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Abstract
In this paper we discuss a system of partial differential equations describing the
steady flow of an incompressible fluid and prove the existence of a strong solution

under suitable assumptions on the data. In the 2D-case this solution turns out to
be of class C12.

1 Introduction

Suppose that we are given a bounded Lipschitz domain €2 C R*, n = 2, 3, together with
a system g: 2 — R” of volume forces which — for technical simplicity — is assumed to
be of class L®(; R™). Then we are looking for a velocity field u: Q@ — R™ together
with a pressure function 7: {2 — R such that the following system of partial differential
equations is satisfied

—div{T(-,e(u))} + Vr + [Vulu =g in Q, }
(1.1)

divu=0inQ, w=0 on0f.

Here £(u) denotes the symmetric gradient of u, i.e. e(u) = (Vu+ Vul), and [Vu]u is the

convective term uka‘% (summation w.r.t. k). The tensor-valued function 7' = T'(z,¢) is

defined for all z € Q and all matrices ¢ € S™ (:= space of symmetric n x n-matrices) and
arises as the gradient w.r.t. the second argument of a smooth convex potential f = f(z,¢).
More precisely, let us impose the following conditions on the potential f. The energy
density f: ©Q x S™ — [0, 00) satisfies with exponents 1 < p < § < oo and constants A, A,

c1 >0
ML+[e®)7 |0 < Dif(z,8)(0,0) < A(L+[e[)7 |0l (1-2)
ID,D.f(z,e)] < c(l+]e[®)= (1.3)

for all z € Q and all €, 0 € S™. Here we assume that all the partial derivatives occurring
in (1.2) and (1.3) are at least continuous functions. The reader should note that (1.2)
implies the anisotropic growth condition

alel —b < f(z,e) < Ale|”+ B

with suitable positive constants a, A, b and B. Now we can state our existence and
regularity result concerning the system (1.1).

THEOREM 1.1 Suppose that (1.2) and (1.3) hold together with

6/5, ifn=2,
p>{9/5, ifn=3. (1.4)
Suppose further that
_ 1
q<p(1+ﬁ). (1.5)
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i) Then there exists a velocity field u of class W, N W7, .(;R*) for some t > 1 and
a pressure function © of class Wsl,loc(Q) for some s > 1 such that (1.1) is satisfied
almost everywhere.

i) If n = 2 and if in addition § < p + 2, then the first derivatives of u are Hélder
continuous functions in €.

REMARK 1.1 At the end of Section 2 we will show that we can choose t = 2 provided
that p > 2. If p < 2, then any number

t<{ 2 if n=2,
B if m=3,

is admissible. Moreover, we will establish that D.f(-,e(u)) is in the class qu/(q—l),loc(Q; S").
Therefore some bound for the exponent s can be calculated with the help of equation (1.1).

Let us compare Theorem 1.1 to the known results.

i) A very general existence result for the non-autonomous isotropic case, i.e. p = g, was
obtained by Frehse, Malek and Steinhauer ([FMS]), even without the assumption
that the tensor T'(z,¢) is generated by a potential f. Moreover, they replace (1.4)
by the requirement that p > 2n/(n 4+ 2). But the solution they obtain is just

a weak solution, i.e. it belongs to the space W,'(Q;R") and satisfies (1.1) in the
distributional sense.

ii) The isotropic autonomous case, i.e. T = T(¢) and T = Df with potential f of
p-growth was discussed in the paper [KMS] by Kaplicky, Mélek and Stard. They
consider planar flows and prove the existence of a smooth velocity field v under
condition (1.4).

iii) In the papers [BF1], [ABF], [BF3] and [BFZ] the autonomous anisotropic case was
investigated with the result that Theorem 1.1 holds under weaker conditions relating
the exponents p and ¢. At this stage we like to remark that the occurrence of the
variable z in the potential f is not only a technicality. As shown by Esposito,
Leonetti and Mingione ([ELM]) in the setting of variational problems a Lavrentiev
phenomenon has to be expected which means that even in dimension 2 singular
solutions can occur if ¢ < 3p/2 is violated, whereas for the autonomous 2d-case the
condition ¢ < 2p is sufficient for regularity. For a further discussion we refer to the
paper [BF4].

iv) A particular form of z-dependent problems arises in the theory of electrorheological
fluids, we refer to [R], [E], [ER], [AM], [BF2], [BFZ]|, [DER] and the references
quoted therein. Roughly speaking the potential f here is of the principal form
f(z,e) = (1 + |g>)P@)/2 for a smooth function such that 1 < py < p(z) < py < 00
with constants p., and py. The existence of a strong solution to the problem (1.1)
can be established by working in appropriate function spaces (see [R], [E] and [ER)),
and for the 2D-case the regularity of this solution follows from the observation that
locally we have the bound p < p(z) < g with “local exponents” p and ¢ such that
(1.5) together with ¢ < p + 2 holds.



2 Existence of a strong solution

Throughout this section we assume that all the hypotheses of the first part of Theorem
1.1 are satisfied.
We introduce the regularization (0 < ¢ < 1)

fs(z,e) =01+ |e[>)? + f(z,¢)

with exponent ¢ satisfying (compare [ABF], Remark 1.5)
_ 2

qg>q, n<q<p(1+—) (2.1)
n

which is possible by our assumptions on the data. Let us; denote a solution in qu (4 R")N
Ker(div) of the problem

/Dgf(;(-,s(w)):6(g0)dx—/w®w:a(cp)dx:/g-gpdx
Q Q Q
for all ¢ € C°(KRY),  dive =0,

(1.15)

whose existence follows from a familiar fixed point argument which is applied for example
in [BF3|, Appendix, and which can be used in our setting without changes. Choosing
¢ = ug we immediately get that

sup ||u6||W1}(Q;R") <00,
0<i<1

and we will show that any weak Wpl-cluster point v of the sequence {us} satisfies our
claim. To this purpose we follow the ideas of [BF1] and [ABF]: we first establish some
weak differentiability properties of the functions us (see Lemma 2.1) which in turn enable
us to prove a preliminary variant of a Caccioppoli-type inequality (see Lemma 2.2). From
this inequality we deduce some initial local higher integrability result for Vu; (being
uniform in d; see Lemma 2.3), which gives an improved version of the first Caccioppoli-
type inequality (see Lemma 2.4). In the final step we will increase the exponent of the
uniform local higher integrability (at least for the case that n = 3 together with p < 2;
see Lemma 2.5). Putting all these ingredients together part i) of Theorem 1.1 will follow.
Let us start with

LEMMA 2.1 We have the following initial reqularity properties of us:
i) us € WQZJOC(Q;]R”);
ii) Defs(-,e(us)) € Wy 11005 S™) together with
O D: f5(- e(us))} = D2 f5(-, (us)) (Ore (us), -) + Ok Def5) (-, €(us)), k=1,...,m.

i) hg = (1+ |e(us)?)P/* € W3.100(2) together with

Vhs = g(l + |2 (ug) [2) 7 e (us) | Ve (us)]



Proof The idea for the proof is the same as in [BF1], Lemma 3.1, and [ABF], Lemma
2.2, we just indicate the minor adjustments. We fix a ball B = Bgr(xy) € §2 and choose
n € C§(Bg) such that (0 < r < 7' < R) p = 1 on B,, n = 0 outside of B, and
V| < ¢/(r' —r). Let A, denote the difference quotient in direction eg, £k =1, ..., n,

and consider a function 1 EWq1 (B,; R™) such that
. 1 o
divey = EVn Apus

together with
IVYl|zas,) < cllh™ Vi Apus||Las,) -
Note that such a function 9 exists according to [Lal, [Pi] or [Gal, III, Theorem 3.2. Then

@ :=h""n Apus — ¢

is admissible in (1.15) which means that we get (2.5) of [ABF] with f5(-,(us)) replacing
fs(e(us)) on both sides of the equation. We have

BulDefsle)@) = 5 [Defola + hen,elus) @+ hew)) = Das(o + hew, e(us) w)]
e [Dafs(o + hewse(us) (@) = Defa(a,=(us) )|
— /0 1 D2f5(x + hex, £(us)(x) + the (Apug) (z)) dt (2(Apus), -)
+% [D. sz + hep, (us) () — D fil, (us) ()| = T+ 1.

Note that in I we may replace f; by f since the regularizing d-part is not depending on
x. If we introduce the parameter-dependent bilinear form

B, = /0 D2f5(z + hep, £(us) (&) + the(Anus)(x)) dt

then we obtain (2.6) of [ABF] with B, being replaced by B, and with some extra terms
on the r.h.s. which originate from the new expression 7. Moreover, on the l.h.s. of the
above mentioned inequality we may write

/ B (e(Ayug), e(Dpug) )0 da
B'r’ ((B())

which is helpful for absorbing terms. To be precise we use the growth condition (1.3) in
order to estimate

/ || \5(772Ahu(; —hy)|dz < ¢
B,/(zo)

g-1
[ r e as
Brl(mo
[ A da
B,,J(Cvo)
+f
B"'

4

g-1
F(52 ‘hHE(Q/)N d.’L’] =: C[Tl -+ T2 -+ T3] ,

1(zo)



[s:=1+ |e(us)|?>. Let 0 € S™. Then we have (using (1.2) and the definition of f)

q—2

2

By(o,0) > A(6) /0 1 <1—|—\E(UJ)(x)-l-ths(Ahu(;)(a:)\Q)

9=2
> (07 lof,

dt|o?

where the last inequality follows from well-known estimates being valid since ¢ > 2. This
gives

Ty < C((S)/ HQF?F?[Bw(E(AhUJ)ag(AhUJ))Fdx
BT/(EO)

~ = 2—q
< / 7B (e(Apus), e(Dnus)) da + (6, p) / 2T g
B, (zo)

Br,(wo)
and for p < 1 the first term can be absorbed into the Lh.s. of the starting inequality,

whereas the second integral is dominated by [’ B.. (20) Fg/ ?dz and in conclusion by the

r.h.s. of the inequality stated before (3.9) of [BF1] (choosing s = ¢ there). In the sequel
we refer to this inequality as inequality (x). Obviously

T, < ce(r—r)t / \Ahu5|qu—|—/ F?qjdx
B,:(xo) B,/ (x0)

< r.hs. of (%),

1 9 <1
2 ¢-1 =2
For T3 we argue in a similar way recalling the bound for [, J (o) (V|7 dz.

which is a consequence of

All other calculations remain the same as in [ABF]| which means that finally inequality
(%) holds in the situation at hand, thus (3.9) of [BF1] follows and part i) of Lemma 2.1 is
a consequence of the fact that ¢ > 2. The remaining statements of Lemma 2.1 can now
be adjusted along the lines of [BF1], pages 373 and 374. O

LEMMA 2.2 Consider a ball B = Bgr(xo) € Q and choose radii 0 < r < ' < R.
Then there exists a local constant c(r,7') = c(r' —r)#, B > 0, such that for any ball
B,(Z) € Bg and for any n € C§°(Bw(%)), 0<n< 1, n=1 on B, (), [Vn| < c(r' —7)~"
the following estimate holds

/ nQF?|Vs(u5)|2dx < cr,r')
B,/ (z)

r

25-p a
1+/ T’ dx+/ T?dz
B,/ (z) B,’,.I(i')

”

+/ lus||Vus|* dz +
B,/ (z

/ Nl 0jubouin? dr
B,/ (.’i‘)

|

where the last integral on the r.h.s. vanishes if n = 2. Again we have set T's := 1+ |e(us)|?.

REMARK 2.1 Note that by (1.5)

1 2
2(j—p<2p(1+—>—p:p(1+—>,
n n



hence we may choose q in addition to (2.1) such that
20— p<ayq.

Then the claim of Lemma 2.2 exactly takes the form of [ABF], Lemma 3.1 which means

that we can drop the integral | B.J(2) F((;Qq_p 2 Az in the inequality stated in Lemma 2.2.

Proof of Lemma 2.2. Using the notation from [ABF], proof of Lemma 3.1, we obtain
with exactly the same calculations inequality (3.5) from this paper, i.e. we have (o5 :=

D. f5(-,(us)))

/ N20k05 1 Ohe(us) dz < —2/ nokos : (VN ©® Ous) dz
B, ()

B,(Z)

+/ Or (us ® ug) : £(n*Opus) dz
B, ()
—/ 90k (n*Okus) d
B,,,/(f)
—2/ nokms1 : (Vn © Opus) dz, (2.2)
Br’(j)

75 being the pressure function defined in (3.1) of [ABF]. To estimate the Lh.s. of (2.2),
we use (compare the formula in ii) of Lemma 2.1)

Okos : €(Okus) = pffa(',E(ua))(akE(Ua),5k€(u5)l+(3szfa)('a5(“5)) : €(Okus)

Vv
—. g2
=:H

g—1
> HZ—oly7 |Ve(us)],

where the last inequality follows from (1.3). Moreover we observe (0 < 7 < 1)

a—1 2q—p

T57 [Ve(us)| < 7T57 [Ve(us)|? + ¢(r)Ty 2

Thus, after appropriate choice of 7 (recall the ellipticity estimate (1.2)) we get the bound

2q—p
2

1
Or0s : €(Opus) > §H§ -y, (2.3)

the constant ¢ being uniform w.r.t. §. For estimating the first integral on the r.h.s. of
(2.2) we observe

|VO’5|2 == 8k05 . 8k05
= DZ2fs(-,e(us)) (Oke(us), Opos) + (akl?sfa)(',g(ua)) : Ok
H; D2 f5(-, (us)) (Oros, 31476)% +cly? |Voyl,

IN

which gives ‘ )
|Vos| < cHsDs* + cls? . (2.4)



Now (2.4) implies
q—2
2/ 0| V5|Vl Vus| de - < c/ HSTLT |Vl [ Vg da
B.@) B (@)
-1
+c/ DVl [Vus T2 da
B,r.l(j)
q—2
<t e [ VP Vusl o
Br/(i‘) BT/(T)
q—1
+c/ 0| V|| Vs T da,
Brl(i)

and the first two terms on the r.h.s. can be handled in a standard way (see [ABF], the
calculations after (3.6) for the second term). The last integral can be discussed in a similar
way as the second one with the result that
1+ / r? dx] ,
B /(i)

T

Sl

—1
/ n|Vn||Vus|Ts?2 dz < c(r,r")
B,,.I(j)

where we also used the assumption that ¢ < q.
The second and the third integral on the r.h.s. of (2.2) can be estimated exactly as in
[ABF], for the pressure integral we observe the equation

g+ div (05 — us ® us) = Vs,

thus

‘ — 2/ nokmsl : (Vn © Ogus) dz
B, (Z)

< c

/ 0|Vl Vos| [ Vug| da + / DIVl (us ® ug)|| Vus| da
B,/ (z) B,/(z)

+/ 7 77|V77Hg||VU5|dm] =:c[T1 + T2 + T3] .

()

The integrals Ty, T3 already occurred, and 7} has been discussed after inequality (2.4).
The rest of the proof is now the same as in [ABF]. O

LEMMA 2.3 For any subdomain Q) € 2 there is a constant c¢(€') independent of 6 such

that
(VugP" dz < ¢(Q),
QI
where np
. if p<n,
p=q n—p )
any number if p>mn.

REMARK 2.2 Qur assumptions (1.4) and (2.1) in particular imply that p* > q which
follows for p < n from the fact that p > 2n/(n+ 2). In case p > n we just choose p* > q.

7



Proof of Lemma 2.3. Recalling Remark 2.1, the proof of Lemma 2.3 is a verbatim repe-
tition of [ABF], proof of Lemma 3.2. O

As in [ABF| we use Lemma 2.3 to improve the Caccioppoli-type inequality stated in
Lemma 2.2.

LEMMA 2.4 We use the notation from Lemma 2.2. There exists an exponent v > 0
and uniform local constants cy, co, c3 > 0 such that for any matriz Q € R**"™ we have

C 9—2

Proof. If we replace us by us — Qx in the test-function used in the proof of Lemma 3.1
of [ABF], then one obtains a version of inequality (2.2) where on the r.h.s. the quantity
us — Qz occurs in place of us on appropriate places. Using the estimates stated after (2.2),
taking also care of the uniform local boundedness of u; (following from Lemma 2.3) and
using again the equation g + div (05 — us ® us) = Vs for handling the pressure term, we
arrive at the following result (compare (3.15) of [ABF])

/ DT |Ve(ug) Pz < c/ VP Vs — Q2 da
B,/ (T) B,.(z)
q—1
+ / Ve [V — Q| da
Br’(i‘)

2q—p
+/ L2 dx+/ n|Vn||Vus — Q|| Vus| dx
() B,/(2)

+ / O (us @ us) : €(NOk(us — Qr)) dz
B, (z)

+ / gOL(7*0k(us — Q)) dx
B,/ (z)

6
=: CZTZ-.
i=1

The quantities 77, T5 and Ty already occur on the r.h.s. of (3.15) in [ABF] and can be
treated as demonstrated there. The term T3 occurs on the r.h.s. of the desired inequality,
and clearly

15

IA

c/ ‘VT]P‘VUJ—QFF;% dx—i—c/ I‘? dx
B,:(Z) B, (z)

c/ |V77|2|Vu5—Q|2F;% dx—i—c/ ;2 dz.
B,/(z) B,/ (Z)

IA



For T, we get

T, < c(r'—r)2/ |Vu5—Q\2dx+/
Br’(j)

B,/ (53

|Vus|* dz
)

bl

q—2
< c[(r' — 7")2/ I's? |Vus — Q* dz + (r')”
BT/(E)

which follows from Lemma 2.3. This completes the proof of Lemma 2.4. U
Finally, we use the foregoing results to extend Theorem 1.2 of [ABF| to the situation
studied here.

LEMMA 2.5 The functions us are of class W(jl,loc(Q; R™) uniformly w.r.t. 6, where ¢ = 3p
in case that n = 3 and where we may choose any finite number q in case that n = 2.

REMARK 2.3 Note that for example in the 3D-case we have 3p > p* provided that
p < 2. Thus Lemma 2.5 is an improvement of Lemma 2.3.

Proof of Lemma 2.5. We follow [BF1], proof of Lemma 4.4, and consider the case that
n = 3, the case n = 2 is left to the reader. From (2.1) we deduce that p < ¢ < ¢, thus

there exists 6 € (0, 1) such that
1 6 1-90
T (2.5)
q9 p q
Note that from (2.5) and (2.1) it follows that
q
-0 <1. (2.6)
p
Fix a ball Bog(zo) € 2 and consider 0 < r < 7' and Z such that B,+(Z) € Bg = Bg(zo).
Finally, let 0 < n € C§°(Byg) such that n = 1 on B,(Z). From Sobolev’s inequality we
deduce

3
/ rPde < / (nhs)® dz
Br(i) Bagr

/ 1V (nh)? da
Bsr

3

IN
o

3
< c / |V77|2h§dx+/ n’|Vhs?dz| =: [T} +To)?,
Bsgr Bsgr

where h; is defined in Lemma 2.1. Clearly
1, < | Vilagpyy [ s
Bsgr

and
T, < c / 02 D25 (-, £ (s)) (e (ug), Oue (1)) da
Bar



by the ellipticity estimate (1.2). Note again that all constants are uniform w.r.t. 4. Assume
now that 7 = 0 outside of B(,,,2(%) and that [Vn| < ¢/(r' — r). Then obviously

o< ¢ / D2 £ (-, () (o (ug), e (us)) da
By yry/2(Z)

24—p q=2
< l/ L7 de+ (' =)~ / I57 [Vus — QP da + ()],
B,/(Z) B, (Z)

where we used Lemma 2.4. As outlined in the proof of Corollary 4.1 in [BF1] it is possible
to choose the matrix () in such a way that

9=2 q
/ L2 \Vu(;—Q\Qd:rSc/ I;dx.
B/(.’i‘) B/(E)

T T

Thus we have shown

3 : » g
[/ Pg”dx] < c(r'—r)2[/ I; d:r—i—/ I; dx]
B, (i) BZR Br’ (5))

2q—p
(") + /B (_)r,sz dx]. (2.7)

=

+c

Recalling Remark 2.1 and Remark 2.2, (2.7) differs from inequality (4.17) from [BF1]
merely by a uniform local constant, and the lemma follows precisely as outlined in [BF1]
via an interpolation argument leading to (4.18) of [BF1] with exponent 6 according to
(2.5). Since we have (2.6), the arguments after (4.18) can be copied without changes. O

After these preparations we will show that any weak Wpl—cluster point of the sequence
{us} (whose existence follows from supgs.; ||usllwi(orn) < 00) actually is a strong solu-
tion of (1.1). So let us —: u in W, (Q;R") as § — 0. Similar to [ABF], Section 4, we get
from Lemma 2.5 that

Dﬁfls(" €(U5)) € qu/(qfl),loc(Q; Sn)

uniformly w.r.t. §, and as in [ABF] we can show that

6—0

Dsf&("g(ué)) — Def('ag(u))

strongly in L% (Q;S") and a.e. This implies

loc
[ Detsyi s do= [wwuie()do+ [ gopds
Q Q Q
for any ¢ € C§°(2; R") s.t. divp = 0. Combining Lemma 2.3 and Lemma 2.4 we find
/ I Ve (uy) 2 de < () < oo
QI
for any €' € Q uniform w.r.t. §. If p > 2, then obviously we get
[[us|lwz(rmny < () < oo

10



If p < 2, then Lemma 2.5 together with Young’s inequality implies the bound
usllw2(@grny < () < oo

for any exponent « < 3p/(p+ 1) in the 3D-case and for any number o < 2 if n = 2. This
shows that u € W7,.(; R*) for a suitable exponent ¢, hence u is a strong solution of the
equation (1.1). This proves i) of Theorem 1.1. O

3 Planar flows

In this section we give the proof of Theorem 1.1, ii), supposing that from now on all the
hypotheses of this theorem are valid.

We recall the following lemma on the higher integrability of functions which has been
demonstrated in [BFZ], Lemma 1.2.

LEMMA 3.1 Letd > 1, 8 > 0 be two constants. With a slight abuse of notation let
f, g, h denote any non-negative functions in Q C R* satisfying f € L% (), exp(Bg?) €

loc
L), h e LL (Q). Suppose that there is a constant C > 0 such that

loc
(F ) <cf gose-ef )

holds for all balls B = B,(x) with 2B = By,(z) € Q. Then there is a real number
co = co(n,d,C) > 0 such that if h%log® (e + h) € L},.(Q), then the same is true for f.
Moreover, for all balls B as above we have

d cof f d d
][Bf log (e+ HfHd,QB) do Sc (][23 exp(ﬁg )dx) (][QBf da:)

h
+ c][ h*log®”? (e + ) dz,
2B 1 flla28

where ¢ = c¢(n,d, 8,C) > 0 and ||f||azp = (£, dz)*/*.
REMARK 3.1 Lemma 3.1 is not limited to the case n = 2 or n = 3.

We will apply Lemma 3.1 to suitable powers of the functions

1
2

= [D?f(-,S(U))(g(aku)ag(aku)) ,
I = 1+e(u))?,

where u denotes a strong solution to the system (1.1) which has been constructed in
Section 2. We recall that

u € W}, (SR forall r<2. (3.1)

(compare Theorem 1.1, i), and Remark 1.1) and use the weak form of (1.1) in the same
way as done in [BF2] (compare the calculations starting from (5) and ending up with (9)
of this paper, where we have to take E(x) = x and the tensorfield S has to be replaced

11



by T'(xz,¢); note also that due to (3.1) the arguments of [BF2| are valid under the present
hypotheses (1.2) and (1.3)) in order to get

/ n?Oho : £(Opu)dz < —2/ nOk0i;0inOk[u — Q) dz
Q Q
+ / [Vulu - 0k (n*Ok[u — Qz]) d (3.2)
Q
- / g+ Oc(n°Okfu — Qz]) dz + 2/ OV - Oklu — Qx] dx ,
Q Q

where n € C°(R2), 0 < n <1, Q € R**? and 0 := D.f(-,e(u)). Note that (3.2) exactly
corresponds to inequality (9) of [BF2]. Of course we may also use the “d-version” of (3.2)
(see inequality (2.2) and the beginning of the proof of Lemma 2.4) together with the a
priori estimates of Section 2 (see Lemma 2.3 and 2.5) to obtain (3.2) after passing to the
limit § — 0. Let us fix some subdomain Q' € Q and consider a disc By, C €)'. Moreover,
assume that sptn C By, n =1 on B, and |Vn| < ¢/r. Using u € L®(Q'; R?) (see (3.1))
we obtain the following estimate from (3.2) with a constant ¢ independent of Bs,

][nzaka ce(Opu)dz < ¢

][ 1| Vo[Vl [Vu — Q| dz + ][ IVl | V2| dz

B, Ba, Bay
+ ][ 7|Vl V| Vu — Q| dz + ][\g|n2|v2u|dx
BQT B27"

+ f LoVl Vu - Qldo + ][\w\mw||w—c2\dx] ,

Boy Bay
where |V7| can be estimated via (1.1) which implies as usual that
V| < gl + |ul|Vu| + Vol

Thus we get (using also g € L™)

][7728k0 ce(Opu)dzr < c[ ][n\VaHVnHVu— Q|dz + ][\Vu|772|V2u\ dz

B, Ba, Bar
+ ][n\vnuwuvu— Q|dz + ][772|V2u| dz
BQT B27"
+ ][U\VUHVU— Q| dx] : (3.3)
BZ'r

As outlined in the proof of Lemma 2.2 we have the counterpart of (2.3):
e(Ogu) : Opo > %HQ S (3.4)
We further observe that the inequality before (2.4) now reads as
Vo < H[sz(-,s(u))(ako, 0k0) : + CF%‘VO"
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which implies by the second inequality of (1.2) the estimate
\Vo| < cHh+ I | (3.5)

where h := max{['(@=2/4 T(2-P)/4} We return to (3.3) and make use of (3.4) and (3.5) in
order to get the following inequality

][772H2dx < ¢ ][7721“262_10 dz + ][n\Vn|Hl~z\Vu—Q|d:c

Ba, Bs, B,
+ ][F%MVnHVu - Q|dz + ][UQ\VuHVQu\ dx
Bar Ba,
+ ][n\vnuwuvu— Qldz + ][n2\v2u|da: + ][mvnuw Q| dx]
Ba, Ba, Bay

= ¢y I, (3.6)

We estimate the terms on the r.h.s. of (3.6) following ideas presented in [BFZ] using
|V2u| < ¢|Ve(u)| < cHh and Sobolev-Poincaré’s inequality. We obtain for v :=4/3

I, < crl][Hiz\Vu—QMx

B27‘
- -1 1
Y 1 4
< ¢ ][(Hh)Vd:r " l ][ |VU—Q\4dx]
- B - By,

=[N

VAN
)
I
=
>
=
o,
8

L BZT .

Holder’s and Sobolev-Poincaré’s inequality give

EJ[\W—QWT < gl][|Vu—Q\4dx] [][F”’q;ldx]

I; <
B Ba, Bar
i ¥ A ) ¥ ) 2
< ¢ ][|V2u\"dx ][lWTda: <ec ][(Hh)Wda: ][Fq_ldx
- Bayr By By Bz
- i % ]
< ¢ ][(Hh)"’dx +c][Fq_1dx.
- Bar Bz

13



1, is estimated via

L < c][H7z|Vu|dx < c!][(ﬂﬁwdxr!][vm‘*dxr

B2r B2'r B?T

< cl ][(Hﬁﬁdx

Bay

2
+c

][ |Vul* dx] ,
Bar

where the last term is bounded from above by f . I?dz, T := 1+ |Vul>. We further

observe
1 1
4 Y
¢ 4
Iy < - ][\Vu—Q| dx] [][|Vu|7dx]
By Ba,
_ 1 1
Y Y
< c ][|V2u|7dx] ][|Vu\7dx]
- Bo, By
_ i % i
< ¢ ][(Hh)7dx —|—c][Fd:v,
- Bar Bz

for Is we have

2=

Iy < c][Hizdx < C[][(Hil)7dx] [][dxr

BQT B2’!‘ B?T

+c][de,

B2'r

2

IN

c [ ][ ()" da

B2r

and finally we see that

I, < ;][|VU—Q\dx < c[][|V2u\7dx] [][ dx]
Bo, Bs, Bay
N ¥
< c[][(Hh)"’dx +][Fd:c.
Bar Bar

Collecting terms, (3.6) implies

%
][HQda: < ¢ ][Gd:c-i- ][(Hﬁ)7d$] ],
BT B2r BZ'I‘
G = max{f‘2,f‘7_1,f2q2_p},

14



thus

X X
[][Hde] gc][(HiNzﬁda:-i—c ][de] .
B, By Bar
Now we like to apply Lemma 3.1 with the choices
2 3 ~ 2
d=—-—=—-, f=H", g=h", h=Gs.
v o2
To this purpose we claim that
exp(Bg”) = exp(8h%) € Li, () (3.7)

holds for any number § > 0. Indeed, the calculations in the proof of Lemma 2.5 (combine
the estimate for 75 with the information that Vus; € LT (Q; R?*?) for any 7 < co) imply

loc

® = 7% € W}, .(Q), hence by Trudinger’s inequality (see Theorem 7.16 of [GT])

Jloc
/ exp(By®?) dz < ¢(p) < 00
By

for any disc B, € Q. Here f3, depends on the Wj-bound of ® on B,. In particular we
find that

/ exp(B®* %) dz < ¢(p, B, k) < 00 (3.8)
B
for any 0 < k < 1 and all g >“ 0. We have on account of § < p 4+ 2 the inequality
P2 < phew) _ g2on
for some small k > 0, and clearly (since p > 1)
r’s" < prr

so that 7% < ®2~%. Thus (3.7) follows from (3.8).
Moreover, since f¢ = D2f(-,e(u))(0ke(u), Oke(u)), we deduce f¢ € L}, () from Lemma

loc

2.4 together with the uniform local estimates for the r.h.s. The statement h € L{ (Q) is
immediate by the definition of G. From the lemma we now deduce

H?1og®f (e + H) dzx < ¢(8, p)

By
for all discs B, C €' and all § > 0. Recall that (see (3.5))
|Vo| < cHh + I
and that
-1\ 2 g—1
/ <FT> log®? (e +T"2 ) dz < (B, p) -
By

The same is true for the function Hh: to verify this statement we recall the following
elementary inequality (see (2.12) of [BFZ]). Let a, b > 0. Then, for any « > 0, there is a
constant ¢(a)) > 0 such that

(ab)?log®(e + ab) < 2%a®log®*?(e + a) + c() exp(6D) . (3.9)

15



Applying (3.9) to a = H, b = h we obtain the desired estimate
- ge1\2 -
/ (7)) 10 (e + (HE)'S") da < e(5,p).
By
Now, using the estimate for |Vo| combined with the observation that

(a+b)?log*(e+a+b) < c[a2 log®(e + a) + b* log*(e + b)] ,

we finally arrive at
/ Vo log®? (1 4 |Val|)dz < ¢(8, p) < oo
B,

for any 8 > 0. This shows o € C°(Q;S") by quoting Example 5.3 of [KKM]. Now
u € CH*(Q; R?) follows as outlined in [BF2], p. 1616. O
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