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On the Hilbert-Samuel multiplicity of Fredholm
tuples

Jorg Eschmeier!

Abstract. For commuting tuples R € L(Z)™ of Banach-space operators that arise as quotients
of lower semi-Fredholm systems 7" € L(X)™ with constant cohomology dimension dim H"(z — T, X)
near the origin 0 € C", we show that the Hilbert-Samuel multiplicity of R calculates the rank of the
cohomology sheaf H"(z — R, O&,) at z = 0.

0. Introduction

Let T' € L(X)™ be a commuting tuple of bounded linear operators on a complex Banach
space X, and let K*(T, X) be the Koszul complex of T'. The tuple T is said to be lower
semi-Fredholm if the last cohomology group H™(T,X) = X/ "  T;X of its Koszul
complex is finite dimensional. In this case all the spaces My(T) = >_,,_, T°X (k € N)
are finite codimensional, and the direct sum @©y>oMg(1T")/My+1(T) can be turned into a
graded finitely generated C[z]-module. It is a fundamental result of commutative algebra
that to any such module there is a polynomial p € Q[z] of degree < n, the Hilbert-Samuel
polynomial, with dim X /My (T) = p(k) for large k and such that the leading coefficient
multiplied with n! is a natural number, the so-called Hilbert-Samuel multiplicity.

On the other hand, for a given lower semi-Fredholm tuple T' € L(X)", there is an open
neighbourhood U of 0 € C" such that dim H"(z — T, X)) < oo for all z € U and such that
the last cohomology sheaf H = H"(z — T, OF) of the induced complex K*(z — T, Of)
of Op-modules is isomorphic to a quotient of a free module OF on U. In particular,
the stalk Hy is a noetherian module over the local ring Oy of all convergent power
series at z = 0 and hence possesses a Hilbert-Samuel polynomial p,, € Q[z] such that
dim Ho/m*Ho = pan(k) for large k. Here m is the maximal ideal of O.

Both versions of the Hilbert-Samuel polynomial and their leading coefficients were intro-
duced by Douglas and Yan in [3]. In a series of papers Xiang Fang studied the properties
of the Hilbert-Samuel multiplicity

im X /M (T
co(T)=n! lim dim X/M(T)
k—o00 kn
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and its relations to other invariants in operator theory. In [6] a complete description
of the relation between Fredholm index and the Hilbert-Samuel multiplicity for single
operators is given, while [8] contains a variety of results showing the close connection
between Hilbert-Samuel multiplicity and the Fredholm index in multivariable operator
theory, including the observation that, for row contractions with finite defect, the
Hilbert-Samuel multiplicity coincides with Arveson’s curvature invariant [1].

In this note we extend a method originating in [7] to show that, for a suitable class of lower
semi-Fredholm tuples R € L(Z)" on a Banach space Z, the Hilbert-Samuel multiplicity
coincides with the rank of the cohomology sheaf H = H"(z — R,Of) at z = 0, or
equivalently, that there are an open neighbourhood U of 0 and a proper analytic subset
S C U such that

¢(R) =min dimH"(» — R, Z) =dim H"(w — R, Z)

zeU

for w € U\ S. Furthermore, the restriction of H to U \ S is a locally free analytic
sheaf of rank c¢(R). These results are shown to hold for tuples R € L(Z)" arising as
quotients of lower semi-Fredholm tuples 7" € L(X)™ which are regular in the sense that
the cohomology groups H"(z — T, X') have constant dimension near 0. Hence, in this
setting, we prove that the Hilbert-Samuel multiplicity calculates the stabilized dimension
of H"(z — R, Z) at z = 0, and give a natural explanation of results previously known in
more particular situations.

1. Main results

Let T'= (Ty,...,T,) € L(X)" be a commuting tuple of continuous linear operators on a
complex Banach space X. The Koszul complex of T'

KT, X): 0= A'X A 5 A" =0

is a finite complex of bounded operators between Banach spaces (see §2.2 in [4]). The
vector spaces

HP(T, X) = Ker(A?X — APYLX) /Im(AP7'X — A’X)  (p=0,...,n)
are called the cohomology groups of K*(T', X).

Let us suppose that the space

HY(T,X) = X/ T.X
=1



is finite dimensional. Fix a basis ([z1],...,[ry]) of this space. Then the spaces M) =
Z‘M:k T*X (k € N) form a decreasing sequence of finite-codimensional subspaces of X
such that

My =Y T;My, (k€N).
j=1

o0

On the algebraic direct sum X = @ (M;/M;;1) we define a commuting tuple T =
k=0
(Ty,...,T,) of linear maps T; : X — X by

T ((xr + Myz1)ken) = (Tjzp—1 + Mis1)ken.
It is elementary to check that the induced module structure
Cle] x X = X, (p,a) = p(T)x

turns X into a finitely generated graded C[z]-module. More precisely, let V, = {p €
C[z]; deg(p) < k}. Then one can show that

k-1

D M; /M = LH({p(T)(z; + My); p € Vg and i = 1,..., N}

=0

for all £ > 1. In particular, one obtains the estimates

k(k+1)-...- (k+n—1)
n!

dim(X/M,) < N dim V1 = N

for all £ > 0. Using a theorem going back to Hilbert (Theorem 1.11 in [5]) we conclude
that there is a polynomial p € Q[z] with deg(p) < n such that

dim(X/M}) = p(k)
for all sufficiently large natural numbers k. Furthermore, in this case the limit
c(T) =n! klim dim(X/My)/k"

exists and defines a natural number ¢(7') € {0,1,2,..., N}. We call p the Hilbert-Samuel
polynomial and c(T') the Hilbert-Samuel multiplicity of T'.

The condition that H"(T, X) is finite dimensional implies that the spaces H"(z —T, X) =
X/ > (2—T;)X are finite dimensional for all points z in a suitable open neighbourhood
U of 0 in C" (Section 2.6 in [4]). For a Banach space E, we denote by OF the analytic
sheaf of all germs of analytic E-valued functions on U. The boundary maps in the Koszul
complexes K*(z — T, X) depend analytically on z and induce a corresponding sequence

K*'(z:=T,08):0 — O)¥ =L . ZL o™X — 0
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of analytic sheaves on U. Let us denote by
F=Fr=H"(:~T,05) =05 /(- T)Oy"

its last cohomology sheaf. Let ([z1],...,[x,]) be a basis of H"(T, X). After shrinking U
one may suppose that there is an epimorphism

oy L F

of analytic sheaves (see the proof of Proposition 9.4.5 in [4]). It follows that the stalk Fy
of F at z = 0 is a noetherian module over the local ring Oy of all convergent power series
at z = 0. Let m be the maximal ideal of Q. It is well known that there is a polynomial
Pan € Q[z] with deg(p) < n such that

dime(Fo/m*Fo) = pan(k)
for all sufficiently large natural numbers k. Again the limit

Can(T) =n! lim dim (Fy/m* Fp) k"

exists and defines a natural number c¢,,(7) € {0,1,2,...}. We call p,, the analytic
Hilbert-Samuel polynomial and ¢, (T') the analytic Hilbert-Samuel multiplicity of T

The relationship between the invariants p,c(7") and their analytic counterparts pg,
can(T) was studied before by Douglas and Yan [3], although in a slightly different
language. We recall the main results.

Define M = {p € C[z]; p(0) = 0}. Regard X as a C[z]-module via
Clz]x X =X, (px)—p(T)x.
It is elementary to check that M*X = Ew:k TX and that the map
0: X —Fy, wr—a+(z-T)0F"

is a morphism of C[z]-modules such that ¢(M*X) C mFF, for all k > 0. One can show
(cf. Proposition 5 in [3]) that the induced maps

op: X/MPX — Fo/mPFy, o+ MPX — o(x) + mF 7,

are onto for all £ > 0.



Proposition 1 (Douglas-Yan)  Let T € L(X)" be a commuting tuple such that
dim H™(T, X)) < co. Let p and py, be the Hilbert-Samuel polynomial and analytic Hilbert-
Samuel polynomial of T', respectively. Then

Pan(k) < p(k)

for all sufficiently large natural numbers k. In particular, the inequality cq,(T) < c(T)
holds.

Let Z = X/Y be the quotient of X modulo a closed invariant subspace Y of 7. We
denote by S = T|Y and R = T/Y the restriction of T' to Y and the quotient tuple of T’
modulo Y, respectively. The short exact sequences

0—-K*(2—8Y)—-K'(:—T.X) - K*(»—R,Z)— 0

(z € C") of Koszul complexes induce long exact sequences of cohomology

0 — H%:2-SY) L H'(::-T,X) - H(:—R,2)

ey HY(2—8)Y) L

ey H(z-8Y) L H'W(:—T,X) % H"(:—R,Z) — 0,

where j and ¢ are the linear maps induced by the inclusion Y — X and the quotient
map X — Z and the maps d, are the connecting homomorphisms (cf. [5]).

Our aim is to study the relation between the Hilbert-Samuel multiplicities of T" and
R. We shall clarify this relation under the additional hypothesis that there is an open
neighbourhood U of 0 € C™ such that all the spaces

H"(z—-T,X) %X/i(zi—Ti)X

have the same finite dimension N > 1. It is well known that the set S of all discontinuity
points of the function
U—-N, z—dimH"(z—-R,7)

is a nowhere dense analytic subset of U (Satz 1.5 in [10]) and that there is a natural
number 7 € {0,..., N} with

dmH"(z — R, Z) =r <dimH"(w — R, Z)

5



forze U\ Sand w e S.

It is the main aim of this note to prove the following result.

Theorem 2  Let R € L(Z)™ be the quotient of a commuting tuple T' € L(X)"™ such that
dim H"(z — T, X ) = const. < 00

near zero. Then there is nowhere dense analytic subset S C U of an open neighbourhood
U of 0 € C™ with the property that

¢(R)y=dimH"(z — R,Z) forzeU\S.

To prove this result we need some preparations. Let U be a connected open neighbourhood
of 0 € C" such that
dmH"(z —T,X)=N (2€U).

Choose a direct complement D of "  T;X in X. Since the analytically parametrized

complex
n

T(z): X"®D — X, ((:L’Z),y) — Z(Zz —T)z; +y

i=1

is onto at z = 0, we can achieve (by shrinking U) that the induced map
OU,X"®»D)— OU,X)

is onto again (Lemma 2.1.5 in [4]). By comparing dimensions we see that the surjective
linear maps

are vector-space isomorphisms for all z € U. Hence, for each x € X and each z € U,
there is a unique vector z(z) € D with

r—x(z) € Z(zZ - T)X.
i=1
Since x(z) depends analytically on z, we obtain a linear map
p: X —OWUD), (px)(z)=ux(2).

The relation

Tjzw — zja(2) € (Tj — z)w(2) + Y (2 — Th)X,



valid forx € X, 2 € U and j = 1,...,n, shows that
p(p(T)z) = pp(x) (v € X,p € C[2]).
By Lemma 2.1.5 in [4], the morphism

R i

of analytic sheaves remains onto. Therefore the map
Of = F, [ h+(-T)03"
defines an isomorphism of analytic sheaves.

Let as before S C U be a nowhere dense analytic subset such that
dmH"(z — R, Z) =7

for all z € U\ S. The above arguments applied to R instead of T' show that the sheaf
Fr is locally free of rank r on U \ S. We call r the rank of the sheaf Fr on U and write
rank(Fr) =1r.

Lemma 3 Let T € L(X)" be a commuting tuple such that there is an open neigh-
bourhood U of 0 in C" with dimH"(z — T,X) = N for z € U. Then we have
co(T)=can(T)=N.

Proof.  Denote by F = H"(z — T,05) the n-th cohomology sheaf of the complex
K*(z —T,0f). As seen above, there is an isomorphism v : O — Fy of Op-modules.
This map induces isomorphisms of Oy-modules

Uy, OF jmP O — Fo/mFFy (k> 0).
Because of m*O} = (mFOp)N = (m*)N we obtain induced isomorphisms of Op-modules
Fo/mtFy = Of [(mF)Y =2 (Op /m*)N.
Using the canonical vector-space isomorphisms Oy /m* =2 V., we find that

kE(k+1)-...-(k+n—1)

n!

dime (Fo/m"Fy) = dim(V)Y ) = N

for all £ > 0. But then N = ¢,,(T) < ¢(T) < N, and the assertion follows.



For z € U, define
0,: X =D, z—x(2)
and
Yo ={y(z); yeV}
Using the explicit definition of the connecting homomorphisms d, occurring in the long
exact cohomology sequences explained before Theorem 2 one easily checks that the se-
quences
H Y (2= R, Z) % H'(:— S,Y) 2 Y, — 0

are exact for z € U. Using this sequence together with the above long exact cohomology
sequence we find that

dimH"(z — R,Z) = N —dimY,
for z € U.
Hence the minimal dimension of H"(z— R, Z) on U corresponds to the maximal dimension

of Y, on U. The last number admits an algebraic representation (cf. Lemma 4 in [7]). To
formulate the relevant result, let us denote by

T,:O(U,D) = O(U,D), fr Y 1(0) 2~

al
|| <k

the linear maps that associate with each analytic function on U its k-th Taylor polynomial.

Lemma 4  Let U C C" be an open neighbourhood of 0 and let D be a finite-dimensional
vector space. Given a C[z]-submodule M C O(U, D), define M, = {f(z); f € M} for
z € U. Then there is a nowhere dense analytic subset S C U such that

im Ty, (M
dim M, = max dim M,, = n! lim Lk()
welU k—o0 k™
forallze U\ S.
Proof. It is elementary to check that the proof given in [7] (see Lemma 4) for

submodules of Hilbert modules remains valid. For completeness sake, we indicate the
main steps.

Fix a basis (ey,...,eyn) of D. Define m = max,ey dim M, and choose hy,..., h,, € M
such that hi(2p), ..., hm(20) are linearly independent vectors in D for some point zo € U.
Each function h; has a representation of the form

N

hi(z) =Y hi(z)e; (2 €U)

=1



with uniquely determined analytic functions h; € O(U). After permuting the given basis
of D we may suppose that the analytic matrix-valued function

©:U—-C™", 0O = (hé(A))lgi,jgm

is invertible at zy. Define ¢ = ordo(det(@)). Basic linear algebra allows us to choose an
analytic function A = (A;;) : U — C™™ with

O(2)A(z) = A(2)O(z) = det (0(2)) I, (2 €U).

For each k € N, the analytic functions

Ol = [0(A = @AY)],; = D (A — Tidw)
=1
have order at least kK + 1 at z = 0.
Set Dy = LH{ey, ... ,en}. Let Qo : D — Dy be the projection onto Dy with Qge; = 0 for
i1=m+1,...,N. Denote by
Q=1®Qo: OU,D)— O, Dy)

the induced projection on O(U, D). For each function P = (P;;) : U — C™™ with
polynomial entries P;; € C|z], we have

m

S [OP]ye = (i:: h) € QM

i=1
fory=1,....m
Fix k € N and a polynomial p € C[z]. For j = 1,...,m, the function T} (pdet(©)e;) is
obtained by applying the linear map T}, coefficientwise to the matrix

pdet(©) I, — p(OF,) 0 = Op(ThAu) -

then multiplying the i-th coefficient of the j-th column of this matrix with e; and adding
up over all 2 = 1,...,m. It follows that

Ti(pdet(©)e;) € T(QM) (peClz], j=1,...,m).
Let V; = {p € C[z]; deg(p) <i} fori € N. For k > cand j =1,...,m, the linear maps
Vie = To(@QM),  pr Ti(pdet(O)e;)
are obviously injective and therefore

m(k—c+1)-...-(k—c+n)

> m dim Vk—c = |
n:




We conclude that G T (M

m < n!liminflmkiw.
Let us turn to the proof of the opposite inequality. Since the right-hand side of the last
inequality can be estimated from above against n! limy_..(N dim Vy)/k™ = N, we may
suppose that m < N. Let f = Zﬁl fie; € M be arbitrary. The maximality of m implies
that the vectors hy(z),..., hn(2), f(2) € D are linearly dependent for each z € U. Hence
the determinant of the matrix

BLoRLf
hy* ... hf™
Moo R f
is identically zero for every fixed i = m+1,..., N. Expanding this determinant according

to the last column, we find that
gf' g af =

with suitable functions g1, ..., gm € O(U) and g; = det(O).

N

Fix k € N. Let g = Ti(f) with f = 3 fie; be as above, but assume in addition that
i=1

g =0. Then

N N
9= ZTk<fi>ei = Z Te(f")eis
i=1 i=m+1
and for i =m + 1,..., N, we obtain the relations

Ti(gif') = —Tilgr fr 4+ ...+ g f™) = 0.

It follows that ord(f") >k —c+1fori=m+1,...,N and that

9=(Th —Tie) > fles € (I = Q)T — Tr—o)O(U, D).

i=m-+1

The above arguments show that

n n

dim (To(I — Q)M) < rank(I — Q)(Ty — Te) = (N — m) K” * ’“) - (" +h - C)} |

Since the right-hand side is a polynomial of degree at most (n — 1) in k, we conclude that

10



dim T, (M di Tw(M

n! limsup Lk() < n! limsup M

T, O(U, Dy)
kn

<n! lim
k—oo

0

The significance of the maximal dimension of the spaces M., usually referred to as the
fibre dimension of M, was recognized before in the context of analytic functional Hilbert
spaces by Gleason, Richter and Sundberg [9].

Let us return to the operator-theoretic situation described before Lemma 3. With the
notation fixed there, the subspace

M=pY CO(U,D,)

is a C[z]-submodule. Applying Lemma 4 to this submodule we obtain the next result.

Corollary 5  With the notation explained above, there is a nowhere dense analytic
subset S C U of a connected open neighbourhood U of 0 € C" such that

dim T (pY
dim H"(z — R, Z) = min H"(w — R, Z) = N — n! lim anik(p)
we —00 n

forallze U\ S.

Our next aim is to relate the limit occurring in Corollary 5 to the Hilbert-Samuel multiplic-
ity of R. For a commuting tuple 7" € L(X)", we use the notation My(T) = >, _, T*X
(k € N).

Lemma 6 Let Y € Lat(T') be a closed invariant subspace of a commuting tuple T' €
LX), let Z = X/Y and let R =T/Y € L(Z)" be the induced quotient tuple. Suppose
that

dim H"(T, X) < 0.

Then the Hilbert-Samuel multiplicities of T' and R satisfy

) - dim [(¥ + My (T) (M(T)]
¢(R) =¢(T) —n! kh_)lilo o .

Proof. It suffices to observe that the inclusion map j : ¥ — X and the quotient map
q : X — Z induce short exact sequences

Y + Mp(T)

LS TAGY

s X/M(T) - Z/M(R) — 0.

11



Using the fact that the alternating sum of the dimensions of the three spaces forming
this sequence is zero, one deduces the assertion.

O

Let us return to the case where dim H"(z — 7, X) = N near z = 0 € C". By Lemma 3
we know that ¢(T') = N. With the notation fixed before Lemma 4 we obtain that

p(Mi(T)) C {f € O(U, D); ordo(f) > k}.
Hence the maps T}_; o p induce surjective linear maps
et (Y + M(T)) /My(T) — TF(pY) .

It follows that the limit occurring in Lemma 6 is at most larger than the corresponding
limit in Corollary 5. We complete the proof of Theorem 2 by showing that both limits
actually coincide.

Corollary 7 Let Y € Lat(T) be a closed invariant subspace of a commuting tuple
T e L(X)", let Z = X/Y and let R = T/Y € L(Z)" be the induced quotient tuple.
Suppose that in some connected open neighbourhood U of 0 € C™

dmH" (2 —T,X)=N (z€U).
Then there is a nowhere dense analytic subset S C U such that

¢(R) =mindim H"(w — R, Z) =dim H"(z — R, Z)

welU

for ze U\ S.

Proof. Let F = H"(z — T,0f) be the n-th cohomology sheaf of the Koszul complex
K*(z — T,0f). Fix a direct complement D of "' T;X in X. As seen before, after
shrinking U, we may suppose that the map

Of = F, frr fat (z=T)0%"
is an isomorphism of analytic sheaves. The composition
X 20U, D)= FU) 2 7,
where the last map is the point evaluation dq(y) = v(0), is precisely the map

0: X = F, ¢)=z+(-T)0;"

12



that we defined in the section leading to Proposition 1. The cited result from [3] implies
that the compositions

or: X/M*X L oW, D)/ MFOU, D) — F(U)/MFFU) — Fo/mbFy

are onto for all £ > 0. Let p and p,, be the Hilbert-Samuel polynomial and analytic
Hilbert-Samuel polynomial of T', respectively. As an application of Lemma 3 we obtain
that ¢ = p — pan is a polynomial with deg(q) < n — 1. By construction

dim Ker ¢, = dim(X/M*X) — dim(F,/m* F,) = q(k)
for sufficiently large k. Since 7 acts as the composition

Tk*l

(Y + My(T)) /My(T) = O(U, D)/M*O(U, D) %= O(U, D),
where the map Tj,_; defined by Tj,_1([f]) = Th_1(f) is injective, we conclude that
dim Ker 7, < dim Ker ¢y (k e N).
The observation that
dim [(Y + My(T)) /Mi(T)] — dim Ty, 1 (pY') = dim(Ker 7;,) < g(k)

for all sufficiently large k, completes the proof.
O

The question whether ¢(R) = ¢4, (R) in the setting of Corollary 7 remains open here,
at least in the Banach-space case. In the case of Hilbert spaces the cohomology sheaf
H = H"(z — R, Of) is known to be coherent [11]. Then standard results from analytic
geometry (Theorem 7.4 in [2]) imply that the map

1 k
U—N, 2 cu(z=R)=n! lim dlm(“;i miH.)

is upper semicontinuous. Since

Can(z — R) = IurjleibldimH"(w — R, Z)=¢(R) (z€U\Y9)

for a proper analytic subset S C U, it follows that c,,(R) > c¢(R). Since the reverse
inequality always holds, we have equality. The sheaf H is also known to be coherent,
when the tuple R is Fredholm, that is, when dim H?(R, Z) < oo for p = 0,...,n. Hence
also in this case we obtain equality ¢(R) = ¢,,(R) in the setting of Corollary 7.

A second natural question is whether the assertion of Theorem 2 remains true,

when we replace the hypothesis that R is a quotient of a tuple " € L(X)™ for which
dim H"(z—T, X) is constant for z near 0 simply by the condition that dim H"(R, Z) < oc.

13
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