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On the Hilbert-Samuel multiplicity of Fredholm
tuples

Jörg Eschmeier1

Abstract. For commuting tuples R ∈ L(Z)n of Banach-space operators that arise as quotients

of lower semi-Fredholm systems T ∈ L(X)n with constant cohomology dimension dim Hn(z − T, X)

near the origin 0 ∈ Cn, we show that the Hilbert-Samuel multiplicity of R calculates the rank of the

cohomology sheaf Hn(z − R,OZ

Cn) at z = 0.

0. Introduction

Let T ∈ L(X)n be a commuting tuple of bounded linear operators on a complex Banach
space X, and let K•(T,X) be the Koszul complex of T . The tuple T is said to be lower
semi-Fredholm if the last cohomology group Hn(T,X) = X/

∑n

i=1 TiX of its Koszul
complex is finite dimensional. In this case all the spaces Mk(T ) =

∑

|α|=k T
αX (k ∈ N)

are finite codimensional, and the direct sum ⊕k≥0Mk(T )/Mk+1(T ) can be turned into a
graded finitely generated C[z]-module. It is a fundamental result of commutative algebra
that to any such module there is a polynomial p ∈ Q[x] of degree ≤ n, the Hilbert-Samuel
polynomial, with dimX/Mk(T ) = p(k) for large k and such that the leading coefficient
multiplied with n! is a natural number, the so-called Hilbert-Samuel multiplicity.

On the other hand, for a given lower semi-Fredholm tuple T ∈ L(X)n, there is an open
neighbourhood U of 0 ∈ Cn such that dimHn(z− T,X) <∞ for all z ∈ U and such that
the last cohomology sheaf H = Hn(z − T,OX

U ) of the induced complex K•(z − T,OX
U )

of OU -modules is isomorphic to a quotient of a free module ON
U on U . In particular,

the stalk H0 is a noetherian module over the local ring O0 of all convergent power
series at z = 0 and hence possesses a Hilbert-Samuel polynomial pan ∈ Q[x] such that
dimH0/m

kH0 = pan(k) for large k. Here m is the maximal ideal of O0.

Both versions of the Hilbert-Samuel polynomial and their leading coefficients were intro-
duced by Douglas and Yan in [3]. In a series of papers Xiang Fang studied the properties
of the Hilbert-Samuel multiplicity

c(T ) = n! lim
k→∞

dimX/Mk(T )

kn
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and its relations to other invariants in operator theory. In [6] a complete description
of the relation between Fredholm index and the Hilbert-Samuel multiplicity for single
operators is given, while [8] contains a variety of results showing the close connection
between Hilbert-Samuel multiplicity and the Fredholm index in multivariable operator
theory, including the observation that, for row contractions with finite defect, the
Hilbert-Samuel multiplicity coincides with Arveson’s curvature invariant [1].

In this note we extend a method originating in [7] to show that, for a suitable class of lower
semi-Fredholm tuples R ∈ L(Z)n on a Banach space Z, the Hilbert-Samuel multiplicity
coincides with the rank of the cohomology sheaf H = Hn(z − R,OZ

U) at z = 0, or
equivalently, that there are an open neighbourhood U of 0 and a proper analytic subset
S ⊂ U such that

c(R) = min
z∈U

dimHn(z −R,Z) = dimHn(w − R,Z)

for w ∈ U \ S. Furthermore, the restriction of H to U \ S is a locally free analytic
sheaf of rank c(R). These results are shown to hold for tuples R ∈ L(Z)n arising as
quotients of lower semi-Fredholm tuples T ∈ L(X)n which are regular in the sense that
the cohomology groups Hn(z − T,X) have constant dimension near 0. Hence, in this
setting, we prove that the Hilbert-Samuel multiplicity calculates the stabilized dimension
of Hn(z − R,Z) at z = 0, and give a natural explanation of results previously known in
more particular situations.

1. Main results

Let T = (T1, . . . , Tn) ∈ L(X)n be a commuting tuple of continuous linear operators on a
complex Banach space X. The Koszul complex of T

K•(T,X) : 0 → Λ0X
T

−→ Λ1X
T

−→ . . .
T

−→ ΛnX → 0

is a finite complex of bounded operators between Banach spaces (see §2.2 in [4]). The
vector spaces

Hp(T,X) = Ker(ΛpX
T

−→ Λp+1X)/Im(Λp−1X → ΛpX) (p = 0, . . . , n)

are called the cohomology groups of K•(T,X).

Let us suppose that the space

Hn(T,X) ∼= X/
n

∑

i=1

TiX
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is finite dimensional. Fix a basis ([x1], . . . , [xN ]) of this space. Then the spaces Mk =
∑

|α|=k T
αX (k ∈ N) form a decreasing sequence of finite-codimensional subspaces of X

such that

Mk+1 =
n

∑

j=1

TjMk (k ∈ N).

On the algebraic direct sum X =
∞
⊕

k=0

(Mk/Mk+1) we define a commuting tuple T =

(T 1, . . . , T n) of linear maps T j : X → X by

T j

(

(xk +Mk+1)k∈N

)

= (Tjxk−1 +Mk+1)k∈N.

It is elementary to check that the induced module structure

C[z] ×X → X, (p, x) 7→ p(T )x

turns X into a finitely generated graded C[z]-module. More precisely, let Vk = {p ∈
C[z]; deg(p) ≤ k}. Then one can show that

k−1
⊕

j=0

Mj/Mj+1 = LH
(

{p(T )(xi +M1); p ∈ Vk−1 and i = 1, . . . , N}
)

for all k ≥ 1. In particular, one obtains the estimates

dim(X/Mk) ≤ N dim Vk−1 = N
k(k + 1) · . . . ·

(

k + n− 1
)

n!

for all k ≥ 0. Using a theorem going back to Hilbert (Theorem 1.11 in [5]) we conclude
that there is a polynomial p ∈ Q[x] with deg(p) ≤ n such that

dim(X/Mk) = p(k)

for all sufficiently large natural numbers k. Furthermore, in this case the limit

c(T ) = n! lim
k→∞

dim(X/Mk)/k
n

exists and defines a natural number c(T ) ∈ {0, 1, 2, . . . , N}. We call p the Hilbert-Samuel
polynomial and c(T ) the Hilbert-Samuel multiplicity of T .

The condition that Hn(T,X) is finite dimensional implies that the spaces Hn(z−T,X) ∼=
X/

∑n

i=1(zi−Ti)X are finite dimensional for all points z in a suitable open neighbourhood
U of 0 in Cn (Section 2.6 in [4]). For a Banach space E, we denote by OE

U the analytic
sheaf of all germs of analytic E-valued functions on U . The boundary maps in the Koszul
complexes K•(z − T,X) depend analytically on z and induce a corresponding sequence

K•(z − T,OX
U ) : 0 −→ OΛ1X

U

z−T
−→ . . .

z−T
−→ OΛnX

U −→ 0

3



of analytic sheaves on U . Let us denote by

F = FT = Hn(z − T,OX
U ) ∼= OX

U /(z − T )OXn

U

its last cohomology sheaf. Let ([x1], . . . , [xr]) be a basis of Hn(T,X). After shrinking U
one may suppose that there is an epimorphism

Or
U

h
−→ F

of analytic sheaves (see the proof of Proposition 9.4.5 in [4]). It follows that the stalk F0

of F at z = 0 is a noetherian module over the local ring O0 of all convergent power series
at z = 0. Let m be the maximal ideal of O0. It is well known that there is a polynomial
pan ∈ Q[x] with deg(p) ≤ n such that

dimC(F0/m
kF0) = pan(k)

for all sufficiently large natural numbers k. Again the limit

can(T ) = n! lim
k→∞

dim(F0/m
kF0)/k

n

exists and defines a natural number can(T ) ∈ {0, 1, 2, . . .}. We call pan the analytic
Hilbert-Samuel polynomial and can(T ) the analytic Hilbert-Samuel multiplicity of T .

The relationship between the invariants p, c(T ) and their analytic counterparts pan,
can(T ) was studied before by Douglas and Yan [3], although in a slightly different
language. We recall the main results.

Define M = {p ∈ C[z]; p(0) = 0}. Regard X as a C[z]-module via

C[z] ×X → X, (p, x) 7→ p(T )x.

It is elementary to check that M kX =
∑

|α|=k T
αX and that the map

ϕ : X → F0, x 7→ x + (z − T )OXn

0

is a morphism of C[z]-modules such that ϕ(M kX) ⊂ m
kF0 for all k ≥ 0. One can show

(cf. Proposition 5 in [3]) that the induced maps

ϕk : X/MkX → F0/m
kF0, x +MkX 7→ ϕ(x) + m

kF0

are onto for all k ≥ 0.

4



Proposition 1 (Douglas-Yan) Let T ∈ L(X)n be a commuting tuple such that
dimHn(T,X) <∞. Let p and pan be the Hilbert-Samuel polynomial and analytic Hilbert-
Samuel polynomial of T , respectively. Then

pan(k) ≤ p(k)

for all sufficiently large natural numbers k. In particular, the inequality can(T ) ≤ c(T )
holds.

Let Z = X/Y be the quotient of X modulo a closed invariant subspace Y of T . We
denote by S = T |Y and R = T/Y the restriction of T to Y and the quotient tuple of T
modulo Y , respectively. The short exact sequences

0 → K•(z − S, Y ) → K•(z − T,X) → K•(z − R,Z) → 0

(z ∈ Cn) of Koszul complexes induce long exact sequences of cohomology

0 −→ H0(z − S, Y )
j

−→ H0(z − T,X)
q

−→ H0(z − R,Z)

dz−→ H1(z − S, Y )
j

−→ . . . . . .

. . . . . . . . .

dz−→ Hn(z − S, Y )
j

−→ Hn(z − T,X)
q

−→ Hn(z −R,Z) −→ 0,

where j and q are the linear maps induced by the inclusion Y ↪→ X and the quotient
map X → Z and the maps dz are the connecting homomorphisms (cf. [5]).

Our aim is to study the relation between the Hilbert-Samuel multiplicities of T and
R. We shall clarify this relation under the additional hypothesis that there is an open
neighbourhood U of 0 ∈ Cn such that all the spaces

Hn(z − T,X) ∼= X/

n
∑

i=1

(zi − Ti)X

have the same finite dimension N ≥ 1. It is well known that the set S of all discontinuity
points of the function

U → N, z 7→ dimHn(z −R,Z)

is a nowhere dense analytic subset of U (Satz 1.5 in [10]) and that there is a natural
number r ∈ {0, . . . , N} with

dimHn(z −R,Z) = r < dimHn(w − R,Z)

5



for z ∈ U \ S and w ∈ S.

It is the main aim of this note to prove the following result.

Theorem 2 Let R ∈ L(Z)n be the quotient of a commuting tuple T ∈ L(X)n such that

dimHn(z − T,X) ≡ const. <∞

near zero. Then there is nowhere dense analytic subset S ⊂ U of an open neighbourhood
U of 0 ∈ Cn with the property that

c(R) = dimHn(z − R,Z) for z ∈ U \ S.

To prove this result we need some preparations. Let U be a connected open neighbourhood
of 0 ∈ Cn such that

dimHn(z − T,X) = N (z ∈ U).

Choose a direct complement D of
∑n

i=1 TiX in X. Since the analytically parametrized
complex

T (z) : Xn ⊕D → X,
(

(xi), y
)

7→
n

∑

i=1

(zi − Ti)xi + y

is onto at z = 0, we can achieve (by shrinking U) that the induced map

O(U,Xn ⊕D) → O(U,X)

is onto again (Lemma 2.1.5 in [4]). By comparing dimensions we see that the surjective
linear maps

D → Hn(z − T,X), y 7→ [y]

are vector-space isomorphisms for all z ∈ U . Hence, for each x ∈ X and each z ∈ U ,
there is a unique vector x(z) ∈ D with

x− x(z) ∈
n

∑

i=1

(zi − Ti)X.

Since x(z) depends analytically on z, we obtain a linear map

ρ : X → O(U,D), (ρx)(z) = x(z).

The relation

Tjx− zjx(z) ∈ (Tj − zj)x(z) +
n

∑

i=1

(zi − Ti)X,
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valid for x ∈ X, z ∈ U and j = 1, . . . , n, shows that

ρ
(

p(T )x
)

= pρ(x) (x ∈ X, p ∈ C[z]).

By Lemma 2.1.5 in [4], the morphism

OXn⊕D
U

T (·)
−→ OX

U

of analytic sheaves remains onto. Therefore the map

OD
U → F , fλ 7→ fλ + (z − T )OXn

λ

defines an isomorphism of analytic sheaves.

Let as before S ⊂ U be a nowhere dense analytic subset such that

dimHn(z − R,Z) = r

for all z ∈ U \ S. The above arguments applied to R instead of T show that the sheaf
FR is locally free of rank r on U \ S. We call r the rank of the sheaf FR on U and write
rank(FR) = r.

Lemma 3 Let T ∈ L(X)n be a commuting tuple such that there is an open neigh-
bourhood U of 0 in Cn with dimHn(z − T,X) = N for z ∈ U . Then we have
c(T ) = can(T ) = N .

Proof. Denote by F = Hn(z − T,OX
U ) the n-th cohomology sheaf of the complex

K•(z − T,OX
U ). As seen above, there is an isomorphism ψ : ON

0 −→ F0 of O0-modules.
This map induces isomorphisms of O0-modules

ψk : ON
0 /m

kON
0 −→ F0/m

kF0 (k ≥ 0).

Because of m
kON

0 = (mkO0)
N = (mk)N we obtain induced isomorphisms of O0-modules

F0/m
kF0

∼= ON
0 /(m

k)N ∼= (O0/m
k)N .

Using the canonical vector-space isomorphisms O0/m
k ∼= Vk−1, we find that

dimC(F0/m
kF0) = dim(VN

k−1) = N
k(k + 1) · . . . · (k + n− 1)

n!

for all k ≥ 0. But then N = can(T ) ≤ c(T ) ≤ N, and the assertion follows.
�
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For z ∈ U , define
δz : X → D, x 7→ x(z)

and
Yz = {y(z); y ∈ Y }.

Using the explicit definition of the connecting homomorphisms dz occurring in the long
exact cohomology sequences explained before Theorem 2 one easily checks that the se-
quences

Hn−1(z − R,Z)
dz−→ Hn(z − S, Y )

bδz−→ Yz −→ 0

are exact for z ∈ U . Using this sequence together with the above long exact cohomology
sequence we find that

dimHn(z − R,Z) = N − dimYz

for z ∈ U .

Hence the minimal dimension of Hn(z−R,Z) on U corresponds to the maximal dimension
of Yz on U . The last number admits an algebraic representation (cf. Lemma 4 in [7]). To
formulate the relevant result, let us denote by

Tk : O(U,D) → O(U,D), f 7→
∑

|α|≤k

f (α)(0)

α!
zα

the linear maps that associate with each analytic function on U its k-th Taylor polynomial.

Lemma 4 Let U ⊂ Cn be an open neighbourhood of 0 and let D be a finite-dimensional
vector space. Given a C[z]-submodule M ⊂ O(U,D), define Mz = {f(z); f ∈ M} for
z ∈ U . Then there is a nowhere dense analytic subset S ⊂ U such that

dimMz = max
w∈U

dimMw = n! lim
k→∞

dimTk(M)

kn

for all z ∈ U \ S.

Proof. It is elementary to check that the proof given in [7] (see Lemma 4) for
submodules of Hilbert modules remains valid. For completeness sake, we indicate the
main steps.

Fix a basis (e1, . . . , eN ) of D. Define m = maxw∈U dimMw and choose h1, . . . , hm ∈ M
such that h1(z0), . . . , hm(z0) are linearly independent vectors in D for some point z0 ∈ U .
Each function hj has a representation of the form

hj(z) =

N
∑

i=1

hi
j(z)ei (z ∈ U)

8



with uniquely determined analytic functions hi
j ∈ O(U). After permuting the given basis

of D we may suppose that the analytic matrix-valued function

Θ : U → Cm,m, Θ(λ) =
(

hi
j(λ)

)

1≤i,j≤m

is invertible at z0. Define c = ord0

(

det(Θ)
)

. Basic linear algebra allows us to choose an
analytic function A = (Aij) : U → Cm,m with

Θ(z)A(z) = A(z)Θ(z) = det
(

Θ(z)
)

Im (z ∈ U).

For each k ∈ N, the analytic functions

Θk
ij =

[

Θ
(

A− (TkAij)
)]

i,j
=

m
∑

µ=1

hi
µ(Aµj − TkAµj)

have order at least k + 1 at z = 0.

Set D0 = LH{e1, . . . , em}. Let Q0 : D → D0 be the projection onto D0 with Q0ei = 0 for
i = m + 1, . . . , N . Denote by

Q = 1 ⊗Q0 : O(U,D) → O(U,D0)

the induced projection on O(U,D). For each function P = (Pij) : U → Cm,m with
polynomial entries Pij ∈ C[z], we have

m
∑

i=1

[ΘP ]ijei = Q
(

m
∑

µ=1

Pµjhµ

)

∈ QM

for j = 1, . . . , m.

Fix k ∈ N and a polynomial p ∈ C[z]. For j = 1, . . . , m, the function Tk

(

p det(Θ)ej

)

is
obtained by applying the linear map Tk coefficientwise to the matrix

p det(Θ) Im − p(Θk
µν)µ,ν = Θp(TkAµν)µ,ν,

then multiplying the i-th coefficient of the j-th column of this matrix with ei and adding
up over all i = 1, . . . , m. It follows that

Tk

(

p det(Θ)ej

)

∈ Tk(QM) (p ∈ C[z], j = 1, . . . , m).

Let Vi = {p ∈ C[z]; deg(p) ≤ i} for i ∈ N. For k ≥ c and j = 1, . . . , m, the linear maps

Vk−c → Tk(QM), p 7→ Tk(p det(Θ)ej)

are obviously injective and therefore

dimTk(M) ≥ dimQTk(M) = dimTk(QM)

≥ m dimVk−c =
m(k − c+ 1) · . . . · (k − c+ n)

n!

9



We conclude that

m ≤ n! lim inf
n→∞

dimTk(M)

kn
.

Let us turn to the proof of the opposite inequality. Since the right-hand side of the last
inequality can be estimated from above against n! limk→∞(N dimVk)/k

n = N , we may
suppose that m < N . Let f =

∑N
i=1 f

iei ∈M be arbitrary. The maximality of m implies
that the vectors h1(z), . . . , hm(z), f(z) ∈ D are linearly dependent for each z ∈ U . Hence
the determinant of the matrix















h1
1 . . . h1

m f 1

. . . . . . . . . . . .

hm
1 . . . hm

m fm

hi
1 . . . hi

m f i















is identically zero for every fixed i = m+1, . . . , N . Expanding this determinant according
to the last column, we find that

g1f
1 + . . .+ gmf

m + gif
i ≡ 0

with suitable functions g1, . . . , gm ∈ O(U) and gi = det(Θ).

Fix k ∈ N. Let g = Tk(f) with f =
N
∑

i=1

f iei be as above, but assume in addition that

Qg = 0. Then

g =
N

∑

i=1

Tk(f
i)ei =

N
∑

i=m+1

Tk(f
i)ei,

and for i = m + 1, . . . , N , we obtain the relations

Tk(gif
i) = −Tk(g1f

1 + . . .+ gmf
m) = 0.

It follows that ord(f i) ≥ k − c+ 1 for i = m+ 1, . . . , N and that

g = (Tk − Tk−c)

N
∑

i=m+1

f iei ∈ (I −Q)(Tk − Tk−c)O(U,D).

The above arguments show that

dim
(

Tk(I −Q)M
)

≤ rank(I −Q)(Tk − Tk−c) = (N −m)

[(

n+ k

n

)

−

(

n+ k − c

n

)]

.

Since the right-hand side is a polynomial of degree at most (n− 1) in k, we conclude that

10



n! lim sup
k→∞

dimTk(M)

kn
≤ n! lim sup

k→∞

dimQTk(M)

kn

≤ n! lim
k→∞

TkO(U,D0)

kn
= m.

�

The significance of the maximal dimension of the spaces Mz, usually referred to as the
fibre dimension of M , was recognized before in the context of analytic functional Hilbert
spaces by Gleason, Richter and Sundberg [9].
Let us return to the operator-theoretic situation described before Lemma 3. With the
notation fixed there, the subspace

M = ρ Y ⊂ O(U,D)

is a C[z]-submodule. Applying Lemma 4 to this submodule we obtain the next result.

Corollary 5 With the notation explained above, there is a nowhere dense analytic
subset S ⊂ U of a connected open neighbourhood U of 0 ∈ Cn such that

dimHn(z − R,Z) = min
w∈U

Hn(w −R,Z) = N − n! lim
k→∞

dimTk(ρY )

kn

for all z ∈ U \ S.

Our next aim is to relate the limit occurring in Corollary 5 to the Hilbert-Samuel multiplic-
ity of R. For a commuting tuple T ∈ L(X)n, we use the notation Mk(T ) =

∑

|α|=k T
αX

(k ∈ N).

Lemma 6 Let Y ∈ Lat(T ) be a closed invariant subspace of a commuting tuple T ∈
L(X)n, let Z = X/Y and let R = T/Y ∈ L(Z)n be the induced quotient tuple. Suppose
that

dimHn(T,X) <∞.

Then the Hilbert-Samuel multiplicities of T and R satisfy

c(R) = c(T ) − n! lim
k→∞

dim
[(

Y +Mk(T )
)

/Mk(T )
]

kn
.

Proof. It suffices to observe that the inclusion map j : Y → X and the quotient map
q : X → Z induce short exact sequences

0 −→
Y +Mk(T )

Mk(T )

j
−→ X/Mk(T )

q
−→ Z/Mk(R) −→ 0.

11



Using the fact that the alternating sum of the dimensions of the three spaces forming
this sequence is zero, one deduces the assertion.

�

Let us return to the case where dimHn(z − T,X) = N near z = 0 ∈ Cn. By Lemma 3
we know that c(T ) = N . With the notation fixed before Lemma 4 we obtain that

ρ
(

Mk(T )
)

⊂ {f ∈ O(U,D); ord0(f) ≥ k}.

Hence the maps Tk−1 ◦ ρ induce surjective linear maps

τk :
(

Y +Mk(T )
)

/Mk(T ) → T k−1(ρY ) .

It follows that the limit occurring in Lemma 6 is at most larger than the corresponding
limit in Corollary 5. We complete the proof of Theorem 2 by showing that both limits
actually coincide.

Corollary 7 Let Y ∈ Lat(T ) be a closed invariant subspace of a commuting tuple
T ∈ L(X)n, let Z = X/Y and let R = T/Y ∈ L(Z)n be the induced quotient tuple.
Suppose that in some connected open neighbourhood U of 0 ∈ Cn

dimHn(z − T,X) = N (z ∈ U).

Then there is a nowhere dense analytic subset S ⊂ U such that

c(R) = min
w∈U

dimHn(w − R,Z) = dimHn(z − R,Z)

for z ∈ U \ S.

Proof. Let F = Hn(z − T,OX
U ) be the n-th cohomology sheaf of the Koszul complex

K•(z − T,OX
U ). Fix a direct complement D of

∑n
i=1 TiX in X. As seen before, after

shrinking U , we may suppose that the map

OD
U → F , fλ 7→ fλ + (z − T )OXn

λ

is an isomorphism of analytic sheaves. The composition

X
ρ

−→ O(U,D) ∼= F(U)
δ0−→ F0,

where the last map is the point evaluation δ0(γ) = γ(0), is precisely the map

ϕ : X → F0, ϕ(x) = x + (z − T )OXn

0

12



that we defined in the section leading to Proposition 1. The cited result from [3] implies
that the compositions

ϕk : X/MkX
[ρ]
−→ O(U,D)/MkO(U,D) −→ F(U)/MkF(U) −→ F0/m

kF0

are onto for all k ≥ 0. Let p and pan be the Hilbert-Samuel polynomial and analytic
Hilbert-Samuel polynomial of T , respectively. As an application of Lemma 3 we obtain
that q = p− pan is a polynomial with deg(q) ≤ n− 1. By construction

dim Ker ϕk = dim(X/MkX) − dim(F0/m
kF0) = q(k)

for sufficiently large k. Since τk acts as the composition

(

Y +Mk(T )
)

/Mk(T )
[ρ]
−→ O(U,D)/MkO(U,D)

T̂k−1

−→ O(U,D),

where the map T̂k−1 defined by T̂k−1([f ]) = Tk−1(f) is injective, we conclude that

dim Ker τk ≤ dim Ker ϕk (k ∈ N).

The observation that

dim
[(

Y +Mk(T )
)

/Mk(T )
]

− dimTk−1(ρY ) = dim(Ker τk) ≤ q(k)

for all sufficiently large k, completes the proof.
�

The question whether c(R) = can(R) in the setting of Corollary 7 remains open here,
at least in the Banach-space case. In the case of Hilbert spaces the cohomology sheaf
H = Hn(z − R,OZ

U ) is known to be coherent [11]. Then standard results from analytic
geometry (Theorem 7.4 in [2]) imply that the map

U → N, z 7→ can(z − R) = n! lim
k→∞

dim(Hz/m
k
zHz)

kn

is upper semicontinuous. Since

can(z −R) = min
w∈U

dimHn(w − R,Z) = c(R) (z ∈ U \ S)

for a proper analytic subset S ⊂ U , it follows that can(R) ≥ c(R). Since the reverse
inequality always holds, we have equality. The sheaf H is also known to be coherent,
when the tuple R is Fredholm, that is, when dimHp(R,Z) < ∞ for p = 0, . . . , n. Hence
also in this case we obtain equality c(R) = can(R) in the setting of Corollary 7.

A second natural question is whether the assertion of Theorem 2 remains true,
when we replace the hypothesis that R is a quotient of a tuple T ∈ L(X)n for which
dimHn(z−T,X) is constant for z near 0 simply by the condition that dimHn(R,Z) <∞.
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