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Spherical isometries are reflexive
Michael Didas

Let H be a complex Hilbert space. A commuting system
T = (T1,--- ,Ty) of bounded linear operators on H is called
a spherical isometry if 77Ty + T5To +---+ T T, = 1. In
this note we prove that each spherical isometry is reflexive.

Let H be a complex Hilbert space. For an arbitrary family S C L(H) of
bounded linear operators on H, we define Lat(S) to be the lattice of all
closed subspaces M of H satisfying SM C M for every S € §. The set

AlgLat(S) = {C € L(H) : Lat(C) > Lat(S)}

is easily seen to be a subalgebra of L(H) which is closed in the weak operator
topology and contains the WOT-closed operator algebra Wr generated by
S U{1y}. The family of operators S is called reflexive if the equality

AlgLat(S) = Ws

holds. In his pioneering work [13] from 1966, Sarason showed that analytic
Toeplitz operators on the Hardy space H?(D) over the unit disc and com-
muting families of normal operators are reflexive. Motivated by the fact
that a commuting family S C L(H) which is reflexive necessarily possesses
a non-trivial joint invariant subspace and the observation that the formula
AlgLat(T) = Wr may be interpreted as a non-selfadjoint version of von
Neumann’s double commutant theorem (see page 5 in [7] for more details),
the reflexivity problem has been (and is still) intensively studied by many
authors. We will briefly follow the development of just one branch of the
theory which has its starting point in 1971 with the following discovery due
to Deddens [6].

Theorem 1 (Deddens) Each (single) isometry on a complex Hilbert space
1s reflerive.

In the multi-variable context, there exist different natural possibilities to
define isometric operator tuples T = (T3,---,T,) € L(H)™. These multi-
dimensional generalizations of the concept of a single isometry T € L(H)



correspond in some sense to the different possible analogues of the unit disc
D C C in higher dimensions. One way is to consider commuting families
T € L(H)" whose components are isometric operators. In this situation
(we may regard it as the polydisc-case), the following reflexivity result is
well known (Theorem 2.4 in [3], note that S need not have finitely many
members).

Theorem 2 (Bercovici) Each commuting family S C L(H) of isometries
18 reflecive.

Geometrically spoken we now turn to the ball case: A spherical isometry is
by definition a commuting system 7' = (11,---,T,) € L(H)" satisfying

Let B={z€ C": |21/ + |22/ + - - - + |zn|*> < 1} be the open Euclidean unit
ball in C". A result of Athavale (Proposition 2 in [2]) says that each spherical
isometry is subnormal and its minimal normal extension is a spherical uni-
tary, that is, a commuting tuple of normal operators with Taylor spectrum
contained in the unit sphere 0B.

Towards the reflexivity of spherical isometries, Miiller and Ptak proved in
1999 the following intermediate result (Theorem 5 in [12]).

Theorem 3 (Miiller and Ptak) Each spherical isometry T € L(H)" is
hyporeflezive, i.e. AlgLat(T)N(T)" = Wr, where (T)" denotes the commutant
of T.

Eschmeier’s reflexivity results for special subnormal systems over the unit
ball (see [9]) imply the reflexivity of spherical isometries in two particular
cases.

Theorem 4_(Eschmeier) FEach spherical isometry with dominating Taylor
spectrum in B and each spherical isometry possessing an isometric and weak”
continuous H™(B)-functional calculus is reflexive.

However, the methods used for the proof of the last result seem to be limited
by the availability of analytic structure in the dual algebra generated by
a spherical isometry. As concrete examples show (see Corollary 3.3 and
Theorem 3.4 in Eschmeier [11]) this kind of structure is not present in general.



The aim of this note is to give a complete solution of the reflexivity problem
for spherical isometries. Our approach is based on the result of Bercovici
cited above and the existence of abstract inner functions which has been
established by Aleksandrov [1] in 1984.

Theorem 5 Fach spherical isometry on a complex Hilbert space is reflexive.

We first introduce some more notation and collect some well-known basic
facts that will be used during the proof.

We write A(B) for the ball algebra, that is, the Banach algebra of all contin-
uous complex-valued functions on B which are holomorphic on B, equipped
with the supremum norm. Let A denote the restriction of the 2n-dimensional
Lebesgue measure to B. Recall that the algebra H*(B) of all bounded holo-
morphic functions on B is a weak* closed subspace of L*°()\), and hence
carries a natural weak* topology as the dual of L'()\)/*H*(B).

A complex regular Borel measure p on 0B will be called a Henkin measure,
if there exists a weak* continuous extension

T H®(B) — L®(u)

of the map C[z] — L*°(u), p — [p|0B]. Since the polynomials C[z] in n-
complex variables z = (21,-- -, z,) are weak® dense in H*°(B), such a map
r, is unique, if it exists, and in this case the range of r, is contained in the
space

H*() = {[p|0B] : p € T} € L®(p).

By M*(0B) we denote the set of all finite positive regular Borel measures on
OB, while M;"(0B) stands for the corresponding set of probability measures.
Let p € M+ (0B). A p-inner function is by definition an equivalence class

0 c H () with |0]=1 (in L®(g)).

As has been shown in the celebrated work of Aleksandrov [1], the existence
of non-trivial inner functions in H*(u) results from the fact that the triple
(A(B), 0B, i) is regular (in the sense of Aleksandrov) for each choice of a
measure p € MT(9B).

Let H be a complex Hilbert space. Remember the fact that the Banach space
L(H) of all bounded linear operators on H is in duality with the trace class
C'(H). The corresponding weak* topology on L(H) is obviously stronger



than the weak operator topology. Given a commuting tuple 7" € L(H)", the
operator algebra

Ar = {p(T) : p € Cl2]}"
is therefore contained in Wy, the WOT-closure of the polynomials in 7.

Let A C L(H) be a weak* closed subalgebra. The set of all weak* continuous
linear functionals on A can be identified isometrically with the quotient space

Qa=C'(H)/ A

Given two vectors z,y € H, we write [z ® y] € Q4 for the equivalence class
of the rank-one operator H — H, £ — (£, y)z, which represents the vector
functional

z®y]: A—>C, A (Az,y)

induced by = and y. The dual operator algebra A is said to have property
(A (r)) if, for every real number s > 7 and every element L € @ 4 there are
vectors x,y € H with

L=[z®y] and |||yl < (sllLl)z.

Proof of Theorem 5. The proof is divided into two steps.

Step (1): The absolutely continuous case. We assume that the spherical
isometry 1" possesses a contractive and weak* continuous functional calculus
& : H*(B) — L(H).

Let U € L(K)" denote a minimal normal extension of 7' (which, as a spherical
unitary, satisfies the spectral inclusion o(U) C 9B) and let u € M;"(9B) be
the trivial extension of a scalar-valued spectral measure for U. The spher-
ical unitary tuple U possesses an isometric and weak* continuous L% (u)-
functional calculus ¥y : L°°(u) — L(K), which induces an isometric isomor-
phism (see Conway [4]) and weak* homeomorphism

yr: H®(p) = Ar, [ Yu(f)|H

extending the polynomial functional calculus of 7. From the fact that the
composition

-1
r: H®(B) =5 Ap 225 H®(y)

is a weak* continuous contraction satisfying r(p) = [p|0B] for each polynomial
p € C[z], we deduce that the measure y is a Henkin measure (and r = r,).
By Lemma 2.2.3 in [7], this implies that one-point sets have py-measure zero,
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which is equivalent to saying that p is continuous in the sense of Aleksandrov
[1].
Given a polynomial p € C[z] with |[p|lcop < 1, Corollary 29 in [1] therefore
allows us to choose a sequence of y-inner functions
(0) in I={0e H™():0inner}  with r,(p)=w"— lilgn 0.

By the weak* continuity of vz, this immediately implies that

p(T) = yr(ru(p)) = w* —limyr(0y) in L(H).
The invariant subspace lattice of T can therefore be expressed as

Lat(7) = Lat(Ar) = Lat(yr (1)),

where yr(I) = {~vr(f) : @ € I} C L(H). Since, for every x € H and every
inner function 6 € I, we have

lyr(@)2]* = [Tu (0)z]|* = (Tu (16]*)z, 2) = [l]?,

the family yr(I) C L(H) is a set of commuting isometries, and hence is
reflexive by the result of Bercovici cited above (Theorem 2.4 in [3]).

Thus we can finish the first step of the proof by the observation that

AlgLat(T) = AlgLat(yr(I)) = Wy, C ran(yr) - = Az O = Wr.

Step (2): The general case. Let T € L(H)™ now be an arbitrary spherical
isometry and let
T=Ty&T € L(H,® H,)"

be the unique orthogonal decomposition of 7" into its spherical unitary part
T, € L(H;)"™ and its completely non-unitary part T, € L(H,)". By Corol-
lary 2.4 in [8], the tuple T possesses a weak* continuous H > (B)-functional
calculus (which is even of class C). To prove the reflexivity of T, it suffices
to show that 7T and 77 are reflexive and that the dual algebras Ag, and Ag,
generated by these tuples satisfy the factorization property (A; (7)) for some
r > 1 (see, for instance, the proof of Theorem VIL.8.5 in [5]).

By Corollary 1.10 in [10] the dual algebra Ar generated by a spherical isom-
etry T € L(H)" satisfies property (A;(c)) for some universal constant c.
Indeed, the cited result implies that there is a universal constant ¢ > 0 such
that, for every ¢ > 0, every element L € ()4, and any given vector a € H,
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there are vectors z,y € H with ||z —a|| <e, L = [z®y] and |ly|| < (¢/e)||L]|-
By applying this result with « = 0 and ¢ = (c||L||)2, we find that Az has
property (A (c)).

Hence the absolutely continuous spherical isometry Ty is reflexive (by the first
part) and satisfies property (A; (c)). On the other hand, it is well known that
every normal tuple is reflexive and the dual algebra generated by a normal
tuple has property (A;(1)). Applying this remark to the spherical unitary 73
completes the proof. O

All the methods and concepts used in the above proof are also available in
the more general context of a strictly pseudoconvex open subset D of a Stein
submanifold X in C" (generalizing the open unit ball B), see [7] for details.
Hence, defining a commuting n-tuple 7' € L(H)" to be a d D-isometry, if T is
subnormal and its minimal normal extension is a commuting tuple of normal
operators with Taylor spectrum contained in 0D, one obtains analogously
that each 0D-isometry on a complex Hilbert space is reflexive.
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