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Abstract

We consider the stationary flow of a generalized Newtonian fluid which is mod-
elled by an anisotropic dissipative potential f. More precisely, we are looking for a
solution u: 2 — R*, Q C R"*, n = 2, 3, of the following system of nonlinear partial
differential equations

—div {T(e(u)} + ukﬂ +Vr=g inQ
o | ()
divu=0 inQ, wu=0 onodf.

Here m: 2 — R denotes the pressure, g is a system of volume forces, and the tensor
T is the gradient of the potential f. Our main hypothesis imposed on f is the
existence of exponents 1 < p < gy < oo such that

A1+ [e2) 52 o2 < D2f(e)(0,0) < AL + [¢]?) 5 |o?

holds with constants A, A > 0. Under natural assumptions on p and gg we prove
the existence of a weak solution u to the problem (), moreover we prove interior
Cl@regularity of u in the two-dimensional case. If n = 3, then interior partial
regularity is established.

1 Introduction

We discuss the stationary flow of an incompressible generalized Newtonian fluid in a
bounded Lipschitz domain 2 C R*, n = 2 or n = 3. To be precise, we are looking for
a velocity field u: €2 — R” solving the following system of nonlinear partial differential

equations

—div {T(e(u))} + ukaa—;k +Vr=g inQ, (L.1)

divu=0 inQ, wu=wuy onof).

Here 7 is the a priori unknown pressure function, g: 2 — R" represents a system of
volume forces and ug: 0€2 — R™ denotes a given boundary function. The tensor 7T is
assumed to be the gradient of some (convex) potential f: S™ — [0, 00) which is of class
C? on the space S™ of all symmetric matrices. We adopt the convention of summation
over repeated indices running from 1 to n, moreover, for functions v: 2 — R" we let

() (z) = %(@Uj + o) (z) € S

whenever this expression makes sense.

In case f(g) = |e|? equation (1.1) reduces to the Dirichlet boundary value problem for
the stationary Navier-Stokes system, for an overview on existence and regularity results we
refer to the classical monograph [La] of Ladyzhenskaya or more recently to the monographs
[Gal], [Ga2] of Galdi where also the history of the problem is outlined in great detail.

AMS Subject Classification: 76M30, 49N60, 35J50, 35Q30
Keywords: generalized Newtonian fluids, anisotropic dissipative potentials, regularity




So-called power law models are investigated for example in [KMS]: for some exponent
1 <p< oo fis assumed to satisfy

AL+ [eP)' lo” < Df(e)(0,0) < A(L+[e)*7 Jof? (1-2)
for all e, 0 € S™ and with positive constants A\, A. Clearly (1.2) implies that f is of
p-growth, moreover, the first inequality in (1.2) implies strict convexity of f. Then, if
ug = 0 and in addition f(¢) = F(|e|?) (which is reasonable from the physical point of
view) Kaplicky, Malek and Stard discuss the two-dimensional case with the following
results: if p > 3/2, then problem (1.1) admits a solution which is of class C** up to the
boundary, whereas for p > 6/5 (1.1) has a solution being C*®-regular in the interior of
Q). Here of course the volume force term g is sufficiently smooth.

Suppose for the moment that the flow is also slow. Then in (1.1) the convective
term (Vu)u = u*0yu can be neglected, and (1.1) reduces to a generalized version of the
classical Stokes problem. In the monograph [FS] a variational approach towards (1.1) for
various classes of dissipative potentials f is described leading to existence and also (partial)
regularity results in the absence of the convective term. Very recently these investigations
were extended in [BF2] to the case of non-uniformly elliptic potentials which means that
(1.2) is replaced by the condition

L+ [e[2) [0 < D2f(e)(0,0) < A(L+[e) s |of? (1.3)

with exponents 1 < p < ¢g < 00, go > 2 and for all €, 0 € S™. (Note that the validity
of (1.3) with gy < 2 immediately implies (1.3) with g, replaced by 2 so that we may
assume ¢y > 2.) From (1.3) it easily follows that f is of upper growth rate ¢y, a lower
bound for f(g) can be given in terms of |¢[P. Examples of potentials f satisfying (1.3)
are given in [BF2], moreover, it is shown in this paper that weak local solutions of (1.1)
(with (Vu)u = 0!) under condition (1.3) are C1* in the interior of Q, if n = 2, ¢ = 2,
and partially Cb?, if n = 3, provided that we impose the bound ¢y < p(1 + 2/n).

The objective of this note now is to study the anisotropic (w.r.t. the ellipticity con-
dition) situation (1.3) for a non-vanishing convective term (Vu)u. To be more precise we
assume that (1.3) holds with exponents p, gy such that

6 .
z incase n =2, 2
p > g _ together with 2 < gy < pi . (1.4)
: incase n=3,
Moreover, let us assume that
u =0, geL®(R"). (1.5)

REMARK 1.1 For the sake of technical simplicity we just assume that the volume forces
are bounded functions. Of course our results are also valid under the weaker assumption
g € L' (Q: R"), whenever t(p) is chosen sufficiently large (for a definition of the Lebesgue
and Sobolev spaces we refer the reader to [Ad]). For a discussion of the hypothesis on the
boundary data we refer to Remark 2.1.

In order to get a weak form of (1.1) we multiply the first line of (1.1) with ¢ € C§°(Q2; R"),
div ¢ = 0, and obtain after integration by parts (using div¢ = 0)

/QDf(e(u)):6(g0)d:13—/9u®u:s(gp)dx:/gg-cpdx, (1.6)
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where u ® v := (u'vF). Therefore we have to solve equation (1.6) together with divu =0
in €2, u = 0 on 0. A priori it is not clear to which space a weak solution should belong,
therefore we give an existence proof by using an approximation procedure. To this purpose
recall (1.4), hence it is possible to choose ¢ > ¢ satisfying

pn— >qg>n. (1.7)
We then let (0 < 6 < 1)

fi(e) =61+ )2 + f(e), eeS”,

and consider the problem

to find us €W, (€ R"), divus = 0, such that

[ Diste(us) =) do - [ wsousie(o)da= [ g pda (1.65)
Q Q Q
for all p € C§°(Q;R™), divp = 0.

THEOREM 1.1 Let f satisfy (1.3) with 1 < p < 2 < gy < 0o and choose q according
to (1.7). Moreover, consider the data given in (1.5). Then (1.65) has at least one weak

[e]
solution us €W, (Q;R™). Moreover, we have
sup ||uslwy gy < oo
0<i<1

The proof of the existence result follows from a familiar fixed point argument (see [Lal),
the a priori estimate is shown in Lemma 2.1 for the sake of completeness. We remark
that by construction us turns out to be the minimizer of the energy

Js[w] —/f(; dx—/u5®u5:5(w)dx—/ng-wdx (1.8)

within the class .
10. .
W, (©;R") N Kern(div) .
Our first observation concerns uniform higher integrability properties of the sequence
{U5}.

THEOREM 1.2 Suppose that the assumptions of Theorem 1.1 are satisfied. Then the
functions ug are of class WllOC(Q; R™) uniformly w.r.t. §, where § = 3p in case n = 3, and
where we may choose any ﬁmte number q in case n = 2.

The proof of Theorem 1.2 will be given in Section 3. The main ingredient is a Caccioppoli-
type inequality being valid for the approximative solutions us. In Section 4 we will use
this information to pass to the limit, more precisely we have

THEOREM 1.3 Let the assumptions of Theorem 1.2 hold and fix any weak Wpl—cluster
point, i.e.

Us 0 in W, (4 R*)
for some sequence § = & going to zero. Then u is of class quloc(Q R™), where § is defined
in Theorem 1.2. Moreover, Df(e(u)) locally is of class W/(q 1y and u s a solution of

problem (1.6) being Hélder continuous in the interior of Q on account of Theorem 1.2.
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REMARK 1.2 In fact, u is a strong solution of class W2
pare Corollary 3.1).

1oc With some suitable o (com-

REMARK 1.3 In [FMS] the Lipschitz truncation method leads to the existence of so-
lutions for problem (1.6) in the case of power-law models provided that p > 6/5 (see also
[FM]). Note that the convective term in (1.6) is well defined (in dimension n = 3) since
the condition p > 6/5 implies the solution to be of class L*. It is not evident, how to apply
this method to the non-standard models under consideration (see, for instance, formula
(42) of [FM]). Here we rely on the a priori estimates of Theorem 1.2.

As to the regularity properties of the particular solution @ from above we limit ourselves
to the case gy = 2:

THEOREM 1.4 Under the assumptions and with the notation of Theorem 1.3 we con-
sider the case n = 3, gy = 2. Then 4 is partially of class C'®, i.e. there is an open set
Qo of full Lebesgue measure, | — Q4| = 0, such that 4 € CH*(Qp; R?).

REMARK 1.4 i) As in [BF2] it is be possible to extend Theorem 1.4 to the case
go > 2 together with gy < 5p/3. We leave the details to the reader, some comments
can be found in Section 5.

i) We also like to remark that partial reqularity in the setting of stationary electrorheo-
logical fluids has been recently established in the paper [AM] of Acerbi and Mingione.

THEOREM 1.5 Under the assumptions and with the notation of Theorem 1.3 we con-
sider the case n = 2, qo = 2. Then u has locally Holder continuous first derivatives,
i.e. u € CH*(Q;R?).

REMARK 1.5 At this stage we remark that the reqularization has to be defined with
respect to an exponent larger than n in order to have the boundedness of us. As a conse-
quence, the proof of Lemma 2.2 below reduces more or less to the one given in [BF2]. Of
course it would be directly possible to assume w.l.o.g. that we have gy > n just by enlarging
qo (keeping (1.4)!). As discussed in Remark 5.2 this would not affect the case n = 3 with
the exception that the proof of Theorem 1.4 becomes more technical.

But unfortunately the two-dimensional case actually requires the restriction qy = 2,
i.e. up to Theorem 1.4 we can choose gy > n (replacing also q by qo in the regqularization)
but, due to the method we use, the two-dimensional reqularity Theorem 1.5 is limited to
go = 2. For this reason we made a distinction between the exponents q and qq.

REMARK 1.6 i) It is desirable to give global variants of our results, for example to
prove higher integrability of Vu up to the boundary. Then, under suitable smallness
conditions, some results on unique solvability extend to our non-uniformly elliptic
problem. The idea for establishing a theorem of this kind is standard and, for in-
stance, presented in [Laj, p. 118. The main difficulty in the case of non-uniform
ellipticity is to handle potentials with lower growth rate p < 2. Again we leave the
details to the reader.

ii) It should be noted that for stationary electrorheological fluids in two dimensions the
existence of strong solutions has been obtained in [ER].
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Throughout this paper we use the following notation: for any ¢ € [1,n) we denote by ¢*
the Sobolev exponent, i.e. t* = nt/(n — t). The conjugate of t* is denoted by ¢, i.e.

nt

t=—————.
(n+1)t—n

The symbol u ® v stands for the symmetric part of u @ v, u ®v = %(u RV+vQu).
Uniform constants are just denoted by ¢ without being relabelled in different occurrences.

For tensors o we use the notation Vo = (0,0, ...,0,0) whenever this expression makes
sense.

2 Regularization: a priori energy estimates and weak
differentiability properties

LEMMA 2.1 Suppose that the hypotheses of Theorem 1.1 are satisfied. Then we have

sup /Q|a(u,5)|pd:v < 00. (2.1)

0<o<1

With the help of Korn’s inequality (see e.g. [MM] or [Kol], [Ko2], [Fi], [Fri], [St], [Ze]) we
deduce from (2.1) the a priori bound of Theorem 1.1

sup_||uslwy gy < oo (2.2)
0<do<1
Proof of Lemma 2.1. In fact, us is admissible in (1.65) which shows that
/ Dfs(e(us)) : e(us) dz — / us @ ug : €(ug) der = / g-usdz.
0 0 Q

Assumption (1.3) implies Df(Z) : Z > ¢1|Z|P — ¢a, ¢1 > 0, hence

/Q|5(“6)|pd$ < g —C2+/9Df5(5(u<s)) 15(“5)0133]

= ¢! Cz-l-/ua@w:e(w)dx—i—/g-wdx]. (2.3)
Q Q

An integration by parts gives the well known relation
/ us @ ug : e(ug)de = / uf;ugaiuf; dx = / 0; [u%uguﬂ dz — / 0; [ugug] uf; dz
Q Q Q Q
= / ubululy; dH" ! — / Oy ulud dw — / uboulul de
0 Q\_/O’ Q

thus we have .

/ Us Q@ Us : 5(u5) dr = 5/ uf;uf;uf;u,- dH» 1 =0.
Q a0



Note that the above expressions are well defined on account of ¢ > 2 > 3n/(n+2). Finally
we have for any « > 0 (with Sobolev’s and Korn’s inequality)

/ 9] [us| dz < a / e(ug)? dz + e(a),
Q Q

where the integral on the right-hand side can be absorbed on the left-hand side of (2.3)
if «v is sufficiently small, and the a priori estimates (2.1) and (2.2) are proved.

REMARK 2.1 Let us give some short comments on the Dirichlet boundary data. Up
to now we studied the so-called “no-slip boundary” which means that the fluid adheres to

the boundary, i.e. u =0 on 0 (a detailled discussion of this kind of boundary data can
be found in [FM]). Assume for the moment that u = uy # 0 on 0S2.

i)

ii)

iii)

iv)

Consider the general case p < 2: if ug # 0, ug € WL (R, divug = 0, we need
an additional uniform estimate (for the kinetic energy) [, |us|* dz < const in order
to prove the a priori bounds (2.1) and (2.2). Now we have to take us — uy as a test
function and obtain as additional term on the right-hand side of (2.3) the quantity

/Q ugl2le (1) | d . (2.4)

If v(e(u)) denotes the kinematic viscosity of the fluid under consideration, then
Df(e(u)) = v(e(u))e(u). If we merely assume that D f(e(u)) : e(u) > ¢1]e(u)|P — co,
then the wviscosity v(e(u)) may asymptotically vanish for large shear rates and it is
not clear whether the Dirichlet boundary value problem is in accordance with the
physical point of view — in general we just expect the mormal component of u to
vanish at the boundary (compare the inviscous Euler equations).

Although, for example, many polymeric liquids are (at least in case of bounded shear
rates) shear thinning (see [BAH]), i.e. the viscosity decreases if the shear rate in-
creases, it is not evident that the wviscosity asymptotically vanishes at high shear
rates. This motivates the additional assumption D f(e(u)) : e(u) > cile(u)|® — o for
some s > 2. Moreover, some fairly concentrated suspensions of small particles are
shear thickening (see [BAH]). Hence, considering a generalized Newtonian fluid at
very large shear rates in comparison to the particle sizes, it may even be reasonable
to assume s > 2. Note that we do not restrict our considerations to power law
models and that s is a free parameter which can be chosen independently from the

exponent p occuring in (1.3) (compare the notion of (s, p,q)-growth discussed for
instance in [BFM] and [BF1]).

In case s > 2, ug as in i), we have (by Korn’s and Poincaré’s inequality)

/ lusg — uo\zdx < c/ le(ug) — s(uo)\zdx.
Q Q

Since the left-hand side of (2.3) is now of growth order s > 2, we may absorb the
integral (2.4) under some suitable smallness condition on &(ug). If s > 2, then we
just have to assume uy € W} (;R™), ¢ sufficiently large, in order to obtain the a
priori estimates (2.1) and (2.2) in the case of non-vanishing boundary data.



Next we are going to give some weak differentiability results for the regularizing sequence
{us} from Theorem 1.1 which are needed in the following.

LEMMA 2.2 Let the assumptions of Theorem 1.1 hold. Then we have:
a) us € W22 (R,

loc

b) (14 |e(us)|)V* € Wy, (Q) together with

,loc

V{1 +[e(us) P} = S0+ le(us) )1 e (us) [V e(us)

c) Dfs(e(us)) € Wyyg1)10c(S™) and
O{Dfs(e(us))} = D*fs(e(us)) (Ohe(us),-),  k=1,....n.
Proof. The proof follows the line of Lemma 3.1 given in [BF2]. We fix a ball By € (,
consider n € C°(Bg), n = 1 on B,, n = 0 outside of B, |Vn| < ¢(r' —r)~!, where

0 < r < 7" < R. We denote by A the difference quotient in direction e, £k = 1,...,n.
Observe that by results of [La] or [Pi] (see also [Gal], III, Theorem 3.2) there exists a

function ¢ €W,/ (B,,R") with the property

1
divey = EVnZAhu,g.
Therefore, taking into account the definition of us and choosing the solenoidal test function
¢ in (1.65) as
@ = h™'n*Apus — 1P,

we easily get for sufficiently small |h|
/ Ah{Df(;(s(u,g))} s e(Apus)n® do
B,,.I(l'o)
= / Ah{Df5(E(U5))} : (he(¥) — V* © Apus) d
BT/ (zo)
+/ Ap(us ® ug) : {e(Apus)n” + Apus @ Vi’ — he(y) } da
B,,,I(SUO)
[ g AP+ ) do. (2.5)
B,(zo)

Arguing in the same way as in Lemma 3.1 of [BF2] we introduce the parameter-dependent
bilinear form

B, = /0 D? f5(e(us) (z) + the(Apug)(x)) dt



acting on pairs of symmetric matrices, and deduce from (2.5) the inequality

/ B, (e(Aug), e(Apug)) dz
BTI(.’[O)

1
< —/ B.(e(Apus, e(Apus)) dz
2 /B, (w0)

2 1—2

/ A gl da / (14 e(us)? + [he(Dpus) 2)? da
B'r’ (Z‘o) B'r’ (z())

# [ Aufus @ us) s {e(@uah + Ayus © Vi = he() } da
B,i(zo)

Cc

NCEDE

+ / g A_p(®Apus + hap) dx| . (2.6)
B,,I(:E())

Note also that the ellipticity condition for D?f; guarantees

1
1 / B, (e(Aug), (Anug) 2 dz > (g, 6) / e(Apug)PPde.  (2.7)
B,,J(.’E())

4 B, (:L‘o)

Further we consider the convective term from the right-hand side of (2.6). Successive
application of Young’s and Holder’s inequalities immediately gives (recall the choice (1.7)
of ¢ which implies that us is bounded)

‘ / Ap(us ® us) : {e(Apus)n” + Apus © Vi’ — he(y) } da (2.8)
B,,J(:L‘o)

< C/ (IAnus|le(Anus) In* + | Anus|*| V| + [Apus|le(¥) k) dz
B, (zo)

2

< a/ le(Apus) *n? dz + ,0(70[)2 / |Apus|? dzx / 1dz ,
B,/ (z0) (r'=r) B, (z0) B, (zo)

where o > 0 is chosen sufficiently small such that the first integral on the right-hand
side of (2.8) can be absorbed on the left-hand side of (2.6). It remains to discuss the
last integral from the right-hand side of (2.6) involving the volume forces. We have the
identity

aiakvi = 8jsz~k(v) + 8kez-j(v) - az-ejk(v) y

hence
(V2| < ¢|Ve(v)].

The L* bound of g and standard application of Young’s and Hélder’s inequalities obvi-



ously give

/ gA,h(nQAhu(g + ht) dz
B /(1‘0)

T

< o[ (el@mla? + [ Buus [Vl + () ) da
B,(zo)

< a/ le(Apug)*n? dz
B,,.I(:E())

2 1—-2
() {1 + / |Apus|? dx] [/ 1 dx] } : (2.9)
B,/ (o) B,/ (o)

GERE
Again, as in (2.8), the first integral on the right-hand side of (2.9) may be absorbed on the
left-hand side of (2.6) provided that o > 0 is chosen sufficiently small. Now, combining
(2.6), (2.7), (2.8) and (2.9), chosing « sufficiently small and taking into account the
properties of n we arrive at

/B L BelelB) () s (2.10)

2 c
< 2 L (e(Anug), £(A I
< 3/Brl(gm)zs(e( i), e hu,;))d:v—i—(rl_r)z{ +

2 1—2
/ Apus|? da / (1+ le(Apug) B2 + |e(us) )} do .
B,./(zo) B,./(zo)

It remains only to observe that (2.10) is completely analogous to inequality (3.8) from
Lemma 3.1 of [BF2]. Now the rest of the proof follows by verbatim repetition of the
arguments of [BF2| given after (3.8). [

3 Caccioppoli-type inequalities and uniform higher
integrability

We start by proving a Caccioppoli-type inequality for the functions us.

LEMMA 3.1 Consider a ball Bg(xo) € 2 and choose radii 0 < r < r' < R. Then there
exists a local constant c(r,r"), c(r,7') = c(r' —r)~# for some suitable positive exponent [3,
such that for any 1€ CR(By(z)), 0 < 1 < 1, =1 on By(z), |Vn| < e — )

1+ |
B

/ akugajuf;akume dz
B'r’ (Z‘())

/ T]ZF;%|VE(U5)|2(1$ < c(r,r")
B,,.I(.’Eo)

a
I'? d:v—l—/ \us||Vus|* do
(wo) B,.1(z0)

|

where the last integral on the right-hand side vanishes in the two-dimensional case. Here
we have set U5 := 1+ |e(us) >

,,.I

+




Proof. Again we follow ideas of [BF2]. Let o5 = D f5(¢(us)). The growth of f implies o5 €
LY@ (Bp(x0);S™), |us ® us| € L9@7Y is immediate and we recall that g € L>(£; R?).
As a result

o

®: W, (Br(zo);R") 3 ¢ — [05—u5®u5} :e(go)dx—/ g-pdz
Br(zo) Br(zo)

belongs to the dual space W,'(Bg(z); R*)*. On account of (1.65) we have ®(¢) = 0
whenever div ¢ = 0. This ensures the existence of a pressure function ps € LY/ (q_l)(BR),
fBR(wO)pJ dz = 0, (see, for instance, [Gal], p. 180, Lemma 1.1, or [La], [LS]) such that

/ [05 — U ® u(;] ce(p) dx — / g-pdr = / psdiv o dx (3.1)
Br(zo) Br(zo) Br (o)

for all p €W (Bgr(zo); R"). In particular we have p; € qu/(q_l)(BR(:rO)). Now fix 7 as
above and denote by A, the difference quotient in direction ey, £k = 1,...,n. Moreover,
we choose ¢ = A_p{n*Apus}, h sufficiently small, in (3.1). This gives

/ Ay, [05 —Us® u(s} ce(*Apus) dz
B,,,/(z())
+/ gA_p{n’ Apus} =/ Appsdiv (n*Apus) dz . (3.2)
B, (z0) B,.1(wo)

Note that it is not immediate whether in (3.2) the difference quotients may be replaced
by the corresponding derivatives. Let us consider the convective term: by Lemma 2.2 we
know that us is of class W3, hence [Vus|? is locally of class L? and we find real numbers
2 <81 <3 and 1< sy < 2 such that

‘Ah(ug ® ug) e{nQAhu5}| < c{|Ah(u5 ® ug)|*

Hle(Anus) = + ()| Anugl* }
thus we have equi-integrability which together with the almost everywhere convergence

Ap(us ® ug) : (> Apus) h30 O (us ® ug) : €(n*Opus)

implies by Vitali’s Theorem (see, e.g. [AFP], p. 38)
/ Ap(us ® ug) = e(n*Apus) dz 30 O (us ® ug) : £(n*Opus)dx . (3.3)
B’I" (IO) B,,.I (l‘o)

Moreover, the L* bound on g obviously gives

/ gA_h{nQAhu(;} dz "2 /
Br’(zo)

B'r’ (Z‘o)

gak{7728kU5} dz . (3.4)
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With (3.3) and (3.4) we follow the lines of [BF2] to obtain
/ N?0k05 1 Ope(us)dz < —2/ nokos : (VN © Orus) dx

B, (zo) B,.r(z0)

+/ Or(us ® ug) : £(n*Opus) dz
Br’(zo)
- G0k n?Opus b do
/B,'r’ (‘TO) { }
—2/ nokpsl : (Vn © Ogus) dz . (3.5)
B'r’ (330)

As shown in [BF2] we have

=

|VO’5|F? < c(8k05 : aka(u,s)) ,

hence the first integral on the right-hand side of (3.5) is estimated by

/ NOo; - (Vn © (9ku5) dx
B, (z0)

< Ve da s [ 9 vus ds
B,/ (zo

B,,J (SL‘())

= cp/ " Ox0s : Oke(us) dz + p_l/ |V77|2F?|Vu5|2dx,
BTI(.CCo)

B,/ (z0)

where p > 0 is chosen sufficiently small such that the first integral on the right-hand side
can be absorbed on the left-hand side of (3.5). The pressure term on the right-hand side
of (3.5) is handled with the equation

g+div(05—u5®u(5):Vp5.

This gives
‘/ nokps1 : (Vn © akU,5) dx
B,.1(zo)
< of ko9 Vsl do
B,,J(:E())
ve [ 9wl Vulda
B,,J(w())
re [ gl VAl de = T, + T+ 75
B,/ (zo

T, is bounded as claimed above, i.e.

Ty < c(r, 7“')/ lus||Vus|* dz .

Br’ (Eo)
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The last integral 75 is estimated from above by | B (z0) Pg/ ®dz and it remains to discuss
Tll
2—¢q a=2
Ty < cp/ n’|Vos|’Ts> d:c—i—c(p)/ (Vn|?| Vus*Ts? dz,
B,.(zo) B,(zo)

hence we obtain the same upper bound as given for the first integral on the right-hand
side of (3.5). Summarizing these results and recalling the ellipticity condition for D?f we
get

/ 772F?\V5(u(5)|2 dz < c/ N’ 005 : Ope(us) dz
B,.1(zo) B, (z0)

Cc

VAN

4=2
/ |V77|21“;2 |VU5|2da:+/ \us||[Vus|? dz
B,./(zo)

B,.1(zo)

+ / ak (U5 ® U,5) : 6(7728kUJ) dx
BTI(Z‘O)

+ / g@k [7728ku5] dx
B,(zo)

]. (3.6)

The first integral on the right-hand side of (3.6) is estimated with the help of Korn’s
inequality, where we use the fact that ¢ < p*

;2
/ |V77|21“;2 Vug|*dz < c(r,7) 1+/ |Vus|?dz
B, (zo B (zo)

< c(r,r') 1+/ |u5|qdfv+/ le(ug)|? dx
B,./(wo) B,./(0)

. T’

< cfr,r") 1+/ F%dx .
Br’("EO)

For the last integral on the right-hand side of (3.6) we have

<c / n\VnHVu(5|dx+/ n*|V2us| dz | .
BT/(.’L‘O) BT’(EO)

weiter hence with o > 0 sufficiently small

p—2 2=p
/ n?|V2u;| dz < a/ 7721“;2 Ve (us)|? dz + c(a)/ n’T,% dx.
B (zo) B (o)

B’r’ (:Eo)

/ gak [’172 ak U,5] dx
B,/ (zo)

Here the first integral on the right-hand side may be absorbed on the left-hand side of
(3.6) provided that o > 0 is chosen sufficiently small. Summing up, it is proved at this
point

p—2
/ n°Ts2 |Ve(us)>dz < cr, 1)
B,J(-'L'O)

/‘ rﬁm+/ lug| | Vug|? dz
B (JJO) B’I‘I (.’L‘o)

+c|l1+ ] (3.7)

/ Ok (us ® ug) : (n*Opus) do
BTI(LEO)

12



and it remains to discuss the integral resulting from the convective term on the right-hand
side of (3.7). This is done with a standard observation (see, for instance, [MNRR]):

/ Ok (us ® us) : 5(7723ku5) dz = / ak(ugug)aj{nQ(?kufs} dz
B, (x0) B,/ (x0)
= [ oyududorou} i
BTI(EO)
= / wh0;ub O {n*Opus} da
BTI(Z‘O)

= —/ 8ku§8juf58kuf5772dx
Brl(xo)
1 .
——/ u}|Vug|*0;m° dz .
2 J 5,1 (xo)

In the two-dimensional case we recall (again compare [MNRR]) that the first integral on
the right-hand side vanishes on account of the divergence-free condition and the lemma
is shown. |
Combining some arguments of [KMS] and [BF2] we are now going to give a Proof of
Theorem 1.2. To this purpose we first claim

LEMMA 3.2 Suppose that the hypotheses of Theorem 1.2 hold. Then, for any Q' € Q
there is a constant c(Y') (independent of §) such that

/ V|75 dz < ().
Q/

Proof of Lemma 3.2. Step 1. Given n as above we have by Korn’s and Holder’s
inequality (see [MNRR], p. 227)

2D2 2 < 1 V 2—p F% V 2 2d
17" D7 usl| o8, @y < €1+ [[Vusl|Los, (20)) 5" [Ve(us)n” dz

B'r’ (mo)

1+/ Fé dz + / lus|| Vus|* do
B,.1(zo) B, (%0)

/ Ol dsulopulsn® da| | (3.8)
B, (zo)

< cfr,r)

+

where we also used Lemma 3.1. Note that on account of the a priori estimate (2.2)
an analogous inequality holds if || D*usn?||2 on the left-hand side of (3.8) is replaced by
|V(Vusn?)||2. Sobolev’s Embedding Theorem then implies

|Vusn?||?w. < right-hand side of (3.8). (3.9)
n—p
Step 2. Let us choose some real numbers a € (0, 1), v > 1 such that

np Y
T 1— =n. 3.10
qary 0 . q( a) 1 p ( )

13



Note that (3.10) holds for

p2

n—p)(g—p)

a=%6(0,1), fy=(

>1,

where the range of a and 7 follows from our assumptions on ¢ and p. Holder’s inequality
now implies

=1

1
vy vy
/ [Vus|?dz < / (Vg9 dz / |Vu5‘q(1*a)7%1 dz
B, (z0) Brl(xo) BT/(:E())
np %
< c / |Vugs|»=» dz
B,.1(xo)

We finally observe that ¢ < p(n+2)/n gives v~ ! < 2(n—p)/np, hence for some sufficiently
small parameter a > 0:

2(n—p)

/ Vus| 77 dz . (3.11)
B'r’ (wo)

Step 3. Following [KMS] we find a bound for the second integral on the right-hand side
of (3.8): choose real numbers a € (0,1), ¥ > 1 such that

/ |Vus|?dz < c(a) + «
B,I(wo)

. np _ 7
2pa7 = ——, 2p(1—a)—— =p. 3.12
pay = p( a)ﬂy_1 p (3.12)

Note that (3.12) holds for

p((n+1)p—mn)
n—p)(3n = (n+1)p)

where the conditions @ € (0,1) and 4 > 1 follow from p > 3n/(n+3). The same condition
implies

3n—(n+1)p

>1
2p ’

a= 6(0’1)’ '7:(

P np
and we obtain for & > 0 sufficiently small

/ lus||Vus|>dz| < c||us|| ne / \Vus|*P dz
B.i(z0) " J B, (o)
/ |V [P d / Vus| POV d
B, (1‘0) BT/($0)
2(n=p)

/ |Vus|» 7 dz
B'r’ (wo)

/ Vs dz . (3.13)
B (zo)

1 _ 2(n —p)

P

ot §

k74

3=

IN
o

3

IN
o

IN

cla) +a
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Step 4. In the three-dimensional case n = 3 it remains to discuss the third integral on
the right-hand side of (3.8). The discussion is the same as in Step 2. whenever the choice
g = 3 is admissible. This leads to the requirement p > 9/5 in the three-dimensional case.
Step 5. It is proved in (3.9), (3.11), (3.13) that we can find a sufficiently small number
p > 0 such that

2(n—p) 2(n—p)

/ Vug| =7 <c(p)e(r,)+p / Vus|» 7 da
By (:Eo) B, (J,‘o)

This gives by Lemma 3.1, p. 161 of [Gi] the uniform bound

/ \Vuﬂﬁ dz < const,
Br (o)

and the proof of Lemma 3.2 is finished. [ |

In a next step we make use of Lemma 3.2 in order to improve the Caccioppoli-type
inequality from Lemma 3.1.

LEMMA 3.3 Under the hypotheses of Theorem 1.2 and with the notation of Lemma 3.1
there is a positive exponent v > 0 such that

-2 -2
/ T2 |Ve(us)|?dz < ey (r' — 7")2/ T2 |[Vus — Q*dz + co(r')7.
Br(xo)

B, (x0)
Here ¢y, co are uniform positive constants and Q@ € R™™ is an arbitrary matriz.

Let us assume for the moment that the lemma is true and let us first finish the proof of
Theorem 1.2. We choose

=3 if n=3,
X = 2 :
any number>ﬁ if n=2,

and let o = px. Following the proof of Corollary 4.1 in [BF2|, we note that an appropriate
choice of () in Lemma 3.3 gives

/ F;;\Vu(;—QdeSc/ F?dm.
B (x0) B,.1(zo)

Moreover, the quantity co(r')” can be interpreted as a local constant. Then the interpo-
lation arguments presented in Lemma 4.4, [BF2|, give with some appropriate exponent 3
(BTI (l‘o) e e Q)

a x 1 a x P
/ r? dx] < 5[/ I? dz +c(r,r')!/ I} dz
B, (zo) Br/(z‘o) /

and with Lemma 3.1, p. 161, of [Gi] Theorem 1.2 is established. [
It remains to give a Proof of Lemma 3.3. It is known by Lemma 3.2 that

B
+c,

”uts”L;’;’C(Q;Rn) <c, (3.14)

15



where the local constant is independent of §. If Q € R**" is fixed, then the arguments
leading to (3.6) give with us; replaced by us; — Qx

p=2 92
/ 772F52 |V€(u§)\2dx < cl/ |V77\2F52 \VUJ—Q|2dx
B, (zo)

Br’ (.’130)

+CQ{

/ g - O[Ok (us — Q)] dz
B,/ (z0)

/ o Ok[us ® us) : €(n*Ok[us — Qx]) dz
B, (zo

} . (3.15)

The second integral on the right-hand-side of (3.15) is handled with the help of (3.14):

+

‘ / Okus ® us) : (n*Ok[us — Qx)]) dz
B'r’ (330)

<c / |Vu5||V772||Vu5—Q|dx+/ \Vus|n?| Ve (us)| do
B,1(x0) B, (wo)

< ¢

/ (Vus|® dz + (7"—7")_2/ Vus — Q|* dz
B (zo) By (o)

2-p p=2
+ / 2| Vus| T * | Ve(us)|Ty* da
B,,J(:Eo)

From Young’s inequality we deduce

D 2
/ n°Ly? [Ve(us)|dz < ¢
B, (o)

4-p
+/ I dz+
B,,J(CL‘o)

The integral involving the volume forces is estimated by

q—2
(7«'—7«)2/ LTV QP (3.16)
B,/ (xo

] |

/ g O[O (us — Q)] dz
BTI(SC())

< c

/ qg- ak[7]28k (u5 — Q.’E)] dx
B,(zo)

/ 0|Vl Vs — Q| da
B,s(z0)

+/ 772|V2U5| dz| =: C{Tl + TQ} .
BTI(JJO)

Here we have for T}

T

IA
o

(r' — 7“)_2/ - |Vus — Q*dz + |B,.:(x0)|]
B,/ (zo

< ¢ (r'—r)_Z/ F?|Vu5—Q|2dx+ (r"™
Br’ (‘TO)

, (3.17)
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and for 15
T, < c/ n°|Ve(us)| dz
BTI(CCO)

< oz/ 772F(?\V5(u(5)|2d:c+c(a)/ Iy? deo. (3.18)
B,(zo) B

r’(wo)

(4-p)/2

Since in addition the integral [, (wo) L' x is also bounded by some power (r')?, the

lemma is proved by combining (3.16)—(3.18). [

COROLLARY 3.1 Fiza < 3p/(p+1) if n = 3, in the two-dimensional case we assume
a < 2. Then, for any Q' € Q there is a constant c, independent of §, such that

|lusl|w2r2y < c.

Proof. By Theorem 1.2 we have us € qu,zoc- This, together with Lemma 3.3, implies for
any Q' € Q

p—2
/ [2 |Ve(ug)|dz < ().
As a consequence, we obtain for any « as above (using Young’s inequality)

2—p

|Ve(us)|*Ts*

[N}

|Ve(us)|“de = /F52 dz
QI !

-2 2-p_a
c{/ rg’T\vg(uJ)\?dH/ T, }
Q/ Q

Hence, again by Theorem 1.2, we have the corollary. |

IN

Up to now we used the Caccioppoli-type inequality Lemma 3.1 to prove a first higher
integrability result Lemma 3.2 which in turn gives an improved Caccioppoli-type inequal-
ity Lemma 3.3 with Theorem 1.2 as a consequence. Now we use Theorem 1.2 for a final
improvement of our Caccioppoli-type inequality which is needed for the blow-up argu-
ments of Section 5. Let

hs = (14 |e(us)[*)% .

LEMMA 3.4 Consider the case n = 3 together with (1.4). Then, for any matriz QQ €
R3*3 and for any B,(x¢) € By (z¢) € Q we have

/ Vhs2de < c/ I |Ve(uy)[ de
BT(CUO) BT(wO)

qn—2

= C[(T’—H‘z / I, 2 |[Vus—Q2dz + () s +de(r, ', Q)|
BTI(J)())

where the constant c(r,r', Q) is just depending on r, r' and the matriz Q.

17



Proof. We return to (3.5) where on the right-hand side u; is replaced by us — Qx. In

qn—2

order to reach the power I'; > on the right-hand side of Lemma 3.4 we split
g2
05 = 05 + 05 = Df(e(us)) + 0qL's” £ (us)
and observe that the modified right-hand side of (3.5) is an upper bound for the quantity
/ 7’}28190; : 8ks(u5) dz
B (1‘0)
which in return by ellipticity of D?f is bounded from below by

c/ HQF?|V€(U5)|2(1.T.
B,/ (z

Observing
/ n’|Vhs|* dz < c/ nZF(;,T\VE(u(;)\de
B /(SC()) B (xo

it remains to discuss the four terms on the right-hand side of (3.5). We have

2/ oo 776]475 : (V?? ® 8k[u5 — QCC]) dz
1(xo

< c[/ ( )nIVU(}\\Vn||VU5—QIdx+/ ( )U|VU§HV7I||VUJ—Q|d$
1(zo B.i(xg

qn—2

2—-q9 0
< a/ [;% |Voi’n*dz + c(a)(r' — 7“)2/ [;% |Vus — Q dx
B, (zo) B,,/(wo)

+c/ n|Va3||Vn||Vus — Q| dz . (3.19)
B/ )

Since T %)?|V512 < ¢80} : e(us) we may choose o in an appropriate way such that
the first integral on the right-hand side of (3.19) can be absorbed, the second one occurs
on the right-hand side of the inequality stated in Lemma 3.4, and the third integral is
estimated as follows:

| 1¥otnlvalVus - Qlds
B,/ (zo)
< ca/ T Ve (us) [0Vl Vs — Q| da (3.20)
cco)

B dx

IA

co [a/ 772|V8(U5)|2F? dz + ¢(«) / V| Vus — QT
1(zo) B,/ (zo)

(where I'y := 14 |Vus|?). Since 2(¢—1)+2—p < 3p (< ¢ < 2p) on account of (1.7) we see
that (recall Theorem 1.2) the last integral on the right-hand side of (3.20) is bounded from
above by a suitable constant ¢(r, r’, Q) independent of ¢ (the first one again is absorbed).

18



The second term on the right-hand side of (3.5) can be handled as done before the
inequality (3.16), i.e. an upper bound is given by

4

p—2 4-p
c a/ p2TL? |V5(u5)\2dx+c(a)/ r, d:c+(r'—7“)2/ Vs — Q|2 dz
B,(z0) B,/ (zo) B, (xo)

where we already used Young’s inequality. By Holder’s inequality we have

4-p

. 4-p ~ 3p 3 44
/ 7 dp < / Fyfde| ()5 (3.21)
BT,(J;O) BTI(JIO)

and the a priori bound of Theorem 1.2 applies again.

The third term on the right-hand side of (3.5) is treated as outlined after (3.16) where
for estimating 77 we clearly can replace ¢ by ¢o in the second line of (3.17), and T is
discussed in (3.18).

The last term on the right-hand side of (3.5) is estimated as follows (compare the
discussion of the proof of Lemma 3.1

‘ / n0kps1 : (VN © Oklus — Qz]) dz
BT’(wO)

< ¢

/ 1Yol ||Vl [Vus — Q| da

B,/ (zo

+ / 7| Vo2 V|| Vus — Q| da
B, (z0)

+ / 1|V (us ® us) || V|| Vus — Q| da
B, (z0)

4 / 77|g||V77||Vu<s—Q|d$]
B,/ (zo

= [F! + F+ F, + Fy], (3.22)

where F!' and F? have already been discussed in the beginning. Using the uniform local
boundedness of u;s, we see

F < c / 772|VU5|2d:c+(r'—r)_2/ Vus; — Q|* dz
B,(zo) B, (zo)
L dp
< ¢ / s 2 de+(r' — 7")_2/ |Vus — Q*dz| . (3.23)
BT/(SL‘()) B,,J (550)

Finally we have

F3 S Cc y (324)

(r' — r)2/ - \Vus — Q*dz + ()3
B,,.I )

and by collecting our results (3.19)-(3.24) Lemma 3.4 is established. [
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4 The limit equation
In this section we pass to the limit 6 — 0 and prove Theorem 1.3. Thus, consider a weakly

COIlVGI‘geIlt sequence
6—0

us —: 4 in W, (;R"),

where it is known from Theorem 1.2 that u is locally of class qu Moreover, it is estab-
lished in Lemma 2.2 that

Us € WE 1 (4RY) . Dfs(e(us)) € W1y e 87
Let us finally recall that (see the proof of Lemma 2.2, [BF2])
|Ah{Df5 u5 }| < \/ B Ahu(s (Ahu(g))% .

Passing to the limit A — 0 (which is admissible) we obtain

(M

VD fs(e(us))} < [D*f5(e(us))|? D* fs(e (us)) (Bre (us), Oee (us))

and, as a consequence, for B,.(zq) € Q

/B  [VADIs{e(us))} | o

—

9q

< ¢ /B ( )\DQfa(a(u(s))ﬁ{D (e (1)) (e tg), D (g} b5

q—2
2q—2

RICES))
= [/Br(mo) D2f6(5(u(5))(8k5(u6)’ ak8(u5)) d.’L‘] l/;,(zo) ‘D2f5(€(U5))‘qu2 dx
= L-1.

Note that I, is bounded on account of Theorem 1.2, a bound for I; is found with the same
arguments as given in Section 3. (We may take fBr(mo) D?f5(e(ug)) (Oke (us), Ope(us)) dz
as the left-hand side of (3.15). Recalling Theorem 1.2 we then we proceed as before with
uniformly bounded right-hand sides.) Hence, it is shown that uniformly w.r.t. ¢

D fs(e(us)) € Woyig-1)10e(% S™) - (4.1)

Now let ,
Ws = Dfs(e(us)) = 0q(1+ [e(us)|*) = £(us) + Df (e(us)) -
The uniform estimate (4.1) yields as § — 0
Ws — W in Lq/(q 1) (Q S”) and a.e.

loc

(4.2)

Moreover we have a.e. as § — 0 (recall Theorem 1.2: ¢8(1 + |e(us)|?)*z e(us) — 0, hence

Df(e(ug)) = W ae.,
e(us) = (DFY'W) ae.
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This fact, together with the weak LP-convergence of €(us), gives
(Df) (W) =e(@) or Df(e(@)=W,
and (4.2) reads as (§ — 0)
W5 — Df(e(w)) in W) (Q: S }

q/(g—1),loc

Ws — Df(e(@)) in LYCD(Q:S") and a.e.

loc

(4.3)

Now fix a solenoidal test function ¢ € C§°(£2; R"). By the definition of us; we have

K}nxdw»:dmdx:A}m®w:dmdx+Ag-wMu

Then (4.3) shows that the left-hand side of the latter equation converges to [, Df(e()) :
g(¢)dz. The a priori estimate stated in Theorem 1.2 also gives

/w@w:e(gp)dm 630/ﬂ®ﬂ:5(g0)dx
Q Q
and Theorem 1.3 is established. [ |

Next consider €' C Q and w € qu (;R™), divw = 0, and let

Jw, Q= [ f(e(w))dx — /
QI
We claim the local J-minimality of %, to be more precise:
COROLLARY 4.1 For any Y and w as above, spt (i — w) € ' we have
Ju, Q] < J[w,].

REMARK 4.1 The results of [BF3] even show that (under some suitable conditions) u
1$ a global J-minimizer in the natural energy class.

ﬂ®ﬂ:€(w)dx—/ g-wdz.

/ !

Proof of Corollary 4.1. We have

T, 210,20 = [ [#e(w) - fe@)] dz- [
The convexity of f yields
Fle(w)) — F(e(@) > DF(e(@) : e(w — ),

QU : e(w—1u) dx—/ g-(w—1u)dzx.

7 7 U

hence we arrive at

Jiw, = Ja, 0 > [ DfE@) : e(w—1) d:c—/

Q 94

u®u:6(w—u)daz—/ g-(w—1)dz.

QI
If we observe that (by approximation arguments and by higher integrability of ¢(u)) the

differential equation (1.6) for @ remains valid whenever ¢ € W/ (Q;R"), divp = 0, ¢
compactly supported in {2, then we have proved that

Jlw, ) = JJa, 2] > 0.
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We finally need a limit version of Lemma 3.4 for the blow-up arguments of the next
section. To this purpose we let

h=(1+e@)s, T[:=1+e@)?.

LEMMA 4.1 With the assumptions and the notation of Lemma 3.4 we have

/ [Vh]?dz < c|(r' - 7”)_2/ 1_‘202__2\Vﬂ —QPdz+ () r |
By (zo) B, (zo)

Proof. From Lemma 3.4 it is known that h; is uniformly bounded in W} loc; thiS, together
with the pointwise a.e. convergence of e(us) established after (4.2) shows that passing to
the limit 6 — 0

hs — h in W3, and a.e.

Lower semicontinuity implies that

q—2

/ |Vh|*dz < climinf | (r' — T)Q/ [? |Vus — QI dz + (7"')4’% . (44)
By (o) 00 B,/(x0)
From Korn’s inequality we infer that

IVus = Vg s,y < e{llus — @l s, + lle(us) — e(@)]| o5 ,)}, (4.5)

where we already know that [us; — ll,, — 0 as 0 — 0. Moreover, |e(u;) — e(@)|% is

3p/d , hence

uniformly bounded in L,

3p

le(ug) — (@))% 509 in LY.

loc

The pointwise convergence of e(ug) implies ¥ = 0, thus it is shown that
/ e(uz) — (@) dz "2 0,
BT/(ZEO)

and, as a consequence of (4.5)
Vu; '3 Vi ae. (4.6)

99—2 —2
In the same way we observe that I'; 2 |Vus — Q|? is bounded in L;, o / % thus

|2 6—0 2

—/19 IquO

loc *

q072

Now (4.6) implies 9 = s |V — QJ?, hence

a9 —2 ga—2
/ L T Vu; — Q* dz = (HO/ [
B,(zo) B,./(zo)

which, together with (4.4), proves the lemma. [ |

Q" dx
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5 Partial regularity in case n = 3, ¢y = 2

In this section we are going to prove Theorem 1.4. So let us assume that all the hypotheses
of this theorem are valid and recall that we already know Va € L (Q;R?*3) which

loc

means @ € C%'71/P(Q;R%). W.lo.g. we may asume that @ is Holder continuous on
since otherwise we just restrict the following considerations to balls compactly contained
in some subdomain 2 € Q. The proof of Theorem 1.4 is based on a blow-up argument
(see Lemma 5.2), and as usual we define the excess of @ w.r.t. a ball B,(z) € Q as

E(z,r) = FE(u ][ le(u )m|2dy,

Br(z)

(...)zr and f B, (z) denoting mean values. We will also make use of a Campanato-type
estimate, which can be traced in [GM], a proof is also given in [FS], Lemma 3.0.5, v).

LEMMA 5.1 Consider a matriv A € S® such that |A| < L. Let w € W} (By;R?),
divw = 0, satisfy

D?f(A)(e(w),e(p)) dz =0

B

for all ¢ EW (B1;R?), divep = 0. Then there is a constant C* = C(p, L) such that

][|€ N-|?dz < C*r 2][|<5 (w))1|* dz

for any T € (0,1).

REMARK 5.1 The constant C* - according to [FS], Lemma 8.0.5, v) — depends on the
ellipticity constants of the form D?f(A). Since

A1+ [AP) 2 [e]? < D*f(A)(e,€) < Ale]?

we get (p < 2) .
M1+ L2)F e < D*f(A)(e,e) < Alef?,

thus C* is independent of the particular matriz A.

Now the main lemma of this section reads as

LEMMA 5.2 Fiz a real number L > 0, p € (0, i), po := 35 — 12—), choose C* = C*(p, L)
according to Lemma 5.1 and let C, := 2C*. Then, for any 7 € (0,1/4) there erists
A = XL, 7) such that: if we have for some ball B,(x) €

|5(ﬂ)w,r

and  E(z,7) + 1% < )\?,

then it follows that
E(z,r) < C.m?|E(z,7) + 12| .

From our main lemma we obtain in a standard way the following corollary which of course
implies Theorem 1.4 since the complement of ) is of Lebesgue measure zero.
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COROLLARY 5.1 Denote by €y the set

Qp = {x € Q: sup|(e(@))y,| < oo and liminf E(z,r) = O}.

>0 r—0

Then g is open and we have
€ CYP(Qu;RY)  forany 0< B <1.

Let us start with the Proof of Corollary 5.1. Following the remarks given after formula
(5.11) in [FL] we get from Lemma 5.2 by a well known iteration process

e(a) € C"*(Q;S?)  for some exponent 0 < a < 1.

Next fix an open set w € €, let v = Oyu and observe that analogous to (5.3) of [BF2]

/ D2f(e(@)) (e(v), £(¢)) dz = / (@ ® ) : e(p) dz + / g Opdz (5.1

for any solenoidal ¢ € C§°(w;R®). For xy € w, &9 := &(4)(wo), Br(zy) € w we now
choose vy € Wy (Bg(zo; R?) as the solution w.r.t. the Dirichlet data v|gp,(zq) 0f divvg =0
together with

/B ( )DQf(so)(s(vo),e((p)) dz =0 (5.2)

for any solenoidal ¢ € C§°(Br(zo); R*). Then it is well known (see, e.g. [GM] or [FS],
Lemma 3.0.5, iii)) that for 0 < r < R

r\3 r\3
Vuo|>dz < ¢ —= / Vo2 dz < el —= / Vol?dz, 5.3
/Br(a)o) | O| <R> BR(.'Eo) | O| (R> BR(;E()) | | ( )

where the last inequality follows from (5.2) and Korn’s inequality. As a consequence of
(5.3) we immediately obtain

/ Vul’dz < ¢ / |Vv0|2dx+/ |VU—V’UO|2d33]
B, (x0) r(z0) Br(zo)

3
< ¢ (%) / |Vv|2dx+/ |VU—VU0|2d:U]. (5.4)
| Br(zo) Br(zo)

The last integral on the right-hand side of (5.4) is handled with the ellipticity condition,
Korn’s inequality and (5.2)

/ Vv — V> dz < c/ D?f(e0)(e(v) — £(vo), e(v) — £(vo)) dz
Br(zo) Br(zo)

= c/B ( )DQf(eo) (e(v),e(v) — e(vp)) dz

_ C/B L D)) e0) () do

-I-c/ [D?f(e0) — D*f(e(@))] (e (v),e(v) — &(vo)) da
Br(zo)
= L+, (55)
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To proceed further we use (5.1) and Young’s inequality for 0 < «y sufficiently small. This
gives for I;

I, = c/ 8k(ﬂ®ﬂ):e(v—v0)d:r+c/ g-0k(v—up)dx
Br(zo)

Br(zo)

<[ oo VuPdeselal [ Valde+elglLR.
Br(zo) Br(zo
Moreover, we may estimate

I < coscayeD’f(e(@) / V0| [V — V| dz

Br(wo)

2
< ’Y/B (o) Vo — VU()|2 dz + ¢(7) [OSCBR(xo)DQf(g(ﬂ))] / |VU|2 d .
r(zo

Bpg(zo)

For ~ small enough we can absorb terms on the left-hand side of (5.5). Moreover, given
any a > 0, we can calculate Ry = Ry(«) in such a way that (v being fixed)

c(7)0SCBh(ze) D f(e(8)) <

for all R < Ry(a). Here of course continuity of (@) is used. Since we already know that
Vi is locally of class L*, we find (v :=1—1/p)

/ V| dr < cR*7 = cR"Y |
Br(zo)
As a result it follows from (3.4) and (3.5)

r\3
Vv)Pdz <ei|(=) +a / (Vo|?dz + ¢, R' T (5.6)
Lo (&) el ),

r(Z0)

for any r < R < Ry(«). Now choosing a small enough, we get (see [Gi], p. 86, Lemma
2.1) from (3.6) the growth estimate

/ Vo2 < er't?,
Br(‘TO)

hence v locally is of class C%" on w, thus % € C**(w;R?). This gives the better estimate

/ \Vi|*dz < cR?
Br(zo)

and (3.6) can be replaced by

fra et < [ (5) 4o

from which the claim follows by a further application of [Gi], p. 86, Lemma 2.1. |

/ \Vu2dz + o R
Br(zo)
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For the Proof of Lemma 5.2 we assume by contradiction that for L > 0 fixed and
for some 7 € (0,1/4) there exists a sequence of balls B,_(z,,) € € such that

[(e(@W)amrml < L, (5.7)
E(Tm,mm) + 128 = N2 T30, .
E(@m, Trm) > C.7°)\2. (5.9)
We then consider the scaled sequences
1
um(z) = " [(@m + Tm2) — TmAmz — 1m(2)], |2 <1,
Ay = (€(@)amirms  Ym(2) = Bnz + am ,

where we choose a,, € R® and B,, € R3*? skew-symmetric such that
U |* dz < ¢ e (tnm)|? dzz . (5.10)
Bl Bl

From (5.8) we know that
e (um)|?dz < e, (5.11)

By
hence (5.10) and (5.11) imply together with Korn’s inequality
Uy "= in WH(B; R,  divi=0. (5.12)

Moreover, (5.7) implies
A m—)OO

AeS?, JA <L, (5.13)

whereas (5.9) gives

][\5 Up) — (£(Um)), > dz > C,1? (5.14)

As usual one has to prove at thls point (using the convergences (5.12) and (5.13)) that 4
satisfies a suitable limit equation. To this purpose let ¢ € C°(By;R?), divy = 0. The
scaled version of our equation for @ then reads as

D f(Ame(un)(2) + Am) 1 €(¢) dz

B

= P(2) - g(Xm + rmz) do

B

4 /B @ o) <)

r—x

m)dx=:11+12.

'm

Letting U(x) := u(z) ® u(x) we rewrite this in the following way

A [D J Qe (1) (2) + An) = Df (An)| + () d

= w( ) - 9(Tm + rmz) dz

r—X

e ][ (U(w) ~ Uam)) + <05)

By, (Tm)

m)dx::11+12.

'm
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Here condition (5.8) ensures
1
TmAm < Mn "0,
hence I; — 0 as m — oo follows since g is of class L*°. For I, we observe & € C%#0(Q; R?)

(on account of 3 — 12) <1-— %) and obtain

T poy—1 _ T po—p MO0
|2|§crm/\m—c)\—rm - 0.

m

Up to now it is proved that

lim [ AL [D FOun (tm) + A) = D f(Am)] o) dz =0

m—00 B1

for any ¢ as above. We then proceed exactly as in [BF2] to derive the limit equation

D?f(A)(e(1),e())dz = 0 for any solenoidal 1 € C5°(By; R?). (5.15)

B;

In particular the Campanato inequality of Lemma 5.1 is valid and as in [BF2] we come
to a contradiction (recalling (5.14)) provided that we can prove the strong convergence

e(um) "= e(a) in L2 (By;S?). (5.16)

To this purpose let us fix @ €W, (By; R®), div@ = 0, and consider

T — T

w(x) = rpAn (

, € B, (tm).
). 2 € By (an)

From Corollary 4.1 we get

/Brm(zm) f(Am e () (x - ""’”)) da

m

< [ e () <t (2

Tm T'm

—/ u®u:6(w)dx—/ g-wdzx,
By (Tm) By, (Tm)

hence

/B f(Am + Ane(um)) dz < /B F (A + M [e(um) + £(0)]) dz

—rm3/ T®u:e(w) dx—rm3/ g-wdx. (5.17)
By, (Tm) By (Tm)

As in the proof of Proposition 5.2 from [BF2] we now show (0 < p < 1)

1
lim/ /(1+|Am+/\mg(a)+t/\m5(wm)\2)p22|e(wm)|2(1—t)dtdz:O, (5.18)
B, Jo

m— o0
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where we have set w,, = u,, — 4. With the notation of [BF2] we let & = @[t — ]| — ©m.
Using (5.17) we argue exactly as in [BF2], where we now have to consider the additional
terms

—rm3/\m2/ L®u:e(w)dr — /\m2rm3/ g-wdzx
By (Tm) By (Tm)

on the right-hand side of [BF2], formula (5.23). We first observe that

By
— 0 as m — o©

—)\m2rm3/ g-wdr = rm/\ml/ (T + Tm2) - W(2) dz
By, (Tm)

since rm)\,_nl — 0 as m — oo. Moreover, we may estimate

r 3N 2 / u®1u:e(w)dy
By (Tm)

< A7 /B V@) = Uam) o) dz

< ertopt ; le(w)|dz "= 0.
1

As a result, (5.18) can be established in an analogous way as outlined in [BF2]: letting
U = /\'r_nl [(1 + [Ap + )‘mg(um)‘Q)% —(1+ |Am|2)%:|

it finally remains to prove
Vi [*dz < (). (5.19)

B,

But from Lemma 4.1 we get

VinPdz = A2 /B A CREOIER R

B,

IA

(PN /B . IVa-Qftds

9 1 43
+eA, T Tm b

and if we choose @ = A,, + r,.,' B (recall the definition of u,,) the boundedness of
c(p))\;fr;f/ Vi — Q|*dx
By, (Tm)

is immediate. Finally, our choice of u gives

2
3—4  pit 32 o,
-2 D __ m ? m—»00
Ay rm P = N2 Tm — 0,
m

thus (5.19) is established. Now we can follow [BF2], proof of Proposition 5.2, Case 2, to
get (5.16) which completes the proof of Lemma 5.2. [
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REMARK 5.2 If qo > 2 (together with (1.4) and n = 3) then Lemma 5.2 has to be
modified according to Lemma 5.2 of [BF2] which makes things more technical but the
result will be the extension of Theorem 1.4 under condition (1.4). If for some reason the
reader is directly interested in the general case “n = 3 + (1.4)”, some aspects can be
simplified: one starts with the observation that w.l.0.g. o may be assumed to be larger
than 3 (so the right-hand side of (1.3) may be enlarged still having (1.4)). Then the
reqularization fs is defined with respect to the exponent qo (no additional g occurs) and all
results up to Section 4 remain valid. But, as mentioned before, the formulation and the
proof of Lemma 5.2 are more involved since we now have to take care of the additional

excess-type quantity
JACORICOMIEE
B, (z)

6 The case n =2, gy =2

In this section we consider the case n = 2 together with gy = 2, i.e. we are going to prove
Theorem 1.5. Let us note that in contrast to Section 5 it is not evident how to generalize
the result to the case ¢y > 2. A powerful tool for proving full regularity in two dimensions
is a lemma due to Frehse and Seregin (see Lemma 4.1 of [FrS]). Our main task in this
section is (compare Section 6 of [BF2]) to verify the assumptions of the Frehse-Seregin
Lemma. To this purpose we recall Corollary 3.1, i.e.

ue W;_S,ZOC(Q; R*) forany £ >0. (6.1)

Now let us fix two discs By, (Z) € Bagr(zo) € Q and choose n € C§°(Bs(Z)), n =1 on
B, (Z), |Vn| < ¢/r. Using (6.1) it is proved in [BF4] that we may pass to the limit 6 — 0
n (3.5). Moreover, it is obvious that on the right-hand side of the resulting inequality
% can be replaced by 4 — Qz for some arbitrary matrix @@ € R**? (see again [BF4] for
details). If we let 6 := D f(e(@)), then we end up with

/ n*0kG : Ohe(t)dz < —2/ nokd : [Vn © dla — Qz]] dz
B2r(_) B2r(j)
+/ Olu ® ] : e(n*Olu — Qz]) dz
Bg',-(.’i)
—/ g - Ok [n°0k[u — Q]] d
B2T(E)

Letting T5,.(7) := Bo.(Z) — B.(T) and

N

H := [D?f(e(u))(0ke(u), Ope(u))]?,
ho= (1+|e(@)]?)F,
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we obtain in the same way as outlined in [BF2|, Section 6,
1
2

/ 772H2d3: < ¢ H?dx / hH dx
Bar (%) T Jn.(z) Tor (Z)

+/ Olu @ a) : e(n* Ol — Qz]) d
Bzr(i)
- g-alrala-a)da

B (Z)

—2/ nokpl : [Vn © Ok(t@ — Qz)|dx, (6.2)
BQT(E)

where p denotes the pressure function related to the limit problem. Since u is locally
bounded, it follows for a > 0 sufficiently small (T := 1 + |¢(a)|?, ' := 1 + |Vi|?)

/ 7 @ Ae(Be) dz < ¢ / B, T (0, | da
Bzr(i) BQT(E)
< a/ 7721;%26(3/&7,) : £(0k@) dz
BQT(.’E)
+c(a)/ n2|Vﬂ|2f2_Tp dz
Bzr(f)

< ca/ n*H*dz + c(a)/ F="dz. (6.3)
B2T(i) B27‘(

8l
=

Since |V is locally summable w.r.t. any power we get

/ 5" dz < c(aq)r*®  for any exponent oy < 2.
Bzr(i‘)

Next we estimate

/ Oplu @ u] : Vn* © Okt — Q) dz
Bs, (J_I)

< e / 7|Vl Val|Va — Q| da
T-gr(i‘)

< er! [/ Val|? dac] [/ \Vﬂ—QFdx]
TQT(.’E) T27‘(5_U)

< cr_lr"‘z/ hHdzx, ay<1, (6.4)
TQT(C_U)

1
2

where the last inequality follows as in [BF2] (compare the calculations after (6.3) in [BF2]
for handling szr @) |Vu — Q|?>dz). Moreover, higher integrability is used again. Let us
consider the volume force term: we have

< c

/ 9- 0 (0] — Qa) da / V| Va - Q|da
Bzr(i) BQT(E)

+/ 772|V5(ﬂ)|dx] — [T+ Ty},
Bgr(.’f)
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where
T, < 7/ n2fp5_2|V6(u)|2dx+c(7)/ 2T dg
B (Z) Bor (Z)
(recall |V2a| < ¢|Ve(u)]). For v > 0 sufficiently small, the first integral on the right-hand
side may be absorbed on the left-hand side of (6.2) and the second one is of growth order
r® for any oy < 2. Moreover,

=

| By, (7)2

T < er! / Vi — Q|* dx
sz(ﬂ_})
< cr_l/ hH dz r*? .
Tzr(if)

Let us finally discuss the pressure term in (6.2):

‘ / 91 : [V ® 9(a — Qu)] da
B (T)
<o uvelvyIVa-Qds
Bor(Z)
ve [ Ve n)viva- Qlds
Bzr(if)
we [ alglivnVa- Qlds =T + T + Ty,
B, (T)

Since @ is uniformly bounded, 75 (and of course T3) is estimated in the same way as
outlined in (6.4). We further have

cr / |H|? dz
Tor (Z) ]

!/‘ |Va—QPd4
Tor(Z)

< et / |H|? dz / hH dx .
TQT(.T) | T2r(5_5)

N

IA
|

T

D=

Combining this inequality with (6.2)—(6.4) we end up with

2
/ hH dz + cor? (6.5)
Ty (5))

H2dx§clr1[/ H?dz + r®
Br(i‘) Tzr(i‘)

being valid for any exponents «, 8 < 2. Note that the additional term cor® on the right-
hand side of (6.5) is rapidly decreasing and completely irrelevant for the proof of Lemma
4.1 of [FrS]. To be more precise, inequality (A 3.6) of [FrS] now reads (using the notation
of [FrS])

H2 dz S 03
B, (Z)

log, (?) H?*dz +r*/log, (?) + Cyr?

Tor (i)
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which is an immediate consequence of inequality (6.5). If we choose 3 > «, then clearly
the latter estimate reduces to the original form of (A 3.6) in [FrS]. Hence we may apply
the lemma with the result

H?*dx < K(t)|Inr|™* forany t> 1. (6.6)

B (z)
Observing |Va| < c¢H, (6.6) together with the version of the Dirichlet-Growth Theorem
given in [Fre|, p. 287, implies the continuity of & = D f(e(%)). Now we can proceed as in
the proof of Corollary 5.1 to get the statement of Theorem 1.5. |
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