamers,
GAFF atom types, density and packing related properties.

Finally, the pipeline allows to analyse different statistical models based on an automatically generated
data set. In contrast to alternative prediction methods, our automatically generated data set considers
NMR resolved PDB structures as opposed to the X-ray resolved structures. As we will repeatedly see
in this chapter, this choice guarantees consistency between NMR shift data and three dimensional
conformations: roughly speaking, the structures have been resolved by the same experiment that
was used to generate the NMR data, and thus guarantee the same physico-chemical conditions and
complete sequence identity between PDB and BMRB files.

68

3.5. Materials and Methods

In the remainder of this chapter, we present the construction of the data set, our new hybrid model
combining the semi-classical terms, molecular data derived features, the statistical models used in our
pipeline, and a grammar for the CIF file format used by the BMRB.

3.5.1. Data Set Construction

Careful selection and design of a proper training data set are crucial to finally yield a reasonable
statistical model, in our case even more so than usually: since we want to extend shift prediction to
cases that were previously ignored, we cannot just rely on previous data sets or conventional rules of
thumb. In this section, we thus want to discuss the reasoning behind the choices we made in this
crucial step.

For training NMR shift prediction methods, we need in essence three different kinds of data as input:
(a) recorded chemical shifts and the corresponding physico-chemical conditions of the experiment,
(b) three-dimensional protein- and protein-ligand structures for the recorded shifts, and (c) values for
the different kinds of features we decide to offer to our statistical models. The term “data set” is
often used ambiguously in NMR shift prediction and can, in general, refer to any of the three, or a
combination thereof.

Once we have access to the data described in (a) and (b), the third kind, i.e., the features for the
training of the predictors, can be computed completely. This will be discussed in detail in Section 3.5.2.
But unfortunately, the first two kinds of data are spread over several different databases: the three-
dimensional atomic data for our protein- and protein-ligand systems is provided by the Protein Data
Bank (PDB) [BWF+00, BHN03], where it is stored in the PDB file format. The NMR shift data, and
information about the experimental conditions leading to these shifts, is collected in the Biological
Magnetic Resonance Bank (BMRB) [UAD+08], where it is stored in the NMRStarFile format (often
referred to simply as “BMRB files”), a version of the Crystallographic Information File (CIF) format
specialized to NMR data. Section 4.3.1 will discuss how we parse these in our implementation. Neither
of these two data sources typically contains a reference to the other, but the BMRB offers a database
of PDB–BMRB pairs where the PDB structure has supposedly3 been resolved from the experiment
described in the BMRB file. This data set contains several homologous proteins, which might be an
issue for training statistical or hybrid models based on it and hence, the mapping is often pruned. Our
own choices for the mapping between PDB and BMRB will be discussed in detail later in this section.

Unfortunately, both data sources are known to sometimes contain serious errors and inconsistencies.
This is particularly problematic for the BMRB data, which not only often contains clear syntactic
errors, but also much less obvious logical ones. Probably the most prominent example is the so
called “referencing problem”, which will be discussed in more detail later in this section. In brief, the
chemical shift is measured relative to a certain reference value but this choice is not always consistent:
unfortunately, and somewhat unexpectedly, this important step is often incorrectly reported in the
BMRB files, leading to shift values that are constantly biased away from the true values. While
referencing errors might in principle be detected and corrected for by trying to estimate this offset,
another common kind of error is harder to address: many files contain mis-assigned atoms, leading to
errors that are even harder to track. A recent study indicates that as much as 20% of the data files
in the BMRB are mis-referenced, and up to 40% contain assignment errors. Consequently, a number
of publications [ZNW03, GGCH07, RV10, Wan10, HLGW11, Wis11] hint at the necessity of checking
and correcting the given data, BMRB NMR data and PDB coordinates alike.

From what has been said above, we see that the creation of an NMR chemical shift prediction data
set is not a trivial straight-forward enterprise but rather has to address several critical issues, such as
the completeness and quality of the PDB files, the chemical re-referencing problem for NMR data, and

3 A certain amount of pairs in this official mapping contain obviously inconsistent information (e.g., different amino acid
sequences), which introduces problems that will be discussed later.

69

3. NMR Shift Prediction

the treatment of homologs within the data set. Most former approaches thus rely on manual, hand-
curated data sets created by the application of non-standardized sequences of restriction and correction
methods. But this manually driven approach leads to a number of problems, most importantly, a
potential bias and the enormous amount of effort involved. We thus decided that in our approach, we
want to automatically prepare such data sets instead. To this end, we need to answer several open
questions arising from the above discussion:

• How can we automatically create valid mappings between PDB and BMRB entities?

• Should we use NMR or X-ray resolved PDB files and how do we obtain them automatically?

• Should we perform correction of BMRB and PDB files and if so, how?

• Should we exclude homologous proteins and if so, to what extent and how?

• Which features should we consider for training the statistical model?

In the following, we will address each question in detail.

PDB-BMRB Mapping A PDB to BMRB mapping solves the problem of assigning shifts that were
recorded in an NMRStarFile and deposited to the BMRB to the three-dimensional representation of
atoms stored in a PDB file. The problem is typically decomposed into two sub-problems: the mapping
of PDB entries to BMRB entries, i.e., which creates a relationship between whole molecules, and
the mapping of PDB atoms to BMRB shifts, which works on the level of individual atoms. In the
following, we will refer to the first sub-problem as the “PDB-BMRB mapping problem”, to the second
as the “PDB-atom-to-BMRB-atom mapping problem”.
A number of PDB to BMRB mappings have been previously published. The most important of these
are the very recent ShiftX2 [HLGW11] training and test set, the RefDB [ZNW03], the PROSHIFT
set [Mei03], the TALOS+ set [SDCB09], or the general PDB to BMRB mapping of the BMRB
[UAD+08] itself. All but the RefDB and the BMRB lack regular updates. To the best of our knowledge,
all alternative prediction approaches first created a data set by hand, applying many manually chosen
restriction criteria. This, however, has three major disadvantages: first, it is a very cumbersome and
time-consuming process that is usually not repeated when new experimental information becomes
available. Second, the manual curation of the data set imposes a certain bias into the final models.
And third, cutting away much of the input space might remove valuable information. The first problem
could be circumvented by using one of the available data sets (some information about these data sets
can be found in table 3.5).
However, all of these data sets suffer from the other two mentioned problems. Thus, we decided to
approach the problem differently: we want to make use of all available data with the ability to easily
retrain the model. To obtain the largest possible data set currently available, we make use of the
official mapping between PDB and BMRB entries provided by the BMRB. Simple alignment with,
e.g., ClustalW [THG94, CSK+03] provides BMRB-atom to PDB-atom mapping information. The
corresponding atoms can than be identified by an atom naming converter linking BMRB to PDB atom
naming conventions.

NMR versus X-ray Resolved Structures A number of approaches like ShiftX [NNZW03], Sparta
[SB07, SB10], and CamShift [KRC+09] focus on X-ray resolved PDB structures, arguing that X-ray
experiments provide higher coordinate accuracy than NMR resolved structures.
We, however, decided to base our data set on the official BMRB to PDB mapping mostly because of
its consistency: the mapping usually connects chemical shift data with the structures that have been
resolved based on the very same NMR experiment. Thus, physical conditions, protein modifications,

70

3.5. Materials and Methods

and similar variables will in most cases be identical between BMRB and PDB entry. As a further
advantage, the most recent version of the mapping can be automatically obtained from the BMRB
web site.
In addition, taking NMR resolved structures into account relieves us from deducing missing hydrogen
positions by other software. Hydrogen placement not only affects and biases the hydrogen shift
prediction, but also the predictions for other atom types since hydrogen atoms are present everywhere
and form hydrogen bonds, an important feature in most prediction approaches. Instead of deducing
this information from other algorithms, NMR resolved structures directly contain this information.
On the other hand, X-ray resolved structures are assumed to have in general higher resolution than
their NMR resolved counterparts and consequently, most shift prediction methods rely on them as input
to the training. In our opinion, though, the advantages of using NMR resolved data as input, most
importantly the greater consistency, outweigh their disadvantages (resolution and typical structure
size).
Furthermore, the application we have in mind is a docking scoring scenario where we want to compare
our prediction explicitly against an NMR resolved structure. Thus, a dedicated NMR based prediction
method is needed.
To the best of our knowledge, only one prediction model was trained on a mixture of NMR and X-ray
resolved structure, the PROSHIFT [Mei03] method, but none was trained on NMR structures only.
Our approach fills this gap.

Correction of BMRB and PDB files An alternative source for the shift data with similar advantages
as the BMRB would be the RefDB, which is essentially a re-referenced version of the BMRB. As
discussed previously, there is sufficient reason to believe that a non-negligible percentage of chemical
shifts in the BMRB have been misreferenced, which can obviously lead to spoiled shift prediction. For
our study, however, we decided to base our predictors on the official data instead of the re-referenced
ones. The most obvious reason for this choice is the fact that the RefDB has been re-referenced using
ShiftX as a predictor, which might bias the process, a bias that we wanted to exclude for our study. As
a second reason, we wanted to assess how good automated predictor generation from non-rereferenced
data can perform as a lower bound for the achievable accuracy.
Unfortunately, due to the complex nature of the experimental procedure, chemical shift information is
prone to numerous kinds of errors, where BMRB as well as PDB information is affected.
We will first consider errors in the BMRB files, and then discuss errors in PDB files. Typical sources
of errors within the BMRB are mis-assignments, typographical errors, and chemical referencing er-
rors. Clearly, typographical errors are the simplest case and can be taken care of by, e.g., BALL’s
normalizeNames() procedure. The other two types of errors are more complex and we first need a
clear definition. An assignment error occurs, if the chemical shift is assigned to the wrong atom. A
referencing error is defined as a general reference offset between two NMR experiments with the same
molecular entity. There are two reasons for this difference [Wis11]: the use of an incorrect reference
standard and the use of wrong solvent conditions.
According to Wishart [WBY+95], the errors induced by choosing the wrong reference can be as large
as 4–40 ppm.
In a number of publications [ZNW03, GGCH07, RV10, Wan10, HLGW11, Wis11], the necessity of
checking and correcting the given data, BMRB NMR data and PDB coordinates alike is discussed. For
instance, Wang and coworkers [Wan10] state that more than 20% of the proteins in the BMRB are im-
properly referenced and nearly 40% of the protein entries are hampered by assignment errors [ZNW03].
For BMRB files, a number of approaches (e.g. [ZNW03, GGCH07, RV10, Wan10]) has been developed
so far to detect and correct assignment and referencing errors.
In the following, we give short descriptions of each method.
The ShiftCor/RefDB approach [ZNW03] was among the first methods for solving these problems.
Here, the chemical shift information is corrected with respect to the solvent (RefDB assumes DSS)

71

3. NMR Shift Prediction

nucleus solvent compound ratio
1H DSS 1.000 000 000
13C DSS 0.251 449 530
15N NH3 0.101 329 118

Table 3.1.: IUPAC recommended ratios for chemical shift referencing, taken from [Wis11].

detects mis- detects structure-method year
assignment referencing based

basis

RefDB (ShiftCor) 2003 Y Y Y ShiftX prediction
CheckShift 2007 N Y N sequence based secondary structure prediction
Vasco 2010 Y Y Y solvent accessible surface and secondary structure
PANAV 2010 Y Y N residue type and secondary structure classes

Table 3.2.: Summary and comparison of chemical shift validation programs.

based on a protein-wide delta to its ShiftX predictions. RefDB was used for data set generation in
many shift prediction approaches, e.g. [NNZW03, AL06, HLGW11, KRC+09].

The CheckShift method [GGCH07] performs referencing error correction based on a protein wide
distribution comparison between a target distribution (the queried NMR file) and a prepared reference
distribution.

The Vasco (“Validation of Archived chemical Shifts through atomic COordinates”) approach [RV10]
performs detection and correction based on solvent accessible surface and secondary structure infor-
mation.

The “Probabilistic Approach for protein NMR Assignment Validation” (PANAV) [Wan10] identifies
and corrects assignment and referencing errors based on fragment-wise comparison of residue type and
typical secondary structure dependent chemical shift distributions.

A detailed review on NMR referencing techniques is given in [Wis11]. IUPAC recommended ratios for
chemical shift referencing correction relative to DSS are shown in table 3.1.

For PDB files originating from X-ray experiments, a number of methods for quality checks is avail-
able [WRZ+03, WS07, BLZ+10].

ShiftX2 applied these approaches extensively for the generation of their data set. We, however, decided
to use NMR resolved structures in our approach, thus relieving us from X-ray correction.

Homologous Proteins Another important aspect of designing a data set is the problem of homology
within the data set.

In protein chemical shift prediction, the use of homologous proteins in the training and test data sets
is debated controversially. One body of opinion states that chemical shifts are so strongly structure
dependent that using homologous proteins can only be beneficial for prediction accuracy, while the
other argues that the presence of a protein in the test set homologous to a protein in the training set
will severely skew the statistics and might lead to an underestimation of the real error rates. Since
we want to ensure a rigorous evaluation of our model, we trade in the potential benefits of using
homologous structures for an increased robustness and hence use a homology filter on the BMRB to
PDB mapping.

To this end, we cull the mapping by sequence similarity with cutoff 10% by applying the standalone
PISCES package provided by the Dunbrack group [WDJ05].

It is our belief that for NMR shift prediction the homology bias problem does not arise, at least not
as strongly as in the other fields, since NMR is extremely sensitive to structural changes. On the
contrary, a predictive model will gain additional insight since the small deviations in structure as they
can be found within homologs lead to strong changes in the chemical shifts. This information might

72

3.5. Materials and Methods

be crucial when targeting structure validation and docking scenarios alike.
However, excluding homologs from the training and test data set allows evaluation as it has been
performed in the field before and thus comparison to other methods. An interesting question for
future research is if and how the exclusion of homologs influences the weighting of the features in the
statistical model and impacts the test errors.
Data set generation is part of our automated pipeline, and the techniques used for its construction as
well as the resulting data set will be described in Section 3.6.2. Having thus addressed the problem
of the data set, we can now discuss the new hybrid model.

3.5.2. A new Hybrid Model

As discussed previously, we decided for a hybrid approach, combining semi-classical terms with a
statistical model for NMR chemical shift prediction. In the following, we first describe the semi-
classical terms we used for our implementation, we then describe the other features reflecting the
structural environment, and then focus on the requirements for a suitable statistical model.

Semi-Classical Terms

For our work, we decided to employ models for the contributions discussed in Section 3.2.3. We only
excluded the magnetic anisotropy, since predictions for this term are typically insufficiently accurate.
For the random coil contributions, we used parameters as defined in [WBH+95], since these are well-
established and current. For the ring current model, we employ the Haigh–Mallion method [HM72,
HM79], for the electric field effect the model by Buckingham [Buc60], with more recent parameters
taken from the ShiftX implementation [NNZW03]. The hydrogen bond term was also modeled as in
ShiftX.
The chosen models all have recently developed parameter sets reflecting the current state of the art,
can be evaluated efficiently and numerically accurate, and – most importantly – have been shown to
be compatible with each other so that arbitrary combinations can be combined for the full model.
Besides semi-classical terms, our new hybrid model uses a large number of molecular properties and
experimentally derived features, which will be discussed in the next section.

Features for NMR Chemical Shift Prediction

A comparison of former approaches shows that the features used for the statistical models are very
similar. To construct our set of putative features, we developed new ideas and combined them with
known features that may have been already considered by different former approaches. Considering
the application we have in mind, namely the scoring of docking results in a high-throughput manner,
we need to carefully balance potential accuracy and computational efficiency. We decided to address
both goals by implementing a large number of features, where each feature can be computed efficiently
and accurately as opposed to using fewer computationally expensive ones. The idea behind this broad
ansatz is to make use of as many different points of view and to capture as many influences and
dependencies as possible to support the prediction algorithm.
The large size of the feature set has another advantage: during the process of training a statistical
model, we will implicitly perform a feature selection or importance estimation. Offering many alterna-
tive features to the subset selection may turn up important features that might otherwise have been
missed, or only approximately taken into account through a combination of other features. Hence,
our approach increases our chances for gaining more insight into the driving forces or key players for
NMR chemical shifts.
All features have been implemented in our library BALL [HDR+10], which combines the implemen-
tational efforts of years of coding and community testing to serve as a standard for algorithmic per-
formance, and not to rely on a rag rug of secondary programs. This not only greatly facilitates the

73

3. NMR Shift Prediction

ShiftX CamShift BioShift ShiftX2 BALL

HN 608 235 15 63 111 (49)

HA 1310 300 20 63 111 (49)

Table 3.3.: Comparison of the number of parameters between the ShiftX [NNZW03],
CamShift [KRC+09], and BioShift [AAFA10] model as performed in [AAFA10].
BioShift tries to accomplish similar overall prediction accuracy as ShiftX2 despite using
only a small number of parameters. For better comparison, we also added the number of
features offered by ShiftX2 and our new protein model, for which we show the number
of features offered for training and, in parentheses, the final number of features actually
used.

implementation but also leads to improved stability and correctness as compared to alternative ap-
proaches. The resulting set is to the best of our knowledge unique with respect to its size and diversity.
Please note that the large feature size does not increase the risk of overfitting our statistical models
significantly, since we have a very data rich situation: even in our approach, the final number of
features is still several orders of magnitude smaller than the number of data points (c.f. table 3.9).

The opposite strategy to our broad ansatz was performed during the design of the BioShift model
of Atieh and collaborators, who were interested in the smallest number of features necessary to still
reach comparable root mean square deviations (rmsds) and conducted research into the number of
parameters required (see table 3.3). In their study, Atieh et al. found that for HN and Hα atoms,
the BioShift chemical shift prediction achieved similar rmsd values compared to ShiftX and CamShift
although it uses significantly fewer parameters. For convenience, we added columns for ShiftX2 and
our models, as well.

In addition to the semi–classical contributions presented in Section 3.2.3, our NightShift pipeline offers
sequential features, structural features, force field-based features, and experimental features.

Please note that some of these features are not directly used as input to our final statistical models:
a small number of them is used as quality filters instead, while some others have been excluded for
different reasons (see below). However, to keep the pipeline as general as possible and to improve
extensibility, we retain them for later use.

In the following, we will describe our features in more detail.

Sequential Features Very common properties for NMR shift prediction are the atomic element, the
amino acid type aa, and the information whether the current residue is a C– or N–terminal residue.
Traditionally, (compare, e.g., ShiftX or PROSHIFT) the amino acid type information is also evaluated
for the sequential vicinity of a residue i, i.e. residues i + 2, i + 1, i − 1 and i − 2. A very simple
sequential feature is the amino acid sequence length (protein size) of the protein under consideration.

Structural Features By far the most features of our putative set are of structural character. Our
feature set encompasses secondary structure-, hydrogen bond and disulfid bond-, torsional angle and
distance-, rotamer-, surface-, as well as density related features.

The influence of backbone torsional angles upon chemical shifts has been reported since the early days
of NMR shift prediction research and intensively investigated since then by, e.g., [AST+84, ÖC94,
ZALL10]. Important applications of this work include NMR resonance assignment (e.g. [GSBW00]),
the determination of backbone torsional angles (e.g. [CDB99, SDCB09]), or secondary structure as-
signment (e.g. [WSR92, MK09, ZALL10]). For more details, the interested reader is referred to the
work of Cornilescu and coworkers [CDB99].

74

3.5. Materials and Methods

Thus, secondary structure information and backbone torsional angles belong to the core features of
chemical shift prediction, e.g., in the ShiftX model, the PROSHIFT method, and the homology based
SPARTA approach.
We used the general secondary structure classification types helix, sheet, and loop and the explicit
torsional angles ψ, φ, χ1 and χ2 as features. For secondary structure assignment, we use the BALL
implementation of the DSSP algorithm [KS83]. Similar to the amino acid type, the torsional angles
of the neighbouring residues of a residue i, i.e. residue i + 1 and i − 1, are added to our feature set
as well.
In addition to the torsional angles, we add a number of distances to our set, namely the distance of an
atom to the closest (not necessary within the atom’s residue) Cα (dist CA), Cβ (dist CB), backbone
nitrogen (dist N), and to the backbone oxygen (dist O). These or similar features are also employed
in, e.g., ShiftX or the BioShift model.
As explained in Section 3.2.3, hydrogen bonds are sensitive to hydrogen (foremost Hα, HN) chemical
shift prediction and are thus covered by semi-classical terms in the ShiftX and the CamShift model.
In addition to the semi-classical contribution accounting for hydrogen bonds, we followed the ShiftX
approach in adding a number of features describing a hydrogen bond in more detail. For alpha and
amide hydrogen atoms (Hα and HN), and hydrogen bond acceptors, i.e. backbone carbonyl oxygens
(O) and side chain oxygens (Oδ∗, Oε∗, O

γ
∗ , O

η
∗), we compute the features hbond, hbond ang, hbond len.

These features are indicator, angle, and length properties for the involvement of the current atom’s
residue in a hydrogen bond.
Potential hydrogen bond donors are carbon, oxygen, and nitrogen atoms. For these, we first compute
the indicator feature hbond donor. If the atom takes part in a hydrogen bond, we also compute
its length hbond donor len, and the angle hbond donor ang. Otherwise, the last two are set to a
special value, indicating that the feature is not present.
Splitting hydrogen bond features in this manner allows us to distinguish between hydrogen bond donors
and acceptors, which in our opinion differ significantly in their influence on the chemical shifts.
From the ShiftX model, we inherited features describing each type of possible hydrogen bond separately
for a given residue, e.g. hydrogen bonds via the atoms HA1, HA2, HN, or the backbone oxygen as
acceptor. For these hydrogen bond types, we compute an indicator, the length, and the angle yielding
the additional features hbond X, hbond X len, and hbond X ang with X ∈ {HA, HA2, HN, OH}.
For hydrogen bond detection of both, side chain and backbone atoms, we used the BALL implemen-
tation of the ShiftX approach, since the more common DSSP method of Kabsch and Sanders only
works for the backbone.
Similar to hydrogen bonds, disulfide bridges stabilize the structure of a protein since they link two
thiol groups as found in the amino acid cysteine. We thus added an indicator feature disulfide, the
disulfide bond’s length (disulfide len) and the dihedral angle Cβ–Sγ–Sγ–Cβ (disulfide ang).
To include further knowledge about the protein structure, we do not only store the features “secondary
structure elements” and “torsional angles”, but also add rotamer information to our feature set.
We used the BALL implementation of the backbone dependent rotamer library bbind02.May.lib of
Dunbrack [DK93, DK94, DC97] to determine the closest rotamer of a residue rotamer as well as the
root mean squared deviation (rmsd) from the closest rotamer rotamer X dist. In practice, the feature
rotamer leads to a categorical predictor with 340 levels, much more than can typically be handled
by statistical models. Hence, we introduce 340 indicator variables rotamer X, one for each rotamer,
instead. These features are then added to all atoms of the corresponding residue.
Atoms on the molecular surface are located in a very different chemical environment from those in the
protein’s core. In addition to their exposure to the solvent, the shifts of surface atoms are obviously
much more sensitive to intermolecular interactions than buried ones. We thus added features to our
set that capture the degree of exposure, or the proximity to the surface.
The Solvent Accessible Surface (SAS) area is often calculated in a per–residue fashion [VR09]. How-
ever, it has been argued that per–atom SAS values “provide a more meaningful and precise measure

75

3. NMR Shift Prediction

for use in analysis and structure prediction, especially for residues with longer side chains” [SGSA06].

As stated in [VR09], the per–atom solvent accessible surface area correlates with chemical shift infor-
mation and the ShiftX2 approach takes the solvent accessibility into account as well.

For the computation of the surface area, we used the PARSE radius parameter set [SSH94] with the
solvent accessible surface area computation of BALL in a per-atom and per-residue fashion with two
different radii for the solvent rolled over the surface: r1 = 1.5Å and r2 = 0.5 Å. This yields features
named atom sas, atom sas2, residue sas, and residue sas2) that denote whether, and if so, to what
extent, an atom and its residue contribute to the protein’s surface.

Accounting for the surface area directly leads to the solvent as experimental feature. According
to [Wis11] “protein chemical shifts have been found to vary considerably depending on the solvent in
which they are measured“. As typical solvents, Wishart names water, trifluoroethanol, DMSO, and
chloroform/methanol, however, all of these but water seem to be very seldom reported (0.4%) [Wis11].

The idea of using the density within the neighborhood of an atom as feature was already introduced by
Meiler [Mei03], who used an average reciprocal distance. We further elaborated this idea and created
features accounting for the density and packing in spatial vicinity, weighted and simple summation
(atom density, atom w density, atom pack, atom w pack), and the distance to the protein’s cen-
ter of mass (dist com).

The feature atom density simply counts the atoms within a radius of 5Å, whereas atom w density
weights an atom’s contribution with the reciprocal distance to the atom under consideration, also
within a 5Å radius.

In order to account for the different radii of different atom types we designed ’packing’ features. The
feature atom pack adds up the van-der-Waals volume of neighboring atoms within a radius of 5Å with
a simple spherical capping approximation at the boundary. The feature atom w pack is computed
analogously, but additionally weights the volumes with the distance to the atom under consideration.
For both features, atoms of the same residue are excluded since the corresponding effect is already
encoded in the amino acid and the rotamer features.

The feature dist com, distance to the center of mass, is considered to account for the buriedness of
an atom in combination with the SAS contribution and the size of the protein.

The ShiftX2 and PROSHIFT models also employ hydrophobicity as prediction feature. Several hy-
drophobicity scales exist, but these usually assign a fixed value per amino acid type. Thus, a hy-
drophobicity feature would correlate perfectly with the amino acid feature, which should be avoided
when training statistical models [HTF09].

Force Field based Features Molecular force fields conveniently categorize atoms according to their
spatial and topological environment into predefined atom types as part of their typization procedure.
We borrow this idea of using an encoded local environment by adding PDB atom types (atom name)
as well as force field energies and energetic contributions to our putative feature set.

For protein atoms, we added the Amber [PC03, CCD+05] force field atom types generated by BALL’s
normalizeNames() procedure to our putative feature set.

76

3.5. Materials and Methods

The Amber energy itself is computed as

Etotal =
∑
bonds

Kr(r − req)
2 +
∑
angles

Kθ(θ − θeq)
2

+
∑

d∈dihedrals

Vn(d)

2
[1 + cos(n(d)φ− γ)]

+
∑
i<j

[
Aij

R12
ij

− Bij

R6
ij

+
1

4πε0ε

qiqj
Rij

]

+
∑

H−bonds

[
Cij

R12
ij

− Dij

R10
ij

]
(3.15)

and reflects the spatial arrangement of the atoms of a molecule. Here, r denotes the bond length,
θ the bond angle, n(d) gives the number of conformations with minimal energy for a dihedral, Vn(d)

denotes the energy barrier hight of the current dihedral, φ gives the torsion angle, ε0 the vacuum
permittivity, ε the dielectric constant, Rij the distance between two atoms i and j, and Kr, req, Kθ,
θeq, γ, Aij , Bij , qi, qj , Cij , Dij are parameters of the force field.
Since we use the BALL library, we can employ its force field implementation to compute the Amber
energies. We use the Amber overall energy Etotal to restrict our data set to valid 3D structures (in
our experiments, we found a threshold of Etotal ≤ 1000kJ/mol to work well).
In addition, we also added the values of the single contributions bend (AmberBend), stretch (Am-
berStretch), torsion (AmberTorsion), van-der-Waals (AmberVDW), and electrostatics (AmberES) for
each atom. To avoid strong correlation with the rotamer features, we subtract for each atom the
energetic contribution due to interactions with its own residue from the overall energy.
In addition to the force field atom types, we also added the atom’s charge as defined in the PARSE
parameter set to our feature set. As pointed out in Section 3.2.3, charges influence the local distribution
of bonding electrons and thus change the influence of the external magnetic field during the NMR
experiment.

Experimental Features NMR experiments vary with respect to a number of experimental conditions.
For example, a molecule is solved in a certain solution with a certain pH value and the experiment is
performed under a certain temperature and pressure.
In some experiments, not only the protein itself but also non-protein ligands are present. This is
particularly interesting for our protein–ligand prediction model. We thus added the indicator features
has ion, has ligand, and has DNA.
The NMR experiment can be further varied by making use of scalar coupling effects and adding a
second (or third) dimension to the experiment. This is achieved by measuring the spin of a second atom
type within the same experiment, e.g., COSY (correlation spectroscopy), DOSY (diffusion ordered
spectroscopy), or TOCSY (total correlated spectroscopy). We expressed this fact by adding indicator
features has H shifts, has C shifts, and has N shifts.
The NMR spectrometer itself can cause experimental differences as well: the field strength applied,
the type of spectrometer, or the manufacturer.
In the following, we discuss some experimental features in more detail and argue whether or not these
should be included into our putative feature set.
Taking the solvent into account is - to the best of our knowledge - new to the field, but we assume
this feature to carry important information. In the work of Abraham and colleagues [ABGP06],
for instance, the influence of the solvent solution to the chemical shifts of hydrogens in organic
molecules was analysed and an important dependency detected. As the surface of a protein consists
to a large degree of hydrogen atoms, the shifts of these surface hydrogens are more sensitive to

77

3. NMR Shift Prediction

intermolecular interactions than that of the buried atoms. Therefore, the solvent effects cannot be
neglected [AAFA10] and we add the NMR solvent to our list of putative features. In contrast, ShiftX2
used the program SHIFTCOR [ZNW03] to re-reference all experimental observed shifts to DSS (2,2-
dimethyl-2-silapentane-5-sulfonic acid) before the actual training. The problem of re-referencing error
has been discussed already in Section 3.5.1.
However, most approaches consider solely X-ray crystallography derived PDB files, where the solvent
is either not present at all or occurs in a diluted and crystallized state that is very different state from
the fluid state in NMR experiments. A number of approaches, like ShiftX or CamShift, take only
BMRB–PDB entries of the RefDB [ZNW03] into account, where a ShiftX model prediction based
correction for the solvent was already performed.
The alignment score originates from the mapping between BMRB and PDB files. We employ Clustal
W [THG94, CSK+03] to determine the mapping between the residues of the PDB file and the BMRB
file and use the corresponding score for restricting the data set to BMRB–PDB pairs with 100%
sequence identity.
In summary, our set of putative features contains 111 protein features. Some of these, such as the
alignment score protein size, pH, pressure, and temperature or field strength are not usually employed
as features in the true sense of the meaning, but are rather used as quality filters in different stages
of model creation. Many of the features are new and have been first introduced in this work, such
as the rotamers, density and packing, distance and contribution to the solvent accessible surface, the
total force field energy and selected force field energy contributions, experimental properties like the
solvent solution (as opposed to re-referencing), indicators for availability of N, C, and H shifts, and for
the protein-ligand case the presence of ion(s), DNA, and ligands in the experimental setup. Table 3.9
gives the number of features computed by the pipeline. Table 3.4 gives a short definition for each
feature.
Several of the features presented above are of categorical nature, which renders problems for most
statistical models. We postpone the discussion of this aspect until after the introduction of the models
used in this work.

Issues for the Choice of a Statistical Model

In the previous sections, we have described the different semi-classical components as well as the
features that serve as input for our models. Here, we discuss how the two types of information can be
combined into a powerful model for NMR chemical shift prediction. Our task now is thus to decide
on the statistical model.
In general, our automated pipeline NightShift allows to exhaustively evaluate the space of statistical
models. However, not all statistical models fit well to our particular situation, and most models
require special treatment of the input. Hence, we decided to limit the model space manually to a few
promising models and evaluate the pipeline on those. However, NightShift can be easily extended to
handle further models.
The choice of candidate models for this evaluation was guided by a number of questions and issues.
For example, the model should be able to handle categorical input like secondary structure and amino
acid type, as well as quantitative measurements. In addition, the statistical model should be accurate,
robust to overfitting, and efficiently evaluable to be applicable to high-throughput situations.
The set of questions that guided our decisions were as follows:

• How do we combine semi-classical and statistical contributions into a single hybrid model?

• Which statistical models should we consider?

• How should we treat categorical features?

• Do we train a single general model or different models for each common atom type?

78

3.5. Materials and Methods

feature definition

atom name PDB atom type
element atomic element
aa amino acid type
aa prev amino acid type of the previous residue (according to PDB indexing)
aa next amino acid type of the next residue (according to PDB indexing)
φ backbone torsional angle involving the backbone atoms C’-N-Cα -C’
ψ backbone torsional angle involving the backbone atoms N-Cα-C’-N

χ side chain dihedral angle involving N-Cα-Cβ -Cγ

χ2 side chain dihedral angle involving Cα-Cβ -Cγ -Cδ

φ next φ angle of the next residue
ψ next ψ angle of the next residue
χ next χ angle of the next residue
χ2 next χ2 angle of the next residue
φ prev φ angle of the previous residue
ψ prev ψ angle of the previous residue
χ prev χ angle of the previous residue
χ2 prev χ2 angle of the previous residue
secondary structure secondary structure of the atom’s residue
protein size the protein’s size in number of amino acids
atom sas the atom’s contribution to the numerical solvent accessible surface of its molecule (r=1.5Å)
atom sas2 the atom’s contribution to the numerical solvent accessible surface of its molecule (r=0.5Å)
residue sas the residue’s contribution to the protein’s numerical solvent accessible surface (r=1.5Å)
residue sas2 the residue’s contribution to the protein’s numerical solvent accessible surface (r=0.5Å)
atom density number of atoms within a radius of 5Å
atom w density atom density weighted with the reciprocal distance to the atoms within a 5Å radius
atom pack van-der-Waals volume of atoms within a 5Å radius while excluding atoms

of the atom’s own residue using a simple spherical capping approximation
for atoms crossing the 5Å boundary

atom w pack atom pack with additional weights for the volumes with the distance to the atom under consideration
dist com distance of the atom to the center of mass of its protein
Amber total Amber energy
AmberVDW van-der-Waals energy contribution
AmberES electrostatic energy contribution
AmberTorsion torsional Amber energy contribution
AmberStretch Amber bond stretch energy contribution
charge atom’s charge as defined by the PARSE parameter set [SSH94]

random coil random coil parameter set as used in [WBH+95]
ring current ring current shift contribution as formulated in the Haigh-Mallion model [HM72, HM79]
electric field shift contribution due to electric field according to [Buc60] model with parameter set from [NNZW03]
hbond effect shift contributions due to hydrogen bonds according to [NNZW03]
dist O distance to the next oxygen
dist N distance to the next nitrogen

dist CB distance to the next Cβ

dist CA distance to the next Cα

C–terminal indicator for the C terminal residue
N–terminal indicator for the N terminal residue
hbond indicator for the involvement of the current atom in a hydrogen bond as acceptor or hydrogen
hbond len length of the hydrogen bond of the current atom
hbond ang angle of the hydrogen bond of the current atom
hbond donor indicator for the atom as hydrogen bond donor (carbon, oxygen, and nitrogen)
hbond donor len length of a hydrogen bond where this atom acts as donor
hbond donor ang angle of a hydrogen bond where this atom acts as donor
hbond X indicator for the presence of a hydrogen bond of type X (HA, HA2, HN, OH) in the atom’s residue
hbond X len length of a hydrogen bond of type X (HA, HA2, HN, OH) in the atom’s residue
hbond X ang angle of a hydrogen bond of type X (HA, HA2, HN, OH) in the atom’s residue
disulfide flag indicating the presence of disulfide bridge
disulfide len length of the disulfid bridge (distance between involved sulfur atoms)

disulfide ang torsional angle of the disulfid bridge (Cβ -Sγ -Sγ -Cβ)
rotamer X closest rotamer to the atom’s residue
rotamer dist X root mean squared distance to the closest rotamer of the atom’s residue
pH pH value as stored in the NMRStar file
temperature temperature value as stored in the NMRStar file
pressure pressure value as stored in the NMRStar file
solvent solution solvent solution value as stored in the NMRStar file
field strength field strength of the NMR spectrometer as stored in the NMRStar file
spectrometer NMR spectrometer as stored in the NMRStar file
manufacturer manufacturer of the NMR spectrometer as stored in the NMRStar file
alignment score alignment score of PDB amino acid sequence and BMRB residue sequence

computed by Clustal W [THG94, CSK+03].
has H shifts indicator for the presence of hydrogen shifts in an NMRStar file
has C shifts indicator for the presence of carbon shifts in an NMRStar file
has N shifts indicator for the presence of nitrogen shifts in an NMRStar file
has ion indicator for the presence of an ion in the PDB file
has ligand indicator for the presence of a ligand in the PDB file
has DNA indicator for the presence of DNA in the PDB file

Table 3.4.: Feature definitions.

79

3. NMR Shift Prediction

• How can we evaluate our model(s)?

• How can we extend the model(s) to protein-ligand complexes?

In principle, an additional question would ask for the technique used to estimate the generalization
error of the model. This, however, can be directly answered in our case: our training problem is very
unusual in computational biology in the sense that we are given much more training data points than
possible features of interest. Indeed, we are in so heavily data-rich situation, that for the evaluation
we do not need to perform cross validation and a simple splitting into training and test set suffices.

The use of notation in this field is often ambiguous and imprecise. To avoid confusion, we will thus
first introduce a formal nomenclature. Then we will address each of the above questions in more
detail.

Nomenclature for Chemical Shift Prediction The basis for all of our models are the experimentally
measured chemical shifts. To denote these in a more formal setting, we use the following definitions:
let N = {N1, . . . , Nl} denote the set of nitrogen atoms, C = {C1, . . . , Cm} the set of carbon atoms,
and H = {H1, . . . , Hn} the set of hydrogen atoms in the data set. By δexpN,i (δexpC,i , δ

exp
H,i), we denote

the experimentally measured shift for the i-th nitrogen (carbon, hydrogen) atom. Finally, we denote
the properties evaluated for the i-th atom (the features), by xij , j = 1, . . . , p.

A Nonconventional Hybrid Model: the Use of Semi-Classical Terms as Features Classical
hybrid models for NMR chemical shift prediction use a linear combination of semi-classical terms and
a statistical component for the residual shift. If we denote by δscN,i (δ

sc
C,i, δ

sc
H,i) the shift predicted for

the i-th nitrogen (carbon, hydrogen) atom by the semi-classical components of our model, the classical
hybrid approach models the shift as

δ̂hybride,i := δsce,i + δstate,i (3.16)

with e ∈ {N,C,H}. In this setting, the statistical component δstate,i has been trained to predict the
residual shift δrese,i as a function of the features xij of the i-th atom (the dependency on xij is usually
suppressed in the notation):

δrese,i = δexpe,i − δsce,i (3.17)

However, in our opinion, a linear combination is too simple a model to account for the complex depen-
dencies between the terms: as explained previously, the semi-classical terms are only approximations
with a certain amount of fit parameters. If we combine several of these terms that have been devel-
oped independently of each other, these fitted constants may not be optimal. To give an example,
the hydrogen bond effect and the electric field effect are clearly not orthogonal and hence should be
used with different prefactors when used alone than when used in combination. We thus decided to
treat the semi-classical values as features of our statistical model, instead of subtracting them from
the experimentally measured shift. The only exception here is the random coil term, which can be
directly observed experimentally. Hence, we augment our set of features by the semi-classical terms
except the random coil term and try to predict

δrese,i = δexpe,i − δcoile,i (3.18)

In this way, the statistical model implicitly performs a weighting of the different semi-classical terms.
Please note that independently of and simultaneously with our introduction of this unconventional
hybrid approach, Wishart and coworkers decided to use the same in their new ShiftX2 model.

80

3.5. Materials and Methods

Putative Statistical Models As discussed in Section 3.3, several statistical models have been pre-
viously employed for NMR shift prediction. The approaches proposed in the literature include spline
hypersurfaces [NNZW03], ensemble machine learning methods [HLGW11], random forests [AL06],
polynomial regression [KRC+09, AAFA10], and artificial neural networks [Mei03, SB10].

One of the first statistical models employed were the spline hypersurfaces used by ShiftX [NNZW03].
Here, the input features are used to compute a spline for each feature and a number of spline surfaces
for selected pairs of features. However, experience with ShiftX shows that this approach leads to a
number of problems. First, the method suffers numerical problems because it is difficult to guarantee
continuity at periodic boundaries as, e.g., required by torsional angles. Maybe even more importantly,
fitting the splines was performed without controlling the complexity of the surface (the degree of noise
or the number of high-frequency components) so that oscillations between training data points lead
to a high variance of the result. As such, the method seems prone to overfitting to the training data
set.

From a statistical point of view, artificial neural networks are clearly a superior choice to such a noisy
spline hypersurface. However, neural networks are becoming increasingly replaced with other modern
statistical learning techniques such as support vector machines or random forests since they require a
very careful modelling and tuning to achieve good prediction quality without serious overfitting.

General linear or polynomial expansions, on the other hand, as used in the CamShift [KRC+09] or the
BioShift model [AAFA10] imply a relationship, which might not always be correct or meaningful. In
addition, categorical features like amino acid type or secondary structure are difficult to handle in such
a model.

Further learning techniques for protein chemical shift prediction based on sequential and structural
features have been studied by Wishart and coworkers and Arun and Langmead. Both suggested
independently additive bagging learners based on regression trees [AL06, HLGW11].

With this background in mind, we started considering candidates for our new hybrid model. As a first
step, we decided to train a simple linear least squares model. The linear model is arguably the most
simple statistical regression technique. As suggested by the name, the model uses a linear combination
of features to predict the outcome. Training the model requires to estimate the coefficients of this
linear function from the data. In general, linear models have small variance, but may lead to a large
bias if the real dependency of the outcome on the features is non-linear. While this inflexibility often
precludes the use of linear models, their low variance and high stability significantly reduce the risk of
overfitting. This makes linear models particularly useful in establishing a trustworthy lower bound of
prediction accuracy. To provide a baseline for the quality of automatically derived hybrid models, we
thus decided to first train a linear model as a candidate for the statistical component.

As a next candidate, we planned to use support vector regression to yield a method that can adapt
better to the data at hand. However, the computational demand for fitting a support vector machine
against the large number of training data instances turned out prohibitively large. While we could prune
our data set significantly until training becomes possible, we instead decided to use another modern
learning technique that is similarly powerful but computationally more efficient, namely a random
forest predictor that is similar in spirit to the bagging method employed by the recently published
ShiftX+ approach [HLGW11]. Compared to most other regression techniques, random forests have
the additional advantage that they can directly include categorical features as well as quantitative
ones.

In the following, we describe general features of linear models and random forests, and discuss how
we can apply them to the shift prediction problem.

Linear Model As explained above, the function we want to predict is the residual shift

δrese,i = δexpe,i − δcoile,i (3.19)

81

3. NMR Shift Prediction

The linear model assumes that the true functional form of the δrese,i is given by

δrese,i = β0 +

p∑
j=1

βjxij + εi (3.20)

where εi is an error term added for completeness. For NMR prediction, the constant bias term is
typically ignored, i.e., β0 = 0. One reason for this choice is the fact that NMR shifts are differential
quantities where any constant measurement bias will occur in each term of the difference, and hence
vanish in total. And even if such a bias would survive building the difference, it would be an individual
quantity for one particular spectrometer, and maybe one set of experimental conditions. In our data
sets, however, we have a mixture of shifts derived from a diverse set of spectrometers under different
experimental conditions. Assuming that a single constant terms works equally well for all of these
is highly unrealistic at best. Finally, it is well known that the shifts for a given element type fall
into different categories, depending at least on the type of amino acid. Hence, any bias term should
be considered not as a constant over the whole data set, but rather be adapted for each of these
categories. Since our feature set includes suitable categorical features, the linear model will be free to
train an individual bias for each category. Hence, in accordance with typical convention, we also set
β0 = 0 in the following.

Collecting all residuals in a vector δrese = (δrese,1, . . . , δ
res
e,n)

t, all error terms εi in a vector ε, and all
features evaluated for all atoms in a matrix X, eq. (3.20) takes the form

δrese = Xβe + ε. (3.21)

If the error terms have zero mean, are uncorrelated with the features, and have finite variance, a suitable
estimate for the βi values can be found from the ordinary least squares method, which minimizes the
sum of the squared deviations of predicted from observed shifts:

β̂e := argmin
βe

‖Xβe − δrese ‖2 (3.22)

with solution [HTF09]

β̂e =
(
XtX
)−1

Xtδrese . (3.23)

With the so determined β̂ we can then predict the response of an atom a with unknown shift and
features xa from

δ̂a = δcoila + xt
aβ̂e.

Random Forests The random forest method was originally developed by Leo Breiman and Adele
Cutler [Bre01]. Random Forest have been previously employed in the context of NMR chemical shift
prediction by, e.g., Arun and Langmead [AL06], however with a significantly smaller feature and
training set based on protein structures solely resolved by X-ray experiments.

Random forests combine many so-called “regression trees” into an ensemble to yield a final output
(c.f. Fig. 3.8). Each of these regression trees codifies a number of binary decisions made on the basis
of the values of some of the features. The decisions are represented in a tree, where the final result is
stored in the leaves. The regression function is then modelled as a piecewise constant function.

While evaluating such a tree is trivial, training a tree requires to find the suitable features on which
to perform a split, the values at which a split is performed, the precise sequence of splits on variables
(i.e., the topology of the tree), and the constants for each final region. Remember that we want to
predict

δrese,i = δexpe,i − δcoile,i (3.24)

82

3.5. Materials and Methods

Figure 3.8.: Partition of the input space (top left) implies a regression tree (top right). The combina-
tion of regression trees yields a random forest (bottom).

with e ∈ {N,C,H}, based on the properties xij , j = 1, . . . , p, where i is the index of the training
sample and j the index of the property. These can be combined into a vector of response/feature
tuples of the form (

δrese,i ,xi

)
(3.25)

where xi = (xi1, . . . , xip). The splits performed on each variable partition the input space into
a number of distinct regions R1, . . . , RM , so that the final result can be modelled as a piecewise
constant function over these:

δ̂rese (x) =

M∑
m=1

cm θ(x ∈ Rm) (3.26)

where θ is the indicator or Heaviside function, which evaluates to 1 if x is contained in region Rm and
to 0 otherwise. If we assume that the regions have already been determined, and if we use an ordinary
squared loss function

L :=
∑
i

‖δrese,i − δ̂rese (xi)‖2 (3.27)

the optimal constants cm for each region can be easily determined by minimizing the loss:

∂L
∂cm

= 2

⎧⎨
⎩
∑

i:xi∈Rm

(
δrese,i − cm

)⎫⎬⎭ !
= 0 (3.28)

⇒ cm =
1

nm

∑
i:xi∈Rm

δrese,i (3.29)

where nm is the number of observation points xi falling into region m. Intuitively speaking, this

83

3. NMR Shift Prediction

result means that the optimal choice of the constant for each region is the average residual shift of all
observations falling into this region.

The problem of finding the optimal splits turns out to be more difficult, and is in general not com-
putationally feasible [HTF09]. One option to compute sub-optimal, but nonetheless useful, trees is
to use a greedy strategy, where in each round, one variable and one split point is selected such that
from all possible choices, the squared loss function decreases the most. In each generated region, the
process is iterated until some threshold of the algorithm has been reached to provide the final tree.
Several strategies to terminate the splitting process exist, where a larger tree leads to a potentially
smaller bias but larger variance, and a smaller tree vice versa. In practice, trees are often first grown
relatively large, and then pruned using some node evaluation criteria [HTF09].

For large noisy data sets, as they occur in Bioinformatics, such a single regression tree often yields a
relatively weak predictor. In an ensemble method, many individual predictors are thus combined to
provide a more accurate outcome. In the random forest method, large numbers of regression trees
are built using a random choice of split variables without node pruning instead of a greedy approach.
The training subsets for the trees are randomly sampled with replacement from the training data
set, a procedure called bootstrapping. The final estimation is then computed from the average over
all results from all trees in the forest (aggregating). Due to its bagging nature (bootstrapping and
aggregating), random forests feature variance reduction, and are hence considered very robust with
respect to overfitting. In our work, we used the R implementation of random forests by Liaw and
Wiener [LW02]. For regression, only two parameters have to be set in this implementation: the
number of trees to grow (ntrees), and the number of features considered for each tree (mtry). It is
well-established that both parameters usually only influence the prediction performance mildly, if the
number of trees is not set much too small. For most regression applications, it is recommended to set
the value of mtry to one third of the number of features [LW02].

The Role of the Element Type Most former approaches for shift prediction offer a model for each
atom type separately (e.g. Hα, HN , Cα, Cβ , C’, and N backbone atoms). With the advent of modern
statistical models, this specialization is in principle no longer necessary. Ensemble methods like random
forests will simply add splits according to atom type, or create different trees for each element type.
But for linear models, no such simple loophole exists. Since the typical range of shift values differs by
one order of magnitude between hydrogen and nitrogen atoms, combination within one linear model
is difficult. For linear models, we thus have to train separate linear models for each atom or element
type separately. However, due to the enormous amount of data (see table 3.6) we can split the data
into separate training sets for each backbone atom type and even the side chain atom types for both
models, linear and random forest alike.

How to Handle Categorical Features In regression scenarios such as the presented NMR prediction
problems, special care has to be taken when some of the features are not numeric in nature. In our
case, this problem occurs, for example, for the amino acid or the secondary structure type of a given
residue. To integrate such values into a regression model one might encode these properties with
numbers. This, however, leads to the question of how to determine an order within these features.

In general, linear models and random forests in R are able to handle categorical features, but for two
of our features – the GAFF atom types and the rotamers – the number of distinct feature values
(so-called levels) exceed the maximal number of categories that can be handled by R’s random forest
implementation. In these cases, the solution is binarization, i.e., the creation of a binary feature for
each category, where a value of ’1’ indicates the presence of the property while ’0’ denotes its absence.
This elegantly relieves us from defining an ordering between the different categorical values. For
reasons of efficiency, we only applied binarization to categorical variables that exceeded R’s threshold
of 32 values.

84

3.5. Materials and Methods

In general, linear models often suffer from another problem: feature values that are comparably high,
e.g., the year when the experiment was performed or the atomic element number. In such cases, one
usually has to perform a normalization of the values, since otherwise the weights might suffer from
numerical instabilities. In our final models, however, this case does not occur.

Performance Assessment If sufficient observations are available, the preferred method of evaluating
statistical models consists in assessing the error within the training data set and an independent test
data set to measure the generalization error. For NMR shift prediction methods, the training and
test errors are typically measured as the root mean squared error (rmse) and by Pearson’s Correlation
Coefficient (corr).

rmse =

√√√√√
n∑

i=1

(
δexpi − δpredi

)2
n

(3.30)

corr =
1

n− 1

n∑
i=1

(
δexpi − δ̂expi

sδexp

)(
δpredi − δ̂predi

sδpred

)
(3.31)

with δexp denoting the experimentally measured chemical shift of an atom, δpred the predicted chemical
shift, and n the number of predictions made. δ̂exp(δ̂pred) denotes the mean of the experimentally
measured (predicted) shifts and sδexp(sδpred) its standard deviation.

Based on the rmse, the importance of a given feature for a statistical predictor can be estimated
by the ’Increase in %rmse’ measure, which computes the percentage by which the rmse of a given
classifier increases if the values of the feature are randomly perturbed or permuted. If a feature
carries significant information about the outcome, exchanging its true values by essentially random
ones should hurt prediction performance noticeably and hence, should be reflected in a large ’Increase
in %rmse’ value.

To provide a meaningful performance estimation, great care has to be taken that model training and
assessment are carried out on distinct data sets. Often, this is achieved by estimating the generalization
error, which can be approximated using k-fold cross validation or bootstrapping techniques. In k-fold
cross validation, the data set is divided into k subsets of equal size after random permutation. In an
iterative fashion, each of the k subsets is taken aside once while the remaining subsets are used for
training a statistical model. The final models are then evaluated on the subsets that were separated
in the beginning. The bootstrapping method extends this idea by constructing a large number (� k)
of training sets via random sampling with replacement.

In strongly data rich situations, however, so-called holdout validation is usually preferred over cross
validation or bootstrapping [HTF09]. In this technique, the data set is initially split into a training-
and test data set. Due to the huge amount of available chemical shifts and the comparatively small
number of features (c.f. table 3.9), we thus split the data into such independent training and test sets
of user-defined ratio.

In a statistical learning context, the error can be further decomposed into a bias and a variance
contribution: mse = bias2 + variance, where mse = rmse2.

Here, the bias measures a general error that is present in all predictions, while the variance denotes
the instability or uncertainty of a prediction. Thus, the bias is also known as the systematic, the
variance as the random error. High error variance is often a sign of overfitting the statistical model.
Such overfitted models will perform poorly for unknown test instances and the generalization error will
thus be high. The goal of any statistical model is to reduce both quantities. However, in general a
trade-off between both has to be made, e.g., allowing some bias can lead to a variance reduction and
vice versa.

85

3. NMR Shift Prediction

The Functional Form of the Final Models In an idealized NMR chemical shift spectrum S, the
peaks are just sharp sticks and the spectrum has the following form

S =
∑

a∈MS

δ(a) + ε

where ε denotes the noise, δ(a) the chemical shift for atom a, and MS the molecular system. If the
system under consideration is a protein, the spectrum can be further divided into protein and solvent
contributions:

S =
∑
a∈P

δ(a) +
∑
a∈S

δ(a) + ε

where P denotes the set of all protein atoms and S the solvent. The chemical shifts within a protein–
ligand complex thus are:

S =
∑
a∈P

δ(a) +
∑
a∈L

δ(a) +
∑
a∈S

δ(a) + ε

where L denotes the set of ligand atoms.

If we take the influence of protein, ligand, and solvent onto each other into account as well, we find:

S =
∑
a∈P

δP (a) + δL(a) + δS(a)

+
∑
a∈L

δP (a) + δL(a) + δS(a)

+
∑
a∈S

δ(a) + ε

where δP (a) (δL(a), δS(a)) denotes the chemical shift contribution induced by the protein (ligand,
solvent) onto an atom a.

The chemical shift information stored in a BMRB file is often restricted to protein atoms only. Thus,
our model, and the typical content in the BMRB, is limited to

S =
∑
a∈P

δP (a) + δL(a) + δS(a) + ε

Since the solvent is assumed to be always present, and to be distributed evenly around the protein,
the solvent influence is usually not modelled explicitly. Instead, it is contracted into δP (a) and only
implicitly represented by, e.g., features like the solvent exposure of an atom.

For a pure protein shift prediction, we thus have to model

S =
∑
a∈P

δP (a) + ε

and for a protein-ligand shift prediction, we have to consider

S =
∑
a∈P

δP (a) + δL(a) + ε

where δP comprises now the influence of solvent and protein on a protein’s chemical shift and δL the
ligands influence.

Given these considerations, we decided for an additive model, given by

S =
∑
a∈P
MPL(a) =

∑
a∈P
{MP (a) +ML(a)}.

86

3.6. Results

The pure protein chemical shift prediction model is given by

MP (a) = δcoil(a) + δ̂P (a, δring(a), δEF(a), δHB(a), f1(a), . . . , fi(a))

where δ̂P is either a linear model or a random forest model, δcoil(a), δring(a), δEF(a), δHB(a) denote
random coil, ring current effect, electric field contribution, and hydrogen bond effect, and fk(a) denotes
a feature k. Please note that the random coil contribution is treated separately.

Based on this or any other pure protein model MP , we can then build an additive protein-ligand
shift prediction modelML. In pure protein prediction, typical models are based on approximations to
semi-classical terms, statistical models, or a combination of both. Since to our knowledge, no reliable
approximations of classical terms covering the protein-ligand interface are available, we decided for a
purely statistical ligand model

ML(a) = δ̂L(a, lf1(a), . . . , lfj(a))

where δ̂ is a random forest model, and lf1,. . . , lfj denote the ligand related features (mainly based on
GAFF atom types) as described in Section 3.7.4.

So far, we have fully specified our data set and the statistical models we want to apply for training our
hybrid models. The next step consists in parsing the NMR data files provided by the BMRB, which
turned out to be a non-trivial challenge. However, to focus the presentation in this chapter on issues
directly related to NMR shift prediction, the more technical details of handling these files have been
deferred to Section B.2.

3.6. Results

In this section, we present the results of our work on protein NMR chemical shift prediction: (a) a fully
automated pipeline for the creation of data sets and the training and evaluation of statistical models,
which we call NightShift – NMR shift Inference by General Hybrid model Training, (b) the actual data
set created by the pipeline that uses all current non-homologous entries of the BMRB, (c) our new
feature set, and, finally, (d) linear and random forest models trained on these data sets. Results on
shift prediction in the presence of ligands will be discussed in Section 3.7.

We will demonstrate that even a simple linear model that has been generated automatically can yield a
comparable performance to state-of-the-art programs, while the performance of the more sophisticated
random forest-based model, which we call Spinster, not only exceeds former approaches for most
atom types but also has many crucial advantages to alternative models. The whole training has been
performed fully on NMR resolved structures, which is notoriously difficult as described previously.

In addition, we will show that the full automation of the process allows to easily retrain the models
as soon as new data is available on the BMRB web site, while alternative techniques will require a
cumbersome manual development.

Even though our NightShift pipeline already offers many features, known and novel alike, the set
can easily be extended. Similarly, training alternative statistical models requires only small adaptions.
These and other possible further extensions will be presented as well.

At this point, we want to stress that we took great care to ensure that none of the differences of our
approach to alternative ones will lead to an unfair advantage of our new models when compared to
other approaches in the statistical evaluation. For example, the lower resolution of NMR structures
compared to high-quality X-ray ones implies that our prediction problem is harder in principle than
that of alternative approaches.

On the other hand, we have previously described that the use of NMR structures improves consistency
and removes potential bias from the data set. Also, the ability to simply retrain the models and to

87

3. NMR Shift Prediction

use much more data than all alternative approaches counterbalances the resolution problem. As we
will later see, the great robustness of the models trained on our data sets supports this argument.

3.6.1. The NightShift Pipeline

In Section 3.5, we described the necessary components to design a new hybrid method. However,
if we expect to have to rebuild the model later on, e.g. due to new ideas for features or significant
improvements in the number and type of PDB–BMRB pairs, it makes sense to build the components
in a modular fashion and to combine them in a ready-to-use pipeline.
Our key goals in developing such a general pipeline are automizability, flexibility, robustness, and
simple extensibility – goals that can easily become contradictory if they are not carefully addressed.
By comparing several manual NMR chemical shift prediction approaches, we identified the following
steps:

1. creation of an initial mapping between NMR and structural data,

2. filtering and restriction to a high-quality and non-homologous subset,

3. linking the NMR information to individual atoms,

4. computing the proposed features,

5. storing them in a format that can be easily queried, and

6. training and evaluating the proposed statistical models.

A fully automated data set generation and training and evaluation of statistical models poses many
challenges. Many of these are of a technical nature, such as the correct parsing of the difficult
file formats or the efficient handling of chemical shift data in suitable data structures. While the
Biochemical Algorithms Library (BALL) already offered several useful classes for this field, we had to
greatly extend its functionality in the course of this thesis. For instance, we added stable and efficient
parsers for the CIF- and NMRStar file formats, which were discussed previously in Section 4.3.1. Our
extensions to BALL were too numerous to be mentioned here in full detail (they encompassed several
thousand lines of code that have all been included into BALL 1.4.1). Instead of discussing each
new C++ class or method, such as the semi-classical terms we implemented, we want to focus our
attention in this section on the design and implementation of the final pipeline that integrates data
set creation and preparation with training and evaluating the models. A schematic diagram of the
NightShift pipeline for both, the protein only and the protein–ligand case, can be found in Fig. 3.9.
The protein-ligand case will be discussed in more detail in Section 3.7.
NightShift is implemented as a bash script that can run without any manual intervention. In the
following, we describe the individual steps of the pipeline. For clarity of presentation, we separate
NightShift into logically distinct steps, however, in the actual implementation, some steps, such as
creating and filtering the mapping, are performed in the same programs for reasons of computational
efficiency.

Creating an Initial PDB-to-BMRB Mapping As defined in Section 3.5.1, the problem of mapping
experimentally obtained shifts to atoms in a PDB file has two parts: the mapping of PDB to BMRB
files, and the mapping of PDB-atoms to BMRB-atoms. There, we have described that we decided to
use the official mapping generated by the BMRB for the first sub-problem. Thus, as the very first task
in our pipeline, a Python script automatically queries the BMRB for the mapping, downloads it, and
parses the results to yield a PDB-ID to BMRB-accession number mapping. Parsing is trivial, since the
file merely lists each tuple on a separate line in simple ASCII format. This initial mapping now forms
the input for the next step of our pipeline.

88

3.6. Results

Figure 3.9.: Our NightShift pipeline for data set generation and training of our NMR chemical shift
prediction models. The solid lines symbolize the creation of the pure protein modelMP ,
called Spinster. The dotted lines symbolize the pipeline for training the Liops modelML

which covers the ligand influence upon the proteins atoms.

89

3. NMR Shift Prediction

Filtering the PDB-to-BMRB Mapping The initial PDB-to-BMRB mapping needs to be further re-
stricted with respect to the exclusion of homologs, the application of quality criteria, and the limitation
to single protein entities or protein-ligand complexes.

In our pipeline, we use two different filters. The first of these filters considers the types of molecules
contained in the system: when creating a protein-only model, we want to skip all PDB entries con-
taining additional ligands or DNA. For the protein-ligand model described later in this thesis, we skip
all pure protein PDB entries and entries containing DNA.

To reliably decide whether a PDB entry contains a single protein, a ligand, or DNA before downloading
and parsing the file itself, the pipeline includes a Python script to query the PDB RESTful web
service (http://www.rcsb.org/pdb/software/rest.do) and to parse its results. The RESTful web
service uses the principle of REpresentational State Transfer Architecture [Fie00], a simple protocol
for communicating with a program over the world wide web. The web service allows to query the PDB
for diverse kinds of information, such as the composition of all ligands included in a PDB file. The
desired operations and operands can be simply encoded in the HTTP protocol, results are returned
as XML. As an example, the following listing shows the result of querying the PDB for the ligand
information of PDB-Id 4HHB:

<?xml v e r s i o n=’ 1 .0 ’ s tanda lone=’ no ’ ?>
< s t r u c t u r e I d i d=”4HHB”>

< l i g a n d I n f o>
< l i g a n d s t r u c t u r e I d=”4HHB” chemica l ID=”HEM” type=”NON−POLYMER”>

<chemicalName>PROTOPORPHYRIN IX CONTAINING FE</chemicalName>
<f o rmu la>C34 H32 FE N4 O4</ fo rmu la>
<sm i l e s>

Cc1c2/ cc /3\ nc (/ cc \4/ c (c (/ c (/ [nH] 4) c/c5n/c (c\c (c1CCC(=O)O)
[nH] 2) /C(=C5C)CCC(=O)O)C=C)C)C(=C3C)C=C

</ sm i l e s>
</ l i g a n d>
< l i g a n d s t r u c t u r e I d=”4HHB” chemica l ID=”PO4” type=”NON−POLYMER”>

<chemicalName>PHOSPHATE ION</chemicalName>
<f o rmu la>O4 P −3</ fo rmu la>
<sm i l e s> [O−]P(=O) ([O−]) [O−]</ sm i l e s>

</ l i g a n d>
</ l i g a n d I n f o>

</ s t r u c t u r e I d>

The second filter we decided to employ is a homology criterion as discussed in Section 3.5.1. We thus
added a script to our NightShift pipeline that automatically culls the mapping by sequence similarity
with a user defined similarity cutoff (in our experiments, we used 10%). To this end, we employed
the standalone PISCES package provided by the Dunbrack group [WDJ05]. PISCES, which combines
PSI-BLAST and a structural alignment score for homology detection, has a number of advantages
for our use-case: first, it restricts a given list of PDB entries to a subset with low paired sequence
similarity while preferring structures with higher quality. Thus, information about structural quality is
used to decide which entries are removed. Also, it is freely available as a standalone version that can
be readily integrated into our pipeline. If a homology filter is not desired by the user, the step can
simply be skipped by setting a flag in our pipeline script.

Similarly, it is easily possible to extend the filtering procedure by user generated scripts. These can
either directly prune the data set, or add special quality filter columns to the database which can be
employed by the statistical models. In later stages, additional filters can be employed at the atomic
level, in order to exclude unreasonable shifts or atoms with unrealistic positions.

The input for the next step is now the resulting filtered mapping file between PDB and BMRB entries.

Download of PDB and BMRB Entries and Creation of PDB-to-BMRB Entry PDB-to-BMRB
Atom Mapping Tables The goals of this step are as follows: (a) to automatically download all
PDB and BMRB files specified in the filtered mapping created by the previous step, (b) to compute
an assignment between PDB atoms and BMRB atoms, (c) to perform referencing error correction, if

90

3.6. Results

so desired, and, (d) to store both mappings (PDB-Id to BMRB-accession number and PDB-atom to
BMRB-atom) in separate tables. This functionality is covered in our NightShift pipeline by another
Python script, which starts by automatically downloading all files (PDB and BMRB) listed in the
filtered entry-level mapping from the respective web interfaces.

The next step is then to compute the assignment from PDB to BMRB atoms. Our general approach
was discussed in Section 3.5.1. In practice, several technical problems complicate matters further:
both databases use different chain identifiers, different residue indices, and different atom naming
conventions. Here, we discuss how our implementation circumvents these difficulties.

To unify the chain identifiers between both files, we compute a pairwise alignment of each chain of
the PDB with each chain of the BMRB file by calling ClustalW and re-index the chains so that the
alignment scores of chains with equal index are maximized. If multiple chains can be matched with
equal best alignment score, we simply choose the first match. This situation often occurs for homo-
multimeric proteins, where the chemical shifts are only stored once in the BMRB file, but the PDB
file contains the full multimer. If we would match the shifts with each of the identical domains in the
PDB file, we would introduce highly redundant data with a severe risk of overfitting our models and
hence, retaining only one match improves the stability of our method.

The alignments of the mapped chains are then used to re-index the sequences in PDB and BMRB file
so that we arrive at a mapping at the residue level.

To resolve the different atom naming conventions between PDB and BMRB, we supplemented BALL
with a PDB to NMRStar atom name converter, that stores a bijection between all names in both
formats for each amino acid. Iterating over the atoms of each amino acid, and converting its name to
NMRStar format yields the desired atom-level assignment.

When reading the BMRB files, we face some technical problems since BMRB files are hard to parse
correctly and in some cases, the files contained serious syntax errors or inconsistencies. We thus
designed a fault-tolerant NMRStarFile parser which we included into the BALL library, as well as data
structures and algorithms for mapping and assignment of NMR chemical shift data.

For convenient handling of the data and simplified exchange between the different components of
our pipeline, we store all information accumulated at run time that is needed for the training of
our chemical shift prediction model in later stages, namely the experimental shifts of the atoms, the
corresponding atomic features, and the filter or quality scores, in a database.

We decided to use SQLite for this step, since it is easily accessible from the main languages used by
our pipeline, Python, C++, and R [R D11], on a variety of different operating systems.

At this stage, we store the residue alignment and its alignment score, which can be later used for
quality filtering, in a PDB-to-BMRB mapping-related table of the database. In addition, for each
PDB–BMRB chain pair, we store general information that is related soley to the PDB or BMRB entity:
NMR experimental information, such as availability of 1H, 13C, or 15N NMR chemical shifts, the NMR
spectrometer used in the experiment, the experimental conditions like solution, pH, temperature, and
pressure.

The NMR information is accessed using BALL’s Python interface to our NMRStarFile parser, while
PDB information can be obtained from the PDB RESTful web service.

Now, finally having access to the NMR file Id, shift re-referencing can be performed, if so desired.
As explained previously, in this work we decided to skip this step to remove a potential source of
bias. However, it can be easily included in the model by processing the stored BMRB files, or by
downloading the data from a corrected source, such as the RefDB, directly.

The input for the next step is a PDB-to-BMRB atom mapping.

Creation of an Atom-to-Features Table For each matched atom, the experimental NMR chemical
shift has to be linked to the corresponding structural atom data and to its features. To this end, we
need to parse the previously downloaded BMRB and PDB files to access the relevant information, to

91

3. NMR Shift Prediction

assign the experimental chemical shifts to PDB atom entities, to compute and store all features and
the semi-classical contributions, and to allow fast access to this data. At the same time, we want the
approach to be easily extensible if new features are conceived.

Based on the given mapping table, the corresponding PDB and BMRB files (in PDB and NMRStar
format, respectively) are read in and chemical shifts are assigned.

At this point, we can finally compute the features described in Section 3.5.2 for each of the atoms in
our input. For PDB files that contain several connected components like additional ligands or water
we face some technical problems. On the one hand we often face incomplete ligand information while
on the other hand the ligands often result in a failure of the Amber force field computations, since
Amber is only parametrized for amino acids, DNA, and RNA. We thus split a given molecular system
into several molecules for which Amber force field calculations can be performed separately without
loss of information.

All features have been implemented in BALL, which greatly simplified matters by offering data struc-
tures and pre-implemented functionality. To achieve simple extensibility of our approach, each feature
is implemented as a separate function that is identified by a hard-coded string. A C++ class then
takes a list of such feature names and calls the corresponding functions, which have been stored in
a StringHashMap. This mechanism allows on the one hand to individualize the collection of features
that should be computed at run time by modifying the list of enabled feature names. On the other,
the names of the features are used to store the result in a corresponding column in the results table.
To add a new feature, a user only has to add a function for its computation, described by a unique
string, and insert it into the hash map. If the feature’s name is included in the list of enabled features,
it will be computed for each atom and stored in the results table, where it will be available to the
statistical models.

Since this step can be very time-consuming, we developed a parallelized bash script that creates the
Atom-to-Features table, spawns a number of independent processes to compute the desired features,
and fills the result table with the experimental shift values and the corresponding feature values. After
this step, the database has been finalized and will not be changed further. Thus, suitable indices can
now be created for each table without adversely affecting running times.

The output of this step is a database with two tables, one for the PDB chain to BMRB mapping
related information, the other for the atoms and their shifts and properties.

Post-Processing and Curation of the Database For training the prediction models, we decided
to use the de-facto standard for open source statistical computing, R [R D11]. But before we can
continue with actually training the models, our experiments showed that we need to pre-process and
curate the data: the quality and correctness of many input files – the BMRB files in particular – is
dubious at best, and syntactic or logical errors sometimes are carried through the different stages into
the databases. The goal of this stage is thus to (a) determine problematic entries, (b) try to repair
the information if possible and (c) prune the data point from the set if repairing fails.

To this end, we supplemented our pipeline with a collection of R methods that are applied before the
procedures for training and evaluating the statistical models are called. Support for reading the tables
into R is provided by the RSQLite package.

The most persistent problem in practice arose due to R’s dynamic type system: variable types are
typically inferred at run time from the values assigned to each variable. Incorrect feature values in the
BMRB file often lead to a mis-interpretation of the feature type. For instance, BMRB files sometimes
contained syntactically incorrect floating point expressions. A single of these then leads to a wrongly
inferred variable type, and the whole feature becomes unusable for the statistical learning procedures.
Determining the correct types automatically in an error-tolerant fashion is a very difficult problem. In
our case, we finally decided to enforce a hard-coded type for those features for which typization errors
occurred.

92

3.6. Results

For some of the categorical features, the situation is even worse: in some cases, the categories (called
’levels’ in R) are not well-defined. In these cases, we have to exclude the whole feature. The NMR
spectrometer name is a typical example of this effect. The levels Unity+, Unity-plus, UnityPlus,
Unity-Plus, UNITYplus, and UNITY-plus probably all refer to the same NMR spectrometer type, but
no automated procedure can decide this reliably. To automatize the exclusion of columns during the
training, we implemented a filtering method that eliminates user specified features.

Since categorical features can be problematic for statistical regression techniques, our pipeline offers
a binarization function that automatically creates and computes decision variables for each of the
feature’s allowed values4.

A further source of complications is incomplete data, where a feature has not or can not be assigned
a value for some atoms of one element type. Since we are in a data rich situation, we decided not to
impute NA-values from the remaining data but rather use the following simple strategy: if a feature
column contains too many NA-values – more than 1% in our current implementation – we omit this
feature from training, while otherwise, the feature is retained and only the data points that contain
an NA are removed.

Finally, features aiming solely at quality checks are used to restrict the data set to, e.g., sensible
Amber energies or high alignment scores, and then pruned from the feature list. This can be achieved
in R directly during the reading of the table by performing a simple SQL select statement that can be
adapted easily.

To allow for comparison with other chemical shift prediction methods, the pipeline offers a Python
script that calls an alternative prediction program, stores its results, opens the database, parses the
results, and adds them as a new column into the database. We did this exemplarily for ShiftX and
ShiftX2. To prohibit that these columns enter the model training, we adopt the convention to use
a prefix of CMP for the names of features that should not enter the training and filter these out
automatically.

The input for the next step is now a well-prepared and curated R-dataframe.

Training a Pure Protein Model Our pipeline offers a framework to train any possible statistical
model supported by R. However, as discussed in Section 3.5.2, we decided to exemplarily train two
statistical models, a linear model and a random forest model. Especially the linear model aims at
determining the lower bounds of accuracy, robustness, and performance that could be reached –
without sophisticated manual intervention – by automatically training models to an automatically
generated data set made up of NMR resolved structures for each atom class.

To comfortably switch between statistical models while guaranteeing the same preparation of the data
and selection of columns, we integrated the presented data preparation functionality into a collection
of R methods that can be called by the main R script, and implemented for each statistical model
a separate R function for training. Switching between the different statistical models can thus be
controlled easily via command line arguments to the main R script. The main R script randomly splits
the provided shift data set into a training and test set according to a user defined ratio5 and calls the
specific training method of the chosen statistical model.

A training method is given the training data subset, i.e.,the remaining feature columns and the column
to train against and returns a vector of models, one for each atom super class. For integrating a new
statistical model, a method with the same interface has to be implemented.

For training the linear model we use the MASS package [VR02], while for training the random forest
models we use the R package randomForest [LW02] with 500 trees to grow (parameter ntrees) and a
third of available variables sampled as candidate at each split (parameter mtry).

4 This, e.g., helps to overcome a restriction in R’s random forest implementation, which is limited to categorical features
with 32 levels.

5 For the pure protein model, we use a ratio of 60:40

93

3. NMR Shift Prediction

Finally, our script automatically stores the created models and convenience information like column
variable types and the choice of training and test set in “R.data” format.

Evaluation For the evaluation of the resulting prediction model, NightShift automatically applies the
model to the test set and computes, for each atom super class, the root mean squared error (rmse)
and Pearson’s Correlation Coefficient (corr). For random forest models, we also return the ’Increase
in %rmse’ measure of feature significance6. Based on the CMP prefix, the script computes rmse and
corr of other methods on the test set for each atom super class as well.
In the next section, we present the data sets created by our NightShift pipeline.

3.6.2. The Data Set

As described in Section 3.5.1, all previously proposed approaches to NMR chemical shift prediction rely
on laborious manual data set preparation due to the various obstacles that render this process highly
challenging. In the previous Section 3.6.1, we have explained how our new pipeline can automatically
generates training and test data sets to circumvent this time-consuming chore. In this section, we will
now discuss the data sets that resulted from running the pipeline at the time of writing this thesis
(March 2011). An overview and comparison to established data sets can be found in table 3.5.

size of training set size of test set X-ray / NMRapproach year
files (shifts) files (shifts) resolved

homolog exclusion re-referencing

Meiler [Mei03] 2003 292 (n.a.) 30 (n.a.) both N N
Sparta [SB07] 2007 200 (n.a.) 25 (n.a.) X-ray N Y
Sparta+ [SB10] 2010 387 (n.a.) 193 (n.a.) X-ray Y Y
ShiftX [NNZW03] 2003 37 (n.a.) 31 (n.a.) X-ray N Y
ShiftX2 [HLGW11] 2010 197 (206,903) 61 (n.a.) X-ray Y Y

CamShift [KRC+09] 2009 n.a. (224,036) 35 (n.a.) X-ray N Y
BALL (pure protein) 2011 515 (326,652) 344 (217,768) NMR Y N
BALL (protein–ligand) 2011 106 (27,460) 45 (11,770) NMR Y N
BMRB (incl. DNA) regularly updated 2977 NMR N N
RefDB (incl. DNA) regularly updated 2426 both N Y

Table 3.5.: Summary and comparison of data sets used by different hybrid shift prediction approaches.
The third and fourth column show the size of the data set in the number of proteins. The
CamShift publication [KRC+09] reported only the overall sum of shifts which we denote
in parentheses if numbers are available. Note that for the BALL sets, we already excluded
homologous proteins restricted to pairs of identical sequence.

Pure Protein Data Set

The original BMRB-to-PDB mapping downloaded from the BMRB at the time of writing contained
2029 NMR resolved PDB to BMRB pairs describing single proteins. The discrepancy to table 3.5 is
due to the small number of X-ray resolved structures in the BMRB and due to cases where multiple
proteins, DNA, or ligands were contained. Within this set, some PDB files contained multiple chains,
in total 236, yielding 2265 PDB chain–BMRB pairs. After performing a 10% homology restriction
via PISCES [WDJ05], we arrived at 890 different PDB-to-BMRB mappings accounting for 898 PDB
chain–BMRB pairs in our database. Within the homology restricted set, 8 PDBs contained multiple
chains.
Our goal in building our data set from NMR- instead of X-ray resolved structures was to improve
internal consistency. This goal was clearly achieved: for X-ray resolved PDB files, the corresponding
sequence in the BMRB file often differs considerably from the one in the PDB file, while in our NMR
data set, this was only rarely the case. In fact, after pruning the non-identical pairs, the data set still
contained 859 PDB chain–BMRB pairs, with a minimal protein size of 40 residues, a maximum of

6 For the definition of these performance measures, c.f. Section 3.5.2

94

3.6. Results

atom super class members number of shifts in data set

N backbone nitrogen 65,246
CA alpha backbone carbon (Cα) 66,579

CB beta backbone carbon (Cβ) 60,353
C backbone carboxy carbon (C’) 48,442

H backbone hydrogens attached to the backbone nitrogen (HN) 68,461
HA side chain hydrogens on alpha positions (HA, 1HA, 2HA) (Hα) 71,066
HB hydrogens on beta positions (HB, 1HB, 2HB) 62,106
HD hydrogens on delta positions (2HD, HD1, HD2, 1HD1, 1HD2, and 2HD2) 37,514
HG hydrogens on gamma positions (HG, 1HG1, 1HG2, 2HG, 2HG1, HG1) 43,221
HEHZ remaining hydrogens (HE, HE1, HE2, HE3, 2HE, 1HE, 1HE2, 2HE2, HH2, HZ, 1HZ, HZ2, HZ3) 21,532

Table 3.6.: Definition of our atom super classes using notations borrowed from the Amber force field.

370 residues, and a total of 544,520 shifts. The distribution of these shifts over the different atom
classes can be found in table 3.6. This also shows that the assumption of a data rich scenario was
correct: the final number of shifts is several orders of magnitudes larger than the number of features
(c.f. table 3.9).

Comparing our new, automatically generated, data set to the most recent alternative one, the data set
of ShiftX2, we can see that we did not only increase the consistency by using NMR instead of X-ray, but
also by restricting the set to pure protein instances. Interestingly, the ShiftX2 test set contains only 16
single protein instances, and 45 protein-ligand cases according to information obtained from the PDB
RESTful server information. Despite this restriction, our pure protein data set is still significantly larger
than that of ShiftX2, which contains 197 + 61 = 258 PDB files with 206,903 shifts in the training
set. This can be seen as a great advantage of the automated approach taken in this work: building
the data set by hand is so cumbersome a task that typically, only a small fraction of the possible input
cases are taken into account, while our own approach can just as easily make use of the whole data
set as of a sub set.

Separation of Models by Atom Type

A crucial decision before training the models concerns the handling of different atom types. As extreme
cases, all atom types could be collected into one large model that contains the type as one additional
feature, or different models could be trained for each atom type for which shifts are experimentally
available.

The first option has, to the best of our knowledge, never been used in chemical shift prediction: the
physico-chemical processes that govern the reaction of an atom’s shift to features such as torsion
angles or sequence neighbourhood differ too widely at least for different chemical elements to combine
them into a single formula. The other extreme, on the other hand, might lead to the risk of overfitting
the models, in particular for the hydrogens which can be classified into many different atom types.
Using Amber atom types, for instance, we would end up with 32 individual models for all protein H, N,
and C atoms. For comparison, the ShiftX2 approach employs 6 backbone and 34 side chain models.

In our study, we decided for an intermediate approach by classifying similar Amber types into 10 atom
super classes. The classes were chosen such that the number of experimental shifts available for the
training of each did not vary too strongly. For each of these 10 types, we then trained and evaluated a
separate model. The final atom super classes are defined in table 3.6, which also shows the available
shifts per atom super class.

Protein–Ligand Data Set

In addition to the pure protein set, NightShift directly produces a second data set in which proteins
occur together with ligands, both small-molecular ligands and ions. Please note that in the following,
the term “ligand” will refer to both. This protein-ligand data set will later be used for a proof-of-
concept study in Section 3.7. To the best of our knowledge, no such protein-ligand NMR chemical

95

3. NMR Shift Prediction

Figure 3.10.: Type and number of ligands in our data set before (top) and after (bottom) applying
our filtering criteria.

shift data set or prediction model has been published previously.

To create the data set, the initial PDB to BMRB mapping downloaded from the BMRB was filtered
to restrict to those instances that contain a ligand. The presence of a ligand was again determined by
querying the PDB RESTful web service. The resulting mapping of protein-ligand complexes consisted
of 618 PDB–BMRB pairs with ions or small molecules present. Of this set, 121 PDB files included
multiple chains, 320 contained ions, and 330 small molecule ligands. Of these, 32 contained both
types of ligands, ions as well as small molecules. Unfortunately, 37 BMRB files in this set contained
grave syntax errors that could not be uniquely resolved, and hence, we excluded them from further
consideration. This results in a number of 581 PDB–BMRB mappings for our protein-ligand database.

num small ligands 0 1 2 3 ≥4
num PDB entries 288 236 62 19 13

Table 3.7.: Distribution of the number of small molecules per PDB entry.

num ions 0 1 ≥2
num PDB entries 298 305 15

Table 3.8.: Distribution of the number of ions per PDB entry.

Applying a 10% homology restriction yields 196 PDB chain to BMRB mappings (115 ions, 90 small
molecules, 9 both) as shown in Fig. 3.10. Further demanding identical sequences in PDB and BMRB
and removing covalently bound ligands results in 151 mappings, our final data set. In total, our
protein-ligand set contains 102,427 chemical shifts. Retaining only those protein atoms within a 10Å
sphere around any ligand atom leaves us with a final set of 39,230 shifts for training and evaluating
our models.

3.6.3. The Features

We supplemented our NightShift pipeline with a number of already known features, improved some
of the existing ones, and added new ones as well. A detailed description of each individual feature is
given in Section 3.5.2 and all definitions are summarized in table 3.4.

In the course of developing NightShift and training the models, not all of the provided features turned
out to be meaningful. For instance, the features field strength, spectrometer, manufacturer are
available in the BMRB files, however, for the spectrometer and the manufacturer further analysis
yields that they are often not properly set. In addition, the spectrometer type may strongly correlate
with the lab in general and thus with the proteins the lab performs research on. Of these experimental
features, we thus finally considered only the field strength. We also briefly considered a number of
additional experimental features, but finally decided against these: the values of these features were

96

3.6. Results

N CA CB C H HA HB HD HEHZ HG

orig num shifts 65,440 66,870 60,761 48,686 68,496 71,243 62,116 37,523 21,548 43,227
orig num features 111 111 111 111 111 111 111 111 111 111
final num shifts train 39,147 39,947 36,211 29,065 41,076 42,639 37,263 22,508 12,919 25,932
final num shifts test 26,099 26,632 24,142 19,377 27,385 28,427 24,843 15,006 8,613 17,289
final num features 44 40 39 44 44 44 38 43 38 38

Table 3.9.: Number of shifts and features of the pure protein data set per atom super class before and
after pruning missing values. The first two lines show the numbers for the raw data set
before applying the training procedure, lines three and four show the number of shifts, and
the last line shows the number of features actually used by the models.

N correlation CA correlation CB correlation C correlation H correlation HA correlationmethod
(rmse) (rmse) (rmse) (rmse) (rmse) (rmse)

SHIFTX 0.7073 (0.5190) 0.8820 (2.6593) 0.9758 (1.0746) 0.9957 (1.1733) 0.8384 (1.1724) 0.8875 (0.2533)
SPARTA 0.5960 (0.5845) 0.8985 (2.5141) 0.9814 (0.9418) 0.9968 (1.0107) 0.8763 (1.0222) 0.8012 (0.3336)
SPARTA+ 0.5133 (0.6357) 0.8864 (2.7054) 0.9774 (1.0893) 0.9962 (1.0975) 0.8497 (1.1795) 0.8472 (0.3124)
CamShift 0.7143 (0.5060) 0.8636 (2.8236) 0.9744 (1.1035) 0.9959 (1.1442) 0.8632 (1.0697) 0.8926 (0.2474)
SHIFTS 0.5127 (0.6301) 0.7622 (4.4087) 0.9659 (1.2849) 0.9937 (1.4285) 0.6928 (1.7439) 0.8413 (0.2989)
PROSHIFT 0.5742 (0.5928) 0.8273 (3.1527) 0.9368 (2.5713) 0.9900 (2.6842) 0.7941 (2.3260) 0.7847 (0.3439)
SHIFTX2 0.9714 (0.1711) 0.9800 (1.1169) 0.9959 (0.4412) 0.9992 (0.5163) 0.9676 (0.5330) 0.9744 (0.1231)
SHIFTX+ 0.9058 (2.3829) 0.9826 (0.9098) 0.9968 (1.0102) 0.8844 (0.9900) 0.7896 (0.4432) 0.9122 (0.2239)

Table 3.10.: Summary of the performance (correlation coefficients and rmse) for predicted backbone
shifts for seven recent chemical shift predictors using the ShiftX2 test set of 61 proteins.
Theses values were taken from the ShiftX2 publication [HLGW11].

surprisingly often incorrectly set, e.g., negative pressures or a temperature of 0K. Automated or even
manual correction of these features seems impossible and we can only hope that future curation efforts
at the BMRB will resolve this problem. Hence, we decided to exclude these features from our current
models, but keep them in the pipeline so that they can be easily included in future work, as soon as
curated data sets become available.

Relying on the BALL library allows improved computation of some already known features. In the
original ShiftX2 implementation, e.g., the secondary structure information is assumed to be given.
This has two major drawbacks: first, if no secondary structure information is given, the contribution
due to secondary structure in the prediction model cannot be evaluated and second, if the algorithm
used for assigning secondary structures differs from the algorithm that was used during training, this
information might be inconsistent. BALL already contains a variety of routines for problems such
as these, e.g., secondary structure assignment, hydrogen bond detection, Amber energies, and many
others.

The pure protein data set contained - after filtering - up to 452 features, including 342 rotamer levels
(required because of R’s random forest 32 level constraint), yielding a total of 111 features.

3.6.4. The Pure Protein Models

The final statistical models are evaluated on the randomly chosen test set created by our pipeline.
Comparison to state-of-the-art techniques was performed by applying the stand-alone versions of ShiftX
and ShiftX2 (Version Q1 2011) to our test data sets as well. The results are shown in table 3.11.

In the work of Wishart et al. [HLGW11], alternative NMR chemical shift prediction methods have been
evaluated on the ShiftX2 test data set and the published results are summarized in table 3.10.

Please note that on our test set, ShiftX2 performs significantly worse than on its own validation set,
and ShiftX outperforms ShiftX2 for all atom super classes. While part of this effect may be due to
mis-referencing, we suspect that the main reason is the lower resolution of the (NMR) structures in
our set as compared to the (X-ray) ones in the ShiftX2 training and test sets.

97

3. NMR Shift Prediction

N correlation CA correlation CB correlation C correlation H correlationmethod
(rmse) (rmse) (rmse) (rmse) (rmse)

BALL (linear model) 0.756 (3.385) 0.946 (1.582) 0.991 (1.698) 0.710 (1.589) 0.517 (0.537)
BALL (random forest) 0.817 (2.977) 0.956 (1.425) 0.992 (1.582) 0.731 (1.524) 0.593 (0.505)
ShiftX 0.556 (5.603) 0.959 (1.382) 0.989 (1.880) 0.765 (1.452) 0.596 (0.532)
ShiftX2 0.554 (5.606) 0.953 (1.475) 0.984 (2.238) 0.711 (1.650) 0.534 (0.583)

training / test size 39,147 / 26,099 39,947 / 26,632 36,211 / 24,142 29,065 / 19,377 41,076 / 27,385

HA correlation HB correlation HD correlation HEHZ correlation HG correlationmethod
(rmse) (rmse) (rmse) (rmse) (rmse)

BALL (linear model) 0.996 (3.381) 0.732 (0.707) 0.987 (0.462) 0.980 (0.385) 0.880 (0.336)
BALL (random forest) 0.997 (2.889) 0.820 (0.559) 0.994 (0.324) 0.981 (0.375) 0.860 (0.365)
ShiftX 0.524 (5.901) 0.725 (1.026) 0.305 (0.342) 0.894 (0.383) 0.375 (0.319)
ShiftX2 0.517 (5.998) 0.721 (1.033) 0.012 (0.706) 0.816 (0.505) -0.147 (0.967)

size of training / test set 42,639 / 28,427 37,263 / 24,843 22,508 / 15,006 12,919 / 8,613 25,932 /17,289

Table 3.11.: Summary of the performance (correlation coefficients and rmse) of our models in com-
parison to ShiftX and ShiftX2 on our test set. The sizes are measured in the number of
available atomic shifts.

Linear Model

A linear model is arguably one of the most simple regression technique available for the task of
chemical shift prediction. In our case, where we have significantly less features than training examples
(depending on the atom type, by a factor of 500 – 1000), it is highly unlikely that a linear model
would lead to overfitting. Hence, the goal of our linear model is to determine the lower performance
bounds of simple statistical models that are trained automatically on an automatically created test sets.
Considering the enormous complexity of the task of NMR chemical shift prediction, the automatically
generated linear models work surprisingly well on our test set. Except CA, C, and H which perform
slightly poorer than ShiftX2, with a correlation (rmse) of 0.946 (1.582) compared to 0.953 (1.475) of
ShiftX2 for CA, 0.71 (1.589) compared to 0.711 (1.65) of ShiftX2 for C, and 0.517 (0.537) compared
to 0.534 (0.583) of ShiftX2 for H, our models perform better. Table 3.11 shows the results on our
test set.

Random Forest Model - Spinster

The second model created by NightShift is the random forest model, which we call Spinster – Single
ProteIn NMR Shift deTERmination. In our first experiments, we used a tuning procedure for the
parameter mtry of the random forest, which denotes how many features are considered for each tree.
In general, the random forest method is supposed to be very stable with respect to variation in this
parameter, if sufficiently many trees are grown. This was completely consistent with our experience
- in all cases, we saw a variation of not more than 5% in rmse when varying mtry between the
two extremes of 1 and the total number of features. Hence, we decided not to tune mtry in the
following.Since varying mtry does not significantly influence the prediction performance, we instead
used the recommended technique [LW02] of setting mtry to a third of the number of features. Since
we have 111 features in our model, this resulted in an mtry value of 37. Similarly, the number of
trees to grow did not have a strong influence on the outcome, unless the value was set significantly
too small. On the other hand, this value does have a strong influence on running time and memory
requirement of the training procedure, we kept the recommended default of 500 [LW02].

With this choice of parameters, we trained Spinster, our random forest models using our NightShift
pipeline. The performance of these automatically generated models on the test sets is consistently
better thatn that of the recently published ShiftX2 model, but of similar order. Table 3.11 shows the
results on our test set.

Comparing the random forest model Spinster to the linear model, we see an improvement for all atom
super classes. Interestingly, the model also performs better than ShiftX2 in all cases. In addition, it is
better than ShiftX1 but for the atom class CA, where we achieve a correlation (rmse) of 0.956 (1.425)

98

3.7. Application to Protein-Ligand Complexes: A Proof of Principle Study

and ShiftX1 resulted in 0.959 (1.382). During its training, the random forest implicitly performs a
feature selection. We now focus on the feature performance in the random forest model.

While building a random forest, meaningful features for the splitting of the bootstrap sample are deter-
mined. To this end, a random forest evaluates the individual features with respect to the “permutation
accuracy importance” measure. This value records by how many percent the root mean squared error
(rmse) increases if the values of this feature are randomly permuted. The importance measure is given
in a ’% increase in MSE’ scale.

For the pure protein model Spinster, up to 44 features have been used by the random forest. Detailed
information on the number of features provided and actually chosen by the random forest models for
each atom super class is given in table 3.9.Table 3.12 shows the importance values for each feature
employed in our random forest models. Traditional features, such as amino acid type and torsional
angles, are within the top ten scored features as expected. However, our newly proposed features
seem to be important as well: first, it is striking that for each atom type, at least one of our new
features belonged to the top ten most significant ones. In the case of HEHZ, the number even went
as high as six. Also, some features seem to be consistently important for all - or at least, many -
atom types. The related features dist com, residue sas, residue sas2, atom sas, and atom sas2
occur at least four times in the top ten, the sas even features at least six times. Another feature that
is loosely connected with those is the Amber Van-der-Waals - term (AmberVDW), which of course
also distinguishes between atoms on the surface and in the center. Hence, the particular aspect of
’buriedness’ seems to play an important role, consistent with our expectation. Another feature that
seems to be valuable for prediction is AmberTorsion, which also appears four times in the top ten
list. This is consistent with the established connection between chemical shifts and backbone torsional
angles, but, since the Amber torsion energies are not restricted to the backbone, it extends this concept
to arbitrary dihedrals.

As a final note, we want to mention the feature charge for HG, which has a surprisingly large value
for this atom type, more than six times larger than the importance of this feature for any other atom
type. This may indicate that our semi-classical terms do not treat hydrogen bonds for these kinds of
atoms correctly, but might equally well be an artifact. We will further investigate this effect in the
future.

3.7. Application to Protein-Ligand Complexes: A Proof of Principle
Study

In [NNZW03] Wishart and coworkers stated “A more serious limitation of SHIFTX, however, is in fact
that the program (. . .) does not account for the presence of organic ligands (heme rings, aromatic
substrates, etc.)”. They further state that “The inclusion of rare or unique organic ligands (i.e., drug
leads, specially developed inhibitors, etc) will present some challenges. . . ”. In this section, we describe
our first steps towards approaching these challenges by finally turning our attention to the influence
of ligand atoms on protein chemical shifts.

The basic idea behind our approach – an additive model – was already described in Section 3.5.2. In
brief, idea is to first identify those atoms in the protein in close proximity to the ligand, to evaluate the
protein model on these atoms, and to try and explain the remaining deviation from the experimentally
observed shift. While this method does not allow to compute the shift for the ligand atoms themselves,
the ligand structure is indirectly reflected in the response of the protein atoms close to parts of the
ligand. This dependency can lead to a first step along the way towards a pipeline for including protein-
ligand NMR into the scoring of docking results, similar in spirit to [KBM+01, MCS+08, CMV11],
where the protein-protein case has been considered.

The residual shift value, i.e., the deviation of the predicted protein shift from the experimental one,
has two contributions: one from the inaccuracies and plain errors in our protein model, and the second

99

3. NMR Shift Prediction

feature N CA CB C H HA HB HD HEHZ HG

aa 110.82 74.21 12.15 66.07 53.68 100.68 7.71 35.47 62.12 4.42
aa next 39.74 53.35 8.73 22.37 37.60 10.56 2.61 3.90 8.23 6.03
aa prev 150.84 11.08 2.81 15.58 46.38 58.26 2.51 9.62 10.49 0.00
Amber 11.45 15.17 4.89 5.32 13.27 9.40 6.77 15.19 4.02 1.05
AmberES 10.06 10.43 5.72 2.29 12.37 5.33 0.17 4.38 5.79 1.17
AmberStretch 8.19 0.00 0.00 4.72 0.00 28.11 0.00 1.05 0.00 0.00
AmberTorsion 49.31 20.22 18.98 28.19 3.60 48.96 2.60 0.00 0.00 0.00
AmberVDW 33.47 27.14 9.78 25.26 40.22 13.62 1.63 10.76 18.26 8.19
atom density 40.59 17.98 12.23 21.16 27.85 33.54 1.45 2.14 10.96 8.25
atom sas 15.25 17.26 2.47 18.80 26.25 15.98 6.95 1.64 7.90 12.93
atom sas2 36.01 25.14 7.09 24.21 45.52 16.40 1.77 2.33 9.10 11.19
atom name 0.00 0.00 0.00 0.00 0.00 123.99 5.40 20.52 29.70 2.09
atom pack 29.84 9.63 13.23 24.12 11.68 6.74 5.72 2.03 14.69 8.18
atom w density 26.29 14.79 11.76 14.95 15.62 18.77 1.83 15.43 15.88 18.68
atom w pack 22.50 12.58 8.77 23.11 14.31 19.91 2.16 2.21 15.24 7.04
charge 8.67 17.44 3.90 10.88 5.19 11.88 3.31 23.52 25.15 164.33
χ 41.59 27.92 3.25 14.89 18.25 34.13 1.14 8.30 5.29 2.97
χ2 22.89 25.79 10.93 13.82 16.23 13.95 5.18 24.41 10.73 6.02
χ2 next 14.07 13.05 9.16 6.67 10.61 4.71 0.00 0.95 5.90 14.64
χ2 prev 30.72 0.00 0.00 5.52 10.96 14.94 0.00 8.34 0.00 0.00
χ next 17.07 12.46 6.92 5.95 12.85 11.98 0.97 1.93 4.11 3.40
χ prev 43.30 0.00 0.00 3.86 22.26 40.81 0.00 18.64 0.00 0.00
dist com 38.89 27.82 18.03 4.74 53.67 10.20 1.05 8.53 8.73 8.78
dist CA 9.48 14.27 11.07 7.42 8.06 13.85 5.36 5.67 18.63 19.24
dist CB 44.40 25.21 16.44 11.97 26.39 37.84 6.45 2.56 15.16 38.95
dist N 22.13 17.02 13.47 23.39 29.16 21.17 1.58 11.94 18.08 6.47
dist O 7.26 6.49 23.59 27.36 34.12 22.40 6.62 12.02 5.45 12.67
disulfide 0.00 46.32 154.34 0.00 0.00 0.00 5.05 0.00 0.00 0.00
electric field 0.00 17.20 0.00 0.00 17.37 0.00 0.00 0.00 0.00 0.00
element 0.00 0.00 0.00 0.00 0.00 8.38 0.00 0.00 0.00 0.00
hbond HA 4.46 3.17 4.33 3.59 7.37 0.00 2.30 5.31 0.00 1.68
hbond 0.00 0.00 0.00 0.00 14.37 0.00 0.00 0.00 0.00 0.00
hbond donor 13.66 3.88 0.00 0.00 0.00 16.75 0.00 0.00 0.00 0.00
hbond effect 0.00 0.00 0.00 0.00 23.91 0.00 0.00 0.00 0.00 0.00
hbond HN 14.76 22.52 17.88 13.01 14.76 14.35 0.13 1.19 6.54 7.62
hbond OH len 0.00 0.00 0.00 14.63 0.00 0.00 0.00 2.10 0.00 0.00
φ 80.23 0.00 0.00 23.14 51.62 30.71 0.00 3.28 0.00 0.00
φ next 49.49 20.02 8.02 23.45 25.94 15.97 2.51 5.20 6.19 4.82
φ prev 51.14 0.00 0.00 0.00 37.84 12.50 0.00 0.00 0.00 0.00
protein size 9.88 16.10 3.70 12.23 9.26 3.61 0.69 1.96 1.92 1.50
ψ 64.53 118.21 30.08 34.65 55.26 38.06 0.00 5.89 4.90 8.75
ψ next 59.97 56.26 15.77 26.93 39.51 42.16 1.04 0.00 8.46 3.97
ψ prev 212.21 0.00 0.00 23.15 138.20 151.83 0.00 0.00 0.00 0.00
residue sas 37.95 14.04 12.67 48.43 39.12 21.92 8.23 7.42 29.60 8.75
residue sas2 25.30 27.92 8.84 20.47 26.09 32.06 4.89 27.65 18.41 7.46
ring current 17.70 5.07 10.74 13.75 52.83 14.71 0.00 0.00 0.00 0.00
secondary structure 33.03 81.27 43.71 24.71 51.75 18.45 2.68 15.05 4.72 8.77

Table 3.12.: Importance of features in the pure protein random forest models per atom super class.
The values are given in the usual ’% increase in MSE’ scale. The new features are printed
in bold, the top ten scored features are printed in bold as well.

100

3.7. Application to Protein-Ligand Complexes: A Proof of Principle Study

from the actual ligand effect. Obviously, in order to succeed, the protein model must be sufficiently
accurate, and the ligand effect sufficiently pronounced so that a statistical effect can be detected. In
this section, we perform a proof-of-concept study that attempts to demonstrate that this is indeed
the case. We will thus need a number of ligand-related features, for which we will make heavy use of
our work on atom- and bond-typization and the GAFF force field. The study presented here will thus
also investigate whether features derived from GAFF carry information that correlates with chemical
shift deviations.
In the following, we will present the methodology behind our approach, including the novel ligand
features, describe our extension of NightShift, the pipeline presented in the last section, and discuss
the training and evaluation of a preliminary model.

3.7.1. General Methodology

Casting the setup described in the previous section in a more formal notation, we decompose the total
shift model S into a model for the intra-protein effects (MP) and a model for the influence of the
ligand onto the protein (ML) that are related by:

S =
∑
a∈P
MPL(a) =

∑
a∈P
{MP (a) +ML(a)}

This section will be concerned with the automated generation of the protein-ligand modelML through
an extended version of the NightShift pipeline discussed in Section 3.6.1. The resulting model is called
Liops - Ligand Influence On Protein Shifts.
As described previously, pure protein prediction models are typically based on approximations to semi-
classical terms, statistical models, or a combination of both. Since to our knowledge, no reliable
approximations of classical terms covering the protein-ligand interface are available, we decided to use
a purely statistical ligand model, i.e.,

ML(a) = δ̂L(a, lf1(a), . . . , lfj(a))

where δ̂L is a random forest model, and lf1,. . . , lfj denote ligand related features.

3.7.2. The Underlying Protein Model

For this study, we decided to employ our automatically generated random forest protein shift prediction
model Spinster discussed in Section 3.6.4. In principle, any protein chemical shift prediction method
can be used as basic model. However, Spinster has several advantages: it was built exclusively
on unrereferenced pure protein data, PDB entries with additional ions, ligands, or DNA have been
excluded, and it was built using NMR resolved PDB structures for high consistency between the PDB
data and the underlying NMR experiment.

3.7.3. Towards a Model of the Ligand Influence

From our experience on protein-only models, we have reason to expect that force field related features,
such as contributions to interaction energies between ligand and protein atoms, will form valuable
features for chemical shift prediction in the protein-ligand case as well. However, in contrast to
the protein-only case, where the chemistry is uniform and hence force fields are relatively simple,
treating protein-ligand interactions correctly is considerably more difficult. Roughly speaking, we will
need a force field that is equally suited to protein and ligand atoms. While there are specialized
force fields for the treatment of ligands, such as MMFF94 [Hal96b], these usually have drawbacks in
correctly capturing the protein chemistry. Hence, we decided to base our study on the GAFF force
field [WWC+04], which for protein atoms equals the well-known Amber force field, a fact that ensures

101

3. NMR Shift Prediction

consistency with our protein models. For non-protein (or non-DNA) atoms, GAFF offers a wide range
of force field parameters and a simple scheme to extrapolate these to atom types that are not fully
covered.

However, fully integrating the GAFF force field into our chemical shift prediction is a non-trivial task.
Instead, in this study we first determine whether such an approach is worthwhile at all by addressing
two different questions: (a) do chemical shift predictions really fare significantly worse in the presence
of ligand atoms and (b) is there a non-trivial correlation between the chemical ligand environment
encoded in GAFF and the deviation of the chemical shifts close to a ligand from their predicted values?

To answer the first question, we have collected a data set of 151 PDB-BMRB pairs of protein-ligand
complexes (c.f. Section 3.6.2) with 39,230 shifts of atoms that were located less than 10Å from a
ligand atom (c.f. Section 3.6.2). A detailed description of the set can be found in table 3.15.

To address the second one, we created a set of new features that capture information about the
chemistry of the ligand atoms close to the protein. Such information has been intelligently encoded
into the GAFF atom types, which are based on the local molecular topology of the ligand. In contrast
to other atom typing techniques, GAFF not only relies on pure connectivity information, but also uses
the orders of the bonds connecting the atoms to deduce the final atom type. For this to work, however,
correct bond order information for the ligand is required.

Unfortunately, the ligand information provided by the Protein Data Bank (PDB) [BWF+00, BHN03]
is often incomplete, hydrogen information is missing and/or bond order information is not provided.
In cases where only one of these is missing, the other can be deduced by either filling up free valences
with hydrogens or by distributing free valences over bonds. For the latter case, we use BALL’s bond
order assigner BOA Constructor [DRB+11], which we discussed in Chapter 2.

In principle, we could now try to proceed by computing GAFF interaction energies between all pairs
of ligand- and protein atoms. However, this turns out to be a non-trivial problem: first, the input
structures need to be carefully prepared: charges have to be assigned, e.g., with the help of a quantum
chemical procedure, force field parameters have to be extrapolated, etc. Then, we might need to
optimize the structures with respect to the GAFF energy in order to relax potentially non-optimal
configurations. The parameters for the minimization will have to be carefully controlled, and quite
possibly, structural restraints will have to be employed to keep the structure from deviating from the
NMR experiment. Finally, we need to be able to decompose the energies into the intra-protein, intra-
ligand and protein-ligand components for each term in the force field’s Hamiltonian. Not all of these
requirements can be easily satisfied using the commercial implementation of the GAFF force field, but
on the other hand, implementing GAFF is a challenging task. Thus, while we would want to use force
field energies to encode the interactions between protein atoms and the ligand, we cannot currently
do so. Hence, we decided to instead start with a simpler set of features for a proof-of-concept study
to determine whether such a force field based approach will be likely to succeed: instead of computing
GAFF energies, we determine the local chemical neighbourhood from the composition of non-protein
GAFF types we find in the vicinity of each protein atom. As cutoff for the neighborhood of protein and
ligand atoms, we use 10Å. Careful analysis of the influence and the predictive power of these features
will then serve as an indicator whether implementing GAFF will be worth its while for our purposes.

3.7.4. Features for the Influence of the Ligand on Protein Atoms

As the first and most obvious feature we use the total number of ligand atoms within a 10Å radius
from the protein target atom, summed over all atom types (num het atoms). In addition, we use
the atomic element (cl het element), the GAFF type (cl gaff type), and the distance of the closest
ligand atom (cl het dist), and for each GAFF type i separately the number and closest distances
(gaff type i and gaff type dist i) for all ligand atoms within the 10Å radius as features. As men-
tioned in Chapter 2, our work on bond- and atom-typing allows to assign these types efficiently and
correctly.

102

3.7. Application to Protein-Ligand Complexes: A Proof of Principle Study

The feature list is complemented with the number of ligand atoms (ligand size) and an indicator
variable for the presence of ions (has ion).

name definition

gaff type X indicator for the presence of GAFF type X within a 10Å radius
gaff type dist X distance to the closest atom of GAFF type X within a 10Å radius
num het atoms number of ligand atoms within a 10Å radius
ligand size number of ligand atoms
cl het element atomic element of the closest ligand atom
cl gaff type GAFF type of the closest ligand atom
cl het dist distance of the closest ligand atom
has ion indicator for the presence of ions in the system

Table 3.14.: Ligand related feature definitions.

3.7.5. Performance Evaluations

We evaluated the model on the randomly chosen test sets of protein-ligand complexes created by
NightShift. In accordance with the pure protein models, comparison to state-of-the-art techniques
was performed by applying the stand-alone versions of ShiftX and ShiftX2 to our test data sets. The
performance of our models can be estimated from the root mean squared error (rmse) and Pearson’s
Correlation Coefficient (corr) on the test set as defined in Section 3.5.2.

3.7.6. Results

Adaptation of the Pipeline for the Protein-Ligand Model

Training protein-ligand models equals to a large extent the steps described in the pure protein case (see
NightShift pipeline shown in Fig. 3.9), and thus the protein-ligand data set is prepared and handled
by the same R methods.
Based on the information provided by the PDB RESTful web service (http://www.rcsb.org/pdb/
software/rest.do), PDB entries with ion(s) or small molecule ligand(s) present are selected to build
the protein-ligand mapping data set in the pipeline’s first step.
The resulting mapping is then restricted by quality checks and homology filtering as known from the
pure protein case, but then further restricted to protein atoms close to, and thus probably affected by,
a ligand. Here, NightShift applies a 10Å distance cut-off.
For the resulting data set, NightShift then computes the protein and ligand features, splits the data
set randomly into a training and test set using a ratio of 70:30, loads and applies the pure protein
prediction Spinster, and finally trains Liops, the new ligand random forest model. Unfortunately, the
data to feature ratio in the protein-ligand set is less favorable than in the pure protein case. We thus
used only 3 atom classes to retain sufficient numbers of observation for a sound statistical analysis.
The resulting training and test sizes of each atom super class model are shown in table 3.17.
When predicting the pure protein model’s shift contribution, we face some technical problems: to be
able to apply the pure protein models to the new ligand data, we have to ensure the same variable
types and factor levels for the protein-ligand data set as we used for the pure protein set. Thus, we
have to prepare the data in the very same way as the pure protein set, e.g., in the case of binarization,
the same levels have to be present. If new levels occur, we cannot apply the prediction model and
thus have to omit these atoms.

103

3. NMR Shift Prediction

Given the pure protein shift prediction δ̂P of Spinster, we compute a residual shift δres(a) for each
atom a by subtracting the random coil and the pure protein prediction from the atom’s experimental
chemical shift:

δres(a) = δexp(a)−MP (a)

= δexp(a)− δcoila − δ̂P (a, δringa , δEFa , δHB
a , f1(a), . . . , fi(a))

NightShift uses a variable prediction column to comfortably switch between the columns to train
against (experimental shift, re-referenced shift or residual) while using the same R methods as for the
pure protein model.

15N 13C 1H

ori num shifts 24,523 60,135 118,481
ori num features 202 202 202

final num shifts train 3,873 9,188 14,399
final num shifts test 1,660 3,938 6,172

num features 49 49 50

Table 3.15.: Number of shifts and features of the protein-ligand data set per atom super class. The
first two lines show the numbers for the raw data set, the last line shows the number of
features actually used by the models.

Random Forest Model for the Influence of Ligands - Liops

To answer the first question mentioned above, i.e., to determine whether shift prediction really works
significantly worse in the presence of ligand atoms as compared to the bulk, we compared the prediction
of an established protein shift prediction package, the recently published ShiftX2 program, on the set
of protein atoms in the spatial neighbourhood of a ligand atom. The results can be found in table 3.17.
As can be seen, the performance of shift prediction close to ligand atoms indeed breaks down consid-
erably. This is in line with our expectations: the ligand atoms are part of the chemical environment,
which is what determines the chemical shift values. Since the ligand atoms are not covered by any
of the previous shift prediction models we have found in the literature, the estimate of the chemical
environment does not match that realized in nature and hence, the prediction can be expected to
strongly deviate from the true values. This motivates that additional steps should be taken to model
ligand atoms in shift prediction procedures.
To now address the second question, i.e., to decide whether force field based features contain useful
information for shift prediction, we started by plotting each feature against the absolute residual shift
value, i.e., against the magnitude of the shift not explained by the protein model (of course, this
number includes errors in the protein model as well). Not all features show a significant correlation,
but some do: from Fig. 3.11 for the feature ligand size, e.g., we see that larger ligands tend to have
a greater influence on shift prediction than smaller ones. The largest ligands in our data set, however,
tended to be modified peptides so that the deviation from a pure protein model is not as pronounced
as the ligand size might suggest.
Another example of an interesting dependency between residual shift value magnitude and feature can
be found in Fig. 3.12, which shows the distances to the closest h4 and n3 atoms. Here, we see that
the residual shift tends to decrease with increasing distance from the next h4 or n3 atom, since the
interactions that influence the chemical shift are strongly decaying with distance.
In both figures, the results agree with our expectations. However, plotting the residual itself as opposed
to its magnitude as a function of the individual features (c.f. Fig. 3.13), we found a less clear trend.

104

3.7. Application to Protein-Ligand Complexes: A Proof of Principle Study

feature N C H

cl het dist 57.21 22.34 14.45
GAFFTYPE 11 Cu 6.99 9.12 0.64
GAFFTYPE 12 DU 2.41 4.95 3.93
GAFFTYPE 13 Fe 14.36 0.00 10.31
GAFFTYPE 14 Ga 4.88 1.90 3.27
GAFFTYPE 19 Mg 2.86 0.00 6.31
GAFFTYPE 30 Si 1.70 6.39 0.00
GAFFTYPE 35 Zn 18.34 19.88 6.34
GAFFTYPE 36 br 7.07 3.52 1.13
GAFFTYPE 37 c 20.24 14.78 2.07
GAFFTYPE 38 c1 0.28 10.83 6.77
GAFFTYPE 39 c2 16.27 17.83 20.17
GAFFTYPE 40 c3 15.81 11.52 12.81
GAFFTYPE 41 ca 12.98 12.35 6.34
GAFFTYPE 42 cc 7.91 1.40 3.17
GAFFTYPE 43 ce 4.98 0.00 0.00
GAFFTYPE 44 cg 3.80 7.38 0.00
GAFFTYPE 45 cl 2.26 4.48 4.71
GAFFTYPE 46 cp 1.90 3.11 3.54
GAFFTYPE 49 cx 3.18 0.00 0.00
GAFFTYPE 52 f 2.75 8.06 0.00
GAFFTYPE 53 h1 14.80 15.60 5.79
GAFFTYPE 54 h2 5.37 4.78 6.25
GAFFTYPE 56 h4 1.31 1.21 0.68
GAFFTYPE 57 h5 1.66 4.35 7.89
GAFFTYPE 58 ha 16.30 13.72 9.86
GAFFTYPE 59 hc 17.05 16.57 8.68
GAFFTYPE 60 hn 9.69 8.64 13.56
GAFFTYPE 61 ho 10.85 14.64 4.77
GAFFTYPE 67 lp 2.57 5.11 1.07
GAFFTYPE 68 n 10.46 9.22 6.40
GAFFTYPE 70 n2 3.80 3.34 0.00
GAFFTYPE 71 n3 1.02 4.83 1.77
GAFFTYPE 72 n4 0.00 0.87 1.05
GAFFTYPE 73 na 7.41 8.08 16.49
GAFFTYPE 74 nb 8.46 5.39 3.86
GAFFTYPE 75 nc 11.93 10.49 7.36
GAFFTYPE 76 ne 0.00 1.15 3.72
GAFFTYPE 77 nh 7.58 7.44 2.80
GAFFTYPE 78 no 1.75 0.78 0.33
GAFFTYPE 79 o 13.72 14.07 5.46
GAFFTYPE 7 Ca 15.35 21.85 2.35
GAFFTYPE 80 oh 11.99 13.39 4.95
GAFFTYPE 81 os 8.63 9.79 5.33
GAFFTYPE 85 p5 7.68 6.96 4.25
GAFFTYPE 96 ss 3.69 2.42 5.06
GAFFTYPE 98 sy 5.02 5.85 1.55
ligand size 29.38 25.47 24.72
num het atoms 20.06 21.85 15.02

Table 3.16.: Importance of features in the protein-ligand random forest model. The top ten scored
features are printed in bold face.

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●●
●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●● ●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

● ●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●
●

● ●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●
●

●

●
●

●● ●
●

●
●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

● ●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●
●

●●
● ●

●
●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0 20 40 60 80 100 120

0
2

4
6

8

ligand size

m
ag

ni
tu

de
 o

f r
es

id
ua

l s
hi

ft

Figure 3.11.: Exemplary plot of the residual shift magnitude as a function of ligand size for carbon
atoms.

105

3. NMR Shift Prediction

Figure 3.12.: Exemplary plot of the residual shift magnitude as a function of distance to the next
atoms of type h4 (left) and n3 (right).

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ● ●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

● ●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

● ●

●

●●

●

●

●

●

●●

●

●
●● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

● ●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●

●
●●

●
●●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

● ●
●

●

●

●● ●●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

●
●

●

●
● ●

●

●
●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●
●●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●● ●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●
●

●
● ●

●

●
●

●●
● ●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

0 20 40 60 80 100 120

−5
0

5
10

ligand size

re
si

du
al

 s
hi

ft

Figure 3.13.: Exemplary plot of the residual shift as a function of ligand size for carbon atoms.

106

3.7. Application to Protein-Ligand Complexes: A Proof of Principle Study

Roughly speaking, the presence of several GAFF atom types in the vicinity of a protein atom seems
to induce a strongly deviating shift, but the direction and strength of the deviation can in most cases
not simply be read of from the atomic composition of the neighbourhood.

An intuitive reasoning thus seems to suggest that simple atom type features as described above can
indeed help in improving prediction performance, but that their influence will be limited, and more
sophisticated features such as GAFF energy components will be needed to further improve the quality.
And indeed, this is in line with our results when we proceed with our pipeline and train random
forest models to the residual shift values. Again, after finding that the model hardly varies with the
two parameters, we set the number of trees to the recommended 500, the parameter mtry to the
recommended number of features divided by three. But since we have significantly fewer data points
at our disposal as in pure protein shift prediction, we only train three different models, one for C, N,
and H atoms each. The results on the independent, non-homolog test set, which comprises 30% of
the initial data set, can be seen in table 3.17. Obviously, shift prediction is assisted by the new ligand
model – prediction accuracy increases in all cases – but the increase is moderate in nature.

15N correlation 13C correlation 1H correlation
method

(rmse) (rmse) (rmse)

BALL (Spinster -MP) 0.798 (2.796) 0.999 (1.643) 0.96 (0.876)
BALL (Liops -MPL) 0.811 (2.712) 0.999 (1.592) 0.961 (0.867)

ShiftX2 0.72 (3.606) 0.999 (1.804) 0.939 (0.887)
ShiftX1 0.72 (3.606) 0.999 (1.804) 0.943 (0.944)

ShiftX2 (reported) 0.98 (1.117) 0.987 (0.497) 0.973 (0.147)

size (training/test) 3,873 / 1,660 9,188 / 3,938 14,399 / 6,172
num features 49 49 50

Table 3.17.: Performance of ShiftX2 as reported, as measured on our new data set of protein atoms
close to a ligand, and of our new ligand model on this set. Values shown are Pearson
correlation and rmse (in parentheses), respectively, per atom type. The reported values
of ShiftX2 have been averaged over all atom types for each element. The last two lines
show the size of our data set in terms of shifts and the number of used features in our
random forest model.

3.7.7. Discussion

As expected from the feature/residual correlations, the inclusion of GAFF atom type features improves
the prediction, but only moderately. The limited improvement is probably due to two effects: for some
of the atoms, the errors of the protein model are relatively large and these of course do not correlate
with any ligand feature. Secondly and more importantly, the dependency between protein shifts and
ligand atoms is complex and cannot be modelled well by just counting atom types. In the terminology
of a hybrid shift prediction model, we need semi-classical terms (i.e., models of the underlying physico-
chemical processes in contrast to a mere collection of molecular properties) to greatly improve the
prediction performance.

Still, considering the complexity of the task – for a similarly complex problem, imagine predicting force
field energies using a purely statistical model from the composition of the chemical neighbourhood of
a given atom – the slight but consistent increase in model performance strongly indicates that force
field based descriptors are a promising ingredient for protein-ligand chemical shift prediction.

Here, we expect to improve matters by using GAFF energies in future work. Even though this might
sound like a trivial extension at first glance, it is a highly non-trivial task that involves questions of a

107

3. NMR Shift Prediction

technical (implementation, integration, energy decomposition, . . .) as well as of a more fundamental
(parametrization, treatment of singularities, treatment of missing atoms or non-optimal input struc-
tures) nature. However, from the results of this study we are convinced that the effort will be worth
its while.

3.8. Summary

In this chapter, we introduced NightShift, an automated pipeline for developing new protein chemical
shift prediction methods for pure proteins as well as for proteins under the influence of a bound ligand.
NightShift is complemented with a large number of features, established as well as novel ones. Our
approach is realized in a modular fashion to offer a ready-to-reuse pipeline in case the available data
amount improves in the future, new semi-classical models become available or new ideas for predictive
features or statistical models arise. Thus, no time-consuming and error-prone reimplementation is
necessary. Instead, only simple adaption of the code is required. Using NightShift, we created a pure
protein model, called Spinster, and a protein-ligand model, called Liops.
NightShift can be easily extended by the user in several different directions:

• Re-training the models: Given new data in the BMRB, only the PDB to BMRB mapping is
needed as input to generate a new linear or random forest model.

• Using re-referenced data: Re-referenced shift data can be used by either downloading the
NMRStar files from a re-referenced database, such as the RefDB, or by applying a re-referencing
tool to the downloaded data as a step in the pipeline.

• Adding a model: For testing a new statistical model, the user only has to include the corre-
sponding R package and to wrap the correct prediction method to meet our interface definition
of training methods.

• Adding a feature: For adding a feature, the user has to choose a feature name string, to add the
feature name string to the list of features to compute, and to add a method that computes the
feature from the protein structure information. The results will then automatically be included
in the corresponding feature column and be made available to the R-based training procedures.

• Adding a method to compare to: Adding an approach to compare to is achieved by adding
a corresponding CMP column to the table and registering this column with the validation
methods of the NightShift pipeline.

We further showed that our fully automatically generated models not only perform comparably with the
state of the art methods in chemical shift prediction but also have many crucial advantages compared
to alternative approaches: first, our models are fast to evaluate and robust, making them applicable to
high-throughput situations. They are generated automatically and can be easily retrained and adapted
to new data. More fundamentally, Liops is the first model to consider the influence of ligand atoms
as well.
NightShift has been designed in a way that it can be easily extended by new features and new
statistical models, or by adding different homology removal strategies, or shift re-referencing solutions.
By default, NightShift uses NMR resolved structures, and is the first approach to do so consistently.
However, if X-ray structures are desired, exchanging a single module in the pipeline will allow their
use.
The tight integration of NightShift, Spinster, and Liops with the BALL library, allows to easily combine
NMR shift prediction with tasks like hydrogen addition, or Docking within the same framework.
Creating new computational approaches that use the shifts as part of their scoring function is thus
greatly simplified. In fact, in the context of developing the NightShift pipeline we have significantly

108

3.9. Outlook

extended the functionality of the BALL library, by designing and implementing a toolbox for handling
experimental NMR chemical shift data.
In a second study, we showed that extension to protein-ligand NMR shift prediction is indeed possible
and presented a protein-ligand NMR prediction model called Liops. We were able to show that features
including information about the chemical environment of ligand atoms indeed help in understanding
protein chemical shifts and are thus convinced that with further work in this direction, in particular
with including GAFF energies instead of atom types only, the goal of using NMR shift prediction in a
protein-ligand docking context is indeed a realistic one.

3.9. Outlook

With the accomplishments described in this chapter, some of the remaining challenges in NMR chem-
ical shift prediction can now be addressed.
For instance, in NMR resolved PDB structures, more than one model of the structures is usually
available. While we currently use only the first model, it would be interesting to compare the prediction
of single models and, e.g., to average and weight the input feature values for the training set. However,
the detailed decision of averaging and weighting techniques must be carefully made for each feature
separately.
One demand on our model is numeric stability for the prediction model. So far, we did not analyse
this for our model or the existing approaches, but a scenario would be set up by creating test sets
with randomly disturbed atomic coordinates to different extents. The preparation of such test sets,
however, requires careful design to prohibit, e.g., steric clashes and access to such experimental data
is difficult to obtain. However, this information is important to estimate the significance of observed
chemical shift differences, e.g., between different structure models.
Having shown the NightShift pipeline to be valuable as a proof of concept, it can now easily be used
to investigate new statistical models and to invent and test new features and semi-classical terms for
NMR chemical shift prediction beyond those that were implemented in the scope of this thesis.
Similar to the extension of our pure protein model Spinster to protein-ligand cases, NightShift can
also be extended to create hybrid protein-DNA/RNA models. Everything is in place – we only need
to apply the pipeline for data set generation, training, and evaluating. However, we currently lack
access to sufficient amounts of training and evaluation data for this kind of systems so that we have
to postpone this study to future work.
Finally, we want to extend the protein-ligand model Liops in the future by using additional features,
such as GAFF energies, that will help in capturing the intricate influence of the ligand atoms upon
the protein. Then, the model can be employed as a scoring function for protein ligand docking.
A necessary, yet difficult, prerequisite here is the creation of a reasonable data set which contains
experimental NMR shift data for different docking poses and exchanging the exact 10Å cut-off for the
influence of ligand atoms upon protein chemical shifts by a smooth transition function, e.g., tanh. If
the predicted shifts can be shown to separate true positives from false positives, as done for protein-
protein docking by Kohlbacher and coworkers, we would want to go one step further and compare
unassigned raw spectra to simulated ones.

109

4. The BALL Project: A Framework for
Biomolecuar Modelling

An important cornerstone of this dissertation were our contributions to the BALL project, i.e., the
Biochemical Algorithms Library [KL00, HDR+10] and its viewer BALLView [MHLK05, MHLK06]. The
BALL project provides an open source C++ framework for structural bioinformatics applications, with
a particular focus on molecular modelling and computer aided drug design. It has been developed
continuously since its inception as part of the PhD thesis of Oliver Kohlbacher in 1996. In the
following, we want to first motivate the importance of the BALL framework before we turn to a brief
description of its functionality. This description is based on our argumentation in a recently published
application note in the journal Bioinformatics [HDR+10]. Since this publication perfectly describes
several aspects important for this chapter, we re-used parts of our text from that manuscript with
kind permission of Oxford University Press (c.f. App. C). In addition, this chapter will introduce some
of the components of BALL that were developed by the author of this thesis which were not or only
briefly covered by the application note.
The main results of this thesis, as they pertain to BALL, will be discussed in Section 4.2, where we
present our implementation of BOA Constructor, and in Section 4.3, where we describe the imple-
mentation of our NMR framework. As opposed to the remainder of this work, the presentation in this
chapter will focus mostly on the technical rather than the conceptual level and on implementation
rather than on algorithmics. For a more thorough description of the respective contexts, the reader is
referred to the corresponding sections in the chapters on bond typization and NMR shift prediction.
Furthermore, in Section 4.4 and Section 4.5 we summarize our work on integrating real-time ray tracing
into the BALL project for visualization as well as for the computation of molecular properties.

4.1. Introduction

Developing programs for structural bioinformatics is a difficult and often tedious task. Even if the
algorithms have been carefully designed, the programmer has to solve a variety of complex and recurring
problems not fundamentally related to the algorithm at hand, but necessary for real-world applications.
Not only do more advanced tasks like inferring missing atoms or bonds, energy evaluations, or structural
minimization require considerable programming effort that can hardly be repeated for every new project,
but also the most basic and mundane steps. For example, many molecular file formats are as hard
to parse correctly as they are to write. To avoid costly and error-prone re-inventing of the wheel
for any new structural bioinformatics application, two approaches can be imagined: a collection of
loosely coupled tools and utilities for recurring sub-tasks, or powerful libraries and frameworks for rapid
application development (RAD). Obviously, the second approach encompasses the first, i.e., creating
small, specialized tools for a pipeline concept is trivial when relying on such a library. In addition,
it allows its users simple access to the molecular data structures and algorithms that form building
blocks of many algorithmic approaches and that often require complex implementations.
The Biochemical Algorithms Library (BALL) is a versatile C++ class library for structural bioin-
formatics that is supplemented with a Python interface for scripting functionality and a number of
applications, such as the molecular modeling frontend BALLView. BALL has been used successfully
for a large number of projects by the BALL developers (e.g. [DRLH09, DRB+11, DLH11, KLHT09,
RRK10, CTK11, PGD+10, MGD+10, ZST+11, KMTH11]) as well as by external groups (for a small

111

4. The BALL Project: A Framework for Biomolecuar Modelling

selection of recent publications, see, e.g., [XB06, XJB07, SWBG08, MSP09, SP09, BS10, MTK+10]).
In recent years, BALL has seen a significant increase in functionality and substantial usability improve-
ments. It has been ported to further operating systems; indeed, it currently supports all major brands.
Moreover, BALL has evolved from a commercial product into a free-of-charge, open source software
licensed under the Lesser GNU Public License (LGPL).
To the best of our knowledge, BALL offers the widest range of functionality for rapidly and robustly
developing applications in structural bioinformatics, it is growing fast and can be easily extended. It
addresses users of the implemented techniques as well as designers of completely new approaches.
A full description of BALL’s functionality would fall well outside of the scope of this thesis; the
current version (1.4.1 at the time of writing) contains more than 730 classes and several hundred
thousands lines of code. A comprehensive overview can be found in the online documentation at
http://www.ball-project.org.
BALL has been carefully designed to address programming experts as well as novices. Users can take
advantage of BALL’s rich functionality and are offered an extensive framework of data structures and
algorithms through both, C++ and the python scripting interface. A variety of standard structural
bioinformatics algorithms and data structures are offered, including molecular container classes and
iterators, support for various file formats, selection of interesting molecular subgraphs by different kinds
of chemical expression languages, different force fields for force- and energy estimation, structural
minimization and simulation, docking techniques, molecular visualization and editing interfaces, and
many more. Additional functionality can be easily added by the user.
The author of this thesis has extended the functionality of BALL and BALLView significantly. An
overview of the main contributions to BALL and the people involved in these projects is given in 6.3.
In the following, we will focus only on those contributions that were relevant to the remainder of this
thesis.

4.2. The Implementation of BOA Constructor

BOA Constructor, our novel method for accurate, efficient, and extensible bond order assignment,
has been implemented entirely within the BALL library and is included in the official release since
version 1.4.1. To this end, we first converted the atom type descriptions as presented in [WWKC06]
into SMARTS expressions. Our new penalty table that covers further atom classes (c.f. Section 2.8)
uses the same mechanism. Since we wanted to support different optimization strategies, and wanted
to easily support further extensions of each algorithm, we modelled our approach according to the
strategy design pattern. The strategy pattern is defined as follows [GHJV94]:

“Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.”

Represented in the Unified Modelling Language (UML), the strategy pattern takes the form shown
in Fig. 4.1. Since we want to allow modification, extension, and exchange of the solution scheme at
runtime, we designed a general interface BondOrderAssignmentStrategy, which prescribes a number
of functions for communication with the rest of the surrounding context. This interface is realized1 by
one class per solution scheme. The interface of the strategy is slim and only consists of the following
functions: a constructor that accepts a pointer to the context, an initialization routine, a function
to compute and return the next solution, a function to read and one to set default options, and a
function to clear the current state of the algorithm.
Intermediate solutions can be stored in the PartialBondOrderAssignment class, which also evaluates
the different heuristic and exact penalty functions. The resulting full bond order assignments are stored

1 Please note that C++ does not distinguish clearly between interfaces and classes and hence, all interfaces have been
implemented as regular classes, and realization has been replaced by derivation.

112

4.2. The Implementation of BOA Constructor

Figure 4.1.: The general strategy pattern denoted in UML.

as instances of the BondOrderAssignment class. The whole assignment process is controlled by the
AssignBondOrderProcessor, which is derived from BALL’s UnaryProcessor<AtomContainer>, al-
lowing simple application to the different types of molecular containers of interest (System, Molecule,

Chain, . . .).

Through the strategy pattern, the user is completely insulated from the details of the implementation
of the particular bond order strategy chosen. To choose between the different versions, one simply has
to communicate one’s choice to the AssignBondOrderProcessor, which then chooses the correct
solution instance at runtime. The resulting scheme – with simplified interfaces – is shown in Fig. 4.2.

113

4. The BALL Project: A Framework for Biomolecuar Modelling

Figure 4.2.: The class model of BOA Constructor.

114

4.3. Implementation of NightShift, Spinster, and Liops

In general, great care has been taken to implement the approach in such a way that the new bond
order assigner is as simple to use as possible for novice users while being very flexible and adaptable
for the expert with more advanced needs. For instance, a variety of options (see table A.2) can be
used to fine-tune the behaviour. The following code snippet shows how BOA Constructor can be used
in a C++ application or library:

System sys;

...

AssignBondOrderProcessor bop;

bop.options.setBool(

AssignBondOrderProcessor::Option::COMPUTE_ALSO_NON_OPTIMAL_SOLUTIONS,

true);

...

sys.apply(bop);

Position i = bop.getNumberOfComputedSolutions();

bop.apply(0);

...

while (bop.computeNextSolution())

{

i++;

bop.apply(i);

}

4.2.1. The GUI

All bond order assignment algorithms are fully integrated into BALL’s graphical user interface BALL-
View. All relevant options (c.f. Appendix A.2) can be edited in dialog forms before starting the
processor. The computed solutions are presented in a list with 2D sketches and corresponding penalty
values. The user can chose between either applying a selected assignment to the given molecule or
creating a new molecule with the corresponding bond order assignment. This allows for the manual
creation of molecule sets with different bond order assignments. An exemplary BALLView session
showing the usage of BOA Constructor can be found in Appendix A.4.2.

4.2.2. Python Interface

All functionality presented in this work is also available from the BALL Python bindings. An exemplary
Python program using this functionality can be found in Appendix A.4.1.

4.3. Implementation of NightShift, Spinster, and Liops

To support our efforts towards automated NMR chemical shift prediction, we extended BALL in
several ways within the course of this dissertation, in addition to the introduction of BOA Constructor
mentioned above. The first functionality that had to be provided was a stable and efficient parser for
the file format used to store experimental chemical shift information.

4.3.1. A Grammar for CIF

Experimental NMR chemical shift data is commonly stored in the NMRStar file format [HC95]. It
stores the chemical shift data as well as information about the molecular systems under consideration,
the NMR spectrometer, or other experimental details. NMRStar is based on the Crystallographic

115

4. The BALL Project: A Framework for Biomolecuar Modelling

Information File (CIF [HAB91, BM02]) format, where the relation of NMRStar to CIF is equivalent
to that of PDBML to XML.
The CIF format was not designed as a context free grammar in the first place and is thus hard to parse
correctly. To the best of our knowledge, no complete C++ implementation of a flexible CIF parser is
currently available on which we could base our implementation of NMRStar files. Thus, we decided
to build our own. Our aim was to create a grammar for CIF, implemented using BISON and FLEX,
that is as general as possible. In particular, it should be able to import all NMRStar files provided by
the BMRB [UAD+08].
Unfortunately, the CIF format cannot be fully represented in a BISON grammar without advanced
features of the lexer. Roughly speaking, some aspects of CIF, for example the white space handling
and quotes, are context sensitive and require joint efforts from lexer and parser. To this end, we use
the state mechanism of the flex lexer. Due to its large number of states, it is not illustrative to show
the lexer as an automaton. Instead, we reproduce the final full “.l” file we developed in Appendix B.2.
Given this lexer, we can finally formulate a grammar for parsing CIF. But instead of reproducing the
full “.y” file for the parser generator BISON, it is much more instructive to represent the grammar in
Backus-Naur form (BNF), which we do in Appendix B.2 as well. The resulting parser and lexer for
reading the BMRB file format were fully integrated into BALL 1.4.1.

4.3.2. Features Required for the Models Spinster and Liops

For our NMR shift prediction models Spinster and Liops, we added a variety of classes for the compu-
tation of the diverse input features. The most challenging step here was clearly the implementation
and extension of the different semi-classical terms described in Section 3.2.3. Similarly difficult was
the computation of the GAFF atom types employed by the Liops model, which required a com-
plete implementation of GAFF’s bond and atom typization mechanism. While the bond typing was
handled by BOA Constructor, the atom typing used an implementation of GAFF’s Chemical Envi-
ronment and Atom Property string concepts [WWKC06], two molecular description languages similar
in spirit to SMARTS. This implementation was mainly created by Sabine Müller in her Bachelor’s
Thesis [Mue08]. However, because GAFF and Antechamber had been extended and modified since
the original implementation, we had to significantly adapt this component in BALL as well. Finally,
most of the remaining features (c.f. Section 3.5.2) were simple to implement with the functionality
already contained in BALL, such as Solvent Accessible Surface computation and fast geometric queries
supported by BALL’s hash grid implementation.
The features themselves are implemented in a strategy-like pattern, such that a driving class can
trigger the computation of each feature value using a unified interface. In this way, the end user can
choose the input features that should be included at run time.

4.4. Manual Molecular Modelling

In the previous chapters 2 and 3, we have presented our research on automatizing several molecular
modelling techniques that previously led to tedious manual work, such as the annotation or correction
of bond orders, or the creation of NMR shift prediction models. But while such automated techniques
become increasingly important in molecular modelling, in particular for high-throughput situations,
there are still many cases where manual intervention is required. One reason for this deficiency is the
quality of today’s force fields and scoring functions: many molecular effects are either not yet well
understood theoretically and thus not yet implemented – or are far too complex to ever be – but are
known to experienced researchers. For example, the conformational changes due to allosteric effects
are currently usually not covered by typical molecular modelling methods. Thus, the current state of
the art usually demands a manual inspection of the results of structure prediction or docking methods.
In the course of this thesis, we were also involved in several efforts towards improving the state of

116

4.4. Manual Molecular Modelling

the art of manual molecular modelling, in particular through improved interactive visualization. A full
description of all these projects, however, would require significant amounts of space. Hence, in the
interest of readability, we decided to focus the text on the automated aspects, and to only briefly give
an overview on the work on manual techniques. This overview will be the topic of this section, and
will be based on a publication on our work on molecular visualization which is currently in preparation
and on our manuscript [MGD+10] published in the Proceedings of the 14th International Conference
on Information Visualization in Biomedical Informatics (IVBI) in London, UK.

4.4.1. Molecular Visualization

The comprehension of the three-dimensional geometry of individual molecules, their complexes, and
their physico-chemical properties is often key for understanding biomolecular processes. For instance,
rational drug design often involves the development of small molecules that are tailored to fit and fill
a certain binding pocket and to interact favorably with the target molecule. Thus, visualizing complex
molecules and their properties of interest, e.g. electrostatic potentials, has always been one of the
cornerstones of molecular biology and related fields.

Significant attention has been paid to create a faithful and intuitive representation of three-dimensional
arrangements on a two-dimensional computer screen. Apart from the use of high-end stereoscopic dis-
plays to simulate three-dimensional vision, research in molecular visualization has focused on providing
the user with visual cues to improve the understanding of structural relationships. These consist, on the
one hand, of a variety of different models or visualization modes of biomolecular entities (e.g. cartoon
representations, ball-and-stick models, or surface renderings), each one highlighting specific aspects
of the structure under consideration. On the other hand, our perception of three-dimensional objects
relies on their interaction with light and simulating such an interaction significantly aids the brain
in interpreting a two-dimensional picture as a representation of a three-dimensional entity. Obvious
examples of such effects are shadows, light attenuation, and reflections.

Conventionally, the interactive display of molecular scenes is performed using a technique known as
rasterization, as it is implemented, e.g., in the well-established OpenGL framework. Unfortunately,
rasterization does not naturally support all of the visual effects mentioned above, even though many
of them can be approximated for known types of geometry using sophisticated shading techniques.
If interactivity is not an issue, but high-quality images are required, ray tracing methods are often
employed, but these typically take minutes to hours to render a single picture, completely destroying
interactivity. Also, they require the use of an external offline program.

Recently, real-time ray tracing evolved to combine the interactivity of rasterization based approaches
with the superb image quality of ray tracing techniques. A description of the ray tracing method, and
of the algorithmic advances that allowed its computation in real time, is clearly out of scope of this
work. Harnessing such real-time ray tracing technology for molecular visualization greatly enhances
the visual quality of molecular visualization and allows for a greatly improved spatial perception of
molecular scenes, without spoiling the required interactivity. Binding pockets, for instance, can be
understood much more intuitively if an accurate simulation of lighting properties, such as shadows,
can be employed. During the course of this thesis, we have created the first preliminary integration
of the real-time ray tracing library RTfact [GS08] into BALLView, which to the best of our knowledge
comprised the first seamless integration of real-time ray tracing with molecular modelling functionality.
RTfact has been developed in the group of Prof. Dr. Philipp Slusallek, one of the main experts on ray
tracing technology whose research has greatly contributed towards its efficient computation.

Together with Lukas Marsalek, we designed the class interface that allows the coupling in an interactive
fashion, and have worked on exposing the functionality through BALLView’s user interface. This
preliminary integration was greatly enhanced and extended, mostly by Stefan Nickels, Prof. Dr. Andreas
Hildebrandt, Lukas Marsalek, and Iliyan Georgiev and the author of this thesis, but the main structure
still remains in place.

117

4. The BALL Project: A Framework for Biomolecuar Modelling

Figure 4.3.: Light attenuation improves depth perception. The left image shows a representation
of PDB entry 1pma rendered using only direct illumination without shadows and light
attenuation. The right image was interactively ray traced with shadows and correct light
attenuation.

Figure 4.4.: Ray tracing enables accurate complex multiple inter-reflections and reflections from curved
objects. The image shows a backbone ribbon model for PDB entry 3eml. This image was
awarded with the Arts and Science Award of ISMB/ECCB 2011.

As a result of the integration, today, real-time ray tracing can be routinely used as a full replacement for
the older OpenGL - based visualization. In particular, it allows to render all the standard representations
and their arbitrary combinations, including the cartoon model. The interactive ray tracing is used in
the standard workflow, making its use as simple as that of classical rasterization methods.
The importance of advanced visual effects as offered by RTfact is demonstrated by Fig. 4.3, which
compares a typical application of rasterization with the visual result generated by RTfact. Further
examples are shown in Figs. 4.4, 4.5, 4.6, 4.7, and 4.8.

4.4.2. Stereoscopic Visualization

Three-dimensional vision is crucial for many applications in molecular modelling and drug design. The
integration of the RTfact engine already helped in improving depth-perception significantly, but best
results are achieved if it is coupled with techniques for stereoscopic visualization. While BALLView has

118

4.4. Manual Molecular Modelling

Figure 4.5.: Shadows support understanding of structural relationships.
Left: N1 Neuraminidase in complex with oseltamivir/Tamiflu (2hu4.pdb), using direct
illumination only.
Right: 2hu4.pdb visualized using interactive ray tracing with realistic shadows. Please
note the relative position of the coil and the SES surface, distance of the ball-and-stick
model and the depth of the binding site, all of which are not apparent under the direct
illumination model.

offered functionality for such stereoscopic visualization for several years, we were involved in several
projects by Stefan Nickels which greatly improved this functionality. The improved functionality was
also exposed through an intuitive graphical user interface, which we designed and implemented for
this purpose.

4.4.3. Multitouch Interaction Functionality

As discussed above, molecular visualization forms one important part of manual molecular modelling.
Another aspect that is unfortunately often overlooked even though it plays an important role are the
user input paradigms offered by the software. Traditionally, molecular modelling heavily relies on the
mouse and keyboard as the main interfacing methods. But experience has taught that these are clearly
non-optimal interfaces when working with inherently three-dimensional data. In a cooperation with
Dr. Hilko Hoffmann and Prof. Dr. Philipp Slusallek, we have designed a protocol for the communication
between BALLView and a home-built multitouch system of the Slusallek group that is to the best of
our knowledge the very first integration of the multitouch paradigm into molecular modelling. The
multitouch system created in the project is very easy to use and offers some clear advantages when
compared to classical input strategies. For instance, a user standing in front of a stereo screen can
easily use the multitouch table to navigate the molecules while being able to focus on the stereo screen
the whole time.

The protocol that was designed to drive the multitouch project was implemented in the form of a
plugin that can be used by other input methodologies as well. For instance, the plugin has formed
the core of an experimental Android mobile application for controlling BALLView through the touch
screen of a cell phone or an integration of BALLView into the OpenSimulator system. More details
on the author’s involvement in these projects, and on the researchers involved in them, can be found
in Appendix 6.3.

119

4. The BALL Project: A Framework for Biomolecuar Modelling

Figure 4.6.: Ray tracing easily allows artistic depictions, even with highly complex scenes.

120

4.4. Manual Molecular Modelling

Figure 4.7.: The integration of the ray tracer into BALLView is done tightly and transparently, allowing
the advanced effects reflection, shadows, light attenuation, or transparency to work seam-
lessly with any combination of available representations, including the cartoon models.

Figure 4.8.: Ray tracing enables accurate reflections, including multiple inter-reflections in real-time.
Adding a reflection is as simple as dragging a material reflectivity slider between 0 and 1,
giving a smooth transition between diffuse material and perfect mirror.

121

4. The BALL Project: A Framework for Biomolecuar Modelling

Figure 4.9.: Collaborative modelling functionality of BALLView. Red arrows indicate former ap-
proaches, blue arrows represent efforts implemented in our work.

4.5. Application of Ray Tracing to Automated Molecular Modelling

During our work with the Slusallek group on integrating real time ray tracing capabilities into BALL-
View, we noticed that the ray tracing method would be able to compute a variety of geometrical
quantities required by many applications on the fly as a by-product of the visualization. In particular,
we have set up a technique for computing the volumes and surface areas of proteins and their cavities
that uses the ray tracer directly. The method is only based on the collection of triangles forming the
molecular representation, which allows to generalize the procedure very easily to all different represen-
tations available for proteins, e.g. different surface models. It also enables more sophisticated features,
such as restricting the volume or area computation to a certain region in space, e.g., close to the
binding pocket. In this project, we were mainly responsible for the bioinformatical aspects, such as a
clear problem definition, an interface to BALL, and the validation of the approach. More details on
the author’s role in the project and the researchers involved can be found in 6.3.

This method nicely combines manual molecular visualization techniques with automated modelling
techniques, but the algorithmic details are out of scope of this work. Here, we will only briefly discuss
the idea and the results of the approach by summarizing the relevant parts of our publication [PGD+10],
to which the interested reader is referred.

4.5.1. Geometric Molecular Properties Through Ray Casting

As discussed above, the interactions between biomolecules are to a large extent determined by the
three-dimensional structures of the component molecules. Consequently, the efficient and accurate
computation of molecular geometric properties has long since been studied extensively in Bio- and
Cheminformatics.

One typical use-case for simple geometric properties is the estimation of binding free energies in the

122

4.5. Application of Ray Tracing to Automated Molecular Modelling

presence of a solvent – water in the biomolecular case. To occur in a certain shape, each biomolecule
has to displace a number of water molecules to form a cavity for itself. This loss of freedom of the
solvent leads to an entropic effect which is a function of the molecular volume. Similarly, the surface
tension of the water surrounding two individual molecules will differ from the tension around their
complex, leading to a term in the free energy of binding which is a function of the solvent-exposed
surface area. Other important geometric properties often focus on the presence, volume, and surface
area of possible internal cavities, pockets, or tunnels inside the molecule of interest.

In [PGD+10], we proposed to use ray casting techniques, as known from computer graphics, to
accurately estimate such geometric properties for arbitrary molecular surface definitions. Ray casting
methods are known to parallelize very well and are able – using suitable acceleration structures –
to handle even huge geometric models at interactive speeds. The only requirement posed on the
molecular representation is the ability to efficiently intersect it with a ray of arbitrary direction, which
is trivially possible for all tessellated surfaces, but also for more general representations.

In principle, the method employs the intersection points of rays with the molecular geometry. Using
statistical sampling techniques for surface integrals, molecular surface areas can be easily estimated
from these intersections. Intuitively speaking, if the normal of a triangle would be parallel to the
directions of the rays, we would expect the ratio of rays hitting this triangle – and hence, the number
of intersection points in this triangle – versus those missing the triangle to converge to the ratio
of the area of the triangle versus the area in which rays are cast. If the direction of the triangle’s
normal deviates from the direction of the rays, we instead expect this ratio to be smaller by an
amount that can be easily computed from elementary geometry. Thus, from the ratio of rays hitting a
triangle, and from its orientation with respect to the ray, we can easily estimate the total surface area.
Assuming that the molecular surface has no holes, any ray entering the molecule will leave it again.
Statistically integrating the distance between these intersection points for all rays gives an estimate
of the molecular volume, where care has to be taken to handle cases where the ray enters more than
once. In practice, the algorithm also needs to handle holes in the surface triangulation. The details
can be found in [PGD+10]. We used the real-time ray tracer RTfact [GS08] to implement our ray
casting based methods.

Finally, the algorithm is able to take molecular cavities into account, i.e., to detect their presence,
surface areas, and volumes. The rough idea behind cavity detection is to discretize the volume into
a uniform three-dimensional grid which stores whether a given voxel is inside or outside the protein.
Using a three-dimensional flood fill algorithm then gives the desired information.

4.5.2. Results

As described in [PGD+10], we have chosen several molecules of the data set described in [SC08] for
evaluating our results. Here, we compare the results to the established MSMS [SOS96] program, which
is used to produce both reference estimates for volumes and areas, and the triangulated surfaces we test
our methods with. Preprocessing was done in the following manner: we downloaded the molecules from
PDB [BWF+00], checked the structure against BALL’s Fragment database, added missing hydrogens,
and deleted ligand, cofactors, and water molecules using BALL. We then ran MSMS to compute the
surface area, volume, and triangulation of the SES surfaces with all contained cavities.

In general, we have found that our volume estimates match the MSMS results very closely, even when
using a low sampling density, as can be seen in table 4.3. For the surface areas, the method still works
well, but is less stable in general, as can be seen in table 4.2. The larger errors in the surface estimates
as compared to the volumes are most probably a result of inconsistent input surface triangulations and
a numerical problem known as “cosine clamping”, as discussed in [PGD+10]. Both of these influences
can be corrected for in the algorithm, and will be taken into account in future work.

Similar to the area estimation, our implementation of cavity detection is also a proof of concept in the
sense that it is not yet optimized algorithmically and numerically. Nonetheless, we found that it works

123

4. The BALL Project: A Framework for Biomolecuar Modelling

Figure 4.10.: The volume of molecule with PDB id 1g2a computed per pixel. Four cavities have been
detected.

very reliably, given that the input triangulations of the cavity regions are correct and well formed.
Exemplary results of the method for selected molecules can be found in table 4.1. Finally, Fig. 4.10
shows the volume of PDB entry 1g2a with four cavities.
In our experiments, we found our method to be computationally very efficient, even though it has
not been optimized yet. Its performance is clearly on-par with highly optimized but more specialized
methods, such as MSMS. In contrast to these, our new method is general enough that a user will be
able to apply it to any kind of molecular model, even in conjunction with more sophisticated concepts
like clipping regions, without the need to modify the program. In addition, it is fast enough that it will
not be the bottleneck in any of its application scenarios. In summary, we conclude that ray casting
methods are very suitable to address problems in structural bioinformatics, apart from the visualization
context they were originally designed for. Our future work will focus on numerical stabilization of the
above described methods, and on exploring additional geometric features. Further work will be aimed
at other kinds of surface representations, as our method is applicable to any representation that can
be intersected with a ray. This, for instance, holds for many implicit molecular surface definitions
(implicit SES, skin surfaces, etc.), where triangulation can be altogether avoided.

PDB Id Cavities Vol. Diff.(%) SA Diff.(%)

1g2a 4 -1.01 -14.75

1qjp 4 2.40 -7.52

1e02 5 -4.67 -12.84

256l 3 0.05 0.04

2ihl 1 2.51 -1.16

1ton 4 -4.29 -14.70

1gar 3 2.94 -1.13

Table 4.1.: Number of cavities along with volume and surface area differences for selected molecules
compared to MSMS [SOS96].

124

4.5. Application of Ray Tracing to Automated Molecular Modelling

Resolution Min Diff.(%) Max Diff.(%) Avg. Diff.(%)

50× 50 0.31 13.68 5.37

100× 100 1.75 10.35 4.79

200× 200 1.78 11.74 4.92

400× 400 2.53 15.28 5.04

Table 4.2.: Minimum, maximum, and average differences between surface areas measured by our
method and MSMS [SOS96] at different uniform sampling resolutions, averaged over 107
molecules.

Resolution Min Diff.(%) Max Diff.(%) Avg. Diff.(%)

50× 50 0.003 0.442 0.135

100× 100 0.002 0.366 0.128

200× 200 0.002 0.376 0.127

400× 400 0.008 0.364 0.118

Table 4.3.: Minimum, maximum, and average differences between volumes measured by our method
and MSMS [SOS96] at different uniform sampling resolutions, averaged over 107 molecules.

125

5. Conclusion

The aim of this work, as outlined in the introduction, was the development of methods for the
efficient and accurate approximation of complex atomic and molecular properties. As long as full
quantum approaches are computationally too costly for many applications on biomolecular systems,
approximation schemes are often the only feasible approach.

Among those approximations, the classification of chemical bonds into a small set of bond types is
one of the most crucial for molecular modelling. If a sufficiently fine-grained set of classes is used,
this approximation is known to work very well in practice. In force field based molecular modelling
approaches, however, several important bond types, such as delocalized or aromatic bonds, can typically
not be correctly represented. Instead, these schemes work with integer bond orders, such that every
bond has to be described as a single, double, triple, or possibly quadruple bond. If a molecule
contains bonds that are, e.g., predominantly aromatic, the mapping to an integer type will typically
not describe the bond’s properties very well. In addition, the mapping to integer bond orders in these
cases is ambiguous. Since bond order information is often missing, we decided to address the problem
of automated bond order assignment.

Our contribution in this area is the development of the efficient, exact, and easily extensible method
BOA Constructor for the computation of bond order assignments from the molecular topology. If,
additionally, three-dimensional atomic coordinates are known, the BOA Constructor can integrate
these into its scoring procedure to further improve the results. Our method uses a formulation of
the bond order assignment problem developed by Wang et al., and is, to the best of our knowledge,
the only technique that produces provably optimal results. At the heart of BOA Constructor lies
the reformulation of the bond order assignment problem as a combinatorial optimization problem, for
which we developed three solution strategies: an A-Star (A*) algorithm, an Integer Linear Program
(ILP), and a Fixed-Parameter Tractability (FPT) approach. Finally, the method is easily extensible
due to our user definable scoring function.

As demonstrated by our experiments, the efforts put into bond order assignment clearly proved worth-
while. First and foremost, a comparison of our results with established heuristic programs shows that
the guaranteed optimality of our approach improves the results in practice. Similarly important is the
extensibility of the approach. In its present formulation, the method will work well for proteins, RNA,
DNA, and common ligand atoms alike. If a user wants to apply the technique to molecules with a
currently not covered chemistry, as they might occur in unusual ligands, e.g., he will only need to add
penalty values for the new chemical combinations into an XML file. Due to the fundamental impor-
tance of bond orders for modelling approaches, BOA Constructor has many important applications.
One of these is the implementation of atom typization techniques as used in force field development.
Such atom types allow to concisely represent the chemical neighbourhood of an atom, and thus sub-
sume large amounts of useful chemical information. We thus combined BOA Constructor with an
implementation of the chemical description languages used by the GAFF force field. This resulted in a
very efficient, provably exact, and easily extensible implementation of a very general atom typization
strategy. Based on these atom types, we proceeded to implement the GAFF force field.

Apart from these classical application scenarios of bond order assignment, we found that reliable bond-
and atom typization can also be used to support the application of statistical learning techniques
to molecular modelling problems. As in other fields of Bioinformatics, statistical learning becomes
increasingly important at the structural level, e.g., in the prediction of binding free energies. A
particularly interesting development are hybrid strategies, where partial knowledge about the physical

127

5. Conclusion

and chemical laws governing the system of interest is combined with a statistical regression technique.
Ideally, this yields a predictor that performs noticeably better than either of the two methods would
perform individually. Statistical learning techniques strongly rely on the availability of informative,
efficiently computable features that somehow correlate with the desired molecular or atomic property.
Since bond- and atom types efficiently encode important chemical information, they are optimally
suited to derive such features. Thus, the availability of reliable bond- and atom typing techniques
allowed us to addressing an important unsolved problem in structural bioinformatics: the prediction
of protein chemical shifts in the presence of ligands. In our approach, we use atom types to describe
the chemistry of the ligand atoms, and combine them with additional molecular and atomic features
to compute a statistical model. In practice, however, we found that the development of such a model
first required us to develop a suitable model for NMR chemical shifts of proteins in the absence of
ligands. While many such models have been proposed in the literature, none of the currently available
techniques could be used in conjunction with our new ligand-based features. Since the development of
such models up to now required large manual effort, we decided to solve the problem more generally
by creating an automated pipeline – called NightShift – for data set generation and model training
for protein chemical shift prediction. Using the pipeline, we exemplarily trained two prediction models
as a proof of concept, one based on linear regression and one based on a random forest. The models,
however, turned out to outperform established, manually developed, techniques even though they had
been automatically generated. The random forest model – which we call Spinster – in particular
turned out to be very accurate.
Using the NightShift pipeline, we finally combined the Spinster model with our atom type-derived
features to produce a model for protein shifts in the influence of ligands. This model – called Liops
– indeed demonstrates the value of using atom- and bond types for solving such a complex problems,
but still leaves room for improvement.
In summary, with this work, we rendered possible the computation of bond orders in an exact, efficient,
and extensible manner, used them for reliable atom typization, and showed that the resulting types
are perfectly applicable to problems apart from the molecular force fields for which they had initially
been derived. Due to their generality, these features are optimally suited for problems that contain
different types of molecules like the protein ligand cases, as, e.g., known from drug design.
With the availability of these features, and with the proof-of-concept application to protein-ligand NMR
chemical shift prediction, we see several possible routes of exciting future development. Apart from
the possibilities for further improvement of the individual techniques as laid down in the respective
chapters of this work, we particularly want to mention the application of chemical shift prediction
to the field of RNA structure elucidation. Here, NOE constraints can often not be derived, and
chemical shift information is all that is obtained from the NMR experiments. The ability to accurately
predict such RNA chemical shifts for a variety of putative conformations would be of great value as
an experimentally derived scoring function. A second application scenario which we believe to be
of great interest would be the development of modern scoring functions for protein-ligand docking.
Here, we expect representative atom types to also carry a wealth of information for statistical learning
techniques.
Thus, while the problem of approximating complex atomic and molecular properties, such as chemical
shifts, in a systematic and efficient way is still far from being solved, we believe that the results of this
thesis can serve as a further step along the way towards that goal. Chemical information as encoded
in atom types is, in our opinion, one of the most promising kinds of predictors for many applications
of statistical learning in molecular modelling, and the results described here allow not only to compute
this information in a very general fashion, but also allow the user or developer to easily define his own
atom types – a process that typically required the complete rewrite of complex atom typing procedures
previously. Since all of our results have been made publicly available in the open source framework
BALL, we hope that they will be of use in many exciting research projects in the future.

128

6. Authors Contributions

6.1. Bond Order Assignment

Large parts of our work on BOA Constructor have been previously published in the proceedings of
GCB 2009 [DRLH09] and in the journal Bioinformatics [DRB+11].
The A* approach, the heuristics, the new penalty table, and the integration of structural information
were developed and implemented by myself. I also developed and performed the test and validation
scenarios.
In addition, I helped with the formulation of the fixed parameter approach, the Java implementation
of which was performed in the group of Sebastian Böcker. Kai Dührkop from this group also provided
a preliminary C++ implementation, which I redesigned and integrated into BALL.
Furthermore, I developed the initial integer linear program together with Prof. Dr. Andreas Hildebrandt
and Dr. Alexander Rurainski, who then performed an initial implementation and further reformulations
for increased computational efficiency. The integration into BALL was again performed by myself.
The GAFF atom typization was initially implemented by Sabine Müller. Since GAFF had been devel-
oped further since the initial implementation in BALL, I had to extend the typization mechanism to
handle additional syntactic elements in the environment strings. Also, I implemented the bond order
types, parameter estimation and charge correction according to the AM1BCC scheme as well as the
force field parameter inference which allows to use GAFF in BALL.

6.2. NMR Shift Prediction

Our work on the NMR framework and NMR hybrid shift prediction has so far been partially pub-
lished [DLH11], and more publications on the subject are currently in preparation.
The pipeline NightShift, which allows automated data set generation and model training will be
presented in a manuscript that is currently finalized for publication. This publication will also discuss
the integration of NightShift into the Galaxy workflow system [GNTT10] which further improves the
user experience. This integration was also performed by myself, but we considered it out of scope
of the topic of this thesis. Similarly, a publication on the pure protein model Spinster is currently in
preparation, and will also be extended with a Galaxy integration. In addition, both NightShift and
Spinster have been presented in a talk I gave at the 25th Molecular Modelling Workshop 2011 in
Erlangen, Germany.
Our Protein-Ligand model Liops, finally, has been presented in a talk I gave at the German Conference
on Bioinformatics (GCB) 2011.
All three components, NightShift, Spinster, and Liops, were developed and implemented by myself.
The CIF parser used by the pipelines was developed in collaboration with Prof. Dr. Andreas Hildebrandt.
Furthermore, additions to the pipeline (rotamer and packing features) were the topic of the Bachelor
thesis of Simon Loew, which I supervised.

6.3. BALL Project

In the course of this thesis, I extended the functionality of BALL and BALLView significantly. In
addition to work related to NMR shift prediction and automated bond order assignment, the added

129

6. Authors Contributions

features encompassed important core components, such as the peptide builder, which can be used to
create peptides from a given sequence, molecular editing functionality, prediction of hydrogen bonds,
and secondary structure prediction methods. Further enhancements were generated in a number
of smaller projects and Bachelor Theses supervised by myself, such as an INCHI-processor (Bachelor
Thesis of Alexander Zapp), alignment functionality (Bachelor Thesis of Nikola Koch), atom propensity
estimation (in collaboration with Roche Diagnostics GmbH), learning the penalty table for automated
bond order assignment (Bachelor Thesis of Alexander Gress), and the pKa computation of small ligand
molecules (Bachelor Thesis of Adrian Fritz).
The design of the initial integration of ray tracing into BALLView was performed by Lukas Marsalek
and myself. This project was then further pursued together with Prof. Dr. Andreas Hildebrandt,
Lukas Marsalek, Ilyan Gregoriev, Stefan Nickels, and Prof. Dr. Philipp Slusallek, and led to several
conference posters, talks, and publications [DGM+09, MGD+10, HDS+11] as well as a Technology
Track demonstration at ISMB/ECCB 2009 in Stockholm, Sweden.
Another project that evolved from this work is the improvement of stereoscopic visualization func-
tionality in BALLView. The stereoscopic integration was done by Stefan Nickels, Prof. Dr. Andreas
Hildebrandt, and myself.
This work finally led to the Kiosk-Project displayed at “Woche der Wissenschaften 2011” in Saarbrücken,
on the MS Wissenschaft 2011 and an exibition “Abenteuer Wissenschaft 4: Der Mensch (Version1.0)”
in the “Haus der Wissenschaften” of the Graz university. In this project, I was mainly responsible for
the design and choice of presented content. The entire project was a cooperation of Sabine Müller,
Stefan Nickels, Daniel Stöckel, Prof. Dr. Andreas Hildebrandt, and myself.
In the “Measuring 3D geometric properties”-project, I was mainly responsible for the bioinformatical
aspects, such as a clear problem definition, an interface to BALL, and the validation of the approach. In
addition, I worked with Mike Phillips, Lukas Marsalek, Iliyan Georgiev, Prof. Dr. Andreas Hildebrandt,
Stefan Nickels, and Prof. Dr. Philipp Slusallek on the formulation of the algorithm.
In a cooperation with Dr. Hilko Hoffmann and Prof. Dr. Philipp Slusallek, I was involved in the
design and implementation of a protocol for the communication between BALLView and a home-built
multitouch system of the Slusallek group. The setup was presented on June 6th 2009 at the closing
conference of the Foresight Process in Bonn 2009. This project further evolved into the OpenMol-
Project, a preliminary integration of BALL and the OpenSimulator project, where I was involved in
the implementation of the core components as well as parts of the interface on the BALLView side
together with Stefan Nickels and Sabine Müller. In addition, we also designed the test case of modelling
Aspirin. The work on the OpenSimulator side was performed by Kugamoorthy Gajananan, Dr. Arturo
Nakasone, Stefan Nickels, Prof. Dr. Andreas Hildebrandt, and Prof. Dr. Helmut Prendinger.

130

A. Supplementary Information on BOA
Constructor

This appendix contains supplementary or advanced information on our framework for automated bond
order assignment BOA Constructor that we deemed out of scope or tangential to the main text. This
includes the details of the new penalty table A.1, selected molecular examples for the penalty rules A.2,
heuristic solvers for the bond order assignment problem A.3, implementational details A.4, and further
performance measurements A.5.

A.1. A New Penalty Table for Bond Order Assignment

Here, we reproduce the full definition of our new penalty table for bond order assignment.

id atom
SMARTS expression

description
penalties

av0 av1 av2 av3 av4 av5 av6 av7

1 H
SMARTS([#1+]) new, covers positively

charged hydrogens
0 - - - - - - -

2 H
SMARTS([#1]) taken from Antechamber

(rule 1), but prohibited
av0 and av2

- 0 - - - - - -

3 C
SMARTS([$([#6D1](∼[#7D2]))]) taken from Antechamber

(rule 6)
- - - 0 1 32 - -

4 C
SMARTS([#6D1]) taken from Antechamber

(rule 7)
- - - 1 0 32 - -

5 C
SMARTS([#6]) taken from Antechamber

(rule 9)
- - 64 32 0 32 64 -

131

A. Supplementary Information on BOA Constructor

id atom
SMARTS expression

description
penalties

av0 av1 av2 av3 av4 av5 av6 av7

6 N
SMARTS([$([#7D1](∼[#7D2]))]) taken from Antechamber

(rule 11)
- - 0 0 - - - -

7 N
SMARTS([#7D1]) taken from Antechamber

(rule 12)
- - 3 0 32 - - -

8 N
SMARTS([$([#7D2](∼[#7D1]))]) taken from Antechamber

(rule 13)
- - - 1 0 - - -

9 N
SMARTS([#7D2]) taken from Antechamber

(rule 14)
- - 4 0 2 - - -

10 N
SMARTS([$([#7D3](∼[#8D1-,#16D1-])
∼[#8D1,#16D1])])

new, covers charged
nitrogen as shown in
Fig. A.1(a)

- - - 32 0 32 64 -

11 N
SMARTS([$([#7D3](∼[#8D1,#16D1])
∼[#8D1,#16D1])])

taken from Antechamber
(rule 15)

- - - 64 32 0 32 -

12 N
SMARTS([$([#7D3](∼[#8D1,#16D1])
(∼[!#8&!#16,!D1])
(∼[!#8&!#16,!D1]))])

taken from Antechamber
(rule 16), added av5=0
covering e.g. pyrimidin-
1-oxide

- - - 1 0 0 - -

13 N
SMARTS([#7D3]) taken from Antechamber

(rule 17) but prohibited
av2

- - - 0 1 2 - -

14 N
SMARTS([#7D4+]) new, covers charged

nitrogen as shown in
Fig. A.1(b)

- - - - 0 - - -

15 N
SMARTS([#7D4]) taken from Antechamber

(rule 18) but prohibited
av2 and av3, and set av4
to 0, and av5 to 1

- - - - 0 1 - -

16 N
SMARTS([#7]) new default fallback

- - 0 0 0 0 - -

132

A.1. A New Penalty Table for Bond Order Assignment

id atom
SMARTS expression

description
penalties

av0 av1 av2 av3 av4 av5 av6 av7

17 O
SMARTS([#8D1-]) new, covers charged

oxygens as shown in
Fig. A.1(c)

- 0 32 - - - - -

18 O
SMARTS([$([#8D1]

(∼[#6D3]∼[#8D1,#16D1]))]
new, covers oxygens
in carboxylic groups as
shown in Fig. A.1(d)

- 0 0 - - - - -

19 O
SMARTS([#7D3](∼[#8D1,#16D1])
(∼[!#8&!#16,!D1])
(∼[!#8&!#16,!D1]))
AND element(O)

taken from Antechamber
(rule 19)

- 0 1 - - - - -

20 O
SMARTS([#8D1]) taken from Antechamber

(rule 20)
- 1 0 64 - - - -

21 O
SMARTS([#8D2]) taken from Antechamber

(rule 21) but prohibited
av1

- - 0 64 - - - -

22 O
SMARTS([#8D3]) new, covers oxygens as

shown in Fig. A.1(e)
- - - 0 - - - -

23 P
SMARTS(#15D1) taken from Antechamber

(rule 22)
- - 2 0 32 - - -

24 P
SMARTS(#15D2) taken from Antechamber

(rule 23)
- - 4 0 2 - - -

25 P
SMARTS(#15D3) taken from Antechamber

(rule 24) but prohibited
av2

- - - 0 1 2 - -

26 P
SMARTS([$([#15D4](∼[#8D1,#16D1])
(∼[!#8 &

!#16,!D1]) (∼[!#8 &

!#16,!D1,#8D1-,#16D1-])

(∼[#8D1-,#16D1-]))])

new, covers phosphorus
with 4 bonds as shown in
Fig. A.1(f)

- - - - - 0 32 -

27 P
SMARTS([$([#15D4](∼[#8D1,#16D1])
(∼[!#8 &! #16,!D1])

(∼[!#8 & !#16,!D1])

(∼[#8D1,#16D1]))])

taken from Antechamber
(rule 25)

- - - - - 32 0 32

133

A. Supplementary Information on BOA Constructor

id atom
SMARTS expression

description
penalties

av0 av1 av2 av3 av4 av5 av6 av7

28 P
SMARTS([$([#15D4](∼[#8D1,#16D1])
(∼[#8D1,#16D1])
(∼[#8D1,#16D1]) (∼[!#8
& !#16,!D1]))])

taken from Antechamber
(rule 26)

- - - - - - 32 0

29 P
SMARTS(#15D4) taken from Antechamber

(rule 27) but prohibited
av3

- - - - 1 0 32 -

30 S
SMARTS([#7D3](∼[#16D1])
(∼[!#8 & !#16,!D1])

(∼[!#8 & !#16,!D1]))

AND element(S)

taken from Antechamber
(rule 28)

- 0 1 - - - - -

31 S
SMARTS([$([#16D1]

(∼[#6D3]∼[#8D1,#16D1]))])
new, covers -CSS func-
tional groups as shown in
Fig. A.1(g)

- 0 0 - - - - -

32 S
SMARTS([#16D1]) taken from Antechamber

(rule 29)
- 2 0 64 - - - -

33 S
SMARTS([$([#16D2](∼[#8D1,#16D1])
∼[#8D1,#16D1])])

new, covers sulfur dioxid
as shown in Fig. A.1(h)

- - - - 0 - - -

34 S
SMARTS([#16D2]) taken from Antechamber

(rule 30) but prohibited
av1

- - 0 64 - - - -

35 S
SMARTS([#16D3]) taken from Antechamber

(rule 31)
- - - 1 0 2 2 -

134

A.1. A New Penalty Table for Bond Order Assignment

id atom
SMARTS expression

description
penalties

av0 av1 av2 av3 av4 av5 av6 av7

36 S
SMARTS([$([#16D4](∼[#8D1,#16D1])
(∼[#8D1,#16D1])
(∼[!#8&!#16,!D1])
(∼[!#8&!#16,!D1]))])

taken from Antechamber
(rule 32)

- - - - - - 0 32

37 S
SMARTS([$([#16D4](∼[#8D1-,#16D1-])
(∼[#8D1,#16D1])
(∼[#8D1,#16D1])
(∼[!#8&!#16,!D1]))])

new, charged NSO−
3 -

group as shown in
Fig. A.1(i)

- - - - - - 0 -

38 S
SMARTS([$([#16D4](∼[#8D1,#16D1])
(∼[#8D1,#16D1])
(∼[#8D1,#16D1]))])

taken from Antechamber
(merged rule 33 and 34)

- - - - - - 32 0

39 S
SMARTS([#16D4]) taken from Antechamber

(rule 35)
- - - - 4 2 0 -

40 S
SMARTS([#16D5]) new default fallback

- - - - - 2 0 -

41 F
SMARTS([#9]) taken from Antechamber

(rule 2)
64 0 64 - - - - -

42 Br
SMARTS([#35]) taken from Antechamber

(rule 4)
64 0 64 - - - - -

43 I
SMARTS([#53]) taken from Antechamber

(rule 5)
64 0 64 - - - - -

44 Cl
SMARTS([#17-]) new, covering charged

chlorine
0 - - - - - - -

45 Cl
SMARTS([#17]) taken from Antechamber

(rule 3), added av3, av4
covering ions

64 0 64 128 128 - - -

135

A. Supplementary Information on BOA Constructor

id atom
SMARTS expression

description
penalties

av0 av1 av2 av3 av4 av5 av6 av7

46 Si
SMARTS([#14]) taken from GAFF (rule

10)
- - - - 0 - - -

47 Li
SMARTS([#3]) new, covering ions

0 - - - - - - -

48 Na
SMARTS([#11]) new, covering ions

0 - - - - - - -

49 Mg
SMARTS([#12]) new, covering

ions [Nac13]
0 - - - - - - -

50 K
SMARTS([#19]) new, covering ions

0 - - - - - - -

51 Ca
SMARTS([#20]) new, covering ions

0 - - - - - - -

52 Cu
SMARTS([#29]) new, covering ions

0 - - - - - - -

53 Zn
SMARTS([#30]) new, covering ions

0 - - - - - - -

54 Fe
SMARTS([#26]) new, covering ions

0 - - - - - - -

Table A.1.: New atom penalty classes. We converted the atom type descriptions as denoted in
[WWKC06] to SMARTS expressions and extended the list to cover more atomic elements
and to handle charged atoms.

136

A.2. Molecular Structures for the new Rules in the Penalty Table

A.2. Molecular Structures for the new Rules in the Penalty Table

(a) Rule 10 (b) Rule 14 (c) Rule 17 (d) Rule 18

(e) Rule 22 (f) Rule 26 (g) Rule 31 (h) Rule 33

(i) Rule 37

Figure A.1.: Example molecules for different rules in the penalty table.

137

A. Supplementary Information on BOA Constructor

(a) FE2PW3 (b) FE3PW3

(c) H3OPW1 (d) VIMHII

Figure A.2.: Molecules from the MMFF94 test set not covered by the original Antechamber penalty
table.

138

A.3. New Heuristic Approaches for Bond Order Assignment

A.3. New Heuristic Approaches for Bond Order Assignment

In this appendix, we discuss two heuristic approaches to the bond order assignment problem that we
developed as potential alternatives to the optimal ones. The main reason for studying these approaches
is speed: as described in Section 2.4, the heuristic Antechamber approach often fails to compute the
correct solution but is very computationally efficient. In this section, we test systematic approximation
schemes as opposed to the very ad-hoc heuristic of Antechamber. Due to the great computational
efficiency of our optimal solvers, the heuristic approaches were not needed in our experiments, but
might be of interest for application to extremely large systems or as the basis for further extensions to
the method. Hence, we reproduce them here for completeness.

A.3.1. K-Greedy

A greedy algorithm splits an optimization problem into a sequence of decisions and favours at each
step a locally optimal choice, hoping that this strategy will lead to a global optimum. Taking at each
step not only the single best but the k best choices into account leads to the k-greedy algorithm. In
general, greedy algorithms can not guarantee to find an optimal solution, but often lead to acceptable
estimates.

Mapping the bond order assignment problem onto a k-greedy algorithm is straightforward: while
descending the bond order assignment tree (compare Section 2.6.1), a k-greedy algorithm expands at
each layer i only the best k nodes, representing the k partial bond order assignments with smallest
atomic penalty score aps.

Our implementation is denoted in Alg. 5 with k denoting the number of nodes that will be expanded
in the next layer. For convenience, we assume k > μ. Furthermore, let GPQ denote a priority queue
that stores the set of the k best nodes (partial bond order assignment) in each layer. It is typically
implemented as a priority queue of fixed length.

Obviously, the order in which the bonds are considered has an influence upon the bond order as-
signments found by the k-greedy algorithm. Imagine two conformations differing in the orders of two
bonds i and j, where the first conformation’s order of bond i is slightly more penalized than the second
conformation’s order of bond i, whereas the first conformation’s order of bond j has a significantly
smaller penalty as the second conformation’s order of bond j. Considering bond i before j during
the algorithm favours the second conformation over the first one and might lead to an exclusion of
the first conformation from further expansions, although the first conformation finally would yield the
better total penalty score.

In total, the k-greedy bond order algorithm computes and stores a set of not necessarily optimal but
hopefully “good” bond order assignments.

A.3.2. Branch & Bound

The main disadvantage of the k-greedy heuristic is that it cannot guarantee optimality, while the A*-
search suffers from complicated and expensive heuristic evaluations and in some cases an enormous
search tree size. Combining A*-search and k-greedy yields a branch & bound algorithm, that on the
one hand is able to assure optimality while on the other hand dispenses complicated search heuristics
and reduces the search tree size. To guarantee optimality, however, the algorithm needs to explore
every leaf of the tree that is not cut away by the bound. This is usually much too expensive, and hence,
it is often used in a heuristic fashion: the first leaf that is encountered is returned as an estimate of
the optimum. This leads to a usually very efficient heuristic, that is known to work well if the bound
is tight, but does not guarantee optimality.

In the course of a branch & bound algorithm (see Alg. 6), a search tree is generated by splitting the
optimization problem into smaller subproblems. This step is denoted as branching. For the resulting

139

A. Supplementary Information on BOA Constructor

Algorithm 5 k-greedy – bond order algorithm (molecule M with n bonds, k)

1: GPQ ← {r}
2: b1 := is the first free bond in M
3: for all bond orders i do
4: GPQ ← GPQ ∪ bondOrders({b1 ← i})
5: end for
6: for all bonds b �= b1 do
7: if b has fixed bond order o then
8: for all w ∈ GPQ do
9: addNode(GPQ, bondOrders(w, {b← o}), k)

10: end for
11: else
12: for all bond orders i do
13: for all w ∈ GPQ do
14: addNode(GPQ, bondOrders(w, {b← i}), k)
15: end for
16: end for
17: end if
18: end for
19: for all w ∈ GPQ do
20: store bond order configuration as denoted in w
21: end for
22: return
23:

24: def addNode(w̄, GPQ, k):
25: if len(GPQ) < k then
26: GPQ ← GPQ ∪ {w̄}
27: else
28: if g(w̄) < max

w∈GPQ
g(w) then

29: GPQ ← GPQ \ {argmax
w∈GPQ

g(w)}
30: GPQ ← GPQ ∪ {w̄}
31: end if
32: end if
33: return GPQ

140

A.3. New Heuristic Approaches for Bond Order Assignment

subproblems, an upper and lower bound is computed and the search tree is pruned at a node w if the
subproblem represented by the node w exceeds the boundaries.
For mapping the bond order assignment problem onto the branch & bound algorithm we understand
the bond order assignment tree (see Section 2.6.1) to represent a branching, the result of a first
run of the k-greedy algorithm as an upper bound, and the value of the search heuristic h∗(w̄) as a
lower bound. To be more flexible, we offer an additional pruning factor p that is multiplied with the
upper boundary. This will allow to generate solutions that are sub-optimal by a factor of p. The final
algorithm is shown in Alg. 6.
Let k denote the size of the greedy set providing the upper bound for pruning and p the pruning
factor that is multiplied with the upper boundary. Please note that both parameters p and k have an
influence upon the size of the search tree and the number of solutions provided by the algorithm. The
function f(w̄) plays the role of a lower bound, where f(w̄) returns the sum of the current and the
heuristic atomic penalty score of the partial solution represented by node w̄: f(w̄) = g∗(w̄) + h∗(w̄).

Algorithm 6 branch & bound – bond order algorithm (molecule M with n bonds, k, p)

1: cutoff = f(k-greedy(B, k)) ∗ p
2: PQ ← {r}
3: b1 := is the first free bond in M
4: for all bond orders i do
5: PQ ← PQ ∪ bondOrders({b1 ← i})
6: end for
7: while PQ �= ∅ do
8: w̄ ← argmin

w∈PQ
f(w)

9: PQ ← PQ \ {w̄}
10: if w̄ is leaf then
11: store bond orders as denoted in w̄
12: else
13: bx := is next free bond in B
14: for all bond orders i do
15: w̄ ← bondOrders(w̄, {bx ← i})
16: if f(w̄) ≤ cutoff then
17: PQ ← PQ ∪ {w̄}
18: end if
19: end for
20: end if
21: end while

141

A. Supplementary Information on BOA Constructor

A.4. Selected Aspects of the Implementation of BOA Constructor

A.4.1. Python Interface

import BALL

get the f i r s t system
system = getSys tems () [0]

c r e a t e a bond o r d e r a s s i gnment p r o c e s s o r
abop = BALL . Ass i gnBondOrde rProce s so r ()
abop . o p t i o n s . s e tBoo l (

BALL . Ass i gnBondOrde rProce s so r . Opt ion . KEKULIZE RINGS , True)
abop . o p t i o n s . s e tBoo l (

BALL . Ass i gnBondOrde rProce s so r . Opt ion .OVERWRITE SINGLE BOND ORDERS,
True)

abop . o p t i o n s . s e tBoo l (
BALL . Ass i gnBondOrde rProce s so r . Opt ion .OVERWRITE DOUBLE BOND ORDERS,
True)

abop . o p t i o n s . s e tBoo l (
BALL . Ass i gnBondOrde rProce s so r . Opt ion .OVERWRITE TRIPLE BOND ORDERS,
True)

abop . o p t i o n s . s e t (
BALL . Ass i gnBondOrde rProce s so r . Opt ion .ALGORITHM,
BALL . Ass i gnBondOrde rProce s so r . A lgo r i thm .A STAR)

abop . o p t i o n s . s e tR e a l (
BALL . Ass i gnBondOrde rProce s so r . Opt ion .BOND LENGTH WEIGHTING, 0)

abop . o p t i o n s . s e t I n t e g e r (
BALL . Ass i gnBondOrde rProce s so r . Opt ion .MAX NUMBER OF SOLUTIONS, 10)

abop . o p t i o n s . s e tBoo l (
BALL . Ass i gnBondOrde rProce s so r . Opt ion .COMPUTE ALSO NON OPTIMAL SOLUTIONS,
True)

abop . o p t i o n s . s e tBoo l (BALL . Ass i gnBondOrde rProce s so r . Opt ion .ADD HYDROGENS, True)

p r i n t the c u r r e n t atomic p e n a l t y
p r i n t abop . e v a l u a t eP e n a l t y (system)

app l y the as s i gnment p r o c e s s o r
system . app l y (abop)

p r i n t a l l s o l u t i o n s
f o r i i n range (abop . getNumberOfComputedSolut ions ()) :

p r i n t ” s o l u t i o n ” , s t r (i) , ” : p e n a l t y ” , s t r (abop . g e tTo t a lP ena l t y (i)) ,
” , ” , abop . getNumberOfAddedHydrogens (i) , ” added hydrogens . ”

app l y the l a s t s o l u t i o n
abop . app l y (abop . getNumberOfComputedSolut ions ()−1)

update the system
ge tMa inCont ro l () . update (system)

142

A.4. Selected Aspects of the Implementation of BOA Constructor

A.4.2. Graphical User Interface

BOA Constructor has been fully integrated into BALLView. Figs. A.3-A.7 show an exemplary BALL-
View session, where a caffeine molecule without bond order information is corrected using BOA Con-
structor.

Figure A.3.: Caffeine without bond order information

143

A. Supplementary Information on BOA Constructor

Figure A.4.: The basic options page for BOA Constructor. On the “Advanced” tab, the user can
additionally include a structural score or the fine penalty, choose the solution strategy, or
a different atom penalty table.

Figure A.5.: The first optimal solution of BOA Constructor for caffeine. Note that this is indeed the
correct assignment, and has been scored with a penalty of 0.

144

A.4. Selected Aspects of the Implementation of BOA Constructor

Figure A.6.: The 45th solution of BOA Constructor for caffeine. This solution is obviously non-optimal
and has been scored with a penalty of 9.

Figure A.7.: Caffeine after application of the first optimal solution of BOA Constructor.

145

A. Supplementary Information on BOA Constructor

A.4.3. BOA Constructor Options

option description default

OVERWRITE SINGLE BOND ORDERS compute bond orders for all
bonds with current type sin-
gle bond order

true

OVERWRITE DOUBLE BOND ORDERS compute bond orders for all
bonds with current type dou-
ble bond order

true

OVERWRITE TRIPLE BOND ORDERS compute bond orders for all
bonds with current type triple
bond order

true

OVERWRITE SELECTED BONDS compute bond orders for all
selected bonds

false

ADD HYDROGENS add hydrogens based on free
valences

false

USE FINE PENALTY resolve penalties based on
structural information

true

KEKULIZE RINGS try to kekulize rings true

MAX BOND ORDER the maximal possible bond or-
der

3

MAX NUMBER OF SOLUTIONS the maximal number of solu-
tions to compute.

10

COMPUTE ALSO NON OPTIMAL

SOLUTIONS

compute also non-optimal
solutions but not more than
MAX NUMBER OF SOLUTIONS

false

ALGORITHM technique to com-
pute the assignments:
A STAR, ILP, K GREEDY,
BRANCH AND BOUND

A STAR

HEURISTIC heuristic defining the tight-
ness of the search crite-
ria: Heuristic::{SIMPLE,
MEDIUM, TIGHT}

Heuristic::TIGHT

BOND LENGTH WEIGHTING weighting of bond length
penalties wrt valence penal-
ties

0.0

APPLY FIRST SOLUTION apply the first solution di-
rectly on the given system

true

GREEDY K SIZE the size of priority queue for
the greedy algorithm

5

BRANCH AND BOUND CUTOFF the percentage cutoff for
keeping PQ-Entries in the
branch and bound algorithm

1.2

Table A.2.: Options for BOA Constructor.

146

A.4. Selected Aspects of the Implementation of BOA Constructor

A.4.4. Distribution of Penalty Rules

Figure A.8.: Distribution of matching rules using the former penalty table of [WWKC06] (upper figure)
and the new penalty table as defined in table A.1 (lower figure).

147

A. Supplementary Information on BOA Constructor

A.5. A* Performance Measures

The performance of the A* search heuristics manifests in two different ways: computational efficiency
and order of the results. As all proposed heuristics are admissible, each will be able to compute all
optimal solutions. This is confirmed empirically by comparing the number of optimally scored reference
assignments of each heuristic (column four of table A.4 and table A.5) with the number of reproduced
reference assignments of the other exact solvers (column four of table 2.3). Thus, we focus on the
following properties for further evaluation

1. the number of reference assignments returned as first solution (should be large).

2. the number of steps necessary to find a first/all optimal solutions (should be small).

3. the costs per step (run time for the evaluation of all child nodes and correct insertion into the
A* priority queue) (should be small).

The first property naturally depends on the ability of the penalty table to assign an optimal penalty score
to the reference molecule’s bond order assignment. On the other hand, the heuristic algorithmically
implies a certain order on all optimal solutions. In a general setting, one might expect the algorithm
to return the most probable assignment first. Table A.4 shows that on the MMFF94 validation suite,
for both penalty tables, search heuristic simple performs best. This may be due to its preference for
smaller bond orders. However, this only measures the quality of the results of the A* search. Similarly
important may be the runtime properties. To understand the runtime behaviour, we have plotted a
histogram of the number of steps needed by the different heuristics (see table A.9 and table A.10):
heuristic “simple” needs noticeably more A* search steps than heuristics “medium” and ”tight”, which
perform very similar. Notably, the choice of penalty table does not seem to have a significant influence
on the number of steps. The use of the fine penalty score, on the other hand, improves the performance
of all three heuristics.
Taking only the first solution returned by each heuristic into account, all three heuristics perform
comparably well. On the MMFF94 validation suite, the simple heuristic is able to reproduce 59.78%,
whereas both, heuristic “medium” and “tight”, achieve 56.89% of the reference solutions. On the
KEGG Drug set, a reversed order can be seen: heuristic “medium” and “tight” slightly outperform
heuristic “simple” with 50.58% versus 49.95% (see table A.5). These differences are due to a different
ordering of partial solutions within the A* priority queue.
Comparing the number of steps required for the A* to compute a solution, heuristics “medium” and
“tight” perform surprisingly similar. The additional tightening of the upper boundary does not influence
the number of steps to compute a complete first bond order assignment as the A* algorithms tries the
bond orders with increasing order. Heuristic “simple”, on the other hand, needs significantly more A*
search steps than the other two, at least for molecules with more than 30 bonds (c.f. table A.3).
Obviously the number of steps in the A* search heuristics correlates with the dimension of the problem,
which can be measured as the number of bonds. For this evaluation, we did not count bonds connecting
hydrogens, since these are automatically fixed as single bonds. This relation is shown in table A.11
and table A.12.

148

A.5. A* Performance Measures

steps
file

simple medium tight
bonds # optimal sol

DEBMOM01 13 11 11 7 + 3 = 10 1
COTMON 48 34 34 13 + 7 = 20 2
DEDSIO 50 30 30 17 + 13 = 30 1
DEGRIQ 330 117 117 23 + 17 = 40 4
DUYPES 165 119 119 26 + 22 = 48 8
BEWCUB 165 100 100 38 + 23 = 61 2

TAJSUS 301 83 83 20 + 11 = 31 8
DIYPOQ 825 87 87 18 + 17 = 35 2
TACLEO 1076 54 54 16 + 12 = 28 2

Table A.3.: Performance of the A∗-search heuristics on selected molecules of the MMFF94 validation
suite, measured as the number of steps to find a first solution. Column five denotes the
number of bonds (non-hydrogen bonds + hydrogens).

reference is
table heuristic

1st solution optimal
no solution

simple 455 (59.78%)

Wang medium 599 (78.71%) 4 (0.53%)

tight
433 (56.89%)

simple 458 (60.18%)

improved medium 639 (83.96%) 0 (0.00%)

tight
449 (59.00%)

Table A.4.: Performance of the A∗-search heuristics on the MMFF94 validation suite using the penalty
table as defined in Wang et al. [WWKC06] and the improved BALL penalty table (see
table A.1), measured as the number of reproduced reference bond order assignments.

reference is
table heuristic

1st solution optimal
no solution

simple 3708 (49.95%)

Wang medium 3755 (50.58%) 6326 (85.21%) 191 (2.57%)

tight 3754 (50.57%)

simple 4391 (59.15%)

improved medium 7167 (96.54%) 180 (2.42%)

tight
4022 (54.18%)

Table A.5.: Performance of the A∗-search heuristics on the KEGG Ligand Drug set using the penalty
table as defined in Wang et al. [WWKC06] and the improved BALL penalty table (see
table A.1) measured as the number of reproduced reference bond order assignments.

149

A. Supplementary Information on BOA Constructor

Figure A.9.: Comparison of the performance of the A* search heuristics as a function of the num-
ber of steps (MMFF94 validation suite, using the penalty table as defined in Wang et
al. [WWKC06]).

150

A.5. A* Performance Measures

Figure A.10.: Comparison of the performance of the A* search heuristics as a function of the number of
steps (MMFF94 validation suite, using the improved BALL penalty table (see table A.1)).

151

A. Supplementary Information on BOA Constructor

Figure A.11.: Performance of the different A* search heuristics as a function of problem dimension
(number of non-hydrogen containing bonds) on the MMFF94 validation suite, using the
penalty table as defined in Wang et al. [WWKC06].

152

A.5. A* Performance Measures

Figure A.12.: Performance of the different A* search heuristics as a function of problem dimension
(number of non-hydrogen containing bonds) on the MMFF94 validation suite, using the
improved BALL penalty table (see table A.1).

153

B. Supplementary Information on NightShift,
Spinster, and Liops

This appendix contains supplementary or advanced information on our pipeline for chemical shift
prediction NightShift and the protein- and protein-ligand models Spinster and Liops. This includes
parameter values for the semi-classical terms in the models (c.f. App. B.1) and on the lexing and
parsing of files in NMRStar format (c.f. App. B.2).

B.1. Parameters for Semi-Classical NMR Chemical Shift Predictors

residue type k intensity factor Ik ring atoms

PHE 1.05 Cγ Cδ
2 Cε

2 Cζ Cε
1 Cδ

1

TYR 0.92 Cγ Cδ
2 Cε

2 Cζ Cε
1 Cδ

1

TRP1 1.04 Cδ
2 Cε

3 Cζ
3 Cη

2 Cζ
2 Cε

2

TRP2 0.90 Cγ Cδ
2 Cε

2 Nε
1 Cδ

1

HIS 0.43 Cγ Nδ
1 Cε

1 Nε
2 Cδ

2

Table B.1.: List of ring current effectors considered in the ShiftX implementation of the Haigh-Mallion
model, empirically determined values for their intensity factors Ik, and the involved ring
atoms.

atom type target nucleus factor

Hα 5.13
HN 7.06
Cα 1.5
Cβ 1.0
C 1.0
N 1.0

Table B.2.: List of ring current targets considered in the ShiftX-implementation of the Haigh-Mallion
model and empirically determined values for the constant B.

B.2. Lexer and Parser for CIF - Files

B.2.1. A FLEX-based Lexer for CIF - Files

Here, we reproduce the full content of the “.l” - file used to build a lexer for the Crystallographic
Information File (CIF) [HAB91, BM02]. Please note that, due to the peculiarities of the CIF format,
the lexer has to perform some of the work classically assigned to the parser. This requires extensive
use of FLEX’s state mechanism.

155

B. Supplementary Information on NightShift, Spinster, and Liops

location type label members

HN hydrogen bonded to the peptid bond’s nitrogen
Hα α-hydrogen bonded to the α-carbon
C’ peptide backbone carbon also called carbonyl carbon

backbone
Cα backbone carbon next to the carbonyl carbon
Cβ carbon at position β relative to the carbonyl carbon
N backbone nitrogen

HA* HA, 1HA, 2HA (Hα∗)
HB* HB, 1HB, 2HB, 3HB (Hβ

∗)
HD* 1HD, 2HD, HD1, HD2, 1HD1, 1HD2, 2HD2,

2HD1, 3HD1, 3HD2 (Hδ∗)
side chain hydrogens HE* HE, HE1, HE2, HE3, 1HE, 2HE, 3HE,

1HE2, 2HE2 (Hε∗)
HG* HG, 1HG, 2HG, HG1, 1HG1, 2HG1, 3HG1,

1HG2, 2HG1, 3HG1 (Hγ
∗)

HH* HH, HH2, 1HH1, 1HH2, 2HH1, 2HH2 (Hη
∗)

HZ* HZ, 1HZ, 2HZ, 3HZ (Hζ
∗)

HEHZ* HE*, HH*, HZ*

ND* ND1, ND2 (Nδ∗)
NE* NE, NE1, NE2 (Nε∗)side chain nitrogens
NH* NH1, NH2 (Nη

∗)
NZ* NZ (Nζ

∗)
CD* CD, CD1. CD2 (Cδ∗)
CE* CE, CE1, CE2, CE3 (Cε∗)

side chain carbons CG* CG, CG1, CG2 (Cγ
∗)

CH* CH2 (Cη
∗)

CZ* CZ, CZ2, CZ3 (Cζ
∗)

OD* OD1, OD2 (Oδ∗)
side chain oxygens OE* OE1, OE2 (Oε∗)

OG* OG, OG1 (Oγ
∗)

SD Sδ∗side chain sulfur
SG Sγ∗

Table B.3.: Atom type nomenclature, borrowed from the PDB file format conventions. The asterisk
represents further subtypes like “HE*” for HE1, HE2, and HE3.

ci value

c1 9.7464
c2 -0.9887
c3 0.147521
c4 -1.65458×10−05

c5 -0.000134668
c6 0.0598561
c7 15.6855
c8 -0.673905

Table B.4.: Parameters for the hydrogen bond effect as used in the ShiftX implementation.

156

B.2. Lexer and Parser for CIF - Files

%s in_data_heading

%s in_save_heading

%x in_single_quote

%x in_double_quote

%x in_loop

%x in_save_frame

%x in_textfield

%option noyywrap

%option array

EOL [\n\r]

AnyPrintChar ({OrdinaryChar}|[\"\’#$_\t[:blank:];\[\]])

SingleQuote \’

DoubleQuote \"

COMMENT (#({AnyPrintChar})*{EOL})+

TOKENIZED_COMMENT [[:blank:]\n\r]*{COMMENT}

WHITESPACE [[:blank:]\n\r]+

WS_OR_COMMENT ([[:blank:]\n\r]|{TOKENIZED_COMMENT})+

DATA_ [dD][aA][tT][aA]_

SAVE_ [sS][aA][vV][eE]_

NBC [^[:blank:]\n\r]

LOOP_ [lL][oO][oO][pP]_

STOP_ [sS][tT][oO][pP]_

TAG [[:blank:]]*_{NBC}+

OrdinaryChar [0-9a-zA-Z!%&$()*+,\-./:<=>?@\\^‘{|}\[\]~]

UnquotedString {OrdinaryChar}({OrdinaryChar}|\;)*

UnderScore _

TEXTLEADCHAR {OrdinaryChar}|{SingleQuote}|{DoubleQuote}

|#|$|_|[[:blank:]]|\[|\]

CHARSTRING {UnquotedString}

DIGIT [0-9]

UnsignedInteger {DIGIT}+

EXPONENT [eE]([+\ -]?){UnsignedInteger}

INT [+\-]?[0-9]+

FLOAT [+\-]?(([0-9]+"."[0-9]+)|{EXPONENT})

NUMBER ({INT}|{FLOAT})

NUMERIC ({NUMBER}|{NUMBER}({UnsignedInteger}))

VALUE [.?]|({NUMERIC}|{CHARSTRING})

%%

<in_textfield>{

^;/{WS_OR_COMMENT}* {

BEGIN(textfield_state_buffer);

return TK_TEXTFIELD;

157

B. Supplementary Information on NightShift, Spinster, and Liops

}

{WS_OR_COMMENT}* {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_TEXTFIELD_LINE;

}

{TEXTLEADCHAR}{AnyPrintChar}*{EOL} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_TEXTFIELD_LINE;

}

}

<*>^;/{WS_OR_COMMENT}* {

textfield_state_buffer = YY_START;

BEGIN(in_textfield);

return TK_TEXTFIELD;

}

<in_single_quote>{

{SingleQuote}/{WS_OR_COMMENT}+{

BEGIN(state_buffer);

return TK_CLOSE_SINGLE_QUOTE;

}

{

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

; {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

{VALUE} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

{WHITESPACE} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_WHITESPACE;

}

}

<in_data_heading,in_save_heading,in_loop,in_save_frame,INITIAL>

{WHITESPACE}+{SingleQuote} {

state_buffer = YY_START;

BEGIN(in_single_quote);

158

B.2. Lexer and Parser for CIF - Files

return TK_OPEN_SINGLE_QUOTE;

}

<*>{SingleQuote} {

return TK_SINGLE_QUOTE;

}

<in_double_quote>{

{DoubleQuote}/{WS_OR_COMMENT}+ {

BEGIN(state_buffer);

return TK_CLOSE_DOUBLE_QUOTE;

}

{

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

; {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

{VALUE} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

{WHITESPACE} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_WHITESPACE;

}

}

<in_data_heading,in_save_heading,in_loop,in_save_frame,INITIAL>

{WHITESPACE}+{DoubleQuote} {

state_buffer = YY_START;

BEGIN(in_double_quote);

return TK_OPEN_DOUBLE_QUOTE;

}

<*>{DoubleQuote} {

return TK_DOUBLE_QUOTE;

}

<in_save_heading>{

{NBC}+ {

BEGIN(INITIAL);

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_SAVE_HEADING;

159

B. Supplementary Information on NightShift, Spinster, and Liops

}

{WS_OR_COMMENT} {

BEGIN(INITIAL);

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_WHITESPACE;

}

}

{SAVE_}{

BEGIN(in_save_heading);

return TK_SAVE;

}

<in_data_heading>{

{NBC}+ {

BEGIN(INITIAL);

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_DATA_HEADING;

}

}

^{DATA_} | {WS_OR_COMMENT}{DATA_} {

BEGIN(in_data_heading);

}

<in_loop>{

{STOP_} {

BEGIN(INITIAL);

return TK_STOP;

}

{VALUE} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

{WS_OR_COMMENT} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_WHITESPACE;

}

}

{LOOP_} {

BEGIN(in_loop);

return TK_LOOP;

}

160

B.2. Lexer and Parser for CIF - Files

{VALUE} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_VALUE;

}

<*>{UnderScore} {

return TK_UNDERSCORE;

}

{WS_OR_COMMENT} {

strncpy(CIFParserlval.text, yytext, CIFPARSER_LINE_LENGTH);

return TK_WHITESPACE;

}

%%

B.2.2. A Grammar for CIF - Files

〈CIF 〉 ::= 〈optional whitespace〉 〈optional datablock〉

〈optional datablock〉 :: = 〈empty〉
| 〈datablock list〉 〈optional whitespace〉

〈datablock list〉 ::= 〈datablock〉
| 〈datablock list〉 〈optional whitespace〉 〈datablock〉

〈datablock〉 ::= 〈data heading〉 TK WHITESPACE
| 〈data heading〉 TK WHITESPACE 〈datablock content〉 TK WHITESPACE

〈data heading〉 ::= TK DATA HEADING

〈datablock content〉 ::= 〈data items〉
| 〈saveframe〉
| 〈datablock content〉 TK WHITESPACE 〈data items〉
| 〈datablock content〉 TK WHITESPACE 〈saveframe〉

〈data items〉 ::= 〈tag〉 〈optional whitespace〉 〈value〉
| 〈tag〉 TK WHITESPACE
| 〈loop〉 〈tag list〉 〈optional whitespace〉 〈loop body〉 〈optional whitespace〉

TK STOP

〈loop〉 ::= TK LOOP

〈tag list〉 ::= TK WHITESPACE 〈tag〉
| 〈tag list〉 〈optional whitespace〉 〈tag〉

〈loop body〉 ::= 〈value〉
| 〈loop body〉 〈optional whitespace〉 〈value〉

〈saveframe〉 ::= TK SAVE 〈save heading〉 TK WHITESPACE
〈save frame content〉 〈optional whitespace〉 TK SAVE

161

B. Supplementary Information on NightShift, Spinster, and Liops

〈save heading〉 ::= TK SAVE HEADING

〈save frame content〉 ::= 〈data items〉
| 〈save frame content〉 TK WHITESPACE 〈data items〉
| 〈save frame content〉 〈data items〉

〈optional whitespace〉 ::= 〈empty〉
| TK WHITESPACE 〈optional whitespace〉

〈tag〉 ::= TK UNDERSCORE 〈value〉

〈value〉 ::= TK VALUE
| TK VALUE 〈single quote helper〉 〈value helper〉
| TK VALUE 〈single quote helper〉
| TK VALUE TK UNDERSCORE 〈value helper〉
| TK OPEN SINGLE QUOTE 〈single quoted string〉
| TK OPEN DOUBLE QUOTE 〈double quoted string〉
| TK TEXTFIELD 〈textfield line〉 TK TEXTFIELD

〈value helper〉 ::= TK VALUE
| TK VALUE 〈single quote helper〉 〈value helper〉
| TK VALUE 〈single quote helper〉
| TK VALUE TK UNDERSCORE 〈value helper〉

〈single quote helper〉 ::= TK SINGLE QUOTE

〈single quoted string〉 ::= TK CLOSE SINGLE QUOTE
| TK VALUE 〈single quoted string〉
| TK WHITESPACE 〈single quoted string〉
| TK VALUE TK UNDERSCORE single quoted string¿
| TK SINGLE QUOTE 〈single quoted string〉
| TK DOUBLE QUOTE 〈single quoted string〉

〈double quoted string〉 ::= TK CLOSE DOUBLE QUOTE
| TK VALUE 〈double quoted string〉
| TK VALUE TK UNDERSCORE 〈double quoted string〉
| TK WHITESPACE 〈double quoted string〉
| TK DOUBLE QUOTE 〈double quoted string〉
| TK SINGLE QUOTE 〈double quoted string〉

〈textfield line〉 ::= 〈empty〉
| TK TEXTFIELD LINE 〈textfield line〉

162

C. Copyrights of Figures and Quotations

All figures in this thesis are protected by copyright and may not be published without permission of
the copyright owner. License numbers for previously published content were acquired through the
Copyright Clearance Center. In the following, we describe the original sources of reproduced content
and the licensing information where appropriate.

• Fig. 2.2 is used with kind permission from PERGAMON: Bioorganic & medicinal chemistry
letters, Structure-based optimization of a potent class of arylamide FMS inhibitors, 18, 3632,
2008, Sanath K. Meegalla, license number 2901430976472.

• Fig. 2.1 has been previously published in Proceedings of GCB 2009 [DRLH09].

• Fig. 2.5, as well as some of the explanatory text, are used with kind permission from Oxford Uni-
versity Press: Bioinformatics, Automated Bond Order Assignment as an Optimization Problem,
27, 619, 2011, Anna Katharina Dehof, license number 2901431393493.

• Fig. 3.3 and Fig. 3.1 contain images that are used with kind permission from Springer Sci-
ence+Business Media: Journal of Biomolecular NMR, A microscale protein NMR sample screen-
ing pipeline, 46, 2009, Paolo Rossi, license number 2780880807590.

• Figs. 3.9, 3.11, 3.12, and 3.13 were previously published in our own manuscript in the Proceedings
of GCB 2011 [DLH11].

• Fig. 4.10 was published in our own manuscript [PGD+10].

• Fig. 4.3, 4.4, 4.5,4.7,4.8 were published in our own manuscript [MGD+10]. With Fig. 4.4,
we additionally won the Arts and Science Award ISMB/ECCB 2011, for which the figure was
published as the winning entry on several websites.

163

D. Publications and Talks by the Author

D.1. Journal Publications (peer-reviewed)

A.K. Dehof, A. Rurainski, Q.B.A. Bui, S. Böcker, H.-P. Lenhof, and A. Hildebrandt: (2011) Auto-
mated Bond Order Assignment as an Optimization Problem. Bioinformatics, 2011, 27, 619-625.

K.K. Singh, S. Erkelenz, S. Rattay, A.K. Dehof, A. Hildebrandt, K. Schulze-Osthoff, H. Schaal, and
C. Schwerk: (2010) Human SAP18 mediates assembly of a splicing regulatory multiprotein
complex via its ubiquitin-like fold. RNA, 2010, 16(12), 2442-2454.

A. Hildebrandt, A.K. Dehof, A. Rurainski, A. Bertsch, M. Schumann, N.C. Toussaint, A. Moll,
D. Stoeckel, S. Nickels, S.C. Müller, H.-P. Lenhof, and O. Kohlbacher: (2010) BALL - Biochemical
Algorithms Library 1.3. BMC Bioinformatics, 2010, 11:531.

K.H. Brämswig, A.B. Riemer, E. Förster-Waldl, A.K. Dehof, D. Neumann, H.N. Lode, C. Zielinski,
O. Scheiner, H. Pehamberger, and E. Jensen-Jarolim: (2005) Generation of Peptide mimics of
Melanoma Antigen GD2 Journal of Investigative Dermatology 125(S1:A35)

E. Förster-Waldl, A.B. Riemer, A.K. Dehof, D. Neumann, K.H. Brämswig, G. Boltz-Nitulescu, H. Pe-
hamberger, C. Zielinski, O. Scheiner, A. Plloak, H.N. Lode, and E. Jensen-Jarolim: (2004) Isolation
and structural analysis of peptide mimotopes for the disialoganglioside GD2, a neuroblastoma
tumor antigen Molecular Immunology 42

D.2. Conference Proceedings (peer-reviewed)

A.K. Dehof, H.-P. Lenhof, and A. Hildebrandt: (2011) Predicting Protein NMR Chemical Shifts in
the Presence of Ligands and Ions using Force Field-based Features. Proceedings of the German
Conference on Bioinformatics (GCB 2011).

L. Marsalek, A.K. Dehof, I. Georgiev, H.-P. Lenhof, P. Slusallek and A. Hildebrandt: (2010) Real-time
Ray Tracing of Complex Molecular Scenes. Proceedings of the IVbm 10 - Information Visualization
in Biomedical Informatics

M. Phillips, I. Georgiev, A.K. Dehof, L. Marsalek, H.-P. Lenhof, A. Hildebrandt, and P. Slusallek:
(2010) Measuring Properties of Molecular Surfaces Using Ray Casting. HiCOMB 2010, Pro-
ceedings of 9th International Workshop on High Performance Computational Biology

165

D. Publications and Talks by the Author

A.K. Dehof, A. Rurainski, H.-P. Lenhof and A. Hildebrandt: (2009) Automated Bond Order As-
signment as an Optimization Problem. Proceedings of GCB 2009 (German Conference on Bioin-
formatics, Halle (Saale), Germany, 28-30 Sep 2009), Lecture Notes in Informatics, 2009

A.K. Dehof, D. Stoeckel, S. Nickels, S.C. Müller, M. Schumann, H.-P. Lenhof, O. Kohlbacher, A. Hilde-
brandt: The BALL project: The Biochemical Algorithms Library (BALL) for Rapid Application
Development in Structural Bioinformatics and its graphical user interface BALLView, BOSC
2011 Vienna (SIG at ISMB ECCB 2011, Vienna, Austria, July 15-July 16, 2011)

D.3. Conference Proceedings (not peer-reviewed)

A.K. Dehof, I. Georgiev, L. Marsalek, D. Stoeckel, S. Nickels, H.-P. Lenhof, P. Slusallek, and A. Hilde-
brandt: (2009) Visual Computing in Computer Aided Drug Design. 1st. Visual Computing
Research Conference, December 2009, Saarbrücken

D.4. Posters

A.K. Dehof, H.-P. Lenhof, A. Hildebrandt: Pipeline for the training of NMR chemical shift predic-
tion models, ISMB ECCB 2011 Vienna (19th annual international conference on Intelligent Systems
for Molecular Biology and 10th European conference on Computational Biology, Vienna, Austria, July
17-July 19, 2011)

A.K. Dehof, D. Stoeckel, S. Nickels, S.C. Müller, M. Schumann, H.-P. Lenhof, O. Kohlbacher, A. Hilde-
brandt: The Biochemical Algorithms Library (BALL) - Rapid Application Development in
Structural Bioinformatics, BOSC 2011 Vienna (SIG at ISMB ECCB 2011, Vienna, Austria, July
15-July 16, 2011)

A.K. Dehof, D. Stoeckel, S. Nickels, S.C. Müller, M. Schumann, H.-P. Lenhof, O. Kohlbacher, A. Hilde-
brandt: The Biochemical Algorithms Library (BALL) - Rapid Application Development in
Structural Bioinformatics, MMW 2011 (25th Molecular Modelling Workshop 2011, Erlangen, Ger-
many, 4-6 Apr 2011)

A.K. Dehof, L. Marsalek, I. Georgiev, D. Stoeckel, S. Nickels, H.-P. Lenhof, P. Slusallek and A. Hilde-
brandt: Interactive real time ray tracing in molecular visualzation, GCB 2009 (German Conference
on Bioinformatics, Halle (Saale), Germany, 28-30 Sep 2009)

A.K. Dehof, L. Marsalek,I. Georgiev, D. Stoeckel, S. Nickels, H.-P. Lenhof, P. Slusallek and A. Hilde-
brandt: Real-time ray tracing of complex molecular scenes with BALLView and RTfact. ISMB
ECCB 2009 Stockholm (17th annual international conference on Intelligent Systems for Molecular
Biology and 8th European conference on Computational Biology, Stockholm, Sweden, June 29-July
2, 2009)

L. Marsalek, A.K. Dehof, I. Georgiev, D. Stoeckel, S. Nickels, H.-P. Lenhof, P. Slusallek and A. Hilde-
brandt: Real-time Volume Ray Tracing For Bioinformatics Applications. ISMB ECCB 2009
Stockholm (17th annual international conference on Intelligent Systems for Molecular Biology and 8th
European conference on Computational Biology, Stockholm, Sweden, June 29-July 2, 2009)

A.K. Dehof, H.-P. Lenhof, H. Hoffmann, R. Jochem, A. Hildebrandt: BALLView-VR: Wirkstoffen-
twicklung als Virtual Reality Anwendung mit Multi-Touch Display. Closing conference of the
Foresight Process, 19.-20. June, 2009

A.K. Dehof, A. Rurainski, S.C. Müller, H.-P. Lenhof: Discrete optimization techniques for optimal
bond order assignment ECCB 2008 (7th European conference on Computational Biology, Cagliari,
Italy, 22- 26 September, 2008)

166

D.5. Talks at International Conferences

D.5. Talks at International Conferences

“Predicting Protein NMR Chemical Shifts in the Presence of Ligands and Ions using Force Field-
based Features”. At: German Conference on Bioinformatics, 8. September 2011, Weihenstephan,
Germany.

“A Pipeline for the training of NMR chemical shift prediction models”. At: 25th Molecular Modelling
Workshop 2011, 4. April 2011, Erlangen, Germany

“Automated Bond Order Assignment as an Optimization Problem”. At: German Conference on
Bioinformatics, 30. September 2009, Halle, Germany

D.6. Talks at Research Institutions

“Discrete Optimization Techniques for Optimal Bond Order Assignment”. At: JCB Seminar, Chair
of Prof. Sebastian Böcker, 4. December 2008, Jena, Germany

D.7. Technical Demonstrations at International Events

Demonstration Real time ray tracing in molecular modelling at the 21st Eurographics Symposium
on Rendering, June 2010, Saarbrücken, Germany

Demonstration Distributed collaborative molecular modelling at Research@Intel, March 2010,
Brussels, Belgium

Demonstration BALLView: a molecular viewer and modelling tool with real-time ray tracing
capabilities at the technology track of ECCB/ISMB 2009, June 2009, Stockholm, Sweden

Demonstration of BALLView with multitouch support at the closing conference of the Foresight
Process, June 2009, Bonn, Germany

Technical support of demonstration Real time ray tracing in computational biology with BALL-
View at Intel Press Conference, Cebit 2009, March 2009, Hannover, Germany

Demonstration of BALLView at Saarland University booth at CeBit 2009, March 2009, Hannover,
Germany

D.8. Publications in Preparation

A.K. Dehof, L. Marsalek, I. Georgiev, D. Stoeckel, S. Nickels, H.-P. Lenhof, P. Slusallek and A. Hilde-
brandt: Interactive real time ray tracing in molecular visualzation

A.K. Dehof, S. Loew, H.-P. Lenhof, and A. Hildebrandt: NightShift – An automated pipeline for
training and evaluating NMR shift prediction models

A.K. Dehof, S. Loew, H.-P. Lenhof, and A. Hildebrandt: Spinster and Liops – New hybrid models
for NMR chemical shift predictions for proteins with and without ligands

A.K. Dehof, Q.B.A. Bui, K. Dührkop, H.-P. Lenhof, S. Böcker, and A. Hildebrandt: BOA Constructor
– A new program for accurate, efficient, and extensible bond order assignment

167

Bibliography

[AAFA10] Z. Atieh, M. Aubert-Frecon, and A.-R. Allouche. Rapid, Accurate and Simple Model to
Predict NMR Chemical Shifts for Biological Molecules. The Journal of Physical Chemistry
B, 114(49):16388–16392, 2010.

[AB03] C. P. Adams and V. V. Brantner. New drug development: Estimating entry from human
clinical trials. Bureau of Economics, Federal Trade Commission, 2003.

[ABGK05] R. J. Abraham, J. J. Byrne, L. Griffiths, and R. Koniotou. 1H chemical shifts in NMR:
Part 22 - prediction of the 1H chemical shifts of alcohols, diols and inositols in solution, a
conformational and solvation investigation. Magnetic Resonance in Chemistry, 43(8):611–
624, 2005.

[ABGP06] R. J. Abraham, J. J. Byrne, L. Griffiths, and M. Perez. 1H chemical shifts in NMR: Part
23 - the effect of dimethyl sulphoxide versus chloroform solvent on 1H chemical shifts.
Magnetic Resonance in Chemistry, 44(5):491–509, 2006.

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embedding in a
k-tree. Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

[AFWH00] C. Altona, D. H. Faber, and A. J. A. Westra Hoekzema. Double-helical DNA 1H chemical
shifts: An accurate and balanced predictive empirical scheme. Magnetic Resonance in
Chemistry, 38(2):95–107, 2000.

[Ait11] M. Aitken. The Global Use of Medicines: Outlook Through 2015. Technical Report May,
2011.

[AKLM02] E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Müller. A combinatorial approach to
protein docking with flexible side chains. Journal of Computational Biology, 9(4):597–612,
2002.

[AL06] K. Arun and C. J. Langmead. Structure based chemical shift prediction using Random
Forests non-linear regression. Proceedings of The Forth Asia-Pacific Bioinformatics Con-
ference, (APBC), pages 317–326, 2006.

[All02] F. H. Allen. The Cambridge Structural Database: a quarter of a million crystal structures
and rising. Acta Crystallogr B, 58(Pt 3 Pt 1):380–388, Jun 2002.

[AS64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, Ninth Dover printing, Tenth GPO
printing edition, 1964.

[AST+84] I. Ando, H. Saito, R. Tabeta, A. Shoji, and T. Ozaki. Conformation-dependent 13C NMR
chemical shifts of poly(L-alanine) in the solid state: FPT INDO calculation of N-Acetyl-
N’-methyl-L-alanine amide as a model compound of poly(L-alanine). Macromolecules,
17(3):457–461, 1984.

169

Bibliography

[BAM+98] P. Bayer, A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, and J. Becker.
Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of
Molecular Biology, 280(2):275–286, 1998.

[BBST09] S. Böcker, Q. B. A. Bui, P. Seeber, and A. Truss. Computing bond types in molecule
graphs. In Proc. of Computing and Combinatorics Conference (COCOON 2009), volume
5609 of Lecture Notes in Computer Science, pages 297–306. Springer, 2009.

[BEN04] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve 5.5, Open source (Mixed-
Integer) Linear Programming system. Software, May 1 2004. Available at
http://lpsolve.sourceforge.net/5.5/.

[BFK+06] H. L. Bodlaender, F. V. Fomin, A. M. Koster, D. Kratsch, and D. M. Thilikos. On exact
algorithms for treewidth. Technical Report UU-CS-2006-032, Institute of Information and
Computing Sciences, Utrecht University, 2006.

[BG91] W. Bremser and M. Grzonka. SpecInfo–A multidimensional spectroscopic interpretation
system. Microchimica Acta, 104:483–491, 1991. 10.1007/BF01245533.

[BH92] J. C. Baber and E. E. Hodgkin. Automatic assignment of chemical connectivity to organic
molecules in the Cambridge Structural Database. Journal of Chemical Information and
Computer Sciences, 32:401–406, 1992.

[BHN03] H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide Protein Data
Bank. Nature Structural Biology, 10(12):980, Dec 2003.

[BKO11] M. Beer, J. Kussmann, and C. Ochsenfeld. Nuclei-Selected NMR Shielding Calculations:
A Sublinear-Scaling Quantum-Chemical Method. Journal of Chemical Physics, 134(7),
2011.

[BKS07] P. Berman, M. Karpinski, and A. D. Scott. Computational complexity of some restricted
instances of 3-SAT. Discrete Applied Mathematics, 155(5):649–653, 2007.

[BLZ+10] M. Berjanskii, Y. Liang, J. Zhou, P. Tang, P. Stothard, Y. Zhou, J. Cruz, C. MacDonell,
G. Lin, P. Lu, and D. S. Wishart. PROSESS: a protein structure evaluation suite and
server. Nucleic Acids Research, 38(SUPPL. 2):W633–W640, Jul 2010.

[BM02] I. Brown and B. McMahon. CIF: The computer language of crystallography. Acta Crys-
tallographica Section B: Structural Science, 58(3 PART 1):317–324, 2002.

[Bre01] L. Breiman. Random forests. Machine Learning, (1):5–32, 2001.

[BS10] M. Brylinski and J. Skolnick. Comparison of structure-based and threading-based ap-
proaches to protein functional annotation. Proteins, 78(1):118–134, Jan 2010.

[BTL+09] M. Berjanskii, P. Tang, J. Liang, J. A. Cruz, J. Zhou, Y. Zhou, E. Bassett, C. MacDonell,
P. Lu, G. Lin, and D. S. Wishart. GeNMR: a web server for rapid NMR-based protein
structure determination. Nucleic Acids Research, 37(Web Server issue):W670–W677, Jul
2009.

[Buc60] A. D. Buckingham. Chemical shifts in the nuclear magnetic resonance spectra of molecules
containing polar groups. Canadian Journal of Chemistry, 38:300 – 307, 1960.

[Bui10] Q. B. A. Bui. Fixed-Parameter Algorithms for some Combinatorial Problems in Bioinfor-
matics. PhD thesis, Friedrich Schiller Universität Jena, 2010.

170

Bibliography

[BW05] M. Berjanskii and D. S. Wishart. A simple method to predict protein flexibility using
secondary chemical shifts. Journal for the American Chemical Society, 127(43):14970–
14971, Nov 2005.

[BW06] M. Berjanskii and D. S. Wishart. NMR: prediction of protein flexibility. Nature Protocols,
1(2):683–688, 2006.

[BW08] M. Berjanskii and D. S. Wishart. Application of the random coil index to studying protein
flexibility. Journal of Biomolecular NMR, 40(1):31–48, Jan 2008.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28:235–
242, 2000.

[CCB+95] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson,
D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force
field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the
American Chemical Society, 117(19):5179–5197, 1995.

[CCD+05] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev,
C. Simmerling, B. Wang, and R. J. Woods. The Amber biomolecular simulation programs.
Journal of Computational Chemistry, 26(16):1668–1688, December 2005.

[CDB99] G. Cornilescu, F. Delaglio, and A. Bax. Protein backbone angle restraints from searching
a database for chemical shift and sequence homology. Journal of Biomolecular NMR,
13(3):289–302, 1999.

[CMV11] A. Cavalli, R. W. Montalvao, and M. Vendruscolo. Using Chemical Shifts to Deter-
mine Structural Changes in Proteins upon Complex Formation. The Journal of Physical
Chemistry. B, June 2011.

[Col10] S. Collin. Leistungsdiagnostik im Schwimmsport. Vergleich zweier spiroergometrischer
Belastungsprotokolle- Laufbandrampentest vs. Schwimmbanktest. PhD thesis, Universität
zu Köln, 2010.

[CSDV07] A. Cavalli, X. Salvatella, C. M. Dobson, and M. Vendruscolo. Protein structure determi-
nation from NMR chemical shifts. Proceedings of the National Academy of Sciences of
the United States of America (PNAS), 104(23):9615–9620, Jun 2007.

[CSK+03] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D.
Thompson. Multiple sequence alignment with the Clustal series of programs. Nucleic
Acids Research, 31(13):3497–3500, 2003.

[CTK11] S. Canzar, N. C. Toussaint, and G. W. Klau. An exact algorithm for side-chain placement
in protein design. Optimization Letters, 5(3):393–406, 2011.

[DC97] R. L. Dunbrack and F. E. Cohen. Bayesian statistical analysis of protein side-chain rotamer
preferences. Protein Science, 6(8):1661–1681, August 1997.

[Deh07] A. K. Dehof. Development and Implementation of an NMR–based Scoring Function for
the Evaluation of Docking Results. Master’s thesis, Saarland University, Germany, 2007.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

171

Bibliography

[DFS+11] F. Doloresco, C. Fominaya, G. T. Schumock, L. C. Vermeulen, L. Matusiak, R. J. Hunkler,
N. D. Shah, and J. M. Hoffman. Projecting future drug expenditures: 2011. American
Journal of Health-System Pharmacy, 68(10):921–32, May 2011.

[DG04] M. Dickson and J. P. Gagnon. Key factors in the rising cost of new drug discovery and
development. Nature Reviews Drug Discovery, 3(5):417–429, May 2004.

[DGM+09] A. K. Dehof, I. Georgiev, L. Marsalek, S. Nickels, H.-P. Lenhof, P. Slusallek, and A. Hilde-
brandt. Visual Computing in Computer Aided Drug Design. In Visual Computing Research
Conference, Saarbrücken, 2009.

[DHG03] J. A. DiMasi, R. W. Hansen, and H. G. Grabowski. The price of innovation: new estimates
of drug development costs. Journal of Health Economics, 22(2):151–85, March 2003.

[DiM01] J. A. DiMasi. New drug development in the United States from 1963 to 1999. Clinical
Pharmacology and Therapeutics, 69(5):286–296, May 2001.

[DK93] R. L. Dunbrack and M. Karplus. Backbone-dependent Rotamer Library for Proteins
Application to Side-chain Prediction. Journal of Molecular Biology, 230(2):543 – 574,
1993.

[DK94] R. L. Dunbrack and M. Karplus. Conformational analysis of the backbone-dependent
rotamer preferences of protein sidechains. Nature Structural Biology, 1(5):334–340, May
1994.

[DLH11] A. K. Dehof, H.-P. Lenhof, and A. Hildebrandt. Predicting Protein NMR Chemical Shifts
in the Presence of Ligands and Ions using Force Field-based Features. In Proceedings of
the German Conference on Bioinformatics (GCB), 2011.

[DRB+11] A. K. Dehof, A. Rurainski, Q. B. A. Bui, S. Böcker, H.-P. Lenhof, and A. Hildebrandt. Au-
tomated bond order assignment as an optimization problem. Bioinformatics, 27(5):619–
25, March 2011.

[DRLH09] A. K. Dehof, A. Rurainski, H.-P. Lenhof, and A. Hildebrandt. Automated bond order
assignment as an optimization problem. In Proceedings of the German Conference on
Bioinformatics (GCB), pages 201–209, 2009.

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory, volume 7. Springer, 2006.

[FH05] M. Froeyen and P. Herdewijn. Correct bond order assignment in a molecular frame-
work using integer linear programming with application to molecules where only non-
hydrogen atom coordinates are available. Journal of Chemical Information and Modelling,
45(5):1267–1274, 2005.

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000.

[Fis94a] E. Fischer. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen
chemischen Gesellschaft, 27(3):2985–2993, 1894.

[Fis94b] E. Fischer. Synthesen in der Zuckergruppe II. Berichte der deutschen chemischen
Gesellschaft, 27(3):3189–3232, 1894.

[FOME11] A. Frank, I. Onila, H. M. Möller, and T. E. Exner. Toward the quantum chemical cal-
culation of nuclear magnetic resonance chemical shifts of proteins. Proteins: Structure,
Function, and Bioinformatics, 2011.

172

Bibliography

[GBS+97] W. Gronwald, R. F. Boyko, F. D. Sönnichsen, D. S. Wishart, and B. D. Sykes. ORB, a
homology-based program for the prediction of protein NMR chemical shifts. Journal of
Biomolecular NMR, 10(2), 1997.

[GD04] V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In UAI ’04:
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages 201–
208. AUAI Press, 2004.

[GGCH07] S. W. Ginzinger, F. Gerick, M. Coles, and V. Heun. CheckShift: Automatic correction
of inconsistent chemical shift referencing. Journal of Biomolecular NMR, 39(3):223–227,
2007.

[GHH+06] R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa, C. Steinbeck,
J. Wegner, and E. L. Willighagen. The Blue Obelisk-interoperability in chemical infor-
matics. Journal of Chemical Information and Modelling, 46(3):991–998, 2006.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1st edition, 1994.

[GNTT10] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team. Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biology, 11(8):R86, 2010.

[GOH+02] S. Goto, Y. Okuno, M. Hattori, T. Nishioka, and M. Kanehisa. LIGAND: database
of chemical compounds and reactions in biological pathways. Nucleic Acids Research,
30(1):402–404, Jan 2002.

[Goo08] M. Goodman. Market Watch: Pharma industry performance metrics: 2007-2012E. Nature
Reviews Drug Discovery, 7(10):795, October 2008.

[GS08] I. Georgiev and P. Slusallek. RTfact: Generic Concepts for Flexible and High Performance
Ray Tracing. In IEEE/Eurographics Symposium on Interactive Ray Tracing 2008, August
2008.

[GSBW00] P. Guntert, M. Salzmann, D. Braun, and K. Wuthrich. Sequence-specific NMR assign-
ment of proteins by global fragment mapping with the program MAPPER. Journal of
Biomolecular NMR, 18(2):129–137, 2000.

[GYK+07] Q. Gao, S. Yokojima, T. Kohno, T. Ishida, D. G. Fedorov, K. Kitaura, M. Fujihira, and
S. Nakamura. Ab initio NMR chemical shift calculations on proteins using fragment molec-
ular orbitals with electrostatic environment. Chemical Physics Letters, 445(4-6):331–339,
2007.

[HAB91] S. R. Hall, F. H. Allen, and I. D. Brown. The crystallographic information file (CIF): a new
standard archive file for crystallography. Acta Crystallographica Section A, 47(6):655–685,
Nov 1991.

[Hal96a] T. A. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and
performance of MMFF94. Journal of Computational Chemistry, 17(5-6):490–519, 1996.

[Hal96b] T. A. Halgren. MMFF VI. MMFF94s option for energy minimization studies. Journal of
Computational Chemistry, 17:490–519, 1996.

[HC95] S. R. Hall and A. P. F. Cook. STAR dictionary definition language: Initial specification.
Journal of Chemical Information and Computer Sciences, 35(5):819–825, 1995.

173

Bibliography

[HDR+10] A. Hildebrandt, A. K. Dehof, A. Rurainski, A. Bertsch, M. Schumann, N. Toussaint,
A. Moll, D. Stockel, S. Nickels, S. Mueller, H.-P. Lenhof, and O. Kohlbacher. BALL -
Biochemical Algorithms Library 1.3. BMC Bioinformatics, 11(1):531, 2010.

[HDS+11] A. Hildebrandt, A. K. Dehof, D. Stöckel, S. Nickels, S. Mueller, M. Schumann, H.-P.
Lenhof, and O. Kohlbacher. The BALL project: The Biochemical Algorithms Library
(BALL) for Rapid Application Development in Structural Bioinformatics and its graphical
user interface BALLView. In Proceedings of the 12th Annual Bioinformatics Open Source
Conference BOSC 2011, pages 24, 29, 2011.

[HGPF88] M. Head-Gordon, J. A. Pople, and M. J. Frisch. MP2 energy evaluation by direct methods.
Chemical Physics Letters, 153(6):503–506, 1988.

[Hil05] A. Hildebrandt. Biomolecules in a structured solvent: a novel formulation of nonlocal
electrostatics and its numerical solution. Rhombos-Verl., 2005.

[HK64] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,
136(3B):B864–B871, 1964.

[HLGW11] B. Han, Y. Liu, S. Ginzinger, and D. Wishart. SHIFTX2: significantly improved protein
chemical shift prediction. Journal of Biomolecular NMR, pages 1–15, 2011.

[HM72] C. Haigh and R. Mallion. New tables of ring current shielding in proton magnetic reso-
nance. Organic Magnetic Resonance, 4(2):203–228, 1972.

[HM79] C. Haigh and R. Mallion. Ring current theories in nuclear magnetic resonance. Progress
in Nuclear Magnetic Resonance Spectroscopy, 13(4):303–344, 1979.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4,
4:100–107, 1968.

[HRB97] M. Hendlich, F. Rippmann, and G. Barnickel. BALI: Automatic assignment of bond and
atom types for protein ligands in the brookhaven protein databank. Journal of Chemical
Information and Computer Sciences, 37:774–778, 1997.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer,
5th Printing edition, September 2009.

[IS05] J. J. Irwin and B. K. Shoichet. ZINC–a free database of commercially available compounds
for virtual screening. Journal of Chemical Information and Modelling, 45(1):177–182,
2005.

[JJB58] C. Johnson Jr. and F. Bovey. Calculation of nuclear magnetic resonance spectra of
aromatic hydrocarbons. The Journal of Chemical Physics, 29(5):1012–1014, 1958.

[JJB02] A. Jakalian, D. B. Jack, and C. I. Bayly. Fast, efficient generation of high-quality atomic
charges. AM1-BCC model: II. parameterization and validation. Journal of Computational
Chemistry, 23(16):1623–1641, Dec 2002.

[KBM+01] O. Kohlbacher, A. Burchardt, A. Moll, A. Hildebrandt, P. Bayer, and H.-P. Lenhof.
Structure prediction of protein complexes by an NMR-based protein docking algorithm.
Journal of Biomolecular NMR, 20(1):15–21, May 2001.

174

Bibliography

[KCB04] D. E. Kim, D. Chivian, and D. Baker. Protein structure prediction and analysis using the
robetta server. Nucleic Acids Research, 32(Web Server issue):W526–W531, Jul 2004.

[KENS08] S. Kuhn, B. Egert, S. Neumann, and C. Steinbeck. Building blocks for automated elucida-
tion of metabolites: Machine learning methods for NMR prediction. BMC Bioinformatics,
9(1):400, 2008.

[KL00] O. Kohlbacher and H. P. Lenhof. BALL–rapid software prototyping in computational
molecular biology. Biochemicals Algorithms Library. Bioinformatics, 16(9):815–824, Sep
2000.

[KLHT09] B. Kneissl, B. Leonhardt, A. Hildebrandt, and C. S. Tautermann. Revisiting Automated
G-Protein Coupled Receptor Modeling: The Benefit of Additional Template Structures
for a Neurokinin-1 Receptor Model. Journal of Medicinal Chemistry, 52(10):3166–3173,
2009.

[KMTH11] B. Kneissl, S. Mueller, C. S. Tautermann, and A. Hildebrandt. String Kernels and High-
Quality Data Set for Improved Prediction of Kinked Helices in α-Helical Membrane Pro-
teins. Journal of Chemical Information and Modeling, October 2011.

[KO07] J. Kussmann and C. Ochsenfeld. Linear-Scaling Method for Calculating Nuclear Magnetic
Resonance Chemical Shifts Using Gauge-Including Atomic Orbitals within Hartree-Fock
and Density-Functional Theory. Journal of Chemical Physics, 127(5), 2007.

[Koc76] B. Koch. Darstellung und Charakterisierung von multiplen Formen der Alpha-N-
Acetylgalaktosaminidase. PhD thesis, Universität Münster, 1976.

[Kos58] D. E. Koshland. Application of a Theory of Enzyme Specificity to Protein Synthesis. Pro-
ceedings of the National Academy of Sciences of the United States of America, 44(2):98–
104, February 1958.

[KRC+09] K. J. Kohlhoff, P. Robustelli, A. Cavalli, X. Salvatella, and M. Vendruscolo. Fast and
Accurate Predictions of Protein NMR Chemical Shifts from Interatomic Distances. Journal
of the American Chemical Society, 131(39):13894–13895, 2009.

[KS65] W. Kohn and L. Sham. Self-consistent equations including exchange and correlation
effects. Physical Review, 140(4A):A1133–A1138, 1965.

[KS83] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637, 1983.

[Lab05] P. Labute. On the perception of molecules from 3D atomic coordinates. Journal of
Chemical Information and Modelling, 45(2):215–221, 2005.

[Lam07] S. L. Lam. DSHIFT: a web server for predicting DNA chemical shifts. Nucleic Acids
Research, 35(suppl 2):W713–W717, 2007.

[Lan19] I. Langmuir. The arrangement of electrons in atoms and molecules. Journal of the
American Chemical Society, 41(6):868–934, 1919.

[LdDO93] D. Laws, A. de Dios, and E. Oldfield. NMR chemical shifts and structure refinement in
proteins. Journal of Biomolecular NMR, 3(5):607–612, 1993.

[LDH82] K. L. D. Hof. Untersuchungen zur Reaktionslage des sympathischen Nervensystems nach
Meditation (TM). PhD thesis, Universität zu Köln, 1982.

175

Bibliography

[Lew16] G. N. Lewis. The atom and the molecule. Journal of the American Chemical Society,
38(4):762–785, 1916.

[Lic09] F. R. Lichtenberg. The Quality of Medical Care, Behavioral Risk Factors, and Longevity
Growth. National Bureau of Economic Research Working Paper Series, No. 15068, 2009.

[LL98] A. R. Leach and A. P. Lemon. Exploring the conformational space of protein side chains
using dead-end elimination and the A* algorithm. Proteins, 33(2):227–239, Nov 1998.

[LMP04] C. A. Lepre, J. M. Moore, and J. W. Peng. Theory and applications of NMR-based
screening in pharmaceutical research. Chemical Reviews, 104(8):3641–76, August 2004.

[LW02] A. Liaw and M. Wiener. Classification and regression by randomForest. R News, 2(3):18–
22, 2002.

[McC57] H. McConnell. Theory of Nuclear Magnetic Shielding in Molecules. I. Long-Range Dipolar
Shielding of Protons. Journal of Chemical Physics, 27:226–229, 1957.

[MCS+08] R. W. Montalvao, A. Cavalli, X. Salvatella, T. L. Blundell, and M. Vendruscolo. Structure
determination of protein-protein complexes using NMR chemical shifts: Case of an en-
donuclease colicin-immunity protein complex. Journal of the American Chemical Society,
130(47):15990–15996, 2008.

[Mei03] J. Meiler. PROSHIFT: protein chemical shift prediction using artificial neural networks.
Journal of Biomolecular NMR, 26(1):25–37, May 2003.

[MGD+10] L. Marsalek, I. Georgiev, A. K. Dehof, H.-P. Lenhof, P. Slusallek, and A. Hildebrandt.
Real-time ray tracing of complex molecular scenes. In Proceedings of the International
Conference on Information Visualisation, pages 239–245, 2010.

[MHLK05] A. Moll, A. Hildebrandt, H.-P. Lenhof, and O. Kohlbacher. BALLView: an object-oriented
molecular visualization and modeling framework. Journal of Computer-Aided Molecular
Design, 19(11):791–800, November 2005.

[MHLK06] A. Moll, A. Hildebrandt, H.-P. Lenhof, and O. Kohlbacher. BALLView: a tool for research
and education in molecular modeling. Bioinformatics, 22(3):365–366, 2006.

[MK09] S. Mielke and V. Krishnan. Characterization of protein secondary structure from nmr
chemical shifts. Progress in Nuclear Magnetic Resonance Spectroscopy, 54(3-4):141–
165, 2009.

[MKTB04] A. Morozov, T. Kortemme, K. Tsemekhman, and D. Baker. Close agreement between the
orientation dependence of hydrogen bonds observed in protein structures and quantum
mechanical calculations. Proceedings of the National Academy of Sciences of the United
States of America (PNAS), 101(18):6946–6951, 2004.

[MSP09] C. K. Materese, A. Savelyev, and G. A. Papoian. Counterion atmosphere and hydration
patterns near a nucleosome core particle. Journal for the American Chemical Society,
131(41):15005–15013, Oct 2009.

[MTK+10] N. Maghsoudi, N. K. Tafreshi, F. Khodagholi, Z. Zakeri, M. Esfandiarei, H. Hadi-
Alijanvand, M. Sabbaghian, A. H. Maghsoudi, M. Sajadi, M. Zohri, M. Moosavi, and
M. Zeinoddini. Targeting enteroviral 2A protease by a 16-mer synthetic peptide: inhibi-
tion of 2Apro-induced apoptosis in a stable Tet-on HeLa cell line. Virology, 399(1):39–45,
Mar 2010.

176

Bibliography

[Mue08] S. Mueller. Bond- and Atomtyping for the BALL-library. Bachelor Thesis Saarland Uni-
versity, Center for Bioinformatics, Bachelor’s Program in Bioinformatics, 2008.

[MWC+08] S. K. Meegalla, M. J. Wall, J. Chen, K. J. Wilson, S. K. Ballentine, R. L. Desjarlais,
C. Schubert, C. S. Crysler, Y. Chen, C. J. Molloy, M. A. Chaikin, C. L. Manthey, M. R.
Player, B. E. Tomczuk, and C. R. Illig. Structure-based optimization of a potent class of
arylamide FMS inhibitors. Bioorganic & Medicinal Chemistry Letters, 18(12):3632–3637,
Jun 2008.

[Nac13] A. Nacken. Über Messungen im Magnesium-Spektrum nach internationalen Normalen.
PhD thesis, Universität Bonn, 1913.

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[NMH+02] J. W. M. Nissink, C. Murray, M. Hartshorn, M. L. Verdonk, J. C. Cole, and R. Taylor. A
new test set for validating predictions of protein-ligand interaction. Proteins, 49(4):457–
471, Dec 2002.

[NMR] NMRPredict. http://www.modgraph.co.uk/product nmr.htm.

[NNZW03] S. Neal, A. M. Nip, H. Zhang, and D. S. Wishart. Rapid and accurate calculation of
protein 1H, 13C and 15N chemical shifts. Journal of Biomolecular NMR, 26(3):215–240,
Jul 2003.

[ÖC94] K. Ösapay and D. A. Case. Analysis of proton chemical shifts in regular secondary structure
of proteins. Journal of Biomolecular NMR, 4(2):215–230, 1994.

[OKK04] C. Ochsenfeld, J. Kussmann, and F. Koziol. Ab initio NMR spectra for molecular sys-
tems with a thousand and more atoms: A linear-scaling method. Angewandte Chemie -
International Edition, 43(34):4485–4489, 2004.

[PB82] G. Purvis and R. Bartlett. A full coupled-cluster singles and doubles model: The inclusion
of disconnected triples. The Journal of Chemical Physics, 76(4):1910–1918, 1982.

[PC03] J. W. Ponder and D. A. Case. Force Fields for Protein Simulation. Advantages in Protein
Chemistry, 66:27–85, 2003.

[PGD+10] M. Phillips, I. Georgiev, A. K. Dehof, S. Nickels, L. Marsalek, H.-P. Lenhof, A. Hilde-
brandt, and P. Slusallek. Measuring properties of molecular surfaces using ray casting. In
2010 IEEE International Symposium on High Performance Computational Biology, pages
1–7. IEEE, 2010.

[Pha11] Pharmaceutical Research and Manufacturers of America. PhRMA 2011 profile. Technical
report, 2011.

[PMD+10] S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R.
Lindborg, and A. L. Schacht. How to improve R&D productivity: the pharmaceutical
industry’s grand challenge. Nature Reviews Drug Discovery, 9(3):203–14, March 2010.

[Pop58] J. A. Pople. Molecular orbital theory of aromatic ring currents. Molecular Physics,
1(2):175 – 180, 1958.

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Courier Dover Publications, 1998.

177

Bibliography

[R D11] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.

[RRK10] M. Roettig, C. Rausch, and O. Kohlbacher. Combining structure and sequence informa-
tion allows automated prediction of substrate specificities within enzyme families. PLoS
Computational Biology, 6(1), 2010.

[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309 – 322, 1986.

[RSH+10] P. Rossi, G. Swapna, Y. Huang, J. Aramini, C. Anklin, K. Conover, K. Hamilton, R. Xiao,
T. Acton, A. Ertekin, J. Everett, and G. Montelione. A microscale protein NMR sample
screening pipeline. Journal of Biomolecular NMR, 46:11–22, 2010.

[Rur10] A. Rurainski. Optimization in Bioinformatics. PhD thesis, Universität des Saarlandes,
Saarbrücken, 2010.

[RV10] W. Rieping and W. F. Vranken. Validation of archived chemical shifts through atomic
coordinates. Proteins, 78(11):2482–2489, Aug 2010.

[SB07] Y. Shen and A. Bax. Protein backbone chemical shifts predicted from searching a database
for torsion angle and sequence homology. Journal of Biomolecular NMR, 38(4):289–302,
Aug 2007.

[SB10] Y. Shen and A. Bax. SPARTA+: a modest improvement in empirical NMR chemical
shift prediction by means of an artificial neural network. Journal of Biomolecular NMR,
(48):13–22, 2010.

[SBC+08] Y. D. Smurnyy, K. A. Blinov, T. S. Churanova, M. E. Elyashberg, and A. J. Williams.
Toward More Reliable 13C and 1H Chemical Shift Prediction: A Systematic Comparison
of Neural-Network and Least-Squares Regression Based Approaches. Journal of Chemical
Information and Modeling, 48(1):128–134, 2008.

[SC08] S. Sonavane and P. Chakrabarti. Cavities and atomic packing in protein structures and
interfaces. PLoS Comput Biol, 4(9):e1000188, 09 2008.

[SDCB09] Y. Shen, F. Delaglio, G. Cornilescu, and A. Bax. TALOS+: A hybrid method for predicting
protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR,
(44):213–223, 2009.

[SGSA06] Y. H. Singh, M. M. Gromiha, A. Sarai, and S. Ahmad. Atom-wise statistics and prediction
of solvent accessibility in proteins. Biophysical Chemistry, 124(2):145 – 154, 2006.

[SK04] C. Steinbeck and S. Kuhn. NMRShiftDB – compound identification and structure elucida-
tion support through a free community-built web database. Phytochemistry, 65(19):2711
– 2717, 2004.

[SKK03] C. Steinbeck, S. Krause, and S. Kuhn. NMRShiftDB – Constructing a free chemical
information system with open-source components. Journal of Chemical Information and
Computer Sciences, 43(6), NOV 2003.

[SLD+08] Y. Shen, O. Lange, F. Delaglio, P. Rossi, J. M. Aramini, G. Liu, A. Eletsky, Y. Wu, K. K.
Singarapu, A. Lemak, A. Ignatchenko, C. H. Arrowsmith, T. Szyperski, G. T. Montelione,
D. Baker, and A. Bax. Consistent blind protein structure generation from NMR chemical
shift data. Proceedings of the National Academy of Sciences of the United States of
America (PNAS), 105(12):4685–4690, Mar 2008.

178

Bibliography

[SMA] SMARTS – A Language for Describing Molecular Patterns.
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.

[SOS96] M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: an efficient way to
compute molecular surfaces. Biopolymers, 38(3):305–320, Mar 1996.

[SP09] A. Savelyev and G. A. Papoian. Molecular renormalization group coarse-graining of poly-
mer chains: application to double-stranded DNA. Biophysical Journal, 96(10):4044–4052,
May 2009.

[SSH94] D. Sitkoff, K. Sharp, and B. Honig. Accurate calculation of hydration free energies using
macroscopic solvent models. Journal of Physical Chemistry, 98(7):1978–1988, 1994.

[SWBG08] E. Segev, T. Wyttenbach, M. T. Bowers, and R. B. Gerber. Conformational evolution
of ubiquitin ions in electrospray mass spectrometry: molecular dynamics simulations at
gradually increasing temperatures. Physical Chemistry Chemical Physics, 10(21):3077–
3082, Jun 2008.

[THG94] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22(22):4673–4680, 1994.

[UAD+08] E. Ulrich, H. Akutsu, J. Doreleijers, Y. Harano, Y. Ioannidis, J. Lin, M. Livny, S. Mading,
D. Maziuk, Z. Miller, E. Nakatani, C. Schulte, D. Tolmie, R. K. Wenger, H. Yao, and
J. Markley. BioMagResBank. Nucleic Acids Research, 36(SUPPL. 1):D402–D408, 2008.

[Uni09] United Nations, Department of Economic and Social Affairs, Population Division. World
Population Prospects: The 2008 Revision. Technical report, New York, 2009.

[Van71] J. R. Vane. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like
drugs. Nature New Biology, 231(25):232–235, June 1971.

[VR02] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York,
fourth edition, 2002. ISBN 0-387-95457-0.

[VR09] W. F. Vranken and W. Rieping. Relationship between chemical shift value and accessible
surface area for all amino acid atoms. BMC Structural Biology, 9:20, 2009.

[WA93] M. P. Williamson and T. Asakura. Empirical comparisons of models for chemical-shift
calculation in proteins. Journal of Magnetic Resonance, Series B, 101(1):63–71, 1993.

[WAB+08] D. S. Wishart, D. Arndt, M. Berjanskii, P. Tang, J. Zhou, and G. Lin. CS23D: a web
server for rapid protein structure generation using NMR chemical shifts and sequence
data. Nucleic Acids Research, 36(Web Server issue):W496–W502, Jul 2008.

[Wan10] J. Wang. AmberTools Users’ Manual. University of Texas, Southwestern Medical Center,
April 2010.

[WBH+95] D. S. Wishart, C. G. Bigam, A. Holm, R. Hodges, and B. D. Sykes. 1H, 13C and
15N random coil NMR chemical shifts of the common amino acids. I. Investigations of
nearest-neighbor effects. Journal of Biomolecular NMR, 5(3):332, 1995.

[WBY+95] D. S. Wishart, C. G. Bigam, J. Yao, F. Abildgaard, H. J. Dyson, E. Oldfield, J. L. Markley,
and B. D. Sykes. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. Journal
of Biomolecular NMR, 6:135–140, 1995.

179

Bibliography

[WDJ05] G. Wang and R. Dunbrack Jr. PISCES: Recent improvements to a PDB sequence culling
server. Nucleic Acids Research, 33(SUPPL. 2):W94–W98, 2005.

[Wil90] M. P. Williamson. Secondary-structure dependent chemical shifts in proteins. Biopoly-
mers, 29(10-11):1423–1431, 1990.

[Wis11] D. S. Wishart. Interpreting protein chemical shift data. Progress in Nuclear Magnetic
Resonance Spectroscopy, 58(1):62–87, 2011.

[WKH97] S. S. Wijmenga, M. Kruithof, and C. W. Hilbers. Analysis of 1H chemical shifts in
DNA: Assessment of the reliability of 1H chemical shift calculations for use in structure
refinement. Journal of Biomolecular NMR, 10:337–350, 1997.

[WPW83] G. Wagner, A. Pardi, and K. Wüthrich. Hydrogen bond length and 1H NMR chemical
shifts in proteins. Journal of the American Chemical Society, 105(18):5948–5949, 1983.

[WRZ+03] L. Willard, A. Ranjan, H. Zhang, H. Monzavi, R. Boyko, B. D. Sykes, and D. S. Wishart.
VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic
Acids Research, 31(13):3316–3319, 2003.

[WS07] M. Wiederstein and M. Sippl. ProSA-web: interactive web service for the recognition of
errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server
issue):W407–410, 2007.

[WSR91] D. S. Wishart, B. D. Sykes, and F. M. Richards. Relationship between nuclear magnetic
resonance chemical shift and protein secondary structure. Journal of Molecular Biology,
222(2):311–333, Nov 1991.

[WSR92] D. S. Wishart, B. D. Sykes, and F. M. Richards. The chemical shift index: a fast and simple
method for the assignment of protein secondary structure through NMR spectroscopy.
Biochemistry, 31(6):1647–1651, Feb 1992.

[WWBS97] D. S. Wishart, M. Watson, R. Boyko, and B. D. Sykes. Automated 1H and 13C chemical
shift prediction using the BioMagResBank. Journal of Biomolecular NMR, 10(4):329–336,
1997.

[WWC+04] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. Development and
testing of a general amber force field. Journal of Computational Chemistry, 25(9):1157–
1174, Jul 2004.

[WWKC01] J. Wang, W. Wang, P. A. Kollman, and D. A. Case. Antechamber, An Accessory Software
Package For Molecular Mechanical Calculations. Molecules, 222(2):U403–U403, 2001.

[WWKC06] J. Wang, W. Wang, P. A. Kollman, and D. A. Case. Automatic atom type and bond
type perception in molecular mechanical calculations. Journal of Molecular Graphics and
Modelling, 25(2):247–260, Oct 2006.

[XB06] J. Xu and B. Berger. Fast and accurate algorithms for protein side-chain packing. Journal
of ACM, 53:533–557, 2006.

[XC01] X. P. Xu and D. A. Case. Automated prediction of 15N, 13Cα, 13Cβ and 13C’ chemical
shifts in proteins using a density functional database. Journal of Biomolecular NMR,
21(4):321–333, Dec 2001.

[XJB05] J. Xu, F. Jiao, and B. Berger. A tree-decomposition approach to protein structure pre-
diction. Proc IEEE Comput Syst Bioinform Conf, pages 247–256, 2005.

180

Bibliography

[XJB07] J. Xu, F. Jiao, and B. Berger. A parameterized algorithm for protein structure alignment.
Journal of Computational Biology, 14(5):564–577, Jun 2007.

[YSFW08] C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimizing and learning energy functions
for side-chain prediction. Journal of Computational Biology, 15(7):899–911, Sep 2008.

[ZALL10] Y. Zhao, B. Alipanahi, S. Li, and M. Li. Protein secondary structure prediction using NMR
chemical shift data. Journal of Bioinformatics and Computational Biology, 8(5):867–884,
2010.

[ZCW07] Y. Zhao, T. Cheng, and R. Wang. Automatic perception of organic molecules based
on essential structural information. Journal of Chemical Information and Modelling,
47(4):1379–1385, 2007.

[ZNW03] H. Zhang, S. Neal, and D. S. Wishart. RefDB: A database of uniformly refer-
enced protein chemical shifts. Journal of Biomolecular NMR, 25:173–195, 2003.
10.1023/A:1022836027055.

[ZST+11] H. Zellner, M. Staudigel, T. Trenner, M. Bittkowski, V. Wolowski, C. Icking, and R. Merkl.
Prescont: Predicting protein-protein interfaces utilizing four residue properties. Proteins:
Structure, Function, and Bioinformatics, 2011.

181

