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CHARACTERISTIC FUNCTION OF A PURE CONTRACTIVE TUPLE
T. BHATTACHARYYA, J. ESCHMEIER, AND J. SARKAR

ABSTRACT. A theorem of Sz.-Nagy and Foias [9] shows that the characteristic function
0r(2) = =T + 2D+ (13 — 2T*) "' Dy of a completely non-unitary contraction T is a
complete unitary invariant for 7. In this note we extend this theorem to the case of
a pure commuting contractive tuple using a natural generalization of the characteristic
function to an operator-valued analytic function defined on the open unit ball of C".
This function is related to the curvature invariant introduced by Arveson [3].

1. INTRODUCTION

A contraction T" acting on a Hilbert space H is said to be completely non-unitary (c.n.u.)
if there is no non-zero reducing subspace M of H such that T'| M is a unitary operator.
The class of completely non-unitary operators plays an important role in understanding
general contractions because, given any contraction 7' on a Hilbert space H, there is a
decomposition H = Ho @& H1 of H into orthogonal subspaces each of which is a reducing
subspace for T" such that Ty = T'|H is unitary while 77 = T'|#; is a c.n.u. contraction.
A key ingredient for studying contraction operators on Hilbert spaces is the following
analytic operator-valued function, called the characteristic function of 1" and introduced
by Sz.-Nagy and Foias in [9]:

(1.1) 0r(z) = —T + 2D« (1y — 2T*) "' Dy, z € D.

Here D is the open unit disk in the complex plane. The operators Dy and D7+ are the
so-called defect operators (1y — T*T)Y/? and (1 — TT*)'/? of T and T*, respectively.
By virtue of the relation 7Dy = Dp«T (see Section 1.3 in [9]), the values 07(z) of the

characteristic function can be regarded as bounded operators from Dy = RanDyp into

DT* = RanDT* -

It is shown in [9] that 67 (z) is contraction valued and that ||07(0)¢]| < ||£]| for all € € Dr.
The characteristic functions 87 and g of two contractions 1" and R are said to coincide
if there are unitary operators o1 : Dy — Dpg and o9 : Dy« — Dpg+ such that

(1.2) 0r(z) = 05 '0r(z)or for all z €.

It is easy to see that if T and R are two unitarily equivalent contractions, i.e., if there is
a unitary operator U such that T' = URU™, then the characteristic functions 7 and 0g
coincide. One can easily construct examples to show that the converse of this is not true
in this generality (see page 240 in [9]). However, the converse is true if both 7" and R are
c.n.u. contractions.
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2 BHATTACHARYYA, ESCHMEIER, AND SARKAR

THEOREM 1.1. (Sz.-Nagy and Foias) Two completely non-unitary contractions are
unitarily equivalent if and only if their characteristic functions coincide.

This theorem shows that the characteristic function is a complete unitary invariant for
c.n.u. contractions. The route to prove the theorem is via constructing a functional
model for c.n.u. contractions which is also of independent interest. We briefly recall
some essential features of this model theory relevant to us here. Let B™ be the open
unit ball in C*. If £ is a complex Hilbert space, we follow the notation of [4] and define
O(B", &) to be the class of all £-valued analytic functions on B”. For any multi-index
k= (ki,...,k,) € N*, we write |k| = k1 + --- + kp. Then consider the Hilbert space

2
(AB)E)={fe€OB,E): = Z arz® with ay € € and || f|* = Z llael” < oo},
k
kENn keN"

where vy = |k|!/k!l. One can show that H (&) is the £-valued functional Hilbert space
given by the reproducing kernel (1 — (z,w))"'1¢. Of course, when n = 1 and £ = C,
this is the usual Hardy space on the disk. Given complex Hilbert spaces £ and &, the
multiplier space M (€, &,) consists of all ¢ € O(B", B(E,E,)) such that pH(E) C H(E,).
By the closed graph theorem, for each function ¢ € M(&,E,),the induced multiplication
operator My, : H(E) — H(E,), f — ¢f is continuous.

The Sz.-Nagy and Foias model theory works for c.n.u. contractions 7. Here we shall
confine ourselves to a more restricted class. The characteristic function of a single con-
traction 7' is a multiplier from the Hardy space H(Dr) to the Hardy space H(Dr+). A
contraction 7T is said to be of class Cy if T™ converges strongly to 0 as m — oo. It
is easy to see that each C. contraction is completely non-unitary. If T" is a C.y con-
traction acting on a Hilbert space #, then there is a unitary operator U from # onto
H = H(Dr+) © My, H(Dr) such that UTU* = PgM,|H where M, is the multiplication
operator with the independent variable z on H(Dp-). Thus any C.y contraction can be
realized as PgM,|H where the model space H is the orthocomplement of the range of
My,

In this note, we generalize Theorem 1.1 to the case of pure commuting contractive tuples.
So we construct an operator-valued holomorphic function on the open unit ball in C* and
show that it is a complete unitary invariant for a pure commuting contractive tuple. En
route we also construct a functional model for such a tuple.

Previously, Frazho [5] and Popescu [8] have considered characteristic functions for tuples
of non-commuting operators. Since they are dealing with non-commuting families of
operators, the characteristic function is actually an operator. The characteristic function
in that case is a complete unitary invariant for a completely non-coisometric contractive
family [8]. It is not clear how the characteristic function of a not necessarily commuting
tuple is related to the one defined below in case the tuple consists of commuting operators.
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2. DEFINITION OF THE CHARACTERISTIC FUNCTION

A commuting tuple of bounded operators T' = (T1,...,T),) acting on a Hilbert space # is
called contractive if || Ty +- - -+ Tphn||* < ||ho||? - - -+ [|hn||? for all hy, ... hy, in H. This is
equivalent to demanding that -7 | T;T;* < 13. The positive operator (13— 1, TiT;)'/?
and the closure of its range will be called the defect operator Dp~ and the defect space
DT* of T*.

We shall also denote by T' the bounded operator from X" to H which maps (h1, ho, ..., hy)
to Tih1 + Tohy + --- + Thhy. The adjoint T* : H — H™ maps h to the column vector
(T5h, Tsh, ..., Tyh) and, in fact, T is a contractive tuple if and only if the operator T is
a contraction. Thus for a contractive tuple T one can also consider the defect operator
Dy = (1ggn — T*T)"/? = (04513 — T;T;))Y/? in B(H™) and the associated defect space
Dr = MDT C H"™.

LEMMA 2.1. For any commuting contractive tuple T', we obtain the identity
TDr = Dp-T.

Proof. Using the definitions of the defect operators we obtain that
= (L =) TTT, Ty =Y TTT,...,Tn— Y TT;T,)
= (Il = Y_TTHT, (I = Y TT) Ty, ., (13 = Y TT})Tn)
= Da.T.
Thus, for any polynomial p, we have
T p(D}) = p(D7-)T.

Now the result follows by taking a sequence of polynomials p,, approximating \/z uni-
formly on the interval 0 < z < 1. [ ]

Note that, for z = (21,...,2,) € B", the operator Z from H" to H which maps (h1,...,hy)
to z1hy+- - -+ 2, hy, is a contraction because ZZ* = Y || 1%. Thus Z = (21134, - -, 20 1%)
is a commuting contractive tuple on H with || Z|| = (3 |z]?)'/?. Hence, given a commuting
contractive tuple T', the operator ZT™ is a strict contraction for z € B® and 14y — ZT™* is
invertible. We define the characteristic function of 7' to be the analytic operator-valued
function 67 : B" — B(DT, DT*) with

(2.1) 07(2) = =T + Dy« (1 — ZT*) " ZDy.
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LEMMA 2.2. Given a commuting contractive tuple T, its characteristic function 01 is a
multiplier, that is 67 € M (Dr,Dry), with ||My, || < 1. For z,w € B", the identity

(2.2) 1—0r(w)br(2)* =1 -WZ)Dp«(1 - WT*)™'(1 —=TZ*) "' Dy~
holds.

Proof. It is an elementary exercise to check that

v=( " Dr € B(H® Dy, H" @ Dr+)

- DT* -T T, T
defines a unitary matrix operator. By Proposition 1.2 in [4] the transfer function of U,
that is, the analytic operator-valued function 67 : B* — B(H ® Dp, H" ® Dr-),

0r(z) = —T + Dr«(1yy — ZT*)"' ZDr
defines a multiplier Oy € M (Dr, Dr,) with || My, | < 1 such that formula (2.2) holds. =

For z = w, the right-hand side of formula (2.2) defines a positive operator. Thus we
obtain the following corollary.

COROLLARY 2.3. Given a commuting contractive tuple T, its characteristic function O
is a bounded analytic function on B" with sup,cp. ||0r(2)| < 1.

3. FUNCTIONAL MODEL OF A PURE COMMUTING CONTRACTIVE TUPLE

The purpose of this section is to produce functional models for pure commuting con-
tractive tuples. This functional model generalizes the corresponding model for C.y con-
tractions (Theorem VI. 2.3 in [9]) to the multivariable case and reflects very clearly the
important role that the characteristic function plays.

A prototype of a commuting contractive tuple is the so-called n-shift which we simply
call the shift as long as the dimension n is fixed. By definition this is the commuting
tuple M, = (M,,,...,M,,) on the scalar-valued functional Hilbert space H(C) consisting
of the multiplication operators M,, with the coordinate functions z;. It is not difficult
to see that 7' | M, M; = 1 — Ey where 1 is the identity operator on H(C) and Ej is
the projection onto the one-dimensional subspace consisting of all constant functions (see
[2]). Hence the shift is a commuting contractive tuple. It is not hard to show that

..M

Zik

SOT — lim > M, M, .
k—00 T
lgil,ig,...ikfn

M;, ... M M, =0

Zi2 Zil

Thus the shift is an example of a pure commuting contractive tuple in the sense of the
following definition.
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DEFINITION 3.1. For a commuting contractive tuple T on a Hilbert space H, define a
completely positive map Pr : B(H) — B(H) by Pr(X) = Yi | T;XTF. We denote by
Ao € B(H) the strong limit of the decreasing sequence of positive operators I > Pr(I) >
P2(I) > ... > 0. The commuting contractive tuple T is called pure if Ay = 0.

It is interesting to observe that the norm of Ay is either 0 or 1. For the proof, first
define for any integer m > 1, the operator T™ € B(H"",H) which sends an element h
of H"" to the sum Y i<ivitm<n Tiv-Tig Riy iy - Its adjoint T € B(H,H™") maps a
vector h to the n™ column vector (TZ*IT;:n h)lgz‘l,...,z‘ in H"". By the above definition,

T™T™ = P7*(1). Thus we find that

n

1/2712 _ m — T T Ik — T mx g (|2
JAL2R|[2 = (Asch, h) (PF(1)h,h) = lim (T™T™h,h) = lim [[T7h]®.

= lim

m—0oQ m—r0o0
Let A denote the operator Ao ® Ao ® +++ B Ao : H"
PP (Ax) = Ao. It follows that

m

— H"™. Then TMAT™ =

Ao B = (Aooh, B) = (7 AT h, ) = |4 h]?

L X " L
< NAZ P IT™ I = [| Aol IT™ B> = |Acoll [ Aoo? B]1%.

Hence either Ao,/ = 0 or ||Aso| > 1. But A being a contraction, this means that
[[Acol| = 1.

REMARK 3.2. In the case n =1 a contraction T € B(H) is pure in the above sense if and
only if it is of class Cly.

Arveson proved the following theorem for commuting contractive tuples in [2] (Theorem
4.5). In a way, the operator L below is a precursor of the functional model that we are
going to construct.

THEOREM 3.3. Let T be a commuting contractive tuple of operators on some Hilbert space
H. Then there ezists a unique bounded linear operator L : H(C) ® Dy~ — H satisfying

L(f ®¢&) = f(T)Dr-¢

for all f in Clz1, ..., 2zn], and & in Dp«. Furthermore, we have LL* = 13y — Ay and the
identity L(f(M,) ® 1p,.) = f(T)L holds for all f in Clz1,...,zy].

REMARK 3.4. The tuple T is pure if and only if L is a co-isometry.

Given a Hilbert space £, we denote by M¢ = (M%,,..., M) € B(H(E))™ the tuple of
multiplication operators induced by the coordinate functions z;. There is a canonical
unitary operator Ug : H(C) ® £ — H(E) with Ug(f @ ) = fz for f € H(C) and
z € €. In the following we shall identify the spaces H(C) ® £ and H(E) via this unitary
operator Ug. In this way each multiplier ¢ € M(&,&,) induces a bounded operator

M,: H(C) ® £ — H(C) ®E,.
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As observed by Arveson in [2] (Proposition 1.12), the space H(C) is a functional Hilbert
space with reproducing kernel

K:B' xB" - C, K(z,w)=(1-(z,w))"".
In particular, the space H(C) is the closed linear span of the functions k,, = K(-,w) (w €
B").

LEMMA 3.5. Let o € M(E,E,) be a multiplier. Then the identity
My (k; @ z) = k. ® p(2)"z
holds for all z € B" and x € &,.

Proof. Fix z € B" and z € &,. Note first that

(f @y, k. © ) = f(2)(y,2) = ((fy)(2), )

holds for all f € H(C) and y € &,. Hence it follows that (f,k, ® z) = (f(z),z) for each
function f € H(E,). Using this identity twice (for £- and &,-valued functions), we obtain
that

(f, Mg(k. ® z)) = (p(2)f(2),z) = (f, k. ® ¢(2) )

for each function f € h(&). ]

Next we relate the operator L described in Theorem 3.3 with the characteristic function.

LEMMA 3.6. Given a commuting contractive tuple T, we obtain the identity

L*L + MGTMJT — 1H((C)®DT* .

Proof. As observed by Arveson in the proof of Theorem 1.2 in [3], the operator L satisfies
the identity

Lk, ®& =(1—-TZ) 'Dp& (2 € B, & € Drs).

Therefore, for z,w in B" and &, 7 in D+, we obtain that

((L*L + Mg, Mg )k, ® &, kuw ® 1)

(L(k. ®£) L(ky @ 1)) + (Mg, (k; ® ), Mg, (kw ® 7))

= (1 =TZ")'Dr-&,(1 = TW*) ™' Dpen) + (k; ® 07(2)*€, b © Or(w)*n)
= <DT*( —WT*) '(1 =TZ*) 'D3&,n) + (kz, kuw) (O (w)0r(2)*E, )

= <kz®€akw®7l)-

To verify the last equality, the reader should use the formula obtained in Lemma 2.2.
Using the fact that the vectors k, form a total set in H(C), the assertion follows. [
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In [3] Arveson used abstract factorization results to prove the existence of a multiplier
¢ € M(D,Dr~) such that

1H(C)®DT* - L*L — M(pM(;

The above Lemma, 3.6 shows that ¢ can be choses as the characteristic function of 7.
As usual we call two commuting tuples 7' = (11, ...,7T,) and R = (R, ..., R,) of bounded
operators on Hilbert spaces H and K unitarily equivalent if there exists a unitary operator
U from H to K such that R; = UT;U* holds for all ¢t = 1, ..., n.

Now we are ready to prove the main theorem of this section.

THEOREM 3.7. Every pure commuting contractive tuple T on a Hilbert space H is unitarily
equivalent to the commuting tuple T = (Tq,...,T,) on the functional space Hy = (H(C)®
Dr+) © My, (H(C) ® Dy) defined by T; = Pu, (M,; ® 1p,. )|Hy for 1 <i<n.

Proof Since T is pure, the map
L*:H —)H((C) ®DT*

is an isometry. Thus # is isometrically embedded into H(C) ® Dr~ via the identification
of H with the closed subspace L*H. Now L*L is the projection of H(C) ® D« onto
the closed subspace L*#. But then by Lemma 3.6, the operators L*L and My, My are
mutually orthogonal projections which add up to identity. Therefore the subspace L*H
is the orthocomplement of the range of My,

L*H = (H(C) ® Dr-) © My, (H(C) ® Dr).

Now by Theorem 3.3, L*T;* = (M, ® 1p,..)*L*. Thus the subspace L*H is co-invariant
for the shift and, via the identification of 1 with L*H, the operators T; in B(?) coincide
with the compressions of the operators M,, ® 1p,.. to the space Hr. [ |

So every pure commuting contractive tuple 7" on a Hilbert space H is unitarily equivalent
to the commuting tuple Py, (M, ® 1p,.)|Hr, where Hr is the M;-invariant subspace

4. THE CHARACTERISTIC FUNCTION AS A COMPLETE UNITARY INVARIANT

DEFINITION 4.1. Given two commuting contractive tuples T and R on Hilbert spaces H
and K, the characteristic functions of T and R are said to coincide if there exist unitary
operators T : Dy — Dg and 74 : D« — Dpgx such that the following diagram commutes
for all z in B"
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)
Dy ﬂ»m*

T Tx

D R DR*

Or(z)

In this section, we prove that the characteristic function of a pure commuting contractive
tuple is a complete unitary invariant.

PROPOSITION 4.2. The characteristic functions of two unitarly equivalent commuting tu-
ples coincide.

Proof. Let T and R be two commuting contractive tuples on # and K, respectively, such
that there is a unitary operator o : H — K satisfying oT;0* = R; for all i. Denote by o
and ¢* the operators

@0 :H" - K" and i @], 0" : K" — H".

Then it is easy to see that QD%Q* = D% and O'D%*O'* = sz*. Thus o Dpo* = Dy and
oDr«0* = Dg-. Hence 7 : Dr — Dp defined by 7 = ¢ |p, is a unitary operator between
Dr and Dg. Similarly, the restriction 7, = o |DT* defines a unitary operator from Dr« to
Dpg~. Finally, note that

Or(2)T = (—~R+Dgr-(1 - ZR*)"'ZDg)c |p, -
= —oT + Dp-(1 - ZR*) ' ZaDr.

—oT + Dp-(1 — ZR*) ‘0 ZDr

—oT +oDp«(1 — ZT*)ZDr

= T0r(2),

for all z € B". Hence the two characteristic functions 6 and 8g coincide. [ ]

Next we prove the converse of the above proposition for the case of pure tuples.

PROPOSITION 4.3. Let T' and R be two pure commuting contractive tuples on H and K,
respectively. If their characteristic functions @1 and Or coincide, then the tuples T and
R are unitarily equivalent.

Proof. Let 7' : Dr — Dg and 7'; : Dy« — Dpg+ be two unitary operators such that the
diagram
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Or (=
Dy r(2) Dy
T’ 7';
Dr————Dp~
R OR(Z) R

commutes for all z in B®. The operators 7/ and 7. give rise to unitary operators 7 =
17 :HC)®@Dyr - HC)®Dgand 7, =1® 7, : H(C) ® Dy~ — H(C) ® D+ which
satisfy the intertwining relation
My, = 1. My,
We conclude that
7.(Hr) = 7 ((RanMp,) ") = 7.(RanM,,) " = (RanM,, )" = Hg,

where Hyr and Hpg are the model spaces for 7" and R as in Theorem 3.7. Since the operator
7, interwines the tuples (M, ® 1p,.)* and (M, ® 1p,.)* componentwise, the induced
unitary operators 7, : Hyr — Hpg intertwines the adjoints of the restrictions of these tuples,
which are precisely the model tuples P, (M, ® 1p,.)|Hy and Py, (M, ® 1p,,)|Hg. But
then Theorem 3.7 shows that T" and R are unitarily equivalent. [ |

Summarizing the last two propositions we obtain the main result of this paper.

THEOREM 4.4. Two pure commuting contractive tuples T' and R on Hilbert spaces H and
K are unitarily equivalent if and only if their characteristic functions coincide.

Let T € B(H)™ be a pure commuting contractive tuple on a separable Hilbert space .
Arveson used in [3] the abstract solution of the factorization problem

1H((C)®'DT* - L*L — M(pM;

to construct an invariant for pure commuting contractive tuples 7' € B(#H)" with finite
defect, that is, with dim(Dp+) < oo, called the curvature invariant. Since we know that
the characteristic function @7 of T' can be used for ¢, we see that the curvature invariant
is completely determined by the characteristic function of 7. We end this paper by briefly
indicating this connection between the characteristic function and the curvature invariant.
By Corollary 2.3 the characteristic function 67 is a bounded analytic function with values
in B(Dr,Dr+) and supremum norm bounded by one. Suppose that the number d =
dim(Dr~) is finite. Then B(Dr,Dr-) is topologically isomorphic to a separable Hilbert
space, and therefore 1 has a pointwise radial limit almost everywhere defining a function
6r : OB" — B(Dr,Dr-) belonging to the unit ball of L®(8B", B(Dr,Dr+)). Define
kT B — B(DT,DT*) by
kr(z) = (1 —TZ*) ' Dr-.
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It follows from Lemma 2.2 that
1—07(2)0r(2)* = (1 —||2|*)kr(2)"kr(2) (2 € BY).

Using the definition given by Arveson in [3] we obtain the following representation of the
curvature invariant of T in terms of the characteristic function

K(T) = lim(1 - ) /S trace kg (r2) by (r2)do(2)

= /Strace(lpT* — 61(2)01r(2)*)do(2).

Here S = JB" is the unit sphere and ¢ denotes the normalized surface measure on S.
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