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On the reflexivity of multivariable isometries

Jörg Eschmeier

Abstract

Let A ⊂ C(K) be a unital closed subalgebra of the algebra of all
continuous functions on a compact set K in Cn. We define the notion
of an A–isometry and show that, under a suitable regularity condition
needed to apply Aleksandrov’s work on the inner function problem,
every A–isometry T ∈ L(H)n is reflexive. This result applies to com-
muting isometries, spherical isometries, and more general, to all sub-
normal tuples with normal spectrum contained in the Bergman-Shilov
boundary of a strictly pseudoconvex or bounded symmetric domain.

1. INTRODUCTION

Let S ⊂ L(H) be an arbitrary family of bounded linear operators on a
complex Hilbert space H. We denote by Lat(S) the set of all closed linear
subspaces of H that are invariant under every operator S ∈ S. The set

Alg Lat(S) = {C ∈ L(H); Lat(C) ⊃ Lat(S)}

is a subalgebra of L(H) which contains S and is closed in the weak operator
topology (WOT). The family S is called reflexive if

Alg Lat(S) = WS ,

where the right-hand side denotes the smallest WOT-closed subalgebra of
L(H) containing S and the identity operator 1H.

Sarason [17] proved in 1966 that analytic Toeplitz operators on the Hardy
space H2(D) over the unit disc D and commuting families of normal op-
erators are reflexive. In 1971 it was shown by Deddens [8] that all isome-
tries are reflexive. These results were generalized in a paper [15] of Olin
and Thomson from 1980 which showed that every subnormal operator is
reflexive. Whether the corresponding result holds for subnormal tuples
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T = (T1, . . . , Tn) ∈ L(H)n of Hilbert space operators, is one of the ma-
jor open problems in this area of multivariable invariant subspace theory.

The result of Deddens on the reflexivity of single isometries was extended
by Li and McCarthy [13] to finite families of commuting isometries and
by Bercovici [4] to arbitrary families of commuting isometries. In a recent
paper of Didas [10] the result of Bercovici is used to show that every spherical
isometry, that is, each commuting system T = (T1, . . . , Tn) ∈ L(H)n with

n
∑

i=1

T ∗
i Ti = 1H

is reflexive.

An n-tuple T = (T1, . . . , Tn) ∈ L(H)n consists of commuting isometries if
and only if T is subnormal and the joint spectrum of its minimal normal
extension is contained in the Shilov boundary of the polydisc algebra A(Dn).
Analogously, the class of spherical isometries consists precisely of those sub-
normal n-tuples T = (T1, . . . , Tn) with the property that the joint spectrum
of their minimal normal extension is contained in the Shilov boundary of the
ball algebra A(Bn). In this note we replace the polydisc and ball algebra by
suitable closed subalgebras A ⊂ C(K) over compact sets K in C

n to define
the notion of an A-isometry and prove that, under a regularity condition
needed to apply Aleksandrov’s work [1] on the existence of inner functions,
every A-isometry T ∈ L(H)n is reflexive.

The main tools are the above cited result of Bercovici [4] on the reflexivity
of commuting families of isometries and the work of Aleksandrov [1] on the
existence of inner functions for uniform algebras.

2. REFLEXIVITY OF A-ISOMETRIES

Recall that a commuting tuple T = (T1, . . . , Tn) ∈ L(H)n on a complex
Hilbert space H is called subnormal if it can be extended to a commuting
tuple N = (N1, . . . , Nn) ∈ L(K)n of normal operators on a larger Hilbert
space K ⊃ H. A normal extension N of T as above is called minimal if K
is the only reducing subspace for N that contains H. All minimal normal
extensions of a subnormal tuple T are unitarily equivalent and, for every
normal extension N of T , there is a reducing subspace K0 for N which
contains H such that N |K0 is a minimal normal extension of T .

Let T ∈ L(H)n be subnormal with minimal normal extension N ∈ L(K)n.
The normal spectrum of T defined as σn(T ) = σ(N), where σ(N) denotes
the Taylor spectrum of N , is independent of the choice of N . A result of
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Putinar [16] shows that σn(T ) ⊂ σ(T ). Let µ be a scalar spectral measure of
N . Denote by Ψ : L∞(µ) → L(H) the L∞-functional calculus of the normal
tuple N . The restriction algebra

R(T ) = {f ∈ L∞(µ); Ψ(f)H ⊂ H}

is a weak∗ closed subalgebra of L∞(µ) and the induced algebra homomor-
phism

γT : R(T ) → L(H), f 7→ Ψ(f)|H

is isometric and weak∗ continuous if L(H) is equipped with its weak∗ topol-
ogy as the dual space of the trace class operators (see Proposition 1.1 in
[7]). Since all scalar spectral measures of T , that is, measures µ arising as
a scalar spectral measure of some minimal normal extension N of T , are
mutually absolutely continuous, both the restriction algebra R(T ) and the
algebra homomorphism γT are independent of the choice of N .

Let K ⊂ C
n be a compact subset, and let A ⊂ C(K) be a unital closed

subalgebra containing the restrictions of the polynomials. We write S(A)
for the Shilov boundary of A, that is, the smallest closed set S ⊂ K such
that

‖f‖∞,K = ‖f‖∞,S (f ∈ A).

Denote by M+(K) the set of all positive regular Borel measures on K. For
µ ∈ M+(K), the triple (A,K, µ) is called regular in the sense of Aleksandrov
[1] if, for each function ϕ ∈ C(K) with ϕ > 0, there exists a sequence (fk) in
A with |fk| < ϕ for all k and limk→∞ |fk| = ϕ µ-almost everywhere. If the
triple (A,K, µ) is regular, then the support of µ is necessarily contained in
S(A). For this and other properties of regular triples, the reader is referred
to [1], [2].

Fix a unital closed subalgebra A ⊂ C(K) containing the polynomials. A
subnormal tuple T ∈ L(H)n will be called A-subnormal if σn(T ) ⊂ K and
A ⊂ R(T ). By an A-isometry we mean an A-subnormal tuple with σn(T ) ⊂
S(A). An A-isometry T ∈ (H)n is said to be regular if the triple (A,K, µ) is
regular for some, or equivalently, every scalar spectral measure µ of T . Here
µ is regarded as a measure on K via trivial extension.

With these notations our main result can be formulated as follows.

Theorem 1 Let A ⊂ C(K) be a unital closed subalgebra over some
compact set K in C

n containing the polynomials. Then every regular A-
isometry is reflexive.

In the following we fix A and K as in Theorem 1. For any given measure
µ ∈ M+(K), we shall denote by H∞

A (µ) the weak∗ closure of A in L∞(µ)
and by H2

A(µ) the norm-closure of A in L2(µ).
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The proof of Theorem 1 will be based on the result of Bercovici [4] cited
above and on the following observation of Aleksandrov (Corollary 2.9 in [1])
on the existence of µ-inner functions.

Proposition 2 (Aleksandrov) Let µ ∈ M+(K) be a measure with
µ({z}) = 0 for every z ∈ K such that (A,K, µ) is regular. Then the weak∗

closure of the set {f ∈ H∞
A (µ); |f | = 1 µ-almost everywhere} contains the

closed unit ball of A. 2

As usual we call a measure µ ∈ M+(K) continuous if µ({z}) = 0 for every
z ∈ K and discrete if there is a countable set D ⊂ K with µ(K \ D) = 0.
For an arbitrary measure µ ∈ M+(K), the set D = {z ∈ K; µ({z}) > 0} is
countable, and the measures µc, µd ∈ M+(K) defined by

µc(A) = µ(A ∩ (K \ D)), µd(A) = µ(A ∩ D)

yield the unique representation of µ as a sum µ = µc + µd of a continuous
measure µc and a discrete measure µd. The following observation of Alek-
sandrov (Proposition 1.5 in [1]) allows us to reduce the proof of Theorem 1
to the case of A-isometries with continuous scalar spectral measure.

Lemma 3 Suppose that the triple (A,K, µ) is regular. Then the orthog-
onal decomposition H2

A(µ) = H2
A(µc) ⊕ L2(µd) holds.

Proof. Since this result is stated without proof in [1], we indicate the main
ideas.

For µ ∈ M+(K), define µc and µd as the continuous and discrete part of µ as
in the section leading to the lemma. Denote by κc and κd the characteristic
functions of K \ D and D, respectively. Then the map

σ : L2(µc) ⊕ L2(µd) → L2(µ), (f, g) 7→ fκc + gκd

is easily seen to be a unitary operator between Hilbert spaces with inverse
given by ρ : L2(µ) → L2(µc) ⊕ L2(µd),

ρ
(

[f ]L2(µ)

)

=
(

[f ]L2(µc), [f ]L2(µd)

)

.

To prove the equality ρ
(

H2
A(µ)

)

= H2
A(µc) ⊕ L2(µd), it suffices to show

the inclusion σ
(

L2(µd)
)

⊂ H2
A(µ). Since µd is discrete, it is enough to prove

that the characteristic function κ{w} of every point w ∈ D belongs to H2
A(µ).

Using the density of C(K) in L2(µ), one obtains a sequence (fk) in C(K)
converging to κ{w} in L2(µ) such that 0 < fk < 2 for all k. The hypothesis
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that (A,K, µ) is regular allows us to choose (Theorem 37 in [1]) functions
gk ∈ A with |gk| ≤ fk and

µ({|gk| 6= fk}) < µ({w})/(k + 1) (k ∈ N).

Obviously, one can achieve that gk(w) = fk(w) holds for all k. In view of
the estimate

‖gk − κ{w}‖
2
L2(µ) = |gk(w) − 1|2µ({w}) +

∫

K\{w}

|gk|
2dµ

≤ |fk(w) − 1|2µ({w}) + ‖fk − κ{w}‖
2
L2(µ) + 4µ

(

{|gk| 6= fk}
)

it is clear that (gk) converges to κ{w} in L2(µ). 2

Each subnormal tuple T ∈ L(H)n admits a unique orthogonal decomposition

T = T0 ⊕ T1 ∈ L(H0 ⊕H1)
n

such that T1 ∈ L(H1)
n is normal and T0 ∈ L(H0)

n is pure, that is, possesses
no non-zero reducing subspace M for which T0|M is normal.

Lemma 4 Let T = T0 ⊕ T1 ∈ L(H0 ⊕ H1)
n be the decomposition of

a given subnormal tuple T ∈ L(H)n into its pure part T0 ∈ L(H0)
n and

normal part T1 ∈ L(H1)
n. If T is a regular A-isometry, then so is T0.

Proof. Let N ∈ L(K)n be a minimal normal extension of T . Denote by E
the projection-valued spectral measure of N . The space

K0 =
∨

(N∗kH0; k ∈ N
n)

reduces N and N0 = N |K0 is a minimal normal extension of T0. Hence
σn(T0) = σ(N0) ⊂ σ(N) ⊂ S(A).

Set K1 = K 	 K0. Choose separating vectors x0 ∈ K0 for N0 and x1 ∈ K1

for N1 = N |K1. Since the von Neumann algebras generated by N , N0 and
N1 satisfy the relation

W ∗(N) ⊂ W ∗(N0) ⊕ W ∗(N1),

the vector x = x0 + x1 is a separating vector for N . Because of

〈E(·)x, x〉 = 〈E(·)x0, x0〉 + 〈E(·)x1, x1〉

the scalar spectral measure µ0 = 〈E(·)x0, x0〉 of N0 is absolutely continuous
with respect to the scalar spectral measure µ = 〈E(·)x, x〉 of N . Hence
(A,K, µ0) remains regular.
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The projection-valued spectral measure E0 of N0 acts as

E0(A) = E(A)|K0 ∈ L(K0),

where A runs through all Borel subsets of σ(N0). Hence the L∞-functional
calculi of N0 and N are related by

ΨN0
(f) = Ψ(f)|K0 (f ∈ L∞(µ)).

It follows that ΨN0
(f)H0 ⊂ H for every function f ∈ A Since H1 is a

reducing subspace for N , we find that

〈ΨN0
(f)x, y〉 = 〈x,Ψ(f)∗y〉 = 0

for all f ∈ A and x ∈ H0, y ∈ H1. Therefore A ⊂ R(T0), and the proof is
complete. 2

Let A ⊂ L(H) be a weak∗ closed subalgebra. The set of all weak∗ continuous
linear functionals on A can be identified isometrically with the quotient space
QA = C1(H)/⊥A, where C1(H) denotes the Banach space of all trace class
operators on H. For x, y ∈ H, we write x ⊗ y ∈ QA for the equivalence
class of the rank-one operator H → H, ξ 7→ 〈ξ, y〉x. The associated weak∗

continuous functional on A acts as x ⊗ y(A) = 〈Ax, y〉.

Recall that A is said to possess the factorisation property (A1) if every
element L ∈ QA is of the form L = x ⊗ y with suitable vectors x, y ∈ H.

To reduce Theorem 1 to the pure case, we shall use the following well known
result (cf. for instance Lemma 4.4.1 in [9]).

Lemma 5 Suppose that Ai ⊂ L(Hi) (i = 1, 2) are reflexive subalge-
bras with property (A1). Then each weak∗ closed unital subalgebra B ⊂
L(H1 ⊕ H2) which is contained in A1 ⊕ A2 is reflexive and has property
(A1). Furthermore, the weak∗ and weak operator topology coincide on B.

2

Now we have gathered all tools necessary for the proof of our main result.

Proof of Theorem 1. Let T ∈ L(H)n be a regular A-isometry. Denote
by T = T0 ⊕ T1 ∈ L(H0 ⊕ H1)

n the decomposition of T into its pure part
T0 ∈ L(H0)

n and normal part T1 ∈ L(H1)
n. Let us observe first that it

suffices to show that T0 is reflexive and that Alg Lat(T0) = WT0
has property

(A1). Indeed, since the normal part T1 satisfies both of these properties ([17]
and Proposition 2.05 in [5]) and since the weak∗ closed subalgebra AT of
L(H) generated by T is contained in WT0

⊕WT1
, an application of Lemma

5 will complete the proof of Theorem 1.
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Since by Lemma 4 the pure part T0 is a regular A-isometry again, it suffices
to assume from the very beginning that T is pure and to show that T is
reflexive and that AlgLat(T) = WT has property (A1). Thus let us fix a
pure regular A-isometry T ∈ L(H)n. Choose a minimal normal extension
N ∈ L(K)n of T and denote by E its projection-valued spectral measure.
Exactly as in the one-variable case (Proposition V.17.14 in [6]) one can show
that there is a separating vector x ∈ H for N . Let µ = 〈E(·)x, x〉 be the
associated scalar spectral measure of T , and let Ψ : L∞(µ) → L(K) be the
L∞-functional calculus of N . Since

‖Ψ(f)x‖2 = 〈Ψ(|f |2)x, x〉 = ‖f‖2
L2(µ)

for all f ∈ L∞(µ), the map A → H, f 7→ Ψ(f)x, extends to a unique
isometry j : H2

A(µ) → H. The relation

j(gf) = Ψ(gf)x = Ψ(g)j(f)

obviously holds for all functions f, g ∈ A. A continuity argument implies
that j(gf) = Ψ(g)j(f) holds for all g ∈ H∞

A (µ) and f ∈ H2
A(µ). In particu-

lar, we find that
j ◦ Mzi

= Ti ◦ j (1 ≤ i ≤ n),

where Mzi
: H2

A(µ), f 7→ zif , is the operator of multiplication with the i-th
coordinate function.

Using the decomposition H2
A(µ) = H2

A(µc) ⊕ L2(µd) from Lemma 3, we de-
duce that T |j

(

L2(µd)
)

is unitarily equivalent to the normal tuple Mz|L
2(µd)

via j. Our hypothesis that T is pure therefore implies that µ = µc is con-
tinuous.

Let p ∈ C[z] be a polynomial with ‖p‖∞,K ≤ 1. By Proposition 2 there is a
net (θi)i∈I in

I = {f ∈ H∞
A (µ); |f | = 1 µ-almost everywhere}

such that p is the weak∗ limit of the net (θi)i∈I in H∞
A (µ). It follows that

p(T ) is the weak∗ limit of the net
(

γT (θi)
)

i∈I
in L(H). Thus we have shown

that
Alg Lat(T ) ⊂ Alg Lat

(

γT (I)
)

.

Since γT (I) consists of commuting isometries, the cited result of Bercovici
(Theorem 2.3 in [4]) implies that the operator algebra on the right-hand side
has property (A1). But then Proposition 2.5 in [12] shows that T is reflexive
and that Alg Lat(T ) = WT has property (A1). Thus the proof of Theorem
1 is complete. 2
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As a consequence of the above proof we obtain the following slightly stronger
result.

Corollary 6 Let T ∈ L(H)n be a regular A-isometry. Then the weak∗

and weak operator topology coincide on the operator algebra

Alg Lat(T ) = WT = AT .

Furthermore, this algebra has property (A1) and is super-reflexive, that is,
each of its unital weak∗ closed subalgebras is reflexive.

Proof. The super-reflexivity of AT is a consequence of Proposition 2.5 in
[12]. The remaining assertions follow from the above proof of Theorem 1
together with Lemma 5. 2

By specializing to the cyclic case we obtain the following result.

Corollary 7 Suppose that µ ∈ M+(K) is a measure such that (A,K, µ) is
a regular triple. Then the tuple Mz = (Mz1

, . . . ,Mzn
) ∈ L(H2

A(µ))n consist-
ing of the multiplication operators with the coordinate functions is reflexive,
and all the remaining assertions of Corollary 6 hold.

Proof. Let T = Mz ∈ L(H2
A(µ))n. By Stone-Weierstraß the minimal nor-

mal extension of T is the corresponding multiplication tuple Mz ∈ L(L2(µ))n.
Hence µ is a scalar spectral measure for T and T is a regular A-isometry.

2

Let D ⊂ C
n be a bounded open set. Define K = D and A = A(D) as

the Banach algebra of all continuous functions on D that are analytic on
D. If D = Bn is the open Euclidean unit ball, then S(A) = ∂Bn is the
unit sphere and the triple (A(Bn), Bn, µ) is regular for every measure µ ∈
M+(Bn) with support contained in S(A) (Proposition 2 in [1]). Hence every
A(Bn)-isometry is regular. By a result of Athavale [3] the A(Bn)-isometries
are precisely the spherical isometries, that is, the commuting tuples T =
(T1, . . . , Tn) ∈ L(H)n satisfying the identity

n
∑

i=1

T ∗
i Ti = 1H.

Thus in this case, Theorem 1 specializes to a recent result of Didas [10].
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If D = D
n is the open unit polydisc, then S(A) = T

n is the n-torus and
again each A(Dn)-isometry is regular. The A(Dn)-isometries are precisely
the commuting n-tuples T ∈ L(H)n of isometries and Theorem 1 reduces to
the cited result of Li and McCarthy [13] on the reflexivity of finite commuting
families of isometries.

More generally, in [2] (Theorem 3) Aleksandrov described conditions which
ensure that the triple (A,K, µ) is regular for every measure µ ∈ M +(K)
with support contained in the Shilov boundary S(A) of A. Under these
conditions every A-isometry is regular, and hence reflexive. It is well known
(see [11]) that these conditions of Aleksandrov hold for A(D) when D is
a bounded symmetric and circled domain in C

n or when D is a relatively
compact strictly pseudoconvex open set in C

n, or in a Stein submanifold X
of C

n.
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