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Abstract

Unstable minimal surfaces are the unstable stationary points of the Dirichlet-Integral.
In order to obtain unstable solutions, the method of the gradient flow together with
the minimax-principle is generally used. The application of this method for minimal
surfaces in the Euclidean spacce was presented in [St1]. We extend this theory for
obtaining unstable minimal surfaces in Riemannian manifolds. In particular, we handle
minimal surfaces of annulus type, i.e. we prescribe two Jordan curves of class C? in a
Riemannian manifold and prove the existence of unstable minimal surfaces of annulus
type bounded by these curves.

1 Introduction

For given curve I'y C N,l =1,....,mand I' := I'1U- - -UT,,, where (N, h) is a Riemannian
manifold with metric (hqop) of dimension n > 2, the generalized Plateau Problem,
denoted by P(T'), asks for the minimal surfaces bounding T', possessing a following
parametrization, defined on ¥ C R? with 0% = I:

(1) 7 (X) =0,
(2) [Xulh = [Xolf = (Xu, Xo)n =0,
(3) X|sx is weakly monotone onto T',

where 7, := AX® —T'§ VXPX7 is the harmonic equation in (N,h) as the Euler-
Lagrange equation of the energy functional.

A regular minimal surface is called unstable if its surface is not a minimum among the
neighboring surfaces with the same boundary.

In 1983 ([St1], see also [St2] [St3]), M. Struwe gave an approach to unstable minimal
surfaces of disc or annulus type for a given boundary in R*, extending the Ljusternik-
Schnirelmann Theory on convex sets in Banach Spaces. For higher topological structure
in R”, it was studied in [JS].

Recently in [Ho], the existence of unstable minimal surfaces of higher topological struc-
ture with one boundary in a nonpositively curved Riemannian manifold was studied by
applying the method in [St2]. In particular, in the first part of this paper, the Jacobi
field extension operator as the derivative of the harmonic extension was studied.

In this paper, we study unstable minimal surfaces of annulus type in manifolds. The
Euclidean case was studied earlier in [St3], and we want to generalize this result to man-
ifolds satisfying some appropriate conditions, namely we will consider two boundary
curves I'1, 'y in a Riemannian manifold (NN, k) such that one of the following holds.
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(C1) There exists p € N with I'1,I'y C B(p,r), where B(p,r) lies within the normal
range of all of its points. Here we assume r < 7/(2y/k), where k is an upper
bound of the sectional curvature of (N, h).

(C2) N is compact with nonpositive sectional curvature.

These conditions are related to the existence and the uniqueness of the harmonic ex-
tension for a given boundary parametrization.

First, we construct suitable spaces of functions, the sets of boundary parametrizations,
where we have to distinguish the cases of (C1) and (C2). We also introduce a convex
set which in fact serves as a tangent space for the given boundary parametrization.
And we consider the following functional:

@)= 5 [ la(@),

where F(z) denotes the harmonic extension of annulus type or of two discs.

We next discuss the differentiability of €, mainly, the situation of varing topology
(from an annulus to two discs). And then, defining critical points of €, we will see the
equivalence between the harmonic extensions (in V) of critical points of £ and minimal
surfaces in V.

In section 4, we prove the Palais-Smale condition of €. In particular, we will investigate
carefully the behavior of boundary mappings which are fixed at only one point. In order
to deform level sets of €, we also discuss the construction of a suitable vector field and
the corresponding flow.

The property that the energy of some annulus-type harmonic extensions is greater
than the energy of two disc-type harmonic extensions with uniform positive constant,
is necessary for our aim. In Euclidean spaces, this holds uniformly on any bounded set
of boundary parametrizations. In Lemma 4.3, we will generate this result to the case
of a Riemannian manifold, however with more restriction than in Euclidean spaces.
This somewhat weaker result should be enough to prove our claim.

We can then follow the arguments in the critical point theory as in [St1] and in the
main theorem we conclude, if there exists a minimal surface (of annulus type) whose
energy is a strict relative minimum in §(T';, T's) (suitably defined for each case (C1) and
(C2)), the existence of an unstable minimal surfaces of annulus type can be ensured
under certain assumptions which are related to the solutions of P(T;).

As corollaries we apply this main result to the three-dimensional sphere S? resp. the
three-dimensional hyperbolic H3, where the curvature is 1 resp. —1.



2 Preliminaries

2.1 Some definitions

Let (N, h) be a connected, oriented, complete Riemannian manifold of dimension n > 2
and embedded isometrically and properly into some R¥ as a closed submanifold by 7.
And dw resp. dy denotes the area element in Q C R? resp. in 0€.

For B:={w e R? | |w| < 1},

H"”NCY%B,N):={f € H*NnC°B,R")|f(B) C N},

with norm, || f|l1,2.0 := [|[Vfl|z2 + [| X||co. And

TyHY N C°(B,N) 2 {V € HY’n C°(B,RY)|V(") € TyyN} =: H"* N C°(B, f*TN)

with norm,
Q= / VIV ) 4+ [V 2 ( / AV PAw)* + [V ]lo.

where dV means the ordinary gradient in R¥.

Let T be a Jordan curve in N which is diffecomorphic to S! := 0B, and observe that N
can be equipped with another metric A such that T is a geodesic in (N, il) Note that
H“2 N C°((B,dB),(N,T);) and H? N C%((B,dB), (N,I);) coincide as sets. Using
the exponential map in (N, k), we let

H>?2NC%0B;T) := {ue H*>nC°0B,R*)[u(dB) =T}
with norm, ||ul 10 = IVH(u)||z2 + ||u||co, here H(u) is the harmonic extension in
R, and
T,H?>NC°OB;T) := {¢ € H>*>NC OB, u'TN)|£(z) € Ty, for all z € OB}

= H2?NC°%0B,u TT).

Finally, the energy of f € H»?(Q, N) is denoted by

B() = [ ldffw.



2.2 The setting

Let I'1,T'y be two Jordan curves of class C? in N with diffeomprphisms v* : 0B —
I';,i=1,2, and dist(I'y,I's) > 0. Moreover, for p € (0,1), A, ={w e B | p< |w| <1}
with boundary C := 0B and C, := 0B, =: C5 (p, fixed).

And let

Xt ={a"¢ H??N C°(0B;T;) | weakly monotone onto I';}.

mon

I) We first consider the following condition for (N, h)(D I'y,T').

(C1) There exists p € N with I'1,T'y C B(p,r), where B(p,r) lies within the normal
range of all of its points. Here we assume r < 7/(2y/k), where k is an upper
bound of the sectional curvature of (N, h).

In this paper, B(p,r) denotes a geodesic ball of p € N with the properties in (C1).
We can easily observe the following property (see [Ki]).

Remark 2.1. IfT',,Ty C N satisfy (C1), for each 2* € H%JHC_’O(@B;D) and p € (0,1)
there exists g, € H*2N C°(4,, B(p,)) and g € H-2 N C°(B, B(p, 7)) with g,|c, =
7', glc, (1) =2%(5) and ¢'lop = 2", i =1,2.

From the results in [HKW], [JK]| and the above Remark, we have a unique harmonic
map of annulus and of disc type in B(p,r) C N for a given boundary mapping in the
class of H32 N C°. Now we define,

M = {z'€ H2?NC° (0B;T;) |z is weakly monotone, orientation preserving}.

Then M® is complete, since the C°-norm preserves the monotonicity.

Moreover, we define,

8§(I',Ty) = {XeH"””NC°A4,,B(p,7))|0<p<1, X|gis weakly monotone},
§(;) = {X e HYNCB,B(p,r))|X|sp is weakly monotone}.

IT) We now investigate another alternative condition for (IV, h).
(C2) N is compact with nonpositive sectional curvature.

A compact Riemannian manifold is homogeneously regular and the condition of non-
positive sectional curvature for N implies mo(/N) = 0.

In order to define M*, we first consider for p € (0,1),

G,:={f € H*NC°A,,N)| flc, is continuous and weakly monotone onto T';}.
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We may take a continuous homotopy class, denoted by Fp C ép, so that every two
elements f, g in F’ are continuous homotopic (not necessarily relative), denoted by
f~g We further demand some relation F ~ F, for any p,o € (0,1), that is,
for some f € F,, f € F, and some dlffeomorphlsm 70 : [o,1] — [p, 1], it holds that

F(r,0) = f(72(r),0). . .
Clearly, letting F), fixed as above, for any o € (0,1), we can find F, with F, ~ F,.

We now consider all the possible H? N C°-extensions of disc type in N, as follows:
8(I';) :={X € H*”* N C°(B, N)|X|sp is weakly monotone onto I';}.
And we assume that 8(I';) is not empty for each i = 1, 2.

Lemma 2.1. (i) For X' € §(T'1) and X?* € 8(T'y), there exists f, € H**NC°(A,, N)
such that folc,(-) = X*|an(-) and folc,(-) = X?|an(5), for p € (0,1).

(i) Moreover, there ezists py € (0,1) and a uniform positive constant C' such that for
some f, € H"* N C%(A,, N), with fylc,() = X?[o5(;)

(2) E(f,) <C, for all p < py.

Proof. (i) For given ¢ > 0,take 0; > 0 with oscp, X' <.
Choose p > 0 with £ < gy, and let 3 : B, \B_p_ s R* harmonic with X'am,, —X*(0)

on 0B,, and X2|3302 — X?(0) on OB, then ||I]-C||Co <e.
oy’
Now let g € H»? N C°(B,,\B=, N) with X!(0) on dB,, and X?2(0) on B-. Such a
Ty a2

g exists, since N is a (path-)connected Riemannian manifold.

Let T(s,0) := (:p,0) in polar coordinates. Using the arguments and notations in the
proof of Lemma 2.2, we can define f, with all the desired properties as follows:

X1|B\Bo-1 , On B\BUI,
(3) fp = TO(g—i—J{) , oOn BGl\B;%a
X3(T'(-)) , on B:s\B,.
a2

(1) Tt follows from the above construction, since £ ~ < o1, p < po for some pg > 0. O

By assumption (8(T';) # (), for given I'; € N we have an annulus type extension like
the above (3), and we take homotopy classes as above which include such an extension.
For this setting we use the notations as above without ’tilde’.

Now letting

(4) 8(I't,Ty) == {feF,|0<p<1},



define

M = {fle,(") € € H»? N C°(0B;T';) | orientation preserving, f € 8§(I';,T')},
M? = {flc,(-p) € H>?N C°(@B;T,) | orientation preserving, f € §(I';,T'9)}.
For 2° € DCﬁnon, ,(z', 2%) denotes the unique RF-harmonic extension on A, with z!(-)

on Cy and x (p) on C,. And H(-) means the R-harmonic extension of disc type.
Lemma 2.2. (i) For each z}y € M*, i = 1,2, there exists e(x}) > 0 such that

if 2 e X,

with ||z* — :vé”%g;o <e, then x*€ M'.

i) M is complete with respect to || - ||1 5.0
120

Proof. (i) Let f, € F, with f,|c, = z§ and f,|c,(-) = y*(5) for some y* € M.

Considering submanifold coordinate neighbourhoods for N (i) RF), we may take a finite
covering of f,((4,)), and by projection we obtain a smooth map 7 : N5(f,(4,)) = N
with |y (s c4)nn = Id for some § > 0, where Ny(-) is 6-neighbourhood in RE.

Then, letting [|2° — z{|[1 5 < & < 0, by Lemma 4.2 from [St3],
[ 1t + 36"~ b, 0)) P
Ap

Clpllon ) ( [ P+ [ 1at(a! = ad) ) < €1,
P

Now, consider H (t,-) := (1 — t)H,(a' — x§,0) : [0,1] x A, — RF with ||H||co < ¢ and

G:[0,1] x A, = N with G(¢,-) = f,(-) for all ¢t € [0, 1].

Then 7(G+ H) : [0,1] x A, — N is a homotopy between f, and 7(f,+ 3,(z' — z§,0)).

Hence r(f, + H,(z' — 3,0))(~ f,) € F,, and z' € M.

Similarly, we can prove that z° € M? if ||2* — |1 5, < € for some small &’ > 0.

g, N).

(i) A cauchy sequence {z’} C M® converges to ' € Hz2 N C°(0B;T;), and for
some n, ||zt — z'||co < e. Considering H,(z' — z;,0) and g, € F, with boundary z,,
on C; and 0 on the other boundary, we can find a homotopy in N between g, and
r(g, + H,(z' — z§,0)) as in (7). We may also apply this argument for z?.

Note that z* is weakly monotone, and hence z* € M®. 0

From the proof of Lemma 2.2, we easily observe the following: The set of #*’s which
possess annulus type extensions with uniform energy with respect to p < pg is an open
and subset of X . Thus, this is a non empty connceted component of X’ = and must
be the same as M, since M* is a connected subset of X* Hence we obtain the

mon-
following property.



Remark 2.2. For each z* € M',i = 1,2, there ezist f, € 8(I'1,I's) and C > 0 with
E(f,) < C for all p < py for some py € (0,1). Clearly, this result also holds for
x* € M' in the case of (C1).

For the disc-type extensions for z* € M* the following Lemmata will be used.

Lemma 2.3. Let (N,h) be a homogeneously regular manifold and u an absolutely
continuous map on 0B, (xq) into N > xy with fo% [u'(0)|2dO < %' Then there ezists f €
HY?(B, (), N)NC®(B;(x0), N) with f|ap,(ze) = ¥ and Ep, (z0)(f) < g—’,’ 027r [u'(6)|2d6,
where C",C" are the constants from the homogeneously regqularity.

Proof. See [Mo| Lemma 9.4.8 b). O
Lemma 2.4 (From the Courant-Lebesgue Lemma). Let f, € H"*(A4,,N), 0 <
2
p < 1. For each § € (p,1) there exits T € (6,V/5) with fOQﬂ W‘hdﬁ < %. O
é

For z' € M", from Remark 2.2 and the choice of §(I';,I'y), we can find f, € H"?(4,, N)
with boundary z’ such that E(f,) < C for all p < py. Then from Lemma 2.4 and
Lemma 2.3, we have g, € H"?(B,, N) with boundary f,|sp, for some p. Together with
g- and f,|p\p,, we obtain a map X € H"*(B, N) with boundary z'. Similarly, we have
X € H'?(B, N) with boundary z2.

Moreover, the harmonic extension of disc type for each z* € M® in N is unique,
independently of the choice of a homotopy class 8(I';,'y), because of the following
well-known fact.

Lemma 2.5. m3(N) = 0 < Any hg, hy € C°(B, N) with hy|gp = h1|ap are homotopic.

On the other hand, using the construction (3) and by the above Lemma we can easily
check that the traces of elements in §(T;) are included in M*. From [ES], [Le], [Hm],
we have the following results.

Remark 2.3. (i) Forz' € M', there exists a unique harminic extension of disc type
and of annulus type defined on A, for each p € (0,1).

(ii) The elements of M* are actually the traces of f € 8(I';).
IIT) Now let (N,h) and I';,i = 1,2 satisfy (C1) or (C2).

Observing that 0B = R/2m, for a given oriented y* € X there exists a weakly

mon?
monotone map w' € C°(R,R) with w'(f + 27) = w'(d) + 27 such that y'(9) =
v (cos(wt(#)), sin(w(#))) =: v* o w'(#). And w'® = @’ + Id for some @' € C°(0B, R).

Denoting the Dirichlet -Integral by D and the RF-harmonic extension by X, let

Ly = {w' € C°(R,R) | weakly monotone, w'(6+27) = w'(0)+2m; D(H(v'ow")) < oco}.
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Clearly, W, is convex. For further details, we refer to [St1].
For 2* € M¢, considering w — w® as a tangent vector along %°, let

Tos = {dy' (w0 — w) 35009 | w € Wiy and o 0w = ')

And T, is convex in T, H2% N C°(B;T;), since W4, is convex. Letting exp be the
exponential map with respect to the metric h, we note that exp,:{ = 7 (w), for € =

dy'(w — w') L o ') € Ty, since ' is geodesic in (N, h).

In case of (C1), clearly exp,:{ € M for £ € T.
For the case (C2), let us recall the proof of Lemma 2.2. Since N is compact, there
exists /; > 0, depending on +*, such that for any 2’ € M*, exp,:& € M, if [|¢|ls, < ;.

Definition Now we define the following setting for both (C1) and (C2).

(i) With the product topology let M := M' x M? x (0,1) and z := (2%, 2%, p) € M
with a convex set T,M = T, X T2 X R

Letting F(z) = F(z!,2%,p) = F,(z',2%) : A, = N be the unique harmonic
extension with boundary =' on C* and 2?(>) on C?, define € : M — R with

1
¢ — B(F(@) = /A dF, (2", 2%) dw.

(ii) Moreover, OM := M" x M? x {0} 3 = := (z',2°,0), with T,0M := Tp1 X T,
And M := MU IM.

Letting F(z*) : A, — N be the unique harmonic extension with boundary z*,
for z = (z',2%,0) € OM, let &(z) := E(F'(z")) + E(F?*(x?)).

2.3 Harmonic extension operators

Let M = A, or M = B. A weak Jacobi field J with boundary & along a harmonic
function f is a weak solution of

/ (VI,VX) + (tr R, df)df, X )dw = 0,
M

for all X € HY2(M, f*TN) with X |53 = €. And this is a natural candidate of derivative
of harmonic operators ¥, and F.

We have the following property of the weak Jacobi fields from the arguments in [Ho|.



Lemma 2.6. The above weak Jacobi field with boundary n € TxiH%’Q N C? along a
harmonic F with boundary z* is well defined in the class H? and continuous until the
boundary with

1Tzl < [ I5lantllo, [1I[l120 < CN, Ifll12:0)1I5lonll 1,00,
Now we can talk about the differentiabilty of the harmonic extension operators.

Lemma 2.7. The operators F,,F" are partially differentiable in ', x* with respect to
variations in Tp H22 N C° resp. Tp2H22NC°, and the derivatives are the Jacobi field
operators which are also continuous with respect to z', z2.

Proof. It can be proved with a similar argument to the proof of Lemma 3.1 (B), (C).
We can also use the proof in [Ho]. O

3 The variational problem

3.1 Differentiability of & on M

Lemma 3.1. We have,

(A) & is continuously partially differentiable in x',x* with respect to variations in
T, Tp2 and the derivatives are continuous in M x M?,

(B) & is continuous with respect to p € [0,1), uniformly on N.(z}) for some ¢ > 0
which is independent of xt € M, i = 1,2,

(C) and the partial derivatives in x*,z? are also continuous with respect to p € [0,1),

uniformly on N.(zb) for some & > 0, independent of xty € M, i = 1,2,
(D) € is differentiable with respect to p € (0,1) .
Proof. Here and in the sequel, the continuity will be understood in the sense of
subsequence.

(A) The Dirichlet-Integral functional is in C*, so by Lemma 2.7 € is continuously
partially differentiable with continuous partial derivatives on M* x M?2.

Computation of derivatives:

Let z = (z',2%,p) € M, &' € T,1. By Lemma 2.2, exp,: (t&') € M, 0 <t < t; for
some small £, > 0. Thus,

T
(6,18, €Y = %‘tzoﬁ(expxl(t§1),x2,p)
- / (dF (2, 2%), VD F, (2, %) (€1)) ndow
Ap
(5) _ /(d?p(xl,xQ),VJg.rp(fl,O)}hdw (by Lemma 2.7),
Ap
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since by computation we obtain, with F,(t) := F, (exp, (¢£1), 2?)

. 0 d _
2 <3”,?’i(t)dacz ® 9 o 3",,(15)) = V%?p (expy1 (t€1),2%) (= V (DT, (zt, %) (€Y)) , t =

P

Similarly, for z = (z',22,0) € M, (0,:€,&") = [H(dF'(2"), VI5:i (")) pdw,i = 1,2.

And for €2 € T,» by Lemma 2.7, (6,2&,£%) = pr (dFp(zt, 2?), VIsz,(0,6%(5)) ) ndw.

(B) The continuity of € as p — pg is now to prove. We discuss only the case, py = 0,
ie.

(6) /A ‘d?p(xl,x2)|idw—>/B|d3"1(x1)|idw+/B‘dff"z(xz)ﬁdw, p—0

uniformly on N, (z%) for some & > 0 which is independent of z}, € M".

We will prove the above assertion in several steps. The proof for the case py € (0,1) is
similar and somewhat easier.

Let &, := F,(a',2?) and F* := Fi(2%),i = 1,2.

F, € HY*(A,,N), so by Lemma 2.4 for each § with 0 < p < 6 < 1, there exists
v € (6,V/6) such that

2m 2m 2 %
(7) / M do < V2w / M db < ¢ ,

o | e |, o | o |, o]

where C' is independent of p < py for some py € (0,1) from Remark 2.2.

We now construct two mappings from F, by letting

frA,— N with  f,(re”) :== F,(re?), re? € A,
(8) gy Ay — N with g, (re”) := F,(T(re?)), re? € A,,

where v/ := £, v € (9, V) and § € (p,1) satisfying the property (7) with 2/,v — 0 as
p—0 (eg. 6:=/p). And T(re?) = (2¢"), from A, onto B,\B,.

Then, f, and g, are harmonic map into N with f,|sp = z', g,/|op = 2* and oscsp, f, —
0, oscsp, g, — 0 as p — 0. Moreover, since T is conformal, by the conformal invari-
ance of the Dirichlet-Integral, E(F,) = E(F,|a,) + E(F,|B\B,) = E(f)) + E(gv).

B-1) The convergence of {f,}, {9/} to F.

We first investigate the modulus of continuity of harmonic maps {h,}, defined on A,
into N, which converge uniformly (C%norm) on 0B with E(h,) < L for some L > 0,
independent of v <y for some vy € (0,1). We will discuss only the case (C2), because
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the argument in the case of (C2) can clearly be applied to the case (C1);

Let Gr := Bg(z) C A, for v < 1. If 2 € OB, consider G := Bg(z) N A,.

Given ¢ > 0, by the Courant-Lebesgue Lemma, there exists 6 > 0, independent of
v < vy, such that Length of b, |yq;, < min{, Z(iv)}.

By assumption, i(N) > 0. Then h,|sq; C B(g,s) for some ¢ € N,s < min{$, @}
We observe, h, is continuous on 0Gj, and there exists an H'2-extension of disc type
X, whose image is in B(g, s) with X |s5, = hy|sp, from the same argument as in the
proof of Remark 2.1. Thus, by the result in [HKW], there exists a harmonic extension
h' with h'(Gs5) C B(g,s) C B(g,5). From Lemma 2.5, A’ is homotopic to h on Gj,
and from the energy minimizing property of harmonic maps, h,|g, = h'. Hence, the
functions h, with v < 1y have the same modulus of continuity.

Moreover, if these mappings are with the same boundary image, the mappings are

C°-uniform bounded on each relative compact domain.

Now we apply the above result to our maps {F,, p < po} in R¥. Then, for some p, €
(0, 1), the functions f, resp. g,» have the same modulus of continuity for all p € (0, po),
and some subsequences denoted again by f, g, are locally uniform convergent.

Recall that our mappings are continuous, so by localizing in domain and image, har-
monic functions as the solutions of Dirichlet Problems may be regarded as weak solu-
tions f of the following elliptic systems in local coordinate chart of V:

9) ViVif* = -T4 VifPVif" = G*(-, f(-), V("))

Letting vy := v(pg), v := V'(po), we can assume the same coordinate charts for the
image of {f,},<v, and {g, },/<,;, hence the same weak solution system for (9).
Moreover, since hqag and I'g, of N are smooth, all the structural constants of the weak
systems (see [Jo] section 8.5) are independent of p < pq.

Now consider K7 = {0 < |2| < 1 -0}, 0 € (0,1). From the regularity theory by
[LU] and [Jo](see [Jo| section 8.5) and by the covering argument, there exists C' € R
such that HfV|KgHH4,2 < C forall v € (0,19). Hence by the Sobolev’s embedding
Theorem, for some sequence {p;} C (0,1), lim,, o fu(p)|xe = f' in C*(KZ,R"), with
(f") =0in K7.

Now letting o := =, choose sequence {f,(,, )} as above such that {pn41,} is a subse-

quence of {p,;}. Then by diagonalizing we have a subsequence { f,(,, .)},n > 1o which
converges to f locally with C?-norm, so f' is harmonic on B\ (0B U {0}).

On the other hand f,|sp = z! for all v, and f, converge uniformly to f' in a compact
neighborhood of dB. Thus, f’ is continuous on B\{0} with f’|sp = z'.
We also observe that from the construction, oscgp, f' — 0 as r — 0.

Moreover, for each compact K C B\{0}, [, |df'|’dw = lim,,_o [, |dfu(py|* < L with
L, independent of K. Thus, f' € H“*(B\{0}, N), and f’ can be extended on B as a

11



weakly harmonic map from Lemma [Jo] Lemma 8.4.5.(see also [SkU], [Grii]).

Thus, f' can be considerd as a weakly harmonic and f’ € C°(B, N) N C?(B, N) with
f'|lop = z', and from the uniqueness property we obtain, f’ = F'(z').

We have the similar result for g,.

B-II) The convergence of energy.

Consider 1o f, denoted again by f := (f*)az1,.. x € HY*(M,RF). Since n: N — R* is
isometric, for f:= (f*)azt,..n € H2(M, N), [,,1d(f*)5dw = [3,1d(f*)[2rdw.

Note also that for a harmonic f € H“?(M, N) with M C R?, bounded,

(10) /M(<df, dy) — (11 o f(df, df),¢))dM =0,

for any ¢ € Hy” N CO(M,R¥), where II is the second fundamental form from 7.

Letting K, = {0 < |2] < 1},0 > 0, for v € (0,0) we consider RF-harmonic maps H,
and H, on K, with H,|yx, = f,|ox, and H,|ox, = F'|ox, -

Also let H : B — R* be the harmonic map with H|sp = H,|sp = ﬁu|aB = z!,
then both of {H,}, {I;',,} have the same modulus of continuity until 0B, and ||H, —
H|lcox, =0, |H, — Hl|lcox, =0 as v — 0.

Let X, := (f, — ") + (H, — H,) € Hy* N C°(K,,R*), and then we have that

1Xulleosneny < Ny = Flloo, + I1Hy = Hlleowe, + |H = Hylloo, =0 as v — 0.

Now we compute
/K (d(f, - F), d(f, — F))dw
= [t -8 ax o~ [ s, - 5. dlt, - By,

o o
- v - 7
-~ -~~~

=I =11

Then, from (10), as v — 0,

Il < +

/ (IT o £, (df,, df ), X,)do
Ky
(11) = ClXullcoxs) = 0.

/ (I o (dF", dF), X, )dw
Ky

Moreover, since H, — H, is harmonic in R¥,

12 |< /6K 8, (H, — H,)

d().)”fu—CTIMIHC'O;KCr —+0 as v—0.

12



Thus, [, |d(f, = F")[*dw — 0, and [, |df,|” dw — Jx. dF|? dw, for any K,.

Since [, [dF'’dw — 0 as o — 0, we obtain, [, \df,|* dw — [, |dFY|? dw as v — 0.
Similarly, it holds that fA,,/ dg., [ dw — [, |dF?|*dw as v/ — 0.

Now for the uniform convergence on N.(z}), we recall the proof of Lemma 2.2 and
replace f(A,) by B(p,r)(for (C1)) and N (compact in (C2)). Then, ||F,(z', 2%)|| g2 <
C, uniformly on N, (z%), where the constant C is dependent on x, but ¢ is indepen-

dent of z§. And the convergence in (11), (12) is uniformly on N.(zf). The proof of
(B) is completed.

(C) We must show that for ' € M" and £ € T,
(64€,, 6" — (6::€,€") as p— 0, uniformly on N.(zf) C M*,i=1,2.

It suffices to show the above assertion for 7 = 1. We know that

Gty = [

Ay (p)

- .

where g,/(-) = F,0T(:) and (,(V'€?) = I, (£',0)(ve?) with v/ := 2=

v(p)®
We observe that J5,(£',0) o T is a Jacobi-Field along g,» by the conformal property of
T.

(dF (2", 2%), Vg, (€', 0))pdw + / (dF (2", 2%), VI, (€', 0))pdw

B, () \Bp

(d&"p(ml,x2),VJgp(§l,O))hdw+/ (dg,, VI, ,(0,())dw,

v(p) Ay

The proof is divided into several steps.
C-T) The convergence of Jacobi fields.

First, letting V, := Jg, (€', 0)[4, = v,‘}% o f,, we show the existence of vy with

(13) DV, 15 ::/ hop © f,,vf’ivf’idw < C for all v e (0,v), v € (0,1).
Ay

By computation, | DV, |3 < CE(V,) + C(N,||Villo, || fuollos E(fv)), and by Lemma 2.6,

IVullco < ||€L]|co, so we need to show only that

(14) EWV,) ::/ |Vf”V,,‘2dw <C, ve(0uw).

Let X, := 2252 o f, € HY?(A,, f;TN), where z(2) = v$, (12(2)), v < |2] < 1

vV Jy« Vo

(see section 2.2 for the definition of 72%0) and z%(z) := 0, v < |z| < v. Clearly,

IDX,||3 < C(vo, N)||DVay,l|3 for all v < .

13



By the minimality property of Jacobi-Field and from the Young’s inequality,

/A (V5 (V)" = (rR(dfs, Vi)d, Vi) de < / (V5 (X)) = (trR(df,, X,)dfy X,))dw

0 0
< hag © ,,x"“acﬂ-dw 8/ 2%, — o f,|*dw 6_1/ 27 T2 o —— o [, | dw
= /,;,, B f [ ZX Rad 78 + A,,| u,zaya f |h + A,,| uf,z %) f (9:(]5 f |h

+ / hag 0 foala) fofiT% o £,18, 0 fodw — / (tr R(df,, X,)df,, X,)dw

v v

< C(N,& 1 fullo. E(fo), Vawollos 1D Vauo|[3)-

And E(V,) < C, v € (0,1),since [, (trR(df,,V,)df,,V.))dw < C(N, || fullo, E(f.); 1€ l0)-

We have proved (13), and this means that {(v3)|v < Vp}a=1,.. » has the same modulus
of continuity from the similar argument as in B-II) with Lemma 2.6.

With the same charts as in (B), (v,) € R, v < 1 are weak solutions of the
above system with a uniform bounded energy and the same modulus of continuity
on K, = {o <|z| <1} with o > 0 for small p by Lemma 2.6.

From the similar argument as in (B), this sequence converges to the Jacobi field along
Fp\o;. Thus, letting wa% o Ft = Jq (&), for any compact K C B\{0}, as
v(or p) — 0

1w (2)) = (@*(2Dlloosk, = 0, [|(v5(2)) = (w*(2)) oz — O-
C-1I) The convergence of derivatives.

Considering K, as above, we denote f,|x, by f, and F!|g, by F'.

Note that exps: : U(0) = HY?NC?(K,, N) is a diffeomorphism on some neighborhood
U(0) € H»? N C°(K,, (F})*TN), since d(expg1)o = Id.

Moreover, || f,—F k., ||g1.2nco — 0as v — 0, so there exists £, € H?NCO(K,,, (F)*TN)
for small v > 0 with exp4: &, = f,.

The mapping £ +— dexpgsi, depends smoothly on §, € TmH'? N C°(K,, N), so
dexpgie, = Id in H'?NC°(K,), since &, — 0 in H?*NCYK,, (F')*TN) as v — 0,
and for W, := w2 o F! := dexp;}’gu(v,,), we have, ||wS(z) —w®(2)||co.x, — 0 by (I).

v aya
Moreover, dF' — df,, in L?, thus [} |dexpg ¢, (dF') — df,[*dw — 0.

We next observe, for VF' W, = (wg; + w,"}(?l)ifgy(ﬂﬂ))dzi ® % o1,

(15) / |dexpgl’§V(V?1W,,) — V"V, [2dw — 0 as v — 0,

o

since ||F' — f,|li20 = 0, dexpgi e, — Id in C°, 9;(dexpgi ¢,) — 9;(Id) =0 in L*.
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Thus, for X,,Y, € H?*NC°(K,, T*M ® f;TN) with [ [X,[?dw — 0, [ |V, [dw —
0, it holds that

dexpgi ¢, (dF") = df, + X,, dexpgrg, (VT W,) = V*V, +,.

And from the Gauss Lemma, (d?l,Vng,,)h = {df, + X,, V"V, + Y,),. Thus, by
Hoélder inequality and from (14),

/K ((df,,, VIV, — (dF, YV I (gl))h) dw

_ / (a5, V7' W, n = (dF", V7 T (6)n ) dw + o(1)

o

(16) < EdFHY|VTW, — VT 351 (Y| 2.k, + 0(1).

For the estimate of the last term, letting W := J51(£'), consider A, := af}%o&ﬂ, A=

aa% o F1! such that dn(a,‘f%Offl), dﬂ(aa%dp) € H"*NC°(K,, R*) are harmonic

in R¥ with AV‘@KO- = WI/‘@KO- and A‘@Ka = W‘BK(,- Clearly, ||d77(A,, — A)”l’g;o — 0.
Now, consider a test vector field Z, :== W, — W — A, + A € Hy> N C*(K,, (FY)*TN),

and then, observing that W resp. V, is a Jacobi-Field along F'|x, resp. f,|x,,

(17) / (VT W, = W), V7 Z,) pdw

= / {(VT'W,, V7' Z,) — (trR o F (W, dF)dF", Z,)»,
K,
—(VV,, VI (L(Z,)))n + (trR o f,(V,, df.)df, (Ly(Z,)))n}dw
= {VT'W,, V7' Z,) — (trR o FY(W, dF")dF", Z,)n

Ko

—<V&'.1L;1(V,,), VSrlZu)h + <t7’R © fl/(Vw dfu)dfw (LI/(ZI/))>h}dw + 0(1)
with L, := dexpsi,,. And this converges to 0 as v — 0, since L,*(V;,) = W,
| Z|lco.xc, — 0 and ||F|1.2.0, W | o, || full1,2:0, Vi llco < C' for all v € (0, vyp).

Moreover, in (17), since ||dn(4, — A)[lco — 0, [, V7' (A, — A)2dw — 0, note (1).
Thus, (16) converges to 0 for each o € (0,1). And by letting 0 — 0, we have

/ (dF (2", 22), VI, (€L, 0))ndes — / (dF (@), VI (€ ndw, p— 0,
Av(p) B

note that [, (dF'(z'), VIg1(§'))ndw — 0 as o — 0.
In a similar way, [, (dg,, V3, (0,G))dw — [(dF?(z?), VI (0))ndw = 0.
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The uniform convergence on N, (z}), the same as in (B), is clear.
In this manner, we may also show that §,1€,,0,2€, are continuous with respect to
p € (0,1) and uniformly on N,(z%). And we have proved (C).

(D) By the same argumentation as in [St3] we have the following differential form.

1

drdf
I—p

0 1,2 4 _ oot 2 1 2
(18) Fel=rE(a, 2% 1) = . 10: Tl = 31065

This brings to an end our proofs for Lemma 3.1. O

3.2 Critical points of &

For given Jordan curves I'y,['5, " in (IV,h) with dist(['1,'y) > 0, we consider the
Plateau Problem P(I';,I's) and Problem P(I').

Now we define for z = (z!,22,p) e M, i = 1,2,

(19) gi(z) = sup (—(64:€, &%),
fZ.E T pi
1€ <t
-0,E
o = [P0 0
g(x) = Z?Zlgj(x).

Adding to the the definition of /; in section 2.2, we can clearly require that [; <
{1,4;(I';)}. And note that g; > 0,5 = 1,2,3, because, g;(z) < 0, ¢ = 1,2 means
(04:€,€) > o > 0 for all & € T, with ||| < I;, and since T is convex, (d,:E,tE%) =
to > o, for all t € [0, 1], a contradiction. Clearly, g3(z) > 0. Now we can define the
critical points of €.

Definition 2 € M is a critical point of & if g(z) = 0, i.e. 9;=0,7=1,2,3.

Lemma 3.2. g; is continuous, and specially g;(z', 2%, p) = g;(x', 2%, po) as p — po,
uniformly on N.(z*), for some smalle >0, j =1,2,3,i=1,2.

Proof. The uniform convergence of g; with respect to p — py € [0, 1) on N, (z?) follows
immediately from the uniform convergence of §,:€ (see Lemma(3.1),(C) ).

Let {z,} = {(21,22, p,)} C M which converges strongly to 2 = (z', 22, p). From the
above, gi(zL, 22, pn) — gi(zL, 22, p), uniformly on {n > ny}.

Now, let Z,, := (z,, 27, p) and exp,; &, = z*. Observe that dexp,; . — Id in H32N (",
hence for some to, independent of n > nq, ||todexp,: ¢ (m)ll7,, < L if |l lls, < L
note that T, is convex with 0.
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Then by Lemma(3.1) (A ), for given § > 0 there exist t3(J) and ng(d) as above such that
for each H%H‘Twz < I; with n > ng(0),

—(021€(En), M) < —(021&(x), deXpyi g () + 0
< (05 (x), todexDy; g (1)) +20 < gi(x) + 20.
This implies, ¢;(Z,) < g¢i(z) + 20. On the other hand, ¢;(z) < g¢;(Z,) + 26, so
gi(zl, 22, p) — gi(z', 2% p) as n — oo.
Together with the above uniform convergence on N,(z') as p, — p, we conclude the

cotinuity of g;, # = 1,2. The continuity and uniform continuity of g3 is clear from the
form of 6%8. O

Proposition 3.1. z = (z', 2%, p) € M x M? x[0,1) is a critical point of & if and only
if F,(zt,z2) (for p € (0,1)) resp. F(z*) is a solution of P(I'y,Ts) resp. P(T;),i=1,2.
Proof. (I) Let x = (2,22, p) € M* x M? x [0,1) be a critical point of €. From the
result in [HKW], & is continuous until the boundary.

We must show that F,(z!, z?)(for p > 0), and F*(a?) is conformal. We will show this
only for F,(z',z?), because the proof in the case of F(z*) is similar to the case of
F,(z',2%) and easier.

For z € M, a critical poinf of €, we have that F,(z, %) belongs to the class H>?(A,, RF),
which was proved in [Ki].
We can then compute, for &' € Ty, letting F, := F,(z',2%) and J, := J5,(£',0),

_ 9
(5,8, = /A (AT, 7 4 4 (@5, 86,0 o = /A (225, ¥ a 3, (61,0))ndo

, 0zt
0 0

_ / div((-2-F,, 35 (€1, 0)m (-2 F,, Tg (€1, 0))n)dw (since Vo 0-F, = 0
Ap

0z1 022 25 0z P

0
(20) = /a B<@Cﬂ,ﬁ, Y pdw.

Now, we can use the calculation in [St1] and obtain the conformal property of F,.

(IT) Let F := F,(x)(resp. F(z')) be a minimal surface of annulus (resp.disc) type. By

[HH], F € C*(4,, N) (resp.C*(B, N)). Thus, from the conformal property 4. £z = 0,

and the computation (20) says that ¢g;(x) = 0, g2(z) =0, by (18) also g3(z) =0. O

4 Unstable minimal surfaces

4.1 The Palais-Smale condition

By the conformal invarianc of E, the Palais-Smale Condition((PS) condition) cannot
be satisfied for some function sequence(cf. [St1] Lemma I1.4.1). Hence, we need the
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normalization as in [St3]: Let Pf € T; fixed, k =1,2,3,4=1,2, and

. . o 27k 27k ,
M"™ = {z* € M": 2*(cos %,Sin %) =P ely, k=0,1, 2}

Now define

M = {z=(at,2%p) e M:2'(1,0) = P! €T}
oM* = {z=(z',2%,0) € M : 2" € M*},

with T,M* = {€ € T,M|&(1,0) = 0} for x € M* and T, OM* = T 1 x T2 for z € OM*.

To avoid complication in the sequel, we give some explanation for the above setting;

(i) We will consider an element z° € M* as a class which consists of y* € M* with
T|sp(y') = x* for some conformal transformation T of disc onto itself. In other
words, we classify M? in such a way that each class posesses only one element
from ¢ € M*, if necessary, denoted by [z'] € M™, with ||[z*]|| = ||z, = 1, 2.
For [z] € OM* with 2* € M*™, we define g([z]) := g(z).

And for € € ‘J'gl C Ti, we may calculate: expy, := [exXp,:] 1= ('] € M™, where
exp,&{ € M*, so T(exp,:&) = &* € M™, since T is a conformal map of B. We
denote this correspondence by exp,:£ = &' € M'*, which is clearly continuous.

(ii) We consider the following topology for this setting:
A neighborhood U, (z¢) of 7o = (x}, 22,0) € OM* consists of all z = (z!,22,p) €
M* such that p < ¢ and for each i = 1,2, infy o) ||Fi(z?) 0 0 — Fi(z?)]12 < &,
where ¢ is a conformal diffeomorphism of B.
A sequence {z, = (2,22, p,)} € M converges strongly to z = (!, z2,0) € IM*,
if for any £ > 0 all but finitely many of z,, lie in U, (x).

Then, we can easily check the following:

Remark 4.1. (i) For x € M*, the value of g;(x)(i = 1,2) in (19) does not change,
even if we use T, M* instead of T, M.

(i1) With the above topology g;,j = 1,2,3, are continuous and uniformly continuous
as p — po € [0,1) on some e-neighborhood of (z', z?).

(11i) For& = (€',€%,0) € T,M* resp. T,OM*, with ||§"||%,2;0 < l;, exp,& € M* resp OM*.

Proposition 4.1 (Palais-Smale condition). Suppose, {r,} is a sequence in M*
such that &(x,) — B, g(zn) — 0, as n — co. Then there erists a subsequence of {x,}
which converges strongly to a critical point of € in M*.
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Proof. We prove this for the case that {z,} C M* with 0 < p, < 1, &(z,) — B,
gj(xzn) — 0. In the case that {z,} C OM*, the proof is similar. We may suppose that

Pn —> -
Note that the above p cannot be 1, i.e. 0 < p < 1, because for any z = (z!, 2%, p) € M,
17, < c€(z), since 0 < dist(I'y, T'z). For further details, see [St3] Lemma 4.10.

Clearly pr \dnoF,(z', 2%) Pdw > pr |dJ—Cp(.x1,x2)|2d.w > C(P):i [ |dH(z")[*dw, so by
[St1] Proposition I1.2.2, for subsequence {w}, } with v*(w?) = «?, it holds, for some inte-
gers j'(n), ||wi —275*(n) —w'||co — 0 or z¢ = y'ow’ — const. =a; € [; in L*(OB).
We have to distinguish several cases.

(case 1) Let p € (0,1) and ||w! — 2752 — w'||co — 0, ie. ||z} — 2%||co — 0,2° €
Mi, i=1,2.

. . . . : ; ; ; w;‘ (0) wl(a) l n " !
First, 7/} (0) /(0 (0) = ¢y A O) i) ~w @)= [ [yt
o Jw w g ,

=0T}
And [, 1d3H, (11, 1I7) Pdw < C(p)(IHUIL)IE g0 + IHULDIE 2100) — 0, a5 0 — 00,
since I1FT211 goo < Cllut, — wllo(upls + ] by [5t2] (3.9).
Let 3, := H,(x),22), H:=H, (2", 2?), Fo:=noF,(z},22), F:=noF,(z',z?).

n)»'n

Since 3, — 3 is harmonic in R¥ and pr (dH,d(3, — H))dw = o(1) as n — oo,

/A,, 1d(H, — F0) [2dw = /A

Now we consider &, := —1I} € Ty, and letting J), := J5,(£},0), J2 == J5,(0,£),

NIV

(dF,, d(H, — H))dw + o(1) = / (dFp, d(F,(I, I2)))dw + o(1).

nrin
p Ap

/A (dF, dIH, (1L, 12))dos = /A (dF, I, (11, 0))des + (dF, dFH,(0, I2))deo

= /A —(dF,, dI})dw + /A (IT 0 F,,(dF, dF), H, (I}, 0) + I} dw

+ / —(dF, dI2)dw + / (IT o Fp(dFn, dF ), 3, (0, I2) + I2)dw
A A

p o

< 9i(@n, 70, PG 2100 + CUITullr20) 160l
< Cgilzn)ll€ulls 200 T CUIFnll20) |27, — 2o,

N

where C' is independent of n > ng, for some ng, since observing that ||z, — z%||co — 0,
we obtain the convergence of g;(xl, 22, pu/)) as pw — p, uniformly on {z%|n > ne}, by
the arguments in Remark 2.1, Remark 2.2 and Lemma 3.2.
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Also note that ||£!]| are uniformly bounded, since from [St1]

lldy* (wy,) (wy, = w))lls < lldy' (wp)lls llwy, — w'lloo + lld* (w],)lloollwy, — 'l
Therefore [, |d(3, — 3()|*dw — 0, and z}, — o' strongly in H22n C°0B, RF).
(case 2) Let p € (0,1), ||zl —2|co — 0, 22 = yp0w? — const. = ay € [y in L'(OB,RF).
I) First, we claim that F := F,(y! o w', a?) is conformal.
I-a) By assumption, | T|co = [ld7" () (w — w")[|co — 0.
Let H,, := H,y(xp, 22), H:=H,(zt,a?), F,:=F,(z),22), F:=F,(z',d?).

n»*vn n»*n

Then, for any fixed o € (p,1), as n — oo, letting J,(&},0)|s5, =: I, with J, =
dn(J,(&;,0)),

/A |d(H,, — ) 2dw
- / (dH, d(H,, — F0))dw + o(1) = / (dF, d(H,, — F0))dw + o(1)

= / —(dF, dI}Vdw + / (dFp, dH o (I, 1) + dI%)dw + o(1)
Ag

Ag

(since ||H,, — H||ap, — O applying the arguments below I-b))
= / —(dF,, dI}Vdw + / (IT 0 F(dFp, dF), Ho (I}, 1) + IL)dw + o(1)
Ag

Ag
_ / (4T, dI dw + o(1).
Ao
This holds for each o € (p, 1), thus

/ A — H)2dw = Tim [ |d(H, — H)Pdw < / —(dF,, dT Ydw + o(1)
Ap Aa AF

o—p

< Coi(w, 77, pn)lIEn]

which converges to 0, by Lemma 3.2 and the uniform boundedness of ||£} || 120
Moreover, [, |dH(z} —z')[?dw < pr |d(H,, — H)|?dw + o(1), where o(1) — 0 as p — 0

. . 1
uniformly for n > ny , so from the above, . — z! in H2?NC".

199+ 0(1), for large n > ng

29

I-b) Now letting 22 = yp0w?2 and a; = y*ow?, let us see the behavior of F,, (z,, 22)|sp,, -

First, there must exist 6y € [0, 27] such that |limg_g,4 w?(0) — limg_,g, w?(6)| = 27.
And by the Courant-Lebesgue Lemma, for given € > 0 there exists r, € (8,v/3) for
some small § := §(¢) > 0 such that with B, := B, (6y),

E(xl, 22, pn) C

L 2?) < < .
(21) 0SCA,, N0By, I pn (T, Tp,) < C e = () <e

20



And letting V2 :=Ty\F,,(B,,) UF,,(0B,,), we obtain, dist(Y,2,az) — 0 as n — oc.
Next, applying the argument in the proof of Lemma 3.1 (B) to {F,,|a,,\B,, } = F,,
Fulk converges to F|x in C?. for compact K CC (4,,\B,,) for large n.

I-c) Now, we investigate the behavior of Jacobi fields.

For large n > ng, exp,i&, = ,, for some &, € Ty, with [|dexp, g d'|| < 1, [|9']] < b1
Since dexp,i ¢ — Id in H3? N CO, for (v35% 0 F,,) := Tz, (dexp,1 16", 0),

Un gya

/ hog o F, Umvmdw < C, independent of n > ny.
A

1403

From the Courant-Lebesgue Lemma and v;|s, =0, for some 7, € (V8,VV5),

/ hag o Sfpnagvﬁﬁgvgde < and ||(v7‘f)||00(3rh(90)m4pn) <
6(3 nApn)

C
|Ind| | Ing|’

Hence, from Lemma 2.6, E(Jg,, (dexXp,: ¢16',0)|p,, ) is less than “ 5| small enough on

<eg:= 1

B, , since r, < r,. Now we choose the above ¢ so small that Yl 5‘ o

I-d) Letting &, := F,, (2}, 22), by Holder inequality

0 = lim g'(z,, 2}, pn)
n—oQ
> lim (- / (4 . 3, (deD1. 6", 0o — [ (AT, a5, (6D, 36", 0)) )
oo Pn\B"‘n " B"‘n o

~ Jim (- / (4 . 3, (deRD,1.16',0)) s — o(1))
neo Aﬂn\B‘f'n o

- _ / (dF, dT5(¢",0))dw

Then, the computation in [Ki| (Theorem A.1.) delivers, F := F,(z', ay) € H**(A,, N).

Now, as in Proposition 3.1, we have, (42, %2,[,5 = 0, and clearly (di, % Vhlon, = 0.
As a consequence, for z = re? ®(z) = r? 8%3-" = |8%3’|h = 2ir< F, 893"> is real
h

constant.

Now, from the form of 6%8 in Lemma 3.1, the above holomorphic function must be 0, if
we show that 3%8(331, as, p) = 0, and for this we can here handle the same computation
as in [St3] for our case. And the the conformal property of F := F,(z!, as) is proved.

IT) We now have a harmonic, conformal map F := F,(z',a2) € H*> N C°(4,, N), and
we will see that F must be a constant map. We use the idea as in [Jo] Theorem 8.2.3.
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Consider the complex plane with positive imaginary part, C* = {6 +ir|r > 0} and let
F((r + p)e®) =: X(0,7), well defined on R x [0,1 — p]

with X (6,0) = F(pe'’) = a, and ‘3;—5\{?:0} = 0 for each m. Choosing an appropriate
local coordinate chart in a neighborhood of as, we may assume that X (6, 0) = 0.
Since JF is conformal and harmonic, F|4,usp, € C*(from [HKW]), and by simple

computation, ge—mm)? =2 X=0on {r=0} meN.

For some py, @ := {0 +irl0 € R, r € [0,1 —po)}, Q :={0+irl0 €R -1 €
[0,1—po)}. Expanding X to QU Q™ =: Q by reflection, X € C*°(Q2, N). Then, from
the harmonicity of ¥, it holds that |X,;| < C|X,|, where 0, := $(9y — i0,), 05 :=
1 .

—(89 +1i0,).

Furthermore, for all m € N, (%:;)?(0) 597:15(:(0) =0 and lim,—(g,)—0 )?(z)|z\_m =0.
Hence X is constant in € from the Hartman-Wintmer Lemma (see [Jo]). Repeating
this finitely many times, we get F = as on Ap. But this cannot occur, because we have

assumed that dist(I';,T's) > 0. Therefore we may exclude this case.

(case3) Suppose that z° = v; o 2, —const.=: a; € ['; in L'(0B,R¥),i =1, 2.
Then ®(F) is real constant, F := F(z!, ?).

Similarly to the second case, supposing dipE (F) # 0, we have for some fixed ¢,6 > 0

and large n > ny, ‘fozw fpl;; Ha%grpnﬁ — T%|%9"pn|h] - —drdf| = C >0 . Letting

ggpn , on Al—t7
O P+
3:2 = gjpn O T, 1-t)g on Aa\Al—t;

F,, (£ =°r,0) , on Aﬁ_ﬁ\A”’

0 1-¢
Since F4+0 = F,,, it follows, pulgs(wn)| = |pnge E(Fp)lo=p.| = |(p + 0) L E(FLT)] >
C > 0, contradicting the assumption, gs(x,) — 0. Thus, F,(a1,a2) is also conformal.
From the same argument as in (case2), we can also exclude this case.

we obtain, 2$E(§‘g)\gzp+5 = [ pr [10:F 5,12 — 5105, 7] g drdo.

(case4) Suppose that p = 0.

It holds F*(a},) o 7, = F(3},), &}, € M™, where 7, are conformal We may let % —
zt € M* in C°. From the topology of M* we have thus ¢(Z},72,0) — 0 as n — oo,

n»'n?

and {z,} converges to (z',z% 0) € OM* with g(z*, 22 0) = 0. O

4.2 Unstable minimal surfaces of annulus type

We need some Lemmata as in [St3] for our case.
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Lemma 4.1. For any 0 > 0, there exists a uniformly bounded, continuous vectorfield
es : M x M? x [0,1) = Tapn x Tar2 X R, with locally Lipschitz continuity on M and
OM (separably) with the following properties,
(i) for B € R, there exists € > 0 such that for any x € M(p) := {z = (z', 2%, p) € M}
with €(z) < B,0 < p < € it holds that ys(x) = (eXp,ej(z'), expeei(x?), p+ ed(p)) €
M(p), namely e3(p) =0 (e is parallel to OM near OM),

(1) for any such B,&,x as above and any pair T = (7',7%) of conformal trans-
formations of B, ys(z o T) = ys(x) o T, where x o T satisfies F*((x o T)?) =
Fi(z)oT, i=1,2,

(iii) for any x € M, (d&(z), e5(z))g ,x7.oxr < 0 — g(z),
(iv) ys(z) € M* resp. OM*, for all x € M* resp. OM*.

Proof. Because of Remark 4.1, one can easily prove this using the idea in the proof
of the corresponding Lemma in [St3]. O

Lemma 4.2. For a given a vector field f : M — Tan X Tape x R which is locally
Lipschitz continuous with the properties in Lemma 4.1, there ezists a unique flow @ :
[0,00) X M* — M* satisfying

0 _
®(0,z) =z, gé(t, z) = f(®(t,z)), =xe€M*.
Proof. We use the Euler’s method. Let’s first define ®™ : [0, 00) x M* — M*, m >
my :
o™ (0,z) = z
(m) — &5 mt — [mt] o o my [02] )
(22) " (t,x) = exp@m)([%],w)( - f(<I> ( - ,ac)) , t>0

where [7] denotes the largest integer which is smaller than 7 € R. This is well defined
from the convexity of T, 2 € M*,i = 1,2 and from Lemma 4.1 (iv).
Recalling a map w® € C°(R,R) with 2! = +* o w?, x* € M?, consider

W= {w' € C°(RR) : v ow' = 2° for some z* € M*}, W := W' x W? x [0, 00).

Lettlng 7(w) = (71 © w1’72~o ’LU2, ) for (wlanap) = w € W, v o= (71a7251d)
and f = (f', f% f) with fi(w') = (dy")7'(f*(z")) € C°(R/2m,R), there exists

&™) (¢, w) € W with ®™ (¢, 2) = v(®™ (¢, w)), so we can rewrite (22),

~ ~ t]
™ (¢ — ¢m [ﬂ
(t, ) (2 w)+

=] pen (™ ) tom, 1€ 2
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And for t € (£ B2 |k € 7, 30 (¢, w) = ™ (0,w) + [; F(@™ (2 1)) ds.

Now we can compute further as in Euclidean case ; For any 7" > 0, G > 0, there exists
C(T,G) with ||(I>(m)(-,w)||Loo([0,T}XWKM) < C(T,G) for we W with ||w||w < G.

Let L; resp. Ly be the Lipschitz constants of f in {z € M| ||z|| < C(T,G)} resp.
z € {OM]||z|| < C(T,G)} and L := max{C(y")L,C(v")Ls}.
Then for 7 <1,
196 (¢, w) — 8 (¢, w)|| < LLEC(f) + LD (-, w) = B (-, w)| o= po.g.0).
Hence, for m,n > mgy, we have that
120 (-, ) =™ (-, w)|| oo qo,,w) < tL(5+2)C(F)+HLIR™ (-, w) =@ (-, w)l| oe(0,,w)-

Choosing t < min{T, 1, Pm) converges to some function CTD, uniformly on |0, %] x
g 2L

28 (t,w) = f(D(t,w)).

{we W :|lw|| <G} as m — co. And we may conclude, 2

Letting ®(¢, w) := v o ®(t,w) € M, from the uniformly boundednes of f we get the
flow ® for each z € M with %@(t, w) = dvy (f(@"” (t, w))) = f(<I>(t, w)) Similarly, we
prove that ® (¢, w) depends continuously on the initial datum, and it can be continued
for ¢t > 0. O

In the following Lemma we have a somewhat weaker result than the corresponding
Lemma 4.15 in [St3]. But this result is enough for our aim.

Lemma 4.3. Let F(z}) be a solution of P(L;) for some zt € M', i = 1,2. And
suppose that d = dist(F*(x}), F4(x3)) > 0. Then there exists € > 0, py € (0,1) and
C >0, dependent on €(zy, z5,0) such that for 2 € M* with ||z* — zj||1 5 =1 s(2°) <,

2

E(z', 2% p) > E(z', 2%,0) + vd

Yk for all p € (0, po).

Proof.(I) Let ¥, := F, (2!, 2?) F* := F'(z*),7 = 1,2. We choose o7 and § such that

VP <0 <oy <4/y/p- Letting T(re“’) = pw% and oy := %, we take f,, = 3"p|Aal and
oy = 37p|B5\Bp (Tﬁl), and then

(23) E(:’tp) :E(fm)"‘E(Stp‘Bal\Bs)+E(gv2)'

For the estimate of E(f,,) we take a; € N with min,ey F(F,, (7!, a)) = F,y (z!, a1) =:
For-
We next define, 3?}:1 : B — N as follows: Let %‘B\Bl = 3’}3\31, 3?\}:1|BL\B<71 be

—_~

harmonic in N with boundary |55, on 0B1 and F'(0) on 0B,,, and F} |5, = F'(0).
2
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We now estimate, 2E(3fi}/1 -FhH = / \V(f?gl - 3"1)|2dw+/ W(% — FY)Pdw.
Bs,

B1\Bs,
2 . ~

[\ vl -~
~
=:b

=:a
It is easy to see that b < Clo:[?, since F* is regular on Bi.

71 2,2 F1 ;
We observe, 3}1|B%\B¢,1 € H*?, since JL, |6B% is regular and contant on 0B,,. Thus,

0 = / (V(FL - FY)id, FL — F)d, +/ (V(FL — F)it, FL — F)d,
8B,

8Bo,

< OF40) — Fom,,lloor < Clo1f?,  with C = C(E(F}(z"))).
Letting F., |s,, = a1 it hols, E(F") < E(FL,) < E(FL,). Now from Remark 4.2,

(24) E(F,, -9 < E(F,,) - B(F") +o0,(1)
< B(FL) — B(FY) + 0,(1) < E(FL — FY) + 0,(1) < Clov|* + 05(1),

where 0,(1) —= 0 as ||z} — zg||1 5, = (") — 0.

Since E(F;, —F")|p,, < Clo1|*+04(1), we have that E(F;, —F")|4,, < Clor[>+o0,(1).

For X' := f, —%, | |IAU1 V(FL-FH VX dw| < Cal(anl |V(f(,1—3"},1)|2dw)% < Co;.

On the other hand,
1
<(1-o) /
o1

(B(FL, —F) + E(F., —F) < Coy + 0,(1).

2 2
dr

ja — FHO)? = V(FL —FL)

1 —~—
/ or(FL, — ?tlfl)dr
<

1—0’1

(25)

01

From the above we have that
‘ / (VL VXl)dw‘ < ‘ / (VF, VX Ndw| + Co
Ay Agy
< |IVFYas,, Il(—a1 + F,los,,)|lor + Coy < Con.

Now we can compute, with C' € R depending on E(F?)

(26) E(f,,)=E(F,,)+ /A (VF. ,VX")dw + E(X") > E(F") — Co.

Similarly we have E(g,,) > E(F?) — Co,, C depends on E(F?).

(IT) Here we will estimate E(JF,|s,,\5;)-
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From (25), |ay — az| > [|F1(0) — F2(0)| — |ar — F(0) + F2(0) — as| = d—0,(1) —0,(1).

Let HZ(f, g) be the harmonic map on B,\B, in R* with boundary f on 9B, and g on
0By.

Writing 0y =: 0, - =:7, Fylan,, = P, Fplan; = ¢,

| [(936501,02), 99G (= + p, -0+ )

= | / (VH(0, ~a1 + ), VIC(~a + p(-07), a2 + a(-0))duo|

2w | (0p(1) + 05(1))
[In7| Inp[

— a1+ ao|(| — a1 +p(-0)| + | — a2 +¢(-0)]) <C

And

lnr) md? (0,(1) + 05(1))

E(H? > E(H)(0,— =FE Z ool
(H5(a1,02)) > E(H,(0,—a1 + az)) (G a1+a2)1 = |lnp| [ In p|

Thus, with C depending only on E(F¢)

E(H:P|Ba\35) > E(g'fg(p, )) = (:}(5 (alaa'?) +g{6( a; +p, _a‘2+q))
md* L 0,(1) + 05(1)
| In p| [ In p|

(27) >

(III) From (23), (26), (27) and the choice of o;,

2
afw%mzewnﬁm—cm+ﬁd-—(W”+Wm
[ Inp| |1an
[/ 0p(1) + 05(1)) L2 d*
> &(xt,22,0) — + —28x,x,0+0—,
( Clvp |1In p| ( ) [ 1n p|
for p < po, for some small py € (0,1) and small s(z?). O

Remark 4.2. With the same notations as in Lemma 4.3, it holds that
E(ff},l —-FhH < E(S’},l) — E(FY) + 0,(1).

Proof. Let G' := F(z), GL :=F,, (24,a") = mingey E(F,, (25, a)).

Observe, ||F!(zy) — F* o — Goyllo = 0 as ||zt — zg][1 50 =t s = 0. By
the Holder inequality, [,(IIoF!(dF!,dF"),F. —Fydw— [(IT oG (dG*,dG"), G}, —
GYdw = o04(1).
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Since G' € H*? it holds, 0 = [,(VG',V(G}, —G"))dw = [,(I] oG (dG',dG"), G, —
G"), and V(F, — F'))dw = 0,(1). Hence

2E(3, -5 < [ (V5
B

o1?

V(F., — F"))dw + 05(1)
< / |V3"§1|2dw—/(V3"1,V3"§1 —V£¥1>dw—/ \VFdw + 04(1)
B B B

< /|V3"},1\2dw—/ VF s + 0,(1).
B B

Now we can say the following results: Let I';,I'y C (N, h) satisfy (C1) or (C2).

Theorem 4.1. Let

d = inf{E(X)|X € §(I',I'y)}
d* = inf{E(X") + E(X?)|X" € 8(Iy),i=1,2}.

If d < d*, there exists a minimal surface of annulus type bounded by I'y and T',.

Proof. The (P.S.) condition (Lemma 4.1) and Proposition 3.1 delivers the result,
following the arguments with a minimal sequence. For details we refer to [St1]. O

Theorem 4.2. For F', resp. F2, an absolute minimizer of E in 8(I'y), resp. 8(I'2),
suppose that dist(F*,F?) > 0 and suppose furthermore there exists a strict relative
minimizer of E in 8(I'1,Ty). Then there erists a solution of P(I'1,Ty) which is not a
relative minimizer of E in 8(I'1,T'y), i.e. an unstable annulus type minimal surface or
there exists a pair of solutions to P(I'1), P(I'y) one of which does not yield an absolute
minimizer of E(in 8(T'1) or 8(T'3) ).

Proof. We can write that ¥ := Fi(z?), for some z* € M™, ¢ = 1,2, moreover, for
some y € M*, F(y) is the strict relative minimum of F in §(I';,I'y). Clearly, y is also
a strict relative minimizer of € in M*. Letting z = (z', 2%, 0), consider

P = {peC’[0,1], M)|p(0) = z, p(1) = y},

and
:= inf E(p(t))-
B = inf max €(p(t))
From the (P.S.) condition, we first observe, if 8 > max{&(x),E(y)}, B is then a critical
value which possesses a non relative minimum critical point, and we have actually that
B > E(y), since y is a strict relative minimizer. For details we refer to [St1] chapter II
and [Ki].
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Now supposing that any solution of P(I';) is an absolute minimum of E in §(I';) we
have a solution of P(I'y, '), which is not a relative minimum of E in 8§(I'y,['y) from
the E-minimality of harmonic extensions.

It remains to show that 3 := inf,cp max;cjo,1] E(p(t)) > E(x).

We only need to consider ¢ = (¢, ¢%, p) € p([0, 1]) for some p € P such that &(q*, ¢%,0) <
C for some constant C, dependent on V.

Let €, po be as in Lemma 4.3, and consider the set of ¢ with ||¢* — Z!|| > ¢ for any
absolute minimizer = (Z*,7%,0) of & in OM. Then there exists §; > 0, dependent
on ¢, such that &(q', ¢?,0) > &(x) + 6, for all but finitely many g, otherwise, we have
a minimizing sequence which converges to some absolute minimizer Z by the (P.S.)
condition (Lemma 4.1) and Proposition 3.1, contradicting the choice of q.

Moreover, from the uniform convergence of € as p — 0 on a bounded set of ¢* (see the
proof of Lemma 3.1), we can choose s, p; with 6; —d, > 0, such that for all p € (0, p1),

‘8((]1’(]2’/)) - 8((]1,(]2,0)' S 52-

Now let p :=min{pg, p1 }. If ||¢' —Z!|| < & for some 7 as above, then &(¢t, ¢% p) > &(x)+
d3 for some d3 > 0, from Lemma 4.3. Otherwise we have, &(¢', ¢%, p) > 8( q?,0)—dy >
E(z) + d; — 09, from the above choices. This compeletes the proof. O

Now we apply the main result to the case of the three-dimensional sphere S? and the
three-dimensional hyperbolic space H>. We consider the case of condition (C1).

Corollary 4.1. Let T'1,Ty C B(p,7/2) for some p € S, in other words T'1,Ty are in a
(three-dimensional) hemisphere. We have then the same results as in the main theorem
under the same condition.

If there exists exactly one solution of P(T;), ¢ = 1,2, the main theorem says, the
existence of a minimal surface of annulus type whose energy is a strict relative minimum
of E in §(I'1, 'y) ensures the existence of an unstable minimal surface of annulus type.

From [LJ], the solution of P(T;) is unique in the 3-dimensional hyperbolic space H?, if
the total curvature of T'; is less than 47. Noting that i(p) = oo for all p € H? we have
the following result.

Corollary 4.2. Let I'1,Ty possess total curvature < 4w in H3 and dist(F*,F2) > 0.
If there exists a strict relative minimizer of E in 8(I1,Ty), then there is an unstable
minimal surface of annulus type in H3.
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