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Abstract

We consider a semidiscrete model problem for the approximation
of stabilised inverse linear diffusion processes. The work is motivated
by an important observation on fully discrete schemes concerning the
so-called staircasing phenomenon: when sharpening monotone data
profiles, fully discrete methods generally introduce stepfunction-type
solutions reminding of staircases. In this work, we show by an analy-
sis of dynamical systems in corresponding semidiscrete formulations,
that already the semidiscrete numerical model contains the relevant
information on the occurrence of staircasing. Numerical experiments
confirm and complement the theoretical results.

Keywords: finite difference methods, stabilised inverse diffusion

AMS subject classification: 35M99, 656M06, 65M12

1 Introduction

Stabilised inverse linear diffusion (SILD) processes are governed, in a basic
formulation, by time-dependent partial differential equations (PDEs) of the
form

0? 0

—c—u(z,t): —u(x,t) #0
S ty=q O , )
0 : 8—u(x,t) =0
T

where v is a scalar quantity, x € R, t > 0, and where ¢ > 0 is a constant
anti-diffusion coefficient.

Models of the form (1) are used as sharpening filters within flux-corrected
transport (FCT) schemes in the field of computational fluid dynamics [1, 7].
Introduced to image processing in [11], they have also attained fundamental
importance as building blocks of image filters, see e.g. [5] and the references
therein. Concerning the latter area of application, we mention also [13, 14]
where by the name of stabilised inverse diffusion equations (SIDEs) a class
of nonlinear inverse diffusion processes has been studied.

In this work, we are particularly interested in the analysis of a numerical
phenomenon which can spoil the results of SILD filtering, namely the so-
called staircasing phenomenon [19]: when applied to a strictly monotone data
profile, a numerically realised SILD process may generate a stepfunction-
type solution reminding of a staircase instead of a new strictly monotone
data profile featuring a sharper gradient. Since [19] where staircasing for
the Perona—Malik diffusion process [12] was described, it has been observed



in nonlinear diffusion processes involving backward diffusion, see e.g. [16]
and references therein. A number of special adaptive diffusion processes
have been designed to reduce or avoid staircasing phenomena [3, 6, 10, 16].
However, while algorithmical improvements as those just mentioned have
been inspired, the staircasing phenomenon by itself has not been analysed
mathematically in much detail up to now.
Recently, it was shown rigorously that the staircasing phenomenon is a com-
mon property of numerical solutions obtained by use of fully discrete schemes
to approximate PDEs of type (1), see [2]. In the context of fully discrete SILD
processes, the question arises, if one could avoid staircasing by the choice of
a specific time stepping scheme, or, alternatively, by time integration using
very small time steps. Furthermore, it is of interest, in order to understand
the nature of staircasing as well as a basis for algorithmical developments,
whether staircasing events follow a mechanism which can be determined in
advance. Coupled with the latter point is the question whether staircasing is
a numerically stable phenomenon. In other words: Can small perturbations,
caused, e.g., by low-level noise or numerical errors, induce significant changes
in the result of a numerical approximation of (1)?
In order to clarify the meaning of these open points, let us briefly discuss fully
discrete approximations of (1). To this end, we set U = u (iAz, nAt) using
a space-time grid with corresponding, uniform grid parameters, and denote
by gi+1/2 consistent numerical fluxes at the boundaries between the cells 4
and 7 £ 1, respectively. Then, consistent and conservative approximations of
(1) read

Uinﬂ = Uin - A (9i+1/2 - 91‘—1/2) ) (2)

where A := At/Az denotes the ratio of grid parameters. Note that the
conservation form respects its divergence form. For stabilisation, we employ
the minmod-function

a:if a-b>0 and |a| <|b
minmod (a, b) =< b:if a-b>0 and |b| < |a (3)
0 :else

which can easily be extended to more than two arguments if necessary, com-
pare e.g. [9], by choosing the argument with minimal modulus if the argu-
ments are of the same sign, and zero else. The most basic useful scheme for
approximating (1) then incorporates the minmod function by

Giv1/2 = minmod (X( i+2 i+1)7 Ar ( i+l U; ) ) X(Uz - i—l)) . (4)



Let us stress, that the natural discretisation of fluxes in (1) is given by means
of the middle argument of (4),

C n n
A—x(i+1_Ui), (5)

and its counterpart in g; /2. The other ingredients of g;+1/2 act as stabilisers,
which is easily recognised by taking into account the multiplication by A from
(2).

Let us now consider inner points of a strictly monotone data set U’ :=
{UP, ..., UP}. We assume that the extrema UY and U stay fix, and we
point out that the events

i =Up or U =07 forany ni,ny > 1 (6)

are not identical to staircasing as staircasing refers to steps aka constant
valued data tupels arising away from extrema. Especially, one may consider
to choose the time step size At small enough so that the method reduces for
many time steps at inner points of U° to

Urt = U7 = S (U - U7) - (U - UR)]L =k 2, ()
i.e., in such cases the numerical fluxes reduce to the middle arguments, see
(5), so that no stabilisation is taken into account at these points. Heuristi-
cally, one then expects that no staircasing occurs in strictly monotone data
regimes: numerical fluxes g;11/, as in (5) always introduce nonzero updates
forv = k42, ..., [—2, for data not distributed exactly along a linear segment
where Ut | — U = U — U ;. Also the other mentioned aspects of interest
are close to this line of argumentation: since one cannot avoid to employ
the minmod stabilisation, as is shown in [2], it is natural to assume that the
number and position of staircasing artifacts depends on how often the min-
mod stabilisation takes effect. This frequency in turn could be influenced,
e.g., by manipulating the time step size.

Within this paper, we show, that the stated expectations are not based on
solid ground. Staircasing arises already in semidiscrete approximations of
(1) and is merely bequeathed to fully discrete methods which approximate
the semidiscrete process. Concerning the stability question, we show that
semidiscrete SILD processes lead to bifurcation problems, so that the stability
of numerical results under small data perturbations is not guaranteed for
all data configurations. Furthermore, we show that the choice of a time
stepping method is not trivial: a naive proceeding can lead to a violation
of invariant properties of the semidiscrete formulation of (1), namely that
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the total variation as well as the number of extrema of a given signal do not
increase during time evolution.

The paper is organised in accordance with the above discussion. Within the
next section, the dynamical system arising by semidiscrete methods for the
approximation of (1) is analysed in detail, whereby special emphasis is laid
on important properties of analytical solutions and their effects with respect
to staircasing. Numerical tests demonstrate the validity of the theoretical
discussion. The paper is finished with conclusive remarks and acknowledge-
ments.

2 Semidiscrete Analysis

2.1 The Dynamical System

We consider real-valued, time-dependent signals

u=u(t) = (...,uo(t),ur(t),us(t),...) (8)

of compact support. The latter restriction can be relaxed; it is sufficient
to ensure that signals are bounded and do not contain strictly monotone
segments of infinite length. Here, we distinguish the time-continuous func-
tions u; (t) ~ u (iAz, t) defined at discrete points in space from discrete data
Ul ~ u(iAz, nAt) by employing small letters. The parameters Az, At
denote the mesh sizes of a uniform spatial and/or temporal discretisation,
respectively. This assumption, too, is not essential and could be relaxed.
Analogously to the proceeding employed in the context of fully discrete for-
mulations, see (2)—(4), a conservative process on a signal (8) can be described
by a dynamical system of ordinary differential equations

. 1
i = (9i-1/2 — git1/2] » 9)

where g;11/2 = giy1/2(u, 1) is the flux between adjacent pizelsi and i+1. Typ-
ically, we assume translational invariance, i.e., git1/2(u,t) = g1/2(S—i(u),1)
where S_;(u) denotes the signal u shifted by —i pixels, (S_;(uv)); = uj1i, and
time-invariance gi/2(u,t) = gi/2(u). The latter assumption means that the
system (9) is autonomous.

Inverse diffusion without stabilisation can be realised by

c
9172 = A—w[_uo + 1], (10)
leading to
. c
U; = A—_’I;? [—/U,Z’,l + 2?1,1 — UZ’_|_1] . (11)



A stabilisation is introduced in order to ensure that local extrema become
invariant values, compare also the discussion in [2] for the fully discrete case.
This means, that (10) is used only if neither ug nor w; is an extremum,
otherwise we set g;/2 = 0.

The stabilised version of (11) thus reads as the system

.
(—Uz'—1 + 2u; — Uz‘+1) : (Uz‘—2, Uj—1, Uiy Uj+1, Ui+2)
strictly monotone
. (u; — Uiy1) o (W1, Uiy Uig1, Uiyo) strictly monotone
Ui = 75 9 and u; 1 local extremum
Ax .
(—ui—1 + u;)  (Ui—2, Ui_1, Ui, Uiy1) strictly monotone

and ;. local extremum

0 : else.

(12)

Herein, a local extremum is understood as any pixel u; for which the sequence
(w; 1, Ui, 1) is not strictly monotone. For instance, in the sequence uy >
u; = U > uz both u; and uy are local extrema.

The equations (12) comprise a dynamical system with discontinuous right-
hand side. It is therefore necessary to specify the concept of solution. This
technique is studied in greater generality, e.g., in [4], and it has been applied
in the context of image filters, e.g., in [15, 17].

Given an initial signal (..., fo, f1, f2, . . .), we say that a time-dependent signal
(«.,up(t), ur(t), us(t), . ..) is a solution of the initial-value problem consisting
of the differential equations (12) and the initial conditions

w(0)=fi, i=...,0,1,2,..., (13)
if
(I) each u; is a continuous, piecewise differentiable function of ¢,
(IT) each w; satisfies (12) for all ¢ for which ;(t) exists,

(ITI) for t = 0, the right-sided derivative u; (0) equals the right-hand side of
(12).

Having thus explained what we understand by a solution of (12), we will refer
in the following to (12) as semidiscrete stabilised inverse linear diffusion.



2.2 Analytical Solution

Throughout the remainder of Section 2 we set for simplicity Az =1, ¢ =1,
since this does not influence any structural assertion. We note first the
following facts.

Lemma 2.1 Let (..., uo(t),u1(t), us(t),-..) be a solution of (12)—(13) in the
sense of (I)-(1II).
Then the following hold:

1. If u; is a local extremum at a time t = ty, its neighbours u;—1 and u; 41
can not move away from u; at t = tq.

2. If u; 1s a local extremum at a time ty, it remains a local extremum for
all t > t().

3. If u; = u;y1 at a time ty, then the same equality holds for all t > 1.

Remark. The Lemma implies particularly the preservation of monotonicity,
thereby guaranteeing that the process is total variation preserving (TVP),
compare [9] for this notion.

Proof. We prove that, as long as u; is a local extremum, its neighbour u;,
can move only towards u;. Indeed, in case u; is a local extremum we have,
see (12),
, (wir1 — uire) if neither w; i1 nor u; 4o is a local extremum,
Uiy1 = (14)

0 else.

If thus u;,, is to be non-zero, u;;; cannot be an extremum, and wu;y; — u;
and u;12 — u;11 have the same sign. Consequently,

sgn(ti+1) = sgn(u; — Uit1) (15)

holds at any time ¢ in case u; is an extremum. Note, that the left neighbour
u;—1 of u; can be treated in an analogous fashion. This proves the first
statement.

Next, we want to prove that pixels, once they have attained the same value,
cannot split up again to attain different values. Assume there were two
neighbouring pixels u; and u;; which are equal at time ¢, and unequal at
time t; > to, without loss of generality we set u;1(t1) > w;(t1). Furthermore,
we assume that the interval (¢o, 1) is chosen such that the signs of differences
Uit — Uiy, and u; 1 — u; do not change within the interval, and such that



u; and u;4; are differentiable throughout the interval (Zo,¢;). Note that this
can always be ensured by splitting the interval if necessary. According to the
mean-value theorem of differential calculus, there exists a ¥ € (to,%;) such
that

(t1 — to) (i1 (9) — 4(9)) = (wira(t1) — wi(t1)) — (vig1(to) — ui(to)) , (16)

i.e., we must have that i;,1(9) — 4;(9) > 0.
If u; is a local minimum at ¢ = 9 (thus, throughout (¢y,%1)), we have that
u;11 is not an extremum, and it follows that

’lli_|_1(19) — uz(ﬁ) = Ujp1 — Uiz < 0. (17)

An analogous argument holds if w;y; is a local maximum and u; not an
extremum.

Finally, if neither u; nor u;,; is an extremum at ¢ = ¢, we have that u; | —
Uiy U; — Uiy1, Uir1 — Uit are all negative in (%o, 1), and at least one of u; | —
Ui, Uir1 — Uiyo 18 negative for ¢ = t5. By choosing the interval (¢,t;) small
enough, we can achieve that 2(u; —u;y1) > Ui—1 — U; + U1 — ;12 throughout
(to, t1), from which it follows that

’L.I/Z'_|_1(19) - Uz(’&) = (uz’—l—l - U/H—l) - Q(UZ - Ui_|_1) + (Ui—l - UZ) <0. (18)

In all cases we have therefore obtained a contradiction to (16), which proves
the second statement of our lemma.

The third assertion follows from the fact that for a local extremum to lose
its extremality, it would have to be “passed” by one of its neighbours, which
would therefore have to be equal to the extremum at some time (remember
u is continuous with respect to t). According to the second statement, the
two pixels would irreversibly merge in this case. O

It is therefore sufficient to consider the evolution of signal segments of finite
length whose first and last pixels are local extrema, and which are strictly
monotone. Without loss of generality, we consider a decreasing segment
fo>fi>...> fao> for1 where fp is a local maximum and f,,; a local
minimum. Thus, we have the evolution equations

up =0,

Uy = Uy — Uz,

U = —Ui—1 + 2U; — Uiy , 2<i<n-—-1, » (19)
un = —Up 1+ Up )
’an-f-l = 0’



which hold throughout any time interval (0,7) in which ug > u; > ... >
Up > Up41 Stays true.
The system (19) is a system of linear ODEs which can be solved analytically.

Leaving aside ug and u,,1, we can rewrite the system for u := (uy,...,u,)T
as
u=Au (20)
with the n X n matrix
( 1-1 0...... 0
-1 2-1 0 0
0-1 2—-1 0 O
A= . (21)

The matrix A is positive semidefinite, since Gershgorin’s Theorem ensures all
eigenvalues to be nonnegative. Moreover, A has rank n — 1 since it contains
a triangular (n — 1) x (n — 1) submatrix without zeros on its diagonal. We
simplify therefore the system by eliminating the zero eigenvalue and corre-
sponding eigenvector.

For vy := ﬁ > u; we have 9y = 0, implying vy(t) = v¢(0) for all ¢. In fact,
i=1

vy = agu where ay = ﬁ(l, ..., 1)T is the eigenvector with eigenvalue zero of
A.
Let us now set v; := u; — ;41,1 =1,...,n—1,and v := (vy,...,v,.1)7, i.e.,
v := Du, (22)
with the (n — 1) x n matrix
1-1 0... 0
0 1-1 0 0
D = : N . (23)
0... 0 1-1

Introducing additionally the (n — 1) x (n — 1) matrix




one easily sees that
D'D=A, DD'"=B. (25)

Thus, by (20) and (25), we obtain
Du = DAu = BDu, (26)
i.e., a new linear dynamical system for v:
v = Bv. (27)
The analytical solution of (27) is given by
v(t) = eP'v(0) (28)

which we will make more explicit using the eigendecomposition of the sym-
metric matrix B.

Lemma 2.2 Let 6 := wk/n. Then

b := \/% (sin(6y), sin(20%), . . ., sin((n — 1)6;))" (29)

for k = 1,....,n — 1 are normalised eigenvectors of B, with corresponding

etgenvalues
Ak = 2(1 — cos(d)) - (30)

Remark. The matrix B represents a discrete Laplacian with zero boundary
conditions. Consequently, its eigenvectors are discretised harmonic functions,
namely the basis of a discrete sine transform.

Proof. By direct calculation one checks that each by is of unit length and
satisfies

Bby, = 2(1 — cos(dg)) by, - (31)
Via
n—1
= Z(bk, v(0))bpe! (32)
k=1
we can rewrite (28) to obtain directly the following statement.

Proposition 2.3 Fort € [0,T] the solution of (27) is given by

Tk

1 /n—-1
%Z (Z sin @sm M 2(1- COS?)t> v;(0) . (33)
j=1 \k=1



The analytical solution of (20) is then computed by backsubstituting u for v
and it is given within the following corollary.

Corollary 2.4 The solution of (20) for t € [0,T] is given by

:%<Zuj(0)_ijvj +Z”_-7”J ) (34)

where vj(t) are given by (33), and thus by

n n—1
u(t) = Z( Zcos 2‘7 — Lk sin ;T—keQ(1 cos )t

n

X (lzzllsin%ll{—f—n;sin%))ujm) : (35)

In (34) and (35), sums with upper limit below lower limit are to be read as
zero.

Remark. The evolution (20) (or also (35)) can also be read as non-stabilised
inverse linear diffusion on a finite signal (uq,...,u,) with reflecting, i.e.,
zero-flux, boundary conditions. That is to say, in time intervals between
pixel merging events the strictly monotone segments of semidiscrete stabilised
inverse linear diffusion follow an ordinary inverse linear diffusion dynamics;
at merging events, just the segmentation changes.

2.3 Staircasing in Segments

We continue considering a strictly decreasing signal segment enclosed bet-
ween two local extrema, and we want to determine under which conditions
staircasing occurs. We start with the following observation.

Lemma 2.5 Let a strictly decreasing segment (fo, ..., far1) with local ex-
trema fo and fny1 be given, n > 2, and let (ug, ..., unr1) evolve according
to (12) with initial condition u(0) = f. Then the dynamics of (u1,...,uy)
follows (20) until one of the following events happens:

(a) One of the pizels uy, u, merges with its extremal neighbour pizel uy,
Upt1, TEspectively.

(b) Two neighbouring pizels u;, u;y1 (1 < i < mn— 1) become equal.

Fither (a) or (b) occurs for a finite t =T.
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Case (b) describes a staircasing event, entailing a transition to two smaller
segments, while in case (a) a transition to a smaller segment takes place
without staircasing. Even in the latter case, a later staircasing event involving
the same pixels is still possible but then governed by the dynamics of the
new segments.

Proof. It is clear that the dynamics (20) is terminated as soon as (a) or
(b) occurs. It remains to show that whatever initial values are given, this
happens at finite evolution time ¢t = T.

From Lemma 2.1 it follows that for n > 2 both u; and u,, evolve in direction of
their neighbouring extrema as long as no staircasing involving these pixels has
occurred, i.e., u; > uy and u, 1 > u, hold. From (33) which contains only
exponential summands with positive exponents it is clear that the velocity of
both pixels cannot go asymptotically to zero; thus, whatever values u and

Un+1 might have (which don’t influence the dynamics of us, . .., u, directly),
either u; or u, will merge with its neighbouring extremum in finite time.
U

However, by choosing f, large enough and f,,; small enough, the end-of-
segment merging events can be pushed to arbitrarily large values of ¢. This
leads us to ask: For which values of uy, ..., u, is the dynamics (20) guaran-
teed to be terminated by an end-of-segment merging event of type (a), inde-
pendent on fo and f,1?

To answer this question, we consider the dynamics (20) just as ordinary
semidiscrete inverse diffusion with zero-flux boundary conditions, and focus
on the differences vy, ..., v, 1. These differences are positive at ¢ = 0, and
staircasing events are indicated by at least one of these differences reaching
zero. We can then prove the following result.

Proposition 2.6 Given a strictly decreasing signal (fy1,. .., fa), the dynam-
ics (20) with initial condition u(0) = f preserves the strict monotonic-
ity up > ... > u, for all t > 0 if and only if the differences v1(0) =
fi—fo, - ;0n_1(0) = fu_1 — fu are given by some multiple pby of the eigen-
vector by with > 0.

The proof relies on two important properties of the eigendecomposition of B
which can be directly read off the formulae (29), (30).

Lemma 2.7 For the eigenvectors and eigenvalues of B given by (29), (30),
the following properties hold:

1. The eigenvalues are ordered by size, Ay < Xy < ... < A\p_1.

11



2. FEzactly one eigenvector, namely by which corresponds to the smallest
eigenvalue, has only positive components. FEach of the eigenvectors
ba,...,b, 1 has at least one negative component.

Proof of Proposition 2.6. Since v(0) has positive components,
(v(0), bx) # 0 holds for some k. Let k be the largest index with this property.
Considering (32) for t — oo, we have that

. v(?)
tliglo e2Akt

= (v(0), b)bx - (36)

Assuming that v; > 0 for all ¢ and all ¢, the limits on the left hand side of
(36) must be nonnegative which can only be the case if all components of
b, are nonnegative, or if all are nonpositive. According to Lemma 2.7 this
implies k£ = 1. U

Initial values f which do not satisfy the condition from Proposition 2.6 can
be classified depending on which neighbouring values in the signal will merge
first. We describe this classification qualitatively in terms of the difference
variables v.

To this end, we note that (28) can be evaluated for negative ¢ as well as for
positive t since the linear system (27) is reversible, implying, that all initial
values v° which lead to a certain state v* later on can also be obtained by
(28) if v(0) = v* is used as an initial condition and going backwards in time.
Since we seek to investigate which v; vanishes first during evolution, we want
to know where trajectories leave the sector (Ry)""'. The boundary of this
sector is made up by n — 1 facets, each of them characterised by one of the
variables v;, i € {1,...,n — 1} attaining zero value. Let the facet consisting
of all these points (vy > 0,...,v; =0,...,v,_1 > 0)T be denoted by S;. Each
facet is simply connected. Denoting by T;<o(v) the trajectory of a point
v € R™! propagating under (28) backwards in time, we see that the set of
initial conditions for which v; is the first variable to vanish during evolution
is exactly

Tico(Ss) == U Tico(v) - (37)

Note that solutions of (28) are continuous in t. Moreover, they depend
continuously on initial conditions, and because of the reversibility of the
system, trajectories are either identical or disjoint. The union T;o(S;) of
negative trajectories starting on a single facet S; is therefore a simply con-
nected (n— 1)-dimensional point set in R"™!, whose boundary consists of the
facet S; itself and those trajectories starting on the boundary of .S;,

12



Different sets T;<o(Si), Ti<o(S;) are therefore separated by hypersurfaces
Ti<0(Sij), Sij == 0S; N 0S; (except for n = 3 where the separating line
cannot be obtained from S5 = {0} in this way, see instead the discussion
below for this case). The topology of the resulting separation of (R{)"~! is
therefore equivalent to the topology of the (n — 1)-dimensional surface of a
n-dimensional (hyper)cube corner.

We notice further that if v € T;¢(S;), then the linearity of (28) implies
av € Tio(S;) for any o > 0. This ensures that any hyperplane H = Hy, ¢
defined by (n,v) = C (where (-,-) denotes Euclidean scalar product, n €
(Ry)™ ' and C > 0 are fixed) is transversal to all trajectories under consid-
eration. Thus, the separation of (Rg)™ ! induces by restriction a separation
of (Rg)™ N H whose topology equals that of the (n—2)-dimensional surface
of a (n — 1)-dimensional (hyper)cube corner.

We discuss the simplest cases explicitly.

Case n = 2. Since B is a scalar, all initial values satisfy the conditions of
Proposition 2.6, i.e., no staircasing takes place.

Casen = 3. The sets Ty<o(S1) and T;¢(S2) are separated by a line which due
to symmetry considerations and because of the scaling property aT;o(S;) =
Ti<o(S;) must be the bisector of the quadrant (R{)?, i.e., v; = vy. Initial
values with v1(0) > v9(0) make v, vanish first, others with v;(0) < v(0)
make v; vanish first.

Case n = 4. The three facets S;, Sy, S3 bounding the octant (Rg)? share

the boundary half-lines S;» = {(0,0,a)T | @ > 0}, S13 = {(0,a,0)T | a > 0},
So3 = {(a,0,0)T | @ > 0}, respectively. Inserting (0,0, a)” into (28) gives

v (t) = % <%e(2_ﬁ)t — e 4 %e(”‘@)t) a
1 (1 (2—Vv2)t 2t 1 (2+\/§)t)
v3(t) = 5| 5€ +e” + se a
2\2 2 )

which by the substitution

1 elV2/2 _ o—tv2/2

D2t (atV2/2 —tv2/2\2 o
a:= e (e +e ) B NG T; (40)

simplifies to

vi(t) = aB? () =vV2a8, vs(t)=o. (41)
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Taking into account that ¢ > 0 and ¢ < 0, it follows that
Ti<0(S12) = {(af®V20aB,0)" |a>0,0< B < 1}. (42)

Analogous considerations lead to

Tico(S) = {(0, V205, 06%)" |2 > 0,0 < f <1} } (43)

Tyco(Si3) = {(, V28, 2)" | 0 < a < B}

which finally allow us to establish the following set of criteria, for given initial
values v(0) = (v1(0), v9(0), v3(0))™:

v2(0) < /2v1(0)v3(0) = vy vanishes first,
v2(0) > 4/2v1(0)v3(0) and v1(0) < v3(0) = vy vanishes first, (44)
v2(0) > 1/2v1(0)v3(0) and v1(0) > v3(0) = w3 vanishes first.

3 Numerical tests

Within this section, we follow two topics of interest. At first, we validate
experimentally the bifurcation results from the preceding paragraph, thus
showing that staircasing is predictable by theory. Note, that the test data
are chosen so that the experiments featuring staircasing can be understood
as perturbed data of the non-staircasing test case, thus showing that data
perturbations, e.g. due to low-level noise or preceding numerical errors in
the case of FCT schemes, may influence the outcome of a SILD process.
Complementing these investigations, we discuss the influence of time stepping
schemes by use of a numerical staircase-type solution.

3.1 Validation of semidiscrete theory

In order to validate the results of our bifurcation analysis, we consider a
couple of data segments of length n = 4 which can be classified according to
Proposition 2.6 and (44), respectively. As the theoretical results are obtained
for the semidiscrete case, we integrate in time using Euler forward time step-
ping with very small time step sizes, i.e., we generally use At = 10~7. For
easy reference within given figures, we use Az = 1 as within the theoretical
discussion.
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Case 1 — no staircasing

We consider the following set of initial data:
{vg, U?, U3, U3, Uy, U9} = {2, 1.1707, 1.0707, 0.9293, 0.8293, 0}, (45)

continued by constant states U = 2,4 < 0, and U? = 0, ¢ > 5, respectively.
Taking into account Proposition 2.6, we observe that the data (45) correspond
to v, = v3 and vy = v/2v,. Within Figure 1 (top, left) we display the initial
signal as well as its steady state solution, evaluated at ¢t = 3. As predicted,
there is no visible staircasing effect.

Case 2 — staircasing in the middle of a profile

For this test case, we consider the set of initial data reading:
{vg, U?, U3, U3, Uy, US} = {2, 1.16, 1.06, 0.94, 0.84, 0},  (46)

continued as in the preceding test case by constant states left and right. As
easily observed, this case corresponds to vy < y/2v,v3. Let us again empha-
sise, that the data from (46) differ only marginally from signal (45). Within
Figure 1 (top, right) we show the initial signal as well as its steady state
solution, evaluated again at ¢t = 3. As predicted, staircasing is observable at
the middle of the profile, with U¥ = UF =1 for large k.

Case 3 — staircasing at an end of a profile

For this test case, we consider the set of initial data incorporating:
{vg, Uy, U3, U3, Uy, UJ} = {2, 1.1707, 1.0807, 0.9393, 0.8293, 0} . (47)

Also here, let us note, that (47) is very close to signal (45); one can easily
verify for this case vy > /2v1v3 and v, < v3.

The initial signal as well as two states of interest are shown in Figure 1
(bottom row). At ¢t = 1.8, we observe as predicted that staircasing occurs first
near the left end of the profile. The steady state solution then is dominated
by the first staircasing event.

Remark. The case that vz vanishes first, see (44), can be realised numerically
in an analogous fashion.
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Figure 1: Initial states (lines with dots) together with numerical states
(squares), as described below. Top left: initial signal from (45) and steady
state without staircasing. Top right: initial data from (46) and steady state
featuring staircasing at the middle of the profile. Bottom row: initial state
from (47), as well as (left) intermediate state with staircasing at an end of
the profile, (right) steady state dominated by previous staircasing.

3.2 Discussion of time integration

In this section, we want to investigate experimentally the influence of time
discretisation methods on a stable situation away from a bifurcation situa-
tion, thus complementing the above numerical tests.

To this end, we employ a useful academic test case, i.e., we are concerned
with a variation of the tent function already suggested in [2], here given as
an initial function ug:

wiw = {g eI s sy

— 48
0 : else (48)

Setting o« = 5 and S = 0, we obtain on a grid with Az = 0.1 the function
ug together with its discrete representation displayed in Figure 2 (left). Ev-
idently, the discretisation is quite coarse; however, as already exemplified in
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Figure 2: Left: analytic (line) and discrete (squares) initial states. Right:
staircasing by propagation of discrete initial state.

[2], all phenomena observable on a coarse grid are also observable when using
a fine spatial resolution.

Taking the discrete data displayed in Figure 2 (left) and doing 8 time steps
with At = 0.002 using the fully discrete method from (2)—(4), we obtain the
staircasing situation given in Figure 2 (right). Since the discretisation error
of the time stepping scheme in use, which is, as easily seen, O (At), implies
that one obtains in the limit A¢ | 0 the semidiscrete scheme (9), we ask for
the numerical results we obtain by re-computing the situation given in Figure
2 (right) using very small time step sizes. In Figure 3, we show the computa-
tional results employing 1.6-10° time steps with At = 1077, and 1.6-107 time
steps with At = 1079, respectively. We observe nearly the same staircase-
like structure as in the case of the coarse time discretisation, see Figure 2
(right); the differences of the employed time step sizes are observable only
by the slightly more rounded structure of the signals in Figure 3 compared
with Figure 2 (right). Here, as staircasing is an unquestioned feature of the
spatial discretisation, the error of the time discretisation takes the role of an
approximation error resulting in a slightly rougher profile. However, as it is
clear after our discussion, staircasing cannot be avoided.

We now want to point out here a difference between the fully discrete method
employing the Euler time stepping method, (2)-(4), and the semidiscrete
methods: in the fully discrete case there exist data constellations circumvent-
ing the effect of merging events aka, in the semidiscrete form, the minmod
stabilisation. In order to show this, we modify the case discussed above by
choosing @ = 5 and 8 = —5/2; thus, we translate the tent function from
Figure 2 (left) a bit into negative y-direction, see Figure 4 (left); note the
new scaling of the y-axis. Doing then 9 time steps with At = 0.001, we
observe that slight new extrema are produced, see Figure 4 (right). The
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Figure 3: Re-computations of staircasing solutions. Left: using 1.6-10° time
steps with At = 10~7. Right: using 1.6 - 10" time steps with At = 107°.
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Figure 4: Left: analytic (line) and discrete (squares) initial states. Right:
numerical solution (and steady state) after 9 time steps with slight new
extrema.

reason for this at first glance unusual behaviour is, that at the critical points
where new extrema arise the method is reduced at the ninth time step to
scheme (7), i.e., the stabilisation has taken no effect, which is impossible in
the semidiscrete case.

Let us stress, that the latter experiment shows that important qualities of
the semidiscrete method are not taken over to the fully discrete case: the
TVP property is violated, as the new extrema shown in Figure 4 increase the
total variation of the initial signal. Note also, that the fact that the number
of extrema is not preserved in our example is an important point to notice
with respect to FCT schemes for conservation laws, compare [8].
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As a possible remedy, one could modify the numerical flux (4) as

1
ey = minmod ( 5 (U8, — V), 5 (U = U7), 5 (07— U2 )
(49)
thus restricting the updates of variables within one time step of the fully
discrete scheme in such a way that none of two neighbouring pixels is allowed
to travel more than half the distance towards its neighbour. This is in fact
the same sort of stability limit as used in the 1-D total variation diffusion
scheme of [15]. A disadvantage from the theoretical point of view could
be that neighbouring pixels approach each other only asymptotically, thus
postponing the actual merging events from finite to infinite times. This
happens also in the semidiscrete shock filter scheme in [17], discussed in
more detail in [18].
Another possible remedy is based on the observation that it requires two
adjacent data moving in opposite directions to generate a new extremum.
Transfering the procedure described in [18] we obtain a two-step TVP scheme:

Step 1

[71" =U"—- A (gi+1/2 - 9@‘—1/2) . (50)
Step 2
%(~ZL+1+U{L) : (~iT—L|—1_Uin)( - U <0
Uptt = 950k + 01 (O U0k, -U <0 . (51)

ur : else

These steps substitute (2), while retaining (4). Note, that the modification
by (50)—(51) is conservative as data at (automatically adjacent) new extrema
are replaced by their average.

It also is important to note that both schemes, (2) with (49) as well as (50)-
(51) with (4), are time-discrete approximations for the semidiscrete process
(12), since all modifications vanish as At goes to zero.

4 Conclusive remarks

We have analysed in depth the staircasing phenomenon in a semidiscrete
setting. By use of numerical tests, we have validated the theoretical results
and discussed important properties of semidiscrete and fully discrete schemes
for SILD processes. The results obtained in this paper are important as a
theoretical foundation for the optimal design of discrete sharpening processes
in image processing as well as in the context of FCT schemes.
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