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Abstract

We discuss variational integrals with density having linear growth on spaces of
vector valued BV -functions and prove Im(u) ⊂ K for minimizers u provided that
the boundary data take their values in the closed convex set K assuming in addition
that the integrand satisfies natural structure conditions.

Given a closed convex set K ⊂ R
N , we say that minimizers of some variational problem

have the convex hull property if they are contained in K in a sense to be made precise
provided this is true for their boundary data. A prominent example is given by mass
minimizing integer multiplicity m-currents T with compact support, where m ≤ N and
where the comparison currents S are such that ∂S = T0 for a (m − 1)-current T0 with
compact support and ∂T0 = 0. Then the support of T is contained in the convex hull of
sptT0, which is a consequence of the monotonicity formula for stationary varifolds. We
refer the reader to [Si], 19.2 Theorem and 34.2 Remarks. Let us now pass to the setting
of variational integrals

I[u,Ω] =

∫

Ω

f(∇u) dx

defined for functions u: R
n ⊃ Ω → R

N , Ω denoting a bounded Lipschitz domain. Suppose
that we are given a function u0 such that

u0 ∈W 1
1 (Ω; RN) , u0(x) ∈ K a.e. , (1)

where W 1
1 (Ω; RN) is the Sobolev space of vector-valued mappings (see, e.g., [Ad]). Let us

further assume that f(Z) = h(|Z|) with

h : [0,∞) → [0,∞) strictly increasing and convex . (2)

Then, if u ∈ W 1
1 (Ω; RN) minimizes I[·,Ω] w.r.t. the boundary data u0, i.e.

I[u,Ω] <∞ , u− u0 ∈W 1
1 (Ω; RN) and

I[u,Ω] ≤ I[v,Ω] for all v ∈ u0+
◦

W1
1(Ω; RN ) ,

}

it follows that u(x) ∈ K for almost any x ∈ Ω. A simple proof is given by the following
observation: let Φ: R

N → K denote the nearest-point-projection being Lipschitz with
Lip(Φ) = 1. From [AFP], comments given at the beginning of the proof of Theorem 3.96,
we see that v = Φ(u) is admissible and satisfies |∇v| ≤ Lip(Φ)|∇u| = |∇u|. Using the
properties of h stated in (2) combined with |∇v| ≤ |∇u|, we get from the minimality of
u that I[u,Ω] = I[v,Ω], and as it is outlined below, this will lead to ∇u = ∇v, hence
u = v and in conclusion u ∈ K a.e. We remark first that a related maximum principle
is due to D’Ottavio, Leonetti and Musciano [DLM], and second that a similar argument
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together with a proof of the chain rule in the Lipschitz setting has been presented in
[BF1]. However, the reader should note at this stage that a much more general chain rule
formula implying |∇(Φ◦u)| ≤ Lip(Φ)|∇u| is due to Ambrosio and Dal Maso [ADM1]. As
a matter of fact the existence of a minimizer u in a suitable Sobolev class requires that h
is of superlinear growth, and therefore in general can not be guaranteed if in addition to
(2) the function h satisfies

c̄ := lim
t→∞

h(t)

t
exists in (0,∞) , (3)

which means that now h is just of linear growth.

W.l.o.g. we will also assume that h(0) = 0. Based on ideas of De Giorgi (see the recent
book [Gio] for an overview on his work), of Giusti [Giu], of Giaquinta, Modica, Souček
[GMS], of Goffman and Serrin [GS], of Ambrosio and Dal Maso [ADM2] and of Buttazzo
[Bu] it is possible to introduce suitable concepts of generalized solutions to the problem

I[u,Ω] =

∫

Ω

h(|∇u|) dx→ min in u0+
◦

W
1
1(Ω; RN) . (P)

Let

M :=
{

u ∈ BV (Ω; RN) : u is a L1-cluster point of a

minimizing sequence of problem (P)
}

and define K[·,Ω]: BV (Ω; RN) → R,

K[u,Ω] :=

∫

Ω

h(|∇au|) dx+ c̄|∇su|(Ω) +

∫

∂Ω

c̄|(u0 − u) ⊗N| dHn−1 ,

where BV (Ω; RN ) is the space of functions of bounded variation (see [AFP] or [Giu]), N is
the exterior normal of ∂Ω and where we have used the decomposition of the vector measure
∇u in its absolutely continuous part ∇auxLn and its singular part ∇su. According to a
theorem of Besicovitch ([AFP], Theorem 2.22) we have ∇au ∈ L1(Ω; RnN) and

∇au(x) = lim
ρ↓0

∇u(Bρ(x))

Ln(Bρ(x))
(4)

holds for Ln-a.a. x ∈ Ω. Note that on account of (3) the recession function

f∞(Z) := lim
t→0

f(tZ)

t
, Z ∈ R

nN ,

equals c̄|Z|, hence we have the more familiar formula

K[u,Ω] =

∫

Ω

f(∇au) dx+

∫

Ω

f∞

( ∇su

|∇su|

)

d|∇su|

+

∫

∂Ω

f∞((u0 − u) ⊗N ) dHn−1

for the extension of I to the space BV (Ω; RN). We recall the following facts established
in [BF2] (compare also [Bi], Appendix A1):
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i) I[·,Ω] = K[·,Ω] on u0+
◦

W1
1(Ω; RN);

ii) K[·,Ω] → min admits at least one solution in BV (Ω; RN);

iii) these minimizers are exactly the elements of M;

iv) inf
u0+

◦

W 1

1
(Ω;RN )

I[·,Ω] = inf
BV (Ω;RN )

K[·,Ω].

Based on these facts it is reasonable to address the elements of the set M as generalized
solutions of problem (P).

Now we can state our main result:

Theorem 1. Suppose that u0 satisfies (1) for a closed and convex set K ⊂ R
N . Assume

further that we have (2) and (3) for the density h. Then it holds u(x) ∈ K a.e. for any
generalized solution of problem (P).

Corollary 1. (Maximum-principle) Suppose that h satisfies (2) and (3). Assume further
that u0 ∈ W 1

1 (Ω; RN) ∩ L∞(Ω; RN). Then any generalized minimizer u ∈ BV (Ω; RN) of
problem (P) satisfies ‖u‖L∞(Ω) ≤ ‖u0‖L∞(Ω).

Remark 1. The proof of Theorem 1 given below immediately extends to integrands of the
form

f(Z) =

n
∑

i=1

hi(|Zi|) , Z = (Z1, . . . , Zn) ∈ R
nN , Zi ∈ R

N ,

with functions h1, . . . , hn satisfying (2) and having the property that

c̄i := lim
t→∞

hi(t)

t

exists in (0,∞). In this case it holds

f∞(Z) =

n
∑

i=1

c̄i|Zi| .

Of course any other additive decomposition of f depending on the moduli of the Zi can be
considered, e.g.

f(Z) = h1

(
√

|Z1|2 + |Z2|2
)

+ h2(|Z3|) or f(Z) = h1(|Z1|) + h2

(
√

|Z2|2 + |Z3|2
)

are admissible in the case n = 3. In fact, a careful inspection of the proof of the chain
rule shows the validity of

|∂i(Φ ◦ u)| ≤ Lip(Φ)|∂iu| , i = 1, . . . , n ,

so that |∂i(Φ ◦ u)| ≤ |∂iu|.
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Proof. We fix a Lipschitz domain Ω̂ ⋑ Ω, extend u0 to an element of W 1
1 (Ω̂; RN) with

values in K and let

BVu0
(Ω; RN) := {w ∈ BV (Ω̂; RN) : w = u0 on Ω̂ − Ω} .

Following [GMS] we define

Î[w, Ω̂] :=

∫

Ω̂

f(∇aw) dx+

∫

Ω̂

f∞

( ∇sw

|∇sw|

)

d|∇sw|

=

∫

Ω̂

h(|∇aw|) dx+ c̄|∇sw|(Ω̂)

for w ∈ BVu0
(Ω; RN), and as outlined in [BF2] we have

Î[w, Ω̂] = K[w|Ω,Ω] + const .

Conversely, if v ∈ BV (Ω; RN ) and if we put

v̂ :=

{

v on Ω

u0 on Ω̂ − Ω

}

∈ BVu0
(Ω; RN) ,

then
Î[v̂, Ω̂] = K[v,Ω] + const ,

where const =
∫

Ω̂−Ω
h(|∇u0|) dx. Due to this observation it is sufficient to consider a

solution u ∈ BVu0
(Ω; RN) of

Î[·, Ω̂] → min in BVu0
(Ω; RN )

and to prove that u(x) ∈ K a.e.
To this purpose we consider the retraction Φ: R

N → K and let as before v := Φ ◦ u.
According to the comments given at the beginning of the proof of Theorem 3.96 in [AFP]
v is in BV (Ω̂; RN) and (recall Lip(Φ) = 1)

|∇v| ≤ Lip(Φ)|∇u| = |∇u| , (5)

where |∇v| and |∇u| denote the total variations of the vector measures ∇v and ∇u. Here
we like to emphasize again that a general chain rule formula as stated for example in
Theorem 3.101 of [AFP] is due to Ambrosio and Dal Maso [ADM1], and that (5) is a
simple consequence of this important formula. Clearly v ∈ BVu0

(Ω; RN) so that

Î[u, Ω̂] ≤ Î[v, Ω̂] . (6)

Now we use (4) for u and v which implies in combination with (5) for Ln-a.a. x ∈ Ω̂

|∇av(x)| = lim
ρ↓0

|∇v|(Bρ(x))

Ln(Bρ(x))
≤ lim

ρ↓0

|∇u|(Bρ(x))

Ln(Bρ(x))
= |∇au(x)| ,
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and the monotonicity of h gives
∫

Ω̂

h(|∇av|) dx ≤

∫

Ω̂

h(|∇au|) dx . (7)

Quoting [AFP], Proposition 3.92 (a), we may write for functions w ∈ BV (Ω̂; RN)

∇sw = ∇wxSw , Sw :=

{

x ∈ Ω̂ : lim
ρ↓0

|∇w|(Bρ(x))

Ln(Bρ(x))
= ∞

}

, (8)

and deduce from (5) that
Sv ⊂ Su , (9)

since
|∇v|(Bρ(x)) ≤ |∇u|(Bρ(x)) .

Next we use (5), (8) and (9) and get

|∇sv|(Ω̂) = |∇v|(Sv) ≤ |∇u|(Su) = |∇su|(Ω̂) (10)

which in combination with (7) leads to

Î[v, Ω̂] ≤ Î[u, Ω̂] .

By (6) we must have
Î[v, Ω̂] = Î[u, Ω̂] ,

and by (7) and (10) this is only possible if

∫

Ω̂

h(|∇au|) dx =

∫

Ω̂

h(|∇av|) dx , (11)

|∇su|(Ω̂) = |∇sv|(Ω̂) . (12)

¿From (11), from |∇av| ≤ |∇au| and from the requirement (2) it is immediate that

|∇au| = |∇av| Ln-a.e. on Ω̂ . (13)

If E ⊂ Ω̂ is a Borel set, then analogous to (10) we get from (5) and (9)

|∇sv|(E) = |∇v|(Sv ∩ E) ≤ |∇u|(Su ∩ E) = |∇su|(E) . (14)

At the same time – using (14) with E replaced by Ω̂ −E – it holds on account of (12)

|∇sv|(E) = |∇sv|(Ω̂) − |∇sv|(Ω̂ −E) ≥ |∇sv|(Ω̂) − |∇su|(Ω̂− E)

= |∇su|(Ω̂) − |∇su|(Ω̂− E) = |∇su|(E) ,

and with (14) it is shown that
|∇su| = |∇sv| . (15)
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Suppose that

Ln
(

{

x ∈ Ω̂ : ∇au(x) 6= ∇av(x)
}

)

> 0 . (16)

We have
∫

[∇au 6=∇av]

(|∇au| + |∇av| − |∇au+ ∇av|) dx > 0 , (17)

since otherwise
|∇au+ ∇av| = |∇au| + |∇av|

a.e. on [∇au 6= ∇av] and therefore

∇au = λ∇av

on this set with a non-negative function λ. But (13) then gives the contradiction λ = 1.
¿From (17) we get recalling (2)

∫

Ω̂

h

(

∣

∣

∣
∇a
(u+ v

2

)
∣

∣

∣

)

dx <

∫

Ω̂

h
(1

2
|∇au| +

1

2
|∇av|

)

dx

≤
1

2

∫

Ω̂

h(|∇au|) dx+
1

2

∫

Ω̂

h(|∇av|) dx ,

and since |∇s(u+ v)| ≤ |∇su| + |∇sv| it follows from (13) and (15) that

Î
[u+ v

2
, Ω̂
]

< Î[u, Ω̂] . (18)

But (u + v)/2 belongs to BVu0
(Ω; RN), thus the strict inequality (18) contradicts the

minimizing property of u, and assumption (16) is wrong which means

∇au = ∇av Ln-a.e. on Ω̂ . (19)

Consider the measure µ := |∇su|. Using (15) we find µ-measurable functions Θu, Θv:
Ω̂ → R

nN s.t. |Θu| = 1 = |Θv| µ-a.e. and

∇su = Θuxµ , ∇sv = Θvxµ . (20)

Let us assume that
∣

∣

∣
∇s
(u+ v

2

)
∣

∣

∣
(Ω̂) < |∇su|(Ω̂) . (21)

This implies on account of (19)

Î
[u+ v

2
, Ω̂
]

=

∫

Ω̂

h(|∇au|) dx+ c̄
∣

∣

∣
∇s
(u+ v

2

)
∣

∣

∣
(Ω̂) < Î[u, Ω̂]

which is in contradiction to the minimality of u. We therefore have in place of (21)
∣

∣

∣

∣

∣

∫

Ω̂

1

2
(Θu + Θv) dµ

∣

∣

∣

∣

∣

= µ(Ω̂) ,

6



hence

µ(Ω̂) ≤
1

2

∫

Ω̂

|Θu + Θv| dµ ≤
1

2

∫

Ω̂

(

|Θu| + |Θv|
)

dµ = µ(Ω̂)

and in conclusion
|Θu + Θv| = |Θu| + |Θv| µ-a.e.

For this reason we can write
Θu = λ̄Θv

with λ̄ non-negative and µ-measurable, but |Θu| = 1 = |Θv| gives λ̄ ≡ 1, i.e. Θu = Θv

µ-a.e. From (20) it follows ∇su = ∇sv which together with (19) shows that ∇u = ∇v.
Quoting Proposition 3.2 of [AFP] we see u− v ≡ const and u = u0 = v on Ω̂ − Ω yields
u = v and in conclusion u(x) ∈ K a.e. The proof of Theorem 1 is complete.

For the sake of completeness we have a look at the scalar case for which it is possible
to give up the special structure of the integrand and to obtain a maximum principle close
to the classical one. To be precise, let us assume that F : R

n → [0,∞) is strictly convex
together with F (0) = 0. For u0 ∈W 1

1 (Ω) we consider again the variational problem

I[u,Ω] =

∫

Ω

F (∇u) dx→ min in u0+
◦

W
1
1(Ω) , (P)

and observe
inf
∂Ω
u0 ≤ u ≤ sup

∂Ω
u0 (22)

provided we can find a soluton u ∈W 1
1 (Ω) of (P). In fact, if we assume M := sup∂Ω u0 <

∞, then we deduce from
I[u,Ω] ≤ I

[

min(u,M),Ω
]

that
∫

[u>M ]

F (∇u) dx = 0 ,

and 0 ≤ F (∇u/2) < F (∇u)/2 on [∇u 6= 0] implies ∇u = 0 on [u > M ], hence
∇max(u,M) = 0, which shows u ≤M .

Let us now assume that F is of linear growth, i.e. with constants a, A > 0, b, B ∈ R it
holds

a|ξ| + b ≤ F (ξ) ≤ A|ξ| +B (23)

for all ξ ∈ R
n. Moreover, we require

F (−η) = F (η) for all η ∈ R
n . (24)

Then we have
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Theorem 2. Let the strictly convex function F satisfy (23) and (24) together with F (0) =
0. If u ∈ M denotes a generalized minimizer of problem (P), then (the slightly weaker
variant of (22))

inf
Ω
u0 ≤ u(x) ≤ sup

Ω
u0 (25)

is satisfied for a.a. x ∈ Ω.

Proof. It is sufficient to consider the case M := supΩ u0 < ∞ and to prove the second
inequality stated in (25). We extend u0 to a function of class W 1

1 (Ω̂) on a bounded
Lipschitz domain Ω̂ ⋑ Ω assuming that this extension – again denoted by u0 – still
satisfies u0 ≤ M a.e. (now on Ω̂), since otherwise we may compose it with the function
ψ(t) := min(M, t), t ∈ R. As outlined in the proof of Theorem 1 the claim of Theorem 2
will follow if we can show that any solution u ∈ BVu0

(Ω) of

Î[w, Ω̂] :=

∫

Ω̂

F (∇aw) dx+

∫

Ω̂

F∞

( ∇sw

|∇sw|

)

d|∇sw| → min in BVu0
(Ω)

satisfies u ≤M a.e. Quoting the chain rule for real valued functions as stated in Theorem
3.99 of [AFP] we have v := ψ ◦ u ∈ BVu0

(Ω) together with

∇v = ψ′(u)∇auxLn +
(

ψ(u+) − ψ(u−)
)

νuH
n−1

xJu + ψ′(ũ)∇cu ,

where our notation follows the terminology of [AFP]. Let us look at the part ψ′(u)∇auxLn

of the vector measure ∇v being absolutely continuous w.r.t. Ln. It holds ψ′(u) = 0 a.e. on
the set [u > M ], wheras ψ′(u) = 1 a.e. on [u < M ]. Since the density ∇au equals the
approximative differential of u (see [AFP], Theorem 3.83), and since the approximative
differential of u vanishes a.e. on [u = M ] (see [AFP], Proposition 3.73 (c)), we get

∫

Ω̂

F (∇av) dx =

∫

[u<M ]

F (∇au) dx . (26)

Notice that the measures ∇jv and ∇cv are mutually orthogonal, hence we can write
∫

Ω̂

F∞

( ∇sv

|∇sv|

)

d|∇sv| =

∫

Ju

F∞

(

ψ(u+) − ψ(u−)
)

νu dHn−1 +

∫

Ω̂

F∞

(

ψ′(ũ)
∇cu

|∇cu|

)

d|∇cu| .

(27)
The function ψ′(ũ) has values in {0, 1}, which means

F∞

(

ψ′(ũ)
∇cu

|∇cu|

)

≤ F∞

( ∇cu

|∇cu|

)

|∇cu|-a.e. At the same time we have Hn−1-a.e. on Ju

F∞

((

ψ(u+) − ψ(u−)
)

νu

)

= |ψ(u+) − ψ(u−)|F∞

(

sign
[

ψ(u+) − ψ(u−)
]

νu

)

= |ψ(u+) − ψ(u−)|F∞(νu)

≤ |u+ − u−|F∞(νu)

= F∞

(

(u+ − u−)νu

)

.
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Here the first equality sign follows from the fact that the recession function is positively
homogeneous of degree one, the second is a consequence of (24) and the last equation is
established in the same way. Combing the inequalities from above with (26) and (27) and
using the minimality of u we find

∫

[u≥M ]

F (∇au) dx = 0 (28)

together with

∫

Ju

F∞

((

ψ(u+) − ψ(u−)
)

νu

)

dHn−1 =

∫

Ju

F∞

(

(u+ − u−)νu

)

dHn−1 (29)

and
∫

Ω̂

F∞

(

ψ′(ũ)
∇cu

|∇cu|

)

d|∇cu| =

∫

Ω̂

F∞

( ∇cu

|∇cu|

)

d|∇cu| . (30)

¿From (28) we deduce using the strict convexity of F together with F (0) = 0 that

∇au = 0 Ln-a.e. on [u ≥M ] . (31)

¿From (29) and
F∞

((

ψ(u+) − ψ(u−)
)

νu

)

≤ F∞

(

(u+ − u−)νu

)

Hn−1-a.e. on Ju it follows that

F∞

((

ψ(u+) − ψ(u−)
)

νu

)

= F∞

(

(u+ − u−)νu

)

(32)

Hn−1-a.e. on Ju, since otherwise we would have a contradiction to the minimality of u.
(32) gives

|ψ(u+) − ψ(u−)| = |u+ − u−| (33)

Hn−1-a.e. on Ju (recall F∞(tξ) = |t|F∞(ξ)) but by definition of ψ this means

ψ(u+) − ψ(u−) = u+ − u− (34)

Hn−1-a.e. on Ju. In the same way we obtain from (30), from

F∞

(

ψ′(ũ)
∇cu

|∇cu|

)

≤ F∞

( ∇cu

|∇cu|

)

and from the minimality of u that

ψ′(ũ) = 1 |∇cu| − a.e. (35)

Recalling the formula for ∇v and using (31), (34) and (35) we arrive at ∇v = ∇u, hence
v = u and in conclusion u ≤M a.e. on Ω̂.
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