Universitat des Saarlandes

Fachrichtung 6.1 — Mathematik

Preprint Nr. 146

A Posteriori Error Estimates Of Functional Type For

Variational Problems Related To Generalized
Newtonian Fluids

Martin Fuchs and Sergey Repin

Saarbrucken 2005






Fachrichtung 6.1 — Mathematik Preprint No. 146
Universitat des Saarlandes submitted: 03"¢ of August, 2005

A Posteriori Error Estimates Of Functional Type For

Variational Problems Related To Generalized
Newtonian Fluids

Martin Fuchs

Saarland University
Dep. of Mathematics
P.O. Box 15 11 50
D-66041 Saarbriicken
Germany
fuchs@math.uni-sb.de

Sergey Repin

V.A. Steklov Mathematical Institute
St. Petersburg Branch
191011 St. Petersburg

Russia
repin@pdmi.ras.ru



Edited by

FR 6.1 — Mathematik
Universitat des Saarlandes
Postfach 15 11 50

66041 Saarbricken
Germany

Fax: + 49 681 302 4443
e-Mail:  preprint@math.uni-sb.de
WWW:  http://www.math.uni-sb.de/



AMS Subject Classification: 65 N 15, 65 N 30, 65 K 10, 76 M 30

Keywords: a posteriori error estimates, generalized Newtonian fluids, variational
methods

Abstract

The paper is focused on functional type a posteriori estimates of the difference
between the exact solution of a variational problem modeling certain types of gen-
eralized Newtonian fluids and any function from the admissible energy class. In
contrast to the a posteriori estimates obtained for example by the finite element
method our estimates do not contain any local (mesh dependent) constants, and
therefore they can be used regardless of the way in which an approximation has
been constructed.

1 Introduction

The purpose of this note is to establish explicit estimates for the quality of approximate
solutions for a system of nonlinear partial differential equations modeling the stationary
and also slow flow of certain generalized Newtonian fluids. To be precise, let us first
discuss the fluid models we like to investigate. We consider a bounded Lipschitz domain
Q) C R™ occupied by a viscous incompressible fluid whose properties depend on a given
convex dissipative potential I acting on the space S™ of smooth, symmetric (n x n)-
matrices. If the velocity field u is independent of time and also small, then the following
system of partial differential equations is satisfied by u and the pressure function p :

(1.1) —dive=f—-Vp in
(1.2) divu=0 in©;
(1.3) o€ 0l (e(u)) in Y
(1.4) u=1ug on J.
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Here £(u) denotes the symmetric gradient of u,o represents the deviatoric part of the
stress—tensor, and f : 2 — R™ is a given system of volume forces, whereas ug is a fixed
boundary datum such that divug = 0 in €. The notion of a generalized Newtonian
fluid arises from the requirement that a constitutive relation like (1.3) holds, where 011
denotes the subdifferential of the potential I, which coincides with the derivative IT', if
IT is Gateaux—differentiable. We refer to [6] for the definition and a discussion of the
properties of the subdifferential. In the case that II (¢) = %|¢|*> with constant viscosity
v > 0 we see that (1.1) — (1.4) correspond to the Stokes—problem for a Newtonian fluid,
see e.g. [12] or [10], and in our paper we concentrate on lower—order perturbations of this
quadratic potential, thus in what follows we assume that uy € H'(Q, R") together with
f € L*(,R"). Here H'(Q,R") is the Sobolev-space of functions from L?(Q, R"™) such

that the first order weak derivatives are also square-integrable on 2. So let for v > 0
(1.5) 1 (e) :%|6|2+7T(5), ees,

where 7 : S" — R is of the following form:

a) m(e)=k|e| with £ > 0. In this case II corresponds to the Bingham fluid model.

or
b) 7 (e) =k|e|*, where k > 0 and « € (1, 2]. This potential models so—called power—law
fluids.

or

¢) w(e)=k(1+] 6\2)a/2 with @ and k as in b). For this choice we also have some kind
of power—law fluid showing a different behaviour as ¢ — 0 and at the same time it serves
as one of the simplest models arising in the theory of electrorheological fluids, where — in
the realistic situation — k, v and « are not constant but smooth functions of z € €.

or
d) w(e) =kle|In(1+|e]), k> 0. Now II corresponds to a fluid of Powell-Eyring type
( , and reduces to the Prandtl-Eyring fluid, if we let v\ 0).

The mathematical background of generalized Newtonian fluids is explained for example
in [13], [14], [16], [17] and [8], the physical relevance of the various models is extensively
discussed for example in the monographs [1] and [4], for an introduction into the theory
of electrorheological fluids we refer to [26].

We assume from now that II from (1.5) is given by one of the cases a) — d). Then it is
well-known (see, e.g. [6] or [8]) that (1.1) — (1.4) has the following generalized formulation:
let H' denote the closure of all smooth solenoidal vector-fields with compact support in
Q w.r.t. the norm of H'(2,R"). Then u € ug+ H' is termed a weak solution of (1.1) —



(1.4) if and only if

Q

(1.6) /Qa(u):a(w)dx:/f~wdx Ve M,

where

o (u) ‘=01 + 09,
(1.7) oy = ve (), o3 =1 (e (u)),

and 7’ is the Gateaux—derivative of 7 (or an element of the respective subdifferential, if
7 is nondifferentiable). We remark that (1.6) is the Euler equation for the functional

v
J(v) = / <§ | 5(@)‘2 + 7 (e(v)) — f - v) dx,
Q
and since .J is strictly convex, continuous and coercive on ug-+H?, the variational problem
(P) J (v) ~ min on uy + H!

admits a unique solution u whose smoothness is discussed for example in [8], [9], [27] and

[28].

The main goal of this paper now is to give estimates of the difference between this exact
solution v and any function v from the energy class ug + H!. The general version of such
an estimate takes the form

(1.8) O(u—v) < M(v,D),

where ® is a nonnegative functional vanishing at zero, M is a nonnegative functional that
vanishes if and only if v = u, and D is the set of problem data including for example the
domain, the coefficients, etc. Estimates of the form (1.8) have a practical value provided
that

i.) The functional M is explicitly computable for any admissible v;
ii.) M(vg, D) — 0 as vy tends to u in the energy space;
iii.) M(v, D) provides a realistic upper bound for the quantity ®(u — v).

Estimates of the type (1.8) sharing the properties i.) — iii.) are called functional type a
posteriori estimates. In contrast to the a posteriori estimates derived in the last decades
for various numerical solutions (e.g., for those obtained by the finite element method),
these estimates are derived on purely functional grounds by using the methods of the cal-
culus of variations and PDE theory. Therefore, they contain no local (mesh—dependent)
constants, and they are applicable for approximations that may not exactly satisfy the
Galerkin orthogonality conditions arising in a particular numerical scheme. Having such



an estimate one can explicitly control the accuracy of an approximation regardless of the
way in which it has been constructed.

We like to mention that functional type a posteriori estimates have already been
established in the papers [22] — [25], for a posteriori error estimates for finite element
approximations of the (Navier—) Stokes equation we refer to [3], [11], [19], [20] and [29].

Our paper is organized as follows: in Section 2 we describe and comment the main
results of this paper, i.e. we give the principal estimates of the difference between the
exact solution u of problem (1.6) and an arbitrary solenoidal approximation with correct
boundary values. One estimate is convenient if the conjugate function of the dissipative
potential can be explicitly calculated, while the second estimate is applicable also in those
cases when the explicit form of the conjugate function is unknown. Section 3 contains the
proofs of these basic results. In Section 4 we discuss the meaning of these estimates for
our concrete models a) — d).

Finally, in Section 5, we present estimates for a more complicated case dealing with
approximations v that may not exactly satisfy the divergence—free condition.

2 Statement of the main results

Let u € ug + H' denote the unique solution of (1.6) with o (u) defined in (1.7) and 7
satisfying one of the cases a) — d) stated after (1.5). We let > := L?(Q, R"*") and

Qf = {(71,72)erzy/Q(ﬁHz):g(w) dx:/ﬂf-wdx vweHl}.

Finally, we denote by 7* the conjugate function of 7. Then we have:

THEOREM 2.1. For any v € ug + H' and for arbitrary choices of (11,72) € Qy the
following estimate holds

(2.1) / g ‘5(u — v)}2 dr + G(u,v) < Di(e(v),m)+ Dy (e(v), T2),
)
where the functionals G, D1 and Dy are given by
G(u,v) = / (m (e(v)) + 7 (02) — 02 : £(v)) dux,
Q
1

Dy (e(v), 1) := /Q (% le(v)]* + % || — 7 5(@)) dr,
Dy (e(v), 7o) := / (7 (e(v)) + 7(12) — 72 : €(v)) da.

Q

Let us give some comments on this result: since in the cases under consideration 7 is
a convex function, we see that G(u,v) > 0 (recall oo = 7'(g(u)) ) with equality if and
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only if u = v. Clearly, by Korn’s and Poincaré’s inequality, the first term on the Lh.s.
of (2.1) measures the distance from the approximation v to the exact solution w.r.t. the
norm of the space H!'(Q,R"). Note, that G(u,v) measures how accurately the tensor
gy = 7'(e(v)) (obtained with the help of the approximation v) represents the exact
tensor os.

Thus the deviation from the exact solution u is controlled by the sum of the functionals
Dy and D,. These functionals represent certain measures of errors in the constitutive
relations

T =ve(v), T = W/(E(U)),

which means that if we take 71 = o1, 75 = 09 with o7, 05 defined according to (1.7), then

Dy (e(v),m) = /Q(g\a(v)\QjL%‘V&(u)f—ug(u):e(v)) dz,
= g/ﬂ}e(u—v)}? de,

Dy (c(v),7) = /Q(W(a(v))—i—w*(ag)—ag:8(7})) iz,

and (2.1) holds with equality. Thus, by minimizing the right-hand side of (2.1) w.r.t.
T1, To We can obtain the upper bound of the error as close to its exact value as it is required.

However, in practice, the condition

(2.2) /S;<7-1+7-2):€(w> dex = /Qf:wdx Vuw e H'

required for the pair (7, 72) of tensors from Q) is difficult to satisfy which clearly reduces
the applicability of (2.1). In order to have a practically computable upper bound of
the deviation from the exact solution we modify (2.1) by introducing new variables in
choosing 7y in a special way. The purpose of such a rearrangement is not only to avoid
condition (2.2) but also giving the possibility of removing the conjugate function 7* from
the estimate. To do so, we have to introduce some notation: given tensors &y, sy € »
such that se; + a9 has square summable divergence and a function ¢ € H'(Q), we let
w € HYQ,R") (:= the subspace of H'(Q, R") consisting of functions with zero trace)
denote the unique solution of

(2.3) dive(w) = —div(ee; + &) — f + Vg in Q.
Then we have:

THEOREM 2.2. For any v € ug + H', for arbitrary choices of &y, 29, 7 € > s.L.
div (1 + ae9) € L*(Q,R"™), for any function ¢ € H'(Q) and for all numbers 3 > 0 the
following estimate holds with a positive constant Cq
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/Qg ‘e(v—u)‘z dzr + G (u,v)

1
(2.4) < / — (1+B)|ve(v) — %1‘2 dx
Q 2v
1+ .
+ o (Caldiv () + f = Vo + 1 = al12)°

+ /Q (m(e(v)) + 7*(12) — 72 1 €(v)) du.

Let us draw some consequences from (2.4).
Estimate I. If we choose 75 = a5 in (2.4), then (2.4) takes the form
(2.5) /Qg le(u —0)|° dz + G (u,0) < My (v, 1, 9,4, 5)
with

Ml (07%173327(]7/8)

= /Q 2i (1+ B)|ve(v) — ael}Z dx

14

+ /Q (7(e(v)) + 7" (e2) — 2o : €(v)) da

+ ﬂ C% ” div (%1 + %2) + f - VqHLz.

28v
Let us discuss the meaning of this estimate. First we observe that the functional M con-
tains only known data (v, f, €2, v) or such data that are in our disposal like (3, ae1, &9, q).
Therefore M is explicitly computable. M provides an upper bound for the deviation
from the exact solution and it consists of three functionals that depend on v and the free
tensor—valued functions &1, &5. The latter can be viewed as certain images of the parts of
the stress tensor associated with the Newtonian and non—Newtonian dissipative potentials,
respectively. The first two terms vanish if e(v), &; and a5 satisfy the constitutive relations
associated with these potentials, while the third one is zero if div (s + &y) = Vg — f.
Secondly, it is easy to see that

inf M, (v,ee1,89,q,0) =0

v,xe1,X2,q

if and only if v = u, ¢ = p (the true pressure), and &; and &, coincide with the respective
parts of the true stress tensors defined in (1.7). Therefore one can use M as a variational
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functional whose values give a direct measure of the quality of the approximation.

Estimate II. The idea here is to shift the variable ¢ into another term, where it
appears without derivatives. If E denotes the unit matrix, we let &, := &; + ¢ F and get
div ae; = div &; + Vg, Then (2.5) gives

(2.6) /Qg]as(v—u)]2 dr + G (u,v) < My (v, &1, 29,4, )

with M defined according to

M? (Ua é17 %27Q75)

= /%(1+ﬁ)}1/5(v)—a~el—qE}2dx
o 2v

—i—/ﬂ (m(e(v)) + 7 (se2) — 25 : £(v)) da

1
+%f C2 || div (&1 + ) + £ 12
The properties of the functional My are quite similar to the ones of M. For example it
is easy to see that My (v, &1, &2, q, ) > 0 with equality if and only if

&1 =ve(v)—qFE,
Py = W’(g(v)),
diV (581 + EEQ) + f = O,

which means that v = v and ¢ = p. Therefore, the exact minimum of M (v, &1, &3, q, 3)
is also attained on the solution of the problem under consideration.

Estimate III. The estimates (2.5) and (2.6) are convenient if the explicit form of the
conjugate function 7* is known. However, in some interesting cases it is not possible
to give a formula for 7*. In order to treat these cases we rearrange the estimate (2.4)
in a suitable way. Let 7 € > and define 75 := 7/(n) (note that for the models under
consideration we have 7 € > ) Since by elementary properties of 7* we have that

(2.7) /Q (7‘(‘(’/]) + 7 (1me) — 7o n) dxr =0,

we get for the quantity D, defined in Theorem 2.1 and which occurs as the third term on
the r.h.s. of (2.4)

(2.8) Da(e(v).m) = / (w(e(w) = 7(n) + 7' (n) : (n—=(v))) do.

Q



Inserting (2.8) into (2.4) we see that

(29) / g ‘E(U — U)‘Q dx + G (IU/,'U) < MB (%39173627777(];5>
Q
with

M3 (Ua %17%27777Q75)

= / % (14 B)|ve(v) — 381}2 dx
Q

1+ . /
4 o (Calldiv e +) + £ = Dl + [ (0) = all2)°

+ [ (rleo) = )+ 7 s (4= () i
Q

Here > 0 is an arbitrary number and &1, &5, 77 denote tensors from » such that div(se; +
&) € L*(,R"). The majorant M3 has the same principal properties as M; and M.
Indeed, it is easy to check that

M3 (Uazela%%?%qaﬁ) =0

if and only if v = u, &1 = ve(u), & = 7'(e(w)), n = e(u) and ¢ = p. If v # u and if we
choose &1 = 01, &y = 09, 1 = £(u) and ¢ = p, then the r.h.s. of (2.9) tends towards the
Lh.s. of (2.9) as 8\, 0. Finally, we note that if 7'(n) has square summable divergence,
then the number of variables in M3 can be reduced by setting sy = 7'(n).

In Section 4 we will apply the results described above to the specific potentials m

defined in a) — d) of Section 1. Section 5 contains further results for the case that the
approximation v does not exactly satisfy the condition div v = 0.

3 Proofs of the main results

We follow the notation introduced before Theorem 2.1 and observe that for v € ug + H'
we have

J(v) — J(u) = /Q (g le(v — u)‘2 +rve(u):e(v—u)
+ 7(e(v)) = m(e(w) — f - (v— u)) dx

— [ LRl det [ (r(ew) ~n(et) ~(cw) <o) do

Q

+ / (ve(u):e(v—u)+7'(e(w) :e(v —u) — [+ (v—u)) dz,
Q
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and with (1.6) we conclude that

(3.1) J() = J(u) :/Q g}e(v—u)f dz + G (u,v),

G being defined through the relation
G (v,u) = /Q (m(e(v)) = 7(e(w)) — 7' (e(u)) : (v —u)) dz.

Since 03 = 7’ ((u)) and therefore

/Q (W(é(U)) + 7% (09) — 09 : 8(u)) dr =0

we arrive at the representation for the functional G given in Theorem 2.1. In order to get
a suitable lower bound for the functional J (i.e. a lower bound for J(u)) we introduce the
Lagrangian

L(v,m,72) := /Q (e(): (n+7) — % In|? =7 () — f - v) da

being defined on (ug + H') x > x Y. We note that

1 v
sup / (e(v): 7 — o™ 171]%) do = / B | e(v))? du.
neY JQ v Q

Since 7*(7) has a growth rate w.r.t. |7| greater or equal to 2 (this follows from the growth

behaviour of 7), any tensor—valued function 7 with the property that fQ ™(7) dx < o0
belongs to .

This implies

sup /Q(g(v);fz—w*(fz)) dx:/w(z—:(v)) dx

T2EY, Q
and we arrive at

inf J = inf sup  L(v, 1, 7s)
up+H?! vEuo+H? T1,mES

> sup inf  L(v, 7, 7)
m,mEY] vEuo+H!

= sup (7, 7),
(11,72)€Q

where

) = [ (o) (ot ) = gl = 7°() = £ o) do

Thus we have the upper bound

(3.2) J() = J(u) < J(v) = I(m,7)

9



valid for any pair (71, 72) € Q. Writing

J(v) = I(11,72) = D1 (e(v), 1) + Da(e(v), 1)

[ (F =) = (n ) e =) do

with Dy, Dy defined in Theorem 2.1 and recalling the definition of @, the claim of The-
orem 2.1 is a consequence of (3.1) and (3.2). O

For the proof of Theorem 2.2 we take any 7o, &1,y € > such that div (&, + a2) €
L?(Q,R™). Young’s inequality implies for all 3 > 0 the estimate

1

Dy(e(v), 1) = 5/9 ve(v) — 7-1‘2 dx

1
— Z/Q‘ya(v)—ael—l—ael—ﬁf dz

We further have
(33) H%l — TIHLQ S H%l + Xy —T1 — TQHLQ + H%Q — TQHLQ.

Define w € H} (2, R") as the unique solution of problem (2.3) and let 1g := a1 +aey +&(W).
Then

/QTIO e(w) dv = /Q (201 + &0 + (W) : e(w) da

(3.4) = /Q(f—Vq)~wda:

holds for all w € H! on account of (2.3). For e(w) we have the energy estimate
(3.5) He(ﬁ)HLz < (gl div (881+882)—|—f—VqHL2

which is also an immediate consequence of (2.3). Let us finally set 7 := 19 — 72. By (3.4)
the pair (71, 72) is in @y and

(3.6) |eer + o2 — (1 +72)ll2 = lleer + a2 — o] o = lle (@)]| 2.

10



Combining (3.5) and (3.6) we therefore get
a1 + a0y — (11 + 7)|[22 < Clalldiv (se1 +22) + f = Vgl| 2.
Inserting this result into (3.3) we see that
leer — 7il[2 < Coll div (ee1 + @2) + f — V| 2.

This implies the estimate

Di(e(v),m) < /Q 1+0 ve(v) —881‘2 dx

- 2v
1+ 4 .
+ Gy (Calldiv (4 ) +f = Ve + f1m - |2 )
Since Ds(e(v), 72) remains unchanged, estimate (2.4) now follows from inequality (2.1),
Theorem 2.2 is proved. U

4 Discussion of the examples

In this section we apply the results of Section 2 to the particular models discussed in the
introduction.

4.1 Power—law models

4.1.1 Case 7(e) = kle|*, a € (1,2].

We have )

m'(e) = kale|* %, 7 (1) = (i)(kl ai |
Therefore, for any v € H! + ug we obtain the estimate

v 2
§|5(v —u)|“dz + G(u,v)
Q
1

(@1) < / (1 B)lvelv) — a4 Dy(=(v), w5)

Q
+ 552 Calldiv(aer + ) + f — V|72,

where the term Ds(e(v), &2) has the form

DQ(E(U),SEQ):/(k|5(v)|a+($)a1 L ey —aeQ:g(v))dx

Q

11



and
G(u,v) = / k(|5(v)|0‘ —e(u)]* + ale(u)|*2e(u)  e(u — v))dm.
Q
If the estimate (2.9) is used, then we obtain
/ g\e(v —u)|*dr + G(u,v) < / LB ye(v) — eei|*da

Q Q

(4.2) +552 (Calldiv(eer + 22) + f = Vallz2 + | kaln|* >y — s =)

+/<deW—kMW+kawﬂn%n—dmmm
Q

If £ =0, then G(u,v) = 0 and by setting in (4.2) sy = 0 we obtain the following estimate
for the Stokes problem (cf. [25])

(4.3) / V(v — u)[2dz < / L0 (0) — ey [P + HLCR|diviey + f — Vg2
Q Q

Since v is a constant, estimate (4.3) implies
(4.4) vlie(v —u)||2 < |lve(v) — ee1]|r2 + Col|divee; + f — V|| L2

which can be easily seen by taking for  the value for which % of the r.h.s. of (4.3)
vanishes.

4.1.2 Case w(e) =k(A+ |2, a € (1,2], A>0.
Here
7'(e) = ka(\ + [¢]?)*/* e,

and

G, = [ k(O R~ (ot )

Q
+al+ |e(@) )2 e () : e(u— v))dx.

12



Since in this case the explicit form of 7* is unknown, we apply (2.9) and obtain

/ g\e(v —u)|*dr + G(u,v)

Q
< / LB \ye(v) — eei|*da
0
(4.5) + 552 (Colldiv(ae; + a2) + f — V12

o/2— 2
+ |[ka(A+ 9|32 — e | 12)

[ RO R = 0t )

+alA+ )2y s (g - e(v) ) de

Note that if A tends to zero, then (4.5) transforms to (4.2). Also we note that the method
of deriving this estimate did not use the fact that A, v and « are constants. It was only
assumed that v > 0, A\ > 0, and a € (1,2]. Therefore, the case where A\, v and « are
smooth functions satisfying these conditions is encompassed in (4.5).

4.2 Bingham model

The Bingham model can be viewed as a special case of the power model with o = 1. In
this model, 7* is given by the relation

“(r) = 0, if|7|<k,
A= oo, if| 7>k

and

o) = k&, ife]>0,
L&KL iffef=0.

Therefore, the term Ds(e(v), a2) is finite only if |aey| < k. In the latter case it has the
form

Dy (e(v), a9) = / (kle(v)]| — ey = e(v))d.

Q

Similarly,

Gle(v), 02) :/(k\g(my oy 2(0)da

13



satisfy the relation oy = ké%
Now (2.5) has the form

provided that |0y < k at almost all points of 2. We see that G(u,v) = 0 if 05 and (v)

/ g|5(v —u)2dz + G(u,v)

/%wg(v)—aeﬂ?d“/(k|e(v)|—ae2:e(v))dl«

Q Q

(4.6) <

+ %C%”dlv(%l + %2) —+ f — VQH%%

where a5 must satisfy the condition

lees| <k fora.e.x € Q.

4.3 Powell Eyring model

Here

1 (142
I:k
™) <1+|e|+ a0 )c
and

G(u,v) / k(lé(v)\ In(1 + le(v)]) = le(u)[ n(1 + [e(u)])

Q

1 I+ @D Lo et — o) ) da
+(1+|z-:<u>|+ £u)] )5”‘5( )i

In this case, the explicit form of 7* is also unknown, so that we use the estimate (2.9)
and obtain

/ g\e(v —u)|*dr + G(u,v) < / LB 1pe(v) — ey |*da

Q Q
+ L2 (Cal|div(ee +202) + f — V|2
L (£ [y )
+ |k + emn) — 2

+ / E(le()n(1 + 2(@)]) = Il (1 + )
1 In(1+ |n|) (n— (v -
+ <1+\77\+ ] )n-(n ()))d-

14



5 Estimates for nonsolenoidal approximations

Up to now we considered approximations v from the energy space ug + H!, in particular
div v = 0 is required. If we drop this condition, then the estimate of the deviation from
the exact solution becomes more complicated: if v is taken from the class ug + H{ (2, R™),
then it is necessary to estimate explicitly the distance from v to the set of solenoidal
vectorfields and to transform our previous estimates in such a way that the additional
error caused by the violation of solenoidality becomes transparent. To this purpose we
make use of

LEMMA 5.1. (see, e.g. [15], [21], or [10]) Let G C R™ denote a bounded Lipschitz
domain. Then there exists a positive constant depending on G such that for any function
¢ € L*(G) such that §,¢ dx = 0 there exists a function® € Hy(G,R™) such that divi = ¢
and

(5.1) IVl < Coll @]z

Now, if © is an arbitrary function from H}(Q2,R") we let ¢ := divd and apply Lemma
5.1 to get a field u, € Hy(Q,R™) satisfying div(d — ug) = 0 together with ||Vugyl/z2 <
Cql|div | z2. This means that the field wy := o — uy € Hj(Q,R") is solenoidal and
satisfies

(5.2) IV (0 — wp)]|| 2 < Cql| div || 2.

Obviously (5.2) is the required measure of the distance from © to the set of solenoidal fields.

The lemma above also implies the following condition known in the literature as the
Ladyzhenskaya - Babuska - Brezzi (LBB) condition: there exists a positive constant Cpgp
such that

1 1
(5.3) inf sup

gbdlvw dx Z CLBB,
613,670 wemy@kmwzo [9llz2 [Vwl|z2 /g

where L = {¢ € L*(Q) : §,¢ dz = 0}. In fact, for any ¢ € L§ we can find vy € Hj(Q, R")
such that

(5-4) divog = o, [Vogll2 < Call¢] L2,
thus
fﬂgbdivwdm 1 1 / )
sup = > ¢ div vgdx
weri @k w0 || Vw]r2(|¢]lz2 Vgl e Nl9llz2 Jo ¢

6o el @Y 1

Vvglle = Cq
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and (5.3) follows with Crpp := 1/Cq.
Concerning estimates for the constant Cg, see, e.g., [18].

Now we are ready to derive estimates for nonsolenoidal approximations. We recall that
u denotes the unique solution of the problem (P) from Section 1 and — as in the previous
section — we carry out our calculations for the specific models under consideration.

5.1 Power—law models
5.1.1 Case 7(e) = kle|*, a € (1,2].

Consider a function ¥ € ug + H}(Q, R"™). From (4.1) it follows that

5.5 Ve —wllz < (llve(v) = aillz + Col| div(es + o2) + f = Vall12)*
5.5

+ 2v Dy (5(1}), 862))1/2,

where v € H' + . Since

(5.6) [e(@ —u)||z2 < [le(@ = o)1z + |le(Wo — w)][ e,
we find that
(5.7) le(@—u)|z2 < p(¥) + [le(@o — u)|| 2

with p (v) and Ty being defined by the lemma. Namely, there exists 7y € ug + H! such
that
Ie(@ = 522 < Coll dive| 2 == p(7).

To ||e(Tp — u)||r2 we can apply (5.5): we have
(5.8) lve(@o) — |2 < |[ve(v) — eei|L2 + vp(v).

To discuss Do (2(Tp), 2y), we note that
[ (7o) + () — o(ru) 2 i

< [ (7)) + ) - =(0) ) do

(5.9) + /Q (7?'(6(@0)) - aeg) (T — T) da

= Dife)ms) + |

Q

(W,(g(@)) - 862) 1 e(Vo — D) do
+ /9(71'/(5(50)) — W’(e(@))) ce(vy — D) da.
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Using the inequality (the proof being presented in the Appendix)

(5.10) (# - %) (a—1b) <2°(1+O)|a—b*°,

valid for any a,b € R, ¢ > 1, and any choice of © € [0,1) we find that
/(W’(a(ﬁo)) —7'(e(0))) : e(Vo — V) dx
Q

(51D = [ (s~ ) o @

< 2793 - oz)k:oz/|€(@ — 09)|* dx
0

< 273 - a)ka |Q)2 p*(D).
Therefore, combining (5.9) and (5.11), we arrive at
(5.12) D (@) 22) < Da(e(@),2) + p (0|7 (e(7)) — aea]|
+ 22793 — a)ka |Q' 2 p (V).

Now, by (5.7), (5.8) and (5.12), we obtain the final estimate
@~ wllzz < vp @) + [(Ive(@) — 112+ vp (7
(5.13) + Co || div(ees + @) + f — Val|12)” + 20 Do (e(0), a2)
+ 20p (7)|[(=(5)) — ol 2 + 2°7(3 — akar [0~ °(5)]

We observe that apart of a more complicated form the principal structure of the estimate
(5.13) is the same as for solenoidal fields. The right-hand side of (5.13) is a combination
of the terms

|lve(T) — ee1]| 12, Dg(e(@), 882),

|7 (e(V)) — @zl 2, [|div(eer + ae2) + f — Vgl 12 and p ().
All of them are nonnegative and their simultaneous vanishing means that
ve(®) —e; =0, @ =7'(e(v)), div(ee; + &2) = f — Vg, divo = 0.

Thus, the right-hand side of (5.13) can be zero only on the exact solution of the problem
in question. Moreover, it is continuous with respect to convergence v, — u and &y, —
&1, @9 — &9 in the appropriate spaces.
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5.1.2 Case 7(¢) = k(A + [g[)¥2, a € (1,2], A > 0.

First, we deduce from (4.5) the estimate
Ve —ullz: < (lve (v) — 2illz2 + Co [ div (e + a2) + f — V12
(5.14) + [k A+ [n%) 7" = s 12)°
+ [ (@) =) + 7+ ()
Let ¥ € up + Hi(Q,R") and, as in the previous case, consider Ty € ug + H' such that
le(@ = 0)llz2 < Call divollzz := p (V).
Therefore, from (5.14) we obtain
vle@ —ullz: < vp (@) + [(llve (o) — 2112
(5.15) + Co || div (g + &) + f = V|2 + [k (A + )7 g — 2| 12)°
+ [ (r(et@) = wl) + ) (0= e(50) o]
We note that
(5.16) 17 (e)| < kaX*/*7! |¢]
and, consequently,
(5.17) 7(e(T0)) — () < [7'((0))] (T — D))

We further rewrite the last term on the r.h.s. of (5.15) as follows:
| (#et@) = vl +7'0) s (0 - @) o
(518) = [ (@) -+ 7w (- =(0)) o

+1Xﬂd%»—wkwn+ﬂm%d@—%0dx

Note that the first integral in the right-hand side of (5.18) contains the function v and the
tensor—valued function 7 (which is in our disposal), while the second one can be estimated
from above by means of (5.16) and (5.17). Indeed,

[Xﬂd%»—w@@»)m:s RaX/2e(@o) |12 le(0 — ) |1
< kX2 (|le(@) 2 + p (9)) ()

(5.19)



and

(5.20) /ﬂ'(n) : (T —Tg) dz < kaX¥*7Y||n||z2p (D).
Q

Analogously

(5.21) lve(Do) — e1]|r2 < ||ve(V) — e1||p2 + vp (V).

Now, by (5.15), (5.19), (5.20) and (5.21), we deduce the desired estimate
vlle(@ = w2 <wp (V) + [(H%(@) — a1z +vp (V)
(5.22) + Cq || div (1 + ) + f — Va2 + [k (A + %)™ — 2y 2)°

+ ka X2 ([le@)lz2 + [Inllz2 + p (9)) 0 (0)

+ [ (@) = )+ 7o) (0= =(0) da]

It is easy to see that if ¥ is a solenoidal field (i.e. p (v) = 0), then (5.22) is equivalent to
(5.14).

5.2 Bingham model

First, we use (4.6) and obtain
vew—wli: < [(Ive(w) = illie + Co || div () + ) + f = Vallz2)°
(5.23) 1/2
+ /(k;|5(v)\ — &y 1 £(v)) d:c} :
0

Let U € ug + Hy (2, R™) and let 7y € ug + H' denote the solenoidal field defined as in the
previous cases. We have (recall taht |&es| < k)

lve(@o) — er |2 < [[ve(v) — a2 +vp (D),

/ (k|e(Do)] — @2 : (o)) da < /(k|z—:(@)| — a1 (V) du
Q Q

+ /Q(me(wo ~ )| — ey (T ~ 7)) do

IN

/(k|z—:(@)| — ey 1 2(0)) dv + 2k:/|z—:(@0 —0)| dx
Q Q

IN

/Q(k'\&‘(@)\ — ey 1 e(v)) dx + 2Kk[Q|?p (V).
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By these estimates we obtain
Ve — )l < vp (0) + [(H%(W) — 1|2 +vp (V)

(5.24) + Cq || div (1 + ) + f — Vgl 12)*

b [ (@) - 22 £) o+ 201002 (9]

As in (4.6), this estimate is applicable only if |&q| < k for a.e. z € Q.

5.3 Powell-Eyring model

Here, 7(e) = kle|n(1 + |e]) and an estimate for ¥ can be derived along the same way as
for the model 5.1.2. Indeed, it is easy to see that

(5.25) ()] < 2k el.
We have the estimate (which follows from (4.7))
Pllew-w)l2 < (lve(v) — w2 + Co || div (1 + 2) +  — Vgl
(5.26) () = e ] 2)
+ [ (rleto) = 7l + 7 0) (0= =(0) d
;From (5.26) we easily get
Ve — wllz> < vp (8) + | (Ilve(®) — 112 + vp (7)
(5.27) + Co || div (1 + &) + = Va2 + | 7'(n) — s 12)°
+ [ (we@) =7l + 7 0): (1= =(0) o

+ /Q(W(E(EO)) —7(e(@)) +7'(n) : (£(T—Tp))) d:c} 1/2.

Since by (5.25)
/(77(5(@0)) —7(e(v)) do < /2k le(®o)] |e(Do — V| dx
Q Q

< % (Je@llie + p@)p (7)
and

|7 @70 do < 2% ez o 5),
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we finally obtain from (5.27) the desired estimate
vlle( —u)lrz <vp (0) + [(HVE(W) — @12 +p (V)

(5.28) + Co || div () + &) + f — Vgl g2 + |7 () — aa|12)*
+ 2k (@)l 22 + 0]l 22 + p(@))p (B)

+ [ (@) = nto) + 7o) s (0 @) ]

6 Appendix: proof of inequality (5.10)

Estimate (5.10) is a consequence of the following inequality: given s € (0,1) and numbers
&1,& > 0, then we have that

(6.1) g-¢l < Slat+a |-l

Suppose for the moment that (6.1) is correct and consider a, b € R* and © € [0,1).

W.lo.g. we may assume that 0 < |a| < |b|. Let

a(]b® — |a|®) +|al®(a —b)
|al®[6]®

T(a,b) = |b—al.

i From (6.1) we get

@

161 = 1al®] < < (ol + [0]°7)[b - al,

2
hence

T(a,b) < ©la"O(jal®" + [po1) L

lb—al> _ [ © [b] \©—1 |b—al?
+ |b|(—) - {3 (]. + (m) ) + 1} |b|(—)
Recalling |a| < |b] and © — 1 € [—1,0) we arrive at

[b—al®
|]°

[b—al®

T(a,b) < (©+1) e

= (©+1) [0 —al*=®.

Since “";fg'@ < 29 (5.10) is established.

For proving (6.1) we assume w.l.o.g. that & < &. Since the function z — z°~! 2 > 0,
is convex, the secant through the points (£1,&571), (6,657 Y) lies above the graph of
2571 & < x < &. This gives for x € [, &)

s—1 s—1
s—1 s—1 2 — 61
: 66 %)

21



and if we integrate this inequality w.r.t. = € [, &] we get

&' +8) (- &),

DO —

1 S S
5 (52 —51) <

thus (6.1) is established. O

References

1]

2]

[10]

[11]

[12]

G. Astarita and G. Marrucci, ”Principles of non Newtonian fluid mechanics”. Mec-
Graw Hill, London (1974).

I. Babuska, " The finite element method with Lagrangian multipliers,” Numer. Math.,
20, 179-192, (1973).

R. E. Bank and B. D. Welfert, ” A posteriori error estimates for the Stokes problem,”
SIAM J. Numer. Anal., N 3, 28, 591-623, (1991).

R. Bird, R. Armstrong and O. Hassager, ”Dynamics of polymeric liquids”. Volume
1 Fluid Mechanics. John Wiley, Second Edition (1987).

F. Brezzi, ”On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrange multipliers,” R.A.L.R.O., Annal. Numer. R2, 129-151, (1974).

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics”, Springer, Berlin

(1976).

[. Ekeland and R. Temam, ”Convex analysis and variational problems”, North—
Holland, New-York (1976).

M. Fuchs and G.A. Seregin. ” Variational methods for problems from plasticity theory
and for generalized Newtonian fluids”. Lect. Notes in Mathematics, Springer, Berlin
(2000).

M. Fuchs and G.A. Seregin. ”Variational methods for fluids of Prandtl-Eyring type
and plastic materials with logarithmic hardening”, Math. Meth. Appl. Sciences 22,
317-351, (1999).

G. Galdi. ” An introduction to the mathematical theory of the Navier—-Stokes equa-
tions”. Vol. I, Springer Tracts in Natural Philosophy Vol. 38, Springer Verlag, New
York (1994).

V. Girault and P. A. Raviart, ”Finite element approximation of the Navier—Stokes
equations”, Springer, Berlin (1986).

O. A. Ladyzhenskaya, ”The mathematical theory of viscous incompressible flow”,
Gordon and Breach, New York (1969).

22



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[23]

[24]

[25]

O. A. Ladyzhenskaya, ”On nonlinear problems of continuum mechanics”, Proc.
Internat. Congr. Math. (Moscow 1966), Amer. Math.Soc. Transl. (2), 70, (1968).

O. A. Ladyzhenskaya, ”On some modifications of the Navier—Stokes equations for
large gradients of velocity”. Zap. Nauchn. Sem. LOMI, 7 (1968), 126-154 (in Rus-
sian); English translation in J. Soviet Math., 10, N2, (1978).

O. A. Ladyzhenskaya and V. A. Solonnikov, ”Some problems of vector analysis, and
generalized formulations of boundary value problems for the Navier-Stokes equa-
tions”. Zap. Nauchn. Sem. Leningrad Odtel. Math. Inst. Steklov (LOMI) 59, 81-116
(1976); Engl. transl. in J. Soviet Math. 10 No.2, (1978).

J. Malek, J. Necas, J. Rokuta and M. Ruzicka, ”Weak and measure valued solutions
to evolution partial differential equations”. Applied Mathematic and Mathematical
Computation vol 13., Chapman and Hall, (1996).

P.P. Mosolov and V.P. Mjasnikov, ”Mechanics of rigid plastic media”, Nauka,
Moscow (1981) (in Russian).

M.A. Olshanskii and E.V. Chizhonkov, ”On the best constant in the inf sup condi-
tion for prolonged rectangular domains”, Matematicheskie Zametki 67, 3, 387-396,
(2000) (in Russian).

J. T. Oden, W. Wu and M. Ainthworth, ”An a posteriori error estimate for finite
element approximations of the Navier—Stokes equations,” Comput. Methods. Appl.
Mech. Engrg., 111, 185-202, (1994).

C. Padra, ” A posteriori error estimators for nonconforming approximation of some
quasi-newtonian flows,” SIAM J. Numer. Anal., 34, 1600-1615, (1997).

K. 1. Pileskas, ”On spaces of solenoidal vectors”. Zap. Nauchn. Sem. Leningrad
Odtel. Math. Inst. Steklov (LOMI) 96, 237-239, (1980); Engl. transl. in J. Soviet
Math. 21 No.5, (1983).

S. I. Repin, ”A posteriori error estimation for nonlinear variational problems by
duality theory,” Zapiski Nauchnych Semin. POMI, 243, 201-214, (1997).

S. I. Repin. ”A posteriori error estimation for variational problems with uniformly
convex functionals”. Math. Comput., v.69(230),481-500, (2000).

S. I. Repin. ”A unified approach to a posteriori error estimation based on duality
error majorants”. Mathematics and Computers in Simulation 50, 313-329, (1999).

S. I. Repin, ” A posteriori estimates for the Stokes problem”, Journal of Math. Sci.109,
1950-1964, (2002).

23



[26] M. Ruzicka, "Electrorheological fluids: modeling and mathematical theory”. Lec-
ture Notes in Mathematics Vol. 1748, Springer Verlag, Berlin-Heidelberg-New York
(2000).

[27] G.A. Seregin, ”Continuity for the strain velocity tensor in two dimensional varia-
tional problem from the theory of the Bingham fluid”, Preprint No. 402, SFB 256,
Universitat Bonn (1999).

[28] G.A. Seregin, ”Some remarks on variational problems for functionals with LinL
growth”, Zapiski Nauchn. Sem. POMI, 213, 164-174, (1994).

[29] R. Verfiirth, ” A posteriori error estimators for the Stokes equations,” Numer. Math.,
55, 309-326, (1989).

Martin Fuchs Sergey Repin

Universitat des Saarlandes V.A. Steklov Mathematical Institute
Fachbereich 6.1 Mathematik St. Petersburg Branch

Postfach 15 11 50 Fontanka 27

D-66041 Saarbriicken 191011 St. Petersburg

Germany Russia

e-mail: fuchs@math.uni-sb.de e-mail: repin@pdmi.ras.ru

24



