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Abstract

For obstacle problems of higher order involving power growth functionals we
prove a posteriori error estimates using methods from duality theory. These es-
timates can be seen as a reliable measure for the deviation of an approximation
from the exact solution being independent of the concrete numerical scheme under
consideration.

1 Introduction

In the recent paper [BFR2| we derived a posteriori error estimates for a class of higher
order variational inequalities on a planar domain modelling elastic plates with an obstacle
subject to a power hardening law. The purpose of the present note is to establish such
error estimates for a related type of variational inequalities but under different boundary
conditions for which it is also possible to give an estimate of the distance of an arbi-
trary function satisfying these boundary conditions to the convex set of all admissible
comparision functions which respect the obstacle.

To be more precise, let Q C R? denote a bounded smooth domain and introduce the

class .
K:={veW( QN Ww,(Q):v>VonQ},

where 1 < p < oo is fixed and V?/Il,(Q), WI?(Q), etc., denote the standard Sobolev spaces,
see, e.g. [Ad]. The function ¥ is chosen from W7(Q) with the properties ¥|sq < 0 and
U(xp) > 0 at least for some point xy € Q. By Sobolev’s embedding theorem (compare
[Ad]) functions v € W2(Q) are in the space C°(Q) which immediately shows that K is
non-empty. The variational problem under consideration is

(P)  Jv] ::/QHp(v%) dx—i—/QWp(VU) dr — min in K,

where V2v is the matrix of the second generalized partial derivatives of v. Moreover, we
have abbreviated

1
H(E) = |Bp

for symmetric (2 x 2)-matrices E and

1 p
m(¢) -—Z;IEI

Acknowledgement: The authors like to thank S. Repin for many stimulating discussions.



for vectors & € R2. The reader should note that the variational inequality describing the

behaviour of a plate with an obstacle is formulated on the space V([)/f,(Q) which means that
we consider functions with zero trace whose normal derivative also vanishes on 0€2. More-
over, for modelling plates it is not necessary to introduce the first order term [, 7,(Vv) dz
in the functional since we have the coercivity of

Vf/f,(Q) SV / I, (V?v) dx
Q

which is no longer true if V([)/f,(Q) is replaced by the larger class W2(Q)N I/(I)/;,(Q)
Therefore, the weakening of the boundary condition in problem (P) makes it necessary
to include a first order term in the functional J but as the reader can imagine it is not
really necessary that Vv and Vv appear with the same power p.

Now, let u € K denote the unique solution of problem (P). If v € K is any comparison
function, then we are going to prove an estimate of the form

(1.1) V2 — V20|2r + || Vu — Vo[zr < M(v,...),

where M is a non-negative functional depending on v, on the data p, €2, ¥ and on
parameters which are under our disposal. Of course (1.1) is only meaningful provided we
can establish the following properties of M:

a.) the value of M is easy to calculate;
b.) M(v,...) =0 if and only if v = u; moreover: M(v,...) — 0 if vy — u;

c.) M(v,...) gives a realistic upper bound for the distance of the approximation v to
the exact solution u.

The requirement formulated in c.) means that during the process of deriving (1.1) one
should try to avoid overestimation so that (1.1) can be used for a reliable verification
of the accuracy of approximative solutions obtained by various numerical methods. We
emphasize that the way of how to derive (1.1) is based on purely functional grounds
which means that one uses tools from variational calculus such as duality theory which do
not refer to any concrete discretization of the problem. Such functional type a posteriori
error estimates mainly have been established for a variety of problems by S. Repin, we
refer to the monograph [NR] where the interested reader will find further information.

Our paper is organized as follows: in Section 2 we will prove an estimate like (1.1)
following [Re] and the modifications of this work outlined in [BFR2]. Here we concentrate
on the case p > 2 since the subquadratic situation requires different techniques, see e.g.
[BR] and [BFR1]. In Section 3 we are going to remove the restriction v € K from our

estimate (1.1) which means that we want to insert arbitrary functions o € W2(€2)N I/f/})(ﬂ)
In order to do so we have to measure the distance of ¥ to the set K which is possible by
using the LP—theory for elliptic equations.



2 Perturbations of Problem (P)

Let p > 2, q:=p/(p—1), and consider the spaces
X = [P(;R?), Y := LP(QRE2)

sym

together with their dual variants

X* = LYY R?), V™ = LIY(Q;REZ)

sym

If ITy, 7> denote the conjugate functions of II,,, m, (see [ET]), then it holds
Jw] = sup /[a* -V + 7% Viw = II(7%) — 7 (a")] dz
a*eX* T*eY* JQ

and if we introduce the Lagrangian

lw,a", ") = /Q[a* Vw + 7 Vi — IL(77) — i (a*)] da

p

as well as the dual functional

J*[a*, 7] := inf l(w,a", "),

wekK

then the dual problem
J* — max on X* x Y*

has a unique solution (d*, ") for which
(2.1) I = Il 7],

u denoting the solution of (P), we refer again to [ET]. As done in [Re] we define suitable
perturbations of problem (P): for A € A :=={p € L1(Q) : p >0} we let

(Py)  Iaw] = Jw] — /)\(w — V) dr — min in W;(Q)ﬂ IX/;(Q)
Q
and observe that (P,) admits a unique solution uy. Moreover, it is immediate that

sup J. :J—'nf/)\ - ¥)d
sup afu] = Jfu] — juf | Mw—¥)de

B Jw], ifwekK,
B +oo, ifw¢K.

The Lagrangian associated to Jy is given by
L(w,a*, 7%, \) = l(w,a*,7%) — [, Mw — V) dz,
w e W2(Q)N W},(Q), (a*, T ) e X" xY* Ael,



and the maximizing problem

Jy[a*, &) = inf L(w,a*,£*,\) — max in X" x Y~
wEWL(QNW2(Q)

dual to (P,) has a unique solution (d}, o}) such that
(2.2) D] = J3[d}, 3]

We remark that J;[a*, 7%] > —oo implies that

(2.3) /[a* -Vw + 7 V2w — Mw]dz = 0
Q

for all w € WZ(Q)N I/(ID/IIJ(Q) Let Q5 = {(a*,7") € X* x Y* : (a*,7") satisfies (2.3)}.
Taking w EVc[)/f,(Q) in (2.3) we see that in the distributional sense

div(div ™) — diva® = A

is true for (a*,7*) € Q5. We further observe the following inequality:

inf  Jo] < inf Jfuw] = inf [Jj] - /Q Aw — ) de] < inf Ju],

VEWL(QNW2(Q) wek wek wek
or equivalently:
(2.4) Iauy] < J[ul.
After these preparations we can state our first result:

THEOREM 2.1. Let p > 2. With the notation introduced above we have for any v € K,
for any b* € X*, for all £ € Y*, for any A € A and for any choice of 3 > 0 the estimate

IV(u = o)L + IV (u = 0) 1L
1
< D 2p_1{Dp[VU, V2v, b*, 5*] + [22—q(3 _ q> + 56—q]d(b*7 5*)4

1
+}—jﬁp[ll|€*|"‘2€* = V2, + |[6°77%" = Vo7,
(2.5) +/ Mo —W)dz}.
Q

Here we have abbreviated D, : X xY x X* x Y* — [0, 00),

Dyla,n,a*,n*] = /Q [7p(a) + 7 (a*) — a* - a] dfv+/ﬂ [IL,(n) + 1L (n*) — n : n*] d
do* ") = inf [T =% + la” = b]|%.] -

(a*,7*)€Q}



REMARK 2.1. i) An estimate for the distance d(b*,n*) of (b*,n*) to Q% can be
obtained along the lines of [BFR2], Theorem 3.1 and Theorem 5.2.

ii) Following [Re] we can choose the function X in natural ways in order to get variants
of Corollary 3.1 and 3.2 from [BFR2].

iii) If p < 2, then one can follow Section 4 of [BFR2] to find the appropriate version of
Theorem 2.1 in which the minimizer u is replaced by the maximizer (d*,c*).

iv) Clearly all the terms on the r.h.s. of (2.5) are non-negative, and they vanish simul-
taneously if and only if (b*,£*) € Q%, AM(v—V¥) =0, Vv = |£*]972¢*, Vo = |b*|72b*.

Proof of Theorem 2.1: Let v € K, A € A and (a*,7") € Q}. For vector- or tensor-valued
functions A, B of class L”(€2) we have by the variant of Clarkson’s inequality [Cl] proved
in [MM] on account of p > 2

A+ B A-B 1 1
(26) L5521+ 1552 do < 5141 + 5181

Applying (2.6) in an obvious way we see

1 1 u+v
192 (= 0) 15 + 19 (= 0) [ < p 2 [5I00] + 50u] - T[22]]
and the minimality of v implies
(2.7 12— ) + IV~ )l < p 227 [J1e] — ]
From (2.2) and (2.4) we get
Ju] = JXldy, 03] = J}[a®, 77

which gives in combination with (2.7)
(28) 192 = )l + 19— )5 < p 27 [T1e]  Fila" 7]

We discuss the r.h.s. of (2.8):  for (a*,7") € Q3 we have
Jyla*, "] = /Q [— IL(7") — my(a®) + \If)\] dr
hence
Jv] = Ji[a*, "] = /Q [Hp(v%) +IL(7*) — 7 : VP

+7p(Vv) + 7 (a*) — a” - Vv} dx + / (v—V)\dx
0

= D,[Vv,V?v,a*, 7] + /(U —U)Adz.
Q
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Inserting this into (2.8) it is shown that

(2.9) IV (w =)z + IV (u =)l < p 227 {Dp[Vv, Vv, a", 77| + /(v — U)Adx}
Q

for all v € K, (a*,7%) € Q}, A € A. Next we let b* € X* £ e Y*. If v, a*, 7%, X are as in
(2.9), we get by the convexity of IT;, 7 and by(2.9)

IV2(w =)o + [V (u = 0)[7
< p QP_I{DP[VU, V2, b*, €] +/ [H;(T*) —1I0(&") — (7" = &) - Vzv} dx
Q

+/Q [75(a*) — w5 (b*) — (a* = b") - V] dx+/

(v — W)\ dx}

IN

P 2p_1{Dp[Vv, V2v,b*, €] —I—/ [|7‘*|q_27'* — Vzv] (= &) dx

Q
+/ [la*|"%a* — Vv] - (a* — b") dx+/(v — \If))\da:}
Q Q
= p 2p_1{Dp[V’U,V2U,b*,€*] ‘l'/ [|7_*|q—27_* . |€*|q—2€*} . (7_* _5*) dr
Q
+/Q [a*[4=2a" — [b*|7~20"] - (a® —b*)d:v+/ﬂ [|e7 |72 — V2]« (r° — &) d
+/ [16*]97%6* — V] - (" — b") dx—i—/)\(v ) dm}
Q Q
4
=: p2P"Y' D [Vv, V3, b* £ I, Mo —U)dzy.
SR CIAREDY + [ Mo -w)dr}

According to [BR] we have

L < 277G —q)llT" = &l%.,
L < 22793 —q)lla” — b7,

and from Hélder’s and Young’s inequality we find

I < €777 = V20| ol 7" — €| 2a
1 *[q—2 ¢* 1. * *
< = AllE e = VRl + 87T — €|
p q
1 1
Iy < p BPIb*|7720" — Vo[, + gﬁ“’lla* ka7



where 3 > 0 is arbitrary. Collecting the various estimates it is shown that

1920 = )l + 190 = w5
< p 2 D,[V0, V20,061 + 2793 — [l — €14 + la” = 57]4.)

1 oD n oy
2 Il = ol + 172 - Dol )

1 - * * * *
2 B =€+ o = VL] + [ A=W},

and inequality (2.5) follows by taking the inf w.r.t. (a*,7*) € Q3. O

3 An estimate for the distance to the set of admissi-
ble comparison functions

In order to apply inequality (2.5) we have to take functions v from the class of admissible

comparison functions. Now, if w GIX/;(Q)QWI?(Q) is arbitrary we can not simply “project”
w on the class K as it is possible for first order variational inequalities since max(w, V)
in general is not an element of W7?(€2). So it remains to measure the distance of w to the
set K, and a reasonable quantity to do this is given by

p(w)? := inf [/Q IL,(V*0' — V2w) + 7,(Vv' — Vw)} dz .

v ek
If o' € K, then v —w € W2(Q)N I/(I)/;(Q) together with v/ —w > W := ¥ — w, hence

(3.1) p(w)? = inf {J[v] : v € WZ()N I/f/;,(Q),v > ‘?I}} :

As a comparison function for the minimization problem on the r.h.s. of (3.1) we consider
the solution h of the first order variational inequality

/ |Vg|*> dz — min in {f EV?/%(Q) L >0},
Q

h solves the equation

0 on [ > U]
—Ah = B = FelPQ)),
—AV on [h = V]
and by the LP—theory for elliptic equations (see, e.g. [Mo], Theorem 5.6.2, or [GT]) h is
in the space W72(Q)N I/(I)/;,(Q) together with
(3.2) / |V2h|P dz < Cy(p, Q)/ |F|Pdx.
Q Q
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On the other hand, the interpolation theorem 4.14 of [Ad] shows
(3.3) /|Vh|pd:)s < Cy(p, Q)[/ |V2h|pd:):+/ |h|de].
0 Q 0

For discussing [, |h|? dz we assume p > 2 and let r := 2p/(p + 2). Since h EI/(I)/'%(Q) and
r < 2, we can apply Sobolev’s and Hoélder’s inequality to get

/7 /2
/|h|de < C’g(p,Q)(/ |Vh|7’dx>p §C4(p,Q)(/ |Vh|2d:):)p
Q Q Q
p/2 ~ o~ /2
o Q)(/hFdx) — Culp, Q)(/ |gad]ar)"
Q [h="]
Combining this estimate with (3.2) and (3.3) it is shown that
- /2
05(p,gz)[/ |F|P da + (/ ~ |m\p|d;p)p }
Q [h="]
~ ~ o~ p/2
(3.4) - 05(p,9)[/ AT da + (/ . |\IfA\If|d9:) ]
h=] 0

=]
In order to proceed further we observe that —Ah > 0 which is an immediate consequence
of

IN

p(w)?

/|Vh\2dx§/|Vh+tVn\2dx
Q Q

valid for t > 0and all n € C3(Q), n > 0. Since h|sgg = 0 we deduce h > 0 on Q, hence
[h=V¥] C [V —w>0]=[w< V. Inserting this into (3.4) we have shown:

THEOREM 3.1. If w € W2(Q)N I/f/})(Q) is arbitrary, then in case p > 2 we have with
a suitable constant C' = C(p,Q) >0

inf V2w — V|1, + [V — Vo'l
v'e

(3.5) < o[/{w@] A — w)|P da + (/[w@} W — w|| AT — w)| d:):)p/z] .

REMARK 3.1. A similar estimate is valid in case p < 2.

Theorem 3.1 is a applied as follows: let w € W2(Q)N V([)/;(Q) and consider b* € X*,
& eY*, e Aand 5> 0. Then (2.5) gives for any v € K

IV (u = w)[fp + [V (u = w)IF,
< 277 IV (u =)l + IV (u = )[[] + 227 IV (w = )}, + IV (w — ) [17,]

1
< p 272D, [Vo, Vi, b, € + [279(3 — q) LRI LCRT
1
42 QI = ol + I - Vell] + [ A - W) de)
Q
+27 V3w = ), + [V (w = 0)5,]

8



If we replace the function v in {. ..} by the function w and estimate the resulting difference
in an obvious way, then we arrive at

V2 (u — w)|[T, + |V (u—w)|f,
1
< p 22p‘2{Dp[Vw, V2w, b*, € + [2279(3 — q) + p B9 d(b*, )0

2r—t
+

p A€ 172" = VAwllg, + [I[6"]77%" — Vwl|7,]

+ [ Nw=w)de}+p 2 Ao~ ol
) [V )l + 19 - 0l
+p 22 D, [Vo, V20,0, €] = Dy [V, V2w, b, €] }
We observe
D, [V, V20,b%, €] — D, [V, V2w, b, €]
_ /Q [, (Vo) — (V) — b - (Vo — V)] da

+ /Q (I, (V20) — I1(V2w) — € : (V20 — V?w)] da

IA

/Q(DWP(VU) —b") - (Vv —Vuw)dz
+ /Q (DIL(V20) =€) : (V20 — V2w) da
= /Q (Dmy(Vv) — Drp(Vw)) - (Vv — Vw) da
+/Q (Dmp(Vw) = b*) - (Vv — Vw) dz
+ /Q (DIL,(V*v) — DIL,(V?w)) : (Vv — V?w) dz
+ /Q (DIL,(V?w) — &) : (Vv — V?w) du
where we used the convexity of the potentials. We have

/ (Dmy(Vw) —b*) - (Vo — Vw) dz + / (DIL,(V*w) — £) : (Vv — V?w) d
Q Q
< |[Vw|P2Vw — b*|| e[| Vo — V| e + ||| V0| V20 — || 1| V20 — V20| o



and

/Q (D7p(Vw) — Dy (Vw)) - (Vv — Vw) dz

+ / (DIL,(V*w) — DIL,(V*w)) : (Vv — V?w) dx

< 1D (V)2 + | D7y (V) [0 | V0 = Vo 1o

+{| DIL,(V?0) | o + | DIL,(VZw) | a } || VP0 = V]| s
= {IVoll! + IVwlli HIVe = Vol + {IVl55" + V2wl IV = V2l
<[22V = V|l + 2073Vl + IVl 7] Ve = V|

+[2072|| V2 = V22t + 2072 | VR |+ (VR VR — V2w e
202V — Vuwl|f, + [V — V|7, ]
+2°72 + D[ Vw5 Vo = V| + V202 | V20 — V)| ] -

Collecting terms we get (recalling Theorem 3.1)

THEOREM 3.2. For any w € W2(Q)N V([J/})(Q), bre X, & ey, AeANand >0 it
holds:
IV2(u = w7, + IV (u = w)[7,
< %72 [r.h.s. of (2.5) with v replaced by w] + p 2** 72| A||za||w — v||»

+[2071 + P23 4 p 27 || VP — VPwl[L, + ||V = Vu||f, ]

+p 2272 [|| [ Vw[P?Vw — b || 14| Vo — V||

V2w P2 V2w — €| 14| V0 — Vw|| o]
(3.6) +p2772 (2072 + 1) [|| V|5 Y[ Ve = V| e + || Vw5 V20 — V2w 1] -
Here v denotes any function from the class K , and in the above inequality we may replace
|Viv — Viwl|r, i = 0,1,2, by R(w, V)P, R(w,¥) denoting the r.h.s. of the inequality
(3.5).
REMARK 3.2. i) Since we use the Poincaré-inequality for the term ||w — v||», the

constant C appearing in (3.5) has to be adjusted to ensure the last statement of
Theorem 3.2.

ii) Note that after taking the inf w.r.t. v € K inequality (3.6) reduces to (2.5) with a
slightly larger factor in front of {...} on the r.h.s. provided we start from a function
w € K. Inequality (2.5) is not exactly reproduced since the expression

IV + V21
s not a norm. Replacing it by
IVl + IV e

would cause the same difficulty in a different place of the calculations.

10



References

[Ad]

[BFR1]

[BFR2]

[BR]

[C]

[ET]

Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London
1975.

Bildhauer, M., Fuchs, M., Repin, S., A posteriori error estimates for stationary
slow flows of power-law fluids. J. Non-Newtonian Fluid Mech. 142 (2007), 112—
122.

Bildhauer, M., Fuchs, M., Repin, S., Duality based a posteriori error estimates for
higher order variational inequalities with power growth functionals. Submitted.

Bildhauer, M., Repin, S., Estimates for the deviation from exact solutions of
variational problems with power growth functionals. Zap. Nauch. Semi. (POMI)
336 (2006), 5-24.

Clarkson, J.A., Uniformly convex spaces. Trans. Am. Math. Soc. 40 (1936), 396
414.

Ekeland, I., Temam, R., Convex analysis and variational problems. Noth-
Holland, Amsterdam, 1976.

Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second or-
der. Grundlehren der math. Wiss. 224, second ed., revised third print., Springer,
Berlin-Heidelberg-New York 1998.

Morrey, C. B., Multiple integrals in the calculus of variations. Grundlehren der
math. Wiss. in Einzeldarstellungen 130, Springer, Berlin—Heidelberg—New York
1966.

P.P. Mosolov and V.P. Mjasnikov, Mechanics of rigid plastic media. Nauka,
Moscow (1981) (in Russian).

Neittaanmaéki, P., Repin, S., Reliable methods for computer simulation: error
control and a posteriori estimates. Elsevier, New York, 2004.

Repin, S., Estimates of deviations from exact solutions of elliptic variational
inequalities. J. Math. Sci. 115 (2003), 2811-2819.

11



