
Symbolic Representations in WCET

Analysis

Zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Stephan Wilhelm

Saarbrücken, November 2011

Dekan:

Prof. Dr. Mark Groves

Prüfungsausschuss:

Prof. Dr. Sebastian Hack (Vorsitzender)
Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm (Gutachter)
Prof. Dr. Bernd Becker (Gutachter)
Dr. Daniel Grund (akademischer Mitarbeiter)

Tag des Kolloquiums:

04.06.2012

Impressum

Copyright c© 2012 Stephan Wilhelm
Druck und Verlag: epubli GmbH, Berlin, www.epubli.de
ISBN: 978-3-8442-2463-4

Abstract

Reliable task-level execution time information is indispensable for vali-
dating the correct operation of safety-critical embedded real-time sys-
tems. Static worst-case execution time (WCET) analysis is a method
that computes safe upper bounds of the execution time of single un-
interrupted tasks. The method is based on abstract interpretation and
involves abstract hardware models that capture the timing behavior of
the processor on which the tasks run. For complex processors, task-
level execution time bounds are obtained by a state space exploration
which involves the abstract model and the program. Partial state space
exploration is not sound. A full exploration can become too expensive.
Symbolic state space exploration methods using binary decision dia-
grams (BDDs) are known to provide efficient means for covering large
state spaces. This work presents a symbolic method for the efficient
state space exploration of abstract pipeline models in the context of
static WCET analysis. The method has been implemented for the In-
fineon TriCore 1 which is a real-life processor of medium complexity.
Experimental results on a set of benchmarks and an automotive industry
application demonstrate that the approach improves the scalability of
static WCET analysis while maintaining soundness.

i

Zusammenfassung

Zuverlässige Informationen über die Ausführungszeiten von Program-
men sind unerlässlich, um das korrekte Verhalten von sicherheitskri-
tischen eingebetteten Echtzeitsystemen zu garantieren. Die statische
Analyse der längsten Ausführungszeit, der sogenannten WCET, ist eine
Methode zur Berechnung sicherer oberer Schranken der Ausführungs-
zeiten einzelner, nicht unterbrochener Programmtasks. Sie beruht auf
der Methode der Abstrakten Interpretation und verwendet abstrakte
Modelle, die das Zeitverhalten des Prozessors erfassen, auf dem die
Programme ausgeführt werden. Die Berechnung der Ausführungszeit-
schranken komplexer Prozessoren basiert auf der Exploration eines Zu-
standsraums, der sowohl das abstrakte Modell, als auch das Programm
umfasst. Eine nur teilweise Abdeckung dieses Zustandsraums liefert
dabei keine verlässlichen Ergebnisse. Eine vollständige Exploration ist
hingegen sehr aufwändig. Symbolische Methoden, die binäre Entschei-
dungsdiagramme (BDDs) verwenden, sind dafür bekannt, dass sie die
effiziente Abdeckung großer Zustandsräume erlauben. Die vorliegende
Arbeit stellt eine symbolische Methode zur effizienten Exploration von
Zustandsräumen abstrakter Pipelinemodelle im Rahmen der statischen
WCET-Analyse vor. Die Methode wurde für einen realen Prozessor mitt-
lerer Komplexität, den Infineon TriCore 1, implementiert. Ergebnisse von
Experimenten mit Benchmarks sowie mit einer Anwendung aus dem
Automobilbereich zeigen, dass der Ansatz die Skalierbarkeit statischer
WCET-Analyse verbessert, wobei die Zuverlässigkeit der berechneten
Schranken gewahrt bleibt.

iii

Extended Abstract

Reliable task-level execution time information is indispensable for validating the cor-
rect operation of safety-critical (or hard) embedded real-time systems. Hard real-time
systems use static scheduling strategies that fail if a task misses its assigned deadline.
Such failures may lead to wholesome system crashes and are therefore unacceptable
in a safety-critical context. However, this type of failure can be prevented if the
scheduling takes the worst-case execution times (WCETs) of all tasks into account.
In practice the WCET of a task cannot be determined exactly for realistic systems.
However, upper bounds of the WCET are sufficient for computing safe schedules.
Actually determining such bounds is difficult because the execution time of a task
depends not only on the executed program code, but also on the potential input
values, and on the clock rate of the processor on which the task runs. Modern
processors implement features to reduce the average execution time, e.g., pipelines
and caches. Execution times on such processors also depend on the execution history
and on the start state of the hardware. As a consequence, tools for WCET prediction
have to cover all feasible program paths, inputs, and hardware states.
Measurement-based approaches for WCET prediction cannot guarantee full coverage
and are prone to miss worst-case situations. In particular, hardware-related timing
accidents like pipeline stalls and cache misses can be hard to stimulate but can
cause tremendous variations in execution time. In contrast, static WCET analysis
can guarantee safe upper bounds of the WCET. The state space of the hardware is
covered using abstract cache and pipeline models. The employed pipeline models are
finite state machines (FSMs) whose transitions correspond to processor clock cycles.
Upper bounds of the execution time of a program can be obtained by counting cycles
of the pipeline model. To predict timing accidents, an overapproximation of the set
of reachable pipeline and cache states is computed for each program point.
Static WCET analysis only becomes computationally feasible in practice by using
abstraction, which is applied to both the modeling of processor and program behavior.
However, abstraction loses information which leads to uncertainty, e.g., it may not be
possible to statically determine the exact address of a memory access. Furthermore,
program inputs are not precisely known in advance. At the level of the pipeline
model, this lack of information is accounted for by non-deterministic choices. To be
safe, the analysis has to exhaustively explore all reachable states of the FSM. This
can lead to state explosion making an explicit enumeration of states infeasible due
to memory and computation time constraints. The problem of efficiently covering
the state space of large FSMs is well-known in hardware model checking. Only the
use of symbolic methods, using Binary Decision Diagrams (BDDs), allowed model
checking to be successfully applied for the verification of large, complex hardware
models. To this end, symbolic model checking uses an implicit encoding of the
transition system and of analysis information, like sets of states in state traversal.
This work discusses how the implicit state traversal methods of symbolic model
checking can be used for static WCET analysis to allow for a more efficient handling
of abstract pipeline models. Static WCET analysis only scales to realistic programs

v

and hardware models because it carefully separates the problem of WCET prediction
into several easier sub-problems. The symbolic implementation of pipeline analysis
must therefore exchange results with other analyses that use different abstract
representations. We show how this exchange of information can be implemented in
an efficient way. Symbolic pipeline analysis also faces the specific problem that it
considers the combined state space of a hardware and software model. This sets it
apart from hardware and software model checking which only address hardware or
software, respectively. However, symbolic methods are very sensitive with regard
to the size of the model. A combined hard- and software model is huge and a
symbolic analysis of such a model may therefore be inefficient. This work presents
a method for decomposing the software under analysis without compromising
the soundness of the approach. The decomposition allows to analyze parts of the
software individually using smaller, more efficient models. Analysis information,
i.e., sets of pipeline states, is translated between program parts using symbolic
computations. Finally, interfacing a non-symbolic cache analysis is particularly
difficult because of the interdependence between pipeline and cache. We show a way
for solving this interface problem efficiently.
The described symbolic pipeline domain for static WCET analysis has been im-
plemented in a commercial WCET tool. We present the general structure of the
implementation and describe the model of the Infineon TriCore 1, an embedded
processor of medium complexity that is commonly used for safety-critical appli-
cations in the automotive industry. The implementation has been evaluated using
benchmark programs and an industrial automotive software for engine control. The
results demonstrate that the symbolic implementation of pipeline domains improves
the scalability of static WCET analysis.

vi

Erweiterte Zusammenfassung

Zuverlässige Informationen über die Ausführungszeiten von Programmen sind uner-
lässlich, um das korrekte Verhalten von sicherheitskritischen (harten) eingebetteten
Echtzeitsystemen zu garantieren. Harte Echtzeitsysteme verwenden statische Ver-
fahren zur Ablaufplanung. Diese Verfahren versagen jedoch, wenn eine Task die
ihr zugewiesene Zeitschranke überschreitet. Solche Fehler können zu kompletten
Systemabstürzen führen und sind daher in einem sicherheitskritischen Kontext inak-
zeptabel. Es ist jedoch möglich, diese Art von Fehler zu vermeiden, indem man bei
der Ablaufplanung die längsten Ausführungszeiten (WCETs) aller Tasks berücksich-
tigt. In der Praxis ist die genaue Ermittlung der WCET eines realistischen Programms
nicht möglich, jedoch sind obere Schranken der Ausführungszeit hinreichend für die
Berechnung sicherer Ablaufpläne. Die tatsächliche Bestimmung solcher Schranken
ist allerdings schwierig, da die Ausführungszeit nicht nur vom Programm selbst,
sondern auch von den möglichen Eingabewerten und der Taktfrequenz des ausfüh-
renden Prozessors abhängt. Moderne Prozessoren reduzieren die durchschnittliche
Ausführungszeit mit Hilfe von Caches und Pipelines. Bei solchen Prozessoren hängt
die Ausführungszeit auch von der Ausführungsgeschichte und dem Ausgangszu-
stand der Hardware ab. Daher müssen Werkzeuge zur Vorhersage der WCET alle
zulässigen Programmpfade, Eingaben und Hardwarezustände abdecken.
Messbasierte Verfahren zur Vorhersage der WCET können keine vollständige Ab-
deckung garantieren und berücksichtigen häufig nicht den schlimmsten Fall. Insbe-
sondere Verzögerungen, die durch Hardwareeffekte ausgelöst werden, beispielsweise
ein zeitweises Anhalten der Pipeline oder Zugriffe auf Daten, die sich nicht im
Cache befinden, können in Messungen nur schwer stimuliert werden. Solche Ef-
fekte können jedoch zu erheblichen Varianzen der Ausführungszeit führen. Im
Gegensatz zu messbasierten Verfahren liefert die statische WCET-Analyse siche-
re obere Ausführungszeitschranken. Der Zustandsraum der Hardware wird dabei
mit Hilfe abstrakter Cache- und Pipelinemodelle abgedeckt. Die dazu verwendeten
Pipelinemodelle sind endliche Automaten (FSMs), deren Übergänge Prozessorzyklen
entsprechen. Obere Ausführungszeitschranken eines Programms erhält man durch
Zählen der Zyklen im Pipelinemodell. Zur Vorhersage hardwarebedingter Verzöge-
rungen wird eine Überapproximation der möglichen Pipeline- und Cachezustände
für jeden Programmpunkt berechnet.
Statische WCET-Analysen werden erst durch Abstraktionen auf der Ebene des
Prozessormodells und des Programmverhaltens praktisch berechenbar. Solche Ab-
straktionen sind mit einem Informationsverlust verbunden, der zu Unschärfen in der
Analyse führt. So ist es beispielsweise nicht immer möglich, die genaue Adresse eines
Speicherzugriffs statisch zu bestimmen. Desweiteren sind Programmeingaben im
Vorhinein ebenfalls nicht genau bekannt. Auf der Ebene des Pipelinemodells werden
solche Ungenauigkeiten durch nicht-deterministische Übergänge behandelt. Um ein
sicheres Ergebnis zu erhalten, muss die Analyse die erreichbaren FSM-Zustände
vollständig abdecken. Die erreichbare Zustandsmenge kann dabei so groß werden
(Stichwort Zustandsexplosion), dass eine explizite Aufzählung aller Zustände auf-

vii

grund von Speicherplatz- und Berechnungszeitlimits unmöglich wird. Die effiziente
Abdeckung von Zustandsräumen großer FSMs ist ein bekanntes Problem aus dem
Bereich des Hardware Model Checking. Erst durch die Verwendung symbolischer
Methoden, basierend auf binären Entscheidungsdiagrammen (BDDs), ist es gelun-
gen, komplexe Hardwaremodelle erfolgreich durch Model Checking zu verifizieren.
Symbolisches Model Checking verwendet dabei eine implizite Darstellung, sowohl
des Transitionssystems, als auch von Analyseinformation wie z.B. Mengen von
Zuständen.
Die vorliegende Arbeit zeigt, wie implizite Explorationsmethoden aus dem Bereich
des symbolischen Model Checking in der statischen WCET-Analyse eingesetzt wer-
den können, um eine effizientere Behandlung abstrakter Pipelinemodelle zu ermögli-
chen. Statische WCET-Analyse skaliert nur deshalb auf realistische Programme und
Hardwaremodelle, weil sie das Problem der WCET-Vorhersage in mehrere, jeweils
einfachere, Teilprobleme zerlegt. Die symbolische Implementierung der Pipeline-
analyse muss daher Informationen mit anderen Analysen austauschen, die andere
abstrakte Darstellungen verwenden. In der vorliegenden Arbeit wird gezeigt, wie
dieser Informationsaustausch auf effiziente Weise implementiert werden kann. Die
symbolische Pipelineanalyse steht auch vor dem speziellen Problem, dass sie den
kombinierten Zustandsraum eines Hard- und Softwaremodells betrachtet. Damit un-
terscheidet sie sich von Hardware und Software Model Checking, welches jeweils nur
die Hardware oder die Software untersucht. Leider reagieren symbolische Methoden
sehr empfindlich auf die Modellgröße. Da ein kombiniertes Hard- und Softwaremo-
dell sehr groß ist, kann die symbolische Analyse eines solchen Modells ineffizient sein.
Die vorliegende Arbeit zeigt eine Methode zur Zerlegung der analysierten Software,
wobei die Zuverlässigkeit der Analyseergebnisse gewahrt bleibt. Die Zerlegungsme-
thode erlaubt es, Teile der Software mit kleineren Modellen effizienter zu analysieren.
Die Analyseinformation, d.h. Mengen von Pipelinezuständen, wird zwischen den
Programmteilen mit Hilfe symbolischer Berechnungen übersetzt. Schließlich bleibt
das Problem der Kopplung mit einer nicht-symbolischen Cacheanalyse, welches
aufgrund der wechselseitigen Abhängigkeit zwischen Pipeline und Cache besonders
schwer zu lösen ist. Eine effiziente Lösung dieses Kopplungsproblems wird ebenfalls
vorgestellt.
Die vorgestellte symbolische Pipelineanalyse wurde im Rahmen eines kommerziellen
Analysewerkzeugs zur statischen WCET-Vorhersage implementiert. Diese Arbeit
zeigt auch den allgemeinen Aufbau der Implementierung und beschreibt das Modell
des Infineon TriCore 1, eines eingebetten Prozessors mittlerer Komplexität, der in
sicherheitskritischen Anwendungen in der Automobilindustrie weit verbreitet ist. Die
Implementierung wurde auf Benchmarkprogrammen und einer Automobilanwen-
dung zur Motorsteuerung evaluiert. Die Ergebnisse belegen, dass die symbolische
Implementierung der Pipelineanalyse die Skalierbarkeit statischer WCET-Analysen
verbessert.

viii

Acknowledgments

First of all, I would like to thank my advisor Prof. Reinhard Wilhelm
for his invaluable advice and continuous support over the last couple of
years. He gave me enough freedom to let me find my way and enough
guidance to get this thesis finished.

My best thanks also go to the other members of my committee: Prof.
Bernd Becker, Prof. Sebastian Hack, and Dr. Daniel Grund for taking
the time to review this thesis and for taking part in the defense session.

Moreover, I am grateful for the support of many people at AbsInt
GmbH and at the Compiler Design Lab at Saarland University. Christian
Ferdinand allowed me to dedicate some of my working time at AbsInt to
research. Daniel Kästner and Reinhold Heckmann both did an excellent
job of patiently proof reading several versions of the manuscript. Björn
Wachter and Christoph Cullmann had a part in getting the results of this
work published at international workshops and conferences. Florian
Martin, Michael Schmidt, and Henrik Theiling introduced me to the
depths of AbsInt’s static WCET analysis tool chain. Frank Fontaine,
Gernot Gebhard, Markus Pister, Marc Schlickling, and Ingmar Stein
shared with me their knowledge of pipeline models. Thanks also to
Nicolas Fritz, Christian Hümbert, Marc Langenbach, Philipp Lucas,
Stefana Nenova, Martin Sicks, and Stephan Thesing for their support and
for contributing to a pleasant working atmosphere. I sincerely apologize
for having forgotten to mention anyone to whom acknowledgment
is due. Rest assured that I am grateful for every bit of support and
encouragement that I ever got.

Finally, I would like to thank my family and friends. Their love and
support helped me to keep up the motivation for this long-term project.
The most special thanks go to my parents Rita and Heribert and – last
but not least – to my wife Nicole.

– For Ronja, who has changed my life. –

ix

Contents

1. Introduction 1

1.1. WCET Analysis for Hard Real-Time Systems 1
1.2. Related Work and Contribution . 3
1.3. Overview . 5

2. Related Work 7

2.1. Schedulability, WCRT Analysis, and Compilers 7
2.2. Determining Task-Level WCET Bounds 9

2.2.1. Dynamic Methods . 9
2.2.2. Static Methods . 10

2.3. Symbolic Methods in WCET Analysis 14

3. Abstract Interpretation 17

3.1. Lattice Theory . 18
3.1.1. Fixed Points . 19

3.2. Collecting Semantics . 20
3.2.1. Galois Connections . 23

3.3. Interprocedural Analysis . 25

4. Symbolic State Space Exploration 29

4.1. Switching Functions . 30
4.2. Ordered Binary Decision Diagrams . 31

4.2.1. Isomorphism and Reduction . 32
4.2.2. Binary Operations and Equivalence Test 34
4.2.3. Influence of the Variable Order 35
4.2.4. Dynamic Reordering . 36

4.3. Sequential Circuits . 37
4.3.1. Symbolic Representation . 38
4.3.2. Image Computation . 39

xi

Contents

5. Static Worst-Case Execution Time Analysis 41

5.1. A Framework for Static WCET Analysis 42
5.1.1. CFG Reconstruction . 43
5.1.2. Value and Control Flow Analyses 43
5.1.3. Microarchitectural Analysis . 44
5.1.4. Path Analysis . 45
5.1.5. Abstractions and the Loss of Precision 45

5.2. Pipeline Domains . 46
5.2.1. Concrete Semantics . 47
5.2.2. Abstraction . 51
5.2.3. Abstract Semantics . 53
5.2.4. WCET Bounds for Basic Blocks 54

5.3. The State Explosion Problem . 55
5.3.1. State Explosion in WCET Analysis 55
5.3.2. Timing Anomalies and Domino Effects 57
5.3.3. The Need for More Efficient Pipeline Domains 57

6. Symbolic Representation of Pipeline Domains 61

6.1. Considered Hardware Features . 62
6.2. Basic Symbolic Representation . 62

6.2.1. Representation of Pipeline Models 63
6.2.2. Program Representation . 64
6.2.3. Generating the Transition Relations 65

6.3. Symbolic Computation of Abstract Traces 69
6.3.1. Integration with a Data Flow Analysis Framework 71

6.4. Scaling to Realistic Pipeline Models and Programs 73
6.4.1. Conjunctive Partitioning . 74
6.4.2. Address and Context Compression 74
6.4.3. Processor-Specific Optimizations 75
6.4.4. Program Decomposition . 78

6.5. Interfacing Abstract Caches . 83
6.5.1. The Interface Problem . 84
6.5.2. A Semi-Symbolic Domain for Microarchitectural Analysis . . . 84
6.5.3. State Traversal and Performance 88

6.6. Summary . 91

7. Practical Evaluation 93

7.1. A Framework for Symbolic Pipeline Analyses 94
7.1.1. Enumerate and Map . 96
7.1.2. The Model Relation Builder . 98
7.1.3. The Program Relation Builder 99
7.1.4. Iterator, Transfer Function, and Control Flow Handling 99
7.1.5. Debugging Interface . 100

xii

Contents

7.2. Experimental Results . 100
7.2.1. The Infineon TriCore 1 . 102
7.2.2. A Timing Anomaly Example . 103
7.2.3. TriCore 1 Pipeline Models . 105
7.2.4. Performance Comparison . 106
7.2.5. Typical Cache Access Patterns 116

7.3. Lessons Learned from Implementation 120
7.3.1. Dealing with the Non-Determinism 121
7.3.2. Debugging and Pipeline State Graphs 121

7.4. Summary . 122

8. Conclusion 125

8.1. Results and Contribution . 126
8.2. Industrial Application and Future Research 128

8.2.1. Hybrid Pipeline Analyzers . 129
8.2.2. Alternative Symbolic Representations 129
8.2.3. Scaling to Larger Pipeline Models 130

8.3. Outlook . 131

A. Fetch unit model 133

A.1. Unit Transition Rules . 134
A.2. Program Interface . 140

Bibliography 143

Index 155

xiii

CHAPTER 1

Introduction

1.1. WCET Analysis for Hard Real-Time Systems

Over the last two decades, computers have found their way into many objects of daily
life, including some whose origins precede the computer era. Cars are a very good
example. In the seventies of the last century, an automotive engine wasn’t much more
than four cylinders powering a driveshaft. Today, all modern engines use a computer
for precise control of the engine speed, temperature, and the injection pump, in
order to reduce fuel consumption, and to fulfill emission standards. Such computers,
together with the software that is running on them, are known as embedded systems.
They are not only in cars; modern airplanes, cell phones, and portable MP3 players
also rely on embedded computers – and rely means that they will not work properly
if the embedded system fails. People may not care much if their MP3 player chokes
on some particular track or if their cell phone breaks down in the middle of an
unpleasant conversation. But a person who is sitting in an airplane that approaches
the runway with landing speed wants to be sure that all relevant embedded systems
in the plane are working correctly. Therefore, many embedded systems in airplanes
and cars are considered to be safety-critical – lives may depend on their proper
operation.
Safety-critical embedded systems obviously have to satisfy high quality requirements.
For example, the flight control system of an airplane should never perform a division
by zero which would halt the processor. Many embedded systems are also critical
with respect to the execution time; e.g., an engine control system must perform its
computations fast enough, even if the engine is running at full speed. Embedded
systems with execution time constraints are termed real-time embedded systems.
Systems with execution time constraints that are safety-critical are called hard real-
time systems. For these systems, one must not only prove the absence of critical
run-time errors – like division by zero – but also ensure that the system always reacts

1

Chapter 1: Introduction

in-time. The question is: how can such properties be proved? In the past, engineers
verified the safety of their constructions by testing; either by putting critical loads
onto their construction, or by running long-term tests. For mechanical systems, this
approach is still valid, although it is increasingly replaced by computer simulation
for reasons of cost. However, for safety-critical embedded systems, testing is no
longer sufficient because of two reasons: the state space of the embedded soft- and
hardware is too large to admit an adequate test coverage, and second, it is usually
not possible to choose a limited set of inputs that stimulates the critical executions.
This problem is well-known in computer science; it is equivalent to the insight that
all interesting questions about the concrete semantics of a program are undecidable.
A solution for answering – at least some – questions about the undecidable semantics
of a program exists in the form of abstract interpretation. A sound abstract interpreta-
tion is a static analysis that replaces the undecidable concrete semantics by abstract
semantics that over-approximate any concrete execution. The gained computability
is paid for by a loss of precision; the analysis may consider spurious executions that
do not correspond to any concrete execution. However, abstract interpretation is
also exhaustive, i.e., it never misses a possible execution, and therefore provides full
coverage over all inputs and execution paths. These two properties – incompleteness
and full coverage – are often summarized by the statement that abstract interpreta-
tion only errs on the safe side. Hence, abstract interpretation can be used to prove
properties of software. Static analysis tools based on abstract interpretation recently
found their way into the mainstream avionics and automotive industry and are now
considered to provide state-of-the-art solutions for the verification of safety-critical,
embedded real-time systems. As such, their use is increasingly encouraged by certifi-
cation authorities, particularly in the civil avionics industry, where the certification
standard DO-178B [Rad] requires the use of state-of-the-art technologies to prove the
absence of errors in safety-critical systems. A good example of a static analysis tool
that is used in the avionics industry is the Astrée static analyzer. Astrée can be used
to prove the absence of certain run-time errors – such as division by zero, invalid
pointer dereference, or array out-of-bound accesses – on synchronous command-and-
control programs, written in ANSI C. Synchronous command-and-control programs
consist of a main loop that controls the execution of system tasks using a static
schedule. They are often found in safety-critical embedded real-time systems, such
as the flight-control system of an aircraft. Obviously, the proper operation of such
a system not only requires that it is free of run-time errors, but also that each task
meets its deadline.
The problem of giving guarantees about the timeliness of a task is known as worst-
case execution time prediction, or WCET prediction, for short. Because of the already
mentioned lack of coverage, measurements – which are the equivalent of testing
for WCET prediction – are not an option when it comes to hard, i.e., safety-critical,
real-time systems. The inadequacy of measurements for the purpose of WCET
prediction is visualized by Figure 1.1. Taking measurements means taking samples
from the set of possible executions. In this set, the variance is usually large and the
values are not evenly distributed. This is partly because of the range of inputs and

2

1.2 − Related Work and Contribution

Execution
time

Probability

BCET WCET

Upper bound
of the WCET

Maximal observed
execution time

Minimal observed
execution time

Measurements

unsafe safe

Figure 1.1.: Typical distribution of execution times over the execution space of a
task. Measurements underestimate the WCET whereas static analyses
provide safe upper bounds.

different operating modes but also because the execution time of modern hardware,
featuring caches and complex pipelines, is very sensitive with respect to the start state
and execution history [HLTW03, Rei08]. There is only little chance for observing
unusually small or high execution times. Even worse, virtually all observed values
underestimate the worst-case, i.e., measurements err on the unsafe side. Because
the difference between the worst-case measurement and the actual worst-case is
unknown, adding “safety” margins to account for underestimations, is not safe; and
even if the results overestimate the worst-case, they are often not precise enough. For
the analysis of single, uninterrupted tasks, static WCET analysis is a safe alternative.
It provides full coverage and computes upper bounds on the execution time that hold
for all possible executions.

1.2. Related Work and Contribution

Research on formal verification methods usually falls into one of the following
categories: abstract interpretation, model checking, and theorem proving. Model
checking and theorem proving have been successfully used for hardware verification
[JM01, CGH+93, CRSS94] and there have been efforts to integrate both methods

3

Chapter 1: Introduction

[Ber02]. In contrast, abstract interpretation originates from the area of software
verification where it is successfully used, e.g., to prove the absence of run-time
errors [BCC+03]. Despite recent attempts to use model checking for software veri-
fication [BHJM07, BLQ+03, WL04] there has been little exchange between the two
communities.
Static WCET analysis is an area that has contact points with both, hardware and
software verification. A major research effort for static WCET tools has been made
by Reinhard Wilhelm’s group at Saarland University. They tackled the problem
from the software-oriented perspective of abstract interpretation, and developed an
approach that decomposes the task into several sub-problems [FHL+01, HLTW03].
Each sub-problem is solved by a dedicated analysis. Abstract hardware models
of the cache and the pipeline are used to predict low-level timing effects [Fer97,
The04]. The computation of the worst-case program path is based on integer linear
programming [The02]. While this approach is nowadays well-established in industry
[TSH+03, WEE+08], the use of model checking for WCET analysis has been a subject
of controversial discussion between researchers.
Early work on model checking for static WCET analysis focused on synchronous
programs, assuming a single-cycle execution model [LS03, LSM03]. This execution
model does not hold for modern processor hardware using pipelined execution
and caches to improve the average execution time. More recent research takes the
timing effects of the hardware into account [DOT+10], but so far addresses only the
most simple pipelines, cannot handle floating-point computations, and suffers from
scalability problems. At the same time, WCET tools based on abstract interpretation
analyze industrial-level software, running on complex, superscalar pipelines with
caches. Thus, it seems that there is a tremendous gap between model checking
and abstract interpretation when it comes to WCET analysis. In 2004, Reinhard
Wilhelm published a paper that discusses the challenges that model checking faces
in WCET analysis [Wil04]. His major argument is still not disproved: the combined
state space of program paths, variable values, pipeline, and cache state is too large
to admit an exhaustive traversal without using dynamic abstraction. The reply by
Metzner [Met04] misses the point when he discusses the imprecisions in abstract
cache analysis [Fer97], and proposes improvements by model checking. Abstract
interpretation deliberately loses precision to gain computability, and experimental
results show that the computed WCET bounds are tight enough in practice [TSH+03,
SLH+05].
Despite its undeniable success, static WCET analysis based on abstract interpretation
sometimes runs into problems at its contact points with hardware verification. In
particular, the analysis of the pipeline timing requires an exhaustive traversal of the
reachable state space of the pipeline model; for pipelines with large state spaces, the
analysis can become infeasible [The04]. The problem of state explosion is well-known
in model checking. Symbolic representations, usually based on binary decision
diagrams [Bry86], have significantly improved the situation because they admit both
an implicit encoding of the transition system and of analysis information like sets of
states in state traversal [McM92]. This has enabled the analysis of hardware designs

4

1.3 − Overview

with large state spaces [BCM+90]. Although model checking alone may not be the
adequate approach for WCET prediction, some of its methods can be exploited to
improve static WCET analysis.
The research that is presented here focuses on improving the efficiency of pipeline
analysis in cases where large sets of pipeline states have to be considered. To
this end, Chapter 6 presents a novel approach for implementing pipeline analysis
using a symbolic representation. The approach combines ideas from the world of
model checking with the advantages of static program analysis based on abstract
interpretation. Chapter 7 describes the implementation of a framework for symbolic
pipeline analyses and a pipeline model of the Infineon TriCore 1 [AG08, Zar01].
Experimental results that have been obtained with this model show that the approach
is indeed more efficient in practically relevant scenarios. A summary of the two
chapters has been published in [WW09].1 The integration with cache analysis has
been published in [WC10]. Further contributions are found in Section 5.2 and
Section 7.3. Section 5.2 gives a more profound presentation of pipeline analysis
than what is found in overview publications like [FHL+01]. At the same time, the
description and the given proof of soundness are more general than the presentation
in [The04], which describes the pipeline model of a specific processor and proves
its correctness. The state explosion problem in WCET analysis, which has first been
mentioned in [The04], is discussed in detail since it represents the motivation for the
use of symbolic methods. Finally, Section 7.3 discusses several practical consequences
that arise from the use of symbolic methods for pipeline analysis. These insights
have not been published before.

1.3. Overview

This work is structured into 8 chapters, including this introduction. Here is an
overview of the contents of the remaining chapters:

Chapter 2 gives an overview of WCET analysis including various system-level and
task-level analysis methods. We discuss the existing research and show how task-level
and system-level analyses interact.

Chapter 3 presents the fundamentals of static program analysis. It discusses the
design of abstract domains for static analyses, the actual computation of semantic
invariants, and the underlying theory of abstract interpretation.

Chapter 4 gives a similarly fundamental introduction into symbolic state traversal for
sequential circuits. It comprises a discussion of binary decision diagrams as a data
structure for the compact representation of Boolean functions.

Chapter 5 presents the general design of static analysis tools for computing upper
bounds on the execution time of tasks. It shows how the problem can be decomposed
into several analyses and how these analyses interact. Pipeline domains based on
abstract hardware models are discussed in detail.

1The idea first appeared in [Wil05]. Intermediate results were published in [WW07].

5

Chapter 1: Introduction

Chapter 6 shows how pipeline domains can be represented symbolically using binary
decision diagrams. Further, it details how such a domain can be integrated with a
framework for static WCET analysis.
Chapter 7 describes the implementation of a framework for symbolic pipeline analyses,
and the implementation of a model of the Infineon TriCore 1. Several experiments
that compare the performance of the symbolic implementation with a semantically
equivalent explicit-state implementation are reported. Further experiments with
the pipeline model of the Motorola/Freescale MPC 755 study the efficiency of the
cache analysis integration. The chapter is concluded by an experience report about
practical implications of the approach.
Chapter 8 summarizes the achievements of this work. Finally, we give advice re-
garding the application of the approach in commercial industrial-strength WCET
analyzers and propose topics for future research that could lead to further improve-
ments of our method.

6

CHAPTER 2

Related Work

The question of giving guarantees about the worst-case execution times of software
has been around for more than 20 years. Since then, the interest in this matter has
continuously increased. Notably the advent of safety-critical embedded real-time
systems, like fly-by-wire in civil avionics, led to intensified research efforts. This
research has been conducted on two levels: the task level and the system level.
Task-level WCET bounds are used as inputs for tools that determine properties on
the system level, most prominently schedulability and worst-case response time
(WCRT) guarantees. The following overview of related work focuses on task-level
WCET analysis because that part is directly related to the subject of this thesis. We
present a number of approaches and discuss their advantages as well as drawbacks.
Existing uses of symbolic methods in WCET analysis are also covered. To set the
scene, we begin with a brief description of the three major applications that use
task-level WCET information: schedulability tests, WCRT analysis, and WCET-aware
compilers.

2.1. Schedulability, WCRT Analysis, and Compilers

The software of embedded systems is usually composed of several tasks. Each task
implements a sub-function of the system and has to be executed periodically. The
period that is assigned to each task depends on the characteristics of the controlled
physical system, e.g., the sample rate of a sensor. For the correct operation of the
whole software the tasks may have to be executed in a certain order. The execution
of each task may also be subject to further constraints, e.g., a task may only run after
a certain point in time, or it must finish execution before a certain point in time.
The latter constraint is called the task’s deadline. Executing embedded software in a
correct manner that respects its execution constraints and the dependencies between

7

Chapter 2: Related Work

its tasks is a scheduling problem. The task schedule determines the order in which
the tasks run.

The computation of task schedules is based on the notion of priorities. Each task is
assigned a priority such that these priorities establish a total order on the set of tasks.
From the set of tasks that are ready, i.e., that have no more unfulfilled dependencies,
the scheduler selects the highest priority task to execute next. The priority of a task
may either be fixed, or determined at run-time based on certain conditions. An
example of a strategy for assigning fixed priorities is rate monotonic scheduling [LL73].
It determines the priorities of tasks by the lengths of their periods. The task with the
smallest period is assigned the highest priority An example of a dynamic scheduling
strategy is called earliest deadline first [Liu00]. It assigns the highest priority to the
task with the nearest deadline. Safety-critical embedded systems usually rely on
static schedules that are computed offline based on fixed scheduling strategies.

A schedule that has been computed by a given strategy, either fixed or dynamic, is
called feasible if it respects all constraints and dependencies between the tasks. All
scheduling strategies guarantee that a feasible schedule can be computed if certain
conditions are fulfilled. The satisfaction of these conditions can be checked by a so-
called schedulability test [BW90, Liu00]. These schedulability tests require information
about the worst-case execution time (WCET) of all tasks. Hence, the knowledge of
upper bounds on the WCET of all tasks of a real-time system is crucial to prove its
correct operation.

WCET bounds for tasks are also required to obtain worst-case response times (WCRTs)
of entire real-time systems. WCRTs can be computed by so-called system-level timing
analysis tools, e.g., SymTA/S [HHJ+05]. Beside task-level WCET bounds, these tools
also take information about possible interrupts and their priorities into account. The
WCRT can either be computed on the level of a single application running on one
microprocessor, or on the network-level if considering embedded systems that are
composed of several interacting applications running on multiple processors that are
connected by a bus using protocols like CAN [ISO04] or FlexRay [Alt01].

In contrast to the class of schedulability tests and WCRT analysis tools that we dis-
cussed so far, Bernat et al. propose probabilistic methods for obtaining schedulability
and response time guarantees [BCP02, BBB03]. These methods are convenient for
soft real-time systems where safe WCET bounds are not required. They are not
suited for safety-critical hard real-time systems because they are neither safe nor
sound.

WCET-aware compilers are another, more recent, class of applications that rely on
task-level WCET bounds [Fal09, LM09]. The idea is to use WCET information for
guiding compilation strategies that reduce the worst-case instead of the average-case
execution time. An example of such a tool is the WCC compiler infrastructure [FL10]. It
implements a feedback loop with the aiT WCET tool [Abs00] in order to evaluate the
WCET effect of already performed optimizations and to asses further optimization
potential from the WCET bounds of individual basic blocks and routines.

8

2.2 − Determining Task-Level WCET Bounds

2.2. Determining Task-Level WCET Bounds

It is generally not possible to predict execution times for programs since this would
correspond to solving the halting problem. Real-time systems however adhere to
restrictions which guarantee that these programs always terminate. That is, all loops
and recursions are limited and the recursion and loop bounds are known in advance.1

There are two classes of methods for obtaining WCET bounds for real-time tasks:

• Dynamic methods derive WCET estimates from observing concrete program
executions. They are also referred to as measurement-based methods.

• Static methods determine WCET bounds by applying analysis methods to the
program code without executing it.

All methods make pessimistic assumptions in order to approximate the worst-case
behavior. Reliable WCET bounds – as required for designing hard real-time systems
– can only be given by methods which are safe and sound. A method is safe if it
only uses assumptions which over-approximate the worst-case, i.e., if it errs only on
the safe side. A method is also sound if it covers all possible executions. For WCET
analysis this means covering the product of all possible inputs, program paths, and
hardware states.
The following two subsections give an overview of existing dynamic and static meth-
ods for computing task-level WCET bounds. The presentation generally proceeds
from the simple to the more advanced methods and tries to illustrate the historic
research development without covering all of the available tools. A broad and very
detailed overview of the state of the art in WCET analysis methods and tools can be
found in the overview article [WEE+08].

2.2.1. Dynamic Methods

The simplest dynamic method for obtaining execution time information for a task is
by measuring several executions of the whole task with varying inputs. The mea-
surements can either be performed by adding instrumentation code to manipulate
hardware timers, or by the use of a logic analyzer to observe certain signals (like
fetching a certain instruction or writing to a special address). The drawback of this
method is that the variance in the set of executions is usually large and the values
are not evenly distributed. This is partly because of the range of inputs and different
operating modes but also because the execution time of modern hardware, featuring
caches and complex pipelines, is very sensitive with respect to the start state and ex-
ecution history [HLTW03, Rei08]. There is only little chance for observing unusually
small or high execution times. Even worse, virtually all observed values underestimate
the worst-case, i.e., measurements err on the unsafe side. Because the difference
between the worst-case measurement and the actual worst-case is unknown, adding

1However, experience from industrial practice shows that obtaining safe and precise recursion and
loop bounds often requires a fair amount of time-consuming manual analysis.

9

Chapter 2: Related Work

“safety” margins to account for underestimations is not safe; and even if the results
overestimate the worst-case, they are often not precise enough.
Despite the inherent lack of safety, dynamic (or measurement-based) methods can
be very useful for analyzing tasks with so-called soft, i.e., not safety-critical, WCET
constraints. The main advantage over static methods is that they do not require the
construction of a hardware model, which can be expensive and time consuming de-
pending on the complexity of the modeled hardware. However, measurement-based
methods require additional tracing hardware instead. Recently, built-in debugging
and tracing interfaces, e.g., the Nexus interface [O’K00], have become increasingly
popular for microprocessors targeting the embedded market. The Nexus interface
is very convenient to use but the employed trace buffers are too small to measure
the execution of a whole task. This restriction brought forth a new generation of
measurement-based timing analysis tools. These tools measure the execution times
of many small snippets of the task. The individual execution times are combined to
a global WCET estimate, e.g, using integer linear programming [WKRP08, Sta09], or
probabilistic methods [BCP02, BBN05].
Despite all efforts to combine snippet execution times safely, these tools suffer from
the same lack of soundness as full-blown measurements do; it can therefore not be
guaranteed that the given WCET estimates are an upper bound of the actual WCET.
At the same time, it has been reported that the combination of snippet execution
times often leads to high overestimations of the WCET in practice [BBK+06]. Recent
efforts to take context information for the measured snippets into account [SM10]
may improve on the precision issue to a limited degree.

2.2.2. Static Methods

A simple static approach to obtain WCET estimates on the source-code level is the
use of timing schemes which has been proposed by Shaw [Sha89]. It works for any
imperative high-level programming language and assumes that constant execution
times can be assigned to atomic instructions. For straight-line code, the execution
times of the atomic instructions are added up. The execution time of a conditional
is given by the maximum over all cases. Loops and recursions are handled by
multiplying an iteration or recursion bound with the cost of the loop or function
body.
Shaw’s timing schemes have several drawbacks. First, timing schemes often give
very coarse WCET bounds. For example, not all iterations of a loop have the same
execution time. Different iterations may execute different paths through the loop
body. Hence, simply multiplying the loop bound with the worst-case iteration
significantly overestimates the actual WCET in many cases. Another problem is that
for tasks running on modern computer hardware it is not safe to assume that the
execution time of an atomic instruction is constant. In fact, the execution time on
modern microprocessors featuring caches and complex pipelines is highly sensitive
with respect to the execution history [HLTW03, Rei08]. Last but not least, estimating
the WCET based on high-level source code cannot give reliable results if the source

10

2.2 − Determining Task-Level WCET Bounds

l1 int i = x = y = 0;

l2 while (i < 10) {

l3 if (0 == i % 2) {

l4 x++;

} else {

l5 y++;

}

l6 i++;

}

l7 return x – y;

l1

l2

l3

l4 l5

l6

l7

e0

e1

e2

e4 e5

e6 e7

e8

e9

l0

Figure 2.1.: Example program and graph with ILP variables.

code is translated by an optimizing compiler. Such compilers apply transformations
that preserve the semantics but usually decrease (or at least alter) the execution time.
For example, conditionals over a variable that can be proven to be constant for any
execution may be removed and loop invariant computations may be hoisted outside
the loop body.
There have been attempts to overcome the limitations of Shaw’s original method,
applying it to assembly level programs and taking the effects of modern processor
features into account. To this end, Lim et al. [RLP+94, LBJ+94] and Hur et al.
[HBL+95] propose a method which models cache effects via bookkeeping of first
and last references to memory blocks; pipelining effects are modeled by reservation
tables whose resources are registers and pipeline stages. The approach has been
evaluated for the rather simple MIPS 3000 architecture and very small programs. It
is limited to such simple targets because the pipeline modeling relies on assumptions
that are not valid for more advanced pipelines.
Li et al. propose the use of integer linear programming (ILP) for the static com-
putation of WCET bounds [LMW96]. Their method captures pipelining and cache
effects, as well as the task’s control flow. The proposed control flow modeling has
proven to be very useful for static WCET analysis, hence we discuss it in more
detail. The control flow of the analyzed task is modeled as constraints of an ILP. The
WCET bound of the task is computed by solving the ILP with a target function that

11

Chapter 2: Related Work

maximizes the execution time. An example of the control flow modeling is depicted
in Figure 2.1. The control flow graph on the right-hand side of the figure is decorated
with variables for constructing the ILP. The variables l1, . . . , l7 denote the execution
counts of the labeled instructions in the program and l0 is the execution count of the
program entry. Similarly, the variables e0, . . . , e9 represent the traversal counts of the
corresponding control flow edges. Based on the control flow graph of Figure 2.1, the
following ILP constraints can be established:

l0 = 1
l0 = e0

l1 = e0

l1 = e1

l2 = e1 + e8

l2 = e2 + e9

l3 = e2

l3 = e4 + e5

l4 = e4

l4 = e6

l5 = e5

l5 = e7

l6 = e6 + e7

l6 = e8

l7 = e9

0 ≤ e2 ≤ 10

The constraints state that the execution count of an instruction equals the sum of
the traversal counts over all incoming and outgoing edges, e.g., l2 = e1 + e8 and
l2 = e2 + e9. Furthermore, that the loop entry at l2 is executed at most ten times,
0 ≤ e2 ≤ 10, and that the whole program is executed only once, l0 = 1. Let ti denote
the execution time for instruction li. The WCET bound is obtained by solving the
ILP under the above constraints, maximizing the following target function, where t
denotes the execution time of the whole program:

t =
7

∑
i=1

li · ti

This technique for bounding the global execution time on the control flow graph is
known as implicit path enumeration technique or IPET for short. It is also used in the
modular, static WCET analysis framework presented in Section 5.1.
Li et al. derive the time bounds for the instructions from another ILP which models
the pipeline and cache behavior. The size of this ILP depends on the complexity of
the considered architecture. The published analysis times for the rather simple Intel
i960KB [Cor91] processor indicate that the approach does probably not scale to more
complex architectures.
Healy et al. propose a WCET analysis which uses several distinct phases [HWH95,
HAM+99, AMWH94]. The first phase uses a so-called static instruction cache simu-
lator in order to classify instruction fetches as cache hits or misses. A subsequent
pipeline path analysis computes execution times for instruction sequences under
consideration of the cache simulator results. The pipeline behavior is described in
terms of resource usage patterns that are assigned to individual instructions. Finally,
the computed execution times are combined into a WCET bound for the analyzed
program. Healy et al. consider the MicroSPARC pipeline and direct-mapped caches.
Again, the approach is limited to such simple microprocessors because the pipeline
modeling relies on assumptions which do not hold for more complex architectures.
Lundquist and Stenström obtain WCET bounds by an interpretation of the program
under analysis using an abstract processor simulator [LS98, LS99b]. In contrast to

12

2.2 − Determining Task-Level WCET Bounds

measurements or explicit simulation, the problem of covering the possible inputs is
handled by allowing input ranges for the simulation. The implementation simulates
the possible executions by a cycle-wise evolution of the pipeline model and performs
ALU operations on ranges instead of concrete values. The WCET bound is derived
from the required number of single-cycle simulator steps. Abstract simulation can
give safe and tight WCET bounds if the simulation terminates. Also, the method is
fully automatic. However, termination is not guaranteed and the complexity of the
abstract simulation depends heavily on the number of paths that have to be followed.
For example, if the outcome of a branch condition (branch taken or not taken) cannot
be precisely predicted, the simulation must continue for both possibilities. The
arising complexity can quickly render the analysis infeasible in practice. Lundquist
and Stenström evaluate their approach using a hardware model that is based on the
PowerPC architecture and rather small programs.
Engblom presents a similar approach in [Eng02]. In contrast to Lundquist and
Stenström’s abstract simulation, which handles everything in one monolithic analysis,
it decomposes the problem into several sub-problems which are solved by separate
analyses. However, at the core of the method is also an abstract simulator. The
scalability problems of Lundquist and Stenström’s abstract simulator are avoided
by using the simulation only to compute execution times for linear sequences of
instructions. The WCET estimates for all sequences are then combined into a
WCET estimate for the whole program. Due to several simplifying assumptions, the
approach is limited to simple architectures that are free of timing anomalies (see
Section 5.3.2) and do not feature caches, e.g., the ARM7 microprocessor.
Another method for WCET analysis is proposed by Colin and Puaut [CP01]. They
call their approach tree-based because it uses the syntax tree of the program under
analysis to combine low-level WCET estimates to a global WCET bound. The low-
level WCET estimates are obtained from independent analyses of the instruction
cache and pipeline behavior. The approach has also been extended to handle dynamic
branch prediction [CP00]. A weakness of the tree-based method is that it is not
context-sensitive and therefore seems to produce rather pessimistic WCET estimates.
Li/Mitra et al. present an analysis for an out-of-order pipeline which determines
context-sensitive execution time bounds for basic blocks by a fixed point analysis
of the time intervals at which instructions enter and leave the different pipeline
stages [LRM04, LMR05]. The instruction cache and dynamic branch prediction
behavior is analyzed by ILP-based techniques [LMR05, RLM02]. The global WCET
bound is calculated using IPET. The tool only supports the processor model of the
SimpleScalar [ALE02] sim-outorder cycle-accurate processor simulator.
Kirner et al. describe a WCET analysis which cooperates with a compiler and requires
users to write their programs in a dedicated derivative of the C programming
language with WCET annotations [KLFP02]. Execution time bounds are computed
on the generated object code using ILP techniques [PS97]. Annotations are taken
into account using additional compiler information, particularly in order to deal
with compiler optimization [KP03]. The tool supports several simple embedded
processors which are free of timing anomalies.

13

Chapter 2: Related Work

Wilhelm et al. use an approach that decomposes the WCET problem into several
sub-problems which are independently solved using a combination of abstract inter-
pretation and integer linear programming [FHL+01, HLTW03]. The implementation
starts from fully linked executables and also features analyses for predicting low-
level timing effects of the hardware [Fer97, The04]. The analysis has been applied to
industrial software [TSH+03, WEE+08] and the analyzer is available as a commer-
cial product [Abs00]. Our work builds on top of this approach which is therefore
discussed in detail in Section 5.1.
The research in static WCET analysis led to the development of numerous academic
and commercial tools which we have not covered exhaustively, e.g., the Bound-T tool
[Tid00, HLS00], or the OTAWA WCET analysis framework [BCRS10]. However, these
remaining tools generally use a combination of the already mentioned techniques
and deviate only in details. Again, we refer to [WEE+08] for an in-depth discussion.

2.3. Symbolic Methods in WCET Analysis

Symbolic methods so far have only been applied to WCET analysis in the context
of symbolic model checking. Early work by Logothetis and Schneider computes
WCET bounds for synchronous programs, assuming a single-cycle execution model
[LS03, LSM03]. This execution model does not hold for modern processor hardware,
using pipelined execution and caches to improve the average execution time. It can
therefore not be directly compared with any of the already described approaches
except timing schemes.
More recent research in model checking for WCET analysis by Larsen et al. also takes
the timing effects of the hardware into account [DOT+10]. Pipeline, caches, and the
control flow of the analyzed program are modeled as timed automata in the real-time
model checker Uppaal [BLL+96, LPY97]. WCET bounds in terms of execution cycles
are determined directly by a reachability analysis with the Uppaal model checker.
Despite the modular modeling concept, the analysis itself is monolithic in the way
that the model checker considers the combined state space of the hard- and software
model. It is therefore not surprising that – according to the published results – the
approach suffers from serious scalability problems even though it only addresses
the most simple pipelines. The work of Larsen et al. is probably the closest to our
approach. The similarities concern the modeling of the hard- and software interaction
and the fact that symbolic methods are used to cover the state space of the pipeline.
But there are also significant differences. Larsen et al. strive for a wholesome model
checking approach whereas our work uses BDD-based symbolic methods only for
covering the state space of the pipeline. Our approach is also truly modular and
therefore less prone to scalability issues.
Multicore processors have recently become a major topic in the WCET research
community. The interference between several tasks accessing shared resources
significantly complicates the WCET problem. Currently the problem appears far
from being solved and it has even been argued that generic multicore processors

14

2.3 − Symbolic Methods in WCET Analysis

should not be considered for applications with WCET requirements [CFG+10].
However, the question of giving WCET bounds for multicore processors also brought
forth a research paper on integrating abstract interpretation with model checking
[LNYY10]. Wang et al. use an abstract cache analysis to predict the local cache
behavior of each task. The interaction of the tasks on the shared bus is then modeled
in Uppaal using timed automata. The problem of giving WCET bounds for multicore
applications is not quite comparable to the computation of WCET bounds for single
uninterrupted tasks. However, it is still interesting to compare the work of Wang et
al. with our approach because it also combines abstract interpretation with symbolic
state traversal. The difference is that our state traversal is not quite the same as
reachability analysis by a symbolic model checker. It is tightly integrated into a static
program analysis framework and allows the interaction with other analyses during
analysis time (see Section 6.5 for an example).
Finally, a very different approach for using model checking in WCET analysis is
taken by Wenzel et al. [WKRP08]. Their tool uses a model checker for finding feasible
paths and generating the corresponding input data for measurement-based WCET
estimation.

15

CHAPTER 3

Abstract Interpretation

Static program analyses answer questions about the behavior of a computer program
without executing it. Their application ranges from questions about the state of
variables (what are the possible values of variable x at program point p) to more difficult
questions about correctness (does the program never divide by zero?). A common
property of all static analyses is that they compute invariants, i.e., the given answers
hold for all possible executions of the program. For any non-trivial analysis, this
requires the program semantics to be taken into account. Unfortunately, all non-
trivial questions about the concrete semantics of a program are undecidable. Static
analyses therefore rely on abstract semantics which over-approximates the concrete
semantics. Abstractions yield problems that are easier to compute but this is typically
associated with a loss of precision. The trade-off between computability and precision
makes the design of static analyses a challenging task.

A classic application of static analyses is the design of compiler optimizations.
Compiler optimizations involve program transformations that must preserve the
program semantics. This requires knowledge about semantic invariants which
are obtained by static analyses. More recently, static analysis techniques are also
employed in the verification of safety-critical systems, e.g., to prove the absence
of run-time errors [BCC+03] and to compute safe upper bounds on the worst-case
execution time of tasks [FHL+01].

This chapter gives an introduction into the design of abstract domains for static
analyses, the actual computation of the semantic invariants, and into the underlying
theory of abstract interpretation. The presentation is based on the works of Miné
[Min04], Martin [Mar98, Mar99], and a text book on program analysis by Nielson,
Nielson, and Hankin [NNH99].

17

Chapter 3: Abstract Interpretation

3.1. Lattice Theory

The theory of abstract interpretation states that all kinds of semantics can be expressed
as fixed points of monotonic functions in partially ordered structures. The correctness
of a program analysis can be proved if the considered partially ordered structures
satisfy certain conditions. This section introduces the required elements from lattice
theory.

Definition 3.1 (Partially ordered set, poset)
A partially ordered set (D,v) is a non-empty set D with a partial order v, that is a reflexive,
transitive and anti-symmetric binary relation. If they exist, the greatest lower bound (glb) of
a set D ⊆ D will be denoted by

d
D and the least upper bound (lub) will be denoted by

⊔
D.

The least element and greatest element of D will be denoted by ⊥ and > if they exist.

Definition 3.2 (Complete lattice)
A lattice (D,v,t,u) is a poset where each pair of elements a, b ∈ D has a least upper
bound a t b and a greatest lower bound a u b. A lattice is said to be complete if any set
D ⊆ D has a least upper bound. This implies that a complete lattice has both a least element
⊥ =

⊔
∅ and a greatest element > =

⊔D. Furthermore, each set D ⊆ D has a greatest
lower bound

d
D =

⊔{X ∈ D | ∀Y ∈ D, X v Y}. A complete lattice will be denoted by
(D,v,t,u,⊥,>).

Power Set Lattice. An important complete lattice is the power set lattice which can
be constructed from any set S using standard set operators, i.e., (2S,⊆,∪,∩, ∅, S).
An example of this lattice based on a set with 4 elements is depicted in Figure 3.1.
Its height, i.e., the length of the longest path from ⊥ to >, is 4. In general, a power
set lattice (2S,⊆,∪,∩, ∅, S) has height |S|.

Abbreviations. The following text will use a more compact notation for posets
and complete lattices if this does not lead to ambiguities. A poset (Dx,vx) will be
referred to as Dx, i.e., the superscript x will be used as an identifier for a certain
poset. The same holds for lattices, i.e., the complete lattice Dx is ordered by vx with
lub tx, glb ux, least element ⊥x and greatest element >x.

We introduce two important properties of functions between lattices. Monotonicity
is required for fixed point computation and for establishing a correctness relation
between two semantic domains. The notion of distributivity of functions is related to
the corresponding property of arithmetic operators.

Definition 3.3 (Monotonic)
A function f : Da → Db between two posets Da and Db is monotonic (or order-preserving)
if

∀Xa, Ya ∈ Da : Xa va Ya ⇒ f (Xa) vb f (Ya)

18

3.1 − Lattice Theory

{0, 1, 2, 3}

kkkkkkkkkkkkkk

xxxxxxxx

FFFFFFFF

SSSSSSSSSSSSSS

{0, 1, 2}

WWWWWWWWWWWWWWWWWWWWWWWWWW {0, 1, 3}

WWWWWWWWWWWWWWWWWWWWWWWWWW {0, 2, 3}

gggggggggggggggggggggggggg

kkkkkkkkkkkkkkk
{1, 2, 3}

{0, 1}

yyyyyyyy

EEEEEEEE

lllllllllllllll

SSSSSSSSSSSSSSSSS {0, 2}

WWWWWWWWWWWWWWWWWWWWWWWWWWWW {0, 3}

wwwwwwwww

WWWWWWWWWWWWWWWWWWWWWWWWWWWW {1, 2}

wwwwwwwww

kkkkkkkkkkkkkkkkk
{1, 3}

gggggggggggggggggggggggggggg {2, 3}

EEEEEEEE

yyyyyyyy

SSSSSSSSSSSSSSS

lllllllllllllllll

{0} {1} {2} {3}

{}

SSSSSSSSSSSSSSSSSSSS

FFFFFFFFF

xxxxxxxxx

kkkkkkkkkkkkkkkkkkkk

Figure 3.1.: Power set lattice for a set with 4 elements.

Definition 3.4 (Distributive)
A function f : Da → Db between two lattices Da and Db is distributive (sometimes called
additive) if

∀Xa, Ya ∈ Da : f (Xa ta Ya) = f (Xa) tb f (Ya)

It is called completely distributive if

∀Da ⊆ Da : f (
⊔a Da) =

⊔b{ f (Xa) | Xa ∈ Da}

whenever
⊔a Da exists.

3.1.1. Fixed Points

A fixed point of a function f is an element X such that f (X) = X. If f is monotonic,
the following theorem ensures the existence of fixed points.

Theorem 3.1 (Tarski’s Fixed Point Theorem)
If f : Dx → Dx is a monotonic function in a complete lattice Dx, then the set of all fixed
points Fix(f) = {Xx | f (Xx) = Xx} is nonempty and forms a complete lattice when
ordered by vx.

Proof Found in [Tar55].

The practical computation of fixed points is based on ascending sequences of elements
in complete lattices called ascending chains.

19

Chapter 3: Abstract Interpretation

Definition 3.5 (Ascending chain)
An ascending chain (Xi)i is a sequence X0, X1, . . . such that ∀j : Xj v Xj+1. It is called
strictly ascending iff ∀j : Xj 6= Xj+1. An ascending chain is said to stabilize if it holds that
∃j : ∀n ≥ j : Xj = Xn.

An example of an ascending chain in the power set lattice of Figure 3.1 is the
following sequence which, in terms of the picture, ascends along the left edge of the
lattice:

⊥ = ∅, {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3} = >

The non-existence of strictly ascending chains naturally gives rise to an iterative
computation of fixed points. This is formalized by the following theorem.

Theorem 3.2 (Kleene’s Fixed Point Theorem)
Let Dx be a complete lattice where all ascending chains eventually stabilize. If f : Dx →
Dx is a monotonic function, then there exists a k such that f k(⊥x) = f k+1(⊥x) and
f k(⊥x) is the least fixed point of f .

Proof Found in [Cou78].

Iterative fixed point computation might not converge if the lattice has strictly as-
cending chains. In such cases, convergence can be enforced by the application of a
widening operator. The obtained fixed point is typically above the least fixed point. A
subsequent down iteration using a narrowing operator can refine such coarse overap-
proximation. Interval analysis is an example where widening plays an important role.
It assigns an interval of natural numbers to integer variables. The top element of
this lattice is the interval [−∞,+∞]. The analysis of a loop incrementing an integer
variable x in every loop iteration may not reach a fixed point if it fails to determine a
static bound for the number of loop iterations. Widening will force convergence by
setting the interval for x to [−∞,+∞].
Within the scope of our work, widening and narrowing are not required since we
only consider lattices of finite height where convergence speed is no problem. We
refer to [NNH99] for details on this subject.

3.2. Collecting Semantics

A static program analysis has to refer to the semantics of programs. We consider a
form of semantics that is based on a program representation as a directed graph.

Definition 3.6 (Control flow graph)
A control flow graph (CFG) is a directed graph G = (N, E, s, e) with a finite set of nodes N,
a set of edges E ⊆ N × N, a start node s and an end node e. If there exists an edge (n, m)

20

3.2 − Collecting Semantics

start fac(n)start fac(n)

result = 1result = 1

while (n > 1)while (n > 1)

result = result * nresult = result * n

n = n - 1n = n - 1

return resultreturn result

endend

start fac(n)start fac(n)

result = 1result = 1

result = result * n
n = n - 1

result = result * n
n = n - 1

return resultreturn result

endend

int fac(int n)
{
 int result = 1;

 while (n > 1)
 {
 result = result * n;
 n = n – 1;
 }

 return result;
}

int fac(int n)
{
 int result = 1;

 while (n > 1)
 {
 result = result * n;
 n = n – 1;
 }

 return result;
}

(a) (b) (c)

while (n > 1)while (n > 1)

Figure 3.2.: (a) Source code of a procedure for computing the factorial of an
integer number, (b) the procedure’s control flow graph, and (c) the
basic block graph of the same procedure.

then n is called predecessor of m and m is called successor of n. The start node s has no
predecessor and the end node e has no successor.
A sequence (n1, . . . , nk) ∈ N∗ is a path through G iff n1 = s and ∀j ∈ {1, . . . , k − 1} :
(nj, nj+1) ∈ E. A sequence (n1, . . . , nk) ∈ N∗ is a path to n if it is a path and nk = n. The
path to the start node s is denoted by (s) ∈ N∗.

It is often useful to collapse maximal paths of strictly linear control flow into single
blocks. This transformation yields a more compact CFG representation in which
each node subsumes one or several program statements.

Definition 3.7 (Basic block)
A basic block is a maximal sequence of nodes (n1, ..., nk) of a CFG = (N, E, s, e) such that
ni is the only predecessor of ni+1 and ni+1 is the only successor of ni and n1 6= s, nk 6= e. A
basic block graph G = (N, E, s, e) is a CFG in which every node n ∈ N that is not the start
or end node, is a basic block.

Figure 3.2 shows the C source code of a function for computing the factorial of an
integer number and its corresponding control flow and basic block graphs.

21

Chapter 3: Abstract Interpretation

Path semantics expresses the meaning of program statements in a CFG by a function
f b : E→ Db → Db over a domain which is required to be a complete lattice. For a
given edge (m, n) ∈ E we say that f b computes the effect of the program statement
m on a state xb ∈ Db. The effect of the statement m can depend on the target node n,
e.g., if the semantics captures branch conditions.

Definition 3.8 (Path semantics)
The semantics of a path π = (n1, . . . , nk) ∈ N∗ through the CFG G = (N, E, s, e) is defined
as

JπK :=

{
λx.x if π = (n)
Jn2, . . . , nkK ◦ f b(n1, n2) if π = (n1, . . . , nk), k > 1

Program analysis calculates invariants that hold for all input data. This can be
expressed by lifting the path semantics to sets of states. Let (Dcoll,⊆,∪,∩, ∅,Db)
be a power set domain over the elements of Db. This domain is a complete lattice,
independent of the properties of Db. The effect of executing a program statement in
this domain can be represented by a function f coll : E→ Dcoll → Dcoll.

Definition 3.9 (Collecting semantics)
The collecting semantics of a path π = (n1, . . . , nk) ∈ N∗ through the CFG G = (N, E, s, e)
is defined as

JπKcoll :=

{
λx.x if π = (n)
Jn2, . . . , nkKcoll ◦ f coll(n1, n2) if π = (n1, . . . , nk), k > 1

The collecting semantics of a node n ∈ N w.r.t. a set of input states ι is defined as

CollG(n) :=
⋃
{JπKcoll(ι) | π is a path to n in G}

For an abstract domain with computable semantics, the collecting semantics for
all nodes of the CFG of a procedure can be computed by a data flow analysis. It
computes the Kleenian fixed point of a monotonic function in the underlying domain
in an iterative fashion. A data flow analysis can be defined in terms of

• a data flow domain D], required to be a complete lattice,

• a monotone transfer function tf] : E→ D] → D] for updating domain elements,

• a least upper bound operator t] for combining domain elements at control flow
joins,

• an (in-) equality operator =] or 6=] for checking for fixed points of the transfer
function. Note that =] and 6=] can always be constructed from the v] operator.

The least fixed point of tf] is computed by iteration over the nodes of the graph.
The corresponding algorithm is depicted in Figure 3.3. The iteration is guided by a
workset of nodes and v(n) ∈ D] is the set of values assigned to a node n ∈ N. The
set ι] of initial values is assigned to the entry point of the analyzed procedure.

22

3.2 − Collecting Semantics

1: for all n ∈ N do
2: v(n) =⊥]

3: end for
4: v(s) = ι]

5: workset = {n | (s, n) ∈ E}
6: while workset 6= ∅ do
7: let n ∈ workset in
8: workset = workset \ {n}
9: X =

⊔]{tf](m, n)(v(m)) | (m, n) ∈ E}
10: if X 6=] v(n) then
11: v(n) = X
12: workset = workset∪ {m | (n, m) ∈ E}
13: end if
14: end while

Figure 3.3.: Algorithm for computing the minimum fixed point solution of a data
flow problem on the CFG of a procedure.

3.2.1. Galois Connections

The semantic invariants that are computed by a program analysis should be correct
w.r.t. the considered concrete semantics. For abstract interpretation, this means that
the computed fixed points in the employed abstract domain over-approximate the
concrete collecting semantics. This relationship between the concrete and abstract
semantic domains is formalized by the notion of Galois connection [CC77].

Definition 3.10 (Galois connection)
Let Db and D] be two posets denoting respectively a concrete and an abstract semantic
domain. A Galois connection between Db and D] is a pair of functions (α, γ) such that:

∀Xb, X] : α(Xb) v] X] ⇐⇒ Xb vb γ(X]) (3.1)

To put it informally, abstracting and concretizing an element from the concrete
domain using an abstraction function α and a concretization function γ always yields
an overapproximation. The existence of a Galois connection ensures local consistency.
Analysis results in the abstract domain over-approximate the concrete semantics at
all nodes in the CFG. Hence, the analysis is correct. The Galois connection between
two domains and its relation to the local consistency of the semantics are depicted in
Figure 3.4.

Theorem 3.3
If (Db, α, γ,D]) is a Galois connection then α and γ are both monotonic.

23

Chapter 3: Abstract Interpretation

tf b(e)(Xb) vb tf](e)(X])
γ

oo

Xb

tf b(e)

OO

α // X]

tf](e)

OO

Figure 3.4.: Concrete and abstract semantic domains Db and D] that are con-
nected by a Galois connection (α, γ). For any edge e ∈ E of a CFG
G = (N, E, s, e), the application of a transfer function tf] in the ab-
stract domain over-approximates the semantics of the corresponding
computation in the concrete domain by tf b.

Proof For γ, assume
X] v] Y] (3.2)

The following sequence of transformations shows that γ is monotonic. The initial
equation holds because the partial order operator vb is reflexive (Definition 3.1).

γ(X]) vb γ(X])

3.1
=⇒ α(γ(X])) v] X]

3.2
=⇒ α(γ(X])) v] Y]

3.1
=⇒ γ(X]) vb γ(Y])

The proof for α can be easily constructed using the same idea.

To ensure the existence of a Galois connection, it is not necessary to specify both the
abstraction and concretization function. If α is monotonic and completely distributive
and Db is a complete lattice, then the missing function can be synthesized in a
canonical way as is stated by the following theorem.

Theorem 3.4
If (Db, α, γ,D]) is a Galois connection then α is completely distributive and uniquely
determines γ by

γ(X]) =
⊔b{Xb | α(Xb) v] X]}

A dual theorem holds for γ with
d

instead of
⊔

.

Proof Found in [NNH99].

24

3.3 − Interprocedural Analysis

3.3. Interprocedural Analysis

Programs are usually composed of many functions and procedures. Each procedure
can be called from different call contexts. To arrive at a precise analysis, the different
call contexts have to be analyzed separately. Martin [Mar98] lists several solutions
for tackling this problem:

• Inlining: Procedure calls are replaced by the body of the callee. This is only
feasible for non-recursive procedures. Further, the program representation
grows significantly.

• Effect calculation: Every execution of a procedure computes an effect. This is a
function which maps the input values of the procedure to its outputs.

• Call string: The call history is incorporated into the analysis domain and used
to distinguish domain elements in different call contexts.

• Static call graph: Call sequences are statically computed prior to the data flow
analysis. Each sequence is then analyzed separately.

The call string and static call graph approaches allow the analyzer to lose precision
by merging call histories. For call strings, this is achieved by cutting off call strings
whose lengths exceed a certain threshold. Similarly, the computation of call sequences
in a static call graph can be limited, and sequences that exceed the threshold are
merged.
The merging of call histories allows to configure the precision and computational
complexity of an interprocedural analysis. Distinguishing longer call histories yields
more precise analyses, but requires more memory and computation time. The most
precise analysis without merging call histories is often infeasible in practice.
We consider the static call graph approach which is used by the program analyzer
generator PAG [Mar98]. It is based on a special CFG, called supergraph, which
interconnects the basic block graphs of individual procedures. Local edges [RHS95]
allow for the propagation of information that is invariant with regard to procedure
calls. Interprocedural analysis problems can be reduced to intraprocedural analysis
problems on the supergraph.

Definition 3.11 (Supergraph)
Let G1, . . . , Gn be the CFGs of all n procedures of a program P. The supergraph G∗ =
(N∗, E∗, s∗, e∗) of P consists of a set of nodes N∗ that is the union of all node sets of
G1, . . . , Gn except that every node representing a procedure call from a procedure Pi to a
procedure Pj is replaced by two nodes:

• a call node nc
i,j,

• a return node nr
i,j.

The set of edges E∗ contains all edges of G1, . . . , Gn, and the following additional edges for
every procedure call from a procedure Pi to a procedure Pj:

25

Chapter 3: Abstract Interpretation

• a call edge from the call node nc
i,j in Pi to the start node sj of Pj,

• a return edge from the exit node ej of Pj to the return node nr
i,j in Pi,

• a local edge from the call node nc
i,j to the return node nr

i,j.

The start and end nodes of G∗ are the start and end nodes of the entry procedure G1: s∗ = s1,
e∗ = e1.

The implementation of the static call graph approach on the supergraph works
as follows. Each node in the supergraph is annotated with an array of elements
from the analysis domain. The number of data elements at nodes of the same
procedure is fixed. It corresponds to the number of different call contexts in which
the procedure is analyzed. Corresponding array cells between two neighboring
nodes in the supergraph are connected by a set of connector functions. To merge call
histories between two nodes, the connector functions connect several array slots at the
predecessor node with a single array slot at the successor node. The resulting graph
is called extended supergraph. An example of this graph is depicted in Figure 3.5.
The extended supergraph allows the analysis of recursive functions with unknown
recursion bounds by merging recursive calls that exceed a chosen threshold. It
can also be used for precise loop analysis. To this end, loops are transformed into
recursive procedures [MAWF98]. Virtual loop unrolling refers to the assignment of a
static number of distinguished analysis contexts to a recursive loop procedure.
The analyzer generator PAG [Mar98] uses the described implementation of the
static call graph approach. Context handling is referred to as virtual inlining, virtual
unrolling, or VIVU for short [MAWF98].

26

3.3 − Interprocedural Analysis

Figure 3.5.: Extended supergraph with two procedures P1 and P2. P1 calls P2 twice
which is analyzed in two contexts. The rounded boxes are nodes of
the supergraph and the small square boxes represent the static context
arrays. The solid edges are control flow edges of the supergraph whereas
the dashed edges connect the static contexts.

27

CHAPTER 4

Symbolic State Space Exploration

Modern computer hardware can be regarded as a complex network of digital circuits
which are composed of gates and interconnecting wires. A gate is a collection of tran-
sistors that outputs the result of a Boolean operation on its inputs. Memory elements
such as binary latches provide the additional capability of storing signals for further
use in later computations. The behavior of digital circuits can be precisely captured
by switching functions and finite state machines. Switching functions correspond to
stateless circuits (also called combinatorial circuits) whereas finite state machines (FSMs)
provide a model for sequential circuits in which the result of a computation also
depends on a memory state. Both computation models, switching functions and
finite state machines, play an important role in the design and formal verification of
digital circuits.
Switching functions and finite state machines can be represented by different data
structures, like Boolean formulae, truth tables, and decision diagrams. Choosing a
compact representation is of particular importance for formal verification. Model
checking techniques, which are widespread in hardware verification, require a
representation of the transition system to be verified and often traverse a substantial
part of its state space. The explicit construction of large transition systems is infeasible
because the number of states is exponential in the number of memory elements. This
problem is known as the state explosion problem. It also affects the representation of
analysis information, i.e., sets of reachable states, during the state traversal. Symbolic
representations, in particular ordered binary decision diagrams (BDDs), avoid the explicit
enumeration of states. They admit an implicit encoding of the transition system and
of analysis information, like sets of states in state traversal. This approach has
enabled the verification of large circuits by model checking [BCM+90].
This chapter gives an introduction into the representation of FSM transition systems
and sets of states using Boolean functions. Ordered binary decision diagrams are
introduced as a data structure for the compact representation of Boolean functions.

29

Chapter 4: Symbolic State Space Exploration

Finally, we discuss a method for the implicit state traversal of FSMs using a symbolic
representation based on BDDs. The presentation is based on a text book about
VLSI1 design by Meinel and Theobald [MT98], the original paper on BDDs by Bryant
[Bry86], and a paper on image computation by Ranjan et al. [RAB+95].

4.1. Switching Functions

The switching algebra is a Boolean algebra with two elements. It precisely captures
the behavior of combinatorial circuits and is therefore commonly regarded as the
theoretical foundation of circuit design.

Definition 4.1 (Switching algebra)
Let the operations +, · , ¯ on the set B = {0, 1} be defined as follows:

• a + b = max{a, b}

• a · b = min{a, b}

• 0 = 1 and 1 = 0

Then (B,+, · , ¯) is a Boolean algebra called the switching algebra.

Definition 4.2 (Switching function)
An n-variable function f : Bn → B is called a switching function. The set of all n-variable
switching functions is denoted by Bn.

A basic operation for computations with switching functions is Shannon’s expansion
which establishes a relationship between a function and its subfunctions. Sub-
functions are derived from a function by assigning constants to some of its input
variables.

Theorem 4.1 (Shannon expansion)
Let f ∈ Bn be a switching function. For the subfunctions g, h ∈ Bn−1 defined by

g(x1, . . . , xn−1) = f (x1, . . . , xn−1, 0)
h(x1, . . . , xn−1) = f (x1, . . . , xn−1, 1)

it holds that
f = xn · g + xn · h

1VLSI stands for Very Large Scale Integration.

30

4.2 − Ordered Binary Decision Diagrams

Proof Let a1, . . . , an be an assignment to the input variables x1, . . . , xn. For an = 0
the theorem follows from the equation f (a1, . . . , an) = g(a1, . . . , an−1). For an = 1 it
follows from the equation f (a1, . . . , an) = h(a1, . . . , an−1).

Theorem 4.1 derives subfunctions by fixing the last input variable of a function. The
same idea can also be applied to other subfunctions and to other operations. The
Shannon expansion with respect to the i-th argument is given by:

f (x1, . . . , xn) = xi · f (x1, . . . , xi−1, 1, xi+1, . . . , xn) + xi · f (x1, . . . , xi−1, 0, xi+1, . . . , xn)

The dual of Shannon’s expansion is given by:

f (x1, . . . , xn) = (xi + f (x1, . . . , xi−1, 1, xi+1, . . . , xn)) · (xi + f (x1, . . . , xi−1, 0, xi+1, . . . , xn))

Note: Each n-variable switching function is also a Boolean function. In the following, the
terms Boolean function and switching function will therefore be used synonymously.

4.2. Ordered Binary Decision Diagrams

Ordered binary decision diagrams (BDDs) provide a canonical representation of
switching functions that is very compact for many switching functions of practical
relevance. Further, Boolean operations and equivalence checks can be carried out
efficiently.

Definition 4.3 (Ordered binary decision diagram, BDD)
Let < be a total order on the set of variables x1, . . . , xn. An ordered binary decision diagram
is a directed acyclic graph with a single root node which satisfies the following properties:

• There are two terminal nodes labeled by the constants 1 and 0.

• Each non-terminal node is labeled by a variable xi and has two outgoing edges that are
labeled by 0 and 1, respectively.

• For each edge leading from a node labeled by xi to a node labeled by xj it holds that
xi < xj. Consequently, on any path in the graph, variables appear in the order defined
by <.

The variable labeling a node v is denoted by var(v). low(v) and high(v) denote the successor
node reached by the 0-edge or 1-edge, respectively.

An input a = (a1, . . . , an) ∈ Bn assigning values to all variables x1, . . . , xn in a BDD
defines a path through the graph. The path begins at the root node and at a node
labeled xi it follows the edge labeled by ai. This establishes a direct correlation
between switching functions and BDDs.

Definition 4.4 (Representation of switching functions)
A BDD represents a switching function f ∈ Bn if for all inputs a ∈ Bn the path defined by
a leads to the terminal node with label f (a).

31

Chapter 4: Symbolic State Space Exploration

?>=<89:;x1

~~||||||||

���
�
�
�
�
�
�
�
�

?>=<89:;x2

��

��1
1

1

?>=<89:;x3

��

��1
1111

1 0

Figure 4.1.: BDD for the switching function x1 · x2 + x1 · x2 · x3 with variable or-
dering x1, x2, x3. Solid arrows represents 1-edges and dashed arrows
represent 0-edges of non-terminal nodes.

Assigning a value to a BDD node defines a Shannon expansion of the corresponding
switching function. In BDD terminology, the subfunctions obtained by Shannon’s
expansion are called cofactors.

Definition 4.5 (Cofactor)
Let f ∈ Bn be a switching function. The positive cofactor of f with respect to the i-th input
xi is the subfunction fxi = f (x1, . . . , xi−1, 1, xi+1, . . . , xn). The negative cofactor of f with
respect to xi is the subfunction fxi = f (x1, . . . , xi−1, 0, xi+1, . . . , xn).

If the root node of a BDD for a switching function f is labeled by the variable xi,
Shannon’s expansion on that variable will be written as

f = xi · fxi + xi · fxi (4.1)

4.2.1. Isomorphism and Reduction

BDDs according to Definition 4.3 may contain redundant information. The definition
of redundancy in BDDs is based on the notion of isomorphism.

Definition 4.6 (Isomorphism of BDDs)
Two BDDs A and B are called isomorphic if there is a bijective mapping φ from the nodes of
A to the nodes of B such that for each node v one of the following propositions hold:

1. v and φ(v) are terminal nodes with identical labels, or

2. var(v) = var(φ(v)) and φ(high(v)) = high(φ(v)) and φ(low(v)) = low(φ(v)).

As a consequence of redundancy, the same switching function can be represented by
different BDDs. A canonical data structure is more desirable because it allows for
easier checking of equivalence. Reduced BDDs provide such a data structure.

32

4.2 − Ordered Binary Decision Diagrams

Definition 4.7 (Reduced BDD)
A BDD is called reduced if

1. it does not contain a node v where high(v) = low(v), and

2. there is no pair of nodes u, v such that the BDDs rooted in u and v are isomorphic.

The two constraints on BDDs imposed by the above definition imply two reduction
rules which define how any BDD can be transformed into a reduced BDD.

• Elimination rule: If it holds for a node v that u = high(v) = low(v) then v can
be removed from the graph. All incoming edges of v are redirected to u.

• Merging rule: If for two nodes u and v it holds that var(u) = var(v) and
high(u) = high(v) and low(u) = low(v), then one of the two nodes can be elim-
inated from the graph. Incoming edges of the eliminated node are redirected
to the remaining node.

Theorem 4.2
A BDD is reduced if neither of the two reduction rules can be applied.

Proof Found in [MT98].

For a BBD with n nodes the reduction algorithm that is based on these rules has a
time complexity that is bounded by O(n · log n) [MT98]. Reduced BDDs provide a
canonical and minimal representation of switching functions. This means that for a
fixed variable order, the reduced BDD of a switching function is uniquely determined
up to isomorphisms as stated by the following theorem:

Theorem 4.3 (Canonical Representation)
For any switching function f , there is a unique (up to isomorphism) reduced BDD
denoting f and any other BDD denoting f contains more vertices.

Proof Found in [Bry86].

Because of the correspondence between reduced BDDs and switching functions, we
say that a path that starts at the root node and ends at the terminal node 1 is a
satisfying path; it corresponds to one or several satisfying assignments to the inputs
of the corresponding switching function. Observe that not all variables need to
appear on all paths. For example, the BDD of Figure 4.1 has four paths; only two
paths comprise nodes for all three variables. Variables that do not appear on a path
are sometimes attributed to so-called dont-care nodes. These nodes can be omitted
because they do not influence the result.

33

Chapter 4: Symbolic State Space Exploration

4.2.2. Binary Operations and Equivalence Test

We briefly discuss how Boolean operations and equivalence checking on two BDDs
can be carried out. As an example of a Boolean operation, we consider the conjunction
of two functions f and g. The computation of binary operations on BDDs is based
on Shannon’s expansion with respect to the leading variable in the variable order of
the involved BDDs.2 Let xi be that leading variable. By application of Equation 4.1
we obtain the following equivalence:

f · g = xi · (fxi · gxi) + xi · (fxi · gxi) (4.2)

A BDD for f · g can be constructed from the functions (fxi · gxi) and (fxi · gxi) by
introducing a new node labeled xi and by setting high(xi) to the root node of (fxi · gxi)
and low(xi) to the root node of (fxi · gxi). The functions (fxi · gxi) and (fxi · gxi) can
be constructed recursively using the same idea.
A straightforward implementation of this recursive computation would require 2n

recursive calls for n being the number of variables. Efficient implementations make
use of the following observations:

1. Each recursive call in the computation has two arguments f ′ and g′.

2. In each call, f ′ is a subfunction of f and g′ is a subfunction of g.

3. Each subfunction of f and g corresponds to exactly one BDD node.

Multiple calls with the same pair of arguments can be avoided by caching already
computed results. This dramatically reduces the number of required recursive calls.
It is then bounded by the product of the number of nodes of both BDDs. The same
recursive implementation with caching of intermediate results can also be used for
other binary operations. The result is in general not a reduced BDD. A reduced BDD
can be obtained by application of the reduction rules.
The described binary operations can be used for the construction of BDDs for complex
Boolean formulae starting from primitive BDDs. Figure 4.2 gives an example that
illustrates the construction of the BDD of Figure 4.1. This construction method is
convenient when using a BDD library, for example CUDD [Som09], for computing
the binary operations. Other approaches for manual BDD construction can be found
in [MT98].

Equivalence Test. For testing the equivalence of two reduced BDDs it suffices to
check whether the two BDDs are isomorphic. This is guaranteed by Theorem 4.3.
The equivalence test can be implemented by simultaneous traversal of both BDDs
using depth first search. For each visited pair of nodes, both nodes have the same
label. If this is true for all nodes, then both BDDs represent the same function.

Note: In the following, we assume that all BDDs are reduced, i.e., the term BDD always
means reduced BDD.

2Note that both BDDs must rely on exactly the same variable order.

34

4.2 − Ordered Binary Decision Diagrams

?>=<89:;x1

�������

��0
0

0 · ?>=<89:;x2

�������

��0
0

0 + ?>=<89:;x1

�������

��0
0

0 · ?>=<89:;x2

���
�

�

��0
0000 · ?>=<89:;x3

���
�

�

��0
0000

1 0 1 0 1 0 1 0 1 0

?>=<89:;x1

��

��'
'

'
'

'
'

+ ?>=<89:;x1

���������

���
�
�
�
�
�
�
�
�

= ?>=<89:;x1

~~||||||||

���
�
�
�
�
�
�
�
�

?>=<89:;x2

�� A
A

A
A

?>=<89:;x2

���
�

��/
////////////

?>=<89:;x2

��

��1
1

1

1 0 ?>=<89:;x3

���
�

 @@@@@@@
?>=<89:;x3

��

��1
1111

1 0 1 0

Figure 4.2.: Construction of the BDD of Figure 4.1 using binary BDD operations.
The conjunctions are computed by recursive application of Equa-
tion 4.2. The disjunction is handled equivalently. Note that all BDDs
in this example have already been reduced by application of the
elimination and merging rules.

4.2.3. In�uence of the Variable Order

The size of BDDs and thus the complexity of BDD operations depends not only on
the number of inputs of the corresponding switching function, but also on the chosen
variable order. This influence can have a significant impact as is demonstrated by the
example of Figure 4.3. The two depicted BDDs for the function x1 · x2 + x3 · x4 + x5 · x6
differ only in the underlying ordering of variables. The first ordering yields a graph
with 8 nodes whereas the graph obtained with the second ordering has 16 nodes. In
general, for functions of the form

f (x1, . . . , xn) = x1 · x2 + x3 · x4 + . . . + x2n−1 · x2n

the BDD size for the variable order x1, x2, . . . , x2n is exactly 2n + 2. In contrast, for
the variable order x1, x3, . . . , x2n−1, x2, x4, x2n the BDD size is 2n+1. This means that
choosing a bad variable order can turn a linear representation into an exponential
one. Since the complexity of BDD operations depends on the size of the involved
BDDs, it is important to obtain a BDD of minimal size. Unfortunately, the test
whether a BDD of a function is minimal is NP-complete. Therefore, constructing a
minimal BDD for a given function is an NP-hard problem [THY93].

35

Chapter 4: Symbolic State Space Exploration

?>=<89:;x1

���
�
�
�
�

$$JJJJJJJJJ

?>=<89:;x2

zzt t
t

t
t

��

?>=<89:;x3

���
�
�
�
�

��77777

?>=<89:;x4

���
�

�

��'
'''''''''''''''''

?>=<89:;x5

���
�
�
�
�

��77777

?>=<89:;x6

���
�

�

��99999

0 1

?>=<89:;x1

zzt t
t

t
t

$$JJJJJJJJJ

?>=<89:;x3

���
�

�

��77777
?>=<89:;x3

zzt t
t

t
t

��77777

?>=<89:;x5

��

�

�
�

�
��
!

#
%

(

/

��

?>=<89:;x5

�� ��7
7

7
7

7
7

7
?>=<89:;x5

���
�

�

��

?>=<89:;x5

�� ���
�

?>=<89:;x2

��

�

�

�

	
�

� ��@@@@@@@@@@@@@@@@@@@@@@@@@
?>=<89:;x2

vvm m m m m m m

��0
0000000000000000000

?>=<89:;x2

wwp p p p p p p p p p p p p

��'
'''''''''''''''''
?>=<89:;x2

zzt t
t

t
t

��

?>=<89:;x4

���
�

�

''OOOOOOOOOOOOOOOOOOOOOOOOOO ?>=<89:;x4

yyt t
t

t
t

t
t

t
t

t
t

��88888888888888

?>=<89:;x6

���
�

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0 1

Figure 4.3.: Two BDDs for the same switching function x1 · x2 + x3 · x4 + x5 · x6
but with different variable orders. The left-hand graph is based on
the order x1, x2, x3, x4, x5, x6. The right-hand graph is based on the
order x1, x3, x5, x2, x4, x6. This example was first published in [Bry86].

4.2.4. Dynamic Reordering

Various heuristics have been invented for minimizing the size of BDDs in practice.
Some of these heuristics are specific to certain types of BDDs arising only in specific
computations. Usually they cannot be successfully applied to other types of BDDs. A
general class of heuristic optimizations is based on a dynamic reordering of variables.
Dynamic reordering algorithms swap variables in the variable order and evaluate
the effect of different permutations on the BDD size. The most important dynamic
reordering algorithms are window permutation [FMK91, ISY91] and sifting [Rud93].
The sifting algorithm is often considered to be the most effective reordering algorithm.

A particular advantage of dynamic reordering strategies is that they can be used in
an automated fashion without user interaction. Common BDD libraries, e.g., CUDD
[Som09], use a shared BDD representation. That is, subgraphs which occur in several
BDDs are only created once and then shared among these BDDs. The automatic
reordering algorithm is invoked whenever the size of the shared BDD representation
exceeds a certain threshold. After each reordering, the threshold is increased in order
to prevent too frequent reorderings.

36

4.3 − Sequential Circuits

4.3. Sequential Circuits

Sequential circuits, such as microprocessors, are composed of the following basic
elements:

• Gates are collections of transistors that output the result of Boolean operations
on their inputs.

• Wires transmit binary signals between gates and memory elements.

• Latches are binary memory elements that store signals for further use in later
computations. Latches in synchronous systems are clocked, i.e., they are only
updated at the edges of a clock signal. Such latches are also known as flip-flops.

In addition to these basic elements, sequential circuits may also have inputs and
outputs, i.e., signals that are received from or sent to external devices. Complex
sequential circuits are usually specified in high-level languages such as VHDL or
Verilog. These specifications can be translated into a low-level description called a
netlist. The netlist describes the circuit directly in terms of its latches, logic gates
and wires and can be used to generate the hardware layout. Circuit verification, e.g.,
by model checking, can also be based on such low-level representations. We now
establish the connection between sequential circuits and finite state machines.

Definition 4.8 (Finite state machine)
A (deterministic) finite state machine (Q, I, O, δ, λ, q0) consists of a set of states Q, an input
alphabet I, an output alphabet O, a next-state function δ : Q× I → Q, an output function
λ : Q× I → O and an initial state q0.

A sequential circuit with n latches, m output wires and t input wires is characterized
by an FSM with state space Q = Bn, output space O = Bm and input space I = Bt.
The next state and output functions are defined by the corresponding logic of the
circuit. State transitions defined by the next state function are associated to clock
ticks. Note that the next state function can be constructed individually for each latch.
For a latch k we write its next state function as: δk : Bn ×Bt → B.
In the following, we will assume that all FSMs have been derived from circuit designs.
FSM states will be identified with assignments to a binary variable vector. Each entry
in the vector corresponds to a latch in the sequential circuit. The same holds for
inputs which can be regarded as a vector of binary signals. Every variable in the
binary state vector (also called a state bit) will appear in two instances: a present state
instance x and a next state instance y. We write ~x to denote the current state vector
and ~y to denote the next state vector which corresponds to the next state bits. The
input vector is referred to as~ı.

Note: In later chapters some state variables will be explicitly named, e.g., namedvar. In
such cases we write namedvar′ to denote the corresponding next state instance.

37

Chapter 4: Symbolic State Space Exploration

4.3.1. Symbolic Representation

Definition 4.9 (Characteristic function)
Let (Q, I, O, δ, λ,~x0) be an FSM that has been derived from a sequential circuit with n
latches. A set of states A ⊆ Q can be described by its characteristic function

A : Bn → B

A(~x) = 1⇔ ~x ∈ A

Definition 4.10 (Transition relation)
Let (Q, I, O, δ, λ,~x0) be an FSM that has been derived from a sequential circuit with n
latches and t inputs. The transition relation of a latch k is given by the function

Tk : Bn ×Bt ×B→ B

Tk(~x,~ı, yk) = 1⇔ δk(~x,~ı) = yk

The transition relation of the FSM, i.e., the transition relation for all n latches, is given by
the function

T : Bn ×Bt ×Bn → B

T(~x,~ı,~y) = 1⇔ δ(~x,~ı) = ~y

The transition relation of an FSM with n latches can be computed as the product of
the transition relations of all latches, i.e.,

T(~x,~ı,~y) =
n

∏
k=1

Tk(~x,~ı, yk) (4.3)

T is a characteristic function that represents the transition relation T. Since char-
acteristic functions are switching functions, every set of FSM states, as well as the
transition relation, can be represented as a BDD.
Figure 4.4 depicts a deterministic FSM for a sequential circuit with two latches and
a single binary input signal. The equivalence of the two representations can be
seen by investigating paths through the BDD representation. For example, the path
i0 // y1 //___ y0 //___ 1 expresses that all transitions which read i0 = 1 lead to

state ~y = 00. Similarly, the transition from state ~x = 10 to ~y = 10 reading i0 = 0
corresponds to the path i0 //___ y1 // y0 //___ 1 .
The same idea for representing FSMs by the characteristic function of their transition
relation can also be applied to non-deterministic FSMs, i.e., FSMs with a next-state
function δ : Q× I → 2Q. However, symbolic state traversal methods for hardware
verification usually consider deterministic FSMs because of the deterministic nature
of sequential circuits. Therefore, we restrict this discussion to deterministic FSMs.

Simpli�ed De�nition of FSMs

We introduce two simplifications regarding the definition of FSMs. These simplifica-
tions will be used throughout the remainder of this work, in particular in Section 5.2
and Chapter 6.

38

4.3 − Sequential Circuits

ONMLHIJK01
∨

1

�����������
0

��?????????

ONMLHIJK00

1

NN 0
22ONMLHIJK10

0

QQ

1
rr

?>=<89:;i0

�������

��7
7

7

?>=<89:;y1

��

$$J
J

J
J

J ?>=<89:;y1

���
�

�
�

�
�

�

��?>=<89:;y0

���
�

yysssssssss

0 1

Figure 4.4.: Deterministic FSM and its BDD representation. The FSM corresponds
to a sequential circuit with two latches x1, x0 and a single binary
input signal i0. The BDD is expressed over the input vector~ı = i0,
the present state vector ~x = x1, x0 and the next-state vector ~y = y1, y0,
i.e., y1 and y0 are the next-state instances of x1 and x0. Nodes for the
present state variables x1, x0 have been removed by reduction. All
transitions are clearly determined by input and next-state.

1. The output function of an FSM does not contribute to its transition relation. It
will therefore be ignored for the purpose of state traversal.

2. The definition of a distinguished start state is often impractical for FSMs derived
from sequential circuits. Computations can typically start from a number of
different states. We will choose an appropriate set of start states depending on
our application and context.

For the purpose of symbolic state traversal, the definition of an FSM will therefore
be shortened to a 3-tuple (Q, I, T) of a set of states Q and inputs I and a transition
relation T between the states of the FSM.

4.3.2. Image Computation

Image computation is at the core of symbolic state traversal. It denotes the computa-
tion of a set of successor states based on a given set of states and a transition relation.
The set of successor states contains all states that are reachable in one transition step
for any input. In order to give a formal definition of image computation we need to
introduce the notion of existential quantification.

Definition 4.11 (Existential quantification)
For f ∈ Bn the existential quantification with respect to the variable xi is defined by

(∃xi)[f] = fxi + fxi

39

Chapter 4: Symbolic State Space Exploration

The notion of quantification originates from the following equivalence where the
symbol ∃ on the right side of the equivalence denotes the corresponding quantifier
from predicate calculus:

(∃xi f)[x1, . . . , xi−1, xi+1, . . . , xn] = 1⇐⇒ ∃xi [f (x1, . . . , xn) = 1]

Note that (∃xi)[f] denotes a switching function which no longer depends on the
variable xi. A generalized quantification operator over several variables is used in
the following definition of image computation.

Definition 4.12 (Image)
Let (Q, I, T) be an FSM and A ⊆ Q a set of FSM states. The image of A under T, i.e., the
set of states that can be reached from A by a single transition according to T, is defined as:

Img : (Bn ×Bt ×Bn → B)× (Bn → B)→ (Bn → B)

Img(T, A)(~y) = (∃~x,~ı)[T(~x,~ı,~y) ·A(~x)]

A straightforward application of image computation is reachability analysis. Given a
set of FSM states, it computes all states that are reachable according to the FSM’s
transition relation. Let Init be a Boolean function denoting a set of initial states. The
set of reachable states can then be computed symbolically by the following fixed
point computation.

A0(~x) = Init(~x)
Ak+1(~y) = Ak(~y) + Img(T, Ak)(~y)

(4.4)

Image computation is the core operation of symbolic model checking algorithms
and its efficient implementation has been the topic of many research papers [CBM90,
BCL+94, RAB+95]. The crucial point is to avoid the blow-up of intermediate BDDs,
which may result from computing the product of the transition relation with the
current set of states. This blow-up may even happen in cases where the input and
output of the image computation have compact BDD representations. A particularly
efficient optimization is the partitioned representation of the transition relation. The
idea is to represent the transition relation of Equation 4.3 as the product of partial
relations. The partial relations are applied one after the other during image com-
putation. This strategy allows to eliminate some variables by quantification before
multiplication with the next partition and significantly reduces the intermediate
memory consumption [RAB+95].
The actual implementation details of image operators are quite complex. Fortunately,
efficient implementations are freely available and can be used in an opaque way.
Only the symbolic transition relation and the BDD representation of a set of FSM
states have to be provided in a compatible (e.g., partitioned) format.

40

CHAPTER 5

Static Worst-Case Execution Time Analysis

Static worst-case execution time analysis (or WCET analysis for short) is a method for
computing safe upper bounds on the execution times of single, uninterrupted tasks.
It relies on abstract interpretation for computing invariants of the execution behavior
from which execution time bounds can be deduced. In contrast to measurements,
the method is exhaustive in terms of input data, program paths and hardware states,
and therefore sound. Further, it is fully automatic but, like all static analyses that
compute abstract invariants of undecidable concrete semantics, it is not complete.
Hence, the method may fail to compute WCET bounds for certain programs without
help from a user.

Safe and precise WCET analysis has to consider not only the program but also the
hardware on which the program is executed. To this end, it requires a hardware
model which expresses the complex interactions between the various performance
enhancing hardware features such as caching and pipelining. Further, the analysis
cannot consider a representation of the program in a high-level programming lan-
guage. Instead, it must start from the level of fully linked binary executables where
all required information (e.g., absolute hardware addresses, instruction sequence
after compiler transformations) is available. The complexity of the analysis requires a
careful design. Serious WCET tools are based on a combination of program transfor-
mations and dedicated analyzers that exchange information, e.g., semantic invariants.
However, the growing complexity of the software and hardware in embedded sys-
tems tends to exacerbate the difficulties that are involved with WCET analysis. The
employed hardware models are particularly affected by this evolution.

Static WCET analysis is used in the design and certification stages of industrial safety-
critical real-time embedded systems, e.g., for electronic fly-by-wire systems [SLH+05,
TSH+03]. Commercial implementations of the analysis are available [Abs00].

41

Chapter 5: Static Worst-Case Execution Time Analysis

Basic block
execution

times

CFG annotated
with invariants

Control flow
graph

Binary
executable

WCET
bound

Micro-
architectural

analysis

Path
analysis

Control flow
analysis

Loop bound
analysis

Value
analysis

CFG
reconstruction

Figure 5.1.: General structure of static WCET analyzers.

5.1. A Framework for Static WCET Analysis

Figure 5.1 shows the general structure of static WCET analysis tools as described in
[WEE+08]. The analysis structure is represented as a directed graph. Gray nodes
correspond to different static analyses and program transformations. White nodes
correspond to program representations and semantic invariants. Edges indicate the
flow of information. Each analysis or transformation reads one program represen-
tation and produces another representation that may be enriched with invariants.
The analysis starts from a binary executable and produces a WCET bound for the
analyzed task. We present the involved analyses and transformations in top-down
order with respect to Figure 5.1.

42

5.1 − A Framework for Static WCET Analysis

5.1.1. CFG Reconstruction

Safe and precise WCET analysis must consider the program execution with respect
to a concrete hardware. This approach requires information that can only be ob-
tained from fully linked binary executables. The CFG reconstruction phase uses a
binary decoder that decompiles the text segment of the executable into a sequence
of assembly instructions. It uses many heuristics and compiler-specific patterns to
distinguish instructions from embedded data such as branch tables and constants.
The reconstruction of the control flow can be performed in bottom-up order [The03].
Individual assembly instructions are grouped into basic blocks. Branch and call
targets are extracted from the corresponding instructions and branch tables. Based
on this information, the basic blocks are connected into basic block graphs (Defi-
nition 3.7, page 21) for procedures. The obtained procedures are then linked into
a supergraph (Definition 3.11, page 25). The heuristics and patterns for extracting
targets of computed1 branches and calls may sometimes fail. In such cases, user
annotations are required.

5.1.2. Value and Control Flow Analyses

Value analysis computes overapproximations of the possible contents of registers
and stack cells2 for each program point using an interval analysis on the extended
supergraph of the analyzed task. The employed interval analysis [CC77] is a context-
sensitive interprocedural data flow analysis that expresses operations on registers
using interval arithmetics. For the purpose of WCET analysis, the computed intervals
can be further used to determine the address ranges of indirect memory accesses as
well as loop bounds and infeasible paths.

Loop Bound Analysis

A typical program spends most of its execution time in loops. Precise loop bound
information is therefore indispensable for static WCET analysis. Loop bound analysis
computes loop bounds by using pattern matching, dedicated data flow analyses,
and value analysis results. The analysis is not complete and may fail to determine
bounds for some loops. In such cases, user annotations are required.

Control Flow Analysis

Most control flow decisions depend on the values of variables. Control flow analysis
exploits value analysis and loop bound information to detect infeasible paths in the
program. A path is considered to be absolutely infeasible if the analysis can prove

1A computed branch or call jumps to an address that has been computed into a register.
2Compilers reserve memory cells within the function stack frame for spilling variables that cannot

be held in registers. With knowledge of the compiler, stack accesses can often be disambiguated
precisely thereby allowing to track individual variables through memory. This can also be done for
global static variables. Tracking variables in the heap is much more difficult and often infeasible.

43

Chapter 5: Static Worst-Case Execution Time Analysis

that it cannot be reached in any execution context. In addition, the analysis also
determines paths that are only infeasible in some execution contexts. Infeasible paths
can be excluded from subsequent analyses to reduce their complexity.

5.1.3. Microarchitectural Analysis

Modern microprocessors employ various techniques to reduce the average execution
time. Examples of such techniques are pipelining, caching, out-of-order execution,
branch prediction, and speculation. Microarchitectural analysis performs a data
flow analysis based on abstract representations of hardware states. The abstract
hardware representation allows to model the effects of features like pipelining and
caching on the instruction execution. In particular, it also allows to consider the,
sometimes counter-intuitive, interaction between the different features. The results
of the analysis are context-sensitive upper bounds on the execution time of all basic
blocks of the analyzed program. Microarchitectural analysis is implemented as the
reduced product of two abstract domains called cache domain and pipeline domain.

The cache domain is based on an abstract representation of cache contents. It can
be applied to pure instruction or data caches and to mixed instruction and data
caches. The regular structure of caches allows for very efficient abstractions.
In particular, the domain features an efficient join operator which allows to
join two cache states into a single, less precise cache state. Thus, the abstract
domain is not a power set of cache states but it is based on a partial order
between cache states with different precision. The cache domain is described
in detail in [Fer97].

The pipeline domain represents not only the state of the processor pipeline, but
also of other timing relevant features, such as speculation, branch prediction,
buses, and memory controllers. It is based on an abstract pipeline model and
a state of this model is called an abstract pipeline state. The irregularity of
the considered features hinders efficient join operations. Instead, the abstract
domain is the power set of abstract pipeline states. The pipeline domain of a
complex microprocessor is described in [The04].

In this setup, updates of both analysis domains are interdependent. The order of
memory accesses into the cache depends on the pipeline state while the interleaving
of instructions in the pipeline also depends on the latency of memory accesses.
Therefore, both domains operate in parallel and exchange information. Technically,
the pipeline domain drives the cache domain. Whenever an abstract pipeline state
accesses cached memory, the pipeline domain triggers a cache update. The cache
domain returns classification information (cache hit or cache miss) which is used by
the pipeline domain to determine the latency of the memory access. Instructions that
depend on the fetched information may not proceed until the information is available.
Thus, the memory latency influences the possible interleavings of instructions in the
abstract pipeline state.

44

5.1 − A Framework for Static WCET Analysis

5.1.4. Path Analysis

Path analysis uses implicit path enumeration to compute a global worst-case path
through the analyzed program. To this end, it generates an integer linear program
(ILP) that relates the execution time bounds and relative execution frequencies of
neighboring basic blocks in the CFG. The execution time bounds are obtained from
the results of microarchitectural analysis. Execution time frequencies are deduced
from loop bounds and control flow analysis information. The objective function of
the generated ILP maximizes the execution time. Thus, the solution to this ILP gives
a WCET bound for the whole program and outputs a WCET path. An example of
this technique on a high-level language control flow graph is given in Section 2.2.2.
Note that the computed WCET path might not be taken in any concrete program
execution. However, it is guaranteed that its worst-case execution time is an upper
bound of all possible program executions. A detailed description of path analysis for
binary-level WCET analysis is found in [The02].

5.1.5. Abstractions and the Loss of Precision

Like any semantics-based static analysis, static WCET analysis must lose information
in order to gain computability. The presented toolchain loses information at the
following steps:

Control �ow representation. The context-sensitive interprocedural control flow
graph (extended supergraph) may over-approximate the possible concrete execution
paths of the analyzed program. For example, an indirect procedure call via a function
pointer might not be disambiguated precisely. Further, several loop iterations can be
combined into a single abstract iteration. This merging of loop iteration contexts leads
to a loss of precision w.r.t. the execution paths inside the loop body. Static analyses
operating on this program representation therefore consider spurious program paths
that cannot be taken in any concrete execution.

Value analysis. Value analysis computes intervals rather than precise values. Pre-
cise values might either be unavailable, e.g., for input data, or the analysis chooses
to join results from different execution histories.

Loop bounds. Loop bounds for WCET analysis are upper bounds. Overestimation
of loop bound analysis results may lead to an overestimation of the global WCET
bound by the global path analysis.

Infeasible paths. The set of infeasible paths determined by control flow analysis
is an underapproximation, i.e. some infeasible paths might not be detected. Con-
sequently, the remaining set of feasible program paths is an overapproximation.
Subsequent analyses may therefore consider further spurious execution paths.

45

Chapter 5: Static Worst-Case Execution Time Analysis

cycles FETCH DECODE EXECUTE WRITEBACK
1 A
2 B A
3 C B A
4 D C B A
5 D C B
6 D C
7 D
8

Figure 5.2.: Pipelined execution of a linear sequence of 4 instructions A,B,C,D.
Each instruction requires 4 cycles to go from fetch to writeback.
Pipelining overlaps the execution of neighboring instructions, thereby
reducing execution time from 17 to only 8 cycles3.

Cache abstraction. Similar to value analysis, the cache domain may choose to join
results from different execution histories. This join operation is associated with a
loss of precision. As a result, a precise classification of cache accesses into hits and
misses may become impossible.

Path analysis. Path analysis combines upper bounds on the execution times
of basic blocks without considering the relationship between execution paths in
neighboring basic blocks. Thus, it considers combinations that cannot occur in any
concrete execution. However, the WCET bound of the chosen combination is always
an upper bound of all possible concrete executions.

5.2. Pipeline Domains

Pipelining reduces the execution time of a program by overlapping the execution
of individual instructions. Figure 5.2 shows the general concept using a simple
pipeline with 4 stages: fetch, decode, execute, and writeback. Similar pipelines
are implemented in many embedded processors. More complex processors often
implement several such pipelines that operate in parallel. Complex pipelines may
also implement more stages. The implementation of a pipeline is part of the mi-
croprocessor core design which is a sequential circuit. It has a state that is stored
in latches, and an update logic that is given by the interconnection of logic gates.
Updates of the pipeline state depend on the current state and on inputs. Inputs

3Execution time is counted until the last instruction has left the pipeline. Instruction D is still in the
pipeline in cycle 7 and has left the pipeline in cycle 8.

46

5.2 − Pipeline Domains

cycles FETCH DECODE EXECUTE WRITEBACK
1 A
2 B A
3 C B A
4 D C B A
5 D C B
6 D C
7 D C
8 D
9

Figure 5.3.: In this example, the execution of instruction C depends on an operand
of instruction B. The operand is only available when B reaches the
writeback stage. C must wait for one cycle in the execute stage until
the operand is available. Execution of A,B,C,D takes 9 cycles.

either deliver information about the executed program (instruction fetches) or about
the state of other hardware components, e.g., caches or memory controllers. The
evolution of the pipeline during program execution can be expressed by a sequence
of pipeline states. Depending on the inputs and on the current state of the pipeline,
instructions may either flow smoothly through the pipeline (see Figure 5.2), or the
execution of an instruction may stall at a certain pipeline stage. Stall events are
also known as pipeline hazards. Figure 5.3 shows an example where an instruction
cannot proceed due to an unresolved data dependence. The execution is delayed
by 1 cycle until the dependence is resolved. In general, pipeline hazards lead to an
increase in execution time. WCET analysis must predict possible pipeline hazards in
order to compute safe upper bounds on the execution time. This prediction is based
on an overapproximation of the concrete pipeline semantics in terms of reachable
pipeline states. The relationship between the concrete semantics and the predictions
of pipeline analysis can be explained using FSMs as computational models. The con-
crete semantics is based on a concrete pipeline which is a deterministic FSM, whereas
the abstract semantics is based on an abstract pipeline that is a non-deterministic FSM.
In the definition of the concrete and abstract semantics we deliberately avoid the
term abstract pipeline model. We reserve this term for actual implementations of the
computational model.

5.2.1. Concrete Semantics

To define the semantics of the pipelined execution of a program, we introduce a
general machine-level program representation.

47

Chapter 5: Static Worst-Case Execution Time Analysis

Definition 5.1 (Program)
A machine-level program L is a totally ordered set of attributed machine instructions
l0, l1, . . . , lm. The unique start instruction of L is l0. The set of terminal instructions
(program exits) is given by Lχ ⊂ L. The value of an attribute attrib at instruction l is
denoted by l.attrib. The total order is established by the numerical value of address attributes:

l0.addr < l1.addr < . . . < lm.addr

The set of all machine-level programs is denoted by L.

In a machine-level basic block graph, each basic block is also a program because
the contained instructions appear in strictly increasing order of their addresses
as required by Definition 5.1. The unique start instruction of a basic block is the
instruction with the smallest address. The whole graph represents a program if the
contained instructions are combined in increasing order of their address attributes.
The pipelined execution of a program can be represented by a sequence of pipeline
states that is called a trace. The following definition does not impose any particular
constraint on traces. It allows for traces that do not correspond to any concrete
execution because some sequences of pipeline states cannot occur. This slackness
will be rectified after the concrete execution has been defined.

Definition 5.2 (Trace)
Let Q be the set of pipeline states and q ∈ Q a single pipeline state. A trace t is a finite
sequence of pipeline states t = q0, q1, . . . , qn. The set of all possible traces is denoted by T .

The sequential circuit of the pipeline can be represented by an FSM (see Section 4.3).
We do not define a distinct start state since a program may start from any feasible
start state (see Section 4.3.1).

Definition 5.3 (Concrete pipeline)
A concrete pipeline is a deterministic FSM (Q, I, O, δ, λ) with state space Q, input space I,
output space O, a next-state function δ : Q× I → Q, and an output function λ : Q× I → O.
It can be given either by the hardware implementation or by a software model that accurately
and completely represents all states and transitions of the actual hardware.

During the execution of a program, a concrete pipeline interacts with many other
hardware components. For example, if the execution of a certain instruction requires
reading the contents of a specific memory address, a request is sent to the memory
controller which returns the contents of that address, thereby possibly updating the
state of associated caches. This exchange of information uses the input and output
signals of the pipeline. In the following, we regard all other components as being part
of a single black box that we call the environment. Like the pipeline, the environment
can also be regarded as an FSM. We require this FSM to be deterministic which
expresses the constraint that we only consider uninterrupted program executions
for static WCET analysis. For a feasible start state, the trace of a pipelined program
execution can be computed by repeated application of the next-state functions of
both interacting FSMs.

48

5.2 − Pipeline Domains

Definition 5.4 (Environment)
Let (Q, I, O, δ, λ) be a concrete pipeline. An environment is a deterministic FSM (Σ, O, I, ϕ, ρ)
that is connected with a pipeline FSM via its inputs and outputs. Updates of the environment
state are represented by a function ϕ : Σ×O→ Σ and its output function ρ : Σ×O→ I
generates inputs for the pipeline FSM.

For a given concrete pipeline, environment, and program, traces can be computed
by the interleaved execution of the next-state functions of the two FSMs. Let ε be
the empty input and qs be the initial state of the trace. The initial environment state
is obtained by a function ξ : L× Σ→ Σ which loads the program L into the empty
environment state σs ∈ Σ. The trace states q0, q1, . . . , qn can then be computed by the
following recursive algorithm:

q0 = qs

qk = δ(qk−1, ik−1)

σ0 = ξ(L, σs)

σk = ϕ(σk−1, ok−1)

o0 = λ(q0, ε)

ok = λ(qk−1, ik−1)

i0 = ρ(σ0, o0)

ik = ρ(σk−1, ok−1)
(5.1)

The following definition associates the trace computation of Equation 5.1 with an
execution function which takes a program and a start state. The execution function
is specific to a certain pipeline FSM and environment FSM. Since the following text
only considers one pipeline FSM and environment FSM at a time, there is no need to
distinguish between execution functions for different pipelines and environments.

Definition 5.5 (Execution)
Let L be the set of programs and Q the set of states of a concrete pipeline. An execution of a
given program by the concrete pipeline model with state space Q is expressed by the function

exec : L×Q→ T

The function implements the algorithm of Equation 5.1 using a concrete pipeline with state
space Q and a compatible environment.

Program execution cannot start from arbitrary pipeline states. We require that the
first state of a trace for a program L fetches the first instruction of L. The execution
of a program ends if a terminal instruction has just left the pipeline. We say that the
instruction is retired.

Definition 5.6 (Valid trace, feasible start state)
Let (Q, I, O, δ, λ) be a pipeline and L = l0, l1, . . . , lm be a program. For a start state q0 ∈ Q
the trace q0, q1, . . . , qn = exec(L, q0) is valid for L if and only if

• the first instruction l0 is fetched in state q0, and

• the last instruction lk with k ≤ m is retired in state qn and lk is a terminal instruction,
i.e., lk ∈ Lχ.

If q0, q1, . . . , qn is a valid trace for L, then q0 is called a feasible start state for L.

49

Chapter 5: Static Worst-Case Execution Time Analysis

FET DEC EXE WBK
A
B A
C B A
D C B A

JnAK := D C B
JnBK := D C
JnCK := D
JnDK :=

Figure 5.4.: Assignment of pipeline states to CFG nodes that correspond to retired
instructions.

Note: We only consider valid traces of correct programs. Hence, for the remainder of this
text we prefer the shorter term trace whenever we mean valid trace.

The concrete semantics of the pipelined execution of a program can be expressed
by assigning reachable pipeline states to the nodes of the associated CFG. We
associate each program point with the pipeline state where the corresponding
machine instruction is retired. Hence, the final state of a trace is associated with the
last instruction of the executed program. The considered semantics is equivalent
to the path semantics (Definition 3.8) obtained by chaining a transfer function that
computes partial traces at the level of single instructions. Figure 5.4 shows an
example of the association of trace states to program points.
To express the execution time of a program that is subject to pipelined execution, we
enrich the concrete semantics domain by a cycle counter. The counter is incremented
whenever the pipeline FSM has finished its transitions for one clock cycle. The
counter can be added to the pipeline. At the end of program execution, i.e., when
a terminal instruction is retired, the value of the cycle counter gives the program
execution time. A pipeline can be designed in a way that the number of transitions
per clock cycle is a constant n. This can be achieved by adding ε-transitions wherever
the number of transitions depending on one clock tick is less than n. Hence, the final
value of the cycle counter is equivalent to the number of states in the corresponding
trace of the concrete pipeline divided by n. In the following, we assume that n = 1.
The application to cases where n > 1 is trivial.

Basic Block Traces

Traces can also be computed at the level of individual basic blocks (remember that a
basic block is also a program according to Definition 5.1). Due to the overlapping
of instructions in the pipeline, the final state of a basic block trace is typically not
a feasible start state for the subsequent basic block. Its execution must start from

50

5.2 − Pipeline Domains

Block State FET DEC EXE WBK

B1={A,B}

1 A
2 B A
3 C B A
4 D C B A
5 D C B
6 D C

B2={C,D}
1 D
2

Figure 5.5.: Applying exec to two basic blocks B1 and B2 that are connected by
a fall-through edge. B1 contains the first two instructions A and B
while B2 contains the subsequent instructions C and D. The depicted
trace for B2 is partial. The complete trace for B2 would start from
state 3 of B1.

an earlier state where its first instruction is fetched. The resulting overlapping of
basic block traces corresponds to the overlapping of instructions in the pipeline. The
overlapping of basic block traces can be avoided if one allows partial traces where
the first state need not be a feasible start state for a block b ∈ B. It suffices to require
that it is a valid state for b, i.e., that it appears in a valid trace of b. An example is
depicted in Figure 5.5.

Definition 5.7 (Basic block execution)
Let G = (B, E, n, s) be a basic block graph and Q a set of pipeline states. The execution of a
basic block b ∈ B starting from a valid pipeline state is expressed by a function that computes
a trace t ∈ T :

exec : B×Q→ T

The length of a basic block trace t is denoted by |t|. The number of execution cycles of a block
b in the execution context defined by the start state equals |t|.

5.2.2. Abstraction

A complete and precise representation of a modern pipeline is very complex. An
efficient domain for pipeline analysis must be based on an abstract representation
that simplifies the pipeline without underestimating the execution time contribution
of pipeline accidents. Further, it should also capture the benefits of pipelining in
order to provide tight WCET bounds. Thesing [The04] constructed an efficient
abstract pipeline analysis for the MPC 755 processor [Mot97, Fre01] and proved
its correctness with respect to the concrete execution model. We show the general
concept of pipeline abstraction without going into the details of a specific processor.

51

Chapter 5: Static Worst-Case Execution Time Analysis

Note: From this point on we use the simplified FSM definition as introduced in Sec-
tion 4.3.1.

Definition 5.8 (Abstract pipeline)
Let the FSM (Q, I, δ) be a concrete pipeline with a deterministic next state function δ :
Q× I → Q. The FSM (Q̂, Î, δ̂) is called an abstract pipeline for (Q, I, δ) if its next-state
function is non-deterministic, i.e., δ̂ : Q̂× Î → 2Q̂, and if states of Q are mapped to states of
Q̂ by a total function α0 : Q→ Q̂. It is a correct abstraction if it holds that

α0(q) = q̂⇒ α0(δ(q, i)) ∈ δ̂(q̂, ı̂)

whenever ı̂ is an abstract input that corresponds to i.

In general, the abstract pipeline has fewer states than the concrete pipeline and many
concrete states can be mapped to a single abstract state. Consequently, the set of
non-deterministic transitions of the abstract pipeline has also fewer elements than
the set of deterministic transitions of the concrete pipeline. For example, abstract
pipelines discard the representation of register files and arithmetic units since the
corresponding logic is efficiently handled by the value analysis. All arithmetic
transitions are mapped to very few non-deterministic transitions in the abstract
pipeline. The non-determinism handles the effects of imprecise inputs and the
abstraction of hardware components. The correspondence between abstract and
concrete inputs in Definition 5.8 also depends on properties of the value and control
flow analyses.

Definition 5.9 (Pipeline domain, Pipeline abstraction)
Let (Q, I, δ) be a concrete pipeline and (Q̂, Î, δ̂) be a corresponding abstract pipeline. Fur-
ther, let Db and D] be two complete lattices defined as Db ≡ (2Q,⊆,∪,∩, ∅, Q) and
D] ≡ (2Q̂,⊆,∪,∩, ∅, Q̂), respectively. Db and D] are called pipeline domains. A pipeline
abstraction is a pair of functions (α, γ) where α is an abstraction function defined as

α : Db → D]

α(Xb) = {α0(q) | q ∈ Xb}

and γ is the corresponding concretization function defined as

γ : D] → Db

γ(X]) = {q | α0(q) ∈ X]}

Db andD] are both power set domains and therefore complete lattices by construction
as discussed in Section 3.1. We show that (α, γ) is a Galois connection between both
domains.

52

5.2 − Pipeline Domains

Theorem 5.1 (Galois connection between pipeline domains)
Let Db and D] be a concrete and an abstract pipeline domain, respectively. A pipeline
abstraction (α, γ) is a Galois connection between Db and D].

Proof The function pair (α, γ) is a Galois connection if it ensures local consistency,
i.e., if for all Xb , X] it holds that:

α(Xb) v] X] ⇐⇒ Xb vb γ(X])

By using the definitions of α and γ and the fact that both domains are power sets, i.e.,
the partial order operator is the subset operator, this equivalence can be rewritten as

{α0(q) | q ∈ Xb} ⊆ X] ⇐⇒ Xb ⊆ {q | α0(q) ∈ X]}

The truth of this equation can be easily seen by set-theoretic reasoning.

5.2.3. Abstract Semantics

The semantics of pipelined program execution can be safely approximated by a
data flow analysis on the program’s CFG. For each basic block, the transfer function
computes a set of leaving pipeline states from a set of incoming pipeline states. This
computation involves the construction of abstract traces that represent the pipelined
execution of the current basic block. In contrast to concrete traces (see Definition 5.2),
traces in the abstract domain are lifted to sets of abstract pipeline states.

Definition 5.10 (Abstract pipeline trace)
Let D] be the domain of an abstract pipeline. Further let L be a program. A]

k ∈ D
] denotes a

subset of abstract pipeline states. An abstract pipeline trace t̂ is a sequence of sets of abstract
states t̂ = A]

0, A]
1, . . . , A]

n. The set of all possible abstract traces is denoted by T̂ .

Abstract pipeline traces do not contain information about the predecessor-successor
relationship between abstract states in two successive sets of the trace. This definition
corresponds closely to the symbolic-state pipeline analysis domain that is presented
in Chapter 6. In contrast the explicit-state pipeline analysis presented in [The04]
computes an abstract trace as a set of traces rather than a trace of sets. This difference
between the two approaches is visualized by Figure 5.6 and Figure 6.5.
We define the abstract execution function of basic blocks without an explicit argument
for handling inputs. Instead, all inputs are obtained from instruction attributes that
store the results of preceding analyses (like value analysis, for example); the abstract
execution function implicitly retrieves its inputs by querying the instructions of the
basic block. We also make the simplifying assumption that no cache analysis (see
Section 5.1.3) is present. We address the extension to architectures with caches in
Section 6.5.

53

Chapter 5: Static Worst-Case Execution Time Analysis

Definition 5.11 (Abstract basic block execution)
Let G = (B, E, n, s) be a basic block graph and Db, D] be a concrete and an abstract pipeline
domain that are connected by a pipeline abstraction (α, γ). An abstract state A] ∈ D] is
called a valid start state for a basic block b ∈ B if it holds that

∀q ∈ γ(A]
0) : q is a feasible start state for b.

The abstract execution of a basic block is expressed by a function

êxec : B×D] → T̂

such that for each basic block b ∈ B and each valid start state A]
0 ∈ D] the final state of the

resulting abstract trace A]
0, A]

1, . . . , A]
n satisfies the following condition:

∀q ∈ γ(A]
n) : the instruction retired in q is the terminal instruction4 of b.

Pipeline analysis is implemented as a data flow analysis that computes reachable
sets of pipeline states for all program points. According to Section 3.2, data flow
analysis requires a data flow domain, a transfer function, an upper bound operator
and an equality test. For pipeline analysis we use the following implementations:

1. The data flow domain is the domain of abstract pipeline states D] ≡ (2Q̂,⊆,
∪,∩, ∅, Q̂).

2. The implementation of the transfer function tf] : E→ D] → D] is based on the
abstract execution of basic blocks. It takes an incoming set of abstract states and
an edge (s, t) ∈ E and constructs the abstract trace of the source block s using
the abstract execution function êxec : B×D] → T̂ . Abstract states that retire
the terminal instruction of s are propagated to t if they have been computed
by a sequence of transitions that leads to t according to the semantics of the
abstract pipeline.

3. The upper bound operator t] is implemented by set union, i.e. X]t] Y] ≡ X̂∪ Ŷ
for X̂, Ŷ ⊆ Q̂.

4. The equality test =] for elements of D] checks whether both sets contain exactly
the same abstract states: X] =] Y] iff ∀x̂ ∈ X̂ : x̂ ∈ Ŷ and |X̂| = |Ŷ|.

5.2.4. WCET Bounds for Basic Blocks

The computation of reachable pipeline states is not the primary purpose of pipeline
analysis. For WCET analysis we are rather interested in WCET bounds for basic
blocks. Indeed, WCET bounds can be derived from the lengths of the computed
abstract traces. Definition 5.7 states that the execution time of a basic block is given
by the length of its trace. The last iteration of the data flow fixed point algorithm

4A basic block is a program that has only a single terminal instruction.

54

5.3 − The State Explosion Problem

computes abstract basic block traces with sets of incoming pipeline states that safely
approximate the reachable states of any concrete execution. The length of such a trace
is a safe upper bound for the WCET of the associated basic block. The underlying
assumption is that the abstract pipeline, as well as all input information (the results
of control flow and value analysis), is conservative with respect to the execution time.

Definition 5.12 (Conservative)
Let (Q, I, δ) be a concrete pipeline and (Q̂, Î, δ̂) the corresponding abstract pipeline. The set
B∗ denotes the set of all basic blocks of all programs. The abstract pipeline is conservative
with respect to the execution time if for all basic blocks b ∈ B∗ and states q ∈ Q that appear
in a valid trace of b the following condition holds:

|exec(b, q)| ≤ |êxec(b, X̂)| , ∀X̂ : α0(q) ∈ X̂ (5.2)

The execution time bounds of basic blocks can be safely derived from the abstract
semantics of pipeline analysis. The computed bounds overestimate the execution
times of any corresponding concrete execution if the abstract pipeline is indeed
conservative.

5.3. The State Explosion Problem

The abstract semantics of pipeline analysis can be computed by different methods
as already mentioned in Section 5.2.3. This section gives an informal description
of the explicit-state approach that is taken by state-of-the-art implementations. The
explicit-state approach is susceptible to the state explosion problem in WCET analysis.
We describe this problem and motivate the use of symbolic methods for pipeline
analysis.

5.3.1. State Explosion in WCET Analysis

Static analyses lose information in order to gain computability. We have pointed
out in Section 5.1.5 how information is lost in various stages of WCET analysis.
The loss of information leads to a loss of precision, i.e., to a coarser WCET bound.
This is acceptable if the resulting bound is still tight enough. However, the loss of
precision also has an effect on the complexity of pipeline analysis. We give an
example to illustrate this claim by considering the interaction between value analysis
and pipeline analysis.
Value analysis (see Section 5.1.2) computes the possible contents of registers at each
program point. Whenever the hardware accesses memory using a register value as
an address, value analysis results provide information about the possible addresses
that are accessed at run-time. In embedded systems, different memory regions
often significantly differ in their access latencies. Memory accesses may either hit
scratch-pad memory, flash modules, cached memory areas, or memory-mapped
external devices. Some accesses, like accesses into a cached memory area, may also

55

Chapter 5: Static Worst-Case Execution Time Analysis

initial states

cycles

0 1 2 3 4 5 6 7 8

terminal state

Figure 5.6.: Explicit-state computation of an abstract pipeline trace for a single
basic block in DFS order. Non-deterministic transitions are due to
imprecise value analysis, cache, or control flow information. The
abstract trace is computed as a set of traces rather than as a trace of
sets, i.e., the analysis computes only one path at a time.

alter the hardware state. For modern architectures where all memory accesses are
sent over complex buses, all memory accesses affect the bus state and therefore the
hardware state. Hence, whenever the state traversal for computing abstract pipeline
traces encounters a memory access that cannot be disambiguated precisely, it has
to assume several possible successor states. The FSM that represents the abstract
pipeline needs to be non-deterministic.

State-of-the-art implementations of pipeline analysis represent the abstract pipeline
by its transition function written in a high-level programming language. The transi-
tion function operates on an explicit representation of pipeline states. Abstract traces
are computed in DFS order as depicted in Figure 5.6. Memory consumption and
computation time of the analysis grow linearly with the number of reachable states
due to the explicit state representation. In certain cases, the analysis can become
infeasible in practice [The04]. This problem has been termed the state explosion
problem in WCET analysis.

56

5.3 − The State Explosion Problem

5.3.2. Timing Anomalies and Domino E�ects

The computation of basic block traces is a state space exploration because of the
non-deterministic nature of the abstract pipeline. The reachable state space is
constrained by the precision of the available input information from the value, cache,
and control flow analyses. For the approximation of safe WCET bounds, this state
space exploration must be exhaustive. It is not safe to discard states by making local
assumptions about the worst case, nor to account for an ignored trace by adding a
constant to the WCET bound. The reason for this is that modern, complex processor
hardware exhibits counter-intuitive execution time behavior. Such behavior has also
been termed timing anomaly [LS99a].

Definition 5.13 (Timing anomaly)
A timing anomaly is a situation where a local decrease (increase) of latency leads to a global
increase (decrease) in execution time.

A well-known example of a timing anomaly affects the Motorola PowerPC 755
[Mot97, Fre01]. The situation is depicted in Figure 5.7. A cache hit (the situation
shown in the upper half of the figure) in the execution of instruction A has a lower
latency compared to a cache miss (the situation shown in the lower half of the
figure). In the second case, instruction B has to wait for A to complete due to
a data dependence. Since the integer unit (IU) is not occupied, the superscalar
processor immediately starts the execution of the independent instruction C (out-of-
order execution). On a larger scale, the cache miss reduces the execution time since
instructions D and E that depend on C can be executed earlier.
The notion of a domino effect denotes a situation where:

1. There is a hardware event that causes a timing accident (e.g., a cache miss)
during the execution of a certain code sequence.

2. A trace that starts with this event is longer than other traces of the same code
sequence. This trace is called the critical trace.

3. The critical trace leads to the same event that caused the initial timing accident.

If the corresponding code sequence is executed in a loop, the execution time dif-
ference between an execution that runs into the critical trace and other executions
cannot be bounded by a constant. It depends on the number of loop iterations.
For this reason, domino effects have also been called unbounded timing anomalies.
Several examples of domino effects have been observed in real hardware, e.g., for
the pipeline of the MPC 755 [Sch03] and for the PLRU cache replacement strategy
[Ber06].

5.3.3. The Need for More E�cient Pipeline Domains

State-of-the-art implementations of pipeline analysis do not explicitly construct the
FSM of the abstract pipeline. It is specified only in terms of its transition function

57

Chapter 5: Static Worst-Case Execution Time Analysis

A

cycles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LSU

IU

MCIU

A

B C

C B

D E

D E

LSU

IU

MCIU

Cache miss

Cache hit

Figure 5.7.: Illustration of a timing anomaly for the Motorola PowerPC 755. There
is a data dependence between instructions A and B, but not between
instructions B and C. In the second case, the superscalar processor
therefore executes C before B while waiting on A (which is delayed
by a cache miss). The cache miss reduces the overall execution time
because the sequence C,D,E starts one cycle earlier, thanks to the
reordering of B and C.

written in a high-level programming language (usually C or C++). This design avoids
the state explosion problem involved with the construction of the FSM and allows
to specify large, complex pipelines. The drawback of this construction is the fact
that the transition function must be called explicitly for every reachable pipeline
state. Hence, pipeline states must also be represented explicitly. The preceding
sections have shown that the computation of abstract pipeline traces requires an
exhaustive traversal of the reachable state space of the abstract pipeline. The size
of the reachable state space depends on the precision of information from other
analyses in the WCET analysis framework. The achievable precision of static analyses
is limited because of the undecidability of all non-trivial questions about the concrete
program semantics. It is further limited because of uncertainty about inputs. Input
information in embedded systems usually depends on the state of external physical
systems. For example, an electronic flight control system must consider the current

58

5.3 − The State Explosion Problem

altitude and speed of the aircraft. Such information cannot be known precisely at
analysis time.
We have explained in Section 5.3.1 how imprecise knowledge about the exact address
of a memory access increases the reachable state space. The following numbers give
an idea of the size of the problem in practice. They have been obtained by close
examination of available commercial pipeline analyzers [Abs00].

The In�neon TriCore 1 is an embedded processor of medium complexity. A single
unclassified memory access leads to at most 64 successor states per current
state in its abstract pipeline analysis.

The Freescale MPC 7448 is the most complex embedded processor for which a
commercial WCET analysis based on abstract interpretation is available today.
In its abstract pipeline analysis, a single unclassified memory access leads to
up to 1000 successor states per current state.

Another point to consider is that pipeline analysis must already start from a set of
feasible pipeline states. It is not safe to assume that the empty pipeline is the worst-
case for execution time [The04]. Finally, the trend towards more complex processor
architectures in safety-critical embedded systems leads to abstract pipelines with
substantially larger reachable state spaces.
To conclude this chapter, let us reason about the chances of coming up with a
pipeline domain that is not based on a power set construction. Such a domain
could be expected to be more efficient since it might join two pipeline states into
a single more abstract state. However, the safe approximation of WCET bounds
requires that elements in the underlying lattice are ordered with respect to the global
WCET bound, i.e., replacing an element by a less precise element must not decrease
the global execution time bound. The notion of timing anomalies shows that it is
inherently difficult to predict the global timing effect of a local decision. Any pipeline
domain that relies on local decisions must prove that it makes no assumption that
decreases the global WCET bound. This is equivalent to proving the absence of
timing anomalies in the considered program and execution contexts. So far, research
on timing anomalies only succeeded in automatically identifying individual cases of
anomalies [EPB+06]. Therefore, pipeline domains that do not rely on power sets of
abstract states are currently not in sight.

59

CHAPTER 6

Symbolic Representation of Pipeline Domains

In Chapter 5 we discussed how pipeline domains for WCET analysis approximate the
collecting semantics of program execution by a state traversal of complex micropro-
cessor models. We showed that the existence of timing anomalies and domino effects
forbids to make simplifying assumptions that would reduce the reachable state space.
Since state-of-the-art implementations of pipeline domains traverse the reachable
state space in DFS order using an explicit representation of pipeline states, memory
consumption and computation time of the analysis grow linearly with the number
of reachable states. If the reachable state space grows too large, e.g., because of the
limited precision of knowledge about possible register contents, the analysis can
become infeasible in practice. We address the state explosion problem in static WCET
analysis by storing and manipulating pipeline states using BDDs. The approach is
inspired by symbolic model checking which has been successfully applied to the
analysis of hardware and software. But in contrast to existing applications of model
checking, WCET analysis considers both the software and the processor simultane-
ously. The modular WCET analysis architecture of Chapter 5 alleviates the arising
complexity by careful modeling and abstraction. However, at the level of pipeline
analysis, the interplay of hardware and software – as well as the interaction with the
different analyzers – remains complex, conceptually and in terms of implementation.
This chapter discusses the design of a symbolic representation of pipeline domains.
We want to arrive at an implementation that completely avoids the explicit enumera-
tion of pipeline states and thereby alleviates the state explosion problem in WCET
analysis. At the same time, the following constraints have to be respected:

1. The pipeline analysis must cooperate with the other analyses of the WCET
analysis framework. Information must be imported from and exported to the
extended supergraph.

2. The approach must scale to serious pipeline models and programs.

61

Chapter 6: Symbolic Representation of Pipeline Domains

Due to these constraints, the analysis cannot be modeled in an off-the-shelf model
checking tool. The necessary exchange of analysis information with the WCET
framework requires not only a translation of analysis information into a symbolic
representation. The state exploration process itself also needs to be guided by the
structure of the supergraph. We will see that this exploration strategy – which
proceeds basic block-wise – also provides opportunities for optimizations that allow
the analysis to scale to very large programs. Finally, interfacing an abstract cache
analysis is particularly difficult and requires a tight integration between the symbolic
representation and the interface of the cache analysis that cannot be implemented
with existing tools.

6.1. Considered Hardware Features

The approach that is presented in this chapter does not put special restrictions on
the analyzed software. It accepts any industrial real-time software that is analyzable
with state-of-the art static WCET analyzers. However, the set of admissible hardware
features is restricted to those features that have been implemented for the model of
the Infineon TriCore 1, described in Section 7.2.1. This includes

• parallel execution,

• buffers,

• static branch prediction.

As a consequence of allowing buffers, the considered class of processors exhibits
timing anomalies as illustrated by the example of Figure 7.4. More advanced features,
like dynamic branch prediction, out-of-order execution, and speculation, can also be
modeled in an FSM and therefore, at least in principle, be analyzed using the same
method. However, these features tend to significantly increase the size of pipeline
models. Getting satisfactory performance with such models probably requires new
optimizations. The problem of model size is especially relevant when addressing
caches. Section 6.5 discusses the arising problems. The bottom line is that handling
caches within the presented symbolic analysis domain is probably infeasible in
practice. Section 6.5 discusses an alternative solution that integrates the symbolic
pipeline domain with an abstract cache domain.

6.2. Basic Symbolic Representation

We compute the abstract semantics of pipeline analysis using a symbolic state
traversal algorithm based on image computation (see Definition 4.12). The algorithm
explores the state space of a deterministic FSM which is specified in terms of its
symbolic transition relation as in Definition 4.10. Inputs of the FSM are not constrained
during the exploration.

62

6.2 − Basic Symbolic Representation

In Section 5.2.3, the computation of the abstract semantics of pipeline analysis has
been defined using a non-deterministic FSM called the abstract pipeline. The inputs of
this FSM are obtained from the analyzed program. For the symbolic representation
of pipeline domains this non-deterministic FSM is transformed into a deterministic
FSM by adding new inputs which enumerate all possible non-deterministic choices.
The resulting FSM is called the abstract pipeline model. Analyzing a certain program
means to restrict the feasible transitions of the model and thereby the reachable states
in the state traversal. This restriction is expressed by a program transition relation. The
process of building this transition relation specifies how an abstract pipeline input
relates to certain state variables of the model. The program transition relation forbids
model transitions that are infeasible because of program information which also
includes the results of preceding analyses, like value analysis. This is equivalent to
saying that the program transition relation encodes the program that is interpreted
by the abstract pipeline model. The subsequent sections show how the transition
relations of the model and the program are defined and constructed.

6.2.1. Representation of Pipeline Models

We stated that the abstract pipeline model is a deterministic FSM which is obtained
from the non-deterministic FSM of the abstract pipeline by adding new inputs that
enumerate all possible non-deterministic choices. This transformation is a concept
that explains the relationship between both FSMs. In practice, the deterministic FSM
can be specified directly without constructing the non-deterministic FSM first. The
non-determinism of the abstract pipeline is modeled by declaring transitions that
depend on inputs. Example specifications of abstract pipeline models are shown in
Figure 6.3 and Appendix A.1.

Definition 6.1 (Abstract pipeline model)
An abstract pipeline model, or model for short, is a deterministic FSM M = (Q̂, I, δ) with
n binary state variables and t binary inputs. Q̂ ⊆ Bn is the set of abstract pipeline states,
I ⊆ Bt is the set of inputs, and δ : Q̂× I → Q̂ is the next-state function of the model. An
abstract state is denoted by a vector of binary state variables ~x ∈ Q̂ and an input is denoted
by a vector~ı ∈ I.

Note: Definition 6.1 redefines the meaning of the symbols I and δ. Neither the set of inputs
of the abstract pipeline model nor its next-state function is the same as the set of inputs or the
next-state function of the concrete pipeline of Definition 5.3.

We use Definition 4.9 and Definition 4.10 to obtain symbolic representations for
sets of abstract pipeline states and the transition system of the model as Boolean
functions. The characteristic function of a set of abstract pipeline states Â ∈ Q̂ is
given by:

A : Bn → B

A(~x) = 1⇔ ~x ∈ Â

63

Chapter 6: Symbolic Representation of Pipeline Domains

Definition 6.2 (Model transition relation)
Let M = (Q̂, I, δ) be an abstract pipeline model. The Boolean function

TM : Bn × Bt ×Bn → B

TM(~x,~ı,~y) = 1⇔ δ(~x,~ı) = ~y

is called the model transition relation of M.

Reachability analysis as in Equation 4.4 using the model transition relation yields all
states of M that are reachable by execution of any program.
The model transition relation can be constructed from a specification of the abstract
pipeline model in a hardware design language (HDL) like Verilog or VHDL. To
this end, the HDL specification is compiled into a netlist that specifies a next-state
function δk for each state variable vk of the model. This operation is a well-known
problem in hardware verification and solutions are readily available [Che94]. The
transition relation of the variable vk is then given by the characteristic function of its
next-state function:

Tk : Bn ×Bt ×B→ B

Tk(~x,~ı, yk) = 1⇔ δk(~x,~ı) = yk

The complete model transition relation is obtained by the conjunction of the transition
relations of all n state variables:

TM(~x,~ı,~y) =
n

∏
k=1

Tk(~x,~ı, yk) (6.1)

Section 6.2.3 shows an example specification of a model transition and describes how
the transition relation of a state variable is constructed in practice.

6.2.2. Program Representation

The abstract pipeline of Definition 5.8 consumes inputs that describe program
information such as

• instruction types and operands,

• control flow information, such as possible successors for branch instructions,
and

• value analysis results, given as ranges, for memory access operations.

The relevant inputs need to be known during the symbolic state traversal. To this
end, we encode their effects as a program transition relation that restricts the feasible
transitions of the model. We use the program representation of Definition 5.1. All
required information is statically available as instruction attributes.

64

6.2 − Basic Symbolic Representation

Definition 6.3 (Program transition relation)
Let L be a program and M be an abstract pipeline model with n state variables and t binary
inputs. The operational semantics of an instruction l ∈ L with respect to the model M is
given by a Boolean function (instruction transition relation) Tl : Bn ×Bt ×Bn → B that
restricts the feasible transitions in the state space exploration of M:

JlK = Tl(~x,~ı,~y)

The operational semantics of L with respect to the model M is given by the conjunction of the
transition relations of all instructions:

JLK = ∏
l∈L

Tl(~x,~ı,~y) (6.2)

Equation 6.2 is denoted by the Boolean function TL : Bn ×Bt ×Bn → B which we call the
program transition relation.

Reachability analysis as in Equation 4.4 using the symbolic transition relation TL
M =

TM · TL yields the set of all abstract pipeline states of M that are reachable by
execution of the program L. Hence, the symbolic state traversal for WCET analysis
of pipeline models can be based on TL

M.
Building the transition relation Tl for an instruction l requires knowledge about the
design of the abstract pipeline model. In particular, one needs to know in which
states certain attributes of l are consumed and how their values relate to certain
state variables of the model. In practice, Tl can be constructed as the conjunction of
transition relations that constrain the next-state values of individual state variables
and individual instruction attributes. Examples are given in the following section.

6.2.3. Generating the Transition Relations

We give two examples to show how the transition relations for individual state
variables are generated in practice. The first example shows the construction of the
model transition relation using existing tools and methods from hardware model
checking. The second example shows the construction of the program transition
relation which is specific to our method.

Example 1: Model Transition Relation

Figure 6.1 shows Verilog code that uses a binary state variable exec_is_branch for
propagating the value of an instruction attribute is_branch from the fetch unit into
the execute stage of a pipeline model. The binary variable clk denotes the clock
signal. It is used to guard the always block that defines transitions on the rising edge
of the clock. The code states that the variable exec_is_branch is overwritten with the
current value of f etch_is_branch whenever the clk variable has the value 1.
The Verilog code of Figure 6.1 is compiled into the tabular BLIF [BCH+91] represen-
tation shown in Figure 6.2. Intermediate variables have been removed to improve

65

Chapter 6: Symbolic Representation of Pipeline Domains

readability. The transition relation of the state variable exec_is_branch is given in the
form of a truth table with three inputs and a single output. The inputs and output
appear in the order that is defined in the .table declaration. The default output is 0,
which is specified by the .def declaration. The truth table states that the next-state
value of exec_is_branch is 1 if the variables clk and f etch_is_branch both have the
value 1 in the present state, or if the value of clk is 0 and exec_is_branch has the value
1 in the present state. Otherwise the next-state value of exec_is_branch is zero. This
is equivalent to the proposition of the Verilog code of Figure 6.1. A corresponding
BDD for the truth table can be obtained by the following algorithm:

1. For each entry in the truth table, construct a simple BDD as follows:

a) Allocate a non-terminal node n and label it with the column name (e.g.,
var(n) = clk).

b) Connect high(n) with the terminal node that corresponds to the value of
the entry (either 1 or 0) and low(n) with the remaining terminal node.

2. Compute the conjunction of the column BDDs for each row.

3. Compute the disjunction of all row BDDs.

The constructed BDD expresses the transition relation of the binary state variable
exec_is_branch. The complete model transition relation is obtained by application
of Equation 6.1 to the transition relations of all state variables. A larger example of
Verilog code that describes the fetch unit of a pipeline model is given in Appendix A.1.

Example 2: Program Transition Relation

Figure 6.3 shows Verilog code for updating the current fetch address in the fetch unit
of a pipeline model. The fetch address is stored in the 30-bit1 variable f etch_address.
The current fetch address is either incremented by the instruction size, which is 4
bytes in this example, or set to the current value of the program inputs branch_target2
to branch_target31. The program inputs are referred to using the special syntax
$ND(0,1) which is part of the VIS2 [BHSV+96] dialect of Verilog. This syntax states
explicitly that the symbolic state traversal does not constrain binary inputs but
considers both possible values. The inputs are non-deterministic.
We now create a transition relation for each of the 30 program dependent variables
f etch_addr2 to f etch_addr31. This relation restricts the feasible transitions when
executing a branch instruction. The execution of a certain instruction is defined over
the state variables exec_addr2 to exec_addr31 which denote the instruction address
that is stored in the execute stage of the pipeline model. Let l be an instruction and

1The two least-significant bits can be omitted because we assume that instructions are 4-byte aligned.
2VIS stands for Verification Integrated with Synthesis. See Section 7.1 for more information about

VIS.

66

6.2 − Basic Symbolic Representation

always @ (posedge clk) begin

...

exec_is_branch = fetch_is_branch;

...

end

always @ (negedge clk) begin

...

end

Figure 6.1.: Verilog code for propagating a binary instruction attribute from the
fetch unit into the execute stage of a pipeline model on the rising
edge of the clock signal.

.table clk fetch_is_branch exec_is_branch -> exec_is_branch'

.def 0

1 1 1 1

1 1 0 1

0 1 1 1

0 0 1 1

Figure 6.2.: BLIF representation of the single latch update depicted in Figure 6.1.
The truth table expresses that the next-state value of exec_is_branch
corresponds to (clk · f etch_is_branch) + (clk · exec_is_branch).

wire branch_target[2:31];

assign branch_target[2] = $ND(0,1);

...

assign branch_target[31] = $ND(0,1);

always @ (posedge clk) begin

...

if (0 != fetch_addr) begin

if (exec_is_branch)

fetch_addr = branch_target;

else

fetch_addr = fetch_addr + 4;

...

end

Figure 6.3.: Verilog code for updating the current fetch address in the fetch unit
of a pipeline model.

67

Chapter 6: Symbolic Representation of Pipeline Domains

the attribute addr denote the address of an instruction as in Definition 5.1. The fact
that l is executed is expressed by a condition

exec_condl =
31

∏
k=2

exec_condl,k

where exec_condl,k is defined as

exec_condl,k =

{
exec_addrk , if l.addr[k] = 1
exec_addrk , if l.addr[k] = 0

The execution condition exec_condl is used in the following update condition which
further checks the values of the clk and the exec_is_branch variables. This is the same
check that is performed by the pipeline model of Figure 6.3:

condl = exec_addr_condl · clk · exec_is_branch

Let f etch_addr′k denote the next-state instance of the variable f etch_addrk. The
instruction attribute branch_target denotes the target of a branch instruction. Then,
the corresponding transition relation for a branch instruction l is represented by the
following Boolean function:

updatel,branch_targetk
=

{
condl · f etch_addr′k + cond , if l.branch_target[k] = 1
condl · f etch_addr′k + cond , if l.branch_target[k] = 0

The constructed function denotes a transition relation that restricts the next-state
value of f etch_addrk to the value of the instruction attribute l.branch_target[k] in
states in which the fetch address is updated with program information and l is in
the execute stage of the pipeline model. The disjunction with the negated update
condition ensures that the next-state value of this variable is not constrained in other
states. The corresponding BDDs are constructed by the following algorithm:

1. Convert the Boolean update function into conjunctive normal form.

2. For each variable, construct a simple BDD:

a) Allocate a non-terminal node n and label it with the variable name.

b) Connect high(n) with the terminal node that corresponds to the value of
the variable (either 1 or 0) and low(n) with the remaining terminal node.

3. Compute the conjunction of the BDDs for each clause.

4. Compute the disjunction of all clause BDDs.

An instruction transition relation is built by computing the conjunction of many
such relations. Finally, the transition relation of the complete program is obtained
by combining all instruction relations as in Equation 6.2. An extensive example
of code that constructs the program transition relation of the fetch unit model of
Appendix A.1 is found in Appendix A.2.

68

6.3 − Symbolic Computation of Abstract Traces

1: Aout = Empty
2: while A 6= Empty do
3: A = Img(T, A)
4: Aout = Aout + (A · R)

5: A = A · R
6: end while

Figure 6.4.: Algorithm for computing Aout = tf0(T, A, R).

6.3. Symbolic Computation of Abstract Traces

Based on the symbolic representation of abstract pipeline models and programs we
present an implementation of pipeline analysis that uses only symbolic computations
on BDDs. Thus, it completely avoids the explicit enumeration of states of the abstract
pipeline model. Note that the symbolic implementation is semantically equivalent to
the explicit state approach but more efficient when considering large sets of reachable
pipeline states.
We first present the symbolic computation of abstract traces on the level of basic
blocks. This is the core operation of pipeline analysis (see Section 5.2.3). Upper
bounds on the execution time are derived from the lengths of the computed traces.
We start by defining several helper functions that are used in the algorithm. Let
G = (B, E, n, s) be the basic block graph of the program L and b ∈ B be a basic block.
The function last : B→ L returns the last instruction of a basic block:

last : B→ L
last(b) = l : l is the last instruction in b

The characteristic function of the set of states in which last(b) was the last instruction
to leave the pipeline, is defined as

Rb : Bn → B

Rb(~x) = 1⇔ last(b)was the last instruction to leave the pipeline

In order to define Rb in practice, the last retired instruction has to be stored in the
pipeline state. If a pipeline model can retire n instructions in the same cycle all n
retired instructions need to be stored. Finally, the empty set of pipeline states is
represented by Empty : Bn → {0}.
Figure 6.4 shows the symbolic implementation of a basic transfer function tf0 which
works for basic blocks with a single successor. The analyzed basic block is given
implicitly in the retirement function. The signature of the basic transfer function of
Figure 6.4 is

tf0 : (Bn ×Bt ×Bn → B)× (Bn → B)× (Bn → B)→ (Bn → B) (6.3)

We call tf0 with the following arguments:

69

Chapter 6: Symbolic Representation of Pipeline Domains

initial states

cycles

0 1 2 3 4 5 6 7 8

terminal state

Figure 6.5.: Symbolic-state computation of an abstract pipeline trace for a single
basic block in BFS order. The abstract trace is computed as a trace of
sets (rather than a set of traces as in Figure 5.6).

• the combined transition relation of the pipeline model and the program TL
M =

TM · TL,

• a set of incoming pipeline states Â represented by its characteristic function
A : Bn → B, A(~x) = 1⇔ ~x ∈ Â,

• the set of retiring states Rb of the current basic block.

The algorithm of Figure 6.4 implicitly constructs the abstract trace êxec(b, Â) for the
current basic block b and the incoming set of pipeline states Â (see Definition 5.11).
In each round of the while loop, line 3 of the algorithm computes the successor states
in the next cycle. Line 4 adds the retired states to the set of outgoing states Aout and
line 5 removes them from A. The algorithm terminates when A is empty, i.e., all
traces ended at a retiring state. At this point, Aout holds all pipeline states that leave
b. The number of execution cycles of b equals the number of loop iterations.
Figure 6.5 visualizes the implicit computation of an abstract basic block trace by the
symbolic algorithm of Figure 6.4. The computation is semantically equivalent to

70

6.3 − Symbolic Computation of Abstract Traces

an explicit-state implementation as depicted in Figure 5.6. However, the symbolic
algorithm traverses the state space in breadth-first order. All states that are reached
in the same execution cycle with respect to the beginning of the basic block are
represented by a single BDD. These states are usually very similar and therefore
their BDD representation is much more compact than their explicit enumeration.

6.3.1. Integration with a Data Flow Analysis Framework

We discuss the integration of the basic transfer function tf0 of Figure 6.4 with a data
flow analysis framework to compute the abstract semantics of pipeline domains as
in Section 5.2.3. This requires a fixed point iteration on the CFG of the program
under analysis. We observe that a basic block b in the CFG can have more than one
successor, e.g., if b contains a conditional branch. This is reflected by the design of
the transfer function in Section 3.2 which takes an edge, i.e., a pair of nodes, and
a domain element as inputs. The implementation of the basic transfer function tf0
as in Figure 6.4 computes the outgoing states over all outgoing control flow edges.
We give an algorithm that uses tf0 to compute the exact set of outgoing states and a
more precise execution time bound for a single edge.
Let us assume that if b contains a branch instruction, then this instruction is always
last(b).3 In the case of a conditional branch, we allow for two successor states in the
pipeline model (branch taken, not taken). We assume that the pipeline model makes
the control decision while decoding last(b). The set of pipeline states decoding
last(b) is identified by the following function:

Db : Bn → B

Db(~x) = 1⇔ last(b) has been decoded in pre(~x)

The algorithm that we are about to introduce uses this function for identifying
states that have just made a control flow decision. Such a function can always be
specified, even for architectures with more complex control flow decisions. If we run
tf0(T, A, Db), the resulting set Aout contains all states that have decoded last(b) in
the last cycle. For an outgoing edge e of block b, we characterize the set containing
all states that can leave b over e by the function

Lb, e : Bn → B

Lb, e(~x) = 1⇔ ~x may leave b via e

For example, if last(b) is a conditional branch and e is a true edge, then the con-
ditional branch must have been taken on any state ~x leaving b via e. Figure 6.6
shows the improved transfer function tf] that computes the outgoing set of states
for a single control flow edge. Note that the controlling fixed point iteration can be
modified to allow caching of the intermediate result – computed in line 1 – for all

3This assumption is only introduced for simplifying the description. Architectures featuring delay
slots could be handled using a more elaborate last : B→ L function.

71

Chapter 6: Symbolic Representation of Pipeline Domains

1: Aout = tf0(T, A, Db)
2: Aout, e = tf0(T, Lb, e ·Aout, Rb)

Figure 6.6.: Algorithm for computing the characteristic function Aout, e of all
outgoing pipeline states that may flow over the edge e.

outgoing edges of the same block. Let |a| denote the number of loop iterations of
algorithm a. The number of execution cycles for block b on the path via edge e is
then given by the number of loop iterations of the algorithm of Figure 6.6. It is equal
to adding up the number of loop iterations in all calls to tf0:

| tf0(TL
M, A, Db) | + | tf0(TL

M, Lb,e ·Aout, Rb) | (6.4)

We instantiate a data flow analysis framework as follows:

1. The analysis domain is the symbolic domain of abstract pipeline states

D] = ({X : Bn → B | X(~x) = 1⇔ ~x ∈ X̂},
X v Y⇔ X̂ ⊆ Ŷ,+, ·, Bn → 0, Bn → 1)

2. The transfer function tf] : E→ D] → D] first computes the functions Db, Lb, e,
and Rb for the incoming edge e with source block b. It then calls the algorithm
of Figure 6.6 using these functions plus the transition relation TL

M and the
incoming set of pipeline states A as arguments. The result is the outgoing set of
pipeline states. The number of execution cycles for the set of states that execute
b and leave via the edge e is computed as in Equation 6.4.

3. The upper bound operator t] is implemented by the disjunction of BDDs, i.e.,
X] t] Y] ≡ X + Y ≡ X̂ ∪ Ŷ for X̂, Ŷ ⊆ Q̂.

4. The equality test =] for elements of D] is implemented by the equivalence
check of BDDs as described in Section 4.2.2.

The presented data flow analysis is fully symbolic. It completely avoids the explicit
enumeration of pipeline states and is therefore less affected by the state explosion
problem in WCET analysis. Despite the relatively high effort to compute abstract
execution traces for small sets of pipeline states, the approach can be expected to
perform significantly better when considering larger sets of pipeline states. There
are two main reasons for this expectation.

1. The large amount of sharing between pipeline states in the same state explo-
ration layer leads to compact BDDs.

2. Frequently needed operations, like equality checks and computing the union
of sets, have very efficient BDD implementations.

72

6.4 − Scaling to Realistic Pipeline Models and Programs

However, the efficiency of symbolic pipeline domains depends on the size of the
pipeline models. The number of required state variables has a considerable impact
on the size of the involved BDDs and therefore the performance of the computation.
In order to exploit the advantages of the symbolic representation, it is important to
keep the pipeline models as small as possible.

6.4. Scaling to Realistic Pipeline Models and

Programs

A straightforward implementation of the symbolic approach presented in Section 6.2
and Section 6.3 does not scale to realistic pipeline models and programs. This has
two reasons:

• The monolithic transition relation of the pipeline model has a very large BDD
representation. It is therefore expensive – and often infeasible – to compute
this representation.

• The size of the pipeline model grows with the program size. This is because
the model must uniquely identify each instruction in each analysis context. As
a result, the performance decreases with growing program size.

To scale, we use three different types of optimizations; all of them improve perfor-
mance by reducing the sizes of the involved BDDs. The precision of the computed
WCET bounds is not affected.

• We rely on standard techniques from model checking to optimize the size of
the BDDs that represent the pipeline states and the transition system.

• We use knowledge about the processor to keep the processor model small. We
omit information that is not relevant for the timing and statically precompute
decisions if possible.

• We exploit the program structure in the symbolic representation of program
information and buffer contents in the processor.

The following sections describe each of these optimizations. Since the standard
optimizations from model checking have been described in detail in other publica-
tions, we focus more on the model optimizations and particularly on how to exploit
the program structure. The latter is the key to scale to large programs and highly
context-sensitive analyses. The order of the presentation follows the order in which
these optimizations are required, i.e., each optimization takes the analysis one step
further, to address larger models and programs.

73

Chapter 6: Symbolic Representation of Pipeline Domains

6.4.1. Conjunctive Partitioning

Building the transition relation for an FSM as a monolithic BDD by taking the con-
junction of the relations for all state variables as in Equation 6.1 is usually infeasible
but for the smallest models. Therefore, we represent the model transition relation
as a list of partial relations. Each partial relation in the list conjoins the relations
for a limited number of variables of the pipeline model. The image computation
engine applies the relations one after the other and eliminates variables by quan-
tification in each step to avoid the blowup of the intermediate BDDs during image
computation. This is a standard technique known as conjunctive partitioning that we
borrowed from model checking. See Section 4.3.2 for a discussion of efficient image
computation using a partitioned transition relation.

Conjunctive partitioning can also be applied to the program transition relation
since it is also computed as the product of relations for individual variables and
instructions (see Equation 6.2). Both partitioned transition relations, for the model
and the program, are merged into a single partitioned transition relation for the
state traversal. This transition relation can be directly used by the advanced image
computation engine described in [RAB+95].

The distribution of the variables over the different partitions and the order in which
the partitions are applied affects the speed of image computation. Note that the
symbolic representation of Section 6.2 does not enforce any specific distribution
and order. In particular, the individual transition relations that represent program
information may be conjoined in any order to obtain the program transition relation.
The instruction transition relations of Definition 6.3 have been introduced for the
sake of a concise and accessible representation. Their intermediate construction is
not required in practice.

6.4.2. Address and Context Compression

Abstract pipeline models store many program addresses. For example, the modeling
of the instruction flow through the pipeline requires state variables to store for each
pipeline stage the currently associated instruction. A direct encoding would be to
bit-blast these addresses, i.e., a 32-bit address takes 32 state variables. This would be
inefficient, since BDD size, and therefore performance, is very sensitive with respect
to the number of state variables.

However, a typical program uses only a small fraction of the address space. Exploiting
information from the control flow graph, one can compactly enumerate all addresses
used in the program and then encode these addresses using a number of state
variables logarithmic in the size of the set of used addresses. The same optimization
can be applied to data addresses that are used by the analyzed program. To this end,
the relevant addresses are obtained from the results of the value analysis. Despite
the simple principle, address compression – particularly for instruction addresses –
is complicated in practice because of two reasons:

74

6.4 − Scaling to Realistic Pipeline Models and Programs

• Precise WCET bounds can only be obtained by an interprocedural analysis
on the supergraph (see Definition 3.11). To distinguish between executions in
different call contexts and loop iterations, pipeline models not only store the
addresses of instructions in the various pipeline stages, but also the analysis
context in which an instruction has been fetched. The information about
analysis contexts is also required to access the context-sensitive results of the
value analysis.

• The numbering of program addresses cannot be performed in arbitrary or-
der. It must preserve the order of instruction addresses to allow address
arithmetic in the pipeline model. For an example, consider Figure 6.3. If the
variable f etch_addr is not redirected to a branch target, the next fetch address
is computed by address arithmetic in the pipeline model.

A naïve handling of many analysis contexts in the BDD representation of a pipeline
model would be as inefficient as bit-blasting the program addresses. To avoid this,
and to simplify the handling of contexts at the level of pipeline models, we include
the information about analysis contexts into the compact address numbering, i.e., we
enumerate all program addresses in all analysis contexts. Thus, addresses used by
the pipeline model not only identify individual instructions, but also the analysis
context in which an instruction has been fetched. If the numbering preserves not
only the order of instruction addresses but also the order in which the contexts
are analyzed, address arithmetic by the pipeline model then always determines the
correct contexts.
The numbering of all program addresses in all analysis contexts is computed by a
single pass over the supergraph of the analyzed program. It starts from the analysis
entry point and visits all instructions in analysis order. The result is a mapping
from addresses in contexts to natural numbers. The construction of the program
transition relation uses this mapping to encode the computed numbers instead of
program addresses in the symbolic representation. The numbering of all relevant
data addresses can be computed by the same pass because the required value analysis
results are annotated at the supergraph.

6.4.3. Processor-Speci�c Optimizations

Besides the generic address compression optimization, the size of a pipeline model
can be further reduced by exploiting specific properties of the modeled processor
pipeline. The abstraction process for obtaining an abstract pipeline model, as
described in Section 5.2.2, can already be regarded as an optimization of the model
size by omitting information which is not timing-relevant. However, there are two
more processor-specific optimizations that can be applied in certain cases:

1. choosing the most compact representation, and

2. statically precomputing information.

75

Chapter 6: Symbolic Representation of Pipeline Domains

A more compact representation is obtained if redundant information is eliminated
from the model. This can be achieved by exploiting regularity in the pipeline. Static
precomputation of information can be applied in situations where the outcome
of a decision can be predicted from the current pipeline state using simple rules.
The decision process need not be implemented in the pipeline model. Instead, the
possible outcomes are precomputed and added to the program transition relation.
We give two examples of processor-specific optimizations for the pipeline model of
the Infineon TriCore 1: the compact buffer representation and the precomputation of
stall conditions. The examples are meant to illustrate the two optimization principles.

Compact Bu�er Representation

The prefetch buffer of the Infineon TriCore 1 holds up to 8 instructions. Updat-
ing buffers and dispatching instructions into the correct pipelines requires type
and size information for each instruction. Since the TriCore 1 has two different
instruction sizes and two major pipelines, this information can be represented by
2 bits per instruction. We thus represent the timing-relevant buffer contents by 16
bits compared to 16 bytes in the actual processor. This is a classic case of model
optimization by omitting irrelevant information. In this case, the actual opcodes and
operands of the fetched instructions are not needed for updating the buffer and for
correctly dispatching the fetched instructions. If such information is required at a
later stage in the pipeline, it can be retrieved from the program representation since
each instruction is unambiguously identified by its address and context.
Besides the contents of the prefetch buffer, the pipeline model also needs to identify
the addresses that correspond to the current buffer contents. We exploit the update
rules for the prefetch buffer to avoid storing the address and context of each contained
instruction. Instead, we only store the address of the first instruction in the buffer
together with an index that addresses the first instruction that has not been issued
into one of the pipelines, yet. Since the size of the buffer is 8 half words, the index
can be encoded in only 3 bits. This is an example of a compact representation that is
obtained by omitting redundant information. In this case, the redundancy is in the
addresses of the instructions in the prefetch buffer.

Precomputing Stall Conditions

The Infineon TriCore 1 is equipped with two major pipelines that allow for the
parallel execution of instructions. The execution in one pipeline may stall because
the currently executed instruction depends on the result of another instruction which
is still being processed in the other pipeline. The TriCore 1 features a set of rules that
define such pipeline stalls in case of unresolved data dependencies. For example, the
following code sequence exhibits a write-after-write dependence between the two
instructions A and L, because both instructions use the same target register d0.

add d0, d1, d2 ; A
ld d0, [a0]0 ; L

76

6.4 − Scaling to Realistic Pipeline Models and Programs

Decode A -
INT Pipeline Execute A -

Writeback A -
Decode L L

LS Pipeline Execute - L
Writeback - L

Figure 6.7.: Example of a TriCore 1 pipeline stall. The dependent instructions A
and L are issued in parallel, but the LS pipeline stalls for one cycle
to resolve the dependence. The symbol ’-’ in the pipeline diagram
denotes nop instructions.

The execution of this code sequence and the effect of the dependency on the TriCore
1 pipeline is depicted in Figure 6.7. Both instructions are issued in parallel, but the
LS pipeline stalls for one cycle to resolve the dependence. For our analysis such data
dependencies can be precomputed by an interprocedural data flow analysis. The
analysis is cheap since it can ignore dependencies that exceed a certain threshold.
This threshold can be deduced from the depth of the pipeline as discussed in
Section 6.4.4. The results of the data dependency analysis are stored as instruction
attributes. In the model transition relation, we use a single program dependent
state variable per major pipeline to detect pipeline stalls due to unfulfilled data
dependencies. The results of the dependency analysis are encoded in the program
transition relation as restrictions for the stall variables. The next-state value of a stall
variable in this representation depends on the existence of a data dependence and
on the current position of the depending instructions in the pipeline. We give an
example, assuming that stall_ls is the binary state variable for controlling stalls of
the LS pipeline. Attributes of the form

[ma|ls]_[decode|execute|writeback](X)

denote that instruction X occupies the decode, execute, or writeback stage of the
INT or LS pipeline, respectively. The stall situation depicted in Figure 6.7 can then
be handled by adding the following relation:

(stall_ls′ ·ma_decode(A) · ls_decode(L))

+ (stall_ls′ ·ma_decode(A) · ls_decode(L))

+ ls_decode(L)

(6.5)

The relation determines the next-state value of the variable stall_ls in situations in
which instruction L is in the decode stage of the LS pipeline (the first two lines of
Equation 6.5). If instruction A is also in the decode stage of the INT pipeline, the stall
signal becomes active and causes the LS pipeline to wait until A has proceeded to

77

Chapter 6: Symbolic Representation of Pipeline Domains

the execute stage of the INT pipeline and the dependence is resolved.4 If instruction
L is not in the decode stage of the LS pipeline, the next-state value of stall_ls is
not constrained (the last line of Equation 6.5). This construction ensures that the
conjunction of many such relations does not lead to contradictions, a property which
simplifies the construction of the partitioned transition relation of Section 6.4.1.
In this example, the instruction L is regarded as the current instruction for which
program relations are created. Finally, note that the value of stall_ls is not constrained
if the decode stage of the LS pipeline does not hold a valid instruction from the
analyzed program, e.g., when starting the analysis. However, in such cases we use a
special 0-instruction which is treated specifically by the pipeline model. An example
of the special treatment of the 0-instruction can also be found in Figure 6.3.
The described optimization requires significantly fewer state variables than explicitly
checking for data dependencies in the model. The latter would need additional
variables for storing the involved operands.

6.4.4. Program Decomposition

The aforementioned optimizations make the construction of the symbolic representa-
tions feasible. However, the required number of state variables still heavily depends
on the size of the program because all instructions must be uniquely identified in the
pipeline model. Additionally, context-sensitive analysis, which is indispensable to
obtain sufficient analysis precision, increases the number of individual instructions
even further by virtual inlining and unrolling (see Section 3.3). Since BDD perfor-
mance depends on the number of state variables, the performance of every single
analysis operation depends on the size of the analyzed program and on the number
of analysis contexts. This undesired dependence can be removed by an optimization
that is based on two observations:

Observation 1 There is an upper bound on the number of instructions that a pipeline (or
abstract pipeline model) can process concurrently due to parallel execution, prefetching and
speculation.

Observation 2 Pipelines perform out-of-order execution and yet guarantee in-order comple-
tion, i.e. even if some later instruction l2 can be executed before some other instruction l1, it
will not leave the pipeline before l1.

To remove the undesired dependence of the state traversal complexity on the program
size, we use both observations to limit the range of program information that is
required to compute the abstract trace at any program point. We introduce the notion
of relevant instructions to describe this range.

4The TriCore 1 model uses two transitions per cycle. The two half-cycles correspond to the rising and
falling edge of the clock signal. This modeling allows setting and reading a variable in the same
cycle. Hence, the model is able to stall in the same cycle in which the dependence is detected.

78

6.4 − Scaling to Realistic Pipeline Models and Programs

Note: From now on the term instruction refers to an instruction in a specific analysis
context, i.e., an instruction is no longer identified by its address only, but by its address and
analysis context.

Definition 6.4 (Relevant instructions)
The set of instructions that is required to compute the abstract execution of a basic block b in
a program L is called the set of relevant instructions of b in L.

All instructions that are contained in a basic block b are trivially relevant for b.
However, due to the overlapping of instruction execution in the pipeline, also
instructions that are not in b can be relevant.

Definition 6.5 (Overlap bound)
Let M be a pipeline model. For a basic block b of a program L, the number of relevant
instructions of b in L that are not contained in b is called the overlap of b in L. The overlap
bound of M is the maximum of the overlaps of all basic blocks in all programs.

The overlap bound is a model-specific constant. It expresses the relevant overlapping
between a basic block with its neighbors in the control flow graph. We define
several helper functions to compute the relevant range for a given program point
(identified by an instruction) and overlap bound. The following function determines
the distance between two instructions in control flow backward order:

pre : L× L→N

pre(li, lj) =

{
min{k | lj is the k-th predecessor of li} , if this set is not empty
0 , otherwise

To compute this function, we traverse the control flow graph backwards in BFS
order, starting from the current instruction li and stopping when we reached the
predecessor lj. When the BFS search stops the current depth equals the distance k.
The same approach can be used to determine the distance in control flow forward
order:

post : L× L→N

post(li, lj) =

{
min{k | lj is the k-th successor of li} , if this set is not empty
0 , otherwise

Note that if li and lj are in the same subsuming context of a loop, it is possible to
compute both, a pre- and a post-distance, between li and lj. In such cases lj is a
predecessor and a successor of li. Based on the pre-distance function, the set of all
predecessor instructions within a given range is computed by the following function:

preds : L×N→ 2L

preds(li, k) = {lj : 0 < pre(li, lj) ≤ k}
(6.6)

Again, this function is implemented by a traversal over the control flow graph
backwards in BFS order starting at li and stopping at depth k. A similar function

79

Chapter 6: Symbolic Representation of Pipeline Domains

computes the set of all successor instructions within a given range:

succs : L×N→ 2L

succs(li, k) = {lj : 0 < post(li, lj) ≤ k}
(6.7)

The following theorem establishes an upper bound on the overlap bound of any
pipeline model.

Theorem 6.1 (Maximum overlap bound)
Let M be an abstract pipeline model that can hold at most m instructions at the same
time and let b be a basic block. The first and the last instructions of b are denoted by
f irst(b) and last(b). The maximum overlap bound of M is c̄ = 2m and the set of
relevant instructions of b is bounded by

b ∪ preds(f irst(b),
c̄
2
) ∪ succs(last(b),

c̄
2
)

Proof Let us assume that b contains only a single instruction li. Then we have
to prove that the set of relevant instructions is bounded by {li} ∪ preds(li, m) ∪
succs(li, m). We prove 2 cases:

1. Only instructions from preds(li, m) are in the pipeline when li enters it:
When li enters the pipeline, there can be at most m other instructions in the
pipeline. Let lj be an instruction such that pre(li, lj) > m. If lj is still in the
pipeline when li enters it, then either there are more than m instructions in the
pipeline, or at least one instruction between li and lj that has retired before lj.
Both possibilities contradict our observations.

2. Only instructions from succs(li, m) are in the pipeline when li retires:
When li leaves the pipeline, there can also be at most m other instructions in the
pipeline. Let lj be an instruction such that post(li, lj) > m. If lj already entered
the pipeline before li retires, then either there are more than m instructions in
the pipeline, or at least one instruction between li and lj has not been fetched.
Again, both possibilities contradict our observations.

Since only instructions from {li} ∪ preds(li, m) ∪ succs(li, m) can be in the pipeline
at block b, the model M cannot access information related to any other instruction.
Hence, such information cannot be required for the state traversal for computing the
abstract trace of b. The proof trivially holds also for blocks that contain more than
one instruction.

The maximum overlap bound of a given pipeline model can be determined by
counting the state variables that may contain instructions. The actual bound may

80

6.4 − Scaling to Realistic Pipeline Models and Programs

Figure 6.8.: Illustration of program decomposition under the assumption that
c̄ = 4. Both cases show the same section of the same basic block
graph. At the left hand side we enumerate only instructions that are
relevant for the state traversal at block 3. At the right hand side we
do the same for block 5.

be smaller if the update logic forbids that certain variables are used concurrently.
Theorem 6.1 can be used to obtain a more compact and therefore more efficient
representation of instruction addresses and analysis contexts that does not depend
on the size of the analyzed program. The idea is that for each basic block we
enumerate (see Section 6.4.2) only the addresses and contexts that are relevant for
this block. As a result, the required number of state variables for the unambiguous
identification of instructions during state traversal is reduced. Let m be the number
of instructions that a given pipeline model can hold. Furthermore, n is the number
of all instructions in all analysis contexts of the analyzed program. The number
of binary state variables that is required for the unambiguous enumeration of all
instructions is

m · log2(n) (6.8)

81

Chapter 6: Symbolic Representation of Pipeline Domains

For a given basic block, the number of required state variables can be reduced by
application of Theorem 6.1 to

m · log2(|b ∪ preds(f irst(b), m) ∪ succs(last(b), m)|) (6.9)

The result of this equation depends on the number of instructions in the basic block
b and on the number of predecessors and successors of b in the control flow graph.
In general, the result of Equation 6.9 is much smaller than the result of Equation 6.8.
In the following, we denote this compaction of the symbolic representation at a
given basic block b by d eb. Figure 6.8 shows an example for two blocks b3 and b5,
assuming that c̄ = 4. The numbers in the blocks correspond to the enumeration of
the relevant instructions at b3 and b5 respectively.

Symbolic Translation Between Basic Blocks

As a consequence of enumerating only the relevant instructions for each block, the
encoding of instructions is no longer globally the same for all blocks of the analyzed
program. As an example, consider block 3 in Figure 6.8. When analyzing block
3, the two instructions contained in this block correspond to the numbers 5 and
6. On the other hand, when analyzing block 5, the same instructions correspond
to the numbers 1 and 2. The instruction encoding must therefore be translated
before propagating states along control flow edges. According to Theorem 6.1 the
number of overlapping instructions between two adjacent blocks is bounded by the
processor specific overlap bound c̄. In the example of Figure 6.8, the translation of
the instruction numbering between block 3 and block 5 can be expressed by the
following relation between the 4 overlapping instructions:

overlap(b3, b5) = {(5, 1), (6, 2), (7, 5), (8, 6)} (6.10)

Such mapping relations between different instruction numbers at neighboring basic
blocks can be represented symbolically by BDDs. The relations are expressed over
the variables of the abstract pipeline model. For example, the characteristic function
of the overlap relation of Equation 6.10 can be specified as

Tb3
b5(~x,~ı,~y) = 1⇔∀(li, lj) ∈ overlap(b3, b5) :

references of li in ~x are replaced by references of lj in ~y

∧~x,~y are otherwise equivalent

The example shows that one can specify relations between states of the model
which directly express the translation of the instruction enumeration between basic
blocks. The practical construction of such relations requires the overlap mapping
between two basic blocks and information about which model variables reference
instructions and how the instruction numbers are encoded. Translating sets of
abstract pipeline states between p and s can then be implemented symbolically by
computing the image A′ of a set of pipeline states A over the mapping relation Tp

s

82

6.5 − Interfacing Abstract Caches

1: dAoutep = tf 0(dTep, dAep, dDpep)

2: dAout,eep = tf 0(dTep, dLs,eep · dAoutep, dRpep)

3: dAout,ees = Img(Tp
s , dAout,eep)

Figure 6.9.: Algorithm for computing the outgoing set of pipeline states, trans-
lated into the target block instruction numbering. The blocks p and s
are the source and target blocks of the edge e, i.e., (p, s) = e.

as A′ = Img(Tp
s , A). We include this translation into the algorithm of Figure 6.6 to

obtain the optimized transfer function that is depicted in Figure 6.9. Abstract basic
block execution for a compatibly encoded set of states dAeb can now be performed
more efficiently by application of the improved algorithm. Note that for a block b
with several predecessors, all incoming states are translated into the same range d eb.
Therefore, the instruction numbering is consistent over all incoming edges. Incoming
sets of states from the predecessor blocks can be safely combined by computing the
disjunction of the Boolean functions before proceeding with the state traversal at b.
The additional cost for translating between different basic blocks is amortized by
the savings achieved by reducing BDD size during state traversal. Moreover, dTeb
conjoins fewer relations than TL which further improves the performance of image
computations.

6.5. Interfacing Abstract Caches

The presented approach for symbolic pipeline analysis cooperates with the static
WCET analysis framework by exchanging analysis results, e.g., with control flow
and value analysis. A commonality of these analyses is the fact that they run
prior to pipeline analysis. Hence, cooperation boils down to importing statically
available analysis results. In contrast, the abstract interpretation of caches [Fer97]
cannot be separated from pipeline analysis. The cache state depends on the order
of memory accesses and therefore on the state of the pipeline. The pipeline state
in turn is influenced by the latency of instruction and data fetches which depends
on the cache state. Explicit-state implementations of pipeline analysis establish a
one-to-one relationship between pipeline and cache states, i.e., they combine each
abstract cache state with a single abstract pipeline state. The pipeline state triggers
an update of its associated cache state whenever the processor accesses a cached
memory area [FHL+01]. The presented symbolic-state approach cannot afford a
one-to-one combination of pipeline and cache states without losing the advantages of
symbolic state space exploration. We describe a semi-symbolic domain that efficiently
integrates abstract interpretation based cache analysis with our symbolic pipeline
analysis while preserving a high analysis precision.

83

Chapter 6: Symbolic Representation of Pipeline Domains

6.5.1. The Interface Problem

Cache analysis [Fer97] operates on abstract representations of cache states. The ab-
stract representation allows to trade precision for efficiency. Soundness is maintained
by losing information only on the safe side, i.e., the result over-approximates the
concrete cache states but it never misses a reachable cache state. The interface of
the cache analysis comprises functions to query and update abstract caches with
intervals of memory addresses. It also features a join operator for joining two cache
states into another cache state that over-approximates both. The join operation may
lose precision. There are two possibilities for interfacing caches with our symbolic
pipeline analysis:

1. Including the cache into the symbolic representation of pipeline states.

2. Associating an abstract cache representation with a symbolic representation of
pipeline states.

Let us consider the first approach. The representation of a cache requires too many
state bits to allow for a straightforward BDD representation. For example, consider
a 2-way set-associative cache with 128 sets and 32 bytes line size. Representing the
state of such a cache requires a prohibitive number of 5120 state bits.5 Even if we
use address compression (Section 6.4.2) the number of bits can only be reduced
to 128 · 2 · log2(|{Addresses}|) which is still very large compared to the size of an
abstract pipeline model (see Section 7.2.3).
The second possibility – associating an abstract cache representation with a symbolic
representation of pipeline states – seems equivalent to the approach that is taken by
explicit-state implementations. However, symbolic pipeline analysis cannot afford a
one-to-one combination of pipeline and cache states without losing the advantages
of symbolic state space exploration. The explicit handling of caches would require
the same explicit enumeration of pipeline states that the symbolic representation
is trying to avoid. The next section presents a domain that is based on this second
possibility but maintains a more favorable combination of pipeline and cache states.

6.5.2. A Semi-Symbolic Domain for Microarchitectural Analysis

We describe a semi-symbolic domain that integrates an abstract cache representation
with a symbolic representation of pipeline states. The explicit enumeration problem
is avoided by maintaining an efficient relationship between pipeline and cache states.
The basic idea is that we combine a set of pipeline states (represented symbolically
by a BDD) with a single abstract cache state. The product of the pipeline and
cache domains is thus based on an n-to-one combination. This allows us to preserve

5The considered cache has 256 lines (2 ways times 128 sets) and we represent its state by identifying
the memory block that each line holds. Of the memory block address, the lower 12 bits can be
omitted because 5 bits identify the byte address in the cache line and 7 bits locate the cache set
and are thus redundant. Hence, we have 256 · (32− 12) = 5120.

84

6.5 − Interfacing Abstract Caches

the benefits of the symbolic representation by manipulating sets of pipeline states
symbolically. Elements of this product are called partitions of hardware states. The
analysis maintains sets of such partitions.

Definition 6.6 (Partition)
Let D] and D ĉ denote the symbolic pipeline domain and the abstract cache domain, respec-
tively. A partition of abstract hardware states is a tuple of type D] ×D ĉ. We denote the set
of all partitions by H .

The pipeline and cache domains in the above definition feature the usual comparison
and join operators for complete lattices (see Section 3.1). The symbolic pipeline
domain is defined as in Section 6.3.1 and the implementation of the cache domain is
opaque. The semi-symbolic domain for the combined pipeline and cache analysis is
based on the power set of H:

Dh = (2H,∪,∩, ∅, H)

The term partition of Definition 6.6 refers to the fact that for any domain element,
each abstract hardware state is represented by exactly one pipeline-cache tuple, i.e.,
a partition. This is guaranteed by the construction of operations on domain elements
which is detailed in the subsequent sections.

Updating Partitions of Abstract Hardware States

First, we show the update of a single partition (X], Aĉ) ∈ H. Let AC be the set of
all addresses in cached memory6 that are accessed by the analyzed program. The
pipeline model then needs m = log2(|AC|) binary state variables for addressing
memory. We require that these variables appear first in the BDD representation.
In the following, we define several functions for operations on partitions. Let
I ⊂ N×N denote the set of intervals such that ∀(l, u) ∈ I : l ≤ u. The addressed
interval can be obtained by a function

acc : D] → I

that inspects the first m BDD variables. We defer the discussion of its efficient
implementation to Section 6.5.3. For a given access interval and an abstract cache
state, the classification function of the cache domain determines whether an access
results in a cache hit (0, 1) or miss (1, 0). The result of this query can also be
undecided (1, 1) if precise information has been lost due to abstraction or if the

6For the remainder of this chapter we assume that all memory accesses address cached memory
regions.

85

Chapter 6: Symbolic Representation of Pipeline Domains

interval comprises both, cache hits and misses.

cl : D ĉ × I→ {(0, 1), (1, 0), (1, 1)}

cl(Aĉ, [l, u]) =

(0, 1) [l, u] surely hits Aĉ

(1, 0) [l, u] surely misses Aĉ

(1, 1) [l, u] may hit and may miss Aĉ

For a pipeline model with n binary state variables and t binary inputs, the result
of cl(Aĉ, acc(X])) can be encoded as a symbolic cache transition relation TC by the
following encoding function:

enc : B2 → (Bn ×Bt ×Bn → B)

The computed cache transition relation restricts the possible transitions of the model
relation TM. It only allows for transitions that correspond to the result of the cache
query. This is analogue to the construction of TL from statically available program
information. We now have all the functions for implementing the exchange of
information between both domains. Let us consider the actual update of a partition.
To this end, we define an opaque update function for abstract caches:

upĉ : D ĉ × I→ D ĉ

The update of a single partition (X], Aĉ) is then computed by a function upH : H →
H. The implementation of this function is depicted in Figure 6.10. It first determines
the interval I of memory addresses that is accessed by the pipeline states in X]. It
then queries the cache domain to determine whether the access hits or misses the
cache and – based on this information – constructs the BDD TC for restricting the
reachable pipeline states. The constructed BDD is conjoined with the BDDs TM and
TL to obtain the effective transition relation for the next update. By application of
the image operator on the computed transition relation and the set of pipeline states
X], it computes the set of successor pipeline states. The next cache state is obtained
by application of the cache domain update function on the current cache Aĉ and the
accessed interval I.

Balancing Pipeline and Cache States

In order to maintain a favorable n-to-one combination of pipeline and cache states,
we introduce a balancing operation to be applied in each round of the state traversal.
The balancing operation involves two steps: partitioning and join.

Partitioning. The partitioning step is based on the decomposition of the BDD of
pipeline states using Shannon’s expansion (Theorem 4.1). Let (X], Aĉ) ∈ H be a
partition of abstract hardware states. The first m state variables in X] encode the

86

6.5 − Interfacing Abstract Caches

upH(X], Aĉ) =

let I = acc(X]) in

let TC = enc(cl(Aĉ, I)) in

(Img(TM · TL · TC, X]) , upĉ(Aĉ, I))

Figure 6.10.: Implementation of the update function upH : H → H.

accessed interval of memory addresses. We partition (X], Aĉ) by a function that
recursively decomposes X] into its cofactors with respect to the first m state variables:

part : H → Dh

A new partition is created for each of the final cofactors together with a copy7 of the
cache state Aĉ. As a result of this operation, all pipeline states in a new partition
(X]

a, Aĉ) ∈ part(X], Aĉ) access the same interval of memory addresses. Note that
upH(X]

a, Aĉ) yields a more precise successor cache state than upH(X], Aĉ).
The worst-case complexity of the full recursive decomposition over all m state bits
is in O(2m). It is particularly expensive for large intervals because it enumerates
all potentially accessed memory addresses. However, when considering instruction
fetches or small intervals of data addresses (which correspond to precise value
analysis results), many cofactors are constant zero and can be dropped immediately.
Furthermore, the decomposition can be simplified by exploiting knowledge about
relevant8 program information. For example, assume that all pipeline states at
a certain program point are known to access one of the two disjoint intervals
[0x100,0x1ff] or [0x200,0x2ff]. These two intervals can be encoded with m = 10
bits x0, . . . , x9. Computing just the positive and negative cofactors of the most
significant variable x0 directly yields the partitions that correspond to these two
intervals. For overlapping intervals the decomposition can also be restricted to the
most significant k < m variables. The access intervals of the resulting partitions
overestimate the information obtained from the value analysis. Here, the semi-
symbolic domain allows us to trade precision for computability.

Join. Excessive partitioning might lead us back to the explicit enumeration problem.
In the worst case, each partition in a domain element Dh ∈ Dh encodes only a single
pipeline state. We prevent this by applying a join operator to partitions of Dh.
Two partitions (X], Aĉ) and (Y], Bĉ) are joined by an operator th which performs a
pairwise join operation on the elements of the partitions:

7Implementations can use references to improve performance.
8The meaning of the notion relevant is the same as in Definition 6.4.

87

Chapter 6: Symbolic Representation of Pipeline Domains

(X], Aĉ) th (Y], Bĉ) = (X] t] Y], Aĉ tĉ Bĉ)

To minimize the loss of cache precision, we join only partitions whose pipeline states
access the same interval of memory addresses. This restriction also prevents us
from undoing the partitioning. The loss in cache precision can be limited further by
joining only hardware states with similar caches. This however requires a similarity
metric for abstract cache states. A simple but efficient similarity metric is, to only
join two cache states Aĉ, Bĉ ∈ D ĉ if one of them already over-approximates the other,
which is equivalent to

Aĉ tĉ Bĉ = Aĉ or Aĉ tĉ Bĉ = Bĉ

Besides balancing the relationship between pipeline and cache states and optimizing
the representation for an efficient implementation of the function acc : D] → I,
the application of regular partitioning and join operators also ensures a canonical
representation; because of the join operation, a particular abstract hardware state
always ends up in exactly one partition of an element of Dh.9 This property allows
for an efficient equality check of data flow elements by pairwise invocation of the
equality operators of the two underlying domains on the contained partitions. It is
most efficient if the number of partitions is small.

6.5.3. State Traversal and Performance

The state traversal for micro-architectural analysis on the domain Dh is implemented
by repeated application of the function upH : H → H to all elements of a domain
element Dh ∈ Dh. Partition and join functions are applied in each round of the
traversal for balancing pipeline and cache states before starting the next round.
Hence, the chained execution of

1. upH over all partitions,

2. partition, and

3. join

gives the transfer function tf H of the domain Dh. An example update using this
transfer function is depicted in Figure 6.11. The domain is most efficient if each cache
state is associated with a large number of pipeline states. This allows for a small
number of BDD operations which exploits the caching of intermediate results that is
typical for BDD algorithms. Moreover, it significantly reduces the required number
of cache updates since we perform a single cache update for all of the associated
pipeline states. Note that a small number of partitions per domain element is also

9After the join, states in two different partitions differ at least in their assigned memory access
intervals.

88

6.5 − Interfacing Abstract Caches

(X]

upH

��

Aĉ) (Y]

��

Bĉ) (Z]

��

Cĉ)

(X]
1

partition
��

Aĉ
1)

join

���
�
�
�
�
�
�
�

(Y]
1

��������

$$JJJJJJJJJJJJ Bĉ
1)

zzv
v

v
v

v
v

v
v

v
v

v
v

v
v

$$J
J

J
J

J
J

J
J

J
J

J
J

J
J (Z]

1

��=======
Cĉ

1)

���
�
�
�
�
�
�
�

X]
11

join
��

Y]
11

uulllllllllllllllll Y]
12

""DDDDDDDDD Z]
11

���������

(X]
11 t] Y]

11 Aĉ
1 tĉ Bĉ

1) (Y]
12 t] Z]

11 Bĉ
1 tĉ Cĉ

1)

Figure 6.11.: Example of applying the transfer function to a domain element
Dh ∈ Dh containing 3 partitions. The 3 steps of the transfer function
are annotated at the left-most edges which represent operations
from the respective step.

desirable. Numbers for assessing the expected number of partitions and the expected
relations between pipeline and cache states in practice are given in Section 7.2.5.
A favorable combination of pipeline and cache states is maintained by the regular
application of the join operator. The prior application of the partitioning operator
minimizes the loss of cache precision and optimizes the BDD representation to allow
for an efficient implementation of the function acc : D] → I. Its efficiency depends
on the fact that

• the variables for addressing memory appear first in the BDD, and

• all encoded pipeline states are assumed to access the same interval of addresses.

Hence, it suffices to enumerate the satisfying paths over the BDD nodes that cor-
respond to the first m variables. In this case, a path is satisfying if it ends at a
non-terminal node that is labeled xk with k > m, i.e., it does not end at the terminal
node 0 and consequently the terminal node 1 is reachable via the variables that rep-
resent the pipeline states. Note that we do not enumerate all satisfying assignments
of the first m variables. Variables that are implicitly represented by dont-care nodes
are ignored. Let us consider the example depicted in Figure 6.12. The example BDD
shows only the first 6 state variables for accessing memory, i.e., we have m = 6.
Note that in the full representation, the terminal node 1 would be replaced by a
subgraph that represents the set of associated pipeline states. The satisfying paths
over the example BDD of Figure 6.12 are depicted in the first table of Figure 6.12.
To determine the interval that corresponds to a satisfying path, we set all dont-care
nodes to 0 to obtain the lower bound (see table 3 in Figure 6.12), and to 1 to obtain

89

Chapter 6: Symbolic Representation of Pipeline Domains

?>=<89:;x0

��������

��.
.

.

?>=<89:;x1

���
�

�

��(
(((((((((((((((((((((((((((((((((((((((

?>=<89:;x1

��

��.
.

.

?>=<89:;x2

���
�
�

��.
.................................
?>=<89:;x2

������������������������������������

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

?>=<89:;x3

���
�
�

��3
3333333333333333333333333

?>=<89:;x4

���
�
�

��>>>>>>>>>>>>>>>>>>>

?>=<89:;x5

���
�
�

''OOOOOOOOOOOOOOO

1 0

x0 x1 x2 x3 x4 x5
1 0 0 0 0 0
0 1 - - - -
0 0 1 - - -

1. satisfying paths

x0 x1 x2 x3 x4 x5 ub
1 0 0 0 0 0 32
0 1 1 1 1 1 31
0 0 1 1 1 1 15

2. upper bound

x0 x1 x2 x3 x4 x5 lb
1 0 0 0 0 0 32
0 1 0 0 0 0 16
0 0 1 0 0 0 8

3. lower bound

Figure 6.12.: BDD representation of the memory access interval [8, 32]. In
the full representation, the terminal node 1 is replaced by a
subgraph that represents the set of associated pipeline states.
The tables on the right-hand side show the computation of the
lower and upper bounds of the intervals that correspond to the
satisfying paths. The complete interval is then computed as
[min{32, 16, 8}, max{32, 31, 15}] = [8, 32].

the upper bound (see table 2 in Figure 6.12). Finally, we obtain the represented
interval by taking the minimum and maximum of the intervals over all satisfying
paths.

The example shows that the interval can be computed from the BDD without
enumerating all contained addresses. Note that the computational effort does not
grow significantly if the interval shares a larger address prefix (using additional state
variables x6, x7, . . . , xm to address memory). The additional state variables either
allow only for a single assignment, or most of them are dont-care nodes. The number
of satisfying paths in the BDD can be expected to stay small. In particular, it will
remain much smaller than the number of contained addresses.

90

6.6 − Summary

6.6. Summary

The presented symbolic pipeline domain completely avoids the explicit enumeration
of reachable pipeline states. It is therefore more efficient than previous approaches
when covering substantial subsets of the state space of a pipeline model. The effort
for computing cycle updates is independent of the size of the analyzed program
and of the number of states reached by the analysis. Instead it depends on the
size of the BDD representations, the most important contributing factor being the
size of the pipeline model itself. In addition to efficiently handling large sets of
reachable pipeline states, the approach also allows to efficiently join domain elements,
e.g., in cases of joining control flow. Join operations are particularly awkward in
existing explicit-state implementations because they require pairwise comparison
of all pipeline states in all sets. Also, the result of the join needs as much space
(in terms of memory) as all joined values together. The corresponding symbolic
operations on BDDs in symbolic pipeline analysis are more efficient in both respects:
computational effort and size of the result.
In combination with the cache domain, the symbolic approach to pipeline analysis
also provides a very desirable feature that is not available with previous methods:
it allows to choose between a more precise result and a faster analysis at run-time.
Since the combined domain Dh is a power set of pairs of BDDs and abstract cache
states, we have some degree of freedom when partitioning and joining elements. If
we aggressively join BDDs and abstract cache states, we lose cache precision but
we get the most sharing between similar pipeline states and reduce the number
of operations for updates. On the other hand, if we avoid such joins the analysis
may produce more precise results at the price of higher memory consumption
and computation time. Similarly, aggressive partitioning reduces the sharing and
improves the precision. This allows the development of new optimization strategies
for fine-grained balancing of efficiency versus precision.
Finally, we would like to point out an advantage that we have not explicitly mentioned
yet. Because of the straightforward correspondence between FSMs and BDDs (by
representation of the FSMs transition relation, see Definition 4.10 and Figure 4.4) it is
relatively easy to generate parts of the implementation of a pipeline domain from a
model specification in VHDL or Verilog or even a graphical definition language. One
of the reasons is that the symbolic approach clearly separates the model specification
(symbolic transition relation) from the state traversal (image computation). Also,
tools for compiling such specifications into symbolic transition relations have already
been developed in the context of symbolic model checking, e.g., in the VIS system or
in Uppaal, and can be re-used for pipeline analysis. Implementing similar compilers
for explicit-state pipeline analyses is not easy because the state traversal algorithm
is entwined with the transition function in order to handle the non-determinism.
However, this problem has already been tackled and a working implementation of
such a compiler is reported in [SP10].
Despite all of these advantages, symbolic pipeline domains also have a few drawbacks
that cannot be ignored. The size of the pipeline models is critical and careful tuning

91

Chapter 6: Symbolic Representation of Pipeline Domains

is needed to cut down the number of state bits required to represent a pipeline state.
This tuning can be a difficult process, particularly for more complex pipelines, and
the optimized models may be hard to understand. In combination with abstract
caches, symbolic pipeline analysis only unfolds its full power if one accepts a loss
of precision. The reason for this is that we have no feasible symbolic representation
for cache states and we also cannot afford to enumerate the pipeline states when
interfacing abstract caches. However, symbolic pipeline analysis is designed to deal
with cases of increased complexity because of state explosion. Losing information
in order to gain computability is a broadly accepted approach in program analysis.
Getting a less precise result, i.e., a coarser WCET bound, is better than getting no
result at all.

92

CHAPTER 7

Practical Evaluation

The goal of the symbolic implementation of pipeline domains is to improve the
efficiency of pipeline analysis when dealing with many potential pipeline states for
the same execution cycle. We discussed in Section 5.3 why such situations arise and
why they cannot be handled efficiently by the legacy explicit-state approach. The
downside of using a symbolic method for pipeline analysis is the increased sensitivity
with respect to the size of the pipeline model. Furthermore, a naïve approach that
encodes the complete program in a monolithic symbolic representation is even
sensitive to the size of the program. It is therefore mandatory to show that the
proposed program decomposition (see Section 6.4.4) is effective, and that the gain in
efficiency with respect to the number of explored states outweighs the additional costs
(for computing the mappings and for additional BDD operations like reorderings) in
practically relevant scenarios.

This chapter describes an implementation of a symbolic pipeline analysis framework
that is integrated into the WCET toolchain presented in Section 5.1. The symbolic
framework replaces the microarchitectural analysis phase (see Section 5.1.3) of the
toolchain. All other phases have been left unchanged. The symbolic pipeline analysis
framework is instantiated by the model of the Infineon TriCore 1 [AG08], a processor
which is used in many embedded automotive systems. We explain some of the issues
that we had to solve to obtain a working prototype.

Finally, we describe a number of experiments that we performed with the prototype
implementation. We compare its performance with an equivalent explicit-state
implementation. The results show the efficiency of the symbolic implementation
and demonstrate the effectiveness of our optimizations. However, they also show
that the legacy explicit-state approach remains superior in certain situations. A
comprehensive discussion of the results is found at the end of this chapter.

93

Chapter 7: Practical Evaluation

7.1. A Framework for Symbolic Pipeline Analyses

The WCET analysis framework described in Section 5.1 is implemented by the
commercial WCET tool aiT [Abs00]. We chose aiT as a basis for integration of the
symbolic pipeline analysis framework since it is a mature, commercial tool and we
have full access to its source code. As a consequence of this decision, the following
design criteria have to be met:

1. The pipeline analyzer must use the same program representation as the value
and control flow analyzers. The program representation that is used by the
analyses within aiT is that of an extended supergraph as introduced in Sec-
tion 3.3. The supergraph is annotated with additional attributes. The pipeline
analysis must also consider the same analysis contexts as the value and control
flow analyzers to import their results with maximum precision. In order to
guarantee this behavior, we use the exact same supergraph iterator which we
generate using the program analysis generator PAG [Mar98].

2. Not only must relevant program information and results from other analyses in
the framework be extracted from the extended supergraph. Abstract pipeline
states also have to be mapped to program points in the graph and individual
instructions must be identified unambiguously by the pipeline model. In both
cases, additional context information must be considered.

3. The results of the analysis must be written as context-sensitive basic block
attributes in the extended supergraph where they can be accessed by the
subsequent path analysis.

Further implementation constraints are imposed by the chosen BDD representation
and image computation engine. After evaluating several BDD libraries and model
checkers, we decided to take the relevant parts from the VIS system for Verification
Integrated with Synthesis, which also comprises a symbolic model checker [BHSV+96].
This decision was motivated by the fact that VIS features an advanced image opera-
tor [RAB+95] and provides a very convenient interface for building the transition
relations of models from Verilog specifications [Che94]. Also, its complete source
code is available under a license that does not conflict with the integration into the
commercial aiT tool. The VIS model checker can be compiled using different BDD
libraries. We use the CUDD library [Som09].
The design of the symbolic pipeline analysis framework is depicted in Figure 7.1.
The framework reads the following inputs:

• a program for analysis, given as an extended, attributed supergraph,

• a Verilog [TM96] specification of the abstract pipeline model,

• a specification of the model-to-program interface that defines the relations
between the model’s program dependent variables and the corresponding
supergraph attributes.

94

7.1 − A Framework for Symbolic Pipeline Analyses

Verilog
model

specification

Model
relation
builder

Extended
attributed

supergraph

Program
relation
builder

Join
relations

Enumerate
and map

Transfer engine

Basic block
translator

Image
computation

engine

PAG
supergraph

iterator

Supergraph
with time
bounds

Model-to-
program
interface

Figure 7.1.: Overview of the symbolic pipeline analysis framework. The arrows
show the flow of information between the different interacting modules.
Dashed arrows indicate that only a very small amount of information
is transferred whereas solid arrows indicate major inputs and outputs.
The turning arrows denote iterations over the control flow graph and
the model state space, respectively. The inputs for the framework are
depicted in the three top-level boxes. The produced result is represented
by the bottom-level box.

95

Chapter 7: Practical Evaluation

A setup stage computes the symbolic transition relations of the model and the pro-
gram. It begins with the enumerate and map module which reads the supergraph
and enumerates all instructions in all analysis contexts. The computed mappings
determine the number of model variables that are required for enumerating all in-
structions in all contexts. The model relation builder then specializes the Verilog model
to use the smallest possible number of model variables for the analyzed program.
The specialized Verilog model is compiled into the netlist format BLIF [BCH+91]
which is then read by the VIS model checker to produce the symbolic transition
relation of the model. The symbolic program transition relation is generated by the
program relation builder based on the Verilog model specification and the model-to-
program interface. Instruction attributes are accessed through the mappings that
have been computed by the enumerate and map module. The last step of the setup
stage is the join relations module which constructs the combined model and program
relation that is required for the state traversal.
The analysis engine is divided into two parts. The PAG supergraph iterator performs
the fixed point iteration on the interprocedural control flow graph. Each time the
iterator reaches a basic block in an analysis context with a modified set of incoming
pipeline states, it calls the symbolic transfer engine for each outgoing edge of the
basic block. The transfer engine implements the algorithm of Figure 6.6 (or Figure 6.9
if the optional decomposition is enabled) which traverses the reachable pipeline states
within the scope of the analyzed basic block. The number of state transitions, i.e., the
computed number of execution cycles, is annotated at the extended supergraph and
the outgoing set of states is given back to the supergraph iterator. The result of the
analysis is an extended supergraph annotated with context-sensitive time bounds for
all reachable basic blocks.
The following sections describe important modules and aspects of the implementation
in more detail.

7.1.1. Enumerate and Map

The first operation of the framework is to read the supergraph and to enumerate
all instructions in all analysis contexts. The result of this operation is a bijective
mapping between a set of natural numbers and tuples of addresses and contexts.
This mapping is the basis for the address and context compression as described in
Section 6.4.2. As stated there, the numbering must preserve the order of instruction
addresses to allow for address arithmetic in the abstract pipeline model. We ensure
this in the collection phase that collects all tuples of addresses and contexts in the
analyzed program. The collection phase is implemented by a single-pass recursive
algorithm over the supergraph, starting from the analysis entry point.
The collection algorithm (Algorithm 7.1) is called with a collection list lst, a basic
block b, and a context number ctx. For the initial call, the lst argument is empty,
b is the start block of the supergraph, and ctx is the default context number 0. In
line 1 the algorithm first checks whether the current basic block has already been
reached in the current context. If not, the current block and context tuple is tagged as

96

7.1 − A Framework for Symbolic Pipeline Analyses

being reached in line 2. For each instruction in the current block, the loop in lines 3-5
appends a tuple of the instruction address and the current context to the collection
list lst. The second loop in lines 6-11 then collects the tuples from lexical successor
blocks. To this end, the expression f irst.addr = last.addr + last.width in line 9 checks
whether the first instruction of the successor block b′ is a lexical successor of the last
instruction in b. Finally, the loop in lines 12-17 collects the tuples from the remaining
successor blocks. When the algorithm terminates, it returns all reachable instruction
and context tuples of the program in lexical order of their addresses. Note that the
algorithm in Algorithm 7.1 is much simplified for illustrative purposes. Traversing
the supergraph also involves dealing with special nodes (particularly call and return
nodes) and edges (e.g., local edges). Also the check in line 9 of the algorithm is more
difficult for the same reason.

Algorithm 7.1: collect (lst, b, ctx)

if not reached(b, ctx) then1

tag(b, ctx);2

forall l ∈ b do3

tuple← (l.addr, ctx);4

lst← append(lst, tuple);5

forall (b′, ctx′) ∈ succs(b, ctx) do6

f irst← first(b′);7

last← last(b);8

if f irst.addr = last.addr + last.width then9

lst′ ← collect(lst, b′, ctx′);10

lst← join(lst, lst′);11

forall (b′, ctx′) ∈ succs(b, ctx) do12

f irst← first(b′);13

last← last(b);14

if f irst.addr 6= last.addr + last.width then15

lst′ ← collect(lst, b′, ctx′);16

lst← join(lst, lst′);17

return lst;18

The next phase of the module traverses the collected table and inserts padding tuples.
Padding is required at the boundaries of addressing holes and at the end of the
program. Although these addresses can never be executed by a correct run of the
program, they may be loaded into the pipeline by prefetching or speculation. The
number of required padding tuples at an address hole is bounded by c̄

2 , where c̄ is
the overlap bound of the considered pipeline model. Further padding is required if
the pipeline model features different instruction sizes. Such pipeline models may
compute addresses that do not correspond to instruction boundaries.

97

Chapter 7: Practical Evaluation

The resulting table of address and context tuples is then enumerated to obtain a
global mapping between natural numbers and locations in the supergraph. A set of
local mappings for each basic block in each analysis context is computed by the final,
optional phase of the module. The local mappings are required for implementing the
program decomposition of Section 6.4.4. To compute the local mapping of a basic
block in a specific context, we determine the corresponding enumeration window
on the supergraph as depicted in Figure 6.8 using the preds and succs functions
of Equation 6.6 and Equation 6.7, respectively. We then enumerate all instructions
within the window and store a mapping from the local to the global enumeration.
This mapping is used by the basic block translator in the analysis engine to translate
the mappings between neighboring basic blocks. Since each local mapping is related
to the unambiguous global mapping, the local mappings of different basic blocks
can also be unambiguously translated.
The outputs of the enumerate and map module are the global and local mappings
between natural numbers and tuples of instructions and analysis contexts. The
optional computation of local mappings is controlled by a switch at analysis time.

7.1.2. The Model Relation Builder

The enumerate and map module produces mappings between natural numbers and
tuples of instructions and analysis contexts. If the optional program decomposition
optimization (see Section 6.4.4) is disabled, it only computes a global mapping for
implementing address compression (see Section 6.4.2). Otherwise, it also computes
a set of local mappings which represent the enumeration windows for program
decomposition as depicted in Figure 6.8. The number of tuples in the global mapping
or the number of tuples in the largest local mapping (if local mappings have been
computed) is passed to the model relation builder. The model relation builder then
instantiates the Verilog model specification such that each instruction address in the
model is represented by a number of state variables logarithmic in the provided
bound. Hence, it constructs a smaller model if the program representation is more
compact. If local mappings have been computed, the model size does not depend on
the program size anymore as discussed in Section 6.4.4.
The instantiated Verilog specification of the pipeline model is compiled into the BLIF
format using the Verilog to BLIF compiler vl2mv [Che94] that is part of VIS. The
BLIF file contains a netlist representation of the model as depicted in the example of
Figure 6.2. The module then invokes the BLIF parser of VIS which reads the netlist
and constructs a list of functions, each of which represents the transition relation of
a single latch. For each function, we then create its symbolic transition relation as
explained in Section 6.2.3. Finally, the symbolic transition relations are combined into
the partitioned transition relation of the model (see Section 6.2.1 and Section 6.4.1).
We use the proven default heuristics of VIS to determine an efficient partitioning.
The partitioning strategy is described in [RAB+95].

98

7.1 − A Framework for Symbolic Pipeline Analyses

7.1.3. The Program Relation Builder

The inputs for the program relation builder are the model-to-program interface
and the mapping tables computed by the enumerate and map module. The model-
to-program interface specifies which variables of the Verilog model are program
dependent and under which conditions they are updated. The interface description
further specifies how the required input information can be retrieved from attributes
of the supergraph. The program relation builder performs one pass over all in-
structions and contexts and generates transition relations that restrict the next states
depending on the values of relevant instruction attributes. These relations are then
conjoined into the partitioned program relation. The partitioning is controlled by
a fixed BDD size limit. If the current partition exceeds the threshold, it is closed
and further relations are added to the next partition. The program relation builder
also takes care of model specific optimizations that require information about the
analyzed program. For example, for the TriCore 1 pipeline model, the static precom-
putation of pipeline stall conditions is performed by this module. Stall conditions
are computed by a data dependency analysis with restricted scope and encoded as
pipeline model inputs as described in Section 6.4.3.

7.1.4. Iterator, Transfer Function, and Control Flow Handling

The supergraph iterator and the transfer function of the symbolic pipeline analysis
framework have been generated using the PAG program analysis generator with
an empty analysis specification. The generated transfer function was then modified
to implement the algorithms of Figure 6.6 and Figure 6.9. However, the actual
implementation deviates slightly from these rather straightforward definitions. In
particular, it features more sophisticated solutions for dealing with complex control
flow. The algorithms of Figure 6.6 and Figure 6.9 only deal with the basic case of
two outgoing edges of a basic block in cases of a conditional branch (true edge,
false edge). To this end, they create two BDDs for the two possible control flow
successors at the point where the control flow decision is made in the pipeline. The
same solution can also be applied to more complex cases where a block has many
control flow successors, e.g., in cases of computed branches for implementing switch
tables.
The control flow handling is more complicated if the graph contains sequences of
very short basic blocks with several outgoing and incoming edges. It can happen that
all instructions of several subsequent basic blocks enter the pipeline before the last
instruction of the first block retires. We handle these cases using a sufficiently large
look-ahead (determined by the overlap bound of the pipeline model, see Theorem 6.1)
and decomposing the set of pipeline states into many BDDs which flow to the right
successor blocks. The same control flow problem is also encountered in explicit-state
analyzers. They store additional history information in the pipeline state to handle
such cases. Our solution deliberately avoids storing additional information in the
pipeline state in order to keep the pipeline model small.

99

Chapter 7: Practical Evaluation

At call edges we use a simpler solution which filters infeasible incoming states using
carefully designed Boolean expressions. The basic idea is that a function can only be
entered by a pipeline state which has recently processed a call instruction with this
function as its target. This filtering reduces the complexity of the general look-ahead
control flow handler. The Boolean expressions for identifying feasible entry states
are part of the model-to-program interface.

7.1.5. Debugging Interface

The symbolic pipeline analysis framework features a visual debugging interface
to help designers debug their pipeline models. The interface offers two modes of
operation:

1. In fixed point mode, the interface first shows the basic block representation of the
analyzed program. For each basic block, the user selects an analysis context for
which the abstract basic block trace (see Definition 5.11) of the pipeline is then
displayed. This debugging mode is fully integrated with the GUI of the aiT

WCET tool.

2. In iteration mode, one can step through the computations of the fixed point
iteration on the supergraph. In each step, the interface shows the last abstract
trace for each basic block and context. The mappings between the static contexts
at neighboring basic blocks are explicitly displayed. This debugging mode is
only available for developers of pipeline analyses. It is not integrated with the
GUI of the aiT WCET tool.

In both operation modes, the abstract basic block traces are displayed as a trace of
sets of abstract pipeline states as in Figure 6.5. All pipeline states that are reached
in the same cycle are explicitly listed. To this end, the implementation relies on a
VIS function for enumerating the satisfying assignments of the Boolean function that
represents the current set of pipeline states. For each element of this enumeration,
the model variables are listed with their current value. The compressed instruction
and context numbering is translated back into the 32-bit program addresses and the
supergraph context numbers using the computed mapping tables. Since enumerating
the satisfying assignments is expensive for large sets, the explicit enumeration of
pipeline states for debugging is limited to 512 states per cycle.

7.2. Experimental Results

The described framework for symbolic pipeline analyses has been instantiated with a
pipeline model of the Infineon TriCore 1 microprocessor. The choice of this processor
was motivated by the following considerations:

• The pipeline of the Infineon TriCore 1 is sufficiently complex to exhibit timing
anomalies, as illustrated by Figure 7.4. Hence, the pipeline analysis requires

100

7.2 − Experimental Results

Fi
gu

re
7.

2.
:S

cr
ee

ns
ho

t
of

th
e

de
bu

gg
in

g
in

te
rf

ac
e

th
at

is
in

te
gr

at
ed

in
to

th
e

G
U

I
of

th
e
a
i
T

W
C

ET
to

ol
.I

t
sh

ow
s

th
e

fir
st

2
of

11
pi

pe
lin

e
st

at
es

in
th

e
6t

h
ex

ec
ut

io
n

cy
cl

e
of

th
e

ba
si

c
bl

oc
k

at
ad

dr
es

s
0
x
8
0
0
0
0
0
1
0

in
it

s
fir

st
an

al
ys

is
co

nt
ex

t.

101

Chapter 7: Practical Evaluation

an exhaustive state traversal and may therefore run into problems of state
explosion. It is possible to setup experiments where the analysis reaches a
substantial subset of the pipeline’s state space.

• The aiT WCET analyzer already features an explicit-state model of the TriCore 1.
The implementation consists of the pipeline core model and modules that
represent the relevant external hardware of several TriCore 1 variants, e.g., the
TriCore 1766, the TriCore 1796, and the TriCore 1797. This modular design
allows the exclusive analysis of the pipeline core. Thus, we can study the
pipeline analysis alone without having to consider the interaction with caches
and flash buffers.

The following subsections describe the design of the TriCore 1, the characteristics
of its abstract pipeline model, and experiments to compare the performance of a
symbolic versus an explicit-state implementation of pipeline analysis for TriCore 1.

7.2.1. The In�neon TriCore 1

The Infineon TriCore 1 [AG08, Zar01] is a microprocessor architecture for embedded
systems. It is used in real-time systems in the automotive industry, e.g., for engine
control. The design of the processor core is depicted in Figure 7.3. It features two
major pipelines and one minor pipeline:

The integer pipeline (INT) handles data arithmetic and conditional jumps. The
pipeline features a decode, execute, and writeback stage. Multiply-accumulate
instructions are handled by a dedicated execution path with two stages.

The load/store pipeline (LS) handles loads/stores, address arithmetic, uncondi-
tional jumps and calls. It features a decode, execute, and writeback stage.
Zero-overhead loop instructions are passed from the decode unit into the
dedicated loop pipeline.

The loop pipeline (L) is reserved for zero-overhead loop instructions. The pipeline
has no decode stage but receives the address and target of a zero-overhead loop
from the decode stage of the LS pipeline. This information is stored in the loop
cache buffer until the execution of the loop has finished or the information is
replaced by another zero-overhead loop.

All pipelines share a common fetch unit which reduces instruction fetch latencies
using a 16 byte prefetch buffer. TriCore instructions can be either 2 or 4 bytes wide.
Hence, the prefetch buffer can hold up to 8 instructions. The Infineon TriCore can
issue one instruction per cycle into each of the major pipelines. Hence, at most
two instructions per cycle can be issued. The processor thereby proceeds in strict
program order and uses a set of static rules to decide whether two instructions can be
issued in parallel. Based on these rules, compilers may optimize execution speed by
computing an instruction schedule that provides a high throughput. For improved
performance, the TriCore 1 architecture also features static branch prediction.

102

7.2 − Experimental Results

INT
Decode

INT
Decode

L/S
Decode

L/S
Decode

MAC
Execute 1

MAC
Execute 1

MAC
Execute 2

MAC
Execute 2

L/S
Execute

L/S
Execute

INT
Execute

INT
Execute

Loop
Buffer

Loop
Buffer

Loop
Execute

Loop
Execute Write-backWrite-back

Write-backWrite-back

Write-backWrite-back

Fetch

INT Pipeline

L/S Pipeline

Loop Pipeline

Figure 7.3.: Structure of the TriCore 1 pipeline as given in [Zar01].

7.2.2. A Timing Anomaly Example

The TriCore 1 has been designed with predictability in mind. However, Figure 7.4
shows that already the presence of the prefetch buffer suffices to introduce a timing
anomaly if the latency of an instruction fetch is not precisely known at analysis time.
The figure shows two cases of instructions flowing through the prefetch buffer into
the two parallel pipelines LS and INT. In cycle 0 the first four instructions have just
been fetched. While the next instruction fetch of E and F is running, the processing
of instruction A stalls in the decode stage because the INT pipeline is still occupied,
e.g., by a long running division operation. Several implementations of the TriCore 1
feature additional flash memory. Depending on the chosen implementation and its
configuration an instruction fetch can have a basic latency of four cycles. If the state
of the flash memory is not precisely known at the time of an instruction fetch, the
pipeline analysis must consider a possible additional delay of one cycle. Figure 7.4
shows the two cases. The upper part depicts the local worst-case, i.e., the state of the
flash adds a delay of one cycle to the basic latency of four cycles. The instructions B
and C proceed into the pipeline just before the fetched instructions E and F arrive.
Both instructions can be stored in the prefetch buffer and issued in parallel in cycle 7.
The whole sequence has been issued into the pipelines after 8 cycles.

103

Chapter 7: Practical Evaluation

CA

D

C

B

C

E

4 cycles memory latency + 1 cycle delay
(local worst-case)

DB FE

Example code sequence: LS type instruction

INT type instruction

A

D

C

B

A

D

C

B

A

D

C

B

A

F

E

B

D

D

D

C

B

A EF

F

D

C

B

C

E

4 cycles memory latency
(local best-case)

cycles

0 1 2 3 4 5 6 7

A

D

C

B

A

D

C

B

A

D

C

B

A

E

B

D

D

D

C

B

A E

E

F

4 cycles memory latency

8 9

fetch E+F

fetch E+F re-fetch F

X X X X X A

A

C

C B

B D EF

EX X X X X

fetch buffer

INT
pipeline

LS
pipeline

progress of A is blocked by stall

F does not fit into
the fetch buffer

in
stru

ctio
n

 flo
w

in
stru

ctio
n

 flo
w

cycles

0 1 2 3 4 5 6 7 8 9

F enters and leaves the LS
pipeline 1 cycle later

Figure 7.4.: Timing anomaly example for TriCore 1. The figure shows the evolution
of the fetch buffer and the first two stages of the LS and INT pipelines
in a situation were the memory access latency may differ by one cycle
depending on the state of a flash memory controller. All instructions of
the example code sequence are 4 bytes wide.

104

7.2 − Experimental Results

In the local best-case situation depicted in the lower part of the figure, the running
instruction fetch returns already after four cycles. At that time instructions B and
C have not yet proceeded into the pipelines. Therefore only instruction E can be
filled into the prefetch buffer; instruction F must be fetched again. Because of the
basic delay of four cycles per instruction fetch, instruction F only arrives in cycle 9.
Hence it takes 9 cycles until the whole sequence has been issued into the pipelines.
If all instructions in the sequence flow smoothly through the pipelines, the overall
execution time of both cases also differs by one cycle. Hence, the flash memory state
that causes a delay of one cycle leads to a lower execution time on the whole code
sequence.

7.2.3. TriCore 1 Pipeline Models

A commercial TriCore 1 model including all relevant peripheral hardware such
as buses, flash modules, buffers and caches is available in aiT. Its representation
requires 500 bytes per abstract pipeline state plus 196 bytes for the state of the
peripheral components (not counting the dynamically sized abstract cache). Note
that explicit-state pipeline models represent instructions and contexts as pairs of 32
bit pointers/integers. The space required to store these pairs dominates the size of
abstract pipeline states.1 Analysis of the TriCore 1 model exhibits two sources of
non-determinism:

1. imprecise information about data memory accesses (intervals instead of precise
addresses).

2. imprecise information about the state of peripheral components that influence
the timing of data memory accesses and instruction fetches.

A single unclassified memory access in this model causes the analysis to explore up
to 64 next states per present state. A series of unclassified memory accesses may
quickly multiply this number. Imprecise information about the state of caches, flash
modules and buffers may introduce further non-determinism.
Our symbolic TriCore 1 model has been modeled after the existing explicit-state
model. It conservatively approximates the timing of the pipeline core. The explicit-
state model has been validated by comparison with hardware traces of programs
running from the on-chip scratch pad memory. The symbolic implementation has
been validated by comparison with analysis traces of the explicit-state analysis. Using
the presented compression techniques, we arrive at a very compact symbolic repre-
sentation. Its size ranges from 163 to 333 state bits, depending on the configuration
and on the analyzed program.

1The memory requirements of the commercial model could be reduced without using BDDs.
However, this would increase computation time which is the main bottleneck for explicit-state
pipeline analyses.

105

Chapter 7: Practical Evaluation

7.2.4. Performance Comparison

Without caches and flash buffers, the symbolic pipeline model for TriCore 1 is
deterministic since the processor core can be modeled accurately. To study the effects
of state explosion, we introduce non-determinism by intentionally losing precision
on the latencies of instruction fetches. This forces the analysis to explore the different
possible prefetch buffer states and interleavings of instructions in the pipeline. The
resulting behavior of the analysis corresponds closely to the behavior of the full
model, including caches and flash buffers, in cases of unknown data memory accesses
or cache misses. The commercial TriCore 1 model has been modified accordingly, i.e.
the behavior of both models is identical. This setup allows us to study state explosion
of pipeline states in isolation, without dealing with the additional complexity of
cache and bus models. Further, it gives us control over the number of states that
are explored by the analysis. We use it to investigate how both implementations
scale up in cases of state explosion. We compare the performance of the explicit-
and symbolic-state implementations of the TriCore 1 pipeline core by analyzing the
following programs:

Dhry 2.1 is the Dhrystone [Wei88] integer CPU performance benchmark.

EDN is a benchmarks suite which comprises several DSP algorithms [EDN88] like
filters, matrix multiplication and FFT.

EC is a closed source industrial automotive software for engine control, one of the
main application areas for TriCore 1 CPUs. We analyze its 3 major periodic
tasks which we call task A, B, and C, respectively.

Table 7.1 lists size information for all of the described programs. The second column
gives the number of instructions in all analysis contexts, i.e. after virtual inlining
and loop unrolling and after eliminating infeasible paths. The EDN benchmark
is analyzed with full virtual inlining and unrolling, hence the large number of
instructions. The third column lists the number of bits that are required for the
global enumeration of all instructions including padding addresses. The last column
gives the same information for the optimized implementation of Section 6.4.4. It
determines the number of state variables that are required for implementing a single
instruction reference in the pipeline model.
Table 7.1 shows that the program decomposition significantly reduces the number of
required state variables. For example, in the case of the EDN benchmark we save 9
variables per instruction reference; for the whole TriCore 1 model this optimization
saves 135 variables. For other programs, the savings are less significant, e.g., for the
analysis of EC task C the decomposition saves only 3 state variables per instruction
reference. As expected, the savings are mostly proportional to the size of the analyzed
program. However, the comparison of the numbers for Dhry 2.1 with EC task A
show that other contributing factors exist2 but are much less significant.

2The control structure of the software also influences the decomposition. In particular computed
branches with many successor blocks lead to larger enumeration windows.

106

7.2 − Experimental Results

name # instructions # bits global # bits local

Dhry 2.1 3361 12 7
EDN 69462 17 8
EC task A 3214 12 8
EC task B 28606 15 9
EC task C 1035 11 8

Table 7.1.: Program sizes.

Con�gurations and Setup

We compare the analysis run-times for different implementations of the pipeline
analysis for TriCore 1. The numbers are obtained from executions on an Intel Core 2
Duo processor running at a clock rate of 2.66 GHz. The computer is equipped with 8
GBytes of RAM. The compared implementations are:

explicit is the commercial explicit-state implementation [Abs00].

symbolic is the basic symbolic implementation (Chapter 6) which relies on a global
enumeration of the instructions and uses the initial static variable order of VIS
[BHSV+96].

symbolic dyn is the same basic symbolic implementation but with automatic dy-
namic variable reordering by converging window permutation [FMK91, ISY91].

symbolic+ is the optimized symbolic implementation that decomposes the program
(Section 6.4.4) and operates on a smaller, local enumeration of only relevant
instructions; this implementation also uses the initial static variable order of
VIS.

symbolic+ dyn is the same optimized symbolic implementation but with automatic
dynamic variable reordering by converging window permutation.

All programs – the two benchmarks and the three tasks of the application – are
analyzed with an increasing number of possible instruction fetch latencies starting
from 7 and ranging up to 127. Thus, each instruction fetch multiplies the number of
states by 7, 15, 31, 63, or 127, respectively. This setup leads to the following effects in
the pipeline analysis:

1. For each instruction fetch, the analysis must consider between 7 and 127
possible successor states which initially only differ in the fetch latency. During
the evolution of the pipeline this initial difference in latency leads to different
interleavings of the instructions in the pipeline. The average3 number of

3The precise number of states depends on the behavior of the pipeline and on the control structure
of the program.

107

Chapter 7: Practical Evaluation

concurrently analyzed states grows exponentially from the first to the last
experiment.

2. The summarized maximum latencies on every path through the program grow
approximately4 by a factor of 2 between two successive experiments.

Both effects increase the complexity of the analysis. The increase in the number of
states means that the analysis must handle more states per cycle update. The increase
in latency means that the analysis must compute more cycle updates. Introducing
non-determinism through imprecise information about the instruction fetch latency
rather than the latency of data memory accesses ensures that we get a more uniform
increase in the number of states because instruction fetches are frequent and evenly
distributed.
The reported analysis times are given in seconds (except if indicated otherwise)
and include all setup costs, e.g., for the static precomputation of control decisions
(both explicit-state and symbolic methods), the enumeration of instructions on the
supergraph (symbolic methods), and the construction of the transition relations
(symbolic methods). The explicit-state analysis has the least setup costs whereas
the optimized symbolic analysis with decomposition has the highest setup costs.
The costs for the dynamic reordering of BDD variables during the analysis are also
included in the reported analysis times.

Analysis of Benchmarks

For the analysis of the Dhrystone benchmark we set a time limit of 5 hours. The
explicit-state implementation completes the initial analysis, which covers 7 possible
instruction fetch latencies, in only 3 seconds. Obviously, the legacy method for
pipeline analysis is very fast and efficient when considering small sets of pipeline
states. Also, its setup costs are negligible. All 4 configurations of the symbolic
implementation also complete the analysis within the time limit. However, with
total execution times between 4 and 13 minutes, none of them comes close to the
performance of the legacy method. Even for this rather small analysis the program
decomposition already significantly improves the performance despite the higher
setup costs. The same holds for the dynamic variable reordering. The best performing
symbolic implementation combines both optimizations. As the subsequent analyses
increase the average number of concurrently considered pipeline states, the resulting
exponential growth in complexity becomes visible in the execution times of the
explicit-state analysis. In contrast, the symbolic implementations only show a linear
increase in execution time by a factor of 2, which correlates with the growing number
of cycle updates. All symbolic implementations reach the break-even point with the
explicit-state analysis “between” the two last analyses (split 63 and split 127) and
outperform the legacy method in the last analysis. Figure 7.5 visualizes the results in
a chart that compares the performance of the explicit-state implementation with the
simplest and the most optimized symbolic implementation.

4The actual factor is slightly below 2 because the pipelining hides some fetch cycles.

108

7.2 − Experimental Results

config split 7 split 15 split 31 split 63 split 127

explicit 3 19 160 1286 9524
symbolic 815 1379 2609 5373 7748
symbolic dyn 329 580 774 2256 4090
symbolic+ 455 796 1466 2869 4632
symbolic+ dyn 256 522 926 1849 2788

Table 7.2.: Dhrystone 2.1 benchmark. Times are given in seconds.

The EDN benchmark is a much larger program, at least from the perspective of
pipeline analysis; its size is mostly the result of a large number of analysis contexts
which multiply the number of actual instructions. The contexts are created by fully
unrolling all loops and recursions. Because of the larger program size, we increase
the time limit to 48 hours. While the explicit-state method is again very fast in
the first analysis (75 seconds), only the most optimized symbolic implementation
(with program decomposition and dynamic variable reordering) finishes within the
time limit (after 36 minutes). All other implementations succumb to the increased
complexity of operations with larger BDDs caused either by a large number of
required state variables or an inapt variable ordering. The break-even point with
the explicit-state analysis is already crossed in the second to last analysis (split 63).
Again, the explicit-state analysis shows an exponential increase in computation time
when scaling up the number of states. For the last analysis it even exceeds the
ample time limit. The optimized symbolic implementation shows the expected linear
growth. Even for the last analysis it finishes in about 5.5 hours.

config split 7 split 15 split 31 split 63 split 127

explicit 75 480 3666 40266 > 48 h
symbolic+ dyn 2169 4033 7965 15245 19561

Table 7.3.: EDN benchmark. Times are given in seconds except if indicated otherwise.

Analysis of Engine Control Tasks

In terms of program size, task A of the engine control software is comparable to the
Dhrystone benchmark. The generally higher analysis run-times, which are displayed
in Table 7.4, are due to the more complex control structure of the code. The analysis
requires more loop iterations until the computation converges to a fixed point. Apart
from the generally higher analysis times, the obtained results are very similar to
those of the Dhrystone benchmark. All symbolic implementations scale much better
with the increasing number of pipeline states. However, for the last analysis (split

109

Chapter 7: Practical Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

7 15 31 63 127

explicit

symbolic+ dyn

symbolic

Dhrystone
Benchmark

Figure 7.5.: Performance comparison chart of the Dhrystone benchmark.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

7 15 31 63 127

explicit

symbolic+ dyn

EDN
Benchmark

Figure 7.6.: Performance comparison chart of the EDN benchmark.

110

7.2 − Experimental Results

127) only the symbolic implementations that use program decomposition stay within
the 5 hours time limit.

config split 7 split 15 split 31 split 63 split 127

explicit 7 56 432 3450 > 5 h
symbolic 2352 4706 9425 > 5 h > 5 h
symbolic dyn 1131 1879 2368 4502 > 5 h
symbolic+ 1296 2480 4879 9748 16069
symbolic+ dyn 675 1174 2851 3848 5905

Table 7.4.: Engine Control Task A. Times are given in seconds except if indicated
otherwise.

Task B of the engine control software is not as big as the EDN benchmark but it
is significantly larger than the remaining programs. Its size can only be handled
by the explicit-state and the most optimized symbolic implementation. Although
the symbolic implementation outperforms the explicit-state implementation in the
last analysis, its general performance is worse than for the larger EDN benchmark.
The reason for this seemingly surprising result is that the program decomposition
optimization is less effective for task B than for EDN. The bits local column of Table 7.1
shows that the analysis of EDN needs to enumerate at most 28 instructions per basic
block whereas the analysis of task B needs to enumerate up to 29 instructions per
basic block. This requires more state variables and leads to a worse performance.

config split 7 split 15 split 31 split 63 split 127

explicit 64 459 3336 26090 > 48 h
symbolic+ dyn 9529 14947 28141 56122 101658

Table 7.5.: Engine Control Task B. Times are given in seconds except if indicated
otherwise.

The last of the engine control tasks – task C – is the smallest of the analyzed programs.
All implementations finish comfortably within the 5 hours time limit, even for the
last configuration (split 127). Again, the best symbolic implementation outperforms
the explicit-state implementation in the second to last run. What is interesting about
this last experiment is that here the program decomposition does not improve the
performance of the analysis. It appears that the additional costs for the translation
between the basic blocks (see Section 6.4.4) outweigh the saving of 3 state variables
per instruction reference (see Table 7.1).

111

Chapter 7: Practical Evaluation

0

5000

10000

15000

20000

25000

7 15 31 63 127

explicit

symbolic+ dyn

symbolic

Engine Control
Task A

Figure 7.7.: Performance comparison chart of engine control task A.

Engine Control
Task B

0

20000

40000

60000

80000

100000

120000

140000

7 15 31 63 127

explicit

symbolic+ dyn

Figure 7.8.: Performance comparison chart of engine control task B.

112

7.2 − Experimental Results

config split 7 split 15 split 31 split 63 split 127

explicit 1 9 72 549 4198
symbolic 230 383 685 1564 2034
symbolic dyn 146 179 277 374 692
symbolic+ 328 515 1155 2367 3967
symbolic+ dyn 227 506 649 1205 1860

Table 7.6.: Engine Control Task C. Times are given in seconds.

Interpretation of the Results

All experiments show that the symbolic approach for pipeline analysis is indeed
less sensitive to the state explosion problem in WCET analysis than the explicit-
state approach. If the number of concurrently considered pipeline states grows
large enough, the symbolic approach always outperforms the legacy explicit-state
implementation. The obtained numbers confirm our expectations. Let us briefly
reflect on the relevance of these results with respect to real-life WCET analyses. State
explosion problems in WCET analysis are typically associated with unclassified
memory accesses. As stated in Section 5.3.3, the commercial TriCore 1 model
performs at most 64 state splits5 per unclassified memory access. The break-even point
between the best symbolic and the explicit-state implementation in our experiments
is around these 64 splits. This indicates that the symbolic method can lead to a
better performance in practically relevant scenarios. On the downside the results
also show clearly that the basic costs for computing a single cycle update with
BDD operations are much higher than the execution of the explicit-state transition
function. In particular for small sets of pipeline states, the legacy implementation
is always significantly faster. Although it may be possible to reduce the basic
costs by additional optimizations, it is unlikely that one can beat the explicit-state
implementation on analyses where no state explosion problems occur.
The third observation concerns the program decomposition. Without this optimiza-
tion none of the two larger programs (EDN and Engine Control Task B) can be
analyzed within the time limit. The problem is independent of the number of
considered pipeline states. It is caused by the size and complexity of the symbolic
transition relations. Enumerating all instructions multiplied with their analysis
contexts is infeasible but for the smallest programs. The results show that program
decomposition is crucial for the symbolic approach to scale to serious programs.
Finally, the classic problem of BDD variable ordering is also evident in pipeline
analysis. The default variable order chosen by VIS is often not good enough for our
application. However, the results with dynamic variable ordering are very encourag-

5The notion of state split refers to the implementation of the transition function of explicit-state
analyzers. In case of a non-deterministic transition the analyzer splits each incoming pipeline state
into several outgoing states.

113

Chapter 7: Practical Evaluation

Engine Control
Task C

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7 15 31 63 127

explicit

symbolic+ dyn

symbolic

Figure 7.9.: Performance comparison chart of engine control task C.

ing. The employed reordering method of window permutation [FMK91, ISY91] was
chosen for its speed and consistently good results. However, VIS implements a large
number of reordering algorithms that we did not explore exhaustively. It is likely
that other advanced reordering algorithms such as sifting [Rud93] will yield similar
results. During a single analysis run the dynamic reordering is invoked between
5 and 30 times. All reordering operations are triggered automatically by the BDD
library. Hence, the user of a WCET tool that uses our symbolic method for pipeline
analysis need not bother about optimizing the variable order.

Memory Consumption, WCET Bounds, and BDD Sizes

The presented results cover neither the memory consumption of the analysis nor the
computed WCET bounds. Information about the WCET has been omitted because
it is irrelevant for our purpose. The compared implementations are semantically
equivalent, i.e., they agree with respect to the computed WCET bounds. Further, the
global WCET bound of a task depends not only on the pipeline analysis but on the
interplay of all phases of the aiT toolchain. Their precision can only be judged by
intimate knowledge of the analyzed software. We lack this knowledge for the engine
control application. Information about the precision of aiT’s WCET bounds for a
processor with caches and complex pipelines has been published in [SLH+05].
With respect to the memory consumption, the compared implementations differ
significantly. However, our experience with using WCET tools in an industrial context

114

7.2 − Experimental Results

symbolic symbolic dyn symbolic+ symbolic+ dyn

0

500

1000

1500

2000

2500
2109

1806

1417

1120

Figure 7.10.: Average BDD sizes for Dhrystone with 7 splits per fetch.

indicates that pipeline analysis is much more limited by computation time than by
memory constraints. This is confirmed by our experiments. During the experiments
none of the analyses reached the 8 GByte limit of the test computer. The observed
memory consumption of the explicit-state implementation was always below 4 GByte.
For the symbolic implementation we never observed a physical memory consumption
of more than 1 GByte. Modern desktop computers are routinely equipped with at
least 4 GByte of RAM, hence memory consumption is not an issue on a modern
computer.

A final remark about memory consumption: the memory requirement of an explicit-
state analysis is linear in the number of concurrently considered pipeline states.
Therefore, one might expect the analysis to run out of memory in cases of state
explosion. There are two reasons why this usually does not happen. The first reason
is that the computation time is subject to the same linear growth and may become
unacceptable before the analysis runs out of memory. The second reason, which is
probably more important, is related to the way in which abstract execution traces are
computed by explicit-state pipeline analyzers. They traverse the reachable state space
of the pipeline model in depth-first order (see Figure 5.6) and thereby avoid handling
large sets of pipeline states. While this approach limits the memory consumption to
an acceptable level, it has no effect on the computation time which therefore remains
the bottleneck in cases of state explosion.

We conclude this performance comparison by comparing the sizes of the BDDs for
representing sets of states in order to illustrate the required computational effort. To

115

Chapter 7: Practical Evaluation

symbolic symbolic dyn symbolic+ symbolic+ dyn

0

5000

10000

15000

20000

25000

17048

22651

12317

9043

Figure 7.11.: Maximum BDD sizes for Dhrystone with 7 splits per fetch.

this end, Figure 7.10 shows the average number of BDD nodes for the Dhrystone
benchmark in the configuration with 7 state splits per cycle. Again, the numbers
underline the effectiveness of our optimizations. However, a comparison with the
performance results of Table 7.2 also reveals that the cost for the symbolic translation
of sets between basic blocks is significant. Otherwise, the symbolic+ implementation
should have outperformed the plain symbolic implementation because of the smaller
BDDs. Moreover, it is apparent that even a small reduction of BDD sizes can lead to
a significant gain in performance.
The maximum BDD sizes are given in Figure 7.11. Most of the numbers meet our
expectations but the result for the basic symbolic implementation with dynamic
reordering is much higher than expected. This illustrates the heuristic nature of
dynamic reordering which can explore permutations in the variable order that locally
reduce the BDD size but may lead to a blowup at a later point of the analysis.

7.2.5. Typical Cache Access Patterns

The semi-symbolic domain for interfacing abstract caches (see Section 6.5) has not
been implemented, yet. Anyway, this domain cannot be reliably evaluated with
the deterministic TriCore 1 pipeline model of Section 7.2.3. In Section 7.2.4 we
modified that model to lose precision on the latencies of memory accesses in order
to force the coverage of a larger state space. This setup is not fit for evaluating the
integration with the abstract cache analysis since it leads to a misrepresentation of the

116

7.2 − Experimental Results

distribution of cache accesses. To obtain meaningful results we use the commercial,
explicit-state pipeline model of the Motorola/Freescale PowerPC 755 [The04, Abs00]
instead. This processor is equipped with separate data and instruction caches.
However, the processor’s bus unit – which is part of the abstract pipeline model –
can only issue a single memory access (either an instruction fetch or a data memory
access) per cycle. It can therefore be analyzed by the domain of Section 6.5 which
requires a special treatment of pipeline state variables that encode memory accesses.
Analyses with the pipeline model of the PowerPC 755 routinely reach numbers of
states that are large enough to asses the efficiency of the semi-symbolic domain of
Section 6.5.

Evaluation of Avionics Tasks

We evaluate 6 tasks of a commercial, safety-critical real-time software of the avionics
domain.6 The tasks have been fully unrolled and annotated to avoid serious state
explosion. The employed annotations specify ranges for register contents at selected
program points to improve the precision of the value analysis and thereby reduce the
reachable state space of the pipeline model. Note that full unrolling is not feasible
for all software but required to obtain results with explicit-state implementations
of very complex pipeline models. Otherwise, the analysis would not terminate in
acceptable time because of state explosion. Even with unrolling and annotations the
analysis often reaches up to several thousand pipeline states per cycle.
To evaluate the efficiency of the semi-symbolic domain we analyze the 6 tasks with
an instrumented pipeline model of the PowerPC 755. The instrumentation code
prints the following information for each access into a cached memory area:

1. Type of access, i.e., instruction or data.

2. Address and context of the currently analyzed basic block.

3. Cycle count since start of current basic block.

4. Accessed address or address range.

The raw instrumentation data is post-processed to obtain estimates of the expected
number of partitions – the number of tuples of pipeline BDD and abstract cache state
– and the expected sharing, i.e., the number of pipeline states that are encoded in the
pipeline BDD of a single partition. To this end, we collect all accesses with equal
access type, basic block address, analysis context, and cycle count. Symbolic pipeline
analysis explores the model’s state space cycle-wise in breadth-first order. Hence, all
accesses in the same set are issued from pipeline states in the same exploration layer.
We partition the sets depending on the accessed addresses to obtain the number
of different memory accesses from the same layer. The results are listed in the
following tables. For each task (numbered t1, . . . , t6) the first row gives the results

6Closed source and confidential.

117

Chapter 7: Practical Evaluation

for instruction cache accesses, whereas the second row reports the same information
for data cache accesses.

t1 t2 t3 t4 t5 t6

I-Cache 2.19 1.51 1.94 2.03 2.13 1.52
D-Cache 1.38 1.11 1.29 1.35 1.35 1.02

Table 7.7.: Average number of partitions per cycle.

t1 t2 t3 t4 t5 t6

I-Cache 17.24 35.35 25.49 25.61 35.63 19.96
D-Cache 10.82 28.07 20.76 25.94 25.61 7.87

Table 7.8.: Average number of pipeline states per partition.

The first table – Table 7.7 – shows the average number of partitions per cycle. It
corresponds directly to the expected average number of partitions of an element of
the semi-symbolic domain Dh. The average number of partitions over all analyzed
tasks is roughly 2. Table 7.8 shows the average sharing, i.e., the number of pipeline
states that can be represented by the BDD of a single partition because the states
access the same cached memory address. The average sharing over all 6 tasks is
roughly 22. By multiplication with the number of partitions we obtain an estimate of
the average number of pipeline states per cycle; it ranges between 14 and 70 states
with an average of 44.

t1 t2 t3 t4 t5 t6

I-Cache 42 7 42 42 42 10
D-Cache 6 2 6 6 6 2

Table 7.9.: Maximum number of partitions per cycle.

More interesting than the average numbers are the maximum numbers of partitions
and pipeline states per cycle. The maximum number of partitions per task is shown
in Table 7.9. It bounds the number of cache states that are enumerated by the
semi-symbolic domain Dh. We see that the number of partitions stays fairly small.
We need at most 42 partitions for disambiguating instruction cache accesses and 6
partitions for disambiguating data cache accesses. In contrast to the small number of
partitions, the maximum number of pipeline states per cycle can be quite large as
shown by the results in Table 7.10. More than 8000 pipeline states can be represented
by the BDD of a single partition.

118

7.2 − Experimental Results

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

states (IC access)

partitions (IC access)

states (DC access)

partitions (DC access)

Figure 7.12.: Relation between the average numbers of pipeline states and parti-
tions.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6

states (IC access)

partitions (IC access)

states (DC access)

partitions (DC access)

Figure 7.13.: Relation between the maximal numbers of pipeline states and parti-
tions.

119

Chapter 7: Practical Evaluation

t1 t2 t3 t4 t5 t6

I-Cache 4927 1311 8519 8190 8544 1091
D-Cache 1947 720 7140 7783 8115 268

Table 7.10.: Maximum number of pipeline states per partition.

Interpretation of the Results

The semi-symbolic domain Dh of Section 6.5 operates on tuples of pipeline BDDs
and abstract cache states. These tuples are called partitions. The domain is most
efficient if the number of partitions is small. It may outperform a purely explicit-state
approach if a large number of pipeline states can be encoded in the BDD of a single
partition. The results of the experiments indicate that the number of partitions can
indeed be expected to stay small. At the same time, the number of pipeline states in
a single partitions can be quite large.

The relation between the average and maximum numbers of pipeline states and
partitions is also displayed in Figure 7.12 and Figure 7.13, respectively. A large
distance between two corresponding points (related either to instruction cache (IC)
accesses or data cache (DC) accesses) indicates a favorable relation. Besides showing
that this relation is indeed often favorable, the charts also evidence that the behavior
for instruction cache and data cache accesses is usually quite similar. To conclude,
one can say that the typical pipeline-cache relation ranges between 1 : 1 and 8544 : 1,
with an average of 22 : 1. These numbers hold under the assumption that the
analysis maintains maximum cache precision. The domain allows higher numbers of
pipeline states per partition if caches are joined more aggressively. Larger numbers
of pipeline states per partition can also be expected when the analysis encounters
cases of imprecise information, e.g., about memory accesses.

7.3. Lessons Learned from Implementation

During the implementation of the prototype and by running the analyzer we learned
that using symbolic methods for pipeline analysis not only improves the performance
of the analysis in cases of state explosion. It also brings about further implications that
are of practical relevance for developers of static WCET analyzers. These implications
concern the required effort for specifying the non-determinism in abstract pipelines,
the debugging of pipeline models, and the interfacing with an alternative path
analysis which operates on so-called pipeline state graphs. This section presents our
experience with these implications and gives an assessment of their impact on the
application of the method in practice.

120

7.3 − Lessons Learned from Implementation

7.3.1. Dealing with the Non-Determinism

A significant advantage of using a symbolic image computation engine for the state
traversal is the fact that it frees the designer of the abstract model from considerations
about how to handle the non-determinism of the abstract pipeline. Explicit-state
pipeline models are specified in terms of a non-deterministic transition function. The
function is invoked for each state in the current set and each invocation produces one
or several outgoing states. During the implementation of this function, the designer
must decide where he wants to split the incoming state in cases of imprecise inputs,
thereby producing several outgoing states. Since there may be several sources of
non-determinism that have to be considered for a single transition, the state splitting
becomes complex and error prone. In contrast, abstract pipeline models for the
symbolic pipeline domain of Chapter 6 are specified as deterministic FSMs. The
non-determinism of the corresponding abstract pipeline is expressed via additional
inputs. In cases of imprecise information, all reachable successor states are considered
automatically by the image computation in the algorithm of Figure 6.4.
We already pointed out in Section 6.6 that a transfer function for explicit-state pipeline
analyses could in principle also be generated from a formal specification. While such
work is already under way [SP10] the presented symbolic implementation still has
the advantage of relying on established, mature tools and a huge body of research in
the areas of hardware design and hardware verification. Our experience with the
implementation of the TriCore 1 model (see Section 7.2.1) shows that these tools are
easy to use and that the specification of a model is quite compact and readable (see
Appendix A.1 for an example) which eases both design and maintenance.

7.3.2. Debugging and Pipeline State Graphs

Explicit-state pipeline analyses in the aiT tool provide a visualization that shows
the evolution of the pipeline states in the analysis of a certain basic block in a
certain context. A pair of predecessor and successor states in two subsequent sets
is explicitly connected by an edge. This visualization makes it easy to understand
the taken transitions and the edge information comes for free with explicit state
traversal. In contrast, the symbolic pipeline domain of Chapter 6 does not enumerate
the relations between two subsequent sets of pipeline states. The relations are given
implicitly by the combined symbolic transition relation of the pipeline model and the
program. Hence, producing a similar visualization is not possible, at least not in an
efficient way. As a consequence, debugging pipeline models – in particular during
the development of a pipeline model – can become harder compared to explicit-state
pipeline domains.
We found that this issue is indeed relevant in practice. Certain bugs in the design of
a pipeline model can lead to unexpected state explosion. Without a visualization of
the predecessor-successor relationship, these bugs become very hard to fix because it
is much more difficult to identify the original state that causes the unexpected state
explosion.

121

Chapter 7: Practical Evaluation

The problem of debugging the state traversal is not only related to the missing
visualization of explicit predecessor-successor edges. Debugging a symbolic pipeline
analyzer is always difficult if a problem appears in a transition that involves a large
number of states. We found that it is infeasible to compute an explicit visualization
of symbolic pipeline state sets that are larger than about 1000 states. The equivalent
BDD representation can be stored efficiently as a graph, but computing an acceptable
graph layout is very expensive and the BDD is usually incomprehensible. However,
the use of a formal specification of the model and the fully automatic state splitting
(see Section 7.3.1) rather decreases the initial number of bugs in the model. Also,
certain properties of the model specification could be checked automatically by a
model checker (the VIS model checker, in our case) to further eradicate bugs from
the model.
Finally, let us get back to the explicit successor-predecessor relation that is computed
by explicit-state pipeline analyses. This information can also be used to generate
so-called pipeline state graphs. Based on these graphs one can compute tighter WCET
bounds by finding the worst-case path directly as a sequence of pipeline states [Ste10].
This method avoids the loss of precision that is caused by considering infeasible
combinations of abstract basic block executions when computing the worst-case
path only on the basic block graph. Of course, symbolic pipeline analyzers cannot
efficiently generate pipeline state graphs because they do not explicitly enumerate
the state transitions. However, this inability should not be overrated. Worst-case
path analysis on pipeline state graphs works only on well-behaved programs. These
programs are not the primary target for symbolic pipeline analysis because their
WCET analysis usually does not suffer from state explosions. Finally, in the presence
of serious state explosions explicit-state pipeline analyzers cannot generate the
pipeline state graph either.

7.4. Summary

The symbolic algorithms for pipeline analysis that have been presented in Chapter 6
have been implemented in the aiT WCET tool. They are instantiated by a Verilog
model of an abstract pipeline and a set of functions that describe how program
information from the supergraph restricts the feasible transitions of the model. A first
model has been implemented for the Infineon TriCore 1 processor core. Experiments
with this model show that the implicit handling of sets of pipeline states alleviates the
state explosion problem in WCET analysis. In cases of state explosion, the symbolic
implementation easily outperforms the legacy explicit-state implementation. The
experiments also show that the program decomposition optimization is indispensable
for analyzing serious programs. The symbolic analysis is fully automatic. The
problem of optimizing the variable order to reduce BDD sizes can be handled by
existing dynamic variable ordering heuristics.
The integration with an abstract cache analysis has not been implemented. The
performance of the semi-symbolic domain of Section 6.5 was assessed using an

122

7.4 − Summary

instrumented explicit-state pipeline model of the PowerPC 755 instead. Data obtained
from analyses with the instrumented model show that the semi-symbolic domain
typically only enumerates very few cache states. At the same time, the number of
pipeline states that can be handled implicitly in the same BDD can be quite large. It
is likely that in cases of state explosion this domain will enable a similar performance
improvement as the purely symbolic pipeline analysis without caches.

123

CHAPTER 8

Conclusion

Safe and precise WCET analysis must consider the variations in computation time
that are caused by hardware features like pipelines and caches. Caches allow for
abstract representations that over-approximate (potentially large) sets of concrete
cache states and can be handled efficiently by static analyses. Similarly efficient
abstract representations for pipelines are not known. Abstract pipeline semantics
is commonly computed by large, non-deterministic FSMs and a substantial part of
their state space must be covered by static WCET analysis. Because of the existence
of timing anomalies and domino effects it is unsafe to simplify the state traversal
by making local assumptions about the worst-case. Covering all reachable pipeline
states often leads to the so-called state explosion problem in WCET analysis; the
number of pipeline states that have to be considered for the same execution cycle
grows too large. In such cases explicitly enumerating all states, which is required
by state-of-the-art implementations, becomes infeasible due to memory and – more
importantly – computation time limits.

Similar scalability problems are well-known from the area of hardware model check-
ing. Symbolic methods based on BDDs have improved the applicability of model
checking because they admit both an implicit encoding of the transition system and
of analysis information, like sets of states in state traversal, and thereby avoid the
explicit enumeration of these sets. This success story sparked our interest in using
symbolic methods for WCET analysis. In the preceding chapters we described the
integration of a symbolic state traversal engine into a static WCET analysis tool and
detailed the arising problems and the solutions that we have found. This last chapter
summarizes the results and contributions of our research and presents an outlook of
industrial applications and directions for future research.

125

Chapter 8: Conclusion

8.1. Results and Contribution

We present a novel symbolic approach for computing the abstract semantics of
pipelines for WCET analysis. The approach admits an implicit representation of sets
of pipeline states and avoids the – sometimes infeasible – enumeration of pipeline
states. Thus, it can improve the performance of static WCET analysis in cases of state
explosion without compromising the soundness of the method. The approach has
been implemented in the aiT WCET tool using the pipeline model of the Infineon
TriCore 1, a real-life processor that is commonly used for safety-critical automotive
applications. The implementation has been evaluated on benchmarks and an engine
control application from the automotive domain. The obtained results confirm that
the use of symbolic methods for pipeline analysis can alleviate the state explosion
problems in static WCET analysis. The improved performance can be explained by
the following advantages:

1. Symbolic pipeline analysis computes traces of sets of pipeline states. Each
set contains states that are reached in the same execution cycle relative to the
beginning of a basic block. We observed that the states in such sets agree in
most attributes and often differ only in few bits, e.g., in the possible values of a
latency counter.1 This observation agrees with the intuitive insight that pipeline
states which execute the same instructions should not be too different. Hence,
there is a large potential for sharing information that is invariant between the
pipeline states. This potential is exploited in the BDD representation to avoid
redundant computations in the state traversal.

2. During the fixed point iteration the analysis frequently computes the union
of sets (at control flow joins) and checks the equivalence of sets (to determine
whether a fixed point has been reached). Both operations have efficient BDD
implementations which also exploit sharing and avoid redundant computations.

However, these advantages are of practical relevance only if the BDDs do not grow
too large. Computations with large BDDs are quite expensive and this would
render the analysis infeasible. Note that the BDD size constraint affects not only the
representation of sets of pipeline states but also the implicit representation of the
transition system of the pipeline model. Besides the already discussed potential for
sharing, BDD sizes are further affected by

1. the size of the pipeline model in terms of the number of state variables, and

2. the ordering of the state variables.

Our results show that existing automatic variable reordering methods based on
heuristics are sufficient for pipeline analysis. Since a fully automatic method is

1In some cases the variability between the pipeline states can be larger, e.g., for incoming states from
different predecessor blocks. Nonetheless, the observation holds for the majority of pipeline states
and execution cycles.

126

8.1 − Results and Contribution

preferable in an industrial context we did not investigate whether anything can be
gained from further manual optimization. Instead, we focused on the problem of
model size which turns out to be very important for scaling, not only to realistic
models, but also to industrial-level programs. To this end, we have presented
optimizations that are specific to a certain pipeline model as well as several target
independent optimizations. In particular the target independent optimizations
– address compression and program decomposition – are crucial for scaling the
analysis to large programs. Note that the program decomposition optimization,
although target independent, is specific to the design of our static WCET analysis. It
relies on the fact that the analysis may lose the correspondence between execution
traces at basic block boundaries. This possibility of losing information to reduce
the complexity of the analysis is a significant advantage of our method over the
model-checking approach of Larsen et. al. [DOT+10], which is the most closely
related work.

Serious research on pipeline analysis cannot ignore the influence of caches. To obtain
safe and precise WCET bounds for architectures with caches it is indispensable to
model the interdependence of pipeline and cache states. Regarding each component
in isolation would either be unsafe or lead to gross overestimations, depending on
the assumptions about the behavior of the other component. Therefore, it is common
practice to combine abstract pipeline and cache domains within a single abstract
interpretation of the hardware [WEE+08]. The exchange of information between
both domains follows the general operation of the hardware; the pipeline domain
sends memory access ranges to the cache domain which returns latency information
(hit, miss, or both). The theory of abstract interpretation guarantees that the result of
this combination – the reduced product of the domains – is sound [CC77].

Combining existing cache domains with our symbolic pipeline domain is difficult.
A straightforward implementation following existing designs (e.g., as detailed by
Thesing [The04]) would be inefficient because it would enumerate the – otherwise
implicitly stored – pipeline states. In this work we have presented a more efficient
solution which only enumerates the different memory ranges that can be accessed in
a certain execution cycle. To this end, we constrain the ordering of state variables
which encode cached memory accesses and exploit the ability of cache analysis
to deal with ranges instead of precise addresses. Experimental data indicates that
the number of different memory ranges that are accessed from the same execution
cycle (relative to the beginning of a basic block) is usually small. However, our
solution also allows to enumerate fewer but coarser ranges. Thus, it is possible
to trade precision for efficiency, something that cannot be done with explicit-state
pipeline analyses. Finally, note that the alternative of including caches directly into
the symbolic representation would also be inefficient. Even abstract caches [Fer97]
have much larger state representations than pipeline models.2 The huge number of
required state variables would lead to very large BDDs.

2An estimate for the required number of state bits for representing the state of a realistic cache is
given in Section 6.5.1.

127

Chapter 8: Conclusion

To conclude, let us summarize our major contributions:

1. We describe a novel and efficient integration of a symbolic state traversal engine
into an abstract interpretation based static analysis framework. Model size is
kept relatively small since arithmetic is handled by the value analysis. Further,
no global cycle counter is required within the symbolic representation.

2. The integration comprises a generic solution for the interaction between a
symbolic domain and other static analyses. The interaction is based on an
explicit program representation as a control flow graph and supports advanced
context-sensitive analysis. This enables interprocedural analysis and the precise
analysis of loops. Furthermore, we also show how the symbolic pipeline
domain can be combined with an abstract cache domain to arrive at an efficient,
combined analysis of the hardware behavior.

3. We present a solution to scale the symbolic analysis to realistic program sizes.
State traversal costs only depend on the size of the pipeline model, not on the
program size or the number of analysis contexts.

4. We give experimental evidence showing that symbolic state traversal for pipeline
analysis is feasible in practice. Since BDD representations are sensitive to the
size of the employed models, it is crucial that we are able to keep the size of
realistic pipeline models within acceptable limits. Further, our experimental
data indicate that the built-in automatic variable reordering heuristics of a
state-of-the-art model checker work well for our application.

8.2. Industrial Application and Future Research

The prototype implementation of Chapter 7 demonstrates that the symbolic approach
for pipeline analysis is feasible in practice. However, the implementation is solely
focused on improving the worst-case performance of static WCET analysis. That is,
performance is only improved if state explosions occur. The improved scalability in
terms of covered states is paid for by an increased sensitivity with respect to model
size and an unsatisfactory average-case performance. This is due to the fact that
computing a single cycle update with BDDs has much higher basic cost. This cost
is amortized only if many similar states can be updated for the same cycle. While
state explosion can render an explicit-state analysis infeasible, such events occur
only in relatively few cycles. Paying a higher basic cost for all remaining cycles
is impractical, if not to say annoying, in practice. For analyses in which no state
explosions occur the analysis times can increase from a few seconds to several hours,
compared to an explicit-state implementation. In this section we present several
ideas for improvement. Solutions are certainly needed for applying the method in
general purpose, industrial-strength WCET analyzers. Thus, the following ideas
would also make interesting subjects for future research.

128

8.2 − Industrial Application and Future Research

8.2.1. Hybrid Pipeline Analyzers

One way for improving average performance would be to rely on an explicit state
representation for as long as the number of concurrently considered states ranges
below a certain threshold. Such a hybrid analyzer requires that the transition rela-
tions for the explicit-state and the symbolic-state computations are equivalent. A
manual transformation, e.g., as performed for the implementation of the prototype
of Chapter 7, is not acceptable in an industrial context. The development of pipeline
models would become more difficult and there is also a high probability of introduc-
ing inconsistencies between the two implementations. Hence, it would be necessary
to generate both implementations from a common specification.
A hybrid implementation could perform explicit state traversal for as long as rel-
atively few hardware states have to be considered. As soon as the analysis runs
into a state explosion, the current set of states could be converted into a symbolic
representation and symbolic state traversal could be used until the current set of
states decreases below a certain threshold. Converting sets of states between compat-
ible explicit- and symbolic-state analyses can be implemented in a straightforward
manner. The main problem is efficiency: performance will only be acceptable if
the conversion is performed on small sets. This means that simply translating to
a symbolic representation after a state explosion has happened, cannot be recom-
mended. Instead, the analysis must be able to go backwards to the last state before
the state explosion took place. At this point, the costs of translating between the
representations should be acceptable.
One last problem that requires consideration are the different state traversal strate-
gies – depth-first versus breadth-first traversal. The different strategies of the two
approaches prevent switching the representation at arbitrary execution cycles. The
only safe points for switching are the entry points of basic blocks, right before the
block-local state traversal starts. However, the performance degradation caused by
this restriction might be insignificant in practice.

8.2.2. Alternative Symbolic Representations

BDDs are probably the best known and most widespread symbolic representation.
However, many more symbolic representations exist, some of which are tailored to
specific applications. Examples are Boolean function vectors [GB03], multi-valued
decision diagrams (MDDs) [CDE01], or zero-suppressed binary decision diagrams (ZDDs)
[Min93]. The latter are interesting in the context of symbolic pipeline analysis because
ZDDs are more efficient for handling sparse sets3 and the representation can also
be used for symbolic state space exploration [YHTM96]. As we already pointed out
in the previous section, state explosions in WCET analysis only occur at relatively
few points during an analysis run. Hence, dealing more efficiently with sparse

3This is a consequence of the modification of the BDD first reduction rule [Mis01]. For BDDs a node
is removed if both edges point to the same node (see the description of the elimination rule in
Section 4.2.1). For ZDDs, a node is removed if its 1-edge points to the terminal node 0.

129

Chapter 8: Conclusion

sets improves the average case performance of the symbolic computations. Dealing
efficiently with sparse sets may even be a key to scaling the approach to more complex
pipeline models. As the complexity of the pipeline model increases, so does its state
space. The average set of hardware states that is considered by WCET analyses with
this model increases, too. However, the percentage of considered pipeline states with
respect to the overall number of states of the model usually decreases with growing
model complexity. Hence, the constructed sets of pipeline states are more sparse for
larger models and more efficiency might be gained from using a representation that
is better suited for representing sparse sets.

8.2.3. Scaling to Larger Pipeline Models

The scalability problem of pipeline analysis grows with the size and complexity of
the underlying pipeline model. The use of symbolic methods together with a set of
suitable optimizations solves the problem for pipeline models of medium complexity.
The Infineon TriCore 1 model that we considered for the prototype implementation
in Chapter 7 is such a model. In fact, it is one of the smaller pipeline models where
an explicit-state pipeline analysis can become infeasible in practice due to state
explosions. Simpler pipelines, e.g., the ARM7 [ARM01] pipeline, are either free of
timing anomalies4 or the maximal number of states for each cycle is small enough
to allow for an explicit enumeration. It is reasonable to assume that larger, more
complex pipeline models are always prone to timing anomalies and probably also to
domino effects (see Section 5.3.2). Consequently, it would be most interesting to scale
the presented symbolic techniques to such large models. To this end, the following
problems remain to be solved:

1. The representation of a pipeline model with deeper or more parallel pipelines
needs more state variables for storing instruction references. The number of
state variables is further increased if features like dynamic branch prediction
or speculation have to be modeled.

2. The program decomposition optimization for efficiently handling large pro-
grams (see Section 6.4.4) may be not effective enough for larger pipeline models.
The reason is that the size of the employed enumeration window is proportional
to the size of the pipeline model. The more instructions fit into the window,
the more state variables are needed for representing instruction references.

There are several ways for tackling these problems: new target-specific optimizations
could be designed for implementing advanced features in very compact ways. The
range of relevant program information for program decomposition could be further
limited by arguing about architectural properties. Certain expensive features, e.g.,
branch target buffers, could be implemented in a more abstract manner. The resulting

4So far, the absence of timing anomalies could not be proven for any non-trivial pipeline model.
However, in the case of the very simple ARM7 any delay always stalls the whole pipeline. Hence,
one can immediately conclude that the local worst-case is identical to the global worst-case.

130

8.3 − Outlook

lack of information, e.g., about buffer contents, would force the analysis to explore
more pipeline states in order to cover all possible behaviors. However, the number
of pipeline states is not an issue in symbolic pipeline analysis. Performance depends
only on the size of the involved BDDs and one major contributing factor is the
number of state variables of the pipeline model.

8.3. Outlook

The presented work establishes fundamental techniques for integrating symbolic
methods efficiently into a modular static WCET analysis. The use of symbolic
methods solves an important scalability problem in WCET analysis but it also brings
about new problems. Besides the already discussed questions of scaling to larger
pipeline models and reducing the average costs of the computation, the significant
effort for porting existing pipeline models also cannot be ignored.
However, the trend towards more complex soft- and hardware in embedded systems
tends to exacerbate the inherent scalability problems in WCET analysis. At the
same time, recent and upcoming industrial certification standards, e.g, ISO-26262
[ISO09] and DO-178C5, recommend the use of static analysis techniques for verifying
safety-critical properties, such as the adherence to execution time constraints. In the
near future, unsound approaches may no longer be accepted for the most critical
applications. Thus, we expect that the demand for sound but more efficient WCET
tools increases. This demand is addressed by our work. At the time of writing, we
are not aware of feasible and sound alternatives for analyzing complex software
running on embedded processors with non-trivial pipelines.

5To be published.

131

APPENDIX A

Fetch unit model

The following code excerpts are taken from the implementation of the pipeline model
of the Infineon TriCore 1 as described in Chapter 7. The excerpts show the model’s
fetch unit which manages the prefetch buffer and the dispatch of instructions into the
two major pipelines. This part of the model makes a good example for illustrating the
interplay of the transition relations of the abstract pipeline model and the program.
The state of the fetch unit is updated according to the transition relation of the
pipeline model as given by the Verilog code in Appendix A.1. When executing
non-linear code sequences, i.e., when redirecting the fetch address to the target
of a branch or call instruction, the next-state is further influenced by the program
transition relation. The program transition relation also comes into play when the
contents of the prefetch buffer are updated; it restricts the possible buffer contents
to the types and sizes of the fetched instructions. The construction of the program
transition relation is based on C++ code. Examples are given in Appendix A.2.
The Verilog code in Appendix A.1 shows the complete abstract fetch unit model
which defines the operation of the fetch unit independent of any program. It is writ-
ten in the Verilog subset that is accepted by the VIS system [BHSV+96]. The C++ code
for constructing the relevant part of the program transition relation in Appendix A.2
shows only a part of the function buildRelationsForFetchDataAndDecodeTargets

and several supporting functions. It is meant to be sufficient to illustrate the imple-
mentation principle. The relations are constructed from BDD primitives using a C++
wrapper type Cf (which stands for characteristic function) that we designed according
to our needs. This data type features handy operators that correspond to unary and
binary BDD operations, e.g., ! for negation, + for disjunction, and * for conjunction.
The implementation is put on top of the VIS API. The low-level BDD operations are
carried out by the CUDD library [Som09].

133

Appendix A: Fetch unit model

A.1. Unit Transition Rules

Here is the Verilog code that defines the transition system of the fetch unit. The
code can be compiled into the BDD representation of the symbolic model transition
relation by VIS. Hints for understanding the model are given on page 139.

Verilog Model, Page 1

1 module FetchUnit(clock,
2 target_ma, // IN : branch/call/return target
3 target_ls, // IN : jump/call/return target
4 state_ma, // IN : ready for dispatch to INT pipeline
5 state_ls, // IN : ready for dispatch to LS pipeline
6 MA_fetch_ack, // OUT: INT pipeline dispatch done
7 LS_fetch_ack, // OUT: LS pipeline dispatch done
8 dispatch_to_ma, // OUT: INT pipeline, dispatched address
9 dispatch_to_ls, // OUT: LS pipeline, dispatched address

10 address_to_fetch,// OUT: address to fetch from bus
11 trigger_fetch, // OUT:
12 linecrossing, // OUT: fetch crosses 32 byte line
13 bus_data_valid, // IN : fetched data is valid
14 bus_stall // IN : bus is busy
15);
16

17 // function for extracting pipe bit from fetch
18 // data buffer depending on current buffer index
19 function cur_pipe;
20 input [0:2] idx;
21 input [‘FETCH_DATA_WIDTH] buffer;
22

23 begin
24 case (idx)
25 0: cur_pipe = buffer[0];
26 1: cur_pipe = buffer[2];
27 2: cur_pipe = buffer[4];
28 default: cur_pipe = buffer[6];
29 endcase
30 end
31 endfunction
32

33 // function for extracting width bit from fetch
34 // data buffer depending on current buffer index
35 function cur_width;
36 input [0:2] idx;
37 input [‘FETCH_DATA_WIDTH] buffer;
38

39 begin
40 case (idx)
41 0: cur_width = buffer[1];
42 1: cur_width = buffer[3];
43 2: cur_width = buffer[5];
44 default: cur_width = buffer[7];
45 endcase
46 end
47 endfunction
48

49 // ---
50 // in/out declarations
51 // ---
52

53 input clock;
54 input [‘INSTR_WIDTH] target_ma;
55 input [‘INSTR_WIDTH] target_ls;

134

A.1 − Unit Transition Rules

Verilog Model, Page 2

56 input state_ma; sig_stall_t wire state_ma;
57 input state_ls; sig_stall_t wire state_ls;
58

59 output MA_fetch_ack;
60 reg MA_fetch_ack;
61 initial MA_fetch_ack = 0;
62

63 output LS_fetch_ack;
64 reg LS_fetch_ack;
65 initial LS_fetch_ack = 0;
66

67 output dispatch_to_ma;
68 reg [‘INSTR_WIDTH] dispatch_to_ma;
69 initial dispatch_to_ma = 0;
70

71 output dispatch_to_ls;
72 reg [‘INSTR_WIDTH] dispatch_to_ls;
73 initial dispatch_to_ls = 0;
74

75 output address_to_fetch;
76 reg [‘INSTR_WIDTH] address_to_fetch;
77 initial address_to_fetch = 0;
78

79 output trigger_fetch;
80 reg trigger_fetch;
81 initial trigger_fetch = 0;
82

83 wire linecrossing_input;
84 get_linecrossing(linecrossing_input);
85 output linecrossing;
86 reg linecrossing;
87 initial linecrossing = 0;
88

89 input bus_data_valid;
90 input bus_stall;
91

92 // ---
93 // internal declarations
94 // ---
95

96 reg [‘INSTR_WIDTH] buffer_addr;
97 initial buffer_addr = 0;
98

99 reg [0:2] buffer_idx;
100 initial buffer_idx = 4;
101

102 reg [‘FETCH_DATA_WIDTH] buffer_data;
103 initial buffer_data = 0;
104

105 wire [‘INSTR_WIDTH] input_addr;
106 get_addr(input_addr);
107

108 wire [‘FETCH_DATA_WIDTH] fetch_input_data;
109 get_data(fetch_input_data);
110

111 reg [‘FETCH_DATA_WIDTH] data;
112 initial data = 0;
113

114 reg start;
115 initial start = 1;
116

117

118

135

Appendix A: Fetch unit model

Verilog Model, Page 3

119 // ---
120 // transitions
121 // ---
122

123 always begin if (! clock) begin
124 if (trigger_fetch && (0 != address_to_fetch)) begin
125 data = fetch_input_data;
126 linecrossing = linecrossing_input;
127 end
128

129 else begin
130 linecrossing = 0;
131 end
132 end end
133

134 always begin if (clock) begin
135

136 trigger_fetch = 0;
137

138 if (start) begin // issue first fetch
139 address_to_fetch = input_addr;
140 trigger_fetch = 1;
141 MA_fetch_ack = 0;
142 LS_fetch_ack = 0;
143 start = 0;
144 end
145

146 if (bus_data_valid) begin // merge and issue next fetch
147

148 if (0 == buffer_idx) begin // nothing dispatched
149 if (! bus_stall) begin
150 // discard fetched data and issue the fetch again
151 // to prevent the pipeline from stalling
152 address_to_fetch = buffer_addr + 4;
153 trigger_fetch = 1;
154 end
155 end
156

157 else if (1 == buffer_idx) begin // dispatched one halfword
158 buffer_addr = buffer_addr + 1;
159 buffer_idx = 0;
160 buffer_data[0] = buffer_data[2];
161 buffer_data[1] = buffer_data[3];
162 buffer_data[2] = buffer_data[4];
163 buffer_data[3] = buffer_data[5];
164 buffer_data[4] = buffer_data[6];
165 buffer_data[5] = buffer_data[7];
166 buffer_data[6] = data[0];
167 buffer_data[7] = data[1];
168

169 if (! bus_stall) begin
170 address_to_fetch = address_to_fetch + 1;
171 trigger_fetch = 1;
172 end
173 end
174

175 else if (2 == buffer_idx) begin // dispatched two halfwords
176 buffer_addr = buffer_addr + 2;
177 buffer_idx = 0;
178 buffer_data[0] = buffer_data[4];
179 buffer_data[1] = buffer_data[5];
180 buffer_data[2] = buffer_data[6];
181 buffer_data[3] = buffer_data[7];

136

A.1 − Unit Transition Rules

Verilog Model, Page 4

182 buffer_data[4] = data[0];
183 buffer_data[5] = data[1];
184 buffer_data[6] = data[2];
185 buffer_data[7] = data[3];
186

187 if (! bus_stall) begin
188 address_to_fetch = address_to_fetch + 2;
189 trigger_fetch = 1;
190 end
191 end
192

193 else if (3 == buffer_idx) begin // dispatched three halfwords
194 buffer_addr = buffer_addr + 3;
195 buffer_idx = 0;
196 buffer_data[0] = buffer_data[6];
197 buffer_data[1] = buffer_data[7];
198 buffer_data[2] = data[0];
199 buffer_data[3] = data[1];
200 buffer_data[4] = data[2];
201 buffer_data[5] = data[3];
202 buffer_data[6] = data[4];
203 buffer_data[7] = data[5];
204

205 if (! bus_stall) begin
206 address_to_fetch = address_to_fetch + 3;
207 trigger_fetch = 1;
208 end
209 end
210

211 else begin // dispatched all four halfwords
212 buffer_addr = address_to_fetch;
213 buffer_data = data;
214 buffer_idx = 0;
215

216 if (! bus_stall) begin
217 address_to_fetch = address_to_fetch + 4;
218 trigger_fetch = 1;
219 end
220 end
221 end // if (bus_data_valid)
222

223 // clear old INT pipeline dispatch
224 if (READY == state_ma)
225 dispatch_to_ma = 0;
226

227 // clear old LS pipeline dispatch
228 if (READY == state_ls)
229 dispatch_to_ls = 0;
230

231 if ((READY == state_ma && READY == state_ls)) begin // dispatch
232

233 if (READY == state_ma && (0 == cur_pipe(buffer_idx, buffer_data)) &&
234 ((buffer_idx < 3) || ((buffer_idx == 3) &&
235 (0 == cur_width(buffer_idx, buffer_data))))) begin
236

237 case (buffer_idx)
238 0: dispatch_to_ma = buffer_addr;
239 1: dispatch_to_ma = buffer_addr + 1;
240 2: dispatch_to_ma = buffer_addr + 2;
241 default: dispatch_to_ma = buffer_addr + 3;
242 endcase
243

244 MA_fetch_ack = 1;

137

Appendix A: Fetch unit model

Verilog Model, Page 5

245 if (cur_width(buffer_idx, buffer_data))
246 buffer_idx = buffer_idx + 2;
247 else
248 buffer_idx = buffer_idx + 1;
249 end
250

251 else begin
252 MA_fetch_ack = 0;
253 end
254

255 if (READY == state_ls && cur_pipe(buffer_idx, buffer_data) &&
256 ((buffer_idx < 3) || ((buffer_idx == 3) &&
257 (0 == cur_width(buffer_idx, buffer_data))))) begin
258

259 case (buffer_idx)
260 0: dispatch_to_ls = buffer_addr;
261 1: dispatch_to_ls = buffer_addr + 1;
262 2: dispatch_to_ls = buffer_addr + 2;
263 default: dispatch_to_ls = buffer_addr + 3;
264 endcase
265

266 LS_fetch_ack = 1;
267

268 if (cur_width(buffer_idx, buffer_data))
269 buffer_idx = buffer_idx + 2;
270 else
271 buffer_idx = buffer_idx + 1;
272 end
273

274 else begin
275 LS_fetch_ack = 0;
276 end
277 end // if ((READY == state_ma && READY == state_ls))
278

279 if (target_ma) begin // handle redirect request from INT pipeline
280 address_to_fetch = target_ma;
281 trigger_fetch = 1;
282 MA_fetch_ack = 0;
283 LS_fetch_ack = 0;
284 buffer_idx = 4;
285 dispatch_to_ma = 0;
286 dispatch_to_ls = 0;
287 end
288

289 else if (target_ls) begin // handle redirect request from LS pipeline
290 address_to_fetch = target_ls;
291 trigger_fetch = 1;
292 MA_fetch_ack = 0;
293 LS_fetch_ack = 0;
294 buffer_idx = 4;
295 dispatch_to_ma = 0;
296 dispatch_to_ls = 0;
297 end
298 end end
299

300 endmodule // FetchUnit

138

A.1 − Unit Transition Rules

Hints for Understanding the Model

The ls_ and ma_ signals of the fetch unit are connected to the load/store and multi-
ply/accumulate (or integer) pipelines. The pipelines themselves are implemented as
hierarchical Verilog modules containing further internal modules (decode, execute,
and writeback stages). The helper functions cur_pipe and cur_width in line 19
and line 35 are used to extract information from our compact representation of the
prefetch buffer (see Section 6.4.3).
The transition rules are split into transitions at the falling and rising edges of the
clock signal, lines 123 to 132 and 134 to 298, respectively. At the falling edge of the
signal, the fetch unit takes incoming data and integrates it into its prefetch buffer.
However, most work is done at the rising edge of the clock signal where the fetch
unit propagates the contents of the prefetch buffer into the pipelines depending
on instruction type information. To this end, it checks how much data is still in
the buffer and whether one or both of the pipelines are ready (using the signals
state_ma and state_ls).

139

Appendix A: Fetch unit model

A.2. Program Interface

The following C++ code illustrates the construction of the program transition relation
from information that is extracted from the supergraph.

Program Relations, Page 1

1 typedef enum {
2 MA = 0, // integer pipeline
3 LS // load/store pipeline
4 } pipe_t;
5

6 /* 2bits for encoding instruction data.
7 [0] Pipeline: either MA (0) or LS (1)
8 [1] Width : whether instruction is 2 bytes (0) or 4 bytes (1) */
9 typedef enum {

10 data_pipe_shift = 0,
11 data_width_shift
12 } data_shift_t;
13

14 /* Encoding methods for various variables in the Tricore model. */
15 static Cf NEGEDGE() { return Cf("clock", 0, current); }
16 static Cf POSEDGE() { return Cf("clock", 1, current); }
17

18 /* FETCH unit related variables */
19 static Cf GLOBAL_trigger_fetch(int t, state_t s) {
20 return Cf("GLOBAL_trigger_fetch", t, s); }
21 static Cf GLOBAL_address_to_fetch(CrlUnsigned a, state_t s) {
22 return Cf(address(var_GLOBAL_address_to_fetch), a, s); }
23 static Cf GLOBAL_linecrossing(int lc, state_t s) {
24 return Cf("GLOBAL_linecrossing", lc, s); }
25 static Cf FETCH_data(int dat, state_t s) {
26 return Cf(data("FETCH.data"), dat, s); }
27

28 /* Encodes instruction data bits in ’d’ and returns new ’d’. */
29 static int fetchDataHelper(int d, int idx, int width, pipe_t p) {
30 return (d | ((p != MA) << (data_pipe_shift + 2 * idx)) |
31 ((4 == width) << (data_width_shift + 2 * idx)));
32 }
33

34 /* Returns pipeline to which the single operation in stmt is dispatched. */
35 static pipe_t pipe(KFG_STATEMENT stmt)
36 {
37 CrlOperation* op = stmt->single_operation();
38 CrlSymbol genname = op->find_symbol_sym(symbol::genname());
39

40 /* abs absb absdif absdifb absdifh absdifs absdifsh absh abss abssh */
41 if (! strncmp(genname, "abs", 3))
42 return LS;
43 /* adda addiha */
44 else if (sym_adda() == genname || sym_addiha() == genname)
45 return LS;
46 /* add addb addc addf addh addi addih adds addsca addscat addsh addshu addsu addx */
47 else if (! strncmp(genname, "add", 3))
48 return MA;
49 /* and andandnt andandt and_cond andn andnort andnt andort andt */
50 else if (! strncmp(genname, "and", 3))
51 return MA;
52 ...
53 }

140

A.2 − Program Interface

Program Relations, Page 2

54

55 /* Build relation for retrieving data in fetch buffer and control-flow targets
56 in decode units. */
57 void buildRelationsForFetchDataAndDecodeTargets(KFG_NODE node, KFG_POSITION pos)
58 {
59 Cf cur, nxt;
60 std::vector<StmtPosPair> collection = getCollection(node, pos);
61

62 for (std::vector<StmtPosPair>::const_iterator first = collection.begin();
63 first != collection.end(); ++first) {
64

65 int d = 0; // encode 12 bits (width and pipe) for at most 4 instructions
66 for (std::vector<StmtPosPair>::const_iterator follow = first;
67 (((*follow).address() - (*first).address()) < 8);
68 ++follow) {
69 d = fetchDataHelper(d, ((*follow).address() - (*first).address()) / 2,
70 (*follow).width(), pipe((*follow).statement()));
71 }
72

73 // determine whether fetch crosses a 32 byte line
74 int lc = ((*first).address() % 32) + 8 > 32 ? 1 : 0;
75

76 int inum = map2inum(node, pos, first->address(), first->position());
77

78 // encode relation for fetch data
79 cur = GLOBAL_trigger_fetch(1, current)
80 * GLOBAL_address_to_fetch(inum, current)
81 * NEGEDGE();
82 nxt = FETCH_data(d, next)
83 * GLOBAL_linecrossing(lc, next);
84 insertRelation(node, pos, (cur * nxt) + (! cur));
85 ...
86 }

141

Bibliography

[Abs00] AbsInt. http://www.absint.com/aiT/, 2000.

[AG08] Infineon Technologies AG. TriCore 1, 32-bit Unified Processor Core, Core
Architecture Manual V1.3.8. Munich, Germany, January 2008.

[ALE02] Todd M. Austin, Eric Larson, and Dan Ernst. Simplescalar: An infra-
structure for computer system modeling. IEEE Computer, 35(2):59–67,
2002.

[Alt01] Altran. http://www.flexray.com, 2001.

[AMWH94] Robert D. Arnold, Frank Mueller, David B. Whalley, and Marion G. Har-
mon. Bounding worst-case instruction cache performance. In Proceedings
of the 15th IEEE Real-Time Systems Symposium, RTSS ’94, pages 172–181,
1994.

[ARM01] ARM. ARM7 Technical Reference Manual, April 2001.

[BBB03] Alan Burns, Guillem Bernat, and Ian Broster. A probabilistic framework
for schedulability analysis. In Rajeev Alur and Insup Lee, editors,
EMSOFT, volume 2855 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2003.

[BBK+06] Adam Betts, Guillem Bernat, Raimund Kirner, Peter Puschner, and
Ingomar Wenzel. WCET Coverage for Pipelines. Technical report,
University of York, 2006.

[BBN05] Guillem Bernat, Alan Burns, and Martin Newby. Probabilistic timing
analysis: An approach using copulas. J. Embedded Computing, 1(2):179–
194, 2005.

143

Bibliography

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A static analyzer for large safety-critical soft-
ware. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, PLDI ’03, pages 196–207, San Diego,
California, USA, June 7–14 2003. ACM Press.

[BCH+91] Robert K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R.P.
Kurshan, S. Malik, Alberto L. Sangiovanni-Vincentelli, E.M. Sentovich,
T. Shiple, K.J. Singh, and H.Y. Wang. BLIF-MV: An interchange for-
mat for design verification and synthesis. Technical Report UCB/ERL
M91/97, EECS Department, University of California, Berkeley, 1991.

[BCL+94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan,
and David L. Dill. Symbolic model checking for sequential circuit
verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13:401–424, 1994.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 1020 states and beyond. IEEE Comp. Soc. Press,
1990.

[BCP02] Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET analy-
sis of probabilistic hard real-time systems. In IEEE Real-Time Systems
Symposium, pages 279–288, 2002.

[BCRS10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal
Sainrat. Otawa: an open toolbox for adaptive WCET analysis. In
Proceedings of the 8th IFIP WG 10.2 international conference on Software
technologies for embedded and ubiquitous systems, SEUS’10, pages 35–46,
Berlin, Heidelberg, 2010. Springer-Verlag.

[Ber02] Sergey Berezin. Model Checking and Theorem Proving: a Unified Framework.
PhD thesis, Carnegie Mellon University, 2002.

[Ber06] Christoph Berg. PLRU cache domino effects. In Frank Mueller, editor,
6th International Workshop on Worst-Case Execution Time (WCET) Analysis.
Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast. International Journal on Software Tools
for Technology Transfer (STTT), 9(5-6):505–525, 2007.

[BHSV+96] Robert K. Brayton, Gary D. Hachtel, Alberto L. Sangiovanni-Vincentelli,
Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen A. Edwards,
Sunil P. Khatri, Yuji Kukimoto, Abelardo Pardo, Shaz Qadeer, Rajeev K.
Ranjan, Shaker Sarwary, Thomas R. Shiple, Gitanjali Swamy, and Tiziano

144

Bibliography

Villa. VIS: A System for Verification and Synthesis. In Proceedings of the
8th International Conference on Computer Aided Verification, CAV ’96, pages
428–432, 1996.

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Uppaal – a tool suite for automatic verification of real-time
systems. In Proceedings of the DIMACS/SYCON workshop on Hybrid systems
III : verification and control, pages 232–243, Secaucus, NJ, USA, 1996.
Springer-Verlag New York, Inc.

[BLQ+03] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie J. Hendren, and Navin-
dra Umanee. Points-to analysis using BDDs. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, PLDI ’03, pages 103–114, 2003.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manip-
ulation. IEEE Transactions on Computers, 35:677–691, August 1986.

[BW90] A. Burns and A. Wellings. Real-Time Systems and their Programming
Languages. Addison Wesley, 1990.

[CBM90] Olivier Coudert, Christian Berthet, and Jean Madre. Verification of syn-
chronous sequential machines based on symbolic execution. In Joseph
Sifakis, editor, Automatic Verification Methods for Finite State Systems, vol-
ume 407 of Lecture Notes in Computer Science, pages 365–373. Springer
Berlin / Heidelberg, 1990.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Los Angeles, California, 1977.

[CDE01] Marsha Chechik, Benet Devereux, and Steve Easterbrook. Implementing
a multi-valued symbolic model checker. In Proceedings of TACAS’01,
pages 404–419. Springer, 2001.

[CFG+10] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel
Grund, Claire Maiza Burguière, Jan Reineke, Benoît Triquet, Simon
Wegener, and Reinhard Wilhelm. Predictability Considerations in the
Design of Multi-Core Embedded Systems. Ingenieurs de l’Automobile,
807:26–42, 2010.

[CGH+93] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha,
David E. Long, Kenneth L. McMillan, and Linda A. Ness. Verification
of the futurebus+ cache coherence protocol. In Proceedings of the 11th
IFIP WG10.2 International Conference sponsored by IFIP WG10.2 and in

145

Bibliography

cooperation with IEEE COMPSOC on Computer Hardware Description Lan-
guages and their Applications, CHDL ’93, pages 15–30, Amsterdam, The
Netherlands, 1993. North-Holland Publishing Co.

[Che94] Szu-Tsung Cheng. Compiling Verilog into Automata. Technical report,
Electronics Research Lab, Univ. of California, Berkeley, CA 94720, 1994.

[Cor91] Intel Corporation. i960 KA/KB Microprocessor Programmers Reference
Manual, 1991.

[Cou78] Patrick Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique de
programmes. PhD thesis, Université scientifique et medicale de Grenoble,
1978.

[CP00] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for
a processor with branch prediction. Real-Time Systems, 18(2/3):249–274,
2000.

[CP01] Antoine Colin and Isabelle Puaut. A modular & retargetable framework
for tree-based WCET analysis. In 13th Euromicro Conference on Real-Time
Systems, ECRTS ’01, pages 37–44. IEEE Computer Society, 2001.

[CRSS94] David Cyrluk, S. Rajan, Natarajan Shankar, and Mandayam K. Srivas.
Effective theorem proving for hardware verification. In Proceedings of
the Second International Conference on Theorem Provers in Circuit Design -
Theory, Practice and Experience, TPCD ’94, pages 203–222, London, UK,
1994. Springer-Verlag.

[DOT+10] Andreas Engelbredt Dalsgaard, Mads Christian Olesen, Martin Toft,
René Rydhof Hansen, and Kim Guldstrand Larsen. METAMOC: Modu-
lar Execution Time Analysis using Model Checking. In 10th International
Workshop on Worst-Case Execution Time (WCET) Analysis, 2010.

[EDN88] DSP Performance Benchmarks. In EDN - Electronic Design, Strategy, News,
September 1988.

[Eng02] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, 2002.

[EPB+06] Jochen Eisinger, Ilia Polian, Bernd Becker, Alexander Metzner, Stephan
Thesing, and Reinhard Wilhelm. Automatic identification of timing
anomalies for cycle-accurate worst-case execution time analysis. In
Matteo Sonza Reorda, Ondrej Novák, Bernd Straube, Hanna Kubátová,
Zdenek Kotásek, Pavel Kubalík, Raimund Ubar, and Jiri Bucek, editors,
9th IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS 2006), pages 15–20. IEEE Computer Society Press, 2006.

146

Bibliography

[Fal09] Heiko Falk. WCET-aware Register Allocation based on Graph Coloring.
In The 46th Design Automation Conference (DAC), pages 726–731, San
Francisco / USA, July 2009.

[Fer97] Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD
thesis, Saarland University, 1997.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and Precise WCET
Determination for a Real-Life Processor. In Proceedings of EMSOFT 2001,
LNCS 2211, 2001.

[FL10] Heiko Falk and Paul Lokuciejewski. A compiler framework for the
reduction of worst-case execution times. Real-Time Systems, pages 1–50,
2010.

[FMK91] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable
ordering of binary decision diagrams for the application of multi-level
logic synthesis. In EURO-DAC ’91: Proceedings of the conference on Euro-
pean design automation, pages 50–54, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

[Fre01] Freescale. MPC750 RISC Microprocessor Family User’s Manual, December
2001.

[GB03] Amit Goel and Randal E. Bryant. Set manipulation with boolean func-
tional vectors for symbolic reachability analysis. In Proceedings of Design
Automation and Test in Europe, DATE ’03, pages 10816–10821, 2003.

[HAM+99] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whal-
ley, and Marion G. Harmon. Bounding pipeline and instruction cache
performance. IEEE Trans. Computers, 48(1):53–70, 1999.

[HBL+95] Yerang Hur, Young Hyun Bae, Sung-Soo Lim, Sung-Kwan Kim, Byung-
Do Rhee, Sang Lyul Min, Chang Yun Park, Heonshik Shin, and Chong-
Sang Kim. Worst Case Timing Analysis of RISC Processors: R3000/R3010
Case Study. In IEEE Real-Time Systems Symposium, pages 308–321, 1995.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis – the SymTA/S approach. In IEEE
Proceedings on Computers and Digital Techniques, volume 152(2), pages
148–166, March 2005.

[HLS00] Niklas Holsti, Thomas Langbacka, and Sami Saarinen. Worst-Case
Execution Time Analysis for Digital Signal Processors. In European
Signal Processing Conference (EUSIPCO), 2000.

147

Bibliography

[HLTW03] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The influence of processor architecture on the design and
the results of WCET tools. In Proceedings of the IEEE, volume 91, pages
1038–1054, 2003.

[HWH95] Christopher A. Healy, David B. Whalley, and Marion G. Harmon. In-
tegrating the timing analysis of pipelining and instruction caching. In
IEEE Real-Time Systems Symposium, pages 288–297, 1995.

[ISO04] International Organisation for Standardization ISO. ISO 11898-4, Road
vehicles – Controller area network (CAN) – Part 4: Time-triggered
communication, 2004.

[ISO09] ISO 26262-WD. Road vehicles – Functional safety, 2009.

[ISY91] Nagisa Ishiura, Hiroshi Sawada, and Shuzo Yajima. Minimization of
binary decision diagrams based on exchanges of variables. In Proceedings
of the IEEE International Conference on Computer Aided Design, ICCAD’91,
pages 472–475, 1991.

[JM01] Ranjit Jhala and Kenneth L. McMillan. Microarchitecture Verification by
Compositional Model Checking. In Proceedings of the 13th International
Conference on Computer Aided Verification, CAV ’01, pages 396–410, 2001.

[KLFP02] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter P. Puschner.
Fully automatic worst-case execution time analysis for Matlab/Simulink
models. In 14th Euromicro Conference on Real-Time Systems, ECRTS ’02,
pages 31–40. IEEE Computer Society, 2002.

[KP03] Raimund Kirner and Peter P. Puschner. Transformation of meta-
information by abstract co-interpretation. In Andreas Krall, editor,
SCOPES, volume 2826 of Lecture Notes in Computer Science, pages 298–
312. Springer, 2003.

[LBJ+94] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee,
Sang Lyul Min, Chang Yun Park, Heonshik Shin, Kunsoo Park, and
Chong-Sang Kim. An Accurate Worst Case Timing Analysis Technique
for RISC Processors. In Proceedings of the 15th IEEE Real-Time Systems
Symposium, RTSS ’94, pages 142–151, 1994.

[Liu00] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[LL73] C.L. Liu and Layland. Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment. Journal of the Association of Computing
Machinery, 20:64–61, 1973.

148

Bibliography

[LM09] Paul Lokuciejewski and Peter Marwedel. Combining Worst-Case Timing
Models, Loop Unrolling, and Static Loop Analysis for WCET Minimiza-
tion. In The 21st Euromicro Conference on Real-Time Systems, ECRTS ’09,
pages 35–44, Dublin / Ireland, July 2009.

[LMR05] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control
speculation for timing analysis. Real-Time Systems, 29(1):27–58, 2005.

[LMW96] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache modeling
for real-time software: beyond direct mapped instruction caches. In IEEE
Real-Time Systems Symposium, pages 254–263. IEEE Computer Society,
1996.

[LNYY10] Mingsong Lv, Guan Nan, Wang Yi, and Ge Yu. Combining Abstract
Interpretation with Model Checking for Timing Analysis of Multicore
Software. In Proceedings of the 31st IEEE Real-Time Systems Symposium,
2010.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1-2:134–152,
Oct 1997.

[LRM04] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-
order processors for software timing analysis. In Proceedings of the 24th
IEEE International Real-Time Systems Symposium, RTSS ’04, pages 92–103.
IEEE Computer Society, 2004.

[LS98] Thomas Lundqvist and Per Stenström. Integrating path and timing
analysis using instruction-level simulation techniques. In Frank Mueller
and Azer Bestavros, editors, LCTES ’98, volume 1474 of Lecture Notes in
Computer Science, pages 1–15. Springer, 1998.

[LS99a] Thomas Lundquist and Per Stenström. Timing Anomalies in Dynami-
cally Scheduled Microprocessors. In Proceedings of the 20th IEEE Real-Time
Systems Symposium, 1999.

[LS99b] Thomas Lundqvist and Per Stenström. An integrated path and timing
analysis method based on cycle-level symbolic execution. Real-Time
Systems, 17(2-3):183–207, 1999.

[LS03] George Logothetis and Klaus Schneider. Exact high level WCET anal-
ysis of synchronous programs by symbolic state space exploration. In
Proceedings of Design Automation and Test in Europe, DATE ’03, pages
10196–10203, 2003.

[LSM03] G. Logothetis, K. Schneider, and C. Metzler. Exact low-level runtime
analysis of synchronous programs for formal verification of real-time

149

Bibliography

systems. In Forum on Design Languages (FDL), Frankfurt, Germany, 2003.
Kluwer.

[Mar98] Florian Martin. PAG – An Efficient Program Analyzer Generator. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 2(1):46–67,
1998.

[Mar99] Florian Martin. Generating Program Analyzers. PhD thesis, Universität
des Saarlandes, 1999.

[MAWF98] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand.
Analysis of Loops. In Kai Koskimies, editor, Proceedings of the 7th Inter-
national Conference on Compiler Construction, volume 1383 of Lecture Notes
in Computer Science, pages 80–94, Berlin, 1998. Springer.

[McM92] Kenneth L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie
Mellon University, 1992.

[Met04] Alexander Metzner. Why model checking can improve WCET analy-
sis. In Proceedings of the 16th International Conference on Computer Aided
Verification, CAV ’04, pages 334–347, 2004.

[Min93] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in com-
binatorial problems. In Proceedings of the 30th international Design Au-
tomation Conference, DAC ’93, pages 272–277, New York, NY, USA, 1993.
ACM.

[Min04] Antoine Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
École Polytechnique, Palaiseau, France, December 2004.

[Mis01] Alan Mishchenko. An Introduction to Zero-Suppressed Binary Decision
Diagrams. In Proceedings of the 12th Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning, 2001.

[Mot97] Motorola. MPC750 RISC Processor User’s Manual, 1997.

[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures
in VLSI Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st
edition, 1998.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

[O’K00] Hugh O’Keeffe. IEEE-ISTO 5001-1999, The Nexus 5001 Forum Standard
– providing the Gateway to the Embedded Systems of the Future. In
Proceedings of the Embedded Intelligence conference, 2000.

150

Bibliography

[PS97] Peter P. Puschner and Anton V. Schedl. Computing maximum task
execution times – a graph-based approach. Real-Time Systems, 13(1):67–
91, 1997.

[RAB+95] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD
Algorithms for FSM Synthesis and Verification, 1995.

[Rad] Radio Technical Commission for Aeronautics. RTCA DO-178B. Software
Considerations in Airborne Systems and Equipment Certification.

[Rei08] Jan Reineke. Caches in WCET Analysis. PhD thesis, Saarland University,
2008.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Conference Record of the 22nd ACM
Symposium on Principles of Programming Languages, pages 49–61. ACM
Press, 1995.

[RLM02] Abhik Roychoudhury, Xianfeng Li, and Tulika Mitra. Timing analysis
of embedded software for speculative processors. In Proceedings of the
15th International Symposium on System Synthesis, ISSS ’02, pages 126–131.
IEEE Computer Society, Oct 2002.

[RLP+94] Byung-Do Rhee, Sung-Soo Lim, Chang Yun Park, Sang Lyul Min, Heon-
shik Shin, and Chong Sang Kim. Issues of advanced architectural
features in the design of a timing tool. In Proceedings of the 11th Workshop
on Real-Time Operating Systems and Software, pages 59–62, 1994.

[Rud93] Richard Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM international
conference on Computer-aided design, pages 42–47. IEEE Computer Society
Press, 1993.

[Sch03] Jörn Schneider. Combined Schedulability and WCET Analysis for Real-Time
Operating Systems. PhD thesis, Saarland University, 2003.

[Sha89] A. C. Shaw. Reasoning About Time in Higher-Level Language Software.
In IEEE Transactions on Software Engineering, volume 15(7), pages 875–889,
July 1989.

[SLH+05] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, Guil-
laume Borios, and Reinhold Heckmann. Computing the Worst Case
Execution Time of an Avionics Program by Abstract Interpretation. In
Proceedings of the 5th International Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 21–24, 2005.

151

Bibliography

[SM10] Stefan Stattelmann and Florian Martin. On the Use of Context Infor-
mation for Precise Measurement-Based Execution Time Estimation. In
Proceedings of the 10th International Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 64–76, 2010.

[Som09] Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.4.2, 2009.

[SP10] Marc Schlickling and Markus Pister. Semi-automatic derivation of
timing models for WCET analysis. In LCTES ’10: Proceedings of the ACM
SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools for
embedded systems, pages 67–76. ACM, April 2010.

[Sta09] Stefan Stattelmann. Precise Measurement-Based Worst-Case Execution
Time Estimation. Master’s thesis, Saarland University, September 2009.

[Ste10] Ingmar Stein. ILP-based Path Analysis on Abstract Pipeline State Graphs.
PhD thesis, Saarland University, 2010.

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–310, 1955.

[The02] Henrik Theiling. ILP-based Interprocedural Path Analysis. In Proceedings
of the Workshop on Embedded Software, Grenoble, France, 2002.

[The03] Henrik Theiling. Control Flow Graphs for Real-Time System Analysis. PhD
thesis, Saarland University, 2003.

[The04] Stephan Thesing. Safe and Precise WCET Determination by Abstract Inter-
pretation of Pipeline Models. PhD thesis, Saarland University, 2004.

[THY93] Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity
of the optimal variable ordering problems of shared binary decision dia-
grams. In Kam-Wing Ng, Prabhakar Raghavan, N. V. Balasubramanian,
and Francis Y. L. Chin, editors, ISAAC, volume 762 of Lecture Notes in
Computer Science, pages 389–398. Springer, 1993.

[Tid00] Tidorum. http://www.bound-t.com/, 2000.

[TM96] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description
Language. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[TSH+03] Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa
Randimbivololona, Marc Langenbach, Reinhard Wilhelm, and Christian
Ferdinand. An Abstract Interpretation-Based Timing Validation of Hard
Real-Time Avionics Software. In Proceedings of the 2003 International
Conference on Dependable Systems and Networks (DSN 2003), pages 625–
632. IEEE Computer Society, 2003.

152

Bibliography

[WC10] Stephan Wilhelm and Christoph Cullmann. Integrating Abstract Caches
with Symbolic Pipeline Analysis. In Proceedings of the 10th International
Workshop on Worst-Case Execution Time (WCET) Analysis, pages 36–43,
2010.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problem—overview of methods and survey of tools. ACM Transac-
tions on Embedded Computing Systems, 7(3):1–53, 2008.

[Wei88] Reinhold Weicker. Dhrystone benchmark: rationale for version 2 and
measurement rules. SIGPLAN Notices, 23(8):49–62, 1988.

[Wil04] Reinhard Wilhelm. Why AI + ILP is good for WCET, but MC is not,
nor ILP alone. In Verification, Model Checking and Abstract Interpretation
(VMCAI), LNCS 2937, 2004.

[Wil05] Stephan Wilhelm. Efficient Analysis of Pipeline Models for WCET
Computation. In Proceedings of the 5th Intl. Workshop on Worst-Case
Execution Time Analysis, 2005.

[WKRP08] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter P.
Puschner. Measurement-based timing analysis. In Tiziana Margaria and
Bernhard Steffen, editors, ISoLA ’08, volume 17 of Communications in
Computer and Information Science, pages 430–444. Springer, 2008.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In William Pugh
and Craig Chambers, editors, Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, PLDI ’04,
pages 131–144. ACM, 2004.

[WW07] Stephan Wilhelm and Björn Wachter. Towards symbolic state traversal
for efficient WCET analysis of abstract pipeline and cache models. In
Proceedings of the 7th International Workshop on Worst-Case Execution Time
(WCET) Analysis, July 2007.

[WW09] Stephan Wilhelm and Björn Wachter. Symbolic state traversal for WCET
analysis. In Proceedings of the International Conference on Embedded Software
(EMSOFT), pages 137–146, October 2009.

[YHTM96] Tomohiro Yoneda, Hideyuki Hatori, Atsushi Takahara, and Shin-ichi
Minato. BDDs vs. Zero-Suppressed BDDs: for CTL symbolic model
checking of Petri nets. In Mandayam Srivas and Albert Camilleri, editors,
Formal Methods in Computer-Aided Design, volume 1166 of Lecture Notes

153

Bibliography

in Computer Science, pages 435–449. Springer Berlin / Heidelberg, 1996.
10.1007/BFb0031826.

[Zar01] Sorin Zarnescu. TriCore Pipeline Behaviour & Instruction Execution Timing.
Infineon Technologies, 2001.

154

Index

abstract interpretation, 18
address compression, 74
ARM7, 13, 130
ascending chain, 20

basic block, 21
basic block execution, 51

abstract, 54
BDD, 31
binary decision diagram, 31
Boolean function vector, 129

cache analysis, 44, 45, 84
CAN, 8
canonical representation (BDD), 33
CFG, 20, 71

reconstruction, 43
characteristic function, 38
cofactor, 32
collecting semantics, 22
conjunctive partitioning, 74
conservative, 55
control flow

analysis, 43
graph, 20

deadline, 7
distributive, 18
domino effect, 57
dont-care node, 33

dynamic reordering, 36

elimination rule, 33
environment, 49
execution (concrete), 49
existential quantification, 39

feasible start state, 49
finite state machine, 37
fixed point, 19

iteration, 71
Kleene, 20
Tarski, 19

FlexRay, 8
flip-flop, 37
FSM, 37

Galois connection, 23, 53
gate, 37
greatest lower bound, 18

ILP, 11
image, 40
implicit path enumeration, 12, 45
integer linear programming, 11
interprocedural analysis, 25
IPET, 12
isomorphism, 32

latch, 37
lattice, 18

155

Index

complete, 18
power set, 18

least upper bound, 18, 22, 72
loop bound analysis, 43, 45

MDD, 129
measurements, 9
merging rule, 33
microarchitectural analysis, 44
minimum fixed point solution, 23
monotonic, 18, 23
multi-valued BDD, 129

ordered binary decision diagram, 31
out-of-order execution, 78
overlap bound, 79, 80

PAG, 25, 26
partially ordered set, 18
partition, 85
path

analysis, 45, 46
infeasible, 45
semantics, 22

pipeline
abstract, 52
abstract pipeline model, 63
abstraction, 52
analysis, 44, 69
concrete pipeline, 48
domain, 52
hazard, 47
stall, 47
state graph, 122

pipelining, 46
poset, 18
PowerPC, 57, 59, 117
program, 47

decomposition, 78
transition relation, 65, 66

quantification, 39

reachability analysis, 40
reduced BDD, 33
reduction, 33

relevant instruction, 79
retired, 49, 69

safe, 9
satisfying path, 33
scheduling, 8
sequential circuit, 37
Shannon expansion, 30
sound, 9
state explosion, 55
supergraph, 25
switching

algebra, 30
function, 30

timing anomaly, 57
timing schemes, 10
trace, 48

abstract pipeline trace, 53, 69
basic block, 51
valid, 49

transfer function, 22, 72, 83
transition relation, 38

model, 64, 65
program, 65, 66

TriCore, 59, 102

unbounded timing anomaly, 57

value analysis, 43, 45
virtual

inlining, 26
unrolling, 26

VIVU, 26

WCRT, 8
worst-case response time, 8

ZDD, 129
zero-suppressed, 129

156

