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Abstract

The topic of this thesis is the analysis of the evolution of software components. In order
to track the evolution of software components, one needs to collect the evolution in-
formation of each component. This information is stored in the version control system
(VCS) of the project—the repository of the history of events happening throughout the
project’s lifetime. By using software archive mining techniques one can extract and
leverage this information.

The main contribution of this thesis is the introduction of evolution usage trends
and evolution change patterns. The raw information about the occurrences of each
component is stored in the VCS of the project. By organizing it in evolution trends and
patterns, we are able to draw conclusions and issue recommendations concerning each
individual component and the project as a whole.

Evolution Trends An evolution trend is a way to track the evolution of a software
component throughout the span of the project. The trend shows the increases
and decreases in the usage of a specific component, which can be indicative of
the quality of this component. AKTARI is a tool, presented in this thesis, that is
based on such evolution trends and can be used by the software developers to
observe and draw conclusions about the behavior of their project.

Evolution Patterns An evolution pattern is a pattern of a frequently occurring code
change throughout the span of the project. Those frequently occurring changes
are project-specific and are explanatory of the way the project evolves. Each
such evolution pattern contains in itself the specific way “things are done” in
the project and as such can serve for defect detection and defect prevention.
The technique of mining evolution patterns is implemented as a basis for the
LAMARCK tool, presented in this thesis.
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Zusammenfassung

Der Mittelpunkt dieser Arbeit ist die Analyse der Evolution von Software Kompo-
nenten. Um die Evolution von Software Komponenten verfolgen zu können, benötigt
man Informationen über die Evolution jeder einzelnen Komponente. Diese Informa-
tionen sind gespeichert in Versionskontrolsystemen - den Speichern der kompletten
Geschichte der Ereignisse, die sich in der Laufzeit eines Projektes zutragen.

Der Hauptbeitrag diser Arbeit ist die Einführung von evolutionären Nutzertrends
und evolutionären Änderungsmustern. Die unverarbeiteten Informationen über die Ver-
wendung jeder einzelnen Komponente ist in dem Versionskontrollsystem eines Projek-
tes gespeichert, und durch die Organisierung in evolutionären Änderungsmustern und
Trends können wir Schlüsse daraus ziehen und Empfehlungen aussprechen für jede
einzelne Komponente und das Projekt als Ganzes.

Evolutionäre Nutzertrends Ein evolutionärer Nutzertrend ist eine Möglichkeit die
Evolution einer Software Komponente durch das komplette Projekt hindurch zu
verfolgen. Der Trend zeigt Anstieg und Abnahme der Nutzung einer einzelnen
Komponente, was Aussagen über die Qualität dieser Komponente zulässt. Das
Werkzeug AKTARI, das in dieser Thesis vorgestellt wird, basiert auf solchen
evolutionären Nutzertrends, und kann von Software-Entwicklern dazu genutzt
werden diese Trends zu erkennen und Schlüsse über das Verhalten Ihres Projek-
tes aus ihnen zu ziehen.

Evolutionäre Änderungsmuster Wir nennen ein Muster von Codeänderungen, das
durch die komplette Projektgeschichte hindurch wiederhohlt wiederkehrt, ein
evolutionäres Änderungsmuster. Diese wiederholt wiederkehrenden Änderungen
sind projektspezifisch und erklären die Art wie sich das Projekt entwickelt. Jedes
einzelne evolutionäre Änderungsmuster enthält die spezifische Art, wie im Pro-
jekt “Dinge getan werde” und kann somit zur Fehlererkennung und -vermeidung
dienen. Diese Technik ist implementiert als Basis des Werkzeuges LAMARCK,
welches in dieser Thesis vorgestellt wird.
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Chapter 1

Introduction
and Basic Concepts

“There are two mistakes one can make along the road to truth –
not going all the way, and not starting.’

– Buddha.1

During software development, a vast amount of data is being generated—every
version of the project’s code is being stored in version archives; every reported defect
is being saved in bug-tracking systems; every piece of communication is being kept
in email and forum archives. As of July 2011, for example, the software development
open-source community SourceForge.net hosted more than 300,000 projects and the
bug databases only of Eclipse and Mozilla combined contained more than 700,000
reports. The data stored in all those repository systems can be used to better understand
software development, to empirically validate ideas and techniques and to serve as a
base for finding solutions to existing research and industry problems. The research
field that mines all of those archived data is called mining software archives (MSR)—it
is the broad field of my thesis.

This thesis is dedicated to analyzing the history of software projects and to learn-
ing specifics related to the evolution processes in those projects. Everything always
evolves. On the path of evolution, mistakes may occur that have to be corrected. In
order to speed-up the evolution, the mistakes of the past need to be avoided in the fu-
ture. In the first part of my thesis, I have been exploring how different components of a

1Buddha (563—483 B.C), also known as Hindu Prince Gautama Siddharta, was the founder of Buddhism.

1
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software projects evolve and what specific behavior can be observed. In the second part
of my thesis, I have observed patterns of behavior in this evolution. All these observa-
tions serve for a project to learn from its past. Old, hidden mistakes can be identified
and new mistakes, resembling old ones, are prevented from being introduced into the
project.

1.1 Contributions

The main focus on this thesis has been the analysis of the evolution of software com-
ponents. This work began by conducting observations on the processes of evolution
and the emerging trends in software components. Once this observation was in place,
we were able to extract evolution patterns out of it and give structure to the project’s
evolution.

In order for this work to be useful and applicable in real-life scenarios, we made
sure that all the algorithms and tools scale to real-world programs (all the tools and
techniques developed are publicly available). We hope that our work will encourage
further exploration of the presented topics and techniques, by the research community.

The remainder of this thesis is structured as follows:

• In Chapter 2, we present the concept of usage trends of software components
and discuss in detail the different types of trends. The classification of the trends
into specific categories, e.g. increasing or decreasing, is the first step into using
those trends as predictors for the future of a software project. We call those trends
evolution usage trends, as they are based on the usage statistics of the specific
component throughout the time. The presented technique is incorporated into
our AKTARI tool. We applied AKTARI to APIs and their versions in order to
explore the question if the quality of an API can be predicted by its popularity.

• In Chapter 3, the focus falls on the evolution of objects. By mining the changes
between two versions of a project, we were able to identify reoccurring change
patterns. Those evolution change patterns are part of the evolution of a project
and can serve to detect yet undetected defects, to prevent the occurrence of such
defects and to generate a documentation of the way a specific object is supposed
to be used. In this chapter we present our LAMARCK tool that has a prediction
accuracy of almost 100%.

• In Chapter 4, we harness the power of the evolution change patterns, presented in
the previous chapter, to evaluate the modularity of software modules. A module
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is classified to have high modularity, if the changes in its implementation do not
influence its usage.

The remainder of this chapter defines common terms used throughout the thesis,
illustrating them with an initial example (Section 1.2), and lists the publications this
thesis is build upon (Section 1.3). The thesis concludes with a summary of its contri-
butions and ideas for future work in Chapter 5.

1.2 Example

The source code of a software project is always undergoing changes and is constantly
evolving. The history of these changes is usually stored into a so called version control
system (VCS), e.g. CVS 2 or SVN 3, which keeps a copy of the project’s history—this
history is called the project’s archive.

One can learn a lot about the project from analyzing the information stored in its
archive. In this example we will illustrate, using tokens, how the evolutionary infor-
mation, stored in the VCS can be used to improve the project. Here we use the JAVA
definition for token:

Definition 1 (Token) All characters used in source code are grouped into symbols,
called tokens—a token represents some syntactic content of an element. There are
several categories of tokes: identifiers, keywords, separator, operator, literal and com-
ment.

In order to extract the tokens from the version control system, we used the APFEL
tool [44], which extracts all the tokens from a project’s CVS archive and stores them
in a database (together with some additional information regarding the token location,
time of deletion of the token, number of occurrences of the token, etc.). Based on this
collected data, one can come up with project-specific trends, related to the analyzed
tokens. An example of a trend can be seen in the last column of Table 1.1.

Definition 2 (Evolution usage trend) An evolution trend is a graphical representa-
tion of the usage evolution of a software component, throughout a given time interval,
based on the number of usages of this component at each discrete moment in time,
during this interval.

2Stands for “Concurrent Versions System”: http://cvs.nongnu.org/
3Stands for “Subversion”: http://subversion.tigris.org/

http://cvs.nongnu.org/
http://subversion.tigris.org/
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Figure 1.1: The process of extraction and usage of trends of software components.

Number of occurrences per year

Method Calls 1999 2000 2001 2002 2003 2004 2005 2006 2007 Evolution

getType 300 302 150 117 120 102 103 102 117

getProperty 2 8 10 20 28 37 37 37 41

getNextSibling 258 260 142 2 2 2 2 2 2

addByteCode 248 220 108 106 0 0 0 0 0

putProp 240 242 71 67 18 14 14 14 16

reportConversionError 30 30 16 0 0 17 17 17 17

Table 1.1: Lexical level tokens evolution for the RHINO project: method calls.

Figure 1.1 illustrates this whole process of extracting the tokens from the VCS and
analyzing their evolution more in detail—starting from the source code archives stored
in the VCS, we extract usage data for each token and create its evolution trend. Having
those trends available, we can classify and analyze them into different trend types (e.g.
increasing or decreasing). Once the evolution trends are built and analyzed, they can
be used to analyze the project and serve different areas of the software development
process, like defect prediction and detection, recourses optimization, etc. This general
schema can be used to track the evolution of any kind of program component, e.g.
objects, modules or entire libraries and is being used throughout this entire thesis (see
Chapters 2, 3 and 4).
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Number of occurrences per year

Imported classes 1999 2000 2001 2002 2003 2004 2005 2006 2007 Evolution

java.io.Serializable 0 0 4 9 10 10 10 13 15

java.io.IOException 11 10 7 11 9 9 6 8 8

java.util.Hashtable 32 32 16 12 14 14 13 13 13

java.util.Vector 31 33 14 3 3 4 4 4 4

java.util.Enumeration 23 26 9 8 7 6 3 3 3

java.util.Stack 8 8 3 0 0 0 0 0 0

Table 1.2: Architectural level tokens evolution for the RHINO project: imports.

1.2.1 Trend Types

As mentioned in the previous section and illustrated in Figure 1.1, after collecting the
evolution trends we analyze and classify them. Let us take a closer look at the different
types of trends that exist.

As one can see, from the depicted trends in the last column of Table 1.1, each
trend’s curve looks different. In order to be able to analyze those curves, we classify
them into four main categories. We differentiate between four types of trends, based on
the slope of the trend’s curve. We have discrete data points and can compute the slope
between each two data points. The ratio between the positive and the negative slopes
determines the overall curve slope, i.e. if there are more segments with positive slope
than with negative, the overall slope is determined as positive. Thus an increasing
trend is a trend, which has a positive cumulative curve slope; a decreasing trend is a
trend with negative cumulative curve slope; a stable trend has a slope of 0 (i.e. it is a
straight line) and an undecided trend is a trend, whose type cannot be deterministically
identified, because its segments have an equal number of positive and negative slopes.

Now let us take a closer look at some of the more interesting types of evolution
trends. During the evolution of a project, gradually decreasing and gradually increasing
numbers of components occurrences can usually be observed. One of the interesting
cases is, for example, when a component has completely or almost completely disap-
peared from the code—then its usage is mapped to a decreasing evolution trend. This
behavior may occur due to code restructuring or change in the project’s requirements.
No matter, however, what the reason for the disappearance of a component is—it has
been deleted on purpose and as such, most probably, must not be re-used again. A
location where such a component reappears after some time, is a potential code defect
location.



6 CHAPTER 1. INTRODUCTION
AND BASIC CONCEPTS

Let us now take a look at a specific component example: “Can it be said that
the usage of the import statement java.util.Stack is obsolete?” The general answer
to such a question is “No”. However, when it comes to the RHINO4 project, the an-
swer is “Yes”. As it can be seen from Table 1.2, the number of usages of the import
java.util.Stack statement goes down to zero over time and remains zero. This means
that this import statement has become obsolete and re-using it in this particular project
might contradict the established project structure, logics or architecture. In this case,
a future usage of import java.util.Stack in the RHINO project can be classified as a vi-
olation of a project specific evolution trend. What such an evolution trend provides is
project-specific information—no general tool would ever recommend against the us-
age of java.util.Stack, as it is a standard JAVA library class—in this particular, project-
specific case however this is exactly the case and it could not have been spotted unless
by analyzing the evolution behavior of this class in the specific project.

1.2.2 Applications

Let us now discuss briefly the possible applications of evolution trends. Those appli-
cations will later be illustrated more in detail in each separate chapter of this thesis.

Correction

Evolution trends can be used to discover unknown code defects. Knowledge about de-
creasing trends, for example, can be used to not only recommend possible substitutes to
deprecated component, but to also discover such deprecated components that still exist
at some code locations. This can be done by checking the entire project code against
the already collected trends and detect possible trend violations. Such deprecated to-
kens can exist for example, because of backward-compatibility or defective code. With
this approach can be detected those unknown, but still existing code smells and defects,
which might cause a post-release failure of the project.

Going a step further, based on the similarity of the contexts of two trends, further
correction recommendations can be issued. A warning message of the following kind
can guide the developer: “Based on the evolution trend of component A at location
X and the code similarity between location X and Y, please apply the same evolution
trend behavior of component A for component B at location Y.”

4RHINO is an open-source implementation of JavaScript written entirely in Java. It is typically embedded
into Java applications to provide scripting to end users. http://www.mozilla.org/rhino/

http://www.mozilla.org/rhino/
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old method call new method call

addForwardGoto addGotoOp
badArg argBug
generateCodeFromNode generateExpression
getNextSibling getNext
reportError reportSyntaxError
signature scriptSignature

Table 1.3: Renamed method calls.

Prediction

Having the evolution trends available can be of help for planning the resources for the
future development and support of the software project. The evolution trends make
it possible to predict how the evolution of a component will continue. Based on this
information, project managers can create plans for the following months of the project,
deciding on which weak or strong components to focus on. For example, when a soft-
ware project manager needs to take a decision regarding the distribution of the testing
resources, she might decide to focus her team’s attention on those components, which
are exhibiting unexpected evolution behavior. What is expected behavior, one can de-
duce both from the specifications of the project and from the history of a component
and its evolution trend (e.g. a decreasing trend should continue to decrease—see Chap-
ter 2).

Trends Correlations

Having available all the evolution data, one can also detect correlations between com-
ponent trends. One can, for example, detect pairs of trends, where one trend rises when
some other decreases [44]. Having the components trend information available, makes
it possible to detect the deleted components and to give an appropriate recommendation
for their substitution. Such recommendation can either be given at real-time, while the
developer is typing the code and is about to use a component with a decreasing trend,
or at a random moment in time, by just running the detected trend correlations against
the project’s code.

For example, after investigating the behavior of the method call tokens in RHINO
(see Table 1.1), we have discovered several method calls substitutions (see Table 1.3),
based on the decreasing number of occurrences of some tokens and the increasing
number of occurrences of others. In RHINO, we detected 31 different method calls
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substitutions, e.g. addForwardGoto has been substituted with addGotoOp.
Another example of trends correlations is analyzing the evolutionary behavior of

import statements. An observation that the usage of one particular import state-
ment has been decreasing, while simultaneously the usage of another import state-
ment has been increasing with the same rate, can lead to recommendations of the kind
“Use import statement X, instead of import statement Y.” This scenario can occur, for
example, when an import class becomes deprecated.

Detecting correlations between trends can be of great value to developers, as it not
only serves as a warning against the usage of the deprecated component, but also as a
suggestion for which other component can be used instead.

1.3 Publications
Ground results for the work presented in this thesis have been published in the follow-
ing publications:

• Yana Mileva and Andreas Zeller. Project-Specific Deletion Patterns. In
RSSE’08: Proceedings of the 2008 international workshop on Recommenda-
tion systems for software engineering, pages 41–42, New York, NY, USA, 2008.
ACM.

• Yana Mileva, Valentin Dallmeier, Martin Burger and Andreas Zeller. Mining
trends of library usage. In IWPSE-Evol’09: Proceedings of the joint interna-
tional and annual ERCIM workshops on Principles of software evolution (IW-
PSE) and software evolution (Evol) workshops, pages 57–62, New York, NY,
USA, 2009. ACM.

• Yana Mileva Valentin Dallmeier and Andreas Zeller. Mining API popularity.
In TAIC PART’10: Proceedings of the 5th international academic and industrial
conference on Testing - practice and research techniques, pages 173–180, Berlin,
Heidelberg, 2010. Springer-Verlag.

• Yana Mileva, Andrzej Wasylkowski and Andreas Zeller. Mining evolution of
object usage. In ECOOP’11: Proceedings of the 25th European conference on
Object-oriented programming, pages 105–129, Berlin, Heidelberg, 2011. Springer-
Verlag.

• Yana Mileva and Andreas Zeller. Assessing Modularity via Usage Changes.
In PASTE’11: Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on
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Program analysis for software tools, pages 37–40, New York, NY, USA, 2011.
ACM.

1.4 Summary
This first chapter introduces the field of mining software archives (MSA) and gives an
initial view of the rest of this theses, as well as presents the concepts of an evolution
trend and trend types. We saw a first example of evolution trends of specific software
components and explored some of the applications the evolution trends have.

After this initial introduction, we are ready to go deeper into the different types of
evolution trends and components analysis. This first chapter introduced a general ap-
proach, used throughout this thesis, for collecting evolution data and extracting evolu-
tion usage information of a specific software component. The rest of the thesis explores
how the evolution of different software components look like and what implications it
has on the project as a whole.
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Chapter 2

Evolution of API Components

“I’m an inventor. I became interested in long-term trends because an invention has to
make sense in the world in which it is finished, not the world in which it is started.”

– Ray Kurzweil1

When designing a piece of software, one frequently must choose between multiple
external libraries and library versions that provide similar services. Which library is the
best one to use? Is the latest version the best one to use? Has it been widely adopted
already?

We mined hundreds of open-source projects and their external dependencies in or-
der to observe the popularity of their APIs and to give recommendations of the kind:
“Projects are moving away from this API component. Consider a change.” We con-
sider the open-source community to be a crowd of experts and want to extract and learn
from their experience. Such wisdom of the crowds can provide valuable information to
both the API users and the API producers, by helping them avoid pitfalls experienced
by other developers, and by showing important emerging trends in API usage.

Preliminary results of the work presented in this chapter are published at IWPSE-
Evol’09 [25] and TAIC PART’10 [26].

1Raymond “Ray” Kurzweil is an American author, scientist, inventor and futurist. He is involved in
fields such as optical character recognition (OCR), text-to-speech synthesis, speech recognition technology,
and electronic keyboard instruments.

11
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2.1 Introduction
Nowadays, hardly any software project exists that does not use external libraries and
their APIs. However, despite this strong connection between projects and external
libraries, no proper manner of evaluating the quality and success of an API and its
versions exists. Means of communication like emails, newsgroups and bug-tracking
systems are indeed present, and they might be concerned with the API quality, but this
information is not to be found there in a structured or unbiased way. For instance, the
absence of a bug report, might mean that the API is not being used at all, or that it is
being heavily used, successful and free of bugs. In our research we consider the usage
popularity of an API to be indicative of its success. We consider the lack of popularity
or the decrease in popularity to be indicative of lack of success. Popularity of an API
is measured by the number of its users.

2.2 Early Adopters vs. Late Followers
The work presented in this chapter, is based on evaluating the popular choices of API
users and aims at also predicting the users’ behavior in the future. Before we delve into
the specifics of the technique, I would like to elaborate more on the source of the ideas
we got for this direction of our research.

Wisdom of the crowds principle The collective knowledge is greater than the
knowledge of the individual.

This observation is based on the book The Wisdom of the Crowds [37], where the au-
thor, James Surowiecki, goes at length about the aggregation of information in groups
that results in decisions, which are better that the decision any single individual could
have taken. The observations of the author are supported by numerous case studies,
coming primarily from the fields of economics and psychology.

While in the case of Surowiecki’s book, the crowds he describes are crowds of
random people, in our case we restrict the domain of the crowd to the developers com-
munity. In this thesis many observations are made and concussions are drawn based
on the wisdom of the crowd of experts, as we consider the open-source community a
community of experts, when it comes to API usage. Let me give an example: when
discussing the popularity of a given library, we rely on the decision the crowd of users
takes, related to this library, i.e. wether to use this library or not. In this case the usage
experts related to a library’s usage are its users, thus we rely on the decision of the
crowd of those experts, when drawing conclusions or issuing recommendations.
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Figure 2.1: The diffusion of innovations according to Rogers.

Definition 3 (Early adopter) An early adopter is an individual, who adopts a tech-
nology as soon as it is available.

Definition 4 (Late follower) A late follower is an individual, who adopts a technology
after a certain period of time.

The above two definitions are based on Everett Rogers’ theory of Diffusion of inno-
vation [35] that groups the adopters in five categories: innovators, early adopters, early
majority, late majority and laggards. Innovators are the first individuals to adopt an in-
novation; the early adopters are the second fastest category, who adopt an innovation;
the early majority adopts an innovation after a varying degree of time; the late major-
ity adopts an innovation after the average individual of the society adopts it and the
laggards are the last to adopt an innovation. Those different categories have been intro-
duced to describe the process of adoption of a new product or technology. According
to Rogers’ theory the adoption of an innovation follows an S curve (see Figure 2.12).

2Source: Wikipedia http://en.wikipedia.org/wiki/Diffusion_of_innovations.
Accessed on December 19, 2011.

http://en.wikipedia.org/wiki/Diffusion_of_innovations
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We have simplified Rogers’ theory for the needs of our research and differentiate
only between two types of adopters – early adopters and late followers. In our case the
early adopters group contains Rogers’ groups of innovators and early adopters and the
late followers group contains the early majority, late majority and laggards.

To be more specific, when it comes to library versions usage, for example, users
can be classified in a similar way—those who start using the newest library version
immediately after it is out and those who prefer to wait and see if it is safe to switch
to. Every user has reasons for such behavior, such as the need for new functionality
(early adopters) or security (late followers). Our analysis is being fed by the data
collected from the early adopters and is being used to give recommendations to the
late followers.

We have developed a tool, called AKTARI3 (see Section 2.5), that analyses the
adoption of libraries and their versions, based on the early adopters data and is able to
issue recommendations that will concern the late followers. Early adopters are rarely
influenced by recommendations, as they know about the risks and benefits of being the
first ones to use a new library or library version and their reasons for switching are
not risk-driven. However, our approach is able to assist late followers in making an
informed decision about which library and library version to use. Even though AKTARI
is specifically developed to deal with libraries, the approach itself is applicable to the
adoption of any new technology in the life cycle of a software project.

2.3 Evolution of APIs

In order to leverage the wisdom of the crowds of API users, we need to mine a large
body of projects. For this purpose we collected information from hundreds of open-
source projects and analyzed the overall global API elements usage trends. We evaluate
the popularity of an API, based on the popularity of its components (classes and inter-
faces). To explore the API elements usage, we mined information from the source code
history of 200 APACHE4 and SOURCEFORGE5 projects.

Let us give an example of an API component popularity trend. As seen on Fig-
ure 2.2, the java.io.StringBufferInputStream class is not being very pop-
ular and its usage is declining. Investigation of the reasons behind this drop in popular-
ity showed that the class is in fact defective. Such information regarding API elements
can serve both the API users as well as the API producers.

3“Aktari” is the Swahili word for “crowd”.
4http://www.apache.org/
5http://sourceforge.net/

http://www.apache.org/
http://sourceforge.net/
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2.3.1 API Users and Producers

Even though external libraries are an important part of projects’ source code, no direct
feedback means exist that can determine and display the popularity of an API.

When analyzing API popularity we focus on the “weak spots” of the API, i.e. those
elements that are unpopular or declining in popularity. Having such information avail-
able can be beneficial for the following two groups:

API users. The software developers who use external libraries in their projects can
profit from knowing which are the “weak spots” in an API. If a lack of or a de-
crease in the usage of an API element exists this is an indication that the majority
of the users prefer not to use it. Such information will help the software devel-
opers make better choices regarding the usage of API elements by avoiding the
indicated bad experience of their peers.

API producers. In order to deliver a better product, the library developers need to
know how their API is being used by the end user. Once they identify the “weak
spots” of their API, they can direct their attention to investigating why the pop-
ularity is such. Similarly to market analysis results, such data can help the API
producers provide a better product as a whole based on the preferences of their
users. In this case we consider an API producer any member of the team involved
in the API production—developers, testers and managers.

After discussing the importance of API popularity data, in the next section we
present our approach to collecting and analyzing API usage trends.

2.3.2 Collecting and Presenting Usage Data

For our analysis we used projects from both APACHE and SOURCEFORGE—two of the
most widely used open-source repositories. We downloaded and analyzed the source
code of 200 projects (50 from SOURCEFORGE and 150 from APACHE) for the period
beginning of January 2008—end of January 2009).

To analyze the popularity of an API at the given time period, we counted the number
of projects in which each API element was used in that period. In order to do that we
analyzed the number of projects per month that used a specified import statement.
By analyzing the usage of each import statement, we implicitly analyze the overall
usage of the API itself and explicitly analyze the API elements. From January 2008
to January 2009, in the 200 projects, we detected the usage of 23401 unique import
statements.
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Figure 2.2: Examples of the four usage trend types.

Our AKTARI tool analyses the collected data and plots a usage trend (for a defini-
tion please refer to Section 1.2) for the collected API elements (see Figure 2.2). The
data is accumulated over the entire number of projects that use the specified import
statement. Based on that data the usage trends are being plotted. AKTARI also comes
as an interactive web-version (see Figures 2.7 and 2.8) that plots the collected data for
the user 6.

Our popularity analysis is straightforward in its nature—we compute the number
of times per month a specific API element is used throughout the 200 open-source
projects we mine. The usage recommendations, however, that our AKTARI tool gives
based on this popularity analysis, are not so straightforward and its evaluation will be
addressed in the next sections.

2.3.3 Predicting Usage Trends

Due to the nature of software projects development, the API elements usage trends are
also quite diverse in their shapes. As it is not possible to frame the trends into any other
general way, we differentiate between four main types of trends, based on the slope
of the line (see Section 1.2.1): increasing trend (javax.swing.JScrollPane),
decreasing trend (junit.framework.AssertionFailedError), and a trend
that remains stable (javax.swing.border.Border)—see Figure 2.2. The trends

6http://www.st.cs.uni-saarland.de/softevo/aktari.php

http://www.st.cs.uni-saarland.de/softevo/aktari.php
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that cannot be classified in either of the above categories we classify as undecided (e.g.
junit.framework.TestSuite)

All kinds of trends carry valuable information, but the ones that are most interesting
for us are the decreasing ones. A decrease in the usage of an API element can be due
to factors like: defects in the API, deprecated classes or methods, or the availability of
a different and better API. However, no matter what the reasons behind a usage drop
are, the API users should be warned about this element. When detecting a decreasing
trend or an unpopular API element (element used by less than 1% of the projects) our
AKTARI tool issues a warning of the kind “Projects are moving away from this API
element. Consider a change.” This warning is based on the history and the type of the
trend—the history of usage is indicative of the future of usage7. This message serves
to raise the awareness of the API users of potential problems with the specific API. It
is also a red flag for the API producers.

Because of the high interest in the shape of the trend, we would like to be able to
predict how the trend will continue to behave, in order to use that information in rec-
ommending for or against the API usage. Due to the diverse nature of the shapes of the
trend curves, it is hard to find a predicting method that will work for all types of curves.
However, as we are interested only in the general direction of a trend, i.e. if the trend
is increasing, decreasing or stable, linear regression will give us descriptive enough
results for our evaluation. Linear regression is a statistical approach, that assumes that
the relationship between the variables is linear. One of its applications is the goal of
predicting and forecasting of events.

Definition 5 (Linear Regression) In statistics, simple linear regression is the least
squares estimator of a linear regression model with a single explanatory variable. In
other words, simple linear regression fits a straight line through the set of n points
in such a way that makes the sum of squared residuals of the model (that is, vertical
distances between the points of the data set and the fitted line) as small as possible8.

When dealing with real-life scenarios one often has to choose between speed and
precision. In the presented work we had to choose the best prediction model for the
task and decided for linear regression, due to its speed related to other models and the
type of the data we mine. For completeness however, we will mention a few other
models available for predicting the behavior of trends.

7An astute reader will notice that the situation may occur, where a sudden drop or rise in the trend
happens. Unfortunately such sudden changes are not possible to predict, without having some other history
data indicatory of it. A way to solve that problem would be to examine only a specific period of the entire
history span—the last 6 months, for example and make predictions based on that.

8Source: Wikipedia http://en.wikipedia.org/wiki/Simple_regression Accessed on
February 13th, 2012.

http://en.wikipedia.org/wiki/Simple_regression
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Reverse arrangement test (RAT) The RAT test is a statistical test for detecting trends,
that makes no assumption about what model a trend might follow (while linear
regression assumes linearity). This test assumes an equal interval of time be-
tween each event.

Multivariate adaptive regression splines (MARS) The MARS analysis is a form of
regression analysis that can be seen as an extension of linear models, i.e. the
MARS models are more flexible than linear regression models.

Autoregressive Integrated Moving Average (ARIMA) In statistics and econometrics,
and in particular in time series analysis, an ARIMA model is fitted to time series
data either to better understand the data or to predict future points in the series
(forecasting). ARIMA helps to choose a model that best fits the time series.

As the prediction model of linear regression fits well our needs it is the model we
chose for our evaluation. The evaluation results are discussed in the following section.

2.3.4 Evaluation
Usage popularity data and trends carry valuable information to the API producers as
of how popular their API and its elements are (also in comparison to other similar li-
braries) and thus assists them in taking future maintenance and management decisions.
As mentioned earlier, such usage or popularity data is also useful for the users of an
API. That is why it is important to be able to predict the future behavior of a given
usage trend.

Our AKTARI tool is able to offer usage recommendations, based on the past usage
trends of an API element. More specifically, if a decrease in popularity or low popu-
larity of the specified API element is observed, we will warn against the usage of this
element.

In this section we proceed to evaluate the correctness of the above statements and
the usefulness of the technique, from both quantitative and qualitative perspective.

Quantitative Evaluation

We analyzed the past usage trends of API elements as accumulated over all the 200
analyzed projects. Based on the notion that the type of the past accumulated usage
trend will not change in the future, we give usage recommendations regarding a specific
API element.

Hypothesis 1: The past usage trend of an API element is predictive of the future usage
trend of the same element.
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Table 2.1: Precision of the import statements usage trends recommendations.

Trends Actual
Increasing Stable Decreasing

Pr
ed

ic
te

d Increasing 67% 33% 0%

Stable 1% 98% 1%

Decreasing 0% 18 % 82%

In order to evaluate the correctness of our recommendations we took the usage
trends of the import statements for the period beginning of January 2008—end of
January 2009 (13 months) and split the period it into two parts—2/3 vs. 1/3. We
wanted to see if the trend that we observe in the first period will continue to have the
same type during the second period. In order to check that, we used linear regression
on the first period January 2008—October 2008 (8 months) and on the entire period
(all 13 months) and compared the results for each import statement for the first period
and for the entire period.

Using linear regression prediction model we were able to predict the behavior of
the evolution trend. We have evaluated our results in terms of precision and recall (see
Table 2.1).

Definition 6 (Precision) Precision is the fraction of retrieved instances that are rele-
vant. The precision values range from 0 to 1 (or 0% to 100%), where high precision
means that an algorithm returned more relevant results than irrelevant. A perfect pre-
cision score of 1 means that every result was relevant.

Definition 7 (Recall) Recall is the fraction of relevant instances that are retrieved.
The recall values range from 0 to 1 (or 0% to 100%), where high recall means that an
algorithm returned most of the relevant results. A perfect recall score of 1 means that
all relevant results were retrieved.

As it is evident from Table 2.1, we have very high precision values when it comes to
predicting that an increasing trend will continue increasing, a stable trend will remain
stable and a decreasing trend will keep on decreasing. Note that, due to the nature of
software projects development, it is very rare to observe an accumulated usage trend
that has no fluctuations in its shape, thus a precision close to 100% in all cases would
not be reflective of the real software development process. What these results show is
that the general evolution trend of a software component usually remains stable.
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The recall values, we computed, are also quite high—ranging from 0.82 to 0.95.
Finally, our accumulated evaluation showed that in total in 84% of the cases our

prediction of the future trend and thus our recommendations are valid.
Those results are a clear evidence that our recommendations regarding the future

behavior of usage trends are accurate. In conclusion of the evaluation of our hypothesis,
we can state that:

The past usage trend of an API element is indeed predictive of the future usage trend
of the same element.

Qualitative Evaluation

One can expect that with the evolution and growth of projects the usage of the specific
import statements will increase. This is indeed true for those libraries and their
APIs that are widely used by the software developers (javax.swing.JScrollPane, see
Figure 2.2). However, there are cases where the usage is decreasing. As mentioned
before, we are mainly interested in those cases where a decrease in the usage is present
or the actual usage is very low. We assume that such usage (or low popularity) of a
specific import statement is indicating that this API element is starting to be considered
outdated, obsolete or defective.

Hypothesis 2: One should consider the library’s popularity before using it.

In Figure 2.2, one can see examples of classes with decreasing or low usage. We
manually investigated the possible reasons behind some of those trends. Here are a few
interesting cases:

java.lang.String: Even though the String class is a widely used class, there is an
explicit rule in the Java Coding Convention stating that this class should never
be imported. Thus a developer importing it violates the Java Coding Conventions
and introduces a code smell in the source code. A code smell is a source code
issue that does not currently lead to failures of the program, but might do so in
the future.

junit.framework.AssertionFailedError: In the case of this class we found a commit
log message reporting an issue with AssertionFailedError when using it
in combination with the jmock library. This is an example of a library compat-
ibility problem for projects using these libraries.

java.io.StringBufferInputStream: In this case, the StringBufferInputStream
class is declared deprecated, as it does not correctly convert characters into bytes,
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i.e. it is erroneous. Even though the documentation of the API explicitly states
that the class StringReader should be used instead, there are still projects
that use the deprecated StringBufferInputStream class. Based on the
reasons why this class was deprecated (wrong conversion of characters) one can
assume that those projects that are still using it are susceptible to code defects.

These examples show real source code problems, introduced due to the inappropriate
usage of API elements. This allows us to confirm our hypothesis and to state that:

Before using a specific API element, one should consider its popularity gradient.

2.3.5 Threats to Validity
As any empirical study, this study has limitations that must be considered when inter-
preting its results.

The approach may cancel itself. When one gives recommendations based on past
trends, there is always the question: what will happen if everybody indeed starts
following the recommendations—will those recommendations not cancel the fu-
ture refreshment of their own source? This issue is solved by the introduction
of the notion of early adopters and late followers [25] (see Section 2.2). This
notion states that there will always be users, who take the role of early adopters
of a technology (in our case API element), despite the risks and the recommen-
dations.

The approach needs more data. For our approach to give correct information and
recommendations, we need to have enough data available. It might happen that
in the data body we have, there are only few projects using a specific library—
in this case if even one project moves away from this library this will influence
greatly the evolution trend type. We believe that this is a problem all prediction
techniques carry and nobody knows when the collected data is enough. This
problem can be avoided to some extend, though not completely, by using thresh-
olds for the prediction data reported, based on the overall number of usages of a
library, compared to the whole data body.

The approach is applicable only to Java projects. It might seem at first glance that
our approach is designed strictly for Java projects, as our examples are for Java
APIs. However the analysis of the import statements can be easily transferred
to analysis of imports in any other language—the way we scan through a Java
source file, can be used to scan through any other programming language source
file.
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2.4 Evolution of API Versions
Most of today’s software projects heavily depend on the usage of external libraries.
Each of those libraries comes in different versions. One would assume that it is wise to
always rely on the latest library version, as it is the version, which is currently the most
refined one, well-structured and bug-free. However, in practice, things are different.

In this section, we leverage the wisdom of the crowds, when it comes to the usage of
individual library versions. We consider the choice of the majority to be the wise choice
in regard to which library version should be used. To explore the choices made, we
mined information from the history of 250 APACHE9 projects and the external libraries
they use, in order to answer the following question: Which library versions are the
most popular ones?

Mining the usage of an API version vs. mining the usage of the API itself is trick-
ier, as usually there is no straightforward way to identify the API version used in the
majority of the software projects. As our focus is analysis of JAVA projects we could
focus on those projects, that are managed by MAVEN10, a widely adopted project man-
agement tool for JAVA projects. In MAVEN, library dependencies are stored explicitly
in meta information files, which makes it possible to extract and analyze version usage.

To analyze the global usage of library versions, we used 250 real-life open-source
projects from the APACHE foundation11, one of the largest and most popular reposi-
tories for open-source JAVA projects. In total, we analyzed the usage of 450 different
external libraries versions per month over the period of two years.

2.4.1 API Users and Producers
The decision to use a specific library version usually depends on factors like reliability,
functionality, usability, documentation, quality and compatibility. All of those factors
come into play when a user decides whether to use a specific library version or not. By
analyzing the choices made by software developers with respect to the usage of library
versions, we estimate which are the most popular ones and thus the ones recommended
for usage.

Having such information available can be valuable for two groups of developers:

Library users. Library users can highly profit from knowing how frequently a partic-
ular library version is used by the majority. Suppose, for example, that many

9http://www.apache.org/
10http://maven.apache.org/
11The reader might notice that we use different data sets fir evaluating the techniques presented in Sec-

tion 2.3 and Section 2.4. The data set from Section 2.4 can be used for evaluating the Section 2.3 technique,
but the other way around is not possible, due to the need to use only Maven-managed projects.

http://www.apache.org/
http://maven.apache.org/
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people have switched back from a particular version—due to a bug in it. Then,
warning potential new users of this version can help them avoid facing the same
issues again. Users can thus save time and improve the quality of their software
product.

Library developers. Up to now, library developers did not have any other means for
getting user feedback except direct communication with the users. With our
approach, they can evaluate how successful a particular version is and thus im-
prove the future development of their library. Our technique thus gives library
developers a means of collecting indirect feedback from users to provide better
service.

2.4.2 Extracting Version Dependencies

In a project managed by MAVEN, meta data describing the project data is represented
by MAVEN’s Project Object Model (POM). MAVEN relies on the presence of a central
repository that stores different versions of commonly used libraries.

Since its first release in 2002, MAVEN has become one of the leading open-source
project management tools for JAVA projects. The actual number of projects using
MAVEN cannot be measured directly. However, in September 2008, the central MAVEN
repository was hit over 250 million times [16]. Usually, a MAVEN installation checks
the central repository only once per day, which implies that MAVEN is actively used by
a large number of developers.

In MAVEN, required libraries are described as dependencies in an XML file called
pom.xml, a descriptive declaration of a POM. Library usage information is stored in
<dependency> elements. These elements list all the libraries that the project de-
pends on. Each element has three mandatory children: a group id (company, team,
organization, or other group), an artifact id (unique id under group id that represents a
single dependency), and a version (specific release). These three components uniquely
identify a specific version of a library. Thus, <dependency> elements define all re-
quired libraries unambiguously, including their version number. Figure 2.3 shows an
excerpt from a pom.xml file.

To analyze the usage of library versions, we collected dependencies for all of the
250 APACHE projects on a monthly basis over a period of two years. For each month,
we determined the library usage information for all dependencies referenced by at least
one project.
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<project>
<dependencies>

<dependency>
<groupId>servlet-api</groupId>
<artifactId>javax.servlet</artifactId>
<version>2.3</version>

</dependency>
</dependencies>

</project>

Figure 2.3: Declaring a dependency to the servlet-api library in a MAVEN Project Ob-
ject Model
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Figure 2.4: Usage trends of the junit library

2.4.3 Usage trends

Suppose you are a head of a team developing a library. How can you make sure that
you are providing the best service for its users? In order to determine the evolution
of the usage of libraries and their versions, we mined the entire archive history of
the aforementioned 250 APACHE open-source projects for the period January 2007 to
January 2009 (excluding).

As a first example, consider the usage trend of the junit library for this period.
In Figure 2.4, one can see that version 3.8.1, which is the oldest version of this library
used in that period of time, remained the most popular and widely used one. It was even
more popular than the latest 4.4 version. From a user’s point of view, we investigated
the reasons behind this behavior and found out that there was a big API change from 3.x
to 4.x. There are examples of projects’ problem reports where it is stated that switching
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Figure 2.5: Usage trends of the log4j library

will be “lots of work” (e.g. Gentoo bug entry 129773). Also due to the change in the
API there was an issue with backwards-compatibility—we found examples of users
who decided to stick to the older versions as the 4.x ones had compatibility issues with
the ant library. Also, the 4.x versions required a newer jdk version; the developers were
concerned that this might be a reason for their clients to not use their product.

Figure 2.5 shows another example of usage trends of the different versions of the
log4j library. The usage of log4j 1.2.8 was at its highest point in mid-2007. What
strikes however is the usage of the log4j 1.2.15 version: At the moment it was released,
there was a peak in its usage history and then a fast and sudden drop shortly afterwards.
This was due to a bug in its implementation (see Apache bug entry 43304). Projects
decided to switch to the new version (indicated by a drop in the usage of the 1.2.8),
but after discovering the bug they switched back (drop in 1.2.15) and switched to the
closest earlier version (increase in 1.2.14). The fact in this case is that 1.2.15 was
rejected by its users.

Those are only a few of the many examples of trends in library versions usage.
For developers of libraries, such trends clarify the ways the users are using individual
versions. As developers know what the differences between each version are, they can
link the specific library version features to the library popularity and thus analyze the
users’ needs.

Trends in library usage are a method for displaying the preferences of the users.
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Most popular versions

When a software developer decides to use a library, she has to decide which of the
available versions is the best one to use. As this choice is made at a certain fixed mo-
ment in time, the recommendation should also be based on the usage at this particular
moment in time.

To identify the most popular and thus recommendable library versions for usage in
January 2009, we mined the 250 projects and their library dependencies for January
2009. Some of our results are depicted in Table 2.2.

To measure the popularity of a particular version, we consider the number of current
usages of the version the user wants to switch from and the number of current usages of
the version the user wants to switch to. For example, for a developer using derby 10.1
that wants to switch to derby 10.2, we would recommend not to do so, as in only

# derby 10.2
# derby 10.2+# derby 10.1

=
1

1+6
= 14%

of the cases version 10.2 is used. We again investigated the reasons behind this usage
behavior and found a commit message stating that the developers will stick to version
10.1, “until TranQL can handle 10.2”, which reveals a compatibility problem in the
newer 10.2 version. Developers should be warned about such issues with the versions
in order to make a better informed choice as of which version is recommendable for
them to use.

Of course, every developer may have individual reasons when and why to switch to
a new version. However, if a large majority of developers uses a specific library version
(e.g. junit 3.8.1) this information should be taken into account.

Knowledge about popular versions helps developers in deciding,
which versions to choose.

Switching back to earlier versions

When the developers of a software project switch from an old library version to a newer
one, they usually do so either because the old version had problems that were fixed
in the new one or because the new one offered more and/or better functionality. On
the other hand, there are users who prefer to wait before they switch—such that once
they switch, they will not have problems with a defective library version. However,
identifying when it is safe to switch is a difficult task. Here again, the vote of the
majority comes into play.
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Table 2.2: Usage of library versions for January 2009

Library name and version Times used

junit 3.8.1 60
junit 3.8.2 9
junit 4.4 7

log4j 1.2.8 10
log4j 1.2.14 9
log4j 1.2.15 0

servlet-api 2.3 4
servlet-api 2.5 1

derby 10.1 6
derby 10.2 1

For projects that migrate early to a new library version, it might be that they migrate
back to an older version. In most cases, the reason for switching back is that the new
version has some issues that make it unusable for the specific needs of the project. If
this is the case, the end user should be warned about such library versions and should
avoid switching to them.

Again, we have mined the same 250 APACHE projects and their history (January
2007–January 2009). However, this time we were interested in the number of times
people switched back from a particular library version.

Table 2.3 presents the cases of the junit, log4j, servlet-api and derby libraries (these
libraries are among the top most widely used libraries in our set of projects for the
specified period). The first column in the Table gives the library name and version.
The second column shows the number of times a particular library version was used in
this period. The third column shows how frequently this specific library version was
discarded, and the developers switched back to an older version in the same period. The
fourth column gives the percentage of times a particular library version was switched
back from.

Switching back and forth between versions is very time consuming and can intro-
duce bugs into the code (if, for example, the library API has changed, the project code
also has to be changed). That is why developers usually do not switch back from a
particular library version once they have switched to it—unless it really has a problem.
As one can see, the most popular version of junit is 3.8.1. No project ever switched
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Table 2.3: Switching back to older library versions for the period January 2007–
January 2009

Library # usages # switched back %

junit 3.8.1 1501 0 0%
junit 3.8.2 293 1 <1%
junit 4.4 84 0 0%

log4j 1.2.8 269 3 2%
log4j 1.2.14 114 0 0%
log4j 1.2.15 7 4 57%

servlet-api 2.3 182 0 0%
servlet-api 2.5 10 1 10%

derby 10.1 147 0 0%
derby 10.2 31 0 0%

back from using this version, thus indicating that this is a very good version of junit to
use. The servlet-api 2.5 version, for example, was switched back from in 10% of the
cases. We found bug reports pointing to a problem the 2.5 version has with Tomcat 5.5
(e.g. Grails bug entry 2053). The case that strikes the most, however, is the log4j 1.2.15
version, as in no less than 57% of the cases people switched back from it. We investi-
gated this case and found out that the reason why so many users decided to switch back
is a bug in this version that prohibited its usage for all MAVEN projects that depended
on log4j, but did not depend on the java mail and jms libraries. The problem with this
library version is also indicated in Figure 2.5 and Table 2.2, and was thus detected by
all of our techniques.

Finding reverts to previously used versions can show the library developers how big
the impact of a library issue is. It can also show the library users how reliable a specific
library version is and thus give them yet another indication if they should switch to it.

The number of times a library version was switched back from is a strong indicator
of the quality of the library.

2.4.4 Threats to Validity

As any empirical study, this study has limitations that must be considered when inter-
preting its results. We identified the following threats to validity.
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The number of projects may affect the outcome. It is possible that the addition
or the removal of a particular project from the set of analyzed projects might
influence the results. However, we have mined hundreds of projects and we
believe that this possibility is small.

Results might not hold for non-MAVEN projects. The advantage of MAVEN is that
it eases dependency management. However, it does not impose restrictions on
which version of a library can be used. Also, the libraries used in a project
depend on the scope of the project and not on its management tools. We are
therefore convinced that our results are also valid for projects that do not use
MAVEN.

The implementation may have errors. A final source of threats is that our imple-
mentation could contain errors that affect the outcome. To control these threats
we did a careful cross-checking of the data and the results to eliminate mistakes
in the best possible way.

2.5 The Aktari Tool
In this chapter we presented approaches for analyzing the popularity trends of APIs
and API versions. The presented techniques are combined in our general API analysis
AKTARI12 platform. Our recommendation is for the users to use the tool, when taking
a decision related to APIs and their versions.

When one needs to take a decision related to a specific API, AKTARI is able to
display the specific trend that relates to this API (see Figure 2.2). Having this informa-
tion available an API user can decide if it is recommendable to use a specific API and
an API producer can evaluate where her API stands in the global API usage picture.
A future planned extension of AKTARI will be able to display the trends for groups
of APIs that are related to each other (i.e. GUI APIs), so that one can easily do the
comparison between the usage trends of those APIs that are in fact competitors to each
other.

When one needs to take a decision related to a specific API version, our recom-
mendation is to consider all the available information that the tool can provide.

When giving recommendations as to which library to use, one should take into
account as many factors as possible. For new projects, backwards-compatibility for
their clients is not an issue—in this case considering only the popularity at a certain
moment in time might be misleading, as it does not take into account all kinds of

12“Aktari” is the Swahili word for “crowd”.
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Figure 2.6: AKTARI—Eclipse plug-in design

Figure 2.7: AKTARI—web-tool

factors, including the age of the projects. However, adding information about how
many times a library was switched back from will give a better recommendation, since
it also considers if a library is bug-free and thus the developers of a new project will be
able to choose the newest and most reliable version.

Combining usage trends with times users switched back from a library gives an
indication to the library developers what design mistakes they made and also how big
the impact of a bug in their library is.

We have combined and integrated our library versions analysis techniques into both
an Eclipse plug-in (see Figure 2.6) and a web-tool (see Figures 2.7 and 2.8) versions
of AKTARI. The plug-in can assist library users in selecting the most recommendable
library version, according to the majority of users. It can detect which versions are
being used by the project and gives information regarding the global usage of these
versions.

The web-tool is available for the library developers who want to check the usage
trend of their library. It offers diagrams (like the ones in Figure 2.4) as well as pie
charts that represent each of the three analysis techniques described, and thus assists
developers in analyzing usage, success and popularity of their library. The tool is
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Figure 2.8: AKTARI web-tool.

available at http://www.st.cs.uni-saarland.de/softevo/aktari.php.

2.6 Related Work
Analyzing popularity and success factors of software projects is a relatively new re-
search field. PopCon [12] is a prototype tool that collects popularity information re-
garding the Eclipse API. Based on the usage frequency of the API elements, the authors
direct the library users to using the popular elements. For this research, the authors
used data from a fixed point in time and investigated the usage of the Eclipse API. In
comparison, we used data that spans a period of one year and goes through the code
history of 200 projects. Thus our approach presents a much more general approach to
estimating API popularity.

Schuler and Zimmermann [36] collect information about the popularity of library
methods and thus help the library developers plan and prioritize the development ef-
fort. They also present the notion of usage expertise, which manifests itself whenever
developers call an API method.

The AKTARI tool [25] collects information regarding the popularity of different
library versions of the same library and provides means for evaluating the quality of
those versions. The data used for this analysis is limited to open-source projects that
use the Maven13 platform.

A lot of related work has been also done to support developers in adjusting their
code to a new version of an API. SpotWeb [38] is a tool that crawls open source reposi-
tories to mine frequent usage patterns for libraries. These patterns are then presented to

13http://maven.apache.org/

http://www.st.cs.uni-saarland.de/softevo/aktari.php
http://maven.apache.org/
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the developers who want to start using a library. In contrast to this work, our approach
tries to suggest whether a developer should at all use the specific library API and its
elements.

Perkins [32] presents an approach to refactoring deprecated API methods. The
author directly offers the API users a substitute code for the deprecated methods, by
replacing those methods with their bodies and appropriate replacement code.

The MAPO [43] tool helps developers understand API usages better and write API
client code more effectively. Given a query that describes an API element, this tool
mines source code search engines results and presents a short list of frequent API us-
ages.

To the best of our knowledge, our approach is the first that tries to recommend or
dissuade from using a specific API element based on its global usage history as inferred
from a large body of projects.

A lot of related work has also been done to support developers in adjusting their
code to a new version of a library.

SpotWeb [38] is a tool that crawls open source repositories to mine frequent usage
patterns for libraries. These patterns are then presented to a developer that wants to
start using a library. In contrast to this work, our approach tries to suggest when a
developer should switch to a new version of a library.

Another tool that aims at making the process of switching versions easier is the
CatchUp! [11] tool. It is a plugin for Eclipse that records refactoring operations applied
when switching to a new library. Recorded refactorings can then be replayed for clients
that also want to switch to that version.

Dagenais and Robillard [1] use a partial program analysis technique to suggest
replacements for calls to methods that are no longer present in the new version of
a library. The presented tool gathers suggestions by mining the version history of the
library and is based on the assumption that changes to replace a deleted method happen
in the same change set.

Holmes and Walker [13] analyze library’s API popularity and based on the usage
frequency of the API elements direct the library users to using the popular ones.

To the best of our knowledge, our approach is the first that tries to recommend or
dissuade from switching library versions based on global usage history.

2.7 Summary
In this chapter we investigated the question of API popularity. Our conclusions are
based on data collected from hundreds of open-source projects and thus leverage the
wisdom of a crowd of experts.
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We have developed a prototype tool, called AKTARI, that analyzes the collected in-
formation and plots API elements usage trends. This information can be of great value
for the API producers, when identifying the weak spots of their product. Based on the
past usage trends, we are also able to give usage recommendations to the API users.
The large and diverse set of projects that we analyze, as well as our high precision eval-
uation results, ensure that the recommendations offered by AKTARI are valid. As we
have seen in Section 2.3.4, neglecting the vote of the majority can lead to introducing
defects and code smells in the project code.

In conclusion we can state that:

API elements usage trends are a method for displaying the preferences of the API
users in the past and for predicting their future.
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Chapter 3

Evolution of Object Usage

“According to the concept of transformational evolution, first clearly articulated by
Lamarck, evolution consists of the gradual transformation of organisms from one

condition of existence to another.”
– Ernst Mayr1

As software evolves, so does the interaction between its components. In order for
the software code to evolve consistently, all components need to be updated accord-
ing to the evolution of the components they depend on. But how can we check if
components are updated consistently? In order to track the evolution of the different
software components, we focused on the evolution of the objects associated with a
component. Preliminary results of the work presented in this chapter are published at
ECOOP’11 [24].

3.1 The Problem
In software development, change is the only constant. New features are added, defects
are fixed, or code is refactored to improve maintainability. In each of those cases,
changes must be consistently applied to avoid defects and maintenance problems.

There are many reasons why changes are not propagated consistently throughout
the code.

As an example of a project-wide change, consider the example Eclipse method
removeSelectionListener() shown in Figure 3.1. In Eclipse 1.0, this method

1Ernst Mayr (1904 — 2005) was one of the 20th century’s leading evolutionary biologists.

35
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void removeSelectionListener(Listener listener){
if (!isValidThread ())

error (SWT.ERROR_THREAD_INVALID_ACCESS);
if (!isValidWidget ())

error (SWT.ERROR_WIDGET_DISPOSED);
if (listener == null)

error (SWT.ERROR_NULL_ARGUMENT);
if (eventTable == null) return;
eventTable.unhook (SWT.Selection, listener);
eventTable.unhook (SWT.DefaultSelection,listener);

}

void removeSelectionListener(Listener listener){
--> checkWidget();

if (listener == null)
error (SWT.ERROR_NULL_ARGUMENT);

if (eventTable == null) return;
eventTable.unhook (SWT.Selection, listener);
eventTable.unhook (SWT.DefaultSelection,listener);

}

Figure 3.1: Method change from Eclipse 1.0 to 2.0. The old check has been replaced
by a custom method call. Has this change been propagated consistently across Eclipse?

calls isValidThread() and isValidWidget() to verify that its preconditions
are satisfied. In Eclipse 2.0, however, these two calls have been replaced with a call to
checkWidget()—a new method which encompasses the two original checks and
which can easily be extended to implement additional checks. This change has been
applied across several Eclipse 2.0 methods that performed similar checks. But how
do we know we found them all? And how do we ensure that new code actually uses
checkWidget() rather than falling back to the old style?

In this chapter, we address these problems and introduce a tool that solves them,
called LAMARCK2. LAMARCK analyzes the changes that occurred between two ver-
sions of the same project, determines the object usage in both versions and derives
evolution patterns—that is, changes that have been consistently applied at multiple lo-

2Jean-Baptiste Lamarck (1744–1829) was an early proponent of organic evolution, proposing that organ-
isms became transformed by their efforts to respond to the demands of their environment. He was, however,
unable to explain a mechanism for this. [23, under “Lamarck” and “evolution”]
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Figure 3.2: How LAMARCK works. Given two versions (a), LAMARCK extracts tem-
poral properties (b) that characterize object usage in each version. The differences (c)
are then mined for recurrent change patterns (d). These patterns can then be used to
search for missing changes (e) in new code (f).

cations, like the one in Figure 3.1. These patterns can be forwarded to developers,
informing them of object usage changes. As formal descriptions, however, they can
also be used to detect violations—places in the code where a change should have been
applied, but was not.

The remainder of this chapter follows the flow of information through our LAMARCK
tool (Figure 3.2). In Section 3.2, we introduce the concept of software evolution from
the perspective of evolving object usage. Section 3.3 introduces the concept of evolu-
tion patterns and shows how they and their violations (i.e., missing changes) can be
detected. In Section 3.4, we present our evaluation on detecting and preventing errors.
We conclude the chapter with a discussion on possible applications and conclusions.

3.2 Object Usage Evolution
As stated initially, our goal is to have changes applied consistently across a piece of
software. To apply changes consistently, we need a notion of similarity—a similarity
of changes, but also of contexts in which these changes are to be applied. Choosing
an appropriate abstraction level for similarity is tricky. If we choose it too low, we
end up with syntactic similarity, where changes are deployed consistently only across
copy-and-paste clones. If we choose it too high, we end up with semantic similarity,
which is generally undecidable.

To characterize changes, we use an abstraction that is well understood in software
design—application programming interfaces (APIs). The key idea is to monitor how
the usage of object APIs evolves in individual versions. This allows us to abstract
away from syntactic similarity, yet detect inconsistent evolution in object usage: If a
component still interacts with an API in a deprecated fashion, it is in need of an update.
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Of course, there are established concepts to deter usage of “old” APIs: Individ-
ual functions may be marked as “deprecated”, causing a warning during compilation
time, or simply not offered at all. However, “old” API usage may not necessarily mean
using “old” functions, it may be a specific “old” combination of existing functions
that is no longer up to date. In Figure 3.1, the methods isValidThread() and
isValidWidget() still exist in Eclipse 2.0, and are still being used; it is this spe-
cific usage in this specific context, though, that now has evolved. Any characterization
of object usage thus must express relationships between individual functions—to char-
acterize both the evolving APIs as well as the context into which they are embedded.

In earlier work [39], Wasylkowski, Zeller, and Lindig described a formalism that
satisfies these requirements—so-called temporal properties of object usage. To ex-
press the fact that method a() may be used before method b(), they use the syntax
a()≺ b(). The temporal properties for the Eclipse 1.0 version of the code shown in
Figure 3.1, for instance, include isValidThread() ≺ isValidWidget() and
isValidThread() ≺ error().

However, temporal properties can also carry dataflow information, denoting objects
that are shared across these properties. The term “return value of a() ≺ second argu-
ment of b()” means that the return value of a() is used as the second argument of
b(). In the Eclipse 1.0 version in Figure 3.1, the properties thus actually read “target
of isValidThread()≺ target of isValidWidget()” and likewise, because the
two methods share the same target object (the implicit this object).

If the API usage changes, the temporal properties will also change. Since temporal
properties encode dataflow, such changes will also characterize changes in argument
ordering, or changes in the order of method calls. In Figure 3.1 for instance, the prop-
erties

target of isValidWidget() ≺ target of error()
target of isValidThread() ≺ target of error()
target of isValidThread() ≺ target of isValidWidget()
target of error() ≺ target of isValidWidget()
target of error() ≺ target of error()

will be replaced by

target of checkWidget() ≺ target of error()

Note that this change in temporal properties encodes both the change itself (from
isValidWidget() and isValidThread() to checkWidget()) as well as
the context (the error() method). Being able to express temporal ordering as well
as data flow, and to include changes as well as context, is what makes this particular
representation so well-suited to propagate changes at high precision.
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3.2.1 Temporal Properties
We define software evolution as the evolution of temporal properties. But first, let us
give details on how to extract temporal properties from a single project version.

Definition 8 (Temporal property) A temporal property is an ordered pair of events a
and b associated with the same object.

We use the expression a ≺ b to represent an ordering where event a may happen
before event b. An event associated with an object is one of the following:

• a method call (including constructor calls) with the object being used as the
target or as an argument: x.bar(y, z) is an event associated with x, y,
and z.

• a method call with the object being the value that was returned by the method:
x = map.items() is an event associated with x.

• a field access with the object being the value that was read: x = System.out
is an event associated with x.

• a cast with the object being cast to a different type: (String) x is an event
associated with x.

Events are represented as precisely as possible (e.g., a method call is represented
using the fully qualified name of the class defining the method, the method’s name
and its signature). In the presented examples we omit most of those details to improve
readability. We chose to focus on those types of events, as we found that these event
types are well-suited to characterize the complex patterns of API usage in terms of their
data flow and control flow [39]. The aim is to find a balance between the comprehensive
results by static analysis and scalability.

To extract temporal properties we have adapted our earlier tool, JADET [39]. JADET
works on bytecode level and extracts temporal properties in two steps:

Mining object usage models. Object usage models are finite state automata that show
how objects “flow” through various events in a method (Figure 3.3). Object
usage models are created by performing intraprocedural dat flow analysis on the
program’s methods.

Extracting temporal properties. Temporal properties, as extracted from object usage
models, provide a succinct and easy-to-manipulate representation of how objects
actually “flow” through various events.
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target of isValidThread()

target of error()

target of isValidWidget()

target of error()

target of error()

Figure 3.3: Object usage model for the target object (“this”) accessed by the meth-
ods shown in Figure 3.1 (Eclipse 1.0 version). Dashed lines denote empty transitions
(without calls).

To illustrate how JADET works, let us once again consider the example method
removeSelectionListener() from Eclipse version 1.0 in Figure 3.1. The first
step is to mine object usage models. We create an object usage model for each statically
identifiable object used by the method. These objects are: formal parameters of meth-
ods (including the implicit this parameter), objects created via new, return values
of method calls (as in x = map.items()), values read from fields (including static
fields, as in x = System.out), and explicit constants (such as null and "OK").
The removeSelectionListener() method uses three objects: the listener
argument, the eventTable field, and the implicit this object. For each of those ob-
jects we build an object usage model that will show how the object is being used (i.e.,
in which events it participates). For example, the object usage model for the implicit
this object is shown in Figure 3.3. Dashed edges represent “no-op” transitions. This
model expresses the fact that the calls to error() are optional, whereas the two calls
to isValidThread() and isValidWidget() always happen, and always in the
same order.3

3The reader will notice that the object usage model is not fully correct, because it assumes that after the
call to error() the method’s execution proceeds further. This limitation is not too important, though, as
such “bail-out” methods do not occur too often and thus their influence on the overall results is small.
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After we have extracted object usage models, we can abstract each of them into a
set of temporal properties. The idea here is as follows: If there is a path through the
object usage model (from the initial state to any other state), along which events a and b
occur, and there exists an occurrence of a that happens earlier on that path than some
occurrence of b, we create a temporal property a ≺ b—expressing the fact that a may
precede b. For this purpose we again use JADET, but with the following major modifi-
cation. JADET, when abstracting object usage models into temporal properties, drops
the dataflow information that is present in the models. For example, if an object usage
model contains two successive events, “target of lock()” and “target of unlock()”,
JADET will abstract it into a temporal property lock() ≺ unlock(). For this
work, we extended JADET to actually put dataflow information in the temporal prop-
erties. For example, extracting temporal properties from the object usage model shown
in Figure 3.3 results in the following set:

target of Widget.isValidThread() ≺ target of Widget.error()
target of Widget.isValidThread() ≺ target of
Widget.isValidWidget()
target of Widget.error() ≺ target of Widget.isValidWidget()
target of Widget.error() ≺ target of Widget.error()
target of Widget.isValidWidget() ≺ target of Widget.error()

Once we do this for every single object usage model extracted from a method, we
can create a union of those models’ temporal properties and store it as the set of tempo-
ral properties that characterize the method. If we consider the method from Figure 3.1
(Eclipse 1.0 version) removeSelectionListener(), the set of temporal prop-
erties that characterizes it will contain the temporal properties shown above and the
following temporal properties, obtained from the object usage model created for the
listener argument and the eventTable field (the other two objects accessed by
removeSelectionListener()):

2nd arg of EventTable.unhook() ≺ 2nd arg of EventTable.unhook()
field Widget.eventTable ≺ target of EventTable.unhook()

Further details on extracting temporal properties can be found in the paper by Wa-
sylkowski et al. [39].

3.2.2 Change Properties
Temporal properties tell us how a specific method uses APIs. Therefore, if we want to
see how the APIs usages in a method evolved and changed between two versions of a
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project, we can look at how the temporal properties of the method changed. For this
purpose, we introduce the notion of change properties:

Definition 9 (Change property) A change property is constructed from the compari-
son of two sets of temporal properties coming from two versions of the same method.

To identify the same method between two versions of the project, we use the
method’s name, signature, and the class in which it is defined (if a method was re-
named, we will not be able to track its evolution). A change property is a temporal
property annotated with information about the temporal property’s evolution between
the two versions (more on that below). We built LAMARCK for the purpose of extract-
ing change properties. LAMARCK extracts change properties in three stages, which we
detail using the example from Figure 3.1.

Extracting Temporal Properties

In the first stage, LAMARCK identifies the common methods between the two versions
of the analyzed project and extracts the sets of temporal properties for each method in
each version separately.

As an example, consider versions 1.0 and 2.0 of Eclipse. One of the methods
that occurs in both versions is removeSelectionListener() from the Button
class, shown in Figure 3.1. After identifying all common methods between the two ver-
sions, LAMARCK extracts temporal properties for each method in each version with the
help of the modified JADET tool (as explained in Section 3.2.1). Here is the set of tem-
poral properties for the removeSelectionListener() method, as implemented
in Eclipse 1.04:

EventTable.unhook() ≺ EventTable.unhook()
field Widget.eventTable ≺ EventTable.unhook()
Widget.error() ≺ Widget.error()
Widget.error() ≺ Widget.isValidWidget()
Widget.isValidThread() ≺ Widget.error()
Widget.isValidThread() ≺ Widget.isValidWidget()
Widget.isValidWidget() ≺ Widget.error()

The temporal properties in version 2.0 are much simpler:

EventTable.unhook() ≺ EventTable.unhook()
field Widget.eventTable ≺ EventTable.unhook()
Widget.checkWidget() ≺ Widget.error()

4From now on, we will omit presenting dataflow information in temporal properties, in order to increase
the readability of the properties, unless this is needed to understand the property.
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Extracting Change Properties

In the second stage, LAMARCK compares the sets of temporal properties in both ver-
sions of each method and creates a set of change properties for this method—that is,
temporal properties annotated with information about their evolution. If a temporal
property is only present in the first version, LAMARCK transforms it into a change
property annotated with D (for deleted); if a temporal property is only present in the
second version, LAMARCK transforms it into a change property annotated with A (for
added). In our removeSelectionListener() example, LAMARCK will create
the following set of change properties:

D: Widget.error() ≺ Widget.error()
D: Widget.error() ≺ Widget.isValidWidget()
D: Widget.isValidThread() ≺ Widget.error()
D: Widget.isValidThread() ≺ Widget.isValidWidget()
D: Widget.isValidWidget() ≺ Widget.error()
A: Widget.checkWidget() ≺ Widget.error()

These change properties show how the Eclipse removeSelectionListener()
method evolved from the point of view of its temporal properties between versions
1.0 and 2.0.

Adding Context

In the final stage, LAMARCK extends the set of change properties created for each
method in the previous stage with special change properties expressing the context of
the change. For this purpose, LAMARCK adds to the set of change properties created
in the previous stage another set of change properties, obtained by annotating all tem-
poral properties from the earlier version of the method with O (for original)—these
properties we consider the context of a change. Whereas the change properties created
in the second stage represent the change itself and thus will allow us to find evolution
patterns, the change properties created in this stage represent the context of the change
and will allow us to find locations in the project where the change should have hap-
pened, but did not. This will allow us to find missing changes—the main contribution
of this work.

In our example, Table 3.1 shows the final set of change properties extracted by
LAMARCK for the example method from Figure 3.1:

In a similar manner, LAMARCK goes through all the methods common to two ver-
sions of the analyzed project and produces a set of change properties for each such
method.
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Table 3.1: Change properties for the removeSelectionListener() method.
The properties of the context are also present.

O: EventTable.unhook() ≺ EventTable.unhook()
O: field Widget.eventTable ≺ EventTable.unhook()
O: Widget.error() ≺ Widget.error()
O: Widget.error() ≺ Widget.isValidWidget()
O: Widget.isValidThread() ≺ Widget.error()
O: Widget.isValidThread() ≺ Widget.isValidWidget()
O: Widget.isValidWidget() ≺ Widget.error()
D: Widget.error() ≺ Widget.error()
D: Widget.error() ≺ Widget.isValidWidget()
D: Widget.isValidThread() ≺ Widget.error()
D: Widget.isValidThread() ≺ Widget.isValidWidget()
D: Widget.isValidWidget() ≺ Widget.error()
A: Widget.checkWidget() ≺ Widget.error()

3.3 Mining Patterns
Having generated the change properties, LAMARCK can use them to mine evolution
patterns (i.e., sets of change properties that repeat in many methods) and find missing
changes (i.e., methods where a certain change should have been applied but was not).

3.3.1 Detecting Evolution Patterns
In Section 3.2, we have shown how LAMARCK can express evolution of methods using
their change properties. Because we are interested in tracking the evolution of the
whole project, we need to aggregate the individual changes over the entire project.
More specifically, if a certain set of change properties occurs frequently throughout
the project’s evolution (i.e., is common to many methods), we treat it as an evolution
pattern. For detecting evolution patterns LAMARCK uses formal concept analysis and
its implementation provided by the Colibri/Java tool [9].

Definition 10 (Formal Concept Analysis) Formal concept analysis is a way of auto-
matically deriving an ontology, i.e. a set of concepts, from a collection of objects and
their properties.

Formal concept analysis is, broadly speaking, a technique for finding patterns [7].
Its input is a set of objects, a set of properties, and a cross table associating objects with
properties. In our case, the set of objects is the set of common methods between the two
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Figure 3.4: Concept Analysis Matrix

analyzed versions. The set of properties is the set of all change properties created from
the entire project. Figure 3.4 shows an example of such a cross table. A dot is present
in a place where a row and a column cross when the change property represented by the
column was extracted for the method represented by the row (i.e. this property exists
in this method).

The result of formal concept analysis are concepts found in the cross table. Gener-
ally speaking, a concept is a set of objects and a set of properties, such that every object
in the concept is associated with all properties in the concept, and both sets are maximal
(i.e., it is not possible to add elements to one of the sets without influencing the other
one). In our case, a concept is a set of change properties and a set of methods such that
the change properties occur in each method. To illustrate it on Figure 3.4—a concept is
represented as a rectangle5 in the matrix. The size of the concept on Figure 3.4 is 2, as
it consists of 2 change properties. The number of methods in the concept is called the
support of the concept. In the case of Figure 3.4, the support of the depicted concept is
4, because there are 4 methods that exhibit this group of properties.

If we restrict ourselves to finding concepts that have high support values, we will in
effect be finding sets of change properties that occur in many methods—and therefore
likely candidates for evolution patterns. For this purpose we use a parameter called
the minimum support. LAMARCK returns only those concepts that have support values
at least equal to the value of the minimum support parameter, and treats all returned

5Please note that not every rectangle needs to be contiguous—it is enough if there is a transposition of
columns and rows in the cross table such that the rectangle becomes contiguous.



46 CHAPTER 3. EVOLUTION OF OBJECT USAGE

concepts as evolution patterns.
Table 3.2 shows an example of an evolution pattern as extracted by LAMARCK

from Eclipse versions 1.0 and 2.0. This evolution pattern expresses the change to the
removeSelectionListener() method shown in Figure 3.1. As it was applied
to 169 other methods in Eclipse, the support of this evolution pattern is 170.

Table 3.2: An evolution pattern occurring in 170 Eclipse methods.

O: Widget.error() ≺ Widget.error()
O: Widget.error() ≺ Widget.isValidWidget()
O: Widget.isValidThread() ≺ Widget.error()
O: Widget.isValidThread() ≺ Widget.isValidWidget()
O: Widget.isValidWidget() ≺ Widget.error()
D: Widget.error() ≺ Widget.error()
D: Widget.error() ≺ Widget.isValidWidget()
D: Widget.isValidThread() ≺ Widget.error()
D: Widget.isValidThread() ≺ Widget.isValidWidget()
D: Widget.isValidWidget() ≺ Widget.error()
A: Widget.checkWidget() ≺ Widget.error()

3.3.2 Finding Missing Changes

Finding evolution patterns is useful for understanding and for documentation purposes,
and in Section 3.4.1 we give examples of interesting and useful evolution patterns found
by LAMARCK. However, there is a very important question that can often occur while
changing a project: Was the change applied consistently throughout the entire project’s
code? If we consider the evolution pattern shown in the preceding section, methods
where the change expressed by the pattern was not applied, but should have been, be-
come locations with potential future defects and/or maintenance problems. Therefore,
it is important to be able to answer the stated question.

Our evolution patterns contain, amongst others, change properties annotated with
the letter “O”—these are temporal properties that were present in the earlier version.
They form the context of the change, and answer the question: In which context does
the change happen?

As an example of such a change context, consider the evolution pattern shown
in the preceding section, Table 3.2. Any method that has in its change property set
all the change properties annotated with “O” from this pattern, but none of the other
“A” or “D” change properties, is in fact a method that exhibited the same “starting
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conditions”, like other methods that evolved, but it itself did not evolve. Potentially,
there is a missing change in that method.

LAMARCK finds such missing changes again using the Colibri/Java tool [9] for
formal concept analysis. Generally, whenever we have two concepts, and the set of
properties in one of them is a subset of the set of properties in the other one, we have
a potential violation. The reason why one set is a subset of another is that there are
some properties missing—in our case, missing change properties. For details on the
technique, see [21].

However, it can happen that an evolution pattern occurs in many methods, but is
also missing in many methods. As it is not possible to say with absolute certainty that
all those other methods are violating the pattern, we introduce another parameter—the
so-called minimum confidence. The confidence of a violation is a number between 0
and 1, calculated as the ratio s/(s + v), where s is the support of the evolution pattern
(i.e., the number of methods that did evolve exactly according to the pattern), and v is
the number of methods that violate the pattern (i.e., those that exhibit only the “O”-
annotated change properties from the pattern).

3.4 Evaluation
LAMARCK detects evolution patterns that carry information regarding which sequences
of method calls have been removed or added in a certain method between two versions
of the project. In this section, we are going to evaluate LAMARCK’s usefulness.

We evaluate LAMARCK in two different evaluation settings:

Detecting errors In Section 3.4.1, we run LAMARCK on the subjects “as is” and did a
manual evaluation of the reported violations for whether they are real code issues
or false positives. It turns out that 33%–62% of the reported violations indeed are
code smells or defects. In this scenario LAMARCK looks for missing changes,
i.e. locations that were omitted by the developers when applying a change.

Preventing errors In Section 3.4.2, we simulate settings in which programmers had
to apply a change and we wanted to see if LAMARCK can assist them during
this process and prevent them from omitting a change. It turns out that in such a
setting, LAMARCK has almost no false alarms (the precision ranges from 90%–
100%); almost all of the inconsistencies detected by LAMARCK actually were
in need for update and in later versions this update was performed in exactly the
way as predicted by the pattern.



48 CHAPTER 3. EVOLUTION OF OBJECT USAGE

Table 3.3: Evaluation Subjects

# Methods

Case study older version newer version Matching

Eclipse 1.0 vs. 2.0 34197 49862 19952 (58%)
Eclipse 2.0 vs. 2.1 49862 61358 44692 (90%)
AspectJ 1.6.0 vs. 1.6.3 38544 36729 35546 (92%)
Azureus 4.1.0.0 vs. 4.4.0.0 38328 40506 32200 (84%)

Table 3.4: Evaluation Subjects

Case study #Patterns Time

Eclipse 1.0 vs. 2.0 133 13m34s
Eclipse 2.0 vs. 2.1 2019 10m57s
AspectJ 1.6.0 vs. 1.6.3 58 7m41s
Azureus 4.1.0.0 vs. 4.4.0.0 17 9m57s

For our experiments, we used the projects and versions6 given in the first column
in Table 3.3. In the second and third columns we give the number of methods in the
earlier and the later versions of the analyzed project. The fourth column contains the
total number of methods that we managed to match between the two project versions,
expressed both as an absolute value and a percentage of the number of methods in the
earlier version.

3.4.1 Detecting Errors

In the first part of our evaluation, we want to assess how well LAMARCK is able to
detect defects due to missing changes. For this purpose, we applied it to the subjects
described in Table 3.3; if a violation of a pattern is reported, this means that a location
in the project’s code has been found that does not comply with the change pattern
extracted from the project’s history. In other words, we have found a location where
the developers were supposed to change something, but they did not and thus we found
a missing change. All of the presented results in the evaluation section are computed

6http://archive.eclipse.org/eclipse/downloads/ · http://www.eclipse.
org/aspectj · http://sourceforge.net/projects/azureus/develop

http://archive.eclipse.org/eclipse/downloads/
http://www.eclipse.org/aspectj
http://www.eclipse.org/aspectj
http://sourceforge.net/projects/azureus/develop
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Table 3.5: Reported unique violations and their success rate.

Case study Time #Violations %Issues

Eclipse 1.0 vs. 2.0 62s 6 33%
Eclipse 2.0 vs. 2.1 111s 8 62%
AspectJ 1.6.0 vs. 1.6.3 72s 7 57%
Azureus 4.1.0.0 vs. 4.4.0.0 86s 5 40%

for a minimum support value of 10 and minimum confidence value of 0.8.

Hypothesis 1: LAMARCK detects missing changes.

Patterns reported

We ran LAMARCK on the test subjects presented in Tables 3.3 and 3.4. In the last two
columns of Table 3.4, we give the number of extracted evolution patterns and the total
analysis time in minutes and seconds (including the time used to extract object usage
models and temporal properties). The way to interpret the number of patterns detected
is generally “the more, the better”, as the more patterns we detect the more errors we
will be able to catch. The time results are for an Intel Core 2 Duo 2.57 GHz machine
with 4GB of RAM, averaged over 10 runs.

The first thing that stands out is the big difference in the number of patterns de-
tected. This is due to the size of the projects and the difference between the versions.
Generally speaking, if the two versions are too far apart in time, the source code would
have evolved too much for us to manage to match the methods. This becomes evident
in the change from Eclipse 1.0 to Eclipse 2.0. Here, only 133 patterns are reported; as
Eclipse has changed quite a lot for this initial period there were only a few common
methods (see Table 3.3) that could be detected and only so much patterns reported. In
contrast, consider the 2019 reported patterns for Eclipse 2.0 vs. 2.1; we attribute this
much higher number to the closeness of the structure of Eclipse in this minor release
increment.

One would also notice the difference in the patterns detected in Eclipse and in the
Azureus and AspectJ projects. This is due to the fact that the latter two are smaller than
Eclipse, leading to fewer changes in fewer locations. We chose a minimum support of
10 for all of our experiments, which means that a pattern should appear in at least 10
locations, which is not so often the case for smaller projects.

We present a few examples of interesting patterns later in this section.
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Issues detected

Using the detected evolution patterns, LAMARCK looks for possible violations of those
patterns in order to detect missing changes in the project’s code. A violation reported
by LAMARCK need not be an issue. We manually investigated all of the reported
violations and classified them into the three categories of code defects, code smells
(i.e., potential defects) and false positives.

We define code defects, code smells and false positives as follows:

• Defects. Those are real defects in the source code that will lead the project to
fail by crashing or producing erroneous results.

• Code smells. This category contains all reported violations that are not at present
defects in the code, but have the potential to become such. In this category
fall also all reported cases, which might be improved in terms of readability,
maintainability or performance of the program.

• False positives. This category contains all reported violations, that are neither
defects, nor code smells.

In Table 3.5 we report our findings. The first column of Table 3.5 lists again our
test subjects. The second column gives the time needed in seconds for LAMARCK
to detect the pattern violations for each of our case study subjects. The third column
contains the number of unique pattern violations detected by LAMARCK. The success
rate of the reported violations is presented in the last column of the table and takes
into account both the reported defects and code smells (summarized as “issues”), as
in both cases the source code needs to be corrected. Our highest true positive rate is
62%—that is, 62% of the locations where LAMARCK detected an issue were in need
of correction. Even though a false positive rate of 38% does indicate that there is still
room for improvement, our results show that every second of our reports points to a
bug (and this is in production code, which should have far fewer defects). This result
highlights the potential benefits of our approach.

Two of our subjects had much lower true positive rates:

• Between Eclipse 1.0 and 2.0, the true positive rate is 33%—that is, 2 out of 3
violations are false alarms. This is due to several refactorings between these two
major releases and most of the reported false positive pattern violations were
reported for methods that have evolved too much for the pattern to still hold. In
other words, the distance is too large to learn from.
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• Most of the false positives reported by LAMARCK for the Azureus project were
due to the different compiler versions used for compiling the two versions. For
our experiments we used the byte code provided by the project and as LAMARCK
is working on byte code level, this resulted in reporting of violations that boil
down to equal source code, but different byte code. One should note that these
are not faulty recommendations as the byte code did indeed change, but this
change just had no visible manifestation in the end source code.

Generally speaking, any static defect detection tool will suffer from false positives—
in particular, if the properties checked against were learned from other code instances.
The question is whether the issues could also be detected in another, possibly cheaper
way. Tools like FindBugs 7, for example, check for specific API misuses by implement-
ing a specific analysis for each API. This would be cheaper (in terms of computational
power) and more precise, yet less general and more expensive (in terms of human la-
bor). For the kind of issues LAMARCK detects, there is yet no other alternative; and
our results indicate a reasonable efficiency.

Qualitative Analysis

Now let us take a look at a few examples of the patterns and their violations detected
by LAMARCK.

Our first example is the one presented in Figure 3.5. As one can see from this
source code example new method calls have been added to the method. This change is
detected by LAMARCK by the following pattern:

O: Composite.<init>() ≺ Control.setLayout()
O: Composite.<init>() ≺ Control.setLayoutData()
A: retval of Control.getFont() ≺ 1st arg of Control.setFont()

This pattern tells us that when we are setting the layout and the layout data on a
Control object, we should also set the font on the same object (the Composite
class inherits from the Control class). It originates from a widely spread issue in
Eclipse 2.0, where people were not setting the font of the Control object they were
working with, which could lead to problems when trying to set a font in a control
based on the font of its parent. In Eclipse 2.1 this issue was corrected by adding calls
to getFont() and setFont() in the appropriate locations, resulting in LAMARCK
detecting it as a pattern. The support value for this pattern is 66, i.e. it was applied 66
times during the change from Eclipse 2.0 to 2.1. The violation of the pattern expresses
itself in missing the following change property:

7http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/
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void createControl(Composite parent) {
Composite comp = new Composite();
...
Composite locationComp = new Composite();
GridLayout locationLayout = new GridLayout();
...
locationComp.setLayout(locationLayout);
GridData gd = new GridData(GridData.FILL_BOTH);
locationComp.setLayoutData(gd);
...

}

void createControl(Composite parent) {
--> Font font = parent.getFont();

Composite comp = new Composite();
...
Composite locationComp = new Composite();
GridLayout locationLayout = new GridLayout();
...
locationComp.setLayout(locationLayout);
GridData gd = new GridData(GridData.FILL_BOTH);
locationComp.setLayoutData(gd);

--> locationComp.setFont(font);
...

}

Figure 3.5: Method change from Eclipse 2.0 to 2.1. The added methods after the
change address a font inconsistency.

A: retval of Control.getFont() ≺ 1st arg of Control.setFont()

what this tells us is that there was supposed to be added a call to getFont() before
the call to setFont(). LAMARCK was able to detect locations in the Eclipse 2.1
code, where this change was not applied, thus marking those locations as locations that
violate an evolution pattern and expose a code defect in the project. What this means is
that in the faulty methods the developer is creating a new component, but is not setting
its font properly. As discussed earlier the omission of the getFont() method call
was a widely spread issue in Eclipse 2.0. The violation found by LAMARCK shows
that the Eclipse developers failed to locate all methods where this change needed to be
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void navigation(IProgramElement node)
{

if (node == null) return;
...
treeViewBuilder.buildView

(Asm.getDef().getHierarchy());
}
...

}

void navigation(IProgramElement node)
{

if (node == null) return;
...
treeViewBuilder.buildView

--> (Ajde.getDef().getModel().getHierarchy());
}
...

}

Figure 3.6: Method change in AspectJ. After the change buildView() now takes an
object derived from the Ajde singleton.

applied. In this case LAMARCK was able to point to such omitted locations.
Our second example comes from the AspectJ project and is shown in Figure 3.6.

The change pattern that LAMARCK detected for this piece of code is the following:

O: retval of Asm.getDef() ≺ Asm.getHierarchy()
D: retval of Asm.getDef() ≺ Asm.getHierarchy()
A: retval of Ajde.getDef() ≺ Ajde.getModel()
A: retval of Ajde.getModel() ≺ Asm.getHierarchy()

What this pattern, with a support of 10, tells us is that the return value of the deleted
getDef() method call was substituted with the return value of the added getDef()
and getModel()method calls. As one can notice, the deleted methods are from class
Asm, while the added ones are from class Ajde. After investigating the case, it turns
out that the Asm class was a singleton class, but it was changed in the newer AspectJ
version to a non-singleton class, due to change in the AspectJ functionality. A new
class Ajdewas created that acted as a singleton wrapper of the old class and had a Asm
field (that is why the Asm.getHierarchy() is called on the Ajde.getModel()
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public AddBookmarkAction(Shell shell)
{

super(WorkbenchMessages.getString("AddBookmarkLabel"));
setId(ID);
Assert.isNotNull(shell);
this.shell = shell;
setToolTipText
(WorkbenchMessages.getString("AddBookmarkToolTip"));
WorkbenchHelp.setHelp(this,

new Object[] {IHelpContextIds.ADD_BOOKMARK});
}

public AddBookmarkAction(Shell shell)
{

super(WorkbenchMessages.getString("AddBookmarkLabel"));
setId(ID);
Assert.isNotNull(shell);
this.shell = shell;
setToolTipText
(WorkbenchMessages.getString("AddBookmarkToolTip"));
WorkbenchHelp.setHelp(this,

--> IHelpContextIds.ADD_BOOKMARK);
}

Figure 3.7: Method change from Eclipse 1.0 to 2.0. Before the change there was a call
to a deprecated method.

return value). In the newer version of AspectJ both classes are present (and all their
methods, as well). Thus, a developer could still use the Asm.getDef() method and
the compiler would not issue a warning. However in this case, the Ajde class needs to
be used.

Now let us take a look at an example of a code smell detected by LAMARCK. In
Figure 3.7 one can see a frequently occurring change between Eclipse 1.0 and 2.0. This
change has been detected by LAMARCK through the following pattern:

O: setToolTipText(String) ≺ setHelp(iAction, Object[])
D: setToolTipText(String) ≺ setHelp(iAction, Object[])
A: setToolTipText(String) ≺ setHelp(iAction, String)

What this pattern tells us is that the call to setHelp(iAction, Object[])
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Figure 3.8: Evaluation Setting. In 1/10 of the code, we artificially revert changes and
check whether LAMARCK is able to predict them after learning from the changes in the
remaining 9/10.

has been deleted and substituted with a call to setHelp(iAction, String).
The support for this pattern is 33, which means that in 33 methods throughout Eclipse
2.0 this pattern has been followed. LAMARCK has detected violations of this pattern in
Eclipse 2.0 in the sense that the developers continued to use the old setHelp method.
After investigating the matter we found out that the old setHelp method was in fact
a deprecated method in Eclipse 2.0 and shouldn’t have been used. Thus, even though
the program was not crashing, we classified this violation as a code smell, as the code
is expressing unwanted and deprecated behavior.

In conclusion we can state that

LAMARCK is able to find useful evolution patterns and use them to detect missing
changes in project code.

3.4.2 Preventing Errors
We already discussed a few of the patterns detected by LAMARCK and their useful-
ness when it comes to detecting missing changes in project’s code. However, this is
only one of the aspects of the usefulness of those patterns. The patterns as detected by
LAMARCK can also be used for preventing errors. On top of that, the patterns them-
selves are an exact suggestion of how to fix a potential future defect location.

Hypothesis 2: LAMARCK prevents missing changes and suggests how to fix them.
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Table 3.6: LAMARCK’s effectiveness in discovering inconsistently applied changes.
The table summarizes the results obtained for 50 random splits of the input data. See
Section 3.4 for details on the evaluation scheme.

# Inconsistencies Precision

Case study min max avg min max avg

Eclipse 1.0 vs. 2.0 16 29 22 93% 100% 98%
Eclipse 2.0 vs. 2.1 14 24 19 90% 100% 99%

AspectJ 1.6.0 vs. 1.6.3 4 12 7 100% 100% 100%
Azureus 4.1.0.0 vs. 4.4.0.0 2 5 3 100% 100% 100%

Evaluation Setting

In order to perform such evaluation in an unbiased manner, we designed the scenario
sketched in Figure 3.8. The key idea is to artificially revert changes between versions
and check whether LAMARCK is able to predict them. In this way we simulate a
real-life scenario, when a given change pattern has been applied to only a few of the
intended locations.

À We split the set of common methods in the two versions into two parts—9/10
and 1/10 parts. In the 1/10 part, we substituted the methods from the later
version by the methods in the earlier version, effectively reversing the changes
that occurred between those two versions. We thus simulated a situation in which
1/10 of the code in the later version would still be in need of update.

Á We applied LAMARCK on the earlier version and the (modified) later version and
had LAMARCK predict which locations in those 1/10 methods would be in need
for update and what the update should accomplish.

Â From the (original) later version, we looked at the actual changes applied in the
same 1/10 methods subset.

Ã Comparing the suggested and the actual changes for the 1/10 part allows us to
assess the accuracy (and hence the usefulness) of LAMARCK.

Using the setting described above, we performed 50 random 1/10 vs. 9/10 splits
on each of the four case studies.
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Results

Our results are presented in Table 3.6. The first column gives the projects and their
versions used for the experiment. The second column gives the number of inconsisten-
cies (with a pattern) detected in the 1/10 part of the methods, when the later version
was modified as explained above—we show the minimum, maximum and the average
number of reported inconsistencies over all the 50 experimental runs. The third column
contains the precision of the reported inconsistencies, i.e. the percentage of the cases
where the faulty location was indeed fixed by the developers exactly as LAMARCK
recommended it to be fixed (for a definition of precision, please refer to Chapter 2). A
high precision implies a low number of false positives, i.e. invalid recommendations.

The reported precision in Table 3.6 is accumulated over the total number of 50
random splits. As one can see from the table, our precision results are close to 100%
in all cases. This means that almost all of the inconsistencies detected by LAMARCK
actually were in need for update, and this in the exact way as predicted by the pattern.
We consider this precision a good result, as this means LAMARCK is not only able
to predict that some location will change, but is able to accurately predict how this
location will change. Note that these results do not depend on the size of the split
(if we consider all the changes applied in 90% of the code or less), as the size of the
split would influence the amount of patterns detected, but not their defect prevention
properties.

Validation

In our experience, evaluation results like these are more likely to indicate a bug rather
than a feature. We therefore manually took a look at one random split for each of
the four experiments in order to re-verify that the location for which an inconsistency
would have been reported was indeed changed the way our patterns say. Our find-
ings were that in all cases when LAMARCK predicted that some code needs to be
changed, this code was indeed changed and in fact it was changed exactly as predicted
by LAMARCK. We classified predictions that were wrong as false positives.

As LAMARCK extracts the evolution patterns from the bytecode of the project ver-
sions, we also stumbled across evaluation artifacts—cases where our tool recommends
a change, but this change is only in the type of the objects returned by some methods
and passed to some other methods. The situation here is as follows: class A gets re-
placed by class B, and methods that used class A now use class B. Source code that does
not use objects of class A explicitly, but just passes them around (as in foo(bar()),
if bar() returns an object of type A and foo() accepts an object of type A) does
not need to be changed, but the bytecode will change after the project gets recompiled.
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Figure 3.9: Influence of minimum support on LAMARCK’s effectiveness in the case of
Eclipse 1.0 vs. 2.0 (minimum confidence fixed at 0.8)
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Figure 3.10: Influence of minimum confidence on LAMARCK’s effectiveness in the
case of Eclipse 1.0 vs. 2.0 (minimum support fixed at 10)

Since in our evaluation we use old bytecode of the 1/10 part, LAMARCK reports such
locations as needing an update. However, these are not faulty recommendations per
se, because during real usage (and not in an artificial setting, as in our evaluation) after
replacing classes and recompiling the code LAMARCK will not report such locations
anymore.

After classifying all reported predictions into true positives, false positives and eval-
uation artifacts, our manual inspection reports precision ranging from 90% to 100%.
We classified in total 45 predictions out of which 16 were evaluation artifacts, which
we ignored. Thus, our manual inspection confirmed our high precision rate.

To further reduce the probability of a bug, we also took a look at the recall val-
ues and they were as close as up to 10%. Recall in this case would mean finding all
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locations where a change is supposed to be applied (for a definition of recall, please
refer to Chapter 2). Such low recall values are expected, as we do not aim at finding
all changes that occurred between two versions of a given project; we aim at finding all
frequently occurring changes—changes that follow certain patterns. The recall values
are low, as most of the code changes occur only at a single location (or at least in less
than 10 locations, which is our minimum support number). A bug in the evaluation, for
instance a mix of training and testing sets, would have returned far higher recall values.

Sensitivity Analysis

Finally, we investigated the sensitivity of our results to small changes of the minimum
support and minimum confidence parameters. For this purpose, we redid our evalu-
ation on Eclipse 1.0 vs. 2.0 for different minimum support and minimum confidence
values. The results are shown in Figures 3.9 and 3.10. It turns out that LAMARCK is
quite insensitive to small changes of its input parameters. What is more important, for
minimum support of 5, LAMARCK finds on average 40 missing changes (compared to
22 when using the default minimum support value of 10), and still more than 95% of
LAMARCK’s suggestions (on average) are followed by the Eclipse developers. Thus,
users can tweak LAMARCK to find more missing changes, and still get very precise
results.

All these results confirm our hypothesis:

LAMARCK can detect missing updates with a precision close to 100%,
giving precise fix suggestions.

3.5 Applications
Let us now take a closer look at a few areas of application, LAMARCK can apply to.

3.5.1 Detecting Errors

As it is evident from Section 3.4.1, LAMARCK is able to detect missing changes in
the source code. What this means to software developers and managers is that running
LAMARCK against the source code of their software project will lead to probable de-
tection of defect locations. From the times needed for running the tool, presented in
Table 3.5, one can also see that running LAMARCK is highly time-efficient and can be
used at any point of the project development process, without the need for a special
time planning. We believe that LAMARCK can be of great use in the field of defect
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detection and its usage can possibly lead to reduction of process costs usually related
to testing, debugging and fixing of software defects.

3.5.2 Preventing Errors
As one could see from Section 3.4.2, LAMARCK proved to be extremely efficient at
preventing errors from appearing in the source code. If the developers have the tool
run in the background of their IDE 8, it can greatly assist them in their coding practice.
LAMARCK can not only be used to warn experienced developers against repeating mis-
takes of the past, but it can also be used as a valuable tool for newly joined developers,
who are still unfamiliar with the project and its project-specific patterns. Even though
we have not conducted extensive empirical studies regarding the ease of usage and use-
fulness in the above mentioned developer groups, we believe that LAMARCK will be a
great asset to any software development project.

3.5.3 Threats to Validity
As any other, our study is prone to threats to validity.

External validity. We investigated seven versions of three different open-source projects
of different maturity, size and domain. However it is possible that the results
we acquire on them do not generalize to other arbitrary projects. For example,
closed-source projects, due to differences in the internal processes, might have
very different properties.

Construct validity. Our approach might be prone to mistakes. The external tools we
use might also be defective. However, we hope that we have eliminated this
threat to a big extent as the Colibri [21] and the JADET [39] tools are publicly
available9 and besides the validation in Section 3.4.2, we ourselves have per-
formed a cross-check of our source code to eliminate any possible mistakes on
our side.

Internal validity. The presented evaluation of the usefulness of LAMARCK when used
as an errors preventing tool is a combination of automatic and manual inspection
of 50 random splits of the common methods for two versions of a project’s meth-
ods. It might be the case that 50 splits are not enough. It might also be the case

8IDE stands for integrated development environment and is a software application that provides facilities
to computer programmers for software development.

9This is the online implementation of the latest JADET tool version: http://www.checkmycode.
org/

http://www.checkmycode.org/
http://www.checkmycode.org/
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that, as we are not well acquainted with the analyzed projects, our manual clas-
sification results would not be the same if classified by a real developer of that
project. Another possibility is that, apart from the evaluation artifacts mentioned
in Section 3.4.1, other missing changes reported by LAMARCK would also be
found by a compiler (due to missing types, etc.). However, based on our evalua-
tion in Section 3.4.2, we think that the likelihood of all reported missing changes
being of this type is very small.

3.6 Related Work

Our approach is unique in that it combines specification mining with mining source
code archives. LAMARCK is based on the JADET [39] static analysis tool, but the
same technique could be used to enrich any other single-versioned programming rules
mining tool like PR-Miner [20] or GrouMiner [31].

To the best of our knowledge, the presented work is the first to define API evolution
patterns as a set of change properties derived from temporal properties. However, there
are many other approaches that learn from existing code in order to learn about the
software evolution or detect code defects.

3.6.1 Learning Evolution Rules

A large body of work has been done in the area of looking for API evolution changes
and the way they should be deployed to API clients. Several techniques and tools [19,
4, 40, 42] have been developed to discover the refactorings that a software system
has undergone by analyzing two versions of the evolved software project. Dig and
Johnson [5] found out that 84%–97% of all API breaking changes, i.e. changes that are
extremely disruptive in the development life cycle of component-based applications,
are in fact refactorings (e.g. class or method renaming). LAMARCK is also able to
detect change patterns based on refactorings, but is as well able to detect much more
complicated patterns and thus find non-refactoring based defects.

Nguyen et al. [29] developed the LibSync tool, which helps developers migrate
from one library version to another. LibSync has a knowledge base of API adapta-
tion patterns for each library version and given a client system and the desired library
version, the tool finds the locations in the code that are associated with the changed
API version. In comparison, even though both tools report similar precision rates,
LAMARCK is much more light-weight and time-efficient and is able to detect both
external API, as well as project-specific change patterns.
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Based on how a framework adapts to its own changes, Dagenais and Robillard [2]
developed a recommendation system that suggests replacements for framework ele-
ments accessed by client programs. Dagenais and Robillard designed a tool, called
SemDiff, that explores code locations that used an API method, which was later
deleted from the API. SemDiff mines the new API methods that are being used in-
stead and comes up with a set of method calls that substituted the call to the deleted
API method. In comparison to SemDiff, LAMARCK is also able to perform such
kind of detection, but in addition can also offer recommendations in the cases where
an entire piece of code was substituted with a method call (e.g. our checkWidget()
example) or the method (or even a class) remained unchanged, but the usage pattern of
the method (or the class) changed (e.g. our Ajde example).

Fluri et al. [6] looked for context changes of method invocations as moving an
existing method invocation into the then or the else-part of an if-statement. Our
approach is not restricted to such context changes and can detect any type of context
change thanks to the original change properties representing the context of a change.

Kim and Notkin [17] grouped code changes that form change patterns with the help
of their LSdiff tool. LSdiff infers systematic structural code differences as logic
rules from the difference of two sets of predicates, representing the two versions of a
program. LSdiff was built as a tool for assisting developers when making a diff
between two revisions of a file.

3.6.2 Learning from Project History
FixWizard [30] is a tool that identifies recurring bug fixes by comparing the changes
that happened between two version control revisions of a project. Apart from using a
completely different algorithm for identifying frequently occurring changes, LAMARCK
and FixWizard also interpret the context of a code change differently. FixWizard is
restricted to infer and offer recommendations only from and to code peers that match
in naming convention or ancestor classes. LAMARCK on the other hand interprets con-
text as any method that meets the same “starting conditions” (described by the original
temporal properties) of a pattern, thus addressing a much larger number of methods.

Livshits and Zimmermann [22] also mine patterns and their violations from soft-
ware repositories. Their DynaMine tool can detect a pattern of method calls, but only
if the method calls are used in the same transaction. We on the other hand, look at
the project as a whole and extract our patterns based on the entire project’s code. This
allows us to produce more general patterns and to find patterns and possible defect
locations different from the ones DynaMine detects.

Kim et al. [18], similarly to Livshits and Zimmermann [22], also operate on version
system transaction level and look for patterns on bug fixes. Our approach can, like
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BugMem, detect changes that were due to a bug fix, but is not restricted to that. For
example, we are able to detect a change due to the addition of new code, which is not
the case with BugMem. We also have a much higher true positive rate, when comparing
our best defect detection results (62%) against their best results (38.7%) on the Eclipse
project (see Section 3.4.1).

Williams and Hollingsworth [41] mine source code repositories to look for com-
monly fixed bugs. We do not rely on version repositories, which are not always easy
to find, but simply on two versions of the same project. Our method is not restricted to
patterns of bug fixes.

3.7 Summary
To reduce the risk induced by software evolution, it is necessary that changes be ap-
plied consistently across a project. By characterizing the impact of change on involved
method calls, their temporal ordering, and their dataflow, our tool LAMARCK learns
how software has changed in the past. As it comes to preventing errors, LAMARCK’s
recommendations are very precise. An average false positive rate of < 2% implies sub-
stantial benefits at low costs and low requirements. We therefore recommend usage of
LAMARCK or similar approaches in all projects that care about minimizing the risks
of inconsistent software evolution. On top of that, LAMARCK can also be helpful for
detecting errors in existing code, uncovering complex API usage changes with a true
positive rate of 33%–62%.

The contributions of our work are as follows:

• The first approach to study how object usage changes over time;

• The first approach to combine specification mining with mining source code
archives;

• A novel approach to detect missing and incomplete changes, based on object
usage;

• A novel approach to detect bugs due to inconsistent API usage, based on API
evolution.
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Chapter 4

Assessing Modularity

“Every program is a part of some other program and rarely fits.”
– Alan J. Perlis, Epigrams on Programming.1

Good program design strives toward modularity of its components, that is, limiting
the effects of changes to the rest of the code. We assess the modularity of software mod-
ules by mining change histories: the more a change to a module implementation affects
its usage in the client code, the lower its modularity and vise versa—the less a change
in the modules’ implementation affects its client code, the higher its modularity. Pre-
liminary results of the work presented in this chapter are published at PASTE’11 [27].

4.1 The Problem
A software project is in a constant change mode—features are being added, defects
are being fixed, or code is being refactored. Modular software design attempts to limit
the effect of those changes, in particular by hiding implementation details behind in-
terfaces, such that implementation changes would not induce changes in client code.
During maintenance of a system, one needs to understand which modules suffer from
low modularity. This is important for assessing the potential (non-local) impact of
changes. It is important because such modules may be candidates for refactoring.

In this work we define modularity as

1“Epigrams on Programming” is an article by Alan Perlis published in 1982, for ACM’s SIGPLAN
journal. They are a series of short, programming language neutral, humorous statements about computers
and programming.

65
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Table 4.1: Evaluation Subjects.

# Modules

Case study all changed median loc

Eclipse 3.4.2 17350 59 30
Eclipse 3.5.2 18531 - -
AspectJ 1.6.2 1940 17 35
AspectJ 1.6.3 1952 - -

Definition 11 (Modularity) A module has high modularity if the changes to the mod-
ule’s implementation do not lead to changes in its usage. A module has a low modu-
larity if the changes to the module’s implementation lead to changes in its usage.

In this study, we investigate the extent to which a change to a module implementa-
tion requires changing client code—that is, code that uses elements of the module.

As an example, consider the Eclipse class CompletionProposal on Figure 4.1.
The figure shows how the usage of this class has changed between two Eclipse versions.
This class went through some major implementation changes. If the client code had
remained unchanged it would not have issued a compilation error, but would have
resulted in unwanted behavior on the client side. A change in the implementation of
CompletionProposal resulted in the need to modify its client code. The more
such changes happen to this class, the lower its modularity is; the lower the modularity,
the higher the likelihood of future changes to induce unwanted effects.

The approach presented in this chapter is concerned with the influence of change
in a module’s implementation on the module’s client code. As a module’s implemen-
tation change we consider any kind of change that was performed on the code of the
module—anything from altering a method’s signature to adding a new method call
within a method. A module’s usage change is any change in the usage of the module’s
elements (e.g. module’s methods or variables) in the code of another software com-
ponent. The specific challenge is to assess usage changes (and thus modularity) in a
way that is independent of the number of clients, since modularity should be assess-
able even without a specific context. (Otherwise, a module with just one client would
be far more “modular” than any module with hundreds of clients.) This requires us
to abstract usage changes into common patterns—the more such unique patterns, the
greater the change in usage. Details on how we construct those patterns can be found
in the following sections.
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void findJavadocInlineTags(...) {
if (!this.requestor.isIgnored
(CompletionProposal.JAVADOC_INLINE_TAG)) {
...
CompletionProposal prop = this.createProposal
(CompletionProposal.JAVADOC_INLINE_TAG, ...);

prop.setCompletion(...);
prop.setRelevance(...);

}
}

void findJavadocInlineTags(...) {
if (!this.requestor.isIgnored
(CompletionProposal.JAVADOC_INLINE_TAG)) {
...

-->InternalCompletionProposal prop = createProposal
(CompletionProposal.JAVADOC_INLINE_TAG, ...);

prop.setCompletion(...);
prop.setRelevance(...);

}
}

Figure 4.1: Change in the usage of the CompletionProposal class that occurred
in the Eclipse code between versions 3.4.2 and 3.5.2.
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4.2 Collecting Usage and Implementation Changes

To assess modularity we analyze two variables—the number of module’s implemen-
tation changes done and the number of module’s usage changes that followed. We
perform our analysis by comparing an older and a newer version of the module’s code
and an older and a newer version of the analyzed project’s code. By comparing the
module’s versions we learn how the module’s code changed and from the comparison
of the project’s versions we learn how the usage of the module changed.

4.2.1 Collecting Implementation Changes

In order to see how the code of a module changed we track the number of changed lines
of code between the two versions of the module. To minimize the noise we ignore both
empty and comment lines. Any other line that was changed we count as changed.2

Table 4.1 lists our test subjects, together with the total number of modules present
in each one of them; the number of the modules that we were able to detect as changed
and the median of the changed code lines per module. The small number of changed
modules comes from the fact that the analyzed projects are in a relatively stable state
in their project evolution. As we used an exact matching of the fully qualified name
we might have also omitted the change in some modules, due to a change in the name
of the module. The reported number of changed code lines comes from comparing the
two versions of a project’s module—which is why we report only one median number
per project.

4.2.2 Collecting Usage Changes

In order for us to detect how a specific module and its elements are being used, we use
our tool LAMARCK [24] to collect and extract the module’s usage information.

LAMARCK receives as an input the binary code of two versions of the project we
want to analyze and looks for the evolution patterns that occurred between those two
versions (for a definition of an evolution pattern, please refer to Section 1.2).

LAMARCK goes through four basic stages, illustrated on Figure 4.2, in order to
produce those evolution patterns (for more detailed explanations, please refer to Chap-
ter 3).

2We acknowledge that more sophisticated approaches exist that track the evolution of a piece of code,
however we believe that the approach we chose is sufficient to give us a good estimate of the changes in a
module.
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Mining object usage models. For each statically identifiable object used in each of
the project’s methods, an object usage model is created. Here we refer to an
object as defined in object-oriented programing, i.e. a particular instance of a
class. Previous research has demonstrated the potency of object usage models
in expressing the behavior of an object [39, 24]. An example of an object usage
model can be seen on Figure 3.3.

Extracting temporal properties. A temporal property is an ordered pair of events a
and b associated with the same object. We use the expression a≺ b to represent
an ordering where event a may happen before event b. Examples of an event are
calling a method on an object, type casting or returning a value [24] (more details
on event types can be found in Section 3.2.1). In this second stage, LAMARCK
extracts temporal properties per method per analyzed project versions (i.e. sepa-
rately for each version).

Extracting change properties. After extracting all the temporal properties per method
for each of the two versions, LAMARCK compares the sets of temporal proper-
ties per method to come up with one set of evolution temporal properties for
each method. These combined sets of properties consist of annotated temporal
properties, where “A:” stands for added, “D:” stands for deleted and “O:” stands
for originally present (which allows us to track the context of a change). For
example, “D: a ≺ b” denotes that the temporal property of event a happening
before event b has been deleted when the project evolved.

Mining evolution patterns. LAMARCK takes all the sets of annotated temporal prop-
erties and, with the help of concept analysis [7, 9], detects the frequently oc-
curring sets. We call those frequently occurring sets evolution patterns, as they
are the code change patterns that resulted from the evolution of the project. Fig-
ure 4.3 shows the evolution pattern3 that corresponds to the code change from
Figure 4.1.

Our objective here is to see how the usage of a module has changed. A change in the
usage of a module will be detected by the presence of an evolution pattern that contains
elements of this module (e.g. calls to module’s methods). To collect the module’s usage
changes we count the number of evolution patterns, of which the module is part of. One
would notice that if a module is present in a lot of evolution patterns this would mean
that its usage has changed significantly. In the world of modules clients, module’s code

3The evolution pattern has been slightly modified to fit the page format. LAMARCK works with the
full signatures of the methods.
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isValidThread() 
< error()

checkWidget() < 
error()

isValidThread() 
< error()

checkWidget() < 
error()

Listener.<init>() 
< Widget.add()

(a) Two Versions

Listener.<init>() 
< Widget.add()

(b) Temporal Properties (c) Change Properties

isValidThread() 
< error()

checkWidget() < 
error()

isValidThread() 
< error()

Listener.<init>() 
< Widget.add()Listener.<init>() 

< Widget.add()

checkWidget() < 
error()

(d) Evolution Patterns

isValidThread() 
< error()

checkWidget() < 
error()

⇒ ⇒

Figure 4.2: The four baisc stages of LAMARCK.

O: CompletionProposal.setCompletion() ≺
CompletionProposal.setRelevance()

D: CompletionProposal.setCompletion() ≺
CompletionProposal.setRelevance()

A: InternalCompletionProposal.setCompletion() ≺
InternalCompletionProposal.setRelevance()

Figure 4.3: The evolution pattern corresponding to the code change indicated on Fig-
ure 4.1. The pattern shows what was the context of the change (indicated by the “O”
properties) and what was deleted and added (indicated by the “D” and “A” properties).

changes that lead to changes in the usage of this module are not welcomed, as any such
change might lead to potential defects in the client’s code.

4.3 Evaluation
We examined the test subjects presented in Table 4.1 to assess the modularity of their
modules based on the existence of implementation and usage changes.

4.3.1 Quantitative Evaluation

In order to see how much the code of a module changed between two versions we
collected the number of changed lines of code between those two module versions. An
illustration how this data looks like can be found on Figure 4.4(a). We also collected
the number of evolution patterns each module was part of (an illustration of this data
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Figure 4.4: (a) the number of changed lines of code for each of the Eclipse modules in
the transition from version 3.4.2 to version 3.5.2; (b) the number of evolution patterns
each Eclipse module was part of in the transition from version 3.4.2 to version 3.5.2.

can be seen on Figure 4.4(b)).
After collecting both the number of changed lines of code and the number of evo-

lution patterns per module, we examined the correlation between them. Figure 4.5
presents the correlation between the modules’ implementation and usage changes in
Eclipse for the transition from version 3.4.2 to version 3.5.2. Figure 4.6 shows the cor-
relation data for the AspectJ project for the transition from version 1.6.2 to 1.6.3. As
one can see from these figures, the modules that have a large number of usage changes
are easy to spot. Those modules would be the ones which we would point out as mod-
ules with low modularity. Modules with low number of usage changes we classify as
modules with high modularity.

4.3.2 Qualitative Evaluation

Let us now take a look at a few examples of modules and discuss their modularity.
A module with low modularity would be a module whose implementation changes

lead to a lot of usage changes. For the Eclipse project an example of such a module
is the CompletionProposal class. This class had more than 840 changed lines of
code between the two revisions and those changes affected more than 550 evolution
patterns. We found bug reports related to this class reported for Eclipse 3.4.2 and
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Figure 4.5: Correlation between implementation changes and usage changes for the
case of Eclipse 3.4.2 to 3.5.2. Each point represents a module.

targeted for 3.5.2. In the bug comments of one of them was explicitly stated that the
clients need to “apply a patch” to fix the problem (see Eclipse Bug #281575).

Another example of a module with low modularity would be the AsmManager
class from the AspectJ project (see Figure 4.1). The implementation changes for this
class amount to 135 changed lines of code and these changes affected 16 evolution
patterns.

As an example of a module with high modularity we would point out the Eclipse
class StyledText. This class was also a subject to a lot of implementation changes,
amounting to 1547 changed lines of code. These changes however influenced only four
of our evolution patterns, resulting in a very low impact of the applied implementation
changes.
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Figure 4.6: Correlation between implementation changes and usage changes (AspectJ
1.6.2 to 1.6.3). Each point represents a module.

4.4 Applications
The knowledge of which modules are more modular and which are less modular has
multiple applications. Let us take a look at a few such applications, which by all means
are not an extensive list. Our belief is that this technique can be used in multiple
scenarios and can be further extended and adjusted to the needs of its user. Part of our
future work includes analyzing the application of modularity in the optimization of the
software development process.

4.4.1 API producers
An API, as any other piece of software, has to deal with problems like resource dis-
tribution, user complaints, and software processes. The approach we presented in this
chapter can serve the API producers to locate the API modules with the lowest modu-
larity and direct their efforts towards refactoring them. Refactoring a module with low
modularity is important as it speaks for the quality of the API and can thus be a major
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factor in the success or lack of such of the API.
The presented approach can be used by the API producers to draw a correlation

between the internal code changes of the API modules and the changes in their users’
code. We would like to point out though that our technique could just as well be used
much earlier in the process in order to see how a change will affect the users. Such an
observation, though important, can be avoided on an earlier stage and can thus prevent
the low modularity to spill over to the users’s side. The API producers can use the
presented technique on their own code to see if their changes affected their own user
modules within the API itself. Even though we have not performed the corresponding
experiments, we believe such a step will greatly improve the modularity of the API
modules on a much earlier stage and will ensure the API to provide a good product to
its end users.

A usage, as the one described in the previous paragraph, can be applied to any
piece of software. Using our approach, any existing software system can self-analyze
the modularity of its modules by correlating it with its own changes in the other internal
modules that are dependent on the analyzed module. Thus we can generalize the usage
of the presented technique to any software system.

4.4.2 API users
As any user, an API user would like to be using the best product possible. The users
always aim at using the best product available, e.g. API, that will fit their needs as
perfect as possible. The users on an API are software developers, who are hoping that
the API they chose will help them do their job better and faster.

Imagine a scenario where the user of an API has decided to put his/her trust into
this API and has incorporated the usage of its modules into his/her own source code.
The external API works perfectly and the developer is satisfied and moves on to further
tasks. After some time the API producers decide to change the implementation of some
of the API modules and deploy this change to their users by releasing a newer version
of the API. API users are always urged to use the latest API version available, as the old
versions are not supported anymore and the newer versions might bring new and useful
extensions. In this scenario however, some of the API modules have been changed
in such a way that the code of the API user becomes faulty and/or does not compile
anymore. In this case the API user has to drop his/her current task, go back to the
old task, try to remember what the code using the low modularity API module(s) was
supposed to do and change it accordingly. As the reader can imagine, such a scenario
is not too pleasant for the user and if it repeats often the user is very likely to decide to
stop using this API and to move to another one.

The presented technique can serve the API users in selecting an API that has a good
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design and has modules with high modularity. We believe that it is important to keep
the API users informed of the quality of the APIs they are to use and thus to be able to
make a better choice for their system.

4.4.3 Defect prediction techniques
In the literature exist many techniques that deal with trying to predict possible defect lo-
cations in the form of faulty classes, methods or software processes. The work that we
introduced in this chapter can be used to expand and improve such existing techniques.
One example would be adding the knowledge of modularity to existing algorithms for
finding security vulnerabilities [46, 8].

There are also plenty of techniques developed to compute complexity of code
changes [10] and the way that influences the system. If one adds a modularity met-
ric to existing code complexity metrics [14, 28], we believe this could further improve
the presented results in these research works.

4.5 Threats to Validity
As any other empirical study, our study is prone to threats to its validity.

External validity. We have investigated four versions of two different open-source
projects, coming from different maturity, size and domain. However, we do not
claim that our results generalize to other arbitrary projects.

Approach is applicable only to JAVA projects. As the tools we use to detect the mod-
ules’ usage changes are designed for JAVA projects, our approach and tools are
currently applicable only to such projects. This limitation however comes only
from the tools we use and does not generalize to the the approach itself.

The implementation may have errors. A final source of threats is that our imple-
mentation could contain errors that affect the outcome. To control these threats
we did a careful cross-check of the data and the results and to best of our knowl-
edge it is free of errors.

4.6 Related Work
Martin Robillard [34] explores the question of API usability, by making a user study
on what makes APIs hard to learn. He showed that one of the ways developers learn
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about the API design is through examples (i.e. evolution patterns). This supports our
hypothesis that usage and implementation are tightly linked.

Dagenais and Robillard [3] also recognized that a change in the implementation
of an API might lead to problems in the client code. Their SemDiff tool recommends
replacements for API methods that were deleted during the evolution of an API.

The approach developed by Hovemeyer and Pugh [15] detects bug patterns in the
usage of an API. Our approach could also be used for detecting code defects, as we
look at modules with low modularity, i.e. any code that uses such a module would be a
subject to potential code defects.

Change impact analysis [33] would allow us to get an account of modules impacted
by a change. However, the modularity of a module should not depend on the number
of clients. By focusing on usage changes and abstracting those changes into evolution
patterns, we can easily summarize common usage changes even across a wide range of
modules.

Co-changes in version histories [47] are components frequently change together;
these can also be used to assess and predict the impact of changes. Again, we need a
common abstraction method to become independent of the number of modules.

Finally, centrality measures [45] relate the likelihood of a component failure to
the number of dependent clients. Again, we want to our modularity measure to be
independent of a particular context.

4.7 Summary
In this chapter we discussed the concept of modularity and how modularity can be
defined through usage. Having available such usage and modularity knowledge, one
can direct the project’s resources toward the weakest modules in the project. Resource
distribution has always been of vital importance in the software development process
and our approach can be easily plugged-in the resources decision making.

Besides assisting the API project managers in decision making, the presented ap-
proach can also assist the API users in deciding which API is recommendable to use.
As low modularity is usually a sign of an inadequate design, which more often than
not leads to defective or inefficient code—modularity information points to the quality
of the API and users usually prefer making informed decisions regarding the quality of
the technology they are using.

The presented approach can also be used to expand and improve existing defect
detection techniques.



Chapter 5

Conclusions and Future Work

“If you follow reason far enough it always leads to conclusions that are contrary to
reason.”

– Samuel Butler.1

The field of mining software archives and analyzing project’s evolution is vast.
What characterizes this field is the enormous amount of information available that of-
fers the possibility for exploring trends and patterns within this information body. This
dissertation has addressed the following open problems:

Estimating Quality This has always been a critical issue for each software project. A
lot of research and work has been done in estimating which parts of the project
are of high quality and which ones still need attention.

My research has contributed to estimating the quality of APIs and modules through the
usage of evolution trends and patterns. Chapter 2 presents one of the most extensive
study done so far on the usage and quality of software libraries. The collection of
usage data can not only be used for estimating the current quality of a product, but to
also estimate the impact of a change and thus predict future quality and support issues.
Similarly, we have also developed an approach for evaluating the modularity and thus
the quality of modules, which is presented in Chapter 4.

AKTARI: http://www.st.cs.uni-saarland.de/softevo/aktari.php

1Samuel Butler (1835—1902) was an iconoclastic Victorian author who published a variety of works.
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Defects Detection One of the main problems in software are the defects in the soft-
ware. Software companies each year invest enormous amount of money and time
in testing the product and identifying existing, undetected defects.

Chapter 3 presents the first technique to combine the two worlds of specification mining
and mining software archives. This lead to the development of a defect detection tool
that is able to detect a collection of code defect, no other tool developed so far could
find.

LAMARCK: http://www.st.cs.uni-saarland.de/models/lamarck/

Defects Prevention Fixing a defect, once present in a system, is time and resource-
consuming. That is why a lot of effort is being spent on detecting possible weak-
spots in a project and preventing the introduction of defects into the system.

The technique presented in Chapter 3 can as well be used, with a precision of 90% to
100%, to predict a possible defect location and thus prevent the introduction of defects
in the source code. No other tool in the literature has so far reported such high precision
values.

Distributing Resources Resources, like people, time and money, are always scares
when it comes to developing a software and the quality of the final product can
very much depend on the correct distribution of these resources. That is why
existing resources need to be distributed correctly to insure quality maximization
and the costs minimization.

The techniques presented in this thesis can serve as a way for developers and managers
to determine, which components of the software are in need of refactoring, testing or
redesign. The technique in Chapter 2 can be used to determine API components that
need more testing; the technique in Chapter 3 points to locations that are in need of
refactoring; the techniques in Chapter 4 can be used to point to components that are in
need of redesign.

The above mentioned research problems are vast and even though this thesis does
not claim that all those problems have been completely solved, my belief is that the
contributions of this thesis push the frontier of their solutions further to their complete
resolution.

http://www.st.cs.uni-saarland.de/models/lamarck/
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5.1 Future Work
One can step on the developed techniques in this thesis and develop new approaches
and extend the existing ones. Here are a few directions, in which this work can be
extended and used.

Trends Analysis This thesis gives a baseline of approaches for analyzing evolution
and usage trends. More work however can be done in the direction of classi-
fication of the trends and the forecasting the future behavior of a trend. Some
techniques that could be used have been discussed in Chapter 2.

Evolution of evolution patterns In Chapter 3 was introduced the concept of evolution
patterns. One could further examine those patterns and see how they evolve
over time. This means extracting information from more than two versions of
a project. Such knowledge will contribute to the better understanding of how
objects evolve and will also improve on the amount and quality of patterns that
can be detected.

Evolution of Components This dissertation has been mainly concerned with the evo-
lution of libraries, library versions, objects and modules – a range of different in
size and domain software components. The presented techniques however can
be applied to an even broader set of software components. One big area, that
could be addressed is the area of testing and test suits, where analyzing the exist-
ing trends in test suit changes can greatly contribute to the improvement of those
suits and thus to the end quality of the software.
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[6] FLURI, B., ZUBERBÜHLER, J., AND GALL, H. C. Recommending method
invocation context changes. In RSSE ’08: Proceedings of the 2008 international
workshop on Recommendation Systems for Software Engineering (New York, NY,
USA, 2008), ACM, pp. 1–5.

[7] GANTER, B., AND WILLE, R. Formal concept analysis: Mathematical founda-
tions. Springer, Berlin-Heidelberg, 1999.

81



82 BIBLIOGRAPHY

[8] GEGICK, M., ROTELLA, P., AND WILLIAMS, L. Predicting attack-prone com-
ponents. In Proceedings of the 2009 International Conference on Software Test-
ing Verification and Validation (Washington, DC, USA, 2009), IEEE Computer
Society, pp. 181–190.
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