
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 113

Nonlinear Structure Tensors

Thomas Brox, Joachim Weickert,
Bernhard Burgeth and Pavel Mrázek
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UPEK Prague R&D Center,

Husinecka 7, 13000 Praha 3, Czech Republic
pavel.mrazek@upek.com



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Abstract

In this article we introduce nonlinear versions of the popular struc-
ture tensor, also known as second moment matrix. These nonlinear
structure tensors replace the Gaussian smoothing of the classical struc-
ture tensor by discontinuity-preserving nonlinear diffusions. While
nonlinear diffusion is a well-established tool for scalar and vector-
valued data, it has not often been used for tensor images so far. Two
types of nonlinear diffusion processes for tensor data are studied: an
isotropic one with a scalar-valued diffusivity, and its anisotropic coun-
terpart with a diffusion tensor. We prove that these schemes preserve
the positive semidefiniteness of a matrix field and are therefore ap-
propriate for smoothing structure tensor fields. The use of diffusivity
functions of total variation (TV) type allows us to construct nonlinear
structure tensors without specifying additional parameters compared
to the conventional structure tensor. The performance of nonlinear
structure tensors is demonstrated in three fields where the classic
structure tensor is frequently used: orientation estimation, optic flow
computation, and corner detection. In all these cases the nonlinear
structure tensors demonstrate their superiority over the classical lin-
ear one. Our experiments also show that for corner detection based
on nonlinear structure tensors, anisotropic nonlinear tensors give the
most precise localisation.

Key Words: Structure tensor; PDEs; diffusion; orientation estimation; optic
flow; corner detection
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1 Introduction

The matrix field of the structure tensor, introduced by Förstner and Gülch
[17] as well as by Bigün and Granlund [6] in an equivalent formulation, plays
a fundamental role in today’s image processing and computer vision, as it al-
lows both orientation estimation and image structure analysis. It has proven
its usefulness in many application fields such as corner detection [17], tex-
ture analysis [36, 7, 26], diffusion filtering [47, 48], and optic flow estimation
[7, 23]. It has even been successfully employed in numerical mathematics for
grid optimisation when solving hyperbolic differential equations [43]. A de-
tailed description on structure tensor concepts can be found in the textbook
of Granlund and Knutsson [19].
The structure tensor offers three advantages. Firstly, the matrix representa-
tion of the image gradient allows the integration of information from a local
neighbourhood without cancellation effects. Such effects would appear if gra-
dients with opposite orientation were integrated directly. Secondly, smooth-
ing the resulting matrix field yields robustness under noise by introducing an
integration scale. This scale determines the local neighbourhood over which
an orientation estimation at a certain pixel is performed. Thirdly, the in-
tegration of local orientation creates additional information, as it becomes
possible to distinguish areas where structures are oriented uniformly, like in
regions with edges, from areas where structures have different orientations,
like in corner regions.
The classical structure tensor applies a linear technique such as Gaussian
convolution for averaging information within a neighbourhood. Although
Gaussian smoothing is a simple and robust method, it is known to have two
important drawbacks: It blurs and dislocates structures. This is a conse-
quence of the fact that the local neighbourhood for the integration is fixed in
both its size and its shape. Consequently, it cannot adapt to the data, and
the orientation estimation of a pixel located close to the boundary of two
different regions is disturbed by ambiguous information.
It is well-known that Gaussian convolution is equivalent to linear diffusion.
Therefore is is natural to address the limitations of Gaussian convolution by
using nonlinear diffusion techniques which smooth the data while respecting
discontinuities [35, 47]. For the structure tensor this means that the local
neighbourhood, originally defined by the Gaussian kernel, is now adapted to
the data and avoids smoothing across discontinuities. However, the structure
tensor is a matrix field, and until recent time, techniques for nonlinear diffu-
sion have only been available for scalar-valued and vector-valued data sets.
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Tschumperlé and Deriche have introduced an isotropic1 nonlinear diffusion
scheme for matrix-valued data [44], while the anisotropic counterpart to their
technique has been presented by Weickert and Brox [50]. These new meth-
ods allow to replace the Gaussian smoothing of the original linear structure
tensor by a nonlinear diffusion method.
However, the application of one of these techniques is not perfectly straight-
forward. It has to be ensured that the nonlinear diffusion schemes do not
violate the positive semidefiniteness property of the structure tensor. This
will be proven in this paper. In contrast to an earlier conference publica-
tion [10], the nonlinear structure tensor, as it is proposed here, applies the
original matrix-valued diffusion techniques from [44] and [50], thus using all
available information for steering the diffusion. Moreover, it employs dif-
fusivity functions based on total variation (TV) flow [2, 14], the diffusion
filter corresponding to TV regularisation [40]. This flow offers a number of
favourable properties, and it does not require additional contrast parameters
such as most other diffusivity functions.
In principle, it makes sense to use nonlinear structure tensors in any appli-
cation in which the classic structure tensor has already proven its usefulness
and where discontinuities in the data play a role or delocalisation effects
should be avoided. For this paper we focus on orientation analysis, optic
flow estimation, and corner detection. Our experiments in these fields al-
low a direct comparison between the performance of the nonlinear structure
tensors and the classic linear one.

Paper Organisation. The following section starts with a brief review of
the conventional linear structure tensor, its properties and shortcomings. In
Section 3 we then discuss isotropic and anisotropic nonlinear diffusion filters
for matrix-valued data, and in Section 4 we prove that these nonlinear fil-
ters preserve the positive semidefiniteness if the original data field is positive
semidefinite. Tensor-valued nonlinear diffusion filtering is used in Section 5
for constructing isotropic and anisotropic nonlinear structure tensors. The
Sections 6–8 deal with applications of the nonlinear structure tensors to ori-
entation analysis, optic flow estimation, and corner detection. The paper is
concluded with a summary in Section 9.

Related Work. There are several proposals in the literature that intend to
avoid the blurring effects of the conventional structure tensor across discon-
tinuities. Nagel and Gehrke [33] introduced a structure tensor for optic flow
estimation using local information in order to adapt the Gaussian kernel to

1In our notation, isotropic nonlinear diffusion means nonlinear diffusion driven by a
scalar-valued diffusivity, in contrast to anisotropic nonlinear diffusion, which is driven by
a matrix-valued diffusion tensor.
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the data. This work has been further extended in [30, 31]. While nonlin-
ear diffusion filtering and adaptive Gaussian smoothing are similar for small
amounts of smoothing, significant differences arise when more substantial
smoothing is performed. In this case, nonlinear diffusion based on the iter-
ative appliciation of very small averaging kernels can realise highly complex
adaptive kernel structures.
An orientation estimation method based on robust statistics has been pro-
posed by van den Boomgaard and van de Weijer [46]. Another related method
is proposed by Köthe [25]. In order to detect edges and corners, an adaptive,
hour-glass shaped filter is used for smoothing the structure tensor. Analysing
the differences and understanding the relations between such adaptive filters,
robust estimation and nonlinear diffusion methods is a topic of current re-
search; see e.g. [32] for the scalar case and [9] for the tensor case.
Our article comprises and extends earlier work presented at conferences [50,
10]. These extensions contain: (i) the diffusion of the structure tensor by
means of diffusivities based on TV flow, (ii) a proof that the used schemes
preserve the positive semidefiniteness of the original matrix field also in the
continuous setting, (iii) an extensive comparison of linear, isotropic, and
anisotropic diffusion of the structure tensor, and (iv) the application of the
nonlinear structure tensor to corner detection.

2 Linear Structure Tensor

Let Ω ⊂ Rm denote our m-dimensional image domain, and let us consider
some greyscale image h : Ω → R. Then the structure tensor is a field of
symmetric m × m matrices that contains in each element information on
orientation and intensity of the surrounding structure of h. The initial ma-
trix field is computed from the gradient of h by applying the tensor product
J0 = ∇h∇h>. Although this tensor product contains no more information
than the gradient itself, it has the advantage that it can be smoothed with-
out cancellation effects in areas where gradients have opposite signs, since
∇h∇h> = (−∇h)(−∇h>): Consider, for instance, a thin line. It has a pos-
itive gradient on one side, and a negative gradient on the other side. Any
smoothing operation on the gradient directly would cause both gradients to
mutually cancel out. Smoothing the matrix field, however, avoids this can-
cellation effect.
The smoothing is usually performed by convolution of the matrix components
with a Gaussian kernel Kρ with standard deviation ρ:

Jρ = Kρ ∗ (∇h∇h>). (1)
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Since convolution is a linear operation, we refer to the classic structure ten-
sor as linear structure tensor. It is a symmetric, positive semidefinite matrix,
since it results from averaging of symmetric positive semidefinite matrices.
Gaussian smoothing not only improves the orientation information with re-
gard to noise, but also creates a scale-space with the integration scale ρ. This
scale parameter determines the size of the neighbourhood considered for the
structure analysis.
The structure tensor can also be defined for vector-valued data sets, colour
images for instance [13]. Let h : Ω → Rn be a vector-valued data set and hi

its i-th component. Then the structure tensor is given by

Jρ = Kρ ∗
n∑

i=1

∇hi∇h>i . (2)

Besides the information on orientation and magnitude of structures, which is
already present in the gradient, the structure tensor contains some further in-
formation. This additional information has been obtained by the smoothing
process and measures the homogeneity of orientations within the neighbour-
hood of a pixel.
This information can be extracted from the structure tensor by means of a
principal axis transformation Jρ = S>ΛS, where the eigenvectors of Jρ are
the rows of S, and the corresponding eigenvalues λi with λ1 ≥ · · · ≥ λm,
are the elements of the diagonal matrix Λ = diag (λi). The eigenvector to
the smallest eigenvalue then determines the dominant orientation of the local
structure, while the trace trJρ (sum of the diagonal elements) of the struc-
ture tensor Jρ determines its magnitude. The coherence in 2-D image data
is often expressed by the condition number of Jρ (largest eigenvalue divided
by smallest eigenvalue) or by the measure (λ1−λ2)

2, yet also other measures
based on the eigenvalues may be reasonable.
Magnitude and coherence of the structure tensor can be used for structure
analysis. Homogeneous areas in an image cause the magnitude to be small.
In areas around edges the structure tensor has a large magnitude as well as
a large coherence, while corners result in a large magnitude but small co-
herence. For higher dimensional data, this structure analysis becomes more
complicated, as more cases must be distinguished.
Fig. 1 shows the most important properties of the linear structure tensor.
Fig. 1a depicts a synthetic test image distorted by Gaussian noise with σ =
30. In Fig. 1b the matrix product ∇h∇h> is shown as a coloured orientation
plot. Its orientation information is expressed by the colour whereas the
magnitude is encoded by the intensity of the plot. Fig. 1c finally shows the
linear structure tensor for ρ = 3. The following properties can be observed:

6



Figure 1: Left: (a) Synthetic image with Gaussian noise. Center: (b)
J0 = ∇h∇h>. Right: (c) Linear structure tensor Jρ with ρ = 3.

• Noise removal
Most of the noise present in the initial matrix field has been removed
due to the smoothing.

• Propagation of orientation information
In most applications of the structure tensor it is desirable that there is
a filling-in effect of orientation information from structured areas into
areas without structure as far as these areas are small in respect of a
certain scale. By means of the structures in the lower left of Fig. 1
it can be seen that the linear structure tensor fulfills this requirement
appropriately. This subsequent simplification results in a scale-space
property with the scale parameter ρ.

• Dislocation of discontinuities and blurring effects
Fig. 1c reveals a blurring effect that is typical for Gaussian smoothing.
Edges disappear with increasing ρ and the remaining edges dislocate.
A smoothing method based on nonlinear diffusion should be able to
preserve these discontinuities. This shall be discussed next.
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3 Nonlinear Diffusion Filtering of Tensor Data

In this section we study isotropic and anisotropic nonlinear diffusion filters
that will allow us to construct nonlinear structure tensors later on.

3.1 Isotropic Nonlinear Diffusion

The goal of nonlinear diffusion filtering is to reduce smoothing in the presence
of edges [35]. This can be achieved by a decreasing diffusivity function g
which correlates the amount of smoothing with the image gradient magnitude
(suitable functions will be discussed in Subsection 3.3). Nonlinear diffusion
filtering creates a family of simplified images {u(x, t) | t ≥ 0} of some scalar
initial image f(x) by solving the partial differential equation (PDE)

∂tu = div
(
g(|∇u|2)∇u

)
on Ω× (0,∞), (3)

with f as initial condition,

u(x, 0) = f(x) on Ω, (4)

and reflecting (homogeneous Neumann) boundary conditions:

∂νu = 0 on ∂Ω× (0,∞), (5)

where ν denotes the outer normal on the image boundary ∂Ω. The diffusion
time t determines the amount of simplification: For t = 0 the original image
f is recovered, and larger values for t result in more pronounced smoothing.

An extension of nonlinear diffusion filtering to vector-valued data f = (fi) :
Ω → Rn has been proposed in [18]. It evolves f under the diffusion equations

∂tui = div
(
g
( n∑

k=1

|∇uk|2
)
∇ui

)
(i = 1, ..., n) (6)

where u is a vector with n components. Note that all vector channels are
coupled in this scheme: They are smoothed with a joint diffusivity taking
into account the edges of all channels. This synchronisation avoids that
edges evolve at different locations in different channels: A discontinuity in
one channel inhibits also smoothing in the others.

The coupled vector-valued diffusion scheme is also a good basis for smoothing
a matrix field F = (fi,j) : Ω → Rn×n. When regarding the components of
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an n × n matrix as components of an n2-dimensional vector, which is not
unnatural since e.g. the Frobenius norm of a matrix equals the Euclidean
norm of the resulting vector, it is possible to diffuse also a matrix field with
Eq. 6. In fact, this leads to the following PDEs for matrix-valued diffusion
[44]:

∂tui,j = div
(
g
( n∑

k,l=1

|∇uk,l|2
)
∇ui,j

)
(i, j = 1, ..., n). (7)

In Section 4 we will see that the coupling of the tensor channels guarantees
that the evolving matrix field U(x, t) = (ui,j(x, t)) remains positive semidef-
inite if its initial value F (x) = (fi,j(x)) is positive semidefinite.
It is easy to verify that the diffusion equations (7) can be regarded as a
steepest descend method for minimising the energy functional

E(U) =

∫
Ω

Ψ
( m∑

k,l=1

|∇uk,l|2
)

dx (8)

with a penaliser Ψ(s2) whose derivative satisfies Ψ′(s2) = g(s2).

3.2 Anisotropic Nonlinear Diffusion

Besides these isotropic diffusion schemes, there exist also anisotropic coun-
terparts. In the anisotropic case not only the amount of diffusion is adapted
locally to the data but also the direction of smoothing. It allows for exam-
ple to smooth along image edges while inhibiting smoothing across edges.
This can be achieved by replacing the scalar-valued diffusivity function by a
matrix-valued diffusion tensor.
Vector-valued anisotropic diffusion evolves the original image f(x) = (fi(x))
under the PDE [49]

∂tui = div
(
g
( n∑

k=1

∇uk∇u>k

)
∇ui

)
(i = 1, ..., n), (9)

subject to the reflecting boundary conditions

∂ν

(
g
( n∑

k=1

∇uk∇u>k

)
∇ui

)
= 0 (i = 1, ..., n). (10)

Here the scalar-valued function g has been generalised to a matrix-valued
function in the following way: Let A = Sdiag (λi)S

> denote the principal axis
transformation of some symmetric matrix A, with the eigenvalues λi as the el-
ements of the diagonal matrix diag (λi) and the normalised eigenvectors as the
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columns of the orthogonal matrix S. Then we set g(A) := Sdiag (g(λi))S
>.

The diffusivity g(s2) is the same decreasing function as in the isotropic case.
Simply speaking, in the anisotropic setting the diffusivity function is applied
to the eigenvalues of the matrix obtained from the outer product of the gra-
dient. This gives a diffusion tensor g(

∑
k∇uk∇u>k ). In the isotropic setting,

the diffusivity function is applied to the scalar-valued squared gradient mag-
nitude, or the scalar product of the gradient. This yields a scalar-valued
diffusivity g(

∑
k∇u>k∇uk). Note that the transition from the isotropic to

the anisotropic setting simply consists of exchanging the order of ∇u and
∇u>.
Anisotropic diffusion offers the advantage of smoothing in a direction-specific
way: Along the i-th eigenvector of

∑
k∇uk∇u>k with corresponding eigen-

value λi, the eigenvalue of the diffusion tensor is given by g(λi). In eigendi-
rections with large variation of local structure, λi is large and g(λi) is small.
This avoids smoothing across discontinuities. Along discontinuities, λi is
small such that g(λi) is large and full diffusion is performed. For more infor-
mation about anisotropic diffusion in general, we refer to [47].

In [50] this vector-valued scheme has been generalised to matrix-valued data
by considering the PDEs

∂tui,j = div
(
g
( n∑

k,l=1

∇uk,l∇u>k,l

)
∇ui,j

)
(i, j = 1, ..., n). (11)

In a similar way as in [51], one can prove that this process can be regarded
as a gradient descend method for mimimising the energy functional

E(U) =

∫
Ω

tr Ψ
( n∑

k,l=1

∇uk,l∇u>k,l

)
dx. (12)

Note the structural similarity to the isotropic functional (8) which may be
rewritten as

E(U) =

∫
Ω

Ψ
(
tr

n∑
k,l=1

∇uk,l∇u>k,l

)
dx. (13)

Thus, for going from the isotropic to the anisotropic functional, all one has
to do is to exchange the order of the penaliser Ψ and the trace operator.
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3.3 Diffusivity Functions

The choice of the diffusivity function g has a rather large impact on the
outcome of diffusion. The following family of diffusivity functions is very
interesting:

g(|∇u|2) =
1

|∇u|p
(14)

with p ∈ R and p ≥ 0. These diffusivities offer the advantage that they do
not require any image specific contrast parameters. Moreover, they lead to
scale invariant filters [1], for which even some analytical results have been
established [45].
For p = 0, linear homogeneous diffusion is obtained, which is equivalent to
Gaussian smoothing with standard deviation

√
2t, and forms the basis of

Gaussian scale-space theory [22, 42].
For p = 1 one obtains the total variation (TV) flow [2, 14], the diffusion filter
that corresponds to TV minimisation [40] with a penaliser Ψ(|∇u|2) = 2|∇u|.
TV flow offers a number of interesting properties such as finite extinction
time [3], shape-preserving qualities [5], and equivalence to TV regularisation
in 1-D [11].
Finally, for p > 1 the diffusion not only preserves edges but even enhances
them. A diffusivity with p = 2 has been considered in [24] for the so-
called balanced forward–backward diffusion filtering. While a complete well-
posedness theory exists for p ≤ 1, some theoretical questions are a topic of
ongoing research for the edge-enhancing case p > 1.
In the present paper we focus on TV flow (p = 1), since it is theoretically
well-founded [3, 15], and it offers a good compromise between the smoothing
properties for small values of p, and the edge preserving qualities for large
p. We introduce a small regularisation with some fixed parameter ε > 0 that
avoids singularities and creates a differentiable diffusivity function:

g(|∇u|2) =
1√

ε2 + |∇u|2
. (15)
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4 Preservation of Positive Semidefiniteness

When applying a diffusion process to matrix-valued data it is by no means
clear that the positive (semi-)definiteness of the original data is preserved.
However, for the diffusion schemes we use here, we now prove a maximum-
minimum principle for the field of eigenvalues associated with a matrix field.

Let F = (fi,j) : Ω −→ Rn×n denote the initial field of n × n-matrices.
Accordingly U(x, t) = (ui,j(x, t)) stands for the diffused matrix field, while
F (x) serves as initial value for the isotropic diffusion equation (7), or the
anisotropic diffusion process (11) with the diffusivity function (15). Further-
more, let λF

k (x) resp. λU
k (x, t) be the k-th eigenvalue of the initial matrix

field F (x) and the diffused field U(x, t) with k = 1, . . . , n. Denoting by
λF

min(x) and λF
max(x) the smallest and the largest eigenvalue of the matrix

F (x), x ∈ Ω, we have the following result.

Theorem 1: (Extremum Principle for the Eigenvalues.)
For t > 0, the eigenvalues of the diffused matrix field U(., t) are bounded by
the eigenvalues of the initial matrix field F :

inf
y∈Ω

λF
min(y) ≤ λU

k (x, t) ≤ sup
y∈Ω

λF
max(y) (∀x ∈ Ω, k = 1, . . . , n). (16)

Proof: We consider the anisotropic case, the arguments carry over to the
isotropic case (7) essentially verbatim. For any unit column vector v ∈ Rn

it follows from (11) by linearity properties of the matrix multiplications and
differential operators involved that

∂t(v
>Uv) = ∂t

( ∑
i,j

vi · ui,j · vj)

=
∑
i,j

vi · ∂tui,j · vj

=
∑
i,j

vi ·

(
div

(
g
(∑

k,l

∇uk,l∇u>k,l

)
∇ui,j

))
· vj

= div

(
g
(∑

k,l

∇uk,l∇u>k,l

)
∇
( ∑

i,j

vi · ui,j · vj

))

= div

(
g
(∑

k,l

∇uk,l∇u>k,l

)
∇(v>Uv)

)
.

Due to the properties of the regularised TV diffusivity function g, the as-
sociated matrix g

(∑
k,l

∇uk,l∇u>k,l

)
fits into the framework for a scalar-valued
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continuous nonlinear diffusion scale-space [47]. As a consequence, the scalar
valued functions (x, t) 7→ v>U(x, t)v are smooth and an extremum principle
holds. Therefore,

inf
y∈Ω

λF
min(y) ≤ inf

y∈Ω
v>F (y)v

≤ v> U(x, t) v

≤ sup
y∈Ω

v>F (y) v

≤ sup
y∈Ω

λF
max(y)

for t > 0 and all unit vectors v ∈ Rn . Since the expression v>U(x, t)v is the
well-known Rayleigh quotient, one can choose for each eigenvalue λU

k (x, t) a
unit eigenvector vk = vk(x, t) such that

λU
k (x, t) = vk>(x, t) U(x, t)vk(x, t).

Hence the assertion follows from the sequence of inequalities above. �

An immediate consequence is the following corollary.

Corollary 1: (Preservation of Positive (Semi-)Definiteness.)
Under the assumptions for Theorem 1, positive (semi-)definiteness of the ini-
tial matrix field F implies positive (semi-)definiteness of the diffused matrix
field U(., t) for t > 0.

This corollary is crucial for many applications such as diffusion tensor MRI
or structure tensor smoothing, since it guarantees that the positive semidef-
initess of the initial field is not destroyed by diffusion filters of type (7) or
(11). A discrete reasoning why such filters preserve positive semidefiniteness
can be found in [50], where it is argued that convex combinations of positive
semidefinite matrices are computed in each iteration. Both results show that
already the channel coupling of the diffusion processes via a joint diffusivity
or a joint diffusion tensor is sufficient to preserve positive semidefiniteness.
Thus, from a viewpoint of preservation of positive semidefiniteness, it is not
required to consider more sophisticated constrained flows [12] or functionals
with Cholesky decomposition [29].

5 Nonlinear Structure Tensors

Now that we have understood how nonlinear diffusion filtering of tensor fields
works we are in the position of using this knowledge for constructing nonlin-
ear structure tensors.

13



General Idea. Given some image h : Ω → R with Ω ⊂ Rm we consider the
tensor product

F := (fij) := ∇h∇h>. (17)

Then the classic stucture tensor applies componentwise Gaussian convolution
to the matrix field F = (fij) : Ω → Rm×m. This is equivalent to regarding F
as initial value for the linear matrix-valued diffusion equation

∂tuij = ∆uij (i, j = 1, ...,m) (18)

where the diffusion time t is related to the standard deviation ρ of the Gaus-
sian via t = ρ2/2. Nonlinear structure tensors replace this diffusion equation
either by the isotropic diffusion scheme

∂tui,j = div
(
g
( m∑

k,l=1

|∇uk,l|2
)
∇ui,j

)
(i, j = 1, ...,m) (19)

or the anisotropic diffusion process

∂tui,j = div
(
g
( m∑

k,l=1

∇uk,l∇u>k,l

)
∇ui,j

)
(i, j = 1, ...,m), (20)

both in combination with diffusivity functions such as (14). The result
U(x, t) = (uij(x, t)) gives the desired isotropic or anisotropic nonlinear struc-
ture tensor field. Since F is a positive semidefinite matrix field, Corollary
1 guarantees that U(x, t) is also positive semidefinite for all t > 0, provided
that the underlying scalar diffusion process satisfies a maximum–minimum
principle.
Role of the Parameters. We have two parameters for a nonlinear structure
tensor. Firstly, there is the diffusion time t that determines the amount
of smoothing, i.e. the size of the neighbourhood. It corresponds directly
to the integration scale ρ of the linear structure tensor, since the Gaussian
convolution in the linear structure tensor equals linear diffusion with diffusion
time t = ρ2/2. Thus, t is not a conceptually new parameter. Secondly, there
is the parameter p that determines the amount of edge preservation. Note
that this latter parameter is implicitly also present in the classic structure
tensor: The classic linear structure tensor is a special case of the nonlinear
structure tensor for p = 0 where the diffusivity g becomes equal to 1. Since
we favour the TV diffusion case, we usually fix p to 1. In this case, p does
not constitute an additional parameter. Consequently, going from linear to
nonlinear structure tensors does to introduce new problems of parameter
selection.

14



Implementation. Compared to scalar-valued nonlinear diffusion filters,
their tensor-valued counterparts do not involve additional difficulties with
respect to implementations. In our experiments we apply standard space
discretisations by means of central finite differences (see e.g. [49]). With
respect to the time discretisation, an efficient semi-implicit additive operator
splitting (AOS) scheme is used [27, 52]. Since it is absolutely stable, it is
possible to choose significantly larger time step sizes than for the widely used
explicit (Euler-forward) discretisations.
Application Areas. All applications of the classic structure tensor are
also potential applications for its nonlinear variants. It should be clear,
however, that the nonlinear structure tensors have only advantages in the
presence of discontinuities or when dislocalisation problems appear. If this
is not the case, nonlinear structure tensors cannot be any better than the
conventional one. In the presence of important discontinuities in the data,
on the other hand, the accuracy of the results should improve with the usage
of nonlinear structure tensors. We will now present experiments in three
fields of application where the conventional structure tensor is very popular
and where discontinuities or delocalisation effects can play a major role:
orientation analysis, optic flow estimation, and corner detection. This list
is not complete: For experiments on texture analysis by means of nonlinear
structure tensors, we refer to [8].

6 Application to Orientation Estimation

In this section we analyse the use of nonlinear structure tensors for orientation
estimation by applying them to the test image from Fig. 1.
Fig. 2 depicts the different versions of the structure tensor. For the linear
structure tensor in Fig. 2a, Gaussian smoothing has been used (p = 0).
Fig. 2b shows the nonlinear structure tensor smoothed with the isotropic
scheme from (7) and TV flow (p = 1). Finally, Fig. 2c depicts the nonlinear
structure tensor employing the anisotropic diffusion scheme from (11), again
with p = 1. It can be observed that both nonlinear structure tensors succeed
in avoiding the blurring effects that are the decisive drawback of the original
linear structure tensor. The isotropic nonlinear structure tensor performs
best at orientation discontinuities, while the anisotropic nonlinear structure
tensor is slighly better at smoothing within one homogeneous region.
Fig. 3 depicts the results for different diffusivities from the family of (14).
As the differences between the isotropic and anisotropic nonlinear structure
tensor are small, only the isotropic version is shown. Fig. 3a depicts the
result for p = 0.8, where the diffusion is closer to Gaussian smoothing. In
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Figure 2: Left: (a) Linear structure tensor, ρ = 3, corresponding to t = 4.5.
Center: (b) Isotropic nonlinear structure tensor (Eq. 7), t = 3200. Right:
(c) Anisotropic nonlinear structure tensor (Eq. 11), t = 3600.

Figure 3: Isotropic nonlinear structure tensor for different p. Left: (a)
p = 0.8 and t = 800. Center: (b) p = 1 and t = 3200. Right: (c) p = 1.2
and t = 12000.

contrast to that, the diffusion for p = 1.2 is edge enhancing. Hence, the
result in Fig. 3c reveals sharper edges. Fig. 3b depicts the result achieved
with TV flow, which is a good compromise between edge preservation and
closing of structures.
Fig. 4 illustrates that the diffusion time t can be regarded as a scale parameter
for nonlinear structure tensors: By increasing t the orientation field becomes
simpler and larger regions of homogeneous orientation are formed. Thus t
plays the same role for nonlinear structure tensors as standard deviation ρ
of the Gaussian for the linear structure tensor.
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Figure 4: Temporal evolution of the isotropic nonlinear structure tensor (p =
1). From Left to Right, Top to Bottom: (a) t = 250. (b) t = 500.
(c) t = 1000. (d) t = 2000. (e) t = 4000. (f) t = 8000.

7 Application to Optic Flow Estimation

Optic flow estimation by means of the structure tensor has first been in-
vestigated by Bigün et al. [7]. However, already the well-known method
of Lucas and Kanade [28] implicitly used the structure tensor components.
Both methods are very similar, and we will stick here to the method of Lucas
and Kanade.
The goal in optic flow estimation is to find the displacement field (u, v)
between two images of an image sequence f(x, y, z) where (x, y) denotes
location and z denotes time. Frequently it is assumed that image structures
do not alter their grey values during their movement. This can be expressed
by the optic flow constraint [21]

fxu + fyv + fz = 0 (21)

where subscripts denote partial derivatives. As this is only one equation for
two unknown flow components, the optic flow is not uniquely determined by
this constraint (aperture problem). A second assumption has to be made.
Lucas and Kanade proposed to assume the optic flow vector to be constant
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within some neighbourhood. Often one uses a Gaussian-weighted neighbour-
hood Kρ where ρ is the standard deviation of the Gaussian. The optic flow
in some point (x0, y0) can then be estimated by the minimiser of the local
energy function

E(u, v) =
1

2
Kρ ∗ (fxu + fyv + fz)

2. (22)

A minimum (u, v) of E satisfies ∂uE = 0 and ∂vE = 0, leading to the linear
system (

Kρ ∗ (f 2
x) Kρ ∗ (fxfy)

Kρ ∗ (fxfy) Kρ ∗ (f 2
y )

)(
u
v

)
=

(
−Kρ ∗ (fxfz)
−Kρ ∗ (fyfz)

)
. (23)

Obviously, the entries of this linear system are five of the six different com-
ponents of the spatio-temporal linear structure tensor

Jρ = Kρ ∗
(
∇f∇f>

)
= Kρ ∗

 f 2
x fxfy fxfz

fxfy f 2
y fyfz

fxfz fyfz f 2
z

 . (24)

With the nonlinear structure tensor available, we can introduce a nonlinear
version of the Lucas–Kanade method by replacing the components of the lin-
ear structure tensor in (23) by those of the nonlinear one. This means that
the fixed neighbourhood of the original method is replaced by an adaptive
neighbourhood which respects discontinuities in the data.

Evaluation in optic flow estimation. In order to see the effect of the
adaptive neighbourhood on the quality of the results, we tested all three
versions of the structure tensor: the conventional linear structure tensor, the
nonlinear structure tensor based on isotropic nonlinear diffusion, and the one
based on anisotropic diffusion.
For optic flow estimation, a frequently used quantitative quality measure
is the so-called average angular error (AAE) introduced in [4]. Given the
estimated flow field (ue, ve) and ground truth (uc, vc), the AAE is defined as

AAE =
1

N

N∑
i=1

arccos

(
uciuei + vcivei + 1√

(u2
ci + v2

ci + 1)(u2
ei + v2

ei + 1)

)
(25)

where N is the total number of pixels. In contrast to its indication, this qual-
ity measure does not only measure the angular error between the estimated
flow vector and the correct vector, but also differences in the magnitude of
both vectors, since it measures the angular error of the spatio-temporal vector
(u, v, 1).
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For our experiments we used two different sequences from the literature with
the correct flow field available: the famous Yosemite sequence2 and the Mar-
ble sequence3. They both contain discontinuities, so they are well-suited to
test the improvements that can be achieved with the nonlinear structure
tensors.

Yosemite sequence.

Technique t AAE Standard dev.
Linear structure tensor 21 8.78◦ 12.76◦

Isotropic nonlinear structure tensor 400 7.67◦ 11.02◦

Anisotropic nonlinear structure tensor 200 7.68◦ 11.84◦

Marble sequence.

Technique t AAE Standard dev.
Linear structure tensor 222 5.82◦ 4.48◦

Isotropic nonlinear structure tensor 250 5.19◦ 2.98◦

Anisotropic nonlinear structure tensor 163 5.10◦ 3.22◦

Table 1. Comparison between the results. AAE = average angular error.

A quantitative comparison between the results obtained with the Lucas–
Kanade method and the three different versions of the structure tensor is
provided in Table 1. The second row indicates the only free parameter that
was optimised for each sequence: the diffusion time. In the nonlinear cases,
we always used p = 1, so TV flow was applied.
It can be observed that the nonlinear structure tensors can clearly outper-
form the conventional linear one. The difference between the isotropic and
anisotropic scheme, however, is only marginal in this application.
Comparing the visual impression, the improvement achieved with the non-
linear structure tensor is even larger. This is because the nonlinear structure
tensor is beneficial especially in the areas around discontinuities. Such areas
are relatively small compared to the whole image, so most of the improve-
ments are hidden by a global measure such as the AAE. Fig. 5 and 6 show the
results obtained with the different versions of the structure tensor together
with the correct flow field. Again colour expresses the orientation of the flow
vectors while the intensity shows their magnitude. In our case, this kind
of representation is preferable to the common representation method using
vector plots, because no subsampling is necessary and so the quality of the
results at discontinuities becomes better visible. Note that the black parts

2Created by Lynn Quam at SRI, available from ftp://csd.uwo.ca/pub/vision
3Created by Otte and Nagel [34], available from http://i21www.ira.uka.de/image sequences
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Figure 5: Yosemite sequence (316 × 252 × 15). From Left to Right,
Top to Bottom: (a) Frame 8. (b) Ground truth optic flow field as vector
plot. (c) Ground truth, where the orientations are represented by colours. (d)
Lucas–Kanade with linear structure tensor. (e) Lucas–Kanade with isotropic
nonlinear structure tensor. (f) Lucas–Kanade with anisotropic nonlinear
structure tensor.
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Figure 6: Marble sequence (512× 512× 32). From Left to Right, Top
to Bottom: (a) Frame 16. (b) Ground truth (vector plot). (c) Ground
truth (colour plot). (d) Lucas–Kanade with linear structure tensor. (e)
Lucas–Kanade with isotropic nonlinear structure tensor. (f) Lucas–Kanade
with anisotropic nonlinear structure tensor.

in Fig. 6c are excluded from the calculation of the AAE, because there is no
ground truth available for these areas.
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8 Application to Corner Detection

When looking for some important, distinguished locations of an image, one
often considers points where two or more edges meet. Such locations have
been named corners, junctions or interest points, and a range of possible
approaches exists to detect them in an image; see e.g. the reviews in [38, 41].
The methods based on the structure tensor are well established in this field,
so it is interesting to see how the nonlinear structure tensors will perform.
At zero integration scale, the structure tensor J0 as introduced in (1) or
(2) contains information on intrinsically 1-dimensional features of the image,
i.e. edges. For grey-scale images, only one eigenvalue of the structure tensor
J0 may attain nonzero values (equal to the squared gradient magnitude),
while its corresponding eigenvector represents the gradient direction.
Two-dimensional features of an image (corners) can be detected by integrat-
ing the local 1-D information of J0 within some neighbourhood. The classical
method is to smooth J0 linearly using convolution with a Gaussian, which
yields the linear structure tensor. Alternatively, one can consider a nonlinear
structure tensor which is obtained by the integration within a data-adaptive
neighbourhood by means of nonlinear diffusion. If two differently oriented
edges appear in the neighbourhood, the smoothed structure tensor J will
possess two nonzero eigenvalues λ1, λ2 � 0. Several possibilities have been
proposed to convert the information from J into a measure of ‘cornerness’,
e.g. by Förstner [16], Harris and Stephens [20], Rohr [37], or Köthe [25]. In
our experiments we employ the last approach, and detect corners at local
maxima of the smaller eigenvalue of the smoothed structure tensor.
Like in optic flow estimation, we will employ and compare three different
smoothing strategies leading to three different versions of the structure ten-
sor:

• Linear smoothing according to (1) with a scale parameter ρ leads to
the linear structure tensor Jρ.

• Isotropic nonlinear diffusion according to (7) with TV diffusivity gTV

(Eq. 15) gives the isotropic nonlinear structure tensor JTV
t at time t.

• Anisotropic nonlinear diffusion with a diffusion tensor

D = S diag (gTV (λ1), 1) S> (26)

where λ1 is the larger eigenvalue of the structure tensor Jρ calculated
from the evolving data U , and S contains the eigenvectors as columns.
This process is a combination of a linear smoothing along edges (i.e.
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in the direction where fast smoothing and exchange of information is
desired), and TV diffusion along the gradient (i.e. smoothing is slower
across discontinuities). The resulting structure tensor will be denoted
JA

ρ,t.

Corner detection using the linear structure tensor Jρ is the basic choice. It
is robust under noise, but the localisation of the detected features is less
precise. Because of the linear smoothing, the detected location of a corner
tends to shift as the scale ρ increases: see Fig. 8 top.
With isotropic TV flow and JTV

t , the local amount of smoothing is an inverse
function of the gradient magnitude. Therefore, the feature blurring and dis-
placement is slowed down when compared to the linear method, and corners
remain well localised even for higher diffusion times when any possible noise
or small-scale features would have been removed; see the example in the mid-
dle of Fig. 8.
As the anisotropic method producing JA

ρ,t prefers smoothing along edges, the
exchange of information at places where two edges meet is much faster. A
small diffusion time suffices to produce significant corner features which are
well localised; see Fig. 8 bottom.
The localisation precision of each method is evaluated on the test image of
Fig. 9 left where the ideal locations of corners are known. The parameters of
each method were tuned so that they detect the corners reliably and accu-
rately: We evaluate the average distance between the strongest 16 detected
points and the 16 ground truth corners. The best result with the linear
structure tensor Jρ gives an average error of 1.92 pixels. The isotropic non-
linear method JTV

t produces a mean error of 1.51 pixels, while the anisotropic
structure tensor JA

ρ,t is the most precise corner detector: Its mean error is
only 0.97 pixels.
The three methods (without any change of parameters) were then employed
at a frequently used ‘lab’ test image; the results are presented in Fig. 10. We
observe that all the three methods detect corners which seem to correspond
well to real corners and interest points present in the image. Also in this case,
the nonlinear methods outperform their linear counterpart in the precision
of corner localisation, and the anisotropic nonlinear corner detector gives the
best results. An example is shown at the bottom right of Fig. 10.

9 Conclusions

A number of image processing and computer vision tasks make use of a
structure tensor based on Gaussian smoothing, or – equivalently – linear
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Figure 7: Left: detail of a test image with ideal corner position (50, 50).
Right: larger eigenvalue of the structure tensor J0.

38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54
38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54
38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54

Linear Jρ

ρ = 1 ρ = 2 ρ = 4

38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54
38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54
38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54

Isotropic JTV
t

t = 100 t = 1000 t = 5000

38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54
38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54
38 40 42 44 46 48 50 52 54

38

40

42

44

46

48

50

52

54

Anisotropic JA
ρ,t
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Figure 8: Cornerness measured by the smaller eigenvalue of a smoothed
structure tensor J , and the detected corner. Top: linear smoothing. Mid-
dle: isotropic nonlinear diffusion with TV diffusivity. Bottom: anisotropic
nonlinear diffusion.
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Figure 9: A test image (left) and results of three corner detectors (right,
detail).
Blue diamond: linear smoothing, ρ = 1.5, mean error 1.92.
Yellow ‘x’: isotropic smoothing with TV flow, T = 1400, mean error 1.51.
Red ‘+’: anisotropic smoothing, T = 5, ρ = 2, mean error 0.97.
The ideal corner locations are shown by black dots.
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linear
isotropic
anisotropic

Figure 10: Corners detected in the ‘lab’ test image. Top left: linear
smoothing of the structure tensor. Top right: isotropic TV flow. Bottom
left: anisotropic smoothing. Bottom right: a detail for comparison. For
all methods, the smoothing parameters are identical to those for the ‘squares’
test image in Fig. 9, and the 200 strongest corners are shown.
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diffusion. Unfortunately, linear diffusion is well-known to destroy important
structures such as discontinuities, while other structures may be dislocated.
To address these problems, we introduced nonlinear structure tensors that
are based on isotropic or anisotropic diffusion filters for matrix-valued data.
These data-adaptive smoothing processes avoid averaging of ambiguous struc-
tures across discontinuities. Our nonlinear structure tensors contain the con-
ventional linear structure tensor as a special case, and we proved that the
matrix-valued nonlinear diffusion filters do not destroy positive semidefinite-
ness. By using nonlinear diffusion filters with TV diffusivities, nonlinear
structure tensors do not involve more parameters than the linear structure
tensor. Applying the structure tensor to orientation estimation, optic flow
computation, and corner detection allowed a direct comparison between the
performance of the linear structure tensor and its nonlinear extensions. The
higher accuracy of the results confirmed the superiority of the nonlinear struc-
ture tensors. For corner detection, it turned out that specific structure ten-
sors based on anisotropic nonlinear diffusion offer advantages over the ones
using isotropic nonlinear diffusion.
We would like to emphasise that these three application fields serve as proof-
of-concept only. We are convinced that nonlinear structure tensors are of
more general usefulness in all kinds of problems where preservation of dis-
continuities or avoidance of dislocation effects are desirable, e.g. texture
segmentation [39, 8]. In our future research, we intend to perform compar-
isons and analyse connections between diffusion-based nonlinear structure
tensors and other data-adaptive variants of structure tensors. First results
in this direction are reported in [9].
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