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Abstract

Recently, Automated Multiple View Inspection (AMVI) has been
developed for automated defect detection of manufactured objects.
That framework was successfully implemented for calibrated image
sequences. However, it is not easy to implement in industrial environ-
ments because the calibration is a difficult and unstable process. To
overcome these disadvantages, we propose the robust AMVT strategy
which assumes that an unknown affine transformation exists between
each pair of uncalibrated images. This transformation is estimated us-
ing two complementary robust procedures: a global approximation of
the affine mapping is computed by creating candidate correspondences
via B-splines and selecting those which better satisfy the epipolar con-
straint for uncalibrated images. Then, we use this approximation as
initial estimate of a robust intensity-based matching approach, which
is applied locally on each potential defect. The result is that false
alarms are discarded, and the defects of an industrial object are ac-
tually tracked along the uncalibrated image sequence. The method is
successful as shown in our experiments on aluminum die castings.

Keywords: Automated visual inspection, uncalibrated images, image match-
ing, sequence tracking, robustness, X-ray imaging, radioscopic imaging sys-
tem.

1 Introduction

Recently, the Automated Multiple View Inspection (AMVI) approach was de-
veloped for automated defect detection [1]. This method is able to detect
defects in two steps. In the first step called identification, potential defects
are automatically identified in each image of the sequence using a single fil-
ter without any prior knowledge of the test object. The second step, called
tracking, attempts to track the identified potential defects along the image
sequence. As a result, only existing defects (and not the false detections)
are successfully tracked in the image sequence because they are located in
positions dictated by the motion of the test object. The preliminary re-
sults obtained using AMVI methodology are promising for calibrated image
sequences. However, this approach is not suitable in all industrial applica-
tions, because calibration is a difficult process, and vibrations of the imaging
system may induce inaccuracies in the estimated parameters of the multiple
view geometric model. Thus, calibration is not stable and the imaging sys-
tem must be re-calibrated periodically. A simple method was proposed in
[2] to inspect objects using uncalibrated image sequences, where structural



points are used to track the potential defects in the sequence using bifocal
constraints. The method achieves good performance in some sequences, but
fails when the structure points cannot be matched. In this case the estima-
tion of the fundamental matrix is incorrect, and therefore the tracking also
fails.

Following the concept of camera multiplicity or multiple views, a reconfig-
urable array for machine inspection (RAMVTI) was proposed in [3], where the
calibration process requires manual intervention. The authors remark the
importance of the calibration for accurate inspection and propose a method-
ology to perform it automatically [4]. The goodness of using multiple views
is also described in [5], where a visual inspection system that uses a single
camera and mirrors for simulating multiple cameras is proposed. A suitable
pattern object is used to find the camera parameters before combining all
views.

Calibration might be a extremely complicated procedure for real-time ap-
plications and manufacturing systems that cannot be halted for calibration
purposes. Therefore, we aim to perform visual inspection avoiding an imprac-
ticable, expensive, and/or time consuming calibration process. To overcome
these drawbacks, in this paper we propose a new approach for automated vi-
sual inspection that can be directly applied on uncalibrated image sequences
of multiple views. To deal with the geometric distortions we assume that
an unknown affine transformation exists between every pair of consecutive
or non-consecutive images. We formulate the search for this affine map-
ping as a robust local estimation problem using an intensity-based matching
approach. In implementing a good tracking algorithm, it is important to
put special effort into finding the first (global) matching between every pair
of images. This match is used to provide the initial estimate of the local
optimisation process applied on each potential defect, which is crucial for
convergence. This is why another robust procedure is introduced at this
step, which takes advantage of the geometric characteristics of the object
being inspected. Using the RANSAC algorithm [6] we select the best candi-
date correspondences created via B-splines which better satisfy the epipolar
constraint for uncalibrated images

The rest of the paper is organised as follows: Section 2 explains our ro-
bust approach for uncalibrated AMVI. Section 3 shows preliminary results
obtained with the proposed methodology. Finally, Section 4 delineates the
concluding remarks and perspectives for future works.
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Figure 1: Block diagram of the proposed robust automated multiple view
nspection system.

2 Proposed Method

Our proposed framework for automated visual inspection consists of 5 steps
(A to E), which are outlined in Fig. 1. Before describing each step in detail,
a brief introduction to each one is given a continuation.

X-ray imaging systems are widely employed in nondestructive testing. They
are particularly useful in automotive and aerospace industries for detecting
different types of flaws: porosity, cracks, corrosion, inclusions, debris, rivets,
thickness variations, among others [7, 8, 9, 10, 11]. Employing X-rays ex-
ploits the fact that most of the material defects are not visible. However,
even in radioscopic images the signal-to-noise ratio (SNR) is low, so as the
flaw signal is slightly greater than the background noise. For this reason, the
identification of real defects with poor contrast can involve detection of false
alarms as well. In some applications® one view is probably enough for exam-
ining material defects. However, the robustness of the inspection process can
be increased when redundant information is used to validate flaw detection.
Thus, two or more views of the same object taken from different viewpoints
can be used to confirm and improve the diagnostic done by analysing only
one image. This is a useful and powerful alternative for examining complex
objects where uncertainty leads to misinterpretation. A similar idea is also
used by radiologists that analyse two different X-ray views of the same breast
tissue to detect cancer at early stages. See for example [12], where the pro-
posed method finds automatically correspondences in two views. Detection
of delamination defects in rocket boosters is another example recommending
the use of radiographic sequences [13]. Section 2.1 explains how the uncali-
brated radioscopic image sequence used in our experiments is obtained (Fig.
1 - block A).

Hor instance in printed circuit board (PCB) inspection.



Once the image sequence is acquired, we search for potential defects on each
view. Due to the low SNR of the images, detection of false alarms is likely.
However, the detection of the real defects must be ensured in order to make
the subsequent tracking possible. Potential defects are segmented and their
features extracted in order to match them in a posterior correspondence
analysis stage. Section 2.2 shows how the identification of potential defects
is performed (Fig. 1 - block B).

Going one step further, we postulate that only real defects can be followed
along the image sequence, and logically false alarms discarded. Nevertheless,
the uncalibrated imaging system generates images perturbed by geometric
distortions, what makes any attempt to search for corresponding defects in
two or more views cumbersome. To deal with this problem, we model geo-
metric distortions as affine transformations?. Let H be a non-singular 3 x 3
matrix defining an affine mapping from all the homogeneous points m; in
one view to the points m; in another view, i.e. m; = H m;. Three non
collinear corresponding points form the following linear system of equations

[14, chap.9]
[x’l x :Ug-l [xl Zo x3-|
Yoy sl =H y v usg, (1)
[1 1 1J [1 1 1J

. J/ [\ J/

™’ M

from which H can be computed as H = M'M~!. Additional corresponding
points allow a more accurate approximation of the mapping. For n points
we compute

H=MM"MMT) 1 (2)
If some unequivocal corresponding points between two consecutive or non-
consecutive views were known, the problem of matching potential defective
regions between these images would be solved by applying the mapping H
to find corresponding coordinates for those regions, and comparing their
extracted features obtained in the previous identification step. However, such
corresponding points are not known. To find a reliable subset of such points,
we apply the robust methodology RANSAC in selecting the best candidate
points created via B-splines that satisfy the epipolar constraint. With the
resulting points, a global mapping between two views is estimated using the
equation (2). Section 2.3 describes this procedure in detail (Fig. 1 - block
C).
The preceding stage presents a reliable mechanism to obtain a global approx-
imation of the geometric mapping between two uncalibrated views. Further-

2In this paper we use affine transformations, although it is also possible to implement
perspective transformations.



more, it is feasible to consider that the geometric distortion is nonuniform
over the entire image. In fact, potential defects may be located in differ-
ent parts of the image, where a slightly different distortion was induced by
the uncalibrated imaging system. Thus, we want to estimate these local de-
formations considering the previous global computation as an initial local
approximation. Therefore, we formulate the search of each potential defect
from one view to another as an intensity matching problem, where the in-
tensities of the potential defect in the first view are to be iteratively tracked
in the second view. Starting from the global affine transformation a local
affine transformation for every potential defect is refined in each iteration.
Moreover, it is possible to strengthen this process against illumination vari-
ations and partial occlusions® looking at the robust formulation of the visual
matching problem. Section 2.4 details how the tracking of potential defects
is performed (Fig. 1 - block D).

The coordinates of every potential defective region are tracked from the first
view to the second one where, in the best case, another potential defective
region with similar feature was also found during the identification stage.
As a direct result of the tracking process, three criteria must be fulfilled to
consider a region as defective: i) identifiability, ii) spatial proximity, and iii)
feature proximity. Section 2.5 specifies the correspondence analysis carried
out to verify the fulfillment of such requirements (Fig. 1 - block E).

The proposed approach seems to be complicated, which is true from the
computational point of view. However, the inspection itself is quite simple
because the test object does not require placement accuracy; we only need to
place and rotate the object, the rest being done by computer automatically.
The bottom part of Fig. 1 shows a synthetic example where any two views
of a test object are inspected. The object contains only one defect, but
false alarms may appear. Ideally, the inspection system detects the flaw and
discards all false alarms.

2.1 Acquisition of the Image Sequence

In order to facilitate the defect tracking over the images, similar projections
of the inspected object must be registered along the sequence. For this
reason, and for simplicity, different views are taken by rotating the casting
at small angular intervals (e.g. 5°, see Fig. 2). Each captured scene consists
of only one rigid object in motion, whose 2D trajectories are smooth because
there is no significant frame-to-frame motion, the velocity of the test object

3Occlusions appear when small flaws move in front (or behind) of a thick cross section
of the casting, where X-rays are highly absorbed; and when flaws are located in the outer
limits of the visible area of the casting.
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Figure 2: Segment of a real image sequence used in the experiments. Each
frame is rotated 5° in the die casting.

is constant, and the motion of the test object is generally only rotational
or translational. Since many images are captured, the time of the data
acquisition is reduced by taking the images without frame averaging*. The
usual set up utilised for automatic visual inspection (AVI) on aluminum die
castings is detailed in [1].

2.2 Identification of Potential Defects

The identification of potential defects aims at segmenting regions that may
correspond to real defects. Two general characteristics of the defects are used
for identification: i) a defect can be considered as a connected subset of the
image, and ii) the gray level difference between a defect and its neighborhood
is significant. The potential defects are identified without prior knowledge.
First, a Laplacian-of-Gaussian (LoG) kernel and a zero crossing algorithm
are used to detect edges on the X-ray image. In real defects, the resulting
binary edge image should produce closed and connected contours which out-
line regions. However, a defect may not be perfectly enclosed if it is located
at one edge of a regular structure as shown in Fig. 3c. In order to complete
the remaining edges of these defects, a thickening of the edges of the regular
structure is performed as follows: a) the gradient of the original image is cal-
culated (see Fig. 3d); b) by thresholding the gradient image at a high gray
level, a new binary image is obtained; and c) the resulting image is added
to the zero crossing image (see Fig. 3e). Afterwards, each closed region is
segmented. In order to identify the potential defects, features are extracted
from crossing line profiles of each segmented region. Crossing line profiles
are gray level profiles along straight lines that cross each segmented region in
the middle. If the variance of the crossing line profiles is high, the segmented
region is classified as potential defect [15, 16]. Later on, the extracted fea-
tures are used in the stage of correspondence analysis (Section 2.5) to match
tracked potential defects. This is a very simple detector of potential defects,

“Digital radioscopic images are generated using a frame grabber, which averages n
samples of the scene taken at infinitesimal time intervals in order to reduce noise and
improve the signal-to-noise ratio.



Figure 3: Detection of flaws: a) radioscopic image with a small flaw at an
edge of a regular structure, b) Laplacian-filtered image with o = 1.25 pixels
(kernel size = 11 x 11), c) zero crossing image, d) gradient image, e) edge
detection after adding high gradient pixels, and f) detected flaw using the
variance of the crossing line profile.

whereby current detection rate of real defects is more than 85%.

2.3 Estimation of the Global Affine Mapping

At this stage we look for a global approximation of the affine mapping H
between any two different views. As suggested in equation (2), such a trans-
formation can be accurately estimated from a set of n corresponding points.
This set of points can be found by performing the following five steps:

1. Segmentation. It consists of isolating object parts in which the in-
tensity values are clearly distinguishable from the background. We use
the Otsu’s segmentation method [17] for this task, which estimates the
best separation for bimodal histograms. See Fig. 4.

2. Feature extraction. For every segmented region three features are
extracted: area; centre of mass (i,7) = (2—(1)8, 2—2;), in terms of the
statistic moment of order (r+s) my; = 3 ;o @7°, where () is the set
of pixels of the segmented region; and the group of four affine moment

invariants derived by Flusser and Suk [18].

3. Region matching. This step establishes correspondences among seg-
mented regions by measuring their similarity. The smallest norm of

7
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Figure 4: Top: Three views of our real image sequence. Bottom: Otsu’s
segmentation method applied on each view.

Figure 5: Result of matching regions according to their similarity.

the difference between the normalised feature vectors of two regions in
different images is used to label those regions as corresponding. See
Fig. 5. In accordance with how the image sequence is generated, it is
plausible to consider that corresponding segmented regions in two con-
secutive frames have similar shapes, except for correspondences that
run out of the limits of the visible area of the casting.

4. Introducing artificial points. The corresponding centres of mass
found in the previous step can be used to compute the mapping H as in
(2). However, in practice we need more correspondences to improve the
accuracy of such a computation. We increase the number of matches by
interpolating artificial points among the centres of mass via B-splines®.
The Cox-de Boor’s recursive formulation of B-splines can be found in
[19]. We use cubic B-splines for knots ¢; € [0, 1] with four control points

5B-splines are invariant under affine transformations. In practice, linear splines can
also be utilised with enough number of knots.
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Figure 6: The corresponding points are taken from the centres of mass of
complete regions. Artificial corresponding points are added by using B-spline
curves that join the determined centres of mass.

{P_5, P_1, Py, P;}. Tts matrix form is given by

1 3 -3 11[P,

1 3 -6 30 P_

N =] ¢ 2 ¢ Z 1
By=[t #6415l 3 o 30||n 3)

1 4 10]]|nR
Varying the number of knots (¢1, ..., ;) among the control points (cen-

tres of mass) we regulate the set of artificial points which act as candi-
date corresponding points. See Fig. 6.

5. Selection of corresponding points. According to the principle of
multiple view geometry [6], all corresponding coordinates between two
views are related by the fundamental matriz® F, such that

m;" F m; = 0. (4)

This relation is known as epipolar constraint for uncalibrated images
and indicates that the point m] can only lie on the epipolar line I' =
F m; of the point m;. Then, from the k£ candidate points created via
B-splines we choose the set of n (n < k) correspondences that allow the
most accurate computation of the fundamental matrix. This is done by
the well-known RANSAC [6] algorithm, which is robust against noise
perturbations of the data. This algorithm requires three parameters:
the number N of samples/iterations, the threshold ¢ that measures
the maximum distance at which a pair of correspondences satisfy (4),
and the number n of expected correspondences. We use the Sampson

5Do not confuse the fundamental matrix F with the affine mapping H.



distance [20] and set ¢ = 2 pixels. N can be computed as

_ log(1—p)
= Togl— (- )" ©)

using a probability p = 0.99 to ensure that at least one sample of s
points is free from outliers, being s = 7 points necessary to compute
the matrix F; and the pessimistic case of having a fraction ¢ = 0.5
of contaminated correspondences in the input data. From the set of
k potential matching points generated by B-splines, we expect to find
n = (1 — €)k pair of correspondences. For £ = 1000 knots, n = 500 cor-
respondences are expected. See [6] for implementation details. Finally,
the selected n points are used to compute the global approximation
of the affine mapping H via equation (2). This approximation of the
affine distortion is iteratively refined at every potential defect found in
the identification stage (Section 2.2), as we will see next.

2.4 Robust Local Defect Tracking

Once potential defective regions have been identified in two consecutive or
non-consecutive uncalibrated images, and given a preliminary estimation of
the global geometric distortion between them, we attempt to track the in-
tensities of each potential defect from the first view onto the second view.
Only real flaws should be tracked, while false alarms must be consequently
discarded. Here we face the well-known wisual matching problem, which has
been dealt with in literature by means of two approaches: feature-based
matching (e.g. [21, 22]) and intensity-based matching (e.g. [23, 24]). Our
inspection system combines both strategies.

Using the notation presented in [25], the goal of our intensity-based match-
ing algorithm is to align a template image 7T'(x) with another image I(x),
where x = (z,y,1)7 is a column vector of homogeneous pixel coordinates.
A template T'(x) represents a potential defective region in the first view and
I(x) is the second view where the template has to match. Classical formula-
tions aim to minimise the sum-of-squared-differences (SSD) of the intensities
between the template 7" and image [ warped onto the coordinate frame of
the template, which is known as the least-squares (LS) formulation

> U(W(xp) - T, (6)

where the sum is performed over all pixels in the template image, and
W (x;p) is the warping map obtained by applying the affine transformation

10



H to the template coordinates, i.e.

x' 1+p1 p3 pd x
Wxsp):=| ¢ | = P2 1l4+ps pe y (7)
1 0 0 1 1
H

The affine mapping H is parameterised by an unknown vector p = (py, ..., ps)? -

In literature there are several methods to minimise (6). In particular, the
Lucas-Kanade algorithm [26] assumes that a current estimation of p is known
and then it solves iteratively for additive increments Ap:

> [I(W(x;p+ Ap)) - T(x)], (8)

X

updating the parameter vector as p <— p + Ap. In general, the equation (8)
is not robust in presence of outliers like occlusions, illumination changes and
non-gaussian noise, since its quadratic error measure assigns a high influence
to gross errors, i.e. large deviations cause undesirable distortions in the
resulting matching process. In order to downweigh the effect of outliers in
the minimisation process, we derive a robust formulation of the matching
problem. We seek for the M-estimator of Ap as the minimum of a global
energy function

Ap = arg Igipn E(Ap), 9)

where the energy function E(Ap) is defined in terms of a symmetric, positive-
definite robust loss function” p, which has an unique minimum at zero, and
it is chosen to be less increasing than square [28], i.e.

E(Ap) = p(z), (10)

X

where 2y is the normalised residue given by

b Tx — Mfdzan(r). (1)
o

& is the robust standard deviation of the residual vector r = I(W (x; p + Ap))
and it is computed through the median absolute deviation (MAD) [29] as

6 = ( Median(|r — Median(r)|). (12)

7 Alternatives to choose p, for instance, are: Cauchy, Huber, Tukey, Geman-McClure
and Lorentzian robust functions [27]. In our experiments we use the Geman-McClure one.
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The factor ¢ =: 1/¢ 1(0.75) = 1.4826 (where ¢ is the cumulative distribution
function of the standard normal distribution) is introduced in the equation
(12) to obtain a consistent estimator of o, which reaches the same efficiency
as the least-squares estimator when only Gaussian noise exists. Moreover, it
has been statistically proven that the median is more robust against outliers
than the mean as estimator of the central tendency [29].

To solve the robust estimation problem we use the iteratively reweighted least
squares (IRLS) algorithm proposed in [30]. Performing a first order Taylor
expansion, the residual vector is linearised as

r=I(W(x;p)) + g—;Ap T(), (13)

and setting the partial derivative of the expression (10) with respect to Ap
to zero, we obtain

or" oI
>u(e S| [rowesmn + S ap-T60| 0. )
where ¥(u) = 6’(;%) and w(u) = Y are the first partial derivative and the

u
weight of the robust loss function p(u), respectively. Finally, the solution of
the equation (9) is given by

. _ ar’”
ap=-H Yul) o) IWep) -7 (9
being the Jacobian and the Hessian defined respectively as
g 01 OW _ v I@W
op  OW 0p op’

a1’ ror”
o= ;w(z’C) [3p] [31)} '
As commented before, we consider the geometric distortions induced by the
uncalibrated imaging system over the image domain as nonuniform. There-
fore, it is necessary to apply the intensity-matching algorithm on each poten-
tial defect in order to estimate more accurately the local deformation at that
location. Together with this, the set of features extracted from each poten-
tial defect during the identification stage are now used to distinguish between
true and false flaws. The following section describes such a procedure.

12



2.5 Correspondence Analysis

Once individual projections for each hypothetical flaw have been found in
both views by applying the local matching algorithm, a correspondence anal-
ysis is carried out to determine which of them are real and which are false
alarms. A region will be classified as defective if three criteria are fulfilled:

1. Identifiability. The detection of existing defects must be ensured in
the stage of identification of potential defects (Section 2.2). If we do
not segment the defects at that step, we cannot detect them later on®.
Thus, to be considered as flaw, a potential defect must be detected on

both views being analysed.

2. Spatial proximity. A discontinuity in the first image must be pro-
jected to a position in the second image near a hypothetical defect with
similar characteristics. To be considered in the vicinity of a flaw in the
second image, the projected centre of mass of the defect can be at most
5 pixels apart -on each coordinate- from its candidate correspondence.

3. Feature proximity. To be considered similar to a flaw in the second
image, at least four out of six shape characteristics of the projected re-
gion might differ by at most 30%, which is measured by taking the norm
of the difference between the two normalised vectors of features. The
following characteristics are taking into account: area of the segmented
defect, average gray value, second derivative, and three different values
for contrast.

To overcome the identifiability problem, correspondences in more views can
be investigated. For instance, even if we identify a defect in the frames 1
and 3 (but not in frame 2), we can track it if we check the correspondences
between views 1 and 3. This strategy was implemented by Mery and Filbert
in [1] under the calibrated approach. They were able to track correspondences
between a frame 7 and the following frames 1+ 1, ¢+ 2 and 7+ 3. However, the
existing trade-off between the computational time these calculation demand
and the performance requirements impose by a particular application must
be carefully analysed.

8Inspection approaches which make use of only one view are also affected by this
problem.

13
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Figure 7: Radioscopic image of a casting with gray level profiles of three
defects.

3 Experimental Results

In this section we apply our approach for automated defect detection in
a sequence of 72 uncalibrated radioscopic images of an aluminum wheel.
A segment of six of views was shown in Fig. 2. The dimensions of the
wheel are 470 [mm] diameter and 200 [mm)] height. The image size is 572
x 768 pixels with a dynamic range of 8 bits. The wheel has twelve known
flaws. Three of these defects are existing blow holes with diameter () =
2.0—-17.5 [mm)] (see Fig. 7). They were initially detected by a visual (human)
inspection. The remaining nine flaws were produced by drilling small holes
(0 = 2.0 — 4.0 [mm]) in positions of the casting which were known to be
difficult to detect (see Fig. 3). A pattern of 1 [mm] in the middle of the wheel
is projected as a pattern of 3 pixels in the image, i.e. the defects are actually
very small. In addition, since the signal-to-noise ratio in our radioscopic
images is low, the flaws signal is slightly greater than the background noise,
as illustrated in Fig. 7. In our experiments, the mean gray level of the
flaw signal (without background) ranges from 2.4 to 28.8 gray values with a
standard deviation of 6.1. Analysing a homogeneous background in different
areas of interest we obtain a noise signal within +13 gray values with a
standard deviation of 2.5. For this reason, the segmentation of real defects
with poor contrast can as well involve the detection of false alarms.

The results of the segmentation stage are summarised in Table 1 and partially
shown in the Fig. 8. Omne observes that there are 7.74 false alarms per
image. Nevertheless, the detection performance in this experiment is still
good, because it is possible to identify 86% of all projected flaws along the
sequence, whereas 14% of the existing 238 flaws are not identified due to
their poor contrast with the background or because they are located at edges

14
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Figure 8: Segmentation of flaws. The existing defects were successfully de-
tected, however, there are also false alarms.

Table 1: Performance of the identification step.

Existing defects (D) 238
Segmented potential defects 761
Detected defects (T P) 204
False alarms (F'P) 557
Detection performance (T'P/D) 85.71%
False alarms per image 7.74

of regular structures.

The performance of both least squares (6) and robust matching (10) algo-
rithms are detailed in Table 2. Notice that the least-squares method might
be equivalently obtained by setting p(z) = 2% in the robust formulation (10).
Each column subdivides the set of detected potential flaws into separate cat-
egories according to their actual condition and the classification given by
each algorithm. The first four rows show the false negatives, i.e. real defects
that could not be matched in the second frame. The first row enumerates the
real defects that were not detected in the segmentation stage; the second row
reflects the real defects that were impossible to register because they ran out
of the image, which made looking for correspondences unfeasible. In both
cases the errors do not count as bad performance of either the algorithms or
the correspondence analysis; but they are considered as segmentation prob-
lems. The third and fourth rows show those defects in which the matching
method either diverges or converges to a wrong location, respectively. In
both cases the errors count as limitations of the matching algorithm. Fi-
nally, the fifth, sixth and seventh rows enumerate the number of detected
defects, false alarms remaining after the matching, and the number of false
alarms of the segmentation eliminated through the matching process, respec-

15



Table 2: Performance of the matching algorithms.
Method Least-squares Robust

No segmentation 13 13
Occlusion 10 10
Divergence 14 2

Wrong convergence 22 22
Detected defects 145 157
False alarms 52 55
Eliminated 505 502
Total 761 761

Detection performance 80.1% 86.7 %
False alarms per image 0.72 0.76

Table 3: (C)alibrated versus (U)ncalibrated approaches.
Method Detected defects False alarms

C - 3 views 100% 25%

C - 5 views 83% 0%
U - Least-squares 80.1% 26.4%

U - Robust 86.7% 25.9%

tively. The detection performance of the matching algorithms is computed
as the ratio number of detected defects to the number of detectable defects,
excluding those not identified by the segmentation. The robust algorithm
detects almost 87% of the flaws with only 0.76 false alarms per image. The
computation time required to process one image pair was in average 24.3 [s]
on a Pentium 4, 2.8 GHz desktop computer.

We have used the same image sequence as in [1], where flaws were tracked
over previously calibrated images. Since our approach implements tracking
over uncalibrated images, the results might not be fairly comparable. How-
ever, table 3 outlines the comparative performance of both approaches. The
methodology based on calibrated images detects 100% of the defects when
using 3 views, whereas 83% when using 5 views. This is because it is more
probable to find flaws correctly segmented in 3 views than in 5. Nevertheless,
using more views helps to reduce the percentage of false alarms (relative to
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the number of potential defects). On the other hand, our robust approach for
uncalibrated images makes use of only 2 views and achieves an acceptable
compromise between detected defects and false alarms. Ways to improve
these results are commented further in the concluding section.

As an extended step of our method, postprocessing of detected flaws could
be introduced. For example, defective objects can be automatically taken
out from the manufacturing line if the quality control system requires the
production of flaw free pieces only; or, before removing them, a human in-
spector could verify the identified flaws by means of a computer-assisted tool.
Moreover, in automated inspection of castings we should identify flaws with
diameter greater than 2 [mm], which were imaged as regions of approxi-
mately 12 pixels in our experiments on . This allowed us to segment them
correctly together with many other false alarms that should be discarded.
Our application on aluminum wheels requires that every flaw be detected,
i.e. no defects of certain size should remain at any particular location of
the casting. However, for other inspection tasks this requirement might be
relaxed.

4 Conclusions and Future Work

The multiple view strategy is opening up new possibilities for nondestructive
testing by taking into account correspondences between different views of a
test object. In this paper, we present the Robust Automated Multiple View
Inspection strategy for tracking potential defects on uncalibrated image se-
quences. Modelling the geometric distortion between each pair of consecutive
or non-consecutive views as an unknown affine mapping, this framework in-
troduces two complementary robust procedures to accurately estimate such
a transformation. First, a global approximation of the mapping is computed
through a set of selected corresponding points of the inspected object. Sec-
ondly, the intensities of each potential defect in the first view are iteratively
matched onto the second view. As a result, only real defects are success-
fully tracked and false alarms are discarded. The practical importance of
our method lies in avoiding the calibration process. The defect detection
is carried out directly on the distorted views produced by an uncalibrated
imaging system. This might help in manufacturing processes or in real-time
applications that cannot be halted for calibration purposes, or it entails a
difficult, unstable and time consuming process.

In our experimental results on aluminum die castings we have shown that
flaw detection in uncalibrated images is promising. Our framework recog-
nises 86.7% of all existing defects with only 0.76 false alarms per image. The
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utilised image sequence is truly representative of those employed in labs to
test algorithms for detecting potential flaws. Each image along the sequence
contained 12 physical defects synthetically placed in a way that their detec-
tion is not evident due to their form, miniature size, location, intensity and
deepness; some of them are almost imperceptible. The proposed methodology
is straightly generalisable to any manufacturing system of regular structures.
Indeed, this framework is not limited to X-rays, and it can be employed in
uncalibrated sequences acquired from other imaging systems.

Our tracking scheme is based merely on two views because the quote of false
alarms is low, but it can be run for three or more views. In the future we
plan to extend this framework from image-pairs to image-triplets by means of
trifocal tensors. Instead of using centres of mass to generate artificial points,
we will consider structural edges of the objects to avoid lack of closed regions
at the outer limits of the visible casting area, where most of the mismatches
took place.

To improve the computational performance of our approach it would be worth
to consider more efficient algorithms that solve the visual matching problem.
In particular, the inverse compositional approach proposed in [31] is an in-
teresting alternative that pre-computes the jacobian and hessian matrixes,
which are updated at each iteration in our implementation. On the other
hand, it is also valuable to look into coarse-to-fine strategies like multigrid
methods. These allow the implementation of highly efficient real-time appli-
cations. See for example [32], where speedups of several hundreds are reached
in estimating real-time motion.
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