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Abstract

Variational methods are among the most accurate techniques for estimating the optic flow.
They yield dense flow fields and can be designed such that they preserve discontinuities, al-
low to deal with large displacements and perform well under noise or varying illumination.
However, such adaptations render the minimisation of the underlying energy functional very
expensive in terms of computational costs: Typically, one or more large linear or nonlinear
systems of equations have to be solved in order to obtain the desired solution. Consequently,
variational methods are considered to be too slow for real-time performance. In our paper we
address this problem in two ways: (i) We present a numerical framework based on bidirec-
tional multigrid methods for accelerating a broad class of variational optic flow methods with
different constancy and smoothness assumptions. In particular, discontinuity-preserving reg-
ularisation strategies are thereby in the focus of our work. (ii) We show by the examples
of classical as well as more advanced variational techniques that real-time performance is
possible – even for very complex optic flow models with high accuracy. Experiments show
frame rates up to 63 dense flow fields per second for real-world image sequences of size 160
× 120 on a standard PC. Compared to classical iterative methods this constitutes a speedup
of two to four orders of magnitude.

AMS 2000 Subject Classification: 68T45, 65N55, 49K20, 65K10, 35J60, 65N04
Key Words: computer vision, optic flow, differential techniques, variational methods, multigrid
methods, partial differential equations.
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1 Introduction

In computer vision the estimation of motion information from image sequences is one of the
key problems. Typically one is thereby interested in finding the displacement field between two
consecutive frames, the so-called optic flow. In this context, variational methods play a very
important role, since they allow for both a precise and dense estimation of the results. Such
techniques are based on the minimisation of a suitable energy functional that consists of two
terms: a data term that imposes temporal constancy on certain image features, e.g. on the grey
value, and a smoothness term that regularises the often non-unique solution of the data term
by an additional smoothness assumption.

Although recent developments [9, 12, 34] have shown that variational methods are among the
best techniques for computing the optic flow in terms of error measures [4], they are often
considered to be too slow for real-time applications. In particular the computational costs
for solving the resulting linear and nonlinear system of equations by using standard iterative
methods are regarded as too high. In [10] we have already demonstrated for variational methods
with homogeneous regularisation that bidirectional multigrid strategies [7, 8, 26, 42, 48] do allow
for real-time performance. These techniques that create a sophisticated hierarchy of equation
systems with excellent error reduction properties belong to the fastest numerical schemes for
solving linear or nonlinear systems of equations.
In this paper we show that by introducing a suitable notation it is possible to set up a much more
general multigrid framework for real-time optic flow computation with variational methods. This
allows us to develop multigrid schemes also for discontinuity-preserving techniques with image-
and flow-driven regularisation, both in their isotropic and anisotropic setting. Moreover, it is
possible to extend our work to more advanced optic flow methods that are capable of a robust
and accurate estimation of the results. To the best of our knowledge our paper is the first one
to report real-time performance for variational optic flow methods of such a quality on standard
hardware.

Paper Organisation. Our paper is organised as follows. In Section 2 we give a review on five
different techniques that serve as prototypes for variational optic flow techniques with and with-
out discontinuity-preserving regularisation. In this context, we introduce the notation of motion
and diffusion tensors that forms the basis of our general multigrid framework. In Section 3 we
extend this framework to two more advanced optic flow techniques. Compared to the previously
discussed prototypes these approaches offer an improved accuracy and an enhanced robustness.
Section 4 is dedicated to discretiation aspects. It shows how to discretise the resulting Euler–
Lagrange equations and which kind of linear or nonlinear systems of equations have to be solved.
Efficient multigrid schemes for this purpose are developed in Section 5. To this end, different
kind of multigrid strategies are discussed. In Section 6 we present an experimental evaluation
that includes experiments with different real-world sequences, performance benchmarks for all
prototypes and comparisons to results from the literature. Finally, a summary in Section 7
concludes this paper.

Our paper extends work previously published at the 5th Conference on Scale-Space and PDE
Methods in Computer Vision [11]. Substantial differences include, among other things, the
considerations of all frequently used types of regularsation strategies (homogeneous, image- and
flow-driven as well as isotropic and anisotropic), the extension to two more advanced variational
optic flow techniques (Bruhn et al. [12] and Papenberg et al. [37]) and a much more extensive
experimental evaluation.
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Related Work. In the literature on variational optic flow methods, coarse-to-fine strategies are
quite common to speed up the computation (see e.g. Anandan [3], Luettgen et al. [33]). They
are based on a successive refinement of the problem whereby coarse grid solutions serve as initial
guesses on finer grids. However, from a numerical viewpoint such unidirectional schemes are not
the end of the road. They are clearly outperformed by bidirectional multigrid methods that
revisit coarser levels in order to obtain useful correction steps. While there is some literature on
these highly efficient schemes for variational optic flow techniques with homogeneous and image-
driven regularisation (Glazer [25], Terzopoulos [40], Zini et a. [50], El Kalmoun and Rüde [18],
Enkelmann [20], Ghosal and Vaněk [24]), only the work of Borzi et al. [6] is known to the authors
where an optic flow problem was solved by means of a nonlinear bidirectional multigrid scheme
(FAS). Also for other tasks in image processing and computer vision, multigrid methods have
been used successfully. In the context of photometric stereo and image biniarisation Kimmel
and Yavneh [29] developed an algebraic multigrid method, while Chan et al. [13] researched
geometric multigrid schemes for variational deconvolution with TV regularisation. For TV
denoising Vogel [43] proposed the use of a linear multigrid method within a nonlinear fixed-
point iteration, while, very recently, Frohn-Schnauf et al. [23] investigated a nonlinear multigrid
scheme (FAS) for the same task.

2 Basic Variational Optic Flow Techniques

2.1 The Data Term

Let us consider some image sequence f(x, y, t), where (x, y) denotes the location within a rect-
angular image domain Ω, and t ∈ [0, T ] denotes time. In order to retrieve corresponding objects
in subsequent frames one has to assume that certain image features do not to change over time.
Such features may include the grey value, higher image derivatives such as the gradient or the
Hessian or scalar–valued expression such as the norm of the gradient, the Laplacian or the deter-
minant of the Hessian [37]. Since we focus on basic optic flow techniques, we restrict ourselves
at this point to the widely used grey value constancy assumption. It can be formulated as

f(x + u, y + v, t + 1) − f(x, y, t) = 0, (1)

where t and t + 1 are two consecutive frames. Performing a Taylor expansion and dropping all
higher order terms one obtains its linearised form that is given by

fxu + fyv + ft = 0. (2)

Here, the function (u(x, y, t), v(x, y, t))> is the wanted displacement field, and subscripts denote
partial derivatives.

2.1.1 The Motion Tensor Notation

In order to simplify notation and to allow for a better understanding of the proposed discretisa-
tion coarse grid approximation approach (DCA) [48] in Section 5, let us introduce the concept of
motion tensors [21]. To this end, we reformulate equation 2 as an inner product between the spa-
tiotemporal flow vector (u, v, 1)> and the spatiotemporal image gradient ∇3f := (fx, fy, fz)

>.
This allows to rewrite the data term that based on a squared formulation of this equation as a
quadratic form given by

ED(u, v) = (fxu + fyv + ft)
2 =

(

(u, v, 1) ∇3f∇3f
> (u, v, 1)>

)

=
(

(u, v, 1)J (u, v, 1)>
)

(3)
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where the motion tensor J := ∇3f∇3f
> is a 3 × 3 matrix which is positive semidefinite by

construction. One should note that such a reformulation by means of a quadratic form and a
positive semidefinite motion tensor is possible for all constancy assumptions presented in [37].
However, in the case of the grey value constancy assumption, the obtained quadratic form is very
special, since the associated motion tensor coincides with the well-known structure tensor [22].

2.2 The Smoothness Term

Obviously, in case of a singular motion tensor, the solution of equation 3 is non-unique. Varia-
tional methods overcome this so–called aperture problem by additionally assuming (piecewise)
smoothness of the result. As classified in [46], there are basically five different types of strategies
to regularise this often non-unique solution of a data term: homogeneous regularisation that as-
sumes overall smoothness and does not adapt to semantically important image or flow structures
[27], image-driven regularisation that assumes piecewise smoothness and respects discontinuities
in the image [1, 35] and flow-driven regularisation that assumes piecewise smoothness and re-
spects discontinuities in the flow field; see e.g. [16, 39, 46]. Moreover, when considering image
and flow-driven regularisation, one can distinguish between isotropic and anisotropic smoothness
terms. While isotropic regularisers do not impose any smoothness at discontinuities, anisotropic
ones permit smoothing along the discontinuity but not across it.
For each of the five strategies we have chosen one prototype based on the motion tensor formu-
lation for the linearised grey value constancy assumption. In the following these approaches are
presented in detail.

(a) Homogeneous Regularisation

Prototype for the class of methods with homogeneous regularisation is the classical method of
Horn and Schunck [27]. Their method assumes global smoothness by penalising deviations from
smoothness in a quadratic way [41]. The corresponding energy functional reads

EHOM(u, v)=

∫

Ω

(

(u, v, 1)>J (u, v, 1) + α
(
|∇u|2 + |∇u|2

))

dxdy, (4)

where the regularisation parameter α is a positive number that steers the smoothness of the
resulting flow field.

(b) Image-Driven Isotropic Regularisation

Instead of penalising deviations from smoothness in a quadratic way, one may think of down-
weighting the smoothness term at locations where the magnitude of the spatial image gradient
is large [1]. This form of regularisation that respects discontinuities in the image data is called
image-driven isotropic regularisation. The associated energy functional is given by

EII(u, v)II =

∫

Ω

(

(u, v, 1)>J (u, v, 1) + α w(|∇f |2) ( |∇u|2 + |∇u|2 )
)

dxdy, (5)

where w(s2) is a positive decreasing function in R. The method we have chosen to represent
this class of regularisation is based on the Charbonnier [15] function which reads

w(s2) =
1

√

1 + s2

ε2
S

(6)

where εS is a parameter to steer the smoothness.
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(c) Image-Driven Anisotropic Regularisation

As prototype for the class of optic flow methods with image-driven anisotropic regularisation we
consider the technique of Nagel and Enkelmann [35]. Their method accounts for the problem of
discontinuities by smoothing only along a projection of the flow gradient, namely its component
orthogonal to the local image gradient. As a consequence, flow fields are obtained that avoid
smoothing across discontinuities in the image data. The energy functional associated to this
anisotropic form of regularisation is given by

EIA(u, v)=

∫

Ω

(

(u, v, 1)>J (u, v, 1) + α (∇u>DNE(∇f)∇u + ∇v>DNE(∇f)∇v)
)

dxdy, (7)

where ∇ := (∂x, ∂y)
> denotes the spatial gradient and DNE(∇f) is a projection matrix perpen-

dicular to ∇f that is defined as

DNE(∇f) =
1

|∇f | + 2ε2
S

(
f2

y + ε2
S −fxfy

−fxfy f2
x + ε2

S

)

=:

(
a b
b c

)

. (8)

In this context εS serves as regularisation parameter that prevents the matrix DNE(∇f) from
getting singular.

(d) Flow-Driven Isotropic Regularisation

In contrast to image-driven regularisation methods, flow-driven techniques reduce smoothing
where edges in the flow field occur during computation. Flow-driven isotropic methods realise
this by penalising deviations from smoothness less severely than in the quadratic setting (L2

norm). As a consequence, large gradient features such as edges are better preserved. Such a
form of penalisation can be related to statistically robust error norms [28]. The corresponding
energy functional reads

EFI(u, v) =

∫

Ω

(

(u, v, 1)>J (u, v, 1) + α ΨS

(
|∇u|2 + |∇v|2

) )

dxdy, (9)

where Ψs(s
2) is a positive increasing function in R with the aforementioned properties. As

prototype we have chosen a method that penalises deviations from the smoothness with the L1

norm of the flow gradient magnitude. This corresponds to total variation regularisation [38]
which we implemented by means of a regularised variant given by

ΨS(s
2) =

√

s2 + ε2
S. (10)

Here, εS serves as small regularisation parameter. A related functional that approximates TV
regularisation is proposed in [47], while variational approaches for rotationally not invariant
versions of TV regularisation have been investigated in [16, 17, 32].

(e) Flow-Driven Anisotropic Regularisation

The fifth and last regularisation strategy are flow-driven anisotropic smoothness terms [46]. In
contrast to the isotropic case where the non-quadratic function Ψs penalises the magnitude of the
flow vector, it is now applied to the local flow tensor ∇u∇u> +∇v∇v> which corresponds to its
application to both eigenvalues of the tensor. This proceeding allows an anisotropic penalisation
that adapts to the local flow structure. The associated energy functional is given by

EFA(u, v) =

∫

Ω

(

(u, v, 1)>J (u, v, 1) + α tr
(

Ψs( ∇u∇u> + ∇v∇v> )
) )

dxdy, (11)

where tr is the trace of the local flow tensor. As for the isotropic case we have chosen a method
as prototype that is based on the total variation.
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2.3 The Euler–Lagrange Equations

Following the calculus of variations [19], the minimisation of the previously discussed energy
functionals comes down to solving their Euler–Lagrange equations. As for the motion tensor in
the data term, also a very compact and general formulation for the smoothness term is possible:
the diffusion tensor notation [45]. Let us now explain this notation by the example of the
Euler-Lagrange equations (a)-(e).

2.3.1 The Diffusion Tensor Notation

(a)-(c) The Linear Case

In the first three cases (a), (b) and (c) the Euler–Lagrange equations have the coupled form

0 = J11 u + J12 v + J13 − αLLu, (12)

0 = J12 u + J22 v + J23 − αLLv (13)

with the linear differential operator

LLz(x, y) = div
(
D(|∇f |2) z(x, y)

)
(14)

and reflecting Neumann boundary conditions. The 2 × 2 matrix D within the divergence ex-
pression is thereby called diffusion tensor and is given by

(a) Homogeneous Regularisation D(|∇f |2) = I

(b) Image-Driven Isotropic Regularisation D(|∇f |2) = w(|∇f |2) I

(c) Image-Driven Anisotropic Regularisation D(|∇f |2) = DNE(|∇f |2)

(d)-(e) The Nonlinear Case I

In the cases (d) and (e) the associated Euler-Lagrange equations have a structure similar to the
ones for (a), (b) and (c). They are given by the coupled form

0 = J11 u + J12 v + J13 −
α

2
LNL(u, v), (15)

0 = J12 u + J22 v + J23 −
α

2
LNL(v, u) (16)

with the nonlinear differential operator

LNL(z(x, y), z̃(x, y)) = div (D(∇z(x, y),∇z̃(x, y)) ∇z(x, y)) (17)

and reflecting Neumann boundary conditions. Here LNL is a nonlinear differential operator,
since it depends nonlinearly on its arguments z and z̃ (which are in fact u and v). This can be
seen directly from the associated diffusion tensors that are given by

(d) Flow-Driven Isotropic Regularisation D(∇z,∇z̃) = Ψ′

S(|∇z|2 + |∇z̃|2) I

(e) Flow-Driven Anisotropic Regularisation D(∇z,∇z̃) = Ψ′

S(∇z∇z> + ∇z̃∇z̃>)

6



where the derivative of the regularised total variation is obviously nonlinear since it reads

Ψ′

S(s
2) =

1

2
√

s2 + ε2
S

. (18)

As we will see later, this nonlinearity of the differential operator LNL has serious impact on the
resulting discrete system of equations and on the derived multigrid strategy.

3 More Advanced Variational Optic Flow Techniques

After having introduced our prototypes for the five different types of regularisation strategies,
let us now discuss two advanced prototypes for more advanced optic flow techniques: The noise
robust combined-local-global (CLG) approach of Bruhn et al. [12] and the highly accurate optic
flow method of Papenberg et al. [37]. In the following both techniques are explained in detail.

(f) Noise Robustness - The Method of Bruhn et al.

In motion estimation the sensitivity of approaches with respect to noise is a very important
aspect for the design of algorithms. In this context, Bruhn et al. [12] presented a variational
optic flow approach that tackles this problem in two ways: (i) It combines the robustness of
local methods with the full density of global approaches. This is achieved by embedding a local
least square fit into the motion tensor formulation of the data term. As a result the original
tensor J is integrated over a neighbourhood of fixed size, which is realised by a channelwise
convolution of J with a Gaussian kernel Kρ of standard deviation ρ. Thus, a modified motion
tensor Jρ := Kρ ∗ J is obtained that renders the method more robust against noise. (ii) Apart
from this substitution, a non-quadratic function ΨD is applied to the whole data term. As for
the flow-driven isotropic regularisation, such a proceeding is related to statistically robust error
norms [28] and increases the performance of the approach with respect to noise [5]. As prototype
for this class of combined-local-global methods we have chosen a technique with total variation
as non-quadratic penaliser in both the smoothness and the data term. The associated energy
functional is given by

ECLG(u, v) =

∫

Ω

(

ΨD

(

(u, v, 1)>Jρ (u, v, 1)
)

+ αΨS

(
|∇u|2 + |∇v|2

))

dxdy, (19)

where εD and εS serve as small regularisation parameters for the total variation in the data and
in the smoothness term, respectively.

(g) Large Displacements, Varying Illumination – The Method of Papenberg et al.

Apart from robustness under noise there are two further problems in the context of motion
estimation: The correct estimation of large displacements and the robustness under varying
illumination. In [9, 37] Papenberg et al. proposed a sophisticated variational approach that
tackles both problems and allows for a very accurate estimation of the results. In their approach
the standard grey value constancy assumption is supplemented by an additional term: The
constancy of the spatial image gradient ∇I = (Ix, Iy)

>. This assumption allows to deal with
global illumination changes of additive type. Moreover, in order to overcome the limitation of
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linearised constancy assumptions – they only hold for small displacements – their linearisation is
postponed to the numerical scheme. The corresponding energy functional to this method reads

EPAP(u, v)=

∫

Ω

(

ΨD

(

|f(x+u, y+v, t+1)−f(x, y, t)|2+γ |∇fI(x+u, y+v, t+1)−∇f(x, y, t)|2
)

+α ΨS

(
|∇u|2 + |∇v|2

) )

dxdy, (20)

where once again the regularised total variation is applied to both the data and the smoothness
term. Here, the scalar γ serves as weight between the gradient and the grey value constancy
assumption.

3.1 The Euler–Lagrange Equations

Let us now derive the Euler–Lagrange equations for the prototypes of our more advanced optic
flow methods.

(f) The Nonlinear Case II - The Method of Bruhn et al.

In the case of the CLG method the Euler–Lagrange equations are very similar to those of the
flow-driven isotropic regularisation in (d). The have the same nonlinear differential operator
(and diffusion tensor) and are given by the coupled form

0 = Ψ′

D

(

(u, v, 1)>Jρ (u, v, 1)
)

(Jρ11 u + Jρ12 v + Jρ13) −
α

2
LNL(u, v), (21)

0 = Ψ′

D

(

(u, v, 1)>Jρ (u, v, 1)
)

(Jρ12 u + Jρ22 v + Jρ23) −
α

2
LNL(v, u). (22)

Main differences to the flow-driven isotropic case in (d) are the modified motion tensor Jρ and
the additional factor Ψ′

D

(
(u, v, 1)>Jρ (u, v, 1)

)
in front of the data term results from its non-

quadratic penalisation in the energy functional (via ΨD).

(g) The Nonlinear Case III (Warping) – The Method of Papenberg et al.

The Euler-Lagrange equations for the method of Papenberg et al. are also based on flow-driven
isotropic regularisation, so the nonlinear differential operator (and diffusion tensor) is once more
the same than in the case (d). However, as one can see from the following equations

0 = Ψ′

D

(

|f(x+u, y+v, t+1)−f(x, y, t)|2 +γ |∇f(x+u, y+v, t+1)−∇f(x, y, t)|2
)

(

(f (x+u, y+v, t+1)−f (x, y, t)) fx (x+u, y+v, t+1)

+ γ (fx(x+u, y+v, t+1)−fx(x, y, t)) fxx(x+u, y+v, t+1)

+ γ (fy(x+u, y+v, t+1)−fy(x, y, t)) fyx(x+u, y+v, t+1)
)

−
α

2
LNL(u, v) (23)
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0 = Ψ′

D

(

|f(x+u, y+v, t+1)−f(x, y, t)|2 +γ |∇f(x+u, y+v, t+1)−∇f(x, y, t)|2
)

(

(f (x+u, y+v, t+1)−f (x, y, t)) fx (x+u, y+v, t+1)

+ γ (fx(x+u, y+v, t+1)−fx(x, y, t)) fxy(x+u, y+v, t+1)

+ γ (fy(x+u, y+v, t+1)−fy(x, y, t)) fyy(x+u, y+v, t+1)
)

−
α

2
LNL(v, u) (24)

the part for the data term is rather complex without linearisations. Moreover, in contrast to
the previous cases (a)-(e) where globally convergent algorithms can be used to find the unique
solution of the Euler-Lagrange equations, this time the solution process comes down to solving a
nonconvex optimisation problem. Therefore we follow the idea from [9] and embed the solution
of these equations in an incremental computation based on a coarse-to-fine fixed point iteration
(warping). To this end, we split up the unknown flow field uk+1 and vk+1 at iteration k+1 of this
fixed point scheme into the already known part uk and vk and the unknown motion increment
duk and dvk. This allows to finally perform all linearisations of the constancy assumptions –
this step has intentionally been postponed from the modelling) – via a Taylor expansions such
as

f(x+uk+1, y+vk+1, t+1) − f(x, y, t) (25)

≈ f(x+uk, y+vk, t+1) + fx(x+uk, y+vk, t+1) du + fy(x+uk, y+vk, t+1) dv − f(x, y, t)

= f(x+uk, y+vk, t+1) − I(x, y, t)
︸ ︷︷ ︸

temporal difference !

+fx(x+uk, y+vk, t+1) du + fy(x+uk, y+vk, t+1) dv.

As shown in [9] the incorporation of this partly linearised fixed point iteration into a coarse-to-
fine multiresolution strategy leads to the well-known warping technique. Thereby the resolution
ratio between two consecutive resolution levels is reduced by ν 2, where ν is the downsampling
factor for each dimension. At resolution level k the following system of coupled PDEs has to be
solved:

0 = Ψ′

D

(

(uk + duk, vk + dvk, 1)>Sk (uk + duk, vk + dvk, 1)
) (

Sk
11 duk + Sk

12 dvk + Sk
13

)

−
α

2
LNL(uk + duk, vk + dvk), (26)

0 = Ψ′

D

(

(uk + duk, vk + dvk, 1)>Sk (uk + duk, vk + dvk, 1)
) (

Sk
12 duk + Sk

22 dvk + Sk
23

)

−
α

2
LNL(vk + dvk, uk + duk). (27)

Here, once again the motion tensor notation has been used. The tensor S is thereby given as S =
J̃ +γ G̃ which is the weighted sum of the motion tensor for the grey value constancy assumption
J̃ = ∇̃f∇̃f> and the motion tensor for the gradient constancy assumption G̃ = ∇̃fy∇̃f>

x +
∇̃fy∇̃f>

y . In contrast to the cases (a)-(f) where these assumptions have already been linearised

in the model, not the original ∇ operator has to be considered, but a variant ∇̃, where the third
component is not a temporal derivative but a temporal difference (cf. Eq. 25). This shows that
also in the case of variational techniques with originally nonlinearised constancy assumptions,
we can keep to the simple and compact notation with motion tensors and differential operators
(based on diffusion tensors).
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4 Discretisation

4.1 General Discretisation Aspects

Let us now discuss a suitable discretisation for the Euler-Lagrange equations (a)-(g). To this
end we consider the unknown functions u(x, y, t) and v(x, y, t) on a rectangular pixel grid with
cell size h = (hx, hy)

>, and we denote by uh

i,j the approximation to u at some pixel i, j with
i = 1,...,Nx and j = 1,...,Ny . Spatial derivatives of the image data are approximated using a
fourth-order approximation with the stencil (1,−8, 0, 8,−1)/(12h), while temporal derivatives
are computed with a simple two-point stencil. If we denote the entries of the different diffusion
tensors by

D =:

(
a b
b c

)

(28)

we can discretise the divergence expressions in the differential operators LL and LNL by means
of the following finite difference approximations:

∂x ( a(x, y) ∂xz(x, y)) ≈ D−,h
x

(

M+,h
x (ai,j) D+,h

x (zi,j)
)

, (29)

∂x ( b(x, y) ∂yz(x, y)) ≈ Dh

x

(

bi,j Dh

y (zi,j)
)

, (30)

∂y ( b(x, y) ∂xz(x, y)) ≈ Dh

y

(

bi,j Dh

x (zi,j)
)

, (31)

∂y ( c(x, y) ∂yz(x, y)) ≈ D−,h
y

(

M+,h
y (ci,j) D+,h

y (zi,j)
)

. (32)

Details on the required averaging and differential operators within the approximations are given
in Table 1.

4.2 The Discrete Euler–Lagrange Equations

As we have seen before there are basically four types of Euler–Lagrange equations. Their
discretisation is now discussed in detail.

(a)-(c) The Linear Case

We are now in the position to write down the discrete Euler-Lagrange equations for the linear
case. They are given by

0 = Jh

11,i,j uh

i,j + Jh

12,i,j vh

i,j + Jh

13,i,j − α Lh

L i,j uh

i,j, (33)

0 = Jh

12,i,j uh

i,j + Jh

22,i,j vh

i,j + Jh

23,i,j − α Lh

L i,j vh

i,j, (34)

for i = 1, .., Nx and j = 1, .., Ny , where Lh

NE i,j denotes the discrete version of the corresponding
linear operator LL at some pixel i, j. These 2NxNy equations constitute a linear system for the
unknowns uh

i,j and vh

i,j. One should note that there are two different types of coupling in the

equations. The pointwise coupling between uh

i,j and vh

i,j in the data term and the neighbourhood

coupling via the operator Lh

L i,j in the smoothness term (within both equations).
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Table 1: Discretisations of averaging and differential operators.

One-sided averaging M±,h
x (zi,j) :=

zi±1,j+zi,j

2
(35)

M±,h
y (zi,j) :=

zi,j±1+zi,j

2
(36)

One-sided differences D±,h
x (zi,j) := ±

zi±1,j−zi,j

hx
(37)

D±,h
y (zi,j) := ±

zi,j±1−zi,j

hy
(38)

Central differences Dh
x (zi,j) :=

zi+1,j−zi−1,j

2hx
(39)

Dh
y (zi,j) :=

zi,j+1−zi,j−1

2hy
(40)

Squared differences D2,h
x (zi,j) := 1

2

(

D+,h
x (zi,j)

)2

+ 1
2

(

D−,h
x (zi,j)

)2

(41)

D2,h
y (zi,j) := 1

2

(

D+,h
y (zi,j)

)2

+ 1
2

(

D−,h
y (zi,j)

)2

(42)

Gradient magnitude
∣
∣D2,h (zi,j)

∣
∣ :=

√

D2,h
x (zi,j) + D2,h

y (zi,j) (43)

(d)-(e) The Nonlinear Case I

Analogously, we discretise the Euler Lagrange equations for the nonlinear case I. The obtained
nonlinear system of equations then reads

0 = Jh

11,i,j uh

i,j + Jh

12,i,j vh

i,j + Jh

13,i,j −
α

2
Lh

NL i,j(u
h

i,j , v
h

i,j) uh

i,j, (44)

0 = Jh

12,i,j uh

i,j + Jh

22,i,j vh

i,j + Jh

23,i,j −
α

2
Lh

NL i,j(u
h

i,j , v
h

i,j) vh

i,j, (45)

for i = 1, .., Nx and j = 1, .., Ny . Here, the finite difference approximation of LNL(u, v) and
LNL(v, u) results in the product of a common nonlinear operator Lh

NL i,j(u
h

i,j, v
h

i,j) and the pixel

uh

i,j and vh

i,j, respectively. Evidently, this constitutes a third way of coupling.

(f) The Nonlinear Case II - The Method of Bruhn et al.

As in the previous case the discretisation of the Euler-Lagrange equations for the nonlinear case
II yields a nonlinear system of equations. It is given by

0 = Ψ′

D

(

(uh

i,j, v
h

i,j , 1)
>Jh

ρ (uh

i,j , v
h

i,j, 1)
) (

Jh

11,i,j uh

i,j + Jh

12,i,j vh

i,j + Jh

13,i,j

)

−
α

2
Lh

NL i,j(u
h

i,j, v
h

i,j) uh

i,j , (46)

0 = Ψ′

D

(

(uh

i,j, v
h

i,j , 1)
>Jh

ρ (uh

i,j , v
h

i,j, 1)
) (

Jh

12,i,j uh

i,j + Jh

22,i,j vh

i,j + Jh

23,i,j

)

−
α

2
Lh

NL i,j(u
h

i,j, v
h

i,j) vh

i,j , (47)

for i = 1, .., Nx and j = 1, .., Ny . Here, the linear point coupling in the data term that appears
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in the cases (a)–(f) may become strongly nonlinear since it it is now reweighted by the factor

Ψ′

D

(

(uh

i,j , v
h

i,j, 1)
>Jh

ρ (uh

i,j , v
h

i,j , 1)
)

that depends nonlinearly on both uh

i,j and vh

i,j .

(g) The Nonlinear Case III (Warping) – The Method of Papenberg et al.

Due to the hierarchical optimisation in the nonlinear case III one obtains a hierarchy of nonlinear
equation system. For warping level k the discretised Euler–Lagrange equations are given by

0 = Ψ′

D

(

(uk,h
i,j + duk,h

i,j , vk,h
i,j + dvk,h

i,j , 1)>Sk,h
i,j (uk,h

i,j + duk,h
i,j , vk,h

i,j + dvk,h
i,j , 1)

)

(

Sk,h
11,i,j duk,h

i,j + Sk,h
12,i,j dvk,h

i,j + Sk,h
13,i,j

)

−
α

2
Lk,h

NL i,j(u
k,h
i,j + uk,h

i,j , vk,h
i,j + dvk,h

i,j )
(

uk,h
i,j + duk,h

i,j

)

, (48)

0 = Ψ′

D

(

(uk,h
i,j + duk,h

i,j , vk,h
i,j + dvk,h

i,j , 1)>Sk,h
i,j (uk,h

i,j + duk,h
i,j , vk,h

i,j + dvk,h
i,j , 1)

)

(

Sk,h
12,i,j duk,h

i,j + Sk,h
22,i,j dvk,h

i,j + Sk,h
23,i,j

)

−
α

2
Lk,h

NL i,j(v
k,h
i,j + dvk,h

i,j , uk,h
i,j + uk,h

i,j )
(

vk,h
i,j + dvk,h

i,j

)

, (49)

where i = 1, .., Nx and j = 1, .., Ny . However, in contrast to all other cases, the 2NxNy unknowns

are this time given by the the variables duk,h
i,j and dvk,h

i,j for the motion increment.

5 Multigrid

5.1 Basic Concept

In general, the preceeding linear and nonlinear systems of equations are solved by using non-
hierarchical iterative schemes; e.g. variants of the Jacobi or the Gauß-Seidel method [36, 49].
However, such techniques are not well–suited for equation systems that are only coupled via a
small local neighbourhood: It may take thousands of iterations to transport local information
between unknowns that are not coupled directly. A Fourier analysis of the error confirms this
observation: While high frequency components (small wavelength, local impact) are attenuated
efficiently, lower frequency components (large wavelength, global impact) remain almost un-
dampened. In order to overcome this problem multigrid methods [7, 8, 26, 42, 48] are based
on a sophisticated strategy. They make use of correction steps that compute the error (not a
coarser version of the fine grid solution) on a coarser grid. Thus, lower frequency components of
the error reappear as higher ones and allow for an efficient attenuation with standard iterative
methods. In the following we explain this strategy in detail for both the linear and the nonlinear
case by the example of a basic bidirectional two-grid cycle.

5.2 The Linear Two-Grid Cycle

For the sake of clarity, let us reformulate the linear equation systems of the methods (a)-(c) as

Ahxh = fh. (50)

Here xh denotes the concatenated vector ((uh)>, (vh)>)>, Ah is a symmetric positive definite
matrix and fh stands for the right hand side.
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I) Multigrid methods starts by performing several iterations with a basic iterative solver.
This is the so-called presmoothing relaxation step, where high frequency components of
the error are removed. If we denote the result after these iterations by x̃h, the error is
given by

eh = xh − x̃h. (51)

II) Evidently, one is interested in finding eh in order to correct the approximated solution x̃h.
Although eh cannot be computed directly, the linearity of Ah allows its computation via

Aheh = Ah(xh − x̃h) = Ahxh − Ahx̃h = fh − Ahx̃h = rh, (52)

where rh is called residual. Since high frequencies of the error have already been removed,
we can speed up the computation by solving this equation system at a coarser resolution
with grid cell size H = (Hx,Hy)

> :

Aheh = rh → AHeH = rH. (53)

One should note that at this point, a transfer of the original equation system to a coarser
grid makes no sense: Unlike the error, the solution very probably contains (desired) high
frequency components. A restriction of these components would severely deteriorate the
approximative solution (aliasing).

III) After we have solved the residual equation system on the coarse grid with a method of our
choice, we transfer the solution back to the fine grid and correct our approximation by the
computed error

x̃h

new = x̃h + eh. (54)

IV) In general, the transfer of the computed correction from a coarse grid by means of in-
terpolation introduces some new high frequency components. To this end, a so-called
postsmoothing relaxation step is performed, where once again some iteration of the basic
iterative solver are applied.

5.3 The Nonlinear (FAS) Two-Grid Cycle

Also in this case, let us start with a reformulation of the nonlinear equation system resulting
from the methods (d)–(g) as

Ah(xh) = fh (55)

where Ah(xh) is a nonlinear operator. The FAS strategy [7] works as follows:

I) We perform a presmoothing relaxation step with a nonlinear basic solver.

II) However, since Ah(xh) is a nonlinear operator, the way of deriving a suitable coarse grid
correction is significantly different from the linear case. The (implicit) relation between
the error and the residual is given by

Ah(x̃h + eh) − Ah(x̃h) = fh − Ah(x̃h) = rh. (56)

In order to compute the desired correction we transfer the following nonlinear equation
system to the coarse grid

Ah(x̃h + eh) = rh + Ah(x̃h) → AH( x̃H + eH) = rH + AH(x̃H) . (57)

Here, frames visualise the additional terms compared to the linear case.
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III) After we have solved the nonlinear residual equation system on the coarse grid, we subtract
x̃H from the solution in order to obtain eH. Its transfer to the fine grid then allows to
perform the correction step.

IV) We perform a postsmoothing relaxation step with a nonlinear basic solver.

5.4 Advanced Multigrid Strategies

In order to increase the computational efficiency, the presented two-grid cycles are generally
applied in a hierarchical way. While V–cycles make one recursive call of a two-grid cycle per
level, faster converging W–cycles perform two. Nevertheless, multiple of such advanced cycles
are required to reach the desired accuracy. Refining the original problem step by step (unidi-
rectional coarse-to-fine approach) and solving the resulting linear or nonlinear equation system
at each level by using some bidirectional V– or W–cycles, the multigrid strategy with the best
performance is obtained: full multigrid [8]. An overview of all three types of multigrid methods
is given in Figure 1.

5.5 Implementation Details

Let us now discuss some implementation details. As one can see from Table 2 we have developed
full multigrid schemes for all linear and nonlinear cases. Thereby we used two different types
of basic solvers: While in the cases of homogeneous and isotropic regularisation, a Gauß–Seidel
solver with coupled point relaxation (CPR) [10] was sufficient, the anisotropy of the neigh-
bourhood coupling in the remaining methods required the use of a Gauß–Seidel solver with
alternating line relaxation (ALR) [48]. Instead of updating the two unknowns u and v at each
pixel at the same time (CPR), the ALR method computes whole lines of unknowns simulta-
neously. Thereby three direction were considered: Lines in x–and y–direction as well as the
direction of different unknowns at each point, namely (u, v) itself. For the nonlinear variants
of the Gauß–Seidel solver we used the strategy of frozen coefficients [23]. In the literature this
technique is also known as lagged diffusivity method [14] or Quasi-Newton scheme [44]. Direct
nonlinear Gauß–Seidel Newton methods [8] have not been considered as basic solver. Experi-
ments using this kind of methods have shown a similar performance in terms of error reduction,
however, at the the expense of significantly increased computational times.
One can also see that an increasing anisotropy of the diffusion tensor (homogeneous → isotropic
→ anisotropic) required more multigrid cycles at each level of the full multigrid implementation.
In the case of the method of Papenberg et al. one should note the increasing number of pre- and
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Figure 1: Left: Example for V-ycles with two, three and four levels. Center: Ditto for W-cycles.
Right: Full multigrid implementation with 2 W-cycles per resolution level. Refinement steps are
marked with ’c’. Each W-cycle is marked with a ’w’.
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Table 2: Implemented multigrid schemes the different variational models. MG = multigrid.
FMG = full multigrid. WARP = warping. Cyc = multigrid cycles per level. GS = Gauß–Seidel.
CPR = coupled point relaxation. Pre/Post = pre- and postsmoothing relaxation iterations. L
= linear. NL = nonlinear.

Case Model MG Solver Cyc Basic Solver Pre/Post

L (a) Homogeneous FMG-W 1 GS-CPR 1-1

(b) Image-Driven Isotropic FMG-W 2 GS-CPR 2-2

(c) Image-Driven Anisotropic FMG-W 4 GS-ALR 1-1

NL I (d) Flow-Driven Isotropic FAS-FMG-W 2 GS-CPR 2-2

(e) Flow-Driven Anisotropic FAS-FMG-W 4 GS-ALR 1-1

NL II (f) Bruhn et al. FAS-FMG-W 2 GS-CPR 2-2

NL III (g) Papenberg et al. WARP-FAS-FMG-W 2 GS-CPR 6-6

postsmoothing relaxation iterations. This is due to the combination of the warping technique
and the strongly nonlinear flow-driven regulariser (TV).
In order to allow for a complete multigrid hierarchy we considered the use of non-dyadic inter-
grid transfer operators in all approaches. As proposed in [10] they were realised by constant
interpolation and simple averaging. Coarser versions of the linear and nonlinear operators were
created by a discretisation coarse grid approximation (DCA) [48]. To this end, the entries of
the motion tensor were restricted channelwise:

Jh

nm −→ JH

nm n,m = 1, .., 3. (58)

One should note that our choice for the restriction operator (simple averaging) maintains their
positive semidefiniteness. In the linear cases, also the entries of the coarser diffusion tensors
were created in this manner.

6 Experiments

Let us now evaluate the different multigrid implementations. To this end, all computations are
carried out on a standard desktop PC with a 3.06 GHz Intel Pentium 4 CPU executing C /
C++ code.
In our first experiment we compare the efficiency of different numerical schemes for the five
prototypes of regularisation strategies that have been discussed in Section 2. Apart from the
developed full multigrid schemes we also implemented stand-alone versions of their basic iter-
ative solvers, namely the Gauß-Seidel methods with alternating line relaxation (ALR) and the
Gauß-Seidel method with coupled point relaxation (CPR). Moreover, we considered a modified
explicit scheme [47]. Compared to ordinary explicit schemes (e.g. gradient descent methods)
such modified schemes allow for larger time step sizes τ . For our evaluation we used a 160× 120
real-world sequence in which a person dances in front of the camera. Before we applied the multi-
grid methods we preprocessed the sequence by convolution with a Gaussian kernel of standard
deviation σ = 1. The iterations were stopped when the relative error erel := ‖x − x̃n‖2/‖x‖2

dropped below 10−2, where x denotes the correct solution and x̃n stands for the computed result
after n iterations/cycles.
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Table 3: Performance benchmark for all five types of regularisers on a standard desktop computer
with 3.06 GHz Pentium 4 CPU. Run times refer to the computation of a single flow field from
the 160 × 120 dancing sequence. FPS = frames per second.

(a) Linear : Homogeneous regularisation (Horn and Schunck)
σ = 1.0, α = 1000

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.25) 4425 3.509 0.285 1

Gauß-Seidel (CPR) 2193 1.152 0.868 3

Full Multigrid 1 0.016 62.790 220

(b) Linear : Image-driven isotropic regularisation (Charbonnier)
σ = 1.0, α = 1000, εS = 1.0

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.25) 8894 12.048 0.083 1

Gauß-Seidel (CPR) 2856 2.793 0.358 4

Full Multigrid 1 0.048 20.850 251

(c) Linear : Image-driven anisotropic regularisation (Nagel-Enkelmann)
σ = 1.0, α = 1000, εS = 10−2

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.1666) 36558 47.053 0.021 1

Gauß-Seidel (ALR) 607 3.608 0.277 13

Full Multigrid 1 0.171 5.882 275

(d) Nonlinear : Flow-driven isotropic regularisation (TV)
σ = 1.0, α = 10, εS = 10−2

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.0025) 10631 30.492 0.033 1

Gauß-Seidel (CPR) 2679 6.911 0.145 4

FAS - Full Multigrid 1 0.082 12.172 372

(e) Nonlinear : Flow-driven anisotropic regularisation (TV)
σ = 1.0, α = 10, εS = 10−2

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.0025) 9208 58.824 0.017 1

Gauß-Seidel (ALR) 591 12.508 0.080 5

FAS - Full Multigrid 1 0.491 2.038 120
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Table 4: Performance benchmark for the more advanced optic flow methods: The nonlinear
variant of the CLG method by Bruhn et al. [12] and the method of Papenberg et al. [37] (see
also Brox et al. [9]). Benchmark was performed on a standard desktop computer with 3.06 GHz
Pentium 4 CPU. Run times refer to the computation of a single flow field from the downsampled
Rheinhafen sequence (size 160 × 120). FPS = frames per second.

(f) Bruhn et al. : Robust data term with local integration
+ flow-driven isotropic regularisation (TV)
σ = 0.0, ρ = 15, α = 15, εD = 10−1, εS = 10−3

Solver Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.00025) 81947 244.798 0.004 1

Gauß-Seidel (CPR) 3720 9.524 0.105 26

FAS - Full Multigrid 1 0.087 11.473 2809

(g) Papenberg et al. : Robust nonlinearised data term with additional
gradient constancy + flow-driven isotropic regularisation (TV)

σ = 1.0, α = 121, γ = 230, ν = 0.65, εD = 10−1, εS = 10−3

Solver for each warping level Iterations Time [s] FPS [s−1] Speedup

Mod. Explicit Scheme (τ = 0.00025) 79112 445.831 0.002 1

Gauß-Seidel (CPR) 6549 34.483 0.029 13

FAS - Full Multigrid 1 0.396 2.527 1127

Table 3 shows the excellent performance of the proposed numerical schemes for all five types of
regularisers. In the linear cases (a), (b) and (c) the modified explicit schemes and the basic iter-
ative solvers are outperformed by two to three and one to two orders of magnitude, respectively.
This is reflected in high frame rates of up to 63 dense flow fields per second. In the nonlinear
cases (d) and (e), our comparison shows a very similar tendency. Here, speedup factors are in
the range of two to three orders of magnitude. Frame rates of twelve and two dense flow fields
per second clearly demonstrate that also in this case real-time performance is well within our
computational reach. One should note that for all five methods only a single full multigrid cycle
was sufficient, while other standard methods required thousands of iterations.
In our second experiment we juxtapose the estimation quality of the proposed multigrid imple-
mentations for the different regularisation strategies. In particular the comparison of the four
discontinuity-preserving real-time approaches (b)–(f) to the multigrid implementation in (a)
with homogeneous regularisation [10] is thereby of interest. To this end, we have computed flow
fields for three different real-world sequences: for the previously used Dancing Sequence (com-
plex motion), the Waving Sequence (translations and discontinuities) and the Rotating Thumb
Sequence (rotation). The depicted colour plots in Figure 2 and Figure 3 make the qualitative
progress in the field of real-time variational optic flow computation explicit: One can easily
see, that image- and flow-driven methods yield results that are much more accurate, since the
underlying regularisation strategies allow for a preservation of motion boundaries and disconti-
nuities. Moreover, one can observe that the anisotropic techniques gives slightly better results
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Figure 2: Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top to
bottom: first frame, second frame, no regularisation (normal flow), homogeneous regularisation
(Horn and Schunck). Colour code: The direction of a flow vector is represented by colour as
shown on flow field boundaries (e.g. green corresponds to a motion to the left). The magnitude
of a flow vector is encoded by its brightness.
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Figure 3: Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top
to bottom: data-driven isotropic regularisation (Charbonnier), data-driven anisotropic regular-
isation (Nagel-Enkelmann), flow-driven isotropic regularisation (TV), flow-driven anisotropic
regularisation (TV). Colour code: The direction of a flow vector is represented by colour as
shown on flow field boundaries (e.g. green corresponds to a motion to the left). The magnitude
of a flow vector is encoded by its brightness.
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Figure 4: (a) Top Left: Frame 1130 of the Rheinhafen sequence by Nagel (resized to 160 ×
120). (b) Top Right: Frame 1131. (c) Bottom Left: Computed flow field by the multigrid
implementation of the 2-D method of Bruhn et al.. Computing time: 87 milliseconds. (d)
Bottom Right: Computed flow field by the multigrid implementation of the 2-D method of
Papenberg et al.. Computing time: 396 milliseconds.
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Figure 5: (a) Top Left: Frame 8 of the Yosemite sequence with clouds by Lynn Quam (size
312 × 256). (b) Top Right: Ground truth flow field. (c) Bottom Left: Computed flow field by
our CLG 2-D multigrid implementation. Average angular error: 5.77◦. Computing time: 384
milliseconds. (d) Bottom Right: Computed flow field by our Papenberg et al. 2-D multigrid
implementation. Average angular error: 2.51◦. Computing time: 1814 milliseconds.

21



Table 5: Qualitative comparison between results from the literature with 100 % density and
the results for our multigrid implementations. AAE = average angular error. STD = standard
deviation. 2D = spatial smoothness assumption. 3D = spatio-temporal smoothness assumption.

Yosemite with clouds

Technique AAE STD

Anandan [4] 13.36◦ 15.64◦

Nagel [4] 10.22◦ 16.51◦

Horn–Schunck, mod. [4] 9.78◦ 16.19◦

Uras et al. [4] 8.94◦ 15.61◦

Bruhn et al. nonlinear (2D) [12] 6.03◦ 8.61◦

Bruhn et al. nonlinear – Multigrid (2D) 5.77◦ 8.47◦

Alvarez et al. [2] 5.53◦ 7.40◦

Mémin–Pérez [34] 4.69◦ 6.89◦

Papenberg et al. – Multigrid (2D) 2.51◦ 6.58◦

Papenberg et al. (2D) [37] 2.44◦ 6.90◦

Papenberg et al. (3D) [37] 1.78◦ 7.00◦

than the isotropic ones and that the nonlinear methods are able to overcome the problem of
oversegmentation that lies in the nature of image-driven techniques in the presence of textured
scenes.
In our third experiment we investigate the efficiency of our multigrid implementations for the
more advanced variational optic flow methods discussed in Section 3: The noise robust CLG ap-
proach of Bruhn et al. [12] and the highly accurate optic flow technique of Papenberg et. al [37].
As test sequence in this experiment served a downsampled variant (160 × 120) of the Rhein-
hafen sequence by Nagel which is available at http://i21www.ira.uka.de/image sequences.
As before, a relative error of erel := 10−2 was used as stopping criterion. One should note
that in the case of the method of Papenberg et al. this relative error does not relate only to
a single nonlinear system of equations. Here, the coarse-to-fine optimisation by means of the
warping strategy requires the solution of whole hierarchy of equation systems. This constitutes
a significant difference to all previously discussed methods in this paper including the technique
of Bruhn et al.. In particular, this means that warping errors on coarser levels influence the
result on finer levels such that in this case errors can propagate.
Let us now take a look at the obtained results in Table 4. As one can see, the speedups for the
more advanced optic flow methods are even better than for the basic techniques with different
types of regularisation. With three to four orders of magnitude the modified explicit scheme that
needs almost one hundred thousand iterations is outperformed more than significantly. And
even compared to the basic iterative solvers an excellent speedup of two orders of magnitude is
obtained. The corresponding frame rates show clearly that in the case of such highly advanced
optic flow methods, real-time performance is still possible.
In Figure 4 the computed flow fields are depicted. Evidently they look fairly realistic: The
motion of the van in the foreground as well as the motion of all other vehicles in the background
is computed with good precision. Moreover, object boundaries within the flow field are rather
sharp and allow for a simple separation of the different motions layers via tresholding. This
segmentation-like behaviour, that is desired in many optic flow applications, is only a direct

22



consequence of using TV as discontinuity-preserving regulariser.
In our final experiment we evaluate the accuracy of our real-time implementations for the two
previously discussed more advanced optic flow methods. To this end, we have considered the
famous Yosemite test sequence with clouds. This sequence that was created by Lynn Quam is
very popular due to the fact that it combines translative and divergent motion under varying
illumination. In Table 5 the computed average angular errors [4] for both approaches are pre-
sented where they are compared to the best results from the literature. The raw numbers show
that the developed multigrid schemes maintain the quality of their original methods and are
capable of giving very accurate results. However, there are small differences in terms of the av-
erage angular error: While in the case of the method of Bruhn et al. we obtained a slightly lower
average angular error by using the total variation (TV) instead of the Charbonnier function as
flow-driven isotropic regulariser, in the case of the method of Papenberg al. the relatively small
coarsening factor of ν = 0.65 limited the average angular error to 2.52◦. A larger coarsening
factor ν close to 1 would allow of coarse to obtain the original average angular error, however,
at the expense of much higher computational costs (since the number of nonlinear system of
equations would increase significantly).
The flow fields computed by both approaches are illustrated in Figure 5. Apart from these
flow fields also the ground truth solution is shown that allows to access the quality of the real-
time capable methods. As one can see, already the method of Bruhn et al. gives relatively
good results. The method of Papenberg et al., however, does match the ground truth almost
perfectly.

7 Summary and Conclusions

In this paper we presented a unifying multigrid approach to variational optic flow computation
in real-time. This was accomplished by introducing the systematic notation of motion and
diffusion tensors and deriving highly efficient bidirectional multigrid approaches to solve the
resulting linear and nonlinear systems of equations. We showed that by carefully designing such
multigrid methods a variety of discontinuity-preserving optic flow techniques can be implemented
in real-time. Moreover, we extended our approach to two recent more advanced variational optic
flow methods. Experiments demonstrated that compared to classical iterative solvers speedups
of two to four orders magnitude can be achieved. This clearly shows that high quality optic
flow computation and real-time performance are not opposing worlds. They can be combined if
recent optic flow methods are implemented by means of highly efficient numerical schemes.
The investigation of suitable parallelisation strategies is ongoing work [30, 31]. Their usage
allows the processing of even higher resolution video sequences in real-time.
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[18] M. El Kalmoun and U. Rüde. A variational multigrid for computing the optical flow. In T. Ertl, B. Girod,
G. Greiner, H. Niemann, H.-P. Seidel, E. Steinbach, and R. Westermann, editors, Vision, Modelling and

Visualization, pages 577–584. IOS Press, 2003.

[19] L. E. Elsgolc. Calculus of Variations. Pergamon, Oxford, 1961.

[20] W. Enkelmann. Investigation of multigrid algorithms for the estimation of optical flow fields in image
sequences. Computer Vision, Graphics and Image Processing, 43:150–177, 1987.
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