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Abstract

We study local minimizers of anisotropic variational integrals of the form J[u] =
fQ -, Vu) dz with integrand f satisfying a (p,q)-growth condition w.r.t. Vu and
with Dp f (x P) satistfying a Lipschitz condition w.r.t. z € Q. If the Lavrentiev gap
functional £ relative to J vanishes for all balls By € Q and if ¢ < p(1 + 1/n),
then (partial) C1:®-regularity holds. Moreover, the bound on the exponents can be
replaced by ¢ < p + 1 provided we study locally bounded minimizers.

We also investigate the relaxation of global minimization problems and discuss
the regularity of the corresponding solutions. The importance of the condition
L = 0 was recently discovered by Esposito, Leonetti and Mingione in [ELM], where
besides other results the higher integrability of the gradient is proved even under
weaker assumptions than used here.

1 Introduction

In a recent paper [ELM] Esposito, Leonetti and Mingione discuss regularity theorems for
minimizers of functionals of the form J[u] = [, f(-, Vu) dz, where the integrand f is of
anisotropic (p, ¢)-growth with respect to the second argument. Let us summarize some of
their results: suppose that the function Dp f(z, P) is a-Hélder continuous with respect to
the variable z and that certain natural growth and ellipticity assumptions are satisfied.
Then one is interested in the following question: do (local) minimizers u actually belong
to the space W, (€ RY)? As shown in Section 3 of [ELM] one can only hope for a
positive answer if (2 C R") X
q

) < n(n+a) (1.1)
is satisfied. Assuming (1.1) they then exhibit in Section 4 of their paper a sufficient
condition for higher integrability, precisely: if

L(u,Bg) =0 for all balls Bg € 2, (1.2)

where £ denotes the Lavrentiev gap functional relative to the energy J (see [ELM], Section
2.1), then Theorem 4 of [ELM] gives local integrability of Vu for exponents even bigger
than ¢. At least to our opinion it seems to be a very delicate problem to decide in
a general way if (1.2) holds or not. Esposito, Leonetti and Mingione present a list of
explicit examples and prove the validity of (1.2) in these concrete cases. This in turn has
a very nice application: if the energy density f(x,P) can be bounded by one of these
explicit examples, then (1.2) holds and by the way higher integrability of local minimizers
is true (see Theorem 6 of [ELM]). If (1.2) is violated, then minimizers cannot be regular,
and it makes sense to pass to the relaxed functional J and to discuss the integrability
properties of local minimizers of J. This is done with a positive result in Theorem 8 of
[ELM]. Finally we like to mention that some further extensions of [ELM] are given in
[MM].
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The purpose of our note is to investigate the higher regularity properties of local min-
imizers u, precisely we ask, if Vu belongs to some Holder class. Obviously such a result
can only hold under condition (1.2). Moreover, we will need a condition comparable to
(1.1), and the growth and ellipticity of f are now stated in terms of the second derivatives
of f. Let us give a detailed formulation:

Let 2 C R", n > 2, denote a bounded domain and consider an energy density f =
f(z,P) >0,z €Q, PeR"W, which satisfies with exponents 1 < p < g < co

ASSUMPTION 1.1 There are positive constants X, A, ¢1 such that for any z € Q and
allU, P € R*V;

Dif(a, P)U,U) < AL+ [PP)Z|UP,  (13)
a(l+ PP . (1.4)

A1+ (PP U

<
| Do Dpf(x, P)| <

We remark that (1.4) implies condition (H5) of [ELM] with o = 1. Here f is assumed
to be sufficiently smooth which means that we require the partial derivatives D% f and
D,Dpf to be at least continuous. Note that (1.3) implies the anisotropic growth condition
(a, A>0,beR)

alPlP = b < f(z,P) < A(P]"+1).

For open subsets Q' of Q let us define the energy of a function u: Q' — RV via
Ju, = | f(-,Vu)dz.
QI

The following definition seems to be natural in our setting.
DEFINITION 1.1 A function u € W,,.(;RY) is termed a local J-minimizer iff
i) J[u, Q] < oo for any domain Q' € Q and
i) Ju, Y] < Jv, Q] for any Q@' € Q and all v € W}, (4 RY) with spt (u —v) C Q.

Our first result is in the spirit of [ELM], i.e. we get differentiability of local minimizers
under the hypothesis (1.2) together with a version of (1.1):

THEOREM 1.1 Let Assumption 1.1 hold together with

_ n+1
g<p . (1.5)
n

Suppose further that u is a local J-minimizer with the property that L(u, Bg) = 0 for any
ball B € Q. Then we have

i) There exists an open subset Qo C Q such that | — Q| = 0 and u € CH*(Qy; RY)
for any o € (0,1).

i) If n =2, then Qg = Q.



iii) If N =1 or if f is of special structure, i.e. f(x, P) = g(z,|P|?), and if in addition
for N > 1

7-2

2 P-Q) (1.6)

|Dpf(z, P) = Dpf(z,Q) < e(1+ [P +|QP)

holds with some 0 < v < 1 and for all z € Q, P, Q € R*™, then u is of class C"®
in the interior of Q.

REMARK 1.1 Note again that from (1.4) and (1.5) it follows that (H2) and (H5) of
[ELM] are satisfied with o = 1. Thus, according to Theorem 4 of [ELM], the hypothesis
L(u, B) = 0 implies that Vu € LI (Q;R"Y). For higher integrability we can also quote

Theorem 6 of [ELM]: if (1.8), (1.4), (1.5) and also (83) of [ELM] hold for our energy
density f, then Vu € LI (Q;R™W) is satisfied.

loc

REMARK 1.2 The reader should note that Marcellini (see [Ma]) investigates the exisi-
tence and the regqularity of solutions of elliptic equations under a (p, q)-growth condition.
If a weak solution is in the space W, () and if ¢ < pn/(n — 2), then Marcellini proves
Lipschitz reqularity (and even higher regqularity), whereas the existence of a weak solution
of class W, ,.(2) is established under the restriction that ¢ < p(n + 2)/n.

Note that here it is not possible to arque with the same relations between p and q as
done in [Ma] since our hypothesis on D,Dpf are weaker.

Finally we conjecture that we may replace (1.5) by the weaker condition § < p(n —
1)/(n —2) provided L(u, Bg) = 0 is replaced by the requirement Vu € LL (Q;R*V). Note
that the upper bound p(1 + 1/n) occurring in (1.5) is the mean value of p and the upper
bound in the autonomous case, p(n — 1)/(n — 2) is the mean value of p and pn/(n — 2).
An analogous observation holds for the condition § < p + 1 dicussed in Theorem 1.2.

To be a little bit more precise remark that the above conjecture gives (compare (2.21))
2q—p <pn/(n-2).

Our second theorem deals with locally bounded minimizers. As a consequence, condition
(1.5) can be weakend if p < n. Note that on account of Sobolev’s embedding theorem, we
cannot expect to improve (1.5) in the case p > n since then the boundedness of minimizers
is no additional assumption at all (compare Remark 5.5 of [Bi]).

THEOREM 1.2 Let u denote a local J-minimizer such that L(u, Bg) = 0 for any ball
Bg € Q and let Assumption 1.1 hold. If N =1 orif f is of special structure, i.e. f(x, P) =
g(z, |P?) and if in addition in the case N > 1 we have (1.6), then u has Holder continuous
first derivatives in the interior of €1, provided we assume

u € Lo (O RY) (1.7)

loc

together with
g<p+1. (1.8)

REMARK 1.3 Now Vu € LY _(;R™) is a consequence of [Mi].

loc

REMARK 1.4 The counterexamples of [ELM] and [FMM] satisfy ¢ > p + 1. Since
the solutions constructed there are locally bounded, we see that (1.8) is a rather natural
condition for reqularity.



Let us now look at the global minimization problem: consider uy € WL (;RY), let
Assumption 1.1 hold and let u denote the unique solution of

Jv, Q] = / f(-, Vv)dz — min
Q
in the energy class

K ={ve W QRY) : v—up eWHQRY), Jv, Q] < 0o}

If L(u, Bg) = 0 or if higher integrability of Vu is assumed, then clearly Theorem 1 or
2 can be applied to our global minimizer. Otherwise it is reasonable to introduce the
relaxed problem, i.e. the problem of minimizing

Jv, Q] == inf{lini)inf/ G, Vuy) de = uy, € ug+ vf/;(Q;RN), Upy — W N WI}(Q;RN)}
m—o0 o)

in ug+ Vf/pl (;RY). Note that we have J = J on uy+ foql (;RY). We then can show

THEOREM 1.3 Let Assumption 1.1 together with (1.5) hold. Then there exists a so-
lution u of the relazed problem such that the claims i) (n =2) and iit) (N =1 or N > 1
plus additional structure) of Theorem 1.1 are valid for . If (1.5) is replaced by g < p+1,
then we have the reqularity result of Theorem 1.2 for u.

REMARK 1.5 As we shall see below, the relaxed problem admits a unique solution
which on account of Theorem 1.3 is of class C** under appropriate assumptions on the
data. As we will prove in Section 4, U also is a solution of the Dirichlet problem

/Dpf(-,Vw):thdxzo for all p € CP(LRY),
Q

3 (1.9)
w—ug €W, ((GRY).
Of course we could replace (1.9) by a more general system of the form
/T(-,Vw) :Vopdz =0 forall p € CP(LRY),
a (1.10)

w — Ug EVf/pl(Q; RY),

where the tensor T satisfies appropriate growth and ellipticity conditions. Then a variant
of the global reqularization procedure outlined in Section 4 would lead to a smooth solution
v of (1.10) provided the hypotheses of Theorem 1.3 are formulated in the corresponding
way. Such a result would be in the spirit of Marcellini’s work discussed in Remark 1.2,
we leave the details to the reader.

REMARK 1.6 Eristence and uniqueness of the J-minimizer @ can be proved by just
using (1.3) of Assumption 1.1 (even a weaker condition would be enough), and we ask
what can be said about U if we add (1.4) together with ¢ < p(1+1/n), the situation which
is closest to the one studied in [ELM]. We have the following results briefly sketched at

the end of the last section:
i) Vi € LPX(Q;R*N), where x = n/(n — 2), if n > 3, any finite number, if n = 2.

loc

ii) u still solves (1.9) from Remark 1.5.
iii) @ € CH*(Qo; RY) for an open set Qy C Q such that |Q — Q] = 0.



2 Proof of Theorem 1.1

The proof of Theorem 1.1 follows a well-known line (compare, for instance, [Se|, [Ma],
[MS], [BF1], [Bi] and the references quoted therein), we give a short summary of the
necessary steps and emphasizing the modifications which are needed to handle the non-
autonomous case.

Step 1. Approximation.
We fix a ball Bor = Bag(z) € € and define for 0 < § < 1

fs(z,P) =6(1+ |P|})? + f(z,P), ze€Q, PeRYW,

where the exponent ¢ is chosen according to

§<q<p<1+%). (2.1)

Note that f; still satisfies (1.4), whereas (1.3) holds with exponent g replaced by ¢. Define
ue as the mollification of v with parameter € > 0 and let v, 5 denote the unique solution
of the minimization problem

Jslw, Bog] = [ f5(,Vw)dz > min  in ugt W2 (Bops RY) .
Bsgr

We have the following convergence results:

LEMMA 2.1 Suppose that the hypotheses of Theorem 1.1 hold. If € and § are related
via
1
1+ et + || Ducll s,

and if we abbreviate v, = v. 5, fe = f5(), then we have as € — 0:

i) ve — u in W (B, RY),
ii) 5(5)/ (1+|Dv?)2dz — 0,
Bsr
iii) f(,Dv.)dz — / f(-, Du)dz,
Byr

Bar

iv) LG D) dz — /B (. Du) de.

Bsgr
Proof. We have by the minimality of v,

f(Vv)dz < fe(s V) dz < fe(, Vu,) dz

Bar Bar Bagr

= d(¢e) /B. (1+\Vu5|2)gdx+/3 f(-; Vu,)dz. (2.2)



Here the choice of d(g) implies that the first term on the r.h.s. converges to 0 as ¢ — 0.
Next we recall that f is at most of growth order g, moreover we have (see Remark 1.1)

that Vu is of class L?w hence

Vu, X Vu  in LY(Byg; R™).

This in turn gives
/ G, Vu)dz 2 [ f(-, Vu)dz. (2.3)
Bsr Bar

In fact, to verify (2.3), we may consider the convex function

H: W}(Byr,RY) 30 f(-, Vo) dz

Bar

which is locally bounded from above, hence locally Lipschitz (compare, for instance, [Dal,
Theorem 2.3, p. 29). This gives (2.3). Then we conclude from (2.2) that me f(, Vo) dz <
const, hence

e—0 .
Ve — v In Wpl(BgR;RN), v=u on 0Byp.

The lower semicontinuity of J and the uniqueness of minimizers finally prove v = u on
Bsg, i.e. the lemma is established. O
Step 2. Caccioppoli-type inequalities and higher integrability.
In the following we use the notation from above and observe that v. solves the Euler
equation

Dpf.(,Vv.) : Vodz =0 for all ¢ €W, (Byp;RY). (2.4)

Bagr

This implies

LEMMA 2.2 There is a real number ¢ > 0 such that for allm € Cj(Bag), 0 < n < 1,
and for all Q € R™Y

p=2
/ n°T.” |V *dz < ¢
Bir

q=2
Ivnl2, / P Vo, — QP da
spt Vn

+/ Fg_%dm] , (2.5)
sptn

where T'; := 1+ |v|2.

Proof. Using the method of difference quotients in equation (2.4) (see e.g. [AF], Proposi-
tion 2.4 and Lemma 2.5, [GM], [Ca] or [To] for further details in a related setting; note
that Lemma 4.1 of [To] works under our hypotheses) we obtain weak differentiability of
Vv, together with

p—2
I.* |9, V.| € L2,(Bog) .

loc

Then, as outlined in the proof of Lemma 3.1 in [BF1], we deduce from the above integra-
bility property (again using the method of difference quotients and passing to the limit)



the inequality

D% f.(-, Vv.) (0, Ve, 8, Vv )n® dx

Bsr

< =2 D% f.(-, Vv.) (0, Ve, 0, (v: — Qz) ® Vn)ndz

Bar

i / (0, Dpf) (- V. : 0, (v, — Qz) @ Vi dz
Bagr

—/ (0yDpfe)(-, V) 87VUE772 dz , (2.6)
Bagr

being valid for any matrix @ € R*Y. With the help of Young’s inequality we get (2.5) by
absorbing terms after suitable application of (1.3) and (1.4). Note that (2.5) just follows
from our assumptions (1.3) and (1.4), the hypotheses (1.5) and (2.1) do not enter. O

REMARK 2.1 We can arrange that

—=< (2.7)

N |3
DO [

In fact, up to now q was chosen according to ¢ > G and g < p(1 + 2/n). Here we observe

that (1.5) gives
1 2
2(@_]_9) < 2(n+ p_]_a) :pn—i-
2 n 2 n
which means that it is possible to choose q in (2(G—p/2),p(n+2)/n) by the way satisfying
(2.7) which will be assumed from now on.

As already remarked local higher integrability of Vu up to a certain exponent is established
in Theorem 4 of [ELM]. We give a slight improvement which in particular is needed to
discuss the case n = 2.

LEMMA 2.3 (compare [BF1], Lemma 3.4) Let x :==n/(n—2), if n > 2, forn =2 let
X > 2p/(2p — q). Then we have
Vo, € LPX

loc

(BQR; RnN)

uniformly w.r.t. €, in particular we find

loc

any L (RY™N), s<oo, if n=2.

loc

Vu { L/ 2 (@R, ifn>3,

Proof of Lemma 2.3. We consider the case n > 3, the calculations for n = 2 have to be
adjusted according to [BF1] or [Bi]. Let

and observe that by (1.5) we have



Let us fix radii » and p such that R < r < %R and 0 < p < g. Moreover, let n €
Cy(Bripp2), n =1 on By, [Vn| < ¢/p. Using (2.5), the calculations from the proof of

[BF1], Lemma 3.4, lead to the inequality (compare [Bi], second inequality on p. 60)

/ redz < cp? / T2 / 7% dy
r B2R Br+p

with positive constants /3, 3, a positive constant ¢ and another constant 9 < 1 being all
independent of €. The second term on the r.h.s. of (2.9) is new but can be handled via
interpolation: note that (2.8) implies that 2¢ — p < 2a = px, and since 2G — p > p we
have with p € (0,1)

B
+c

X

+9 / redz (2.9)
Brip

hence
||VUE||L2EW < ||VU5||%p”VUE||};£,

where the norms are taken w.r.t. B,;,. Recalling the boundedness of Vv, in L?(Bsg), we

get
[/ FZ‘ﬁdx] gc[/ rede
Brip Brp

The definition of i together with (1.5) implies

] (1-4) 1 (27-p)

1 —u)%(%—p) <1,

thus Young’s inequality gives

[ / Fg_% dz
Brip

Inserting this into (2.9) and choosing 7 small enough we find
G

/ T%de < cp? / I?de +1§/ e dy
T Bagr Br+p

with 9 € (0,1). Now the proof of Lemma 2.3 can be completed along well known lines
using Lemma 5.1, p. 81, from [Gil]. The last claim of Lemma 2.3 follows from Lemma
2.1 and a covering argument combined with the first part of Lemma 2.3. O

The next result can be established as in [BF1], Proposition 3.5, or as in [Bi], Proposition
3.29.

X

ST/ I'¢dz + c(r).
Brip

b
4

LEMMA 2.4 Let h) :=L'(,), where I' :=1+ |Vu|?>. Then we have
1) h € W21,loc(B2R);
ll) hs — h in W21,loc(B2R);

iii) Vv, — Vu a.e. on Baop as e — 0.



Together with the higher integrability result from Lemma 2.3, part iii) of Lemma 2.4 is
essential for proving a limit version of the e-Caccioppoli inequality stated in Lemma 2.2.

LEMMA 2.5 There ezists a constant (depending on R) such that for all balls Bs,.(Z) C
Bpgr we have

/ |Vh|?dz < c[r_Q/ Fqu|Vu—Q\2dx+/ FE—’;] ,
B (x) By, (z)—Br(T) B, (%)

where QQ € R™Y is arbitrary.
REMARK 2.2 On the l.h.s. [Vh|? may be replaced by F]%Q|V2u\2.

Proof of Lemma 2.5. In (2.5) we choose € Cj(Ba(T)) such that n = 1 on B,(Z),
0 <n <1, and |Vn| < 2/r. Then, on the L.h.s. we use lower semicontinuity, the first
term on the r.h.s. is handled as in the proof of Lemma 3.6, [BF1]. By (2.7), the second

term from the r.h.s. of (2.5) is dominated by wa(a-c) I'Y?dz and on account of I, — T
a.e. together with the higher integrability of I', we may pass to the limit as well. U

Step 3. Blow up and proof of Theorem 1.1 i).
Once having established Lemma 2.5, we can follow the arguments of [BF1], Section 4,
(compare also [Bi]) by introducing the excess function for balls B, (z) C Bg. With

E(z,r) = ][|Vu—(Vu)w|2dy+ ][ \Vu — (Vu),|9dy, if ¢>2,
B, (z)

B, (z)
E(z,r) = ][ V(Vu) = V((Vu)e,)Pdy, V() =0+[R)TE, if ¢<2,
B, (z)

we have to formulate the blow-up Lemma 4.1 from [BF1] in the following way:

LEMMA 2.6 Fiz L > 0. Then there ezists a constant C,(L) such that for every 0 <
T < 1/4 there is an € = (L, T) satisfying: if B,(x) € Bg and if we have

(V)ey| <L, E(z,r)+1r" <e(L,7),
then
E(z,7r) < Cu(L)T*[E(z,7) + 7'7*] :
Here v* denotes some arbitrary number in (0, 2).
Let us give a short comment: if we follow the arguments from [BF1], Section 4, and intro-

duce the function v, as done there, then we have to bound the quantity |’ B, |V, |? dz for

p < 1 which can be done with the scaled version of Lemma 2.5 leading to the inequality
(recall (2.7))

Vi dz < clp) |14 2,77, ][ rﬁ—%df”]

- BTm (l‘m)

By

IA
o
—~

b
N—

14+ \22 ][ I dx] . (2.10)

- BTm (zm)



We now let for any 1 <t < o0

Vi) = (L4 IE)TE, H() = (1+ )5
By Lemma 2.3 of [Ha] we then have

VH(E) ~ \JH() | < | Vi(e) - Vil@)]. (2.11)

By assumption, |(Vu)g,, .| < L, hence we obtain from (2.11)

][ ridy = ][ [r%rdx

By (Tm) By (Tm)

¢ ][ [|V/Ee(F) ~ \/Ho (V) |+ Hol (V) |

Brpy (Tm)
o |VHT) - H (T, )
Brpy (Tm)

< ¢ ][ IV, (Vat) = Vy (Vi) o )2 dz 4+ (L) = cE (2, 7o) + (L)

By (Tm)

IN

IN

2
dz + ¢(L)

where the last identity follows from the definition of E in the case ¢ < 2. If ¢ > 2, then
we simply estimate

][ ridz < c¢|l+ ][ |Vu|?dz

By, (Tm) - Brpy, (Tm)

< cfte IV (o4 (D)

- Brpy, (Tm)
< cE(Xm,Tm) + (L),

thus (2.10) gives in both cases
| 196nPdz < o)1+ 72+ 222D
By

Recalling the choice of v* we observe that as m — oo
M2 0,

hence the boundedness of || B, |V,,|? dz follows, and the proof can be completed as in
[BF1].

Step 4. Proof of Theorem 1.1 ii).
If n = 2, then we know by Lemma 2.3 that Vv, € L! (Byg; R*") for any ¢ < oo uniform

loc

w.r.t. e. Now we quote [BF2|, proof of Theorem 1: on the r.h.s. of (9) from [BF2] we have
to add

- /D%Dpfs(-, V.) 1 V(n?0s[v. — Qx]) dz

10



and by using the growth properties of D, Dpf together with Young’s inequality and the
higher integrability of Vv, it is easy to see that we have (14) of [BF2] with an extra
additive term of the form constr®, 0 < 8 < 1, on the r.h.s. But as outlined in [BF3] or
[ABF] this term does not affect the application of the Frehse-Seregin Lemma (see [FS])
and the claim follows as before with the help of Frehse’s variant of the Dirichlet-Growth
Theorem (see [Fr]).

Step 5. Proof of Theorem 1.1 iii).
We are first going to prove the following auxiliary lemma which gives good initial regularity
for our regularizing sequence in the vector case N > 1 together with the special structure

f=g(z,|PP).

LEMMA 2.7 Assume that F(z, P) satisfies with some given 1 < t < oo for all x € ,
P, U € R and with positive constants \, A\, ¢

A1+ [PP)FUP < DpF(e, P)UU) < AL+ [PRTUP;  (212)
D, DpF(z,P)| < c(1+|PP)7F (2.13)
F(z,P) = G(z,|P]P). (2.14)

Here G: Q x R — [0,00) is a function of class C?. Moreover we assume that for some
>0
2 2 2 oy t=2—7
|DpF(z, P) = DpF(2,Q)| < c(1+ [P+ [QF) > [P-Q[".
Then, if u € W}, (Q;RY) is a local minimizer of [, F(x, Vu) dz, u is of class CV*(€; RY)
forany 0 < Kk < 1.

REMARK 2.3 If N =1, then the statement of course holds without (2.14), see [LU].
Once having established the CY*-reqularity of the solution u studied in Lemma 2.7, we
immediately obtain u € Wiloc(Q;RN). Combining both facts and using potential theory

for linear elliptic systems with continuous coefficients we arrive at u € nguc(Q; RY) for

any finite t.

Proof of Lemma 2.7. We concentrate on the case ¢ > 2. In the case 1 < ¢t < 2 the
following arguments have to be modified using Proposition 2.11 in [AF]. Note that for
both cases the above Holder condition for D2F(z,-) implies the corresponding ones in
[AF] and [GM], respectively, if = is considered as fixed. Let Bg(zo) € Q, R < Ry, where
Ry is fixed later on. We denote by v the unique solution of the variational problem

/ Fy(Vw)dz = min  in g+ Wi (Br(zo);RY),
Br(zo)

where Fy := F(xg,-). Then inequality (3.1) of Theorem 3.1 in [GM] gives together with
the minimality of v and the growth of Fj:

IVl s, 0 < c][(l +Vo)f dz < c][(l +[VuP)s de. (2.15)

Bp Bpg

11



We define V(§) = Vi(§) as in the third step and recall Lemma 2.3 of [Ha] to obtain for
p<R/2

t t t t 2
[ a+vupiar < c[/ 1+ FoP)ida+ [ |+ [wup)i - 1+ 9P| as
B, B, B,

< c/ A+ |Vol)sdz +c [ |V(Va) = V(V0)2dz.
BP

BP
Hence, (2.15) implies

/(1+|vu|2)%dxgc(£)"/ 1+ Vusde+c [ |[V(Vu) = V(Vo)2dz. (2.16)
B, R/ /g, B,

Then (2.3) of [Ha] and (2.1) of [GM] yield

V(Va) = V(Vo)Pde < c/ (1+ |Vul + [VoP) 5|V — Vo2 de
Br

By

1
< C/ /(1+|Vv+t(Vu—Vv)\Q)t22|Vu—Vv|2dtd:v.
BR\O

v

-~

=:(x)

Moreover, we have
(DFy(Vu) — DFy(Vv)) : (Vu — Vo)
1
= / D?Fy(Vv +t(Vu — Vv))(Vu — Vo, Vu — Vo) dt > A(%).
0

Putting together these two inequalities, using the equations for u, v and recalling the
growth condition (2.13) one has (again see [Gil], p. 151)

/B V(Vu) — V(Vv)]Pdz < CL (DFy(Vu) — DFy(Vv)) : (Vu — Vo) dz

= c/ (DFy(Vu) — DpF(z,Vu)) : (Vu— Vo)dz

IN

CR/ (1+ |Vu\2)%\Vu—Vv\dx
Br

IN

6/ (1+ \Vu|2)%|Vu — Vo> dx
Br

+c(e)R2/ (14 V) do
Br

IN

ce/ V(Vu) — V(Vo) > dx

Bg

+c(5)32/ (1+ |Vu) dz.
Bp

Now, if € > 0 is sufficiently small, then it is shown that

/ V (V) = V(Vo)2dz < CRZ/ (1+|Vul) do. (2.17)

Bg

12



Inserting this in (2.16) we arrive at

/ (1+ |Vul?)? dz < c[(ﬁ) + RZ] / (1+|Vul?)? dz. (2.18)

B R B

P R

Note that (2.18) was just shown in case p < R/2, for R/2 < p < R the estimate is trivial.
Next we choose 8 < n which may be arbitrarily close to n. With a suitable choice

of Ry we may apply Lemma 2.1 from [Gil] to (2.18). As a consequence, for all radii
p* < R* < Ry which are sufficiently small we have

*

t ﬂ t
/ (14 |Vul?)2dz < c(—p ) / (1+ |Vul?)? dz
p* R* BR*

Choosing p* = R and R* = Ry it is shown in particular that
R\B
/ 1+ |Vu?)? de < c(—) / (1+|Vul?)s da. (2.19)
Bp Ry Bg,

Finally we make use of [GM], formula (3.2), i.e. for some exponent ¢ > 0 it holds

][|V(VU) - (V( VU))zo,p|2 de < c ][|V (Vo) V) o, R >dx. (2.20)
Note that (2.20) implies as in [GM], (5.6),
][ V(Va) = (V(V))a o2 de < c(%)” ][ V(Va) = (V(Vt))ag el da

][\V (Vu) — V(Vo)|*dz,

hence (2.17) and (2.19) imply

[ (v - (e < e (£) /B V(Vu) = (V(Vt) )y, do
+R2/ (1+\vn\2)%dx]
< ¢ (%>n+U/BR\V(Vu)—(V(Vu))wO,R|2dx+R2+ﬂ .
Now
Ui op W(p)i= [ V(VU) = (V(V))ay,l* da

By

clearly is an increasing function. From [Gil], p. 86, we infer (choosing n < 2+ < n+o0)
that ¥ growth like p>*?. Since 2 + B > n, this gives Holder continuity of V(Vu), in
particular Vu is of class C°. We then let w = d,u and observe that w solves an elliptic

13



system with continuous coefficients. Theorem 3.1 of [Gil], p. 87, then proves our claim. [J

For the proof of Theorem 1.1 iii) we will now use DeGiorgi type arguments as done
in the proof of Theorem 3.16 in [Bi] which has to be adjusted to the situation at hand.
W.l.o.g. we may assume that n > 3, since by the second part of the theorem regularity
in the two-dimensional case holds without structure condition. We still work on the ball
Bsygr and choose B,(Z) C Bg and n € C}(B,(%),[0,1]). We further let w. = In(T.),
[, =1+ |Vv.[?, and consider the sets

A(h,r) :={x € B,(Z) : w. > h}.

From Lemma 2.7 we deduce v. € W, ,.(Bzr; RY) (and therefore Vv, € Wy, (Bar; R™Y))
which enables us to use the same test functions as in [Bi]. Thus we have (30), p. 62, of
[Bi], where on the r.h.s. we have to add the quantity

I= / DuDp fo(-, Vo) [V (P V0 (w: — )| e
Alk,r)
I itself splits into a sum of three integrals, one of them being

/ 1D, Dpf.(-, Vo) | (w: — k)| V20, |do < 'y/ .7 72|V, 2w, — k) dz
A(k,r) A(k,r)

() / P (o — k) da,
A(k,r)

where we used condition (1.4) and Young’s inequality. If v is small enough, then the first
integral on the r.h.s. can be absorbed in the first integral on the Lh.s of (30), p. 62, in
[Bi]. Then (34), p. 63, of [Bi] reads:

: (2.21)

/ P?nQ\Vu}s\de < c[/ F&%(wg—k)2|Vn\2dx+f
A(k,r) Alk,r)

£ = / Fg% dx—i—/ FE% d:v—i—/ ngg(wg—k) dz .
A(k,r) A(k,r) A(k,r)

In the same way we use (35), p. 63, of [Bi] with the extra term
/ DuDp fo (-, V)| [V (P V0 (w: — K)?| da
Alk,r)

on the right-hand side, this time we get

p=2 q _
/ [.7 (w. — k) IV ’n*dz < ¢ / [2(w. —k)?|VplPde + €|, (2.22)
A(k,r) A(k,r)

£ ::/ Ffigdx+/ r
A(k,?‘) A(k;"')

+/ Fz_g(wg —k)*dx.
A(k,r)

™M o

(w, — k)*dz

14



By combining (2.21) and (2.22) we obtain the following version of (27), p. 61, in [Bi]:

/ F§n2|Vw5\2dx—l—/ F:?(wg — k)*n?|Vu.|* dz
A(k,r) A(k,r)

< c[/ 11&%|V77|2(u)€—lc)2d:16+£—i-§T . (2.23)
A(k,r)
For handling £ + £ we use (2.7). If we let
a(k,r) == / T} dz,
A(k,r)
then we have ~
E+ € <ca(k,r). (2.24)

Let us further set
q
T(k,r) = / 2 (w. —k)*dz.
A(k,r)

Next we fix numbers A > k > 0 and radii < 7 such that B;(Z) C Bg. Then, as in [Bi],
we deduce from (2.21) — (2.24):
T(hyr) < c|(h— k)75 24 (h— k) 25| (7 = 1) 27k, )
provided we assume w.l.o.g. that R < 1. For the application of the Stamppachia Lemma
it is sufficient to study the case h — k < 1, thus we can replace the quantity [...]| by
(h — k)~272=1/X and argue as in [Bi] with the result that the functions v, are locally
Lipschitz on By uniform w.r.t. . As a consequence we get u € W ,.(Q;RY). Let us fix
' € Q and a constant M > 0 s.t. |Vu(z)| < M for a.a. z € . Then, as outlined in
[MS], we can construct an integrand F on (' x R™Y satisfying (2.12)—(2.14) for a suitable
t and s.t.
F(z,P) = f(z, P)

for z € ¥ and P € R", |P| < 2M. But then u is a local minimizer of [, F(-, Vv)dz on
V', hence of class C*® by Lemma 2.7. The reader should note that the Holder condition for
D%F(z,-) required for the application of Lemma, 2.7 is a consequence of the corresponding
condition for D% f(x,-) as stated in the hypotheses of Theorem 1.1 iii) if the vector case
is considered. g

3 Proof of Theorem 1.2

We use the same regularization as in Step 1 of Section 2 where the exponent ¢ is now
chosen in (g, p + 2) sufficiently close to p + 2 s.t.

1
q< 5(?‘*‘@)- (3.1)
Note that such a choice is possible on account of (1.8). Note also that Lemma 2.1 continues
to hold since again we have that Vu € LI (Q;R™) on account of [Mi]. From (1.7)

loc
together with the maximum principle it follows that

sup ||| poe (o) < SUP |u| < 00 (3.2)
0<e<1 Bar

15



Step 1. Higher integrability.
We follow [Bi], proof of Theorem 5.21, and show

LEMMA 3.1 There is a constant ¢ independent of € such that

/ Vue|* < e
B.(%)

for any ball B.(Z) € Bsg and any s € (1,00). The constant ¢ depends on the location of
the ball, the constants appearing in (1.3) and (1.4), on s and on supgp, |ul.

Proof. Let a > 0 denote a fixed real number and define the quantities 5 : =2+ p — q,

o q a - p '
O<o=—4=-<14+4—-—+==10".
o 2+2 +2+2 o

For k € N large enough we have
o
2k— <2k —2.

o

Finally, we consider n € C§°(Bsg), 0 < 1 < 1, and obtain with exactly the same arguments
as in [Bi], inequality (19) on p. 155 (by letting A = 1 during this calculation and by using

(3.2))

atp a+p 1t+a+t

/ PRl Az < ¢ 1+/ |V2v8|2F52pn2kda:+/ n?* | vy|T, 2 " d
Bar Bap Bar

= c[l+I1+11].

(3.3)

If sptn C By = By(x0), n =1 on B, = B,(x) and |Vn| < ¢/(p' — p), then we can use
(20), p. 155 in [Bi] to handle I, i.e. we have

atp
II < 7'/ anF? 2 dz+c(p — ,0)27'1/ r
Bar Bsgr

valid for any 7 € (0,1), where for 7 small enough the first term on the r.h.s. of (3.4) can

be absorbed on the Lh.s. of (3.3). For I we observe

atp
2 2 de (3.4)

p=2 a+8 atg

I < 7_/ 772k+2F62 += |V2v5|2 dz + 7_—1/ 772k—21-\62 dz

Bsr Bar
= th+7'L. (3.5)
As we shall prove below the quantity /; can be bounded in the following form:
2 ok 42 -4
I <clp—p) / T2 T2dx, (3.6)
Bar

where c also depends on a. We insert (3.6) into (3.5) and replace 7 in (3.5) by 7' (o' — p)?

a+p

for some 7' > 0. Since 5
o+ q

4 _ 1

—+ 9 5 + 1,

2
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we see that for 7/ < 1 the term corresponding to 7' can be absorbed on the Lh.s. of (3.3).
Moreover, we have with Young’s inequality

a+tq
()7 =) = (7)) =) / " e da
Bar

ata] g _
(TI)—I(pI_p)—Q 7_Il/‘ |:n2k—21-\52 ] d$+(7'")
Bsr

- |B2R\

IN

N—17 1 2| _n 2k a+§+2 1 ——%
< (™) =) T nTe 2 +(7")" 7= |Bagl
Bagr

If we let 7 = 7/(p' — p)>r* and if 7* is small enough, the first term on the r.h.s. of the
above inequality can be absorbed on the Lh.s. of (3.3). Putting together our results we

have inequality (23), p. 156, of [Bi], i.e.
atp
1 +/ ,',’219*21“6 2 dx
Bar

atp+2
/ n* T, 7 dx<ec
Bar
with ¢ also depending on «, p and p’ but independent of e. Now the same iteration as in
[Bi] gives

/ |V |*dz < const
Br(mo)

for any s < oo and r < 2R. It remains to prove the inequality (3.6). But this follows
from an appropriate version of Lemma 5.20 i) of [Bi]. Note that (3.6) is the only place
where we use the fact that v, solves a variational problem. To be more precise, we take
= 7']2k+2877)5rg
as test function in
D% f.(-, Vv.) (0, Vv, V) dz = — D, Dpf.(-,Vv.) : Vodz,
Bsr Bsr

where s is some exponent > 0 and k£ denotes some integer > 1. The admissibility of ¢
follows from Lemma 2.7 and Remark 2.3. We get

D% f.(-,Vv,) (0, Ve, 87Vvs)n2k+2fj dz

Bsgr
+ D% f.(-, Vu.) (8, Vv, 0yv. ® VI 2 dy
Bagr
= —(2k+2) DIQDfS(-, V) (0, Vv, Vn & 67vs)n2k+lfz dz
Bsr
- D, Dpf.(-, Vv.) : V(n*?0,0.I'%) dz . (3.7)
Bsr

To the first integral on the r.h.s. we apply the Cauchy-Schwarz inequality (for the bilinear
form D%(x, Vv.(z))) and then use Young’s inequality to get the bound

7| D%f(-, Vu.)(0, Ve, 0, Vo )™ 2T da

Bsr

welr) [ IR VoI e (3.5
Bsr
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and for 7 small the first term can be absorbed on the Lh.s. of (3.7). For the second integral
on the r.h.s. of (3.7) we use (1.4), thus

g—1 g—1
Lhs. of (3.7) < ¢ / [.2 T¢|Vnn** Vo, | dz + / [.? 42 V2, | dr
Bsgr B

2R

q-1
+ / [.? T 12|V, || VT, | d
Bsr
=: C[Jl + JQ + Jg] .

We have (since 0 <n <1, |Vn| < (p—p))
T < el =p)7 / T da
Bar
g-2
— C(pl_p)—Z/ ,'72161'\22 +1+s dz
Bir

which means that we obtain the same bound as for the second term in (3.8). With x > 0
arbitrary we have

;2 _— q—
Jo < K/ F:’2 an2k+2|v2vs|2 dr + C(ff) / Fg—HFE 5+ 177210-1-2 dz .
Bsr Bog

By (1.3) and by choosing x small enough the first term can be absorbed in the first integral
on the Lh.s. of (3.7). For the second term we use n**2 < n** and observe —2+g—1 < 2
which is a consequence of (3.1). In order to handle J; we observe that the second integral
on the Lh.s. of (3.7) can be written as

1
9 D3 f(-, Vve) (e ® VIE e, ® V)2 dx
Bor

which is obvious if N = 1, whereas in the vector-case we use the special structure. By
ellipticity we therefore obtain the lower bound

p—2
Jy ::c/ | I e W |V|Vv5|2‘2dx
Bar
for this term. On the other hand
q
Ty < c/ P2t v Ve ?| da
Bsr
p=2
< ;@/ R B W ‘V|Vv€|2‘2d:v
Bsr
—14gs2ze
+c(k) / i VR
Bar

and for all k small enough the first term is absorbed in J;. For the second one we use
n**+2 < % and observe that by (3.1)

2 —9
s—l4T+ o =s+ 1477 —1<s+140 "
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Altogether we have shown that

g4 P=2
/ ,'72k+2|v2,u6|21-\6+ z dx S p _p / 1—\ 2 F1+S 2k dz
Bzr Bar

= clp'—p) / L2 d,
Bar

(a+B). O

N

and (3.6) is established by choosing s =

Step 2. Uniform local gradient bounds

LEMMA 3.2 There is a finite local constant independent of € s.t.
\Vv.|<c¢ on B, @ Bag.

Proof. We modify the proof of Theorem 5.22 in [Bi]. To this purpose let us fix radii
0 <7 <7 < 2R and consider n € C§°(B;) with the usual properties where all balls are
centered at zy. Moreover, for k£ > 0 we let

A(k,r)={xz € B, : I'. > k}.

By elementary calculations (see [Bi], p. 157) we obtain

/ (T2 — k)a dg < oIFT + I777] (3.9)
A(k,r)

where

IN
o
—~
=
|
<
N—
|
3
i
—
a;\
=
>
}1
LU Y
||
[ V)
~—~
}1
o
|
o
e
N
o,
&
| |

2-p 2n—1
- / o de| (3.10)
A(k,f)

12”%1 = l
N = R
< ¢ / n° |V T2 dx / .2 dz : (3.11)
A(k,7) A(k,7)

We claim the validity of

p=2
/ I VI *%dr < ¢
A(k,7)

+/A(k ) I dx] . (3.12)

19
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Accepting (3.12) for the moment, we get by combining (3.9)—(3.12)

=2 — p %nfl
/ (Te - k)ﬁ de < off - T)_# / I.> (I, —k)?dz + / ngzﬂ dx
A(k,r) Ak ) Ao

2-p n—1
[/ r.2 dac] : (3.13)
A(k,7)

which corresponds to the inequality (24) on p. 157 of [Bi]. Let s and ¢ denote real numbers
> 1. With Hélder’s inequality we deduce from Lemma, 3.1

1

g—2 n s
/ P (T, — k)2de < c / (T, — k)"t do
A(k,r) A(k,r)
%

2-p 9—2
/ .2 dz<ec / r.? dz| |,
A(k,F) A(k,7)

where ¢ now is a local constant and we assume 7 < Ry for some Ry < R. Inserting the
above inequalities into (3.13) we end up with

q—2
/ [.? (T, —k)’dx
Alk,r)

and

™
o

R
- / ' dz | (3.14)
A(k,7)

Let A > k and define

q—2
(k) ::/ P (0, — k)2ds,
(k,r)

alk,r) := /A(k )FE2 dz.

Clearly a(h,r) < (h — k) 27(k,r) and from (3.14) (with k replaced by h) it follows

1 n
25 n—1

T(h,r) < c(f—1)7 [T(h,f)+ /A . re s d:c] a(h,7)2 7

n

(F —r) " (h— k) °r(k,F)27eT3

L
2s

mp—
eFIH

IN

‘;, 2

-1

7(h, 7) + / i et gy (3.15)
A(h,7)
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with positive exponents v and o. By (3.1) we have § < 2(p+4q),i.e. g —2+1 < 1(¢+2).
If we choose m > 1, quote Lemma 3.1 and use Holder’s inequality we therefore get

— p g+2
/ | SRR / r.2 dz
A(hy#) A(h,#)

< co(h—k) mr(k,7)m .

W.l.o.g. we may assume h — k < 1. Then, with some suitable new positive exponent o
(depending on the parameters!) we obtain from (3.15)

Let us finally assume that R, is chosen in such a way that

/ reas <1
Bg,

which is possible by Lemma 3.1. Then 7(k,#) < 1 and therefore

1 _n n

() < eff =) (= k), £ (3.16)

Obviously

1

bi=3 t
if the parameters m, s and ¢ are close to 1. Thus we may apply a lemma of Stampacchia
[St] to inequality (3.16) to get the claim of Lemma 3.2 (see also [Bi], p. 122, for further
details).

It remains to prove (3.12) which means that we have to give a variant of Lemma
5.20 ii) of [Bi]. This time we test the differentiated Euler equation valid for v. with
n*0yv: max[['. — k, 0] being admissible on account of Lemma 2.7. We get

n1+11n_1n1[1 1}>1
n—1st m2sn—1 2n—1s

/ n’ (L. — k)D3 £ (-, Vv.) (0, Ve, 0, Vv.) dx
A(k,7)
+ 2/ n(Te — k) D% f.(-, Vve) (0, Ve, V) ® 0,v,) dz
A(k,7)

+ / D% f.(-, Vv.)(8, V., 0,v. ® VI,) dzx
A(k,7)
= Tl + 2T2 —+ T3
- / Dy Dpf(-,V0.) : V(iPoyu.(T. — ) dz . (3.17)
A(k,7)
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If N > 1 we make use of the special structure and of (1.3) to see

1
T3 = 3 / D3 f-(+, Vv.) (e, ® Ve, e, ® VI,)dx
A(k,7)

p—2
> c/ I.? |V [*’n*dz. (3.18)
A(k,#)

Also by the special structure we find

1
T, = 3 /A(k ) n(C. — k)Dyf.(-, Vv.) (e, ® Vn,e, ® VL) dz,

hence

T, < 7'/ D% f.(-, Vo) (e, ® VI, e, ® VI,) dz
A(k,7)
welr) [ (OnP(re - PR da,
A(k,7)

where we used the Cauchy-Schwarz inequality for D% f,(x, Vv.), Young’s inequality and
(1.3). Note that the “7-term” can be absorbed in 73. Using the ellipticity for 7, we
deduce from (3.17), (3.18) and the latter estimates:

p—2 p—2
/ [.2 |VI.|*n*dx + / (. — k)[.? |V, |* dx
A(k,r) A(k,7)

q—2
< oo / Y% |y A(T. — k)2 de + [rhes. of (3.17)]| . (3.19)
A(k,7)
On account of (1.4) we have

rhs. of (317)] < ¢ / 22 (T, — k)| V2| da
A(k,7)

+/ 7 2|V, || VT, | da
A(k,7)

+/ 1Vl Vo (T. = K)Te2 dx]
A(k,7)
= C[Sl + Sg + 53] y

and with Young’s inequality we get (0 < 7 < 1)
—2 )
S < 7'/ F?nZ(FE — k)| V.| dz + C(T)/ N (. — k) dz,
A(k,7) Ak,F)

and for 7 small the first integral on the r.h.s. can be absorbed in the second integral on
the Lh.s. of (3.19). In the same way we handle Ss, i.e.
p=2

p—2 =_1_P
S, gf/ F,;Tn2|VFE\2dx+c(T)/ e 2 Ve 2de
A(k,7) A(k,7)
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Finally we have

=2 _ . g—2
S3 < c/ \VnA(T, — k)*I.” dx + c/ n?| Vv |*Tt 7 4.
Alk,7) A(k,7)

Collecting terms and dropping the second term on the Lh.s. of (3.19) we end up with

/ F?|VFE|2n2dx < ¢
Ak,7)

/ P2 — BT dg
A(k,7)
2 2a—1-957
—|—/ n°|Vue|"Te dz
Alk,7)

—l—/ |Vn2(T, — k)sz;_ dx] :
Ak, )

Observing
_ p—2 — p
(T, — k)= <=

and
—2

g-1-93~ a—5+1 a-5+1
‘V/U5|2FE ? SFE ? SFE 2 5

inequality (3.12) is established. O
From Lemma 3.2 the claim of Theorem 1.1 follows as outlined at the end of Step 5 of
Section 2.

4 Proof of Theorem 1.3

For 0 < § < 1 let us now introduce the global regularization
Tolv] = / f5(- Vo) dz - min  in upt WiQRY), (4.1)
Q

where f5(x, P) = §(14|P[?)%/?+ f(z, P) with exponent g to be specified later. Assume for
the moment that f satisfies (1.3) and (1.4) from Assumption 1.1. (Of course the following
considerations are true under weaker hypotheses.) If us denotes the unique solution of
(4.1), then obviously

sup /Qf(-, Vus)dz < o0, (4.2)

0<o<1

hence there exists a function u € uo+ W,'(€;RY) such that as § — 0 we have u; — @
in W, (Q;RY) (at least for a suitable subsequence) and [, f(-, V) dz < oo. This follows
from (4.2), the growth of f and from lower semicontinuity arguments. For the readers
convenience we first like to show that {u;} forms a J-minimizing sequence and that @

is the unique J-minimizer within the class o+ Wp1 (;RY). To this purpose we recall
the definition of the relaxed functional J given before Theorem 1.3 and observe that .J is
lower semicontinuous w.r.t. weak convergence on the space W]}(Q; RY) and that J = J

on uy+ Vc[)/ql (2; RY), moreover, we have
inf{J[w] : w € up+ fog(Q; RY)} = inf{J[w] : w € uo+ Vf/pl(Q;RN)}. (4.3)
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Lower semicontinuity of J immediately implies that

J[u] < liminf J[us] = lim inf J[us] . (4.4)
6—0 0—0

Consider next a sequence u,, € uy+ Vf/ql (4 RY) s.t.
) " inf{J[w] : w € ug+ WHQRY)} = a. (4.5)

In order to find {un,} we first consider a sequence uj, € ug+ W (Q;RY) s.t. J[ul, ] — o
as m — oo. With m fixed pick ¢, € C°(Q; RY) s.t.

k—00
lok = (U — wo)llwaomn) "= 0, (4.6)

and let 1y, := uo + . Clearly J is locally bounded on the space W (€;R") and convex,
thus locally Lipschitz. This implies by (4.6) that

T[] — JTuly,] =5 0,

and we may choose u,, = ¢y with £ = k(m) such that |J[u,,] — J[u,.]| < 1/m. Now (4.5)
is immediate. From the Js-minimality of us and the admissibility of the functions u,, we
deduce Js[us] < Js[tm], hence liminfs o J[us] < J[um,] which together with (4.4) implies
that J[u] < J[u,], and the J-minimality of u follows from (4.5) and (4.3).

Let us briefly indicate how to prove the unique solvability of the relaxed problem fol-

lowing [ELM]. Let v € up+ Vf/pl (;RY) such that J[v] < co. By the definition of .J there
exists for each m € N a sequence {v,(cm)}keN in up+ Vf/al(Q; RY) such that
= lim J[o{™] " T,
k—o0
o™ P22y i LP(O;RY), (4.7)
Vo™ F2° vy in LP(Q;RY).

We choose dense subsets {¢; }ien and {9 }ien of LP (©;RY) and LP (Q; R™V), respectively,
p' :=p/(p—1), and choose for each m € N an index k = k,, such that

1
/(v,(cm)—v)-cpldx < —, l=1,...,m,
m
o ) (4.8)
/(V’l)](cm)—VU)I’(/Jld.T <—, Il=1,....m,
Q m
which is possible on account of (4.7). If necessary, we also increase k,, such that
m 1
o — T )| < — (4.9)
holds for all m. Finally we let v,, := v,(;:) € uog+ W7 (% RY). From (4.8) we get
lim U - @ de = /v-goldx,
m— 00
a a (4.10)
lim Vo :hde = Vo de
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and (4.9) implies B
lim J[v,] = Jv], (4.11)

m— 00

in particular we get from (4.11) the bound
SUp |Vl (@myy < 00
m

This fact combined with (4.10) finally implies vp, — v as m — oo in W, (€; RY). Thus we
have found a sequence {v,,} in ug+ Wy (€;RY) whose weak W, -limit is v and which has

the property (4.11). Consider a second function u € ug+ W, (€; RY) such that Ju] < oo
and define {u,,} as before. Then we claim that J[u] = J[v] implies u = v, in particular we
get the uniqueness for our J-minimizer %. Following [ELM] it is easy to check that under
our Assumption 1.1 inequality (94) of [ELM] holds with f. replaced by f, and with the
choices =1, € = 0. We therefore get (97) of [ELM] and we can adopt their arguments
by replacing ¥, ¥, Wi, W bY Uy, U, Uy, u, respectively, with the result

—r1 1 1— 1—
J[§u+ 51}} < §J[u] + §J[v]

(see (101) of [ELM)) if Vu # Vv on a set of positive measure. This proves our claim.

Up to now all our considerations just used the first part of Assumption 1.1. Now we
like to investigate the regularity of u under the various additional hypotheses.

Case 1. § < p(141/n) together with Assumption 1.1. We proceed exactly as in Section

2 with f., v., Bog being replaced by fs, us, €2, respectively, where the exponent ¢ is chosen

according to (2.1). Then our first result is higher integrability of Vu, more precisely (see
Lemma 2.3):

Vi e LPX

loc(Q;RnN)
with the former choice of x.

Suppose now that n = 2 or that we are in the situation of Theorem 1.1, iii). In
the first case we can argue exactly as in Step 4 of Section 2, in the second case we
deduce Vus € L2 (Q; R*Y) uniformly w.r.t. §. Going back to Lemma 2.2 and using the
local boundedness of Vus we get from (2.5) that us is uniformly bounded w.r.t. § in the
space Wiloc(Q;RN), in particular we have Vus; — Vu a.e. on Q as 6 — 0. Consider

¢ € CP (S RY) and recall
/QDpf(;(-, Vus): Vodz =0. (4.12)
By dominated convergence we may pass to the limit § — 0 with the result
/QDPf(-,Vﬂ) :Vedz =0.

Since V1 is locally bounded, we deduce that @ is a local minimizer of the functional J
(in the sense of Definition 1.1), and the arguments outlined at the end of Section 2 imply
the Holder continuity of V.
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Case 2. The hypotheses of Theorem 1.2 hold. This time we choose ¢ according to (3.1)
and argue exactly as in Section 3 to get the appropriate version of Lemma 3.2. Then we
proceed as in Case 1.

Let us finally look at the unstructured situation, i.e. we discuss the case
g<p(l+1/n)

just under Assumption 1.1, where the regularization is done as before. From (2.5) we
deduce

/ (1 + |Vug?) 2 |V dz < ()
Q/

for any subdomain ' € €, thus

V2us)* do < ()
QI
provided that p > 2. Otherwise consider s € (1,2) and r € R to be specified later and
use Young’s inequality to get (T's := 1+ |[Vu;|?)

(VZug|®dz = /F§|V2u5\sf‘5’"dx
o o

< c[/ Ff\v2u5|2dx+/ F;’de].

Now we relate 7 and s through the condition 72/s = (p — 2)/2, i.e. r = s(p — 2)/4. If
s 1, then
2 2—p
— —
"aos T T2

which means that for s close to 1 u; belongs to W7,,.(Q; R") uniformly w.r.t. §, moreover,
as a consequence, we get Vus — Vi a.e. on (). By Lemma 2.3 we have uniform local
integrability of Vus up to the exponent py which is even bigger than ¢ (compare the
choice of ¢ after (2.7)), thus we may pass to the limit § — 0 in equation (4.12) including
”testfunctions” ¢ of class W (Q; RY) with compact support. Thus we have shown that @
is a solution of

divDpf(-,Va) =0 a..on ,
@ =ug on 0f),

where the boundary condition has to be understood in the Wpl—sense. Clearly
fG,Va)dz < [ f(-,Vv)dz
o o
for all domains ' € Q and any function v € W, (Q;R") such that v = @ outside of
(Y. But this type of local minimality is enough to prove partial C'®-regularity of % in
the interior of €2 since all comparison functions used during the proof belong to this class.

For details we refer to [BF1] and leave the necessary adjustments of Step 3 in Section 2
to the reader.
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