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Abstract. This article provides a framework to regularize operator equations of the first kind where the underly-
ing operator is linear and continuous between distribution spaces, the dual spaces of smooth functions. To regularize
such a problem, the authors extend Louis’ method of approximate inverse from Hilbert spaces to distribution spaces.
The idea is to approximate the exact solution in the weak topology by a smooth function, where the smooth function
is generated by a mollifier. The resulting regularization scheme consists of the evaluation of the given data at so
called reconstruction kernels which solve the dual operator equation with the mollifier as right-hand side. A nontrivial
example of such an operator is given by the spherical Radon transform which maps a function to its mean values
over spheres centered on a line or plane. This transform is one of the mathematical models in sonar and radar. After
establishing the theory of the approximate inverse for distributions, we apply it to the spherical Radon transform.
The article also contains numerical results.

Key words. distribution, regularization, approximate inverse, mollifier, reconstruction kernel, spherical Radon
transform, sonar.

AMS subject classification. 44A12, 45A05, 46F12

1. Introduction. We apply the method of approximate inverse to the problem of reconstruct-
ing a function from integrals over spheres. Applications of this mathematical problem include Sonar
when the source and detector are at the same point [13], thermoacoustic tomography for cancer
detection [12], seismic testing [21], and Radar. The article [3] provides an excellent introduction to
synthetic aperture Radar and the relation between spherical integrals and Radar and Sonar.

The approximate inverse was originally developed by Louis as a general method to regularize ill-
posed operators on Hilbert spaces [15]. It has been applied to integral equations of the first kind
[16] and tomography [25, 26]. However, the inversion formula for our problem is not valid on Hilbert
spaces but on distributions. Therefore, we will generalize the approximate inverse the setting of
distributions. It is hoped this generalization will be useful for other inverse problems for which the
ambient spaces are not Hilbert spaces.

In seismology or Sonar the acoustic wave equation is
n?(z)uy = Au + 0(t)6(z — ag) where ag € A

and A is a small section of the surface of the earth. After linearization, the determination of n?(x)
from back-scattered data is equivalent to recovering n? from integrals over spheres with centers
on A [13]. Knowing n? or at least an approximation to n? can show boundaries of objects in the
water. This linearized model is reasonable from a practical standpoint when the speed of sound in
the ambient water is fairly constant. This would occur in water of depth less than one hundred feet
with fairly constant temperature (private communication, R. Barakat). Since the speed of sound is
constant in shallow water with constant temperature, a pulse travels from a point source, a, making
a spherical wavefront. The sound that is reflected back to the source at time ¢ gives the amount
reflected back from the sphere centered at a and radius ¢/2 times the speed of sound (assuming no
multiple reflections). See [10] for practical information about Sonar.

The mathematical problem can be described as trying to recover a function by its integrals over all
spheres centered on a given line (in R?), plane (in R?) or hyperplane (in R").

We first discuss the inversion methods that have been implemented numerically and then the pure
mathematical results behind them. Denisjuk has an inversion method based on a transformation
that changes the spherical transform into a limited data line transform [7]. He has implemented
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his method with good results. Also in unpublished work, Jens Klein [11] has developed and nu-
merically tested a promising inversion method based on the ideas of Andersson discussed below.
Recently Aleksei Beltukov proposed a numerical inversion method using a discrete SVD for the
Sonar transform. He showed that the singular values are fairly flat and then drop off precipitously
which reflects the ill-posedness of the problem.

Our numerical reconstructions are given in Section 6 and they show the potential of our method.

Many authors have proven injectivity and inversion methods for this transform. Courant and
Hilbert [5, p. 699] proved injectivity for functions that are even about the hyperplane. Fawcett [8]
and Andersson [2] provide inversion formulas in R”. Norton provides an inversion method for the
circular transform if the center set is a circle in the plane [20] and if the center set is a line [19],
and [21] gives three dimensional results. Ranges and inversion formulas on a subspace of Schwartz
functions are given in [18].

David Finch, et al. [9], develop an explicit inversion formula for recovering a function from spherical
integrals when the center set is the boundary of a bounded, connected, open set in R”. Alexander
Ramm proves injectivity and inversion theorems in [24]. Fairly general uniqueness theorems are
given in [1].

Louis and Quinto [17] develop the microlocal analysis of the transform when A is a real-analytic
surface (e.g., an open subset of a hyperplane), and they prove the local transform is injective under
fairly general hypotheses. They characterize singularities (jumps, etc.) of the object that are stably
visible from the data. Palamodov [22] and Denisjuk [6] continue this microlocal analysis when S is a
hyperplane, providing instability results, inversion methods, and range theorems. Aleksei Beltukov
has proven an inversion method for the transform on hyperbolic space.

We now give a brief summary of the article. Section 2 contains the extension of the method of
approximate inverse to distribution spaces. In particular, we define what we mean by a mollifier
in the distributional sense. In Section 3, we apply this concept to the inverse problem of inverting
the spherical Radon transform. Section 4 deals with the design of a mollifier for this problem. The
computation of the corresponding reconstruction kernel is outlined in Section 5. Section 6 provides
a couple of numerical tests using synthetic Radon data, and the proof that our functions satisfy
the conditions to be mollifiers is in the appendix.

2. Approximate inverse in distribution spaces. In this section we extend the method of
approximate inverse as introduced by Louis, Maaf} [16], Louis [14, 15] to distribution spaces.

To this end let 7 C K", Q9 C K™ be open sets, K = R C, and V C C>®(y), W C C>®(Q3) be
subspaces which are closed in their own topology. We denote the dual spaces (continuous linear
functionals) for V and W by V', W', respectively. Furthermore we assume A : V' — W' to be a

linear mapping which is one-to-one. The inverse problem under consideration is: Given a g € W'
lying in the range A(V') of A, find f € V' such that

(2.1) Af=g.

The concept of approximate inverse involves so called mollifiers. The aim is to calculate convolutions
of them with the sought solution f rather than to calculate f itself. To extend this concept to
distribution spaces V', W' we first define what we mean by a mollifier.



REGULARIZATION SCHEME FOR OPERATORS IN DISTRIBUTION SPACES 3

DEFINITION 2.1. For vy >0 let ey(-,y) € V" for all y € Qy such that

(2-2) (‘Paev('ay»V’xV” eV’ for all ¢ € V.

We call e, a mollifier if and only if

(2.3) (o, ey () vixve, B)vixy = (@, Bvixv

asy— 0 forall V.

Let Vi C V' and let Vo C V. Then, ey is a (Vi,V2)—mollifier if and only if (2.2) holds for all
© € Vi and (2.3) holds for all ¢ € Vi and B € V5.

In Definition 2.1 we denote the double dual of V' by V", and (-, ")y /«v, (-,-)yrxy~ are the corre-
sponding dual pairings.

If e, is a mollifier in the sense of Definition 2.3, then for f € V',

(24) f’y(y) = (fa e’y('a?/))V’XV” VS Qla

is a distribution in ¥V’ which converges to f in the (weak) topology of V'. Because V C V", e, can
be chosen from V. Thus, f, is a kind of 'smooth’ version of f. If ey is a (Vi, Va)—mollifier, then
(2.4) holds for all f € V; and convergence holds when tested against all 8 € V5.

To obtain f., from Af we consider the adjoint operator of A. Since A : V' — W' is linear, continuous
and one-to-one, it has a linear and continuous adjoint A* : W"” — V" with dense range. Suppose
for each y € Qy, we have an element U, (y) € W" satisfying

(2.5) AW, (y) = ey(-y) -
Then, f, can be expressed as

) = {frey (o y)hvrixvr = (f AM Ty (y))vrscvn
= (AL, Uy () wrxwr = (g, Vs (Y)wr xwr

where g = Af are the given data. The mapping S, : W/ — V' defined by

(2-6) Svg = <ga \I’“y(y»W’xW”

is called the approzimate inverse of A, the element W, (y) is the reconstruction kernel corresponding
to e,. Thus, the approximate inverse consists of evaluations of dual pairings of the given data g
and the reconstruction kernels ¥, (y).

Three main features of the approximate inverse are:

e The reconstruction kernels ¥, (y) can be precomputed before the measurement process
starts.

e The equation (2.5) is independent of the data g and hence not influenced by noise.

e Invariance properties of A* help to improve the efficiency of the method, if (2.5) has only
to be solved for one single y € ;. We will demonstrate this in Section 3.
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REMARK 2.2. In general, it does not follow that choosing a mollifier ey from V results in a
reconstruction kernel U, (y) € W. The key is that (2.5) must have a solution in W. If A*(W)NV
is dense in 'V, then this is more likely. This density condition will happen if the adjoint A* maps
W toV CV"

In practical situations we have only finitely many measurement data available rather than a distri-
bution g. For this reason investigating the semi-discrete operator equation

(2.7) ANf=gn,

where Ay = ®y A, gy = ®yg € KV may fit better to that situation. Here, the observation
operator ® € W", can be e.g., point evaluations, if A(V") consists of continuous, not necessarily
integrable, functions. But following the outlines of Rieder and Schuster [25, 26] we formulate the
approximate inverse of (2.7) by

(2.8) Sy ngn(y) = (gn, GN PNV (y))kw

where U, (y) is a reconstruction kernel for (2.1) and Gy € KV*V is a matrix containing the weights
of a numerical integration rule which is applied to get the discrete version (2.8) of the dual pairing
(-, Ywrxwr. Thus, we continue in this article focusing on the continuous problem.

REMARK 2.3. Compared to the concept of approximate inverse in Hilbert spaces as established by
Louis [14], Definition 2.1 applies to more general spaces and requires less restrictive assumptions on
an element e, to be a mollifier. The L?-theory requires convergence of fy(y) = (f,e4(-,y)) — f(y)
in L? as v — 0, but this distributional setup requires only weak convergence. We should point
out that our theory is meant for distribution spaces and does not directly subsume the L*- or H®-
theory since these Hilbert spaces are not closed subspaces of distribution spaces, the topologies are
too different, and their standard duals are not their duals as distribution spaces. It should also be
pointed out that this generalization to distributions is necessary for the spherical transform since
the transform does not map L? into L? and the inversion formula we use applies to distributions.

3. Approximate inverse meets the spherical Radon transform. In this section we apply
the method of approximate inverse established in Section 2 to the spherical Radon transform. We
use the mathematical setup of Andersson’s article [2] and formulate some of his main results first.
We start with some notation. Throughout the paper a scalar product (-,-) or norm || - || without
subscript means always the Euclidean scalar product or norm, respectively. We denote the space of
all rapidly decreasing, smooth functions by S(R") and give them the usual seminorms [27, Section
7.3]. This topology turns S(R") into a Fréchet space. The Fourier transform F : S(R*) — S(R")
and its inverse are given by

FIO =)= [ f@e®de,  Flf@)=m™ [ fEe"d.
The dual space S'(R™) of S(R™) is called the set of tempered distributions. Each distribution

p € S'(R") is of finite order [27] and can be written as the derivative of a continuous function of
polynomial growth [4].

The Fourier transform gives isomorphisms on S(R") and on S&'(R™). Finally, we often write a
vector z € R**! in the form = = (', 2,,1) ", where 2’ = (21,...,2,)" € R" contains the first n
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components of x and x,4; is the last component. We will drop the T when this correspondence is
clear.

The spherical Radon transform R assigns a function f € S(R**!) its mean values over all spheres
centered about (z,0) € R"*!, 2z € R* with radius r > 0:

(3.1) RFGv) = o= [ fle+rern) dSa(en) = gler).

Here, wy, is the area of the n-dimensional sphere S™ = {(¢,7) € R*"™1 : ¢ e R* | np € R, €| +7n? =
1} and dS,, is the surface measure on S™.

Obviously Rf = 0 holds true for every f € S(R"*!) that is odd in the last variable: f(z, —z,.1) =
—f(z',2p41). Courant and Hilbert [5] proved that the kernel of R consists exactly of all such
functions. This suggests restricting R to the subspace of even functions in the last variable,

Se i= Se(Rn+1) = {f € S(Rn+1) : f(xla _$n+1) = f($la$n+1)} :

Unfortunately, even if f € So(R"*!), the image Rf does not have to be in L?(R**!). In fact, if
f is the characteristic function of a circle, then Rf has infinite support and does not decrease at
infinity. Furthermore, one can show (e.g., using ideas in [17, 22]) that R™! is not continuous in any
range of Sobolev norms, at least with data for bounded centers or radii (see Remark 2.3).

Identifying the radius 7 in (3.1) with the norm ||w|| of a vector w € R**! | we introduce the following
subspace of S(R?"*1):

S = S (R* x Ry = {f € S(R*") . f(z,w) = f(2,||w]||) for a function f € Se(R"*1)}.

Thus, S, (R" x R**1) consists of the functions in S(R?"*!) which are radially symmetric in the last
n + 1 variables. We will often view functions in S;(R* x R**1) as functions on R” x R where we
write f(z,r) = f(z,w) with r = ||w||.

As mentioned before, we cannot expect that Rf € S;(R" x R**1) even when f € So(R"*!). But it
is easy to show that Rf € S!(R" x R**1), the dual space of S;(R" x R**!). By a density argument
we may extend R to domain Se(R"*!)". The following theorem summarizes some properties of R
considered as mapping between S, and S]. The proofs are in [2] or [11].

THEOREM 3.1 ([2] Theorem 2.1 and Proposition 2.2). The spherical Radon transform R : S, — S
s a linear, continuous operator which is one-to-one and has the range

(32) RS = Sleone = {9 €S supp § € {(0,p) R x[0,00) : p > |lol}} € 5.

r,cone

If the Fourier transform of f € S, is equal to an integrable function f(a,w), then the inversion
formula

(3.3) flo,w) = enlw| (lo]® +&*) ™D g(0, /o2 + w?)
is valid with ¢, = wy, /(2 (27)") and g = Rf.
The adjoint operator R* : S, — Se has dense range and is given by

(34) R*g($',$n+1) = / g(Z, \/HZ - (II’HQ + x%—i—l) dZ,
Rn
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its Fourier transform is

(3-5) FR*g(0,p) = 9(o, Vo> + p) .

Note that the right hand side of (3.3) is the Fourier transform of the function g in R2"*! that is
radial in the last n-+1 variables. The reason to consider R as a map into S’(R"? x R**!) rather than
S!(R™1) is because the relationship between the Fourier transform and spherical transform is easier
in these spaces. The constant ¢, in (3.3) differs from the corresponding constant in Andersson’s
article by a factor of (27)~". This inaccuracy was found by Klein and is stated in his Master’s
Thesis [11].

In order to apply the approximate inverse (Section 2) to solve the inverse problem of finding a
distribution f € S/ satisfying

(3.6) Rf=yg

for a given g € S in the range of R, we identify V = S,, W = S, and A = R. Note that due to
Theorem 3.1, R* maps S; into S, we have the situation mentioned in Remark 2.2 and may choose a

mollifier e, (-, y) € Se for every y € R**!. Once having a mollifier e, at hand the following extension
lemma, whose proof also can be found in [2], helps us to find a solution of the equation

(37) R*\II’Y(y) = e’Y('ay) )
which is our reconstruction kernel, see (2.5).

LEMMA 3.2 ([2] Extension Lemma 2.4 and Corollary 2.5). There ezists a continuous linear mapping
E:S. — S such that
(3.8) R*E =ids, .

For p > ||lo|| the mapping E satisfies

(3.9) FEf(o,p) = f(o,v/p? —[lo]]?).

If e,(-,y) € Se is a mollifier in the sense of Definition 2.1, then the reconstruction kernel ¥, (y)
belonging to e, is given by

(3.10) Uy (y) = Eey(,9) -

With the help of (3.8) we easily see that ¥, (y) from (3.10) is a solution of (3.7).

From (3.5), it is clear that any continuous E that satisfies (3.9) will satisfy (3.8). We will choose E
so that, for a mollifier e,(-,y) in S,, Ee,(-,y) is in ;.

So far we know how to get the reconstruction kernel once we have chosen a mollifier. Theorem
4.1 will provide general criteria that will allow us to construct mollifiers, and with the help of the
extension Lemma 3.2 we know how to find a corresponding solution of (3.7). But it would be very
time-consuming if we had to solve equation (3.7) for all reconstruction points y. To this end we
prove an invariance property of R*, Lemma 3.3, which allows us to solve (3.7) only once and to
generate all reconstruction kernels by applying the invariance to that one solution.

For a given M > 1, we denote

HM = HM (R = {y = (4, yns1) € R™T 1 1/M < |ynsal}
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(1) HMM = HME) = (= (4 yuar) € R 1M < o] < MY,
Furthermore, if U C R**! is open, we define

Se(U) = {f € Se(R**") : supp f C U},
Se(U) = {f € S{(R™*!) : supp f C U},
ENU) ={f € SL(R*™) : supp f C U is compact }.

Note that, in general, S.(U) is a proper subspace of the dual space of Se(U).
We define mappings S¢ : Se — Se and S¢ : S, — S, by

—n—1 =y Tpgr M 41
(312) ng([l?) _ { |yn+1| n f<‘yn+l‘, \yn+1\> , Y &€ H (Rn )’

!

—2n—1 zZ—y r M +1
(3.13) S¥g(z,r) = e[~ g<|yn+1|’ |yn+1|) » YEHTRY),
0, y¢&HMER.

Because SY and SY are compositions of dilations and translations, they are linear and continuous
mappings on Se and S;, respectively. Moreover, both operators intertwine with the adjoint R*. It
is also clear that S¥f and SYg can be discontinuous in y for Ynt1 = £1/M.

LEMMA 3.3. Let S¢ : Se — Se and SY : S — S; be defined as in (3.12) and (3.13), respectively.
Then,

(3.14) SYR* = R*SY.

Proof. Let y € HM(R"*1!). Using representation (3.4) together with the definitions (3.12) and
(3.13) gives

!
Y zZ—Y _
R*SYg(z', tni1) = |Ynt1l 2=l / 9(—a [Yn+1] ! \/HZ — 2|2+ :E%H) dz
Rn |yn+1|

= |yn+1|n1/R 9(2’, \/||z — |Yns1 |7t (& = Y1 + lyns1] 72 x%+1) dz
= Sg R*g($la$n+1)

for all g € S;. For y ¢ HM(R**1) assertion (3.14) follows immediately, since both sides are equal
to zero.l

Lemma 3.3 tells us that under certain conditions we may restrict to solve (3.7) only for one single

COROLLARY 3.4. For each v > 0 let &y € Se(R*™1) and e, (-,y) € Se be defined by S¢:

(3.15) ey(7,y) = S{e,(z)
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Assume e is a mollifier. Then, we get all corresponding reconstruction kernels by solving

(3.16) R'T, =&,

and setting

(3.17) Ua(y) = Uy (y;2,7) = S{W,(2,7).
If ey is an (EL(HMM), So(HMM))-mollifier, then

SyRf = (Rf, ¥y)sixs, = f

for f € EL(HMM). This means that

(RS Ua)sixSes Ber(umnmnywsommnry = {f, Berumnry s, (znmm)

for all B € Se(HMM).

We will construct a general class of e, in Section 4 and show the resulting e, satisfy the definition.
We now prove the corollary.

Proof. Taking into account (3.17) and (3.14), statement (3.16) is a consequence of

ey(@,y) = Siey(z) = S{R" Ty (z) = R*SYT,(z) = R*{Ts(y)} ().

Considering (3.8) a solution of (3.16) is given by ¥, = Eé,.
REMARK 3.5. Putting
fy(y) = ([, Sg@v)S{exSe

it becomes clear from (3.12) that supp f, C HM (R, Thus, using the invariance S¢ to gener-
ate mollifiers, we can only recover objects f € S, with support in HM (R**1). But this is not a
restriction in applications e.q., in Sonar or Radar, since the support of objects to be reconstructed
there always are a positive distance from the line yn41 = 0. For technical reasons, our molli-
fiers satisfy the convergence assumption (2.3) for bounded |yn41|, so we will reconstruct f., only on
HM or HMM | This is not a serious practical restriction since M can be chosen arbitrarily large.

Therefore, we will construct (EL(HMM), Se(HMM))-mollifiers.

To use the method of approximate inverse for inverting R, we:

e Choose a mollifier e, fulfilling the conditions of Theorem 4.1 defined by S¢: ey(z,y) =
S¢éy(z) and calculate U, = Ee,,

e Compute the approximate inverse of R as

(3.18) Svg(y) = (9,5, ) s, »

where g = Rf are the given data.
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Considering (3.9), we only have an explicit representation for FEe, when p > ||o||. We want to
obtain \T&y rather than its Fourier transform because a discrete Fourier transform would extend the
data, which are given in applications only on a bounded domain, periodically and could cause large
artifacts. Furthermore even in the two-dimensional case (n = 1) we would have to compute a three
dimensional Fourier transform of the data. Therefore, we need an explicit representation of F Ee,
for all p > 0 and 0 € R". (Andersson uses an extension method from the book of Stein [28] which
is fairly arbitrary and not explicit for calculations.) We will present an idea in Section 4 that will
circumvent these difficulties.

4. Design of a mollifier for R. Due to Corollary 3.4 we let the mollifier e, be defined
ey(z,y) = Sle,(z) as in (3.12).

Since we will need the Fourier transform of e, to compute the reconstruction kernel (see (3.9)) it
is appropriate to choose €, as a tensor product

(@.1) #y(w) = eA(a') @ e2(@ni).
where e}Y € S(R"), e% € S(R), e% even. Defining e,(z,y) as in (3.15), (4.1) it is obvious that
ey (-, y) € Se(R*H1) for all y € R,

In view of equation (3.9) and Theorem 4.1 below we want e, and €, to have the properties:

L [zn e,ly(z) dz=1= [ e,2y(t) dt.
2. Fe% is easy to calculate.

3. Fe2(v/€) has a ‘nice’ extension for £ < 0.

By ‘nice’ in 3., we mean that the extension is explicitly known since we do not want to apply an
extension lemma, [28] like Andersson did it in his article [2]. Moreover we need an explicit expression
for that extension in order to calculate the corresponding reconstruction kernel.

Now we get more explicit with our choices for e}Y and eg. We define

(4.2) e,ly(x') =yl (2 /y) for e'(z') € S(R), /n el(z)dz=1.

We have to be careful with respect to the choice of eg. Let F' € S¢(R) have mean value 1. In order
to guarantee the mollifier property, because of the dilation by ¥, in S (see (3.12) and (3.15)),
we define

1 g+1 g—1
2 — =
(4.3) ey(q) = 7y {F(—'y ) +F( S )} for F € S.(R), /RF(t) dt =1.
We will show property 3. is fulfilled when we define F' as in (4.5) below.

The following key theorem asserts that these properties guarantee e, is a mollifier. The proof will
be given in the appendix.

THEOREM 4.1. Let M > 1 and let functions e% and egy be given by (4.2) and (4.3). Then, ey defined
by (3.15) and (4.1) is an (EL(HMM), Se(HMM))-mollifier.
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1

We will now construct specific functions ey

and egy that we will use in our algorithm. We define

(4.4) ef(z') =y (@' [y), e (a) = (2m) T2 exp(~||2'|*/2), < €R",

which obviously is a function in S(R") with mean value 1, since [, €} (z') de’ = el (0) = 1.
We have to be more careful in the choice of e%. The desirable extension property 3. for e?y is fulfilled

if there exists a function g € S(R) satisfying

(4.5) Fe2(V€) = g(&?).

The function
(4.6) F(q) := 2F exp(-1¢[)}(2q)

satisfies (4.5) with g(¢) = exp(—|¢[?). So, F is an even function in S(R) with mean value equal to
1. We define €2 using (4.3) and the specific function (4.6).

REMARK 4.2. Since the inverse Fourier transform of exp(—|¢|*) does not decrease as rapidly as
exp(—|¢|?) near £ = 0, we introduced the dilation factor 2 in (4.6) to make the decay behavior the
same in both variables (see also Figure 4.1).

COROLLARY 4.3. Let M > 1. The function ey = 6}7 ® egy defined using (4.4) and (4.3) with F
defined by (4.6) satisfy the assumptions of Theorem 4.1 and therefore is an (EL(HMM), Se(HMM))-
mollifier.

Proof. All we need to do is observe that our specific e' and F satisfy [, e'(2)dz =1 = [, F(t)dt
and that e, is constructed according to Theorem 4.1.0

Figure 4.1 displays €, in case of n = 1, v = 0.06. It has its peak in (0, 1).

a0f

0 05 1 15

Figure 4.1 Plot of e, (z1,22) in the two-dimensional case (n = 1) for v = 0.06 (left picture). On
the right-hand side is the graph of e} (bottom) and e (top). The width of the peak is about 0.5

in each case (note the different scales), which is achieved by the dilation in (4.6).
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5. Computation of the reconstruction kernel ¥,. Throughout this section we assume &,
to be given as in (4.1), (4.2), (4.3) (4.4) and (4.6) and e, (z,y) = Sle,(z). Our aim is to compute
¥, = Eé,.

From Lemma 3.2 we know that

(5.1) F,(0,p) = FEey = Foy (0, /2 — o) if p > o],

where p > 0, 0 € R". Thus, we have to compute the Fourier transform of e, at first.

LEMMA 5.1. We have that

(5.2) Fey(0,p) = &)(0) &2 (p) = cos(p) e I7l/2 e=2"0"/16

where 0 € R*, p € R.

Proof. The proof follows from a straightforward calculation using the definition of e,.0

So far by Lemma 5.1 we have the representation

(5.3) FU,(0,p) = cos(v/p? — |o[2) e I7I°/2 =" (*=1el*/18) i > o

In order to get U, for all p > 0 and o € R" we have to find an extension of cos /€ for £ < 0 that
turns (5.3) into a function in S;. The natural extension involves cosh /=& for £ < 0. As noted in
Section 3, we can extend ‘@7 arbitrarily, and for computational reasons, we will cut this function
off away from £ = 0. Let x € C*°(R) be zero on (—oo,—1] and 1 on [0,00) and let

COS\/Ea 5205

(5.4) G(e) = { x(€) cosh(/E]), €< 0

The Fourier transform F\if7 is given by

(5.5) FO. (0,p) = G(p® — ||o||?) e 7 I17I7/2 =7 (0*~llol*)* /16

and we get \T&y by applying the inverse Fourier transform.
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Figure 5.1 The reconstruction kernel ¥., given as in (5.6) for v = 0.06 and n = 1.

The integrals have been computed using numerical integration.

LEMMA 5.2. Let €, be given as in (4.1), (4.2), (4.3), (4.4) and (4.6). Then, a solution of
R*U., = e,
is represented by

- llo 112

7 2
T, (z,r) = 2° (2W)§né/Rn /{G(p2_||g||2)672( L2435 (02— llol)?)
*o

(5.6) P2 Jo 12 cos((o,2)) bpdor

Here, R} = {z = (z1,... ,Zn) | €ER?: zj > 0}, J, is the Bessel function of first kind of order v
and G is given as in (5.4).

Proof. The proof follows by a simple application of an inverse Fourier transform of dimension 2n+1
to (5.5) in which one uses Lemma 5.1, spherical coordinates and the identity

/ etPr (w,0) dw = (2 71_)(1’1,-}-1)/2 (p T)(l_n)/Z |.7(n—1)/2 (IOT)

which can be found e.g., in the article of Fawcett [8].0

Figure 5.2 displays a picture of \117 for v = 0.06 and n = 1 corresponding to the two-dimensional
case. The integrals in (5.6) have been computed using numerical integration, where the integrals
were cut off when the absolute value of the integrand was less then 1072, The reconstruction
kernel in Figure 5.2 belongs to the mollifier shown in Figure 4.1 and has its absolute maximum
point in (0, 1) just as the mollifier e,.
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6. Implementation and numerical results. We now have all ingredients to implement the
approximate inverse for the spherical Radon transform. We present results for the two-dimensional
case (n = 1). The reconstruction kernel ¥, (5.6) belonging to the mollifier (4.1), (4.2), (4.3) has
the representation

2_4

oo o0
T 2 0'2 ! T
(6.1)  Uy(z,r) = {//7*70 27") cosTe 7 (FHTE) cos(o z) dr do
00

. 72 -4

)X(_Tz) coshre=?’ (F+7) cos(o z) dr da} ,

+
—3
-

\]

S

|

\]N

where we used the substitutions p = V72 4+ 02 and p = Vo2 — 72, respectively.

Throughout this section we suppose that f has compact support in H>M (R?) for a certain M > 1.
The method of approximate inverse to solve the problem Rf = g for n = 1 has the form S,Rf(y) =
(Rf,S{T,)sixs,-

We now adjust the algorithm to practical situations where only finitely many data on a bounded
domain are available. Assume that equally spaced centers z, € [A\,A], A < A, kK =0,...,P, and
equally spaced radii r,, € [0,R], R >0, m =0,...,Q, are given, so we have N = (P + 1) (Q + 1)
spherical averages of f at hand. More explicitly, instead of Rf itself we have only the vector
¢n Rf € RY as data, where ¢y : C(R x [0,00)) — RY are the point evaluations

(N km = v(2zk,Tm), 0<E<P, 0<m<Q.

REMARK 6.1. The observation operator ¢, which contains all information about the measurement
geometry, is well defined only if the function to be evaluated is continuous. Since Rf € S! we have
to postulate that Rf is a continuous, but not necessarily integrable, function in order to apply ¢y
properly. Thus, we assume Rf € C(R x [0,00)) which is not a large restriction since R smooths of
order n/2 in Sobolev scales.

To recover f from ¢nyRf we apply the trapezoidal sum corresponding to the nodes {z;}, {r,} and
obtain

(6.2) = 2” e hohy erm 7( — Tm)Rf(zk,Tm)

P ly2| 7 [y2

for y € HM(R?), Qn = h, hy In,n (compare (2.8)).
Formula (6.2) was applied to get the reconstructions in Figures 6.1 and 6.2.

As mentioned in Section 5 we compute \Il by applying numerical integration to (6.1) choosing
convenient integration boundaries. Moreover we determine U, (z,7) on the square [0,15]> on a
equidistant mesh grid consisting of 128 x 128 grid points. Since the kernel is rapidly decreasing,
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the absolute value of ‘ihy outs_ide the square [0, 15]? is rather small, so we can exten_d the kernel by 0
there. Using the symmetry ¥, (z,r) = ¥,(—z,7) and linear interpolation we get ¥, (z,r) for every
ze€R r>0.

To check the performance of the above algorithm we implemented it to reconstruct several objects.
All reconstructions were computed for (y;,y2) € [0,7] x [1,8] using an equidistant mesh grid with
64 x 64 grid points. The objects are assumed to have their support in #!(R?). The data are given
on equally spaced points with A = =36, A = 36, P = 384, R = 50 and ) = 256. Please note,
that in all pictures the yo-axis is the horizontal one, whereas the yy-axis (the Sonar sources, circle
centers) is the vertical one.

1.) First we recovered the characteristic function of a circle centered at (4,4) with radius 1 and
density 2. Figure 6.1 shows the original circle as well as the approximate inverse Sy nén Rf. We
used the reconstruction kernel (6.1) with v = 0.06 which was precomputed for (z,7) € [0, 15]? using

128 x 128 equally distributed grid points.

Figure 6.1 Reconstruction of the characteristic function of a circle (left) and original

object function (right), v = 0.06.

2.) Second we applied the algorithm to the sum of the function in Figure 6.1 and the characteristic
function of a disk centered at (2,3) and of radius 1. The reconstruction as well as the original
object can be seen in Figure 6.2, the parameters are the same as in Figure 6.1.

These tests show that the method of approximate inverse works fine, and the reconstructions
are comparable to those in [7]. Some blurring in the reconstructions is probably caused by the
numerical calculation of the reconstruction kernel and truncation error. However, some ill-posedness
is inherent in the problem.
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Figure 6.2 Reconstruction of two circles fi and f» (left) and original object function
(right), v = 0.06.

y.

REMARK 6.2. Some of the fuzzy reconstruction boundaries in Figures 2 and 3 are intrinsic to
the problem. As shown in [17, 22] the object boundaries that are most difficult to reconstruct are
those not tangent to circles in the data set. This means that horizontal boundaries in Figures 6.1
and 6.2 will be intrinsically hardest to reconstruct since the set of circle centers is the vertical axis.
Since more-or-less vertical boundaries are tangent to spheres in the data set, the microlocal analysis
predicts they will be easiest to reconstruct. This is analogous to limited angle X-ray tomography in
which some boundaries are “invisible” in the data [23].

7. Conclusions. In this paper we extended the method of approximate inverse, a regulariza-

tion scheme for operators between Hilbert spaces to distribution spaces. We applied the method to
the inversion problem of the spherical Radon transform which appears in sonar as well as in radar.
This algorithm allows one to solve inverse problems for linear operators which are not bounded
mappings between Hilbert or Banach spaces.
We presented a representation for a reconstruction kernel U., in arbitrary dimensions (5.6). Unfortu-
nately in the three-dimensional case (n = 2) numerical integration to get ¥, is too time-consuming
and we are working on other ways to get the reconstruction kernel. In this case a modified inver-
sion formula presented by Klein [11] might be useful. This inversion formula could also be helpful
to obtain an analytic expression for the reconstruction kernel \if% which would also increase the
accuracy of the reconstructed solution. This and stability and error analysis (as for Hilbert Space
in [25]) will be part of future research.

Acknowledgements. The authors are indebted to Jens Klein, Aleksei Beltukov, and Alfred
Louis for very useful conversations. The authors are grateful to the referees and editors, in particular
Adel Faridani, for thoughtful comments that improved the article.

Appendix A. Proof of Theorem 4.1. Let M > 1. We recall the general construction of e,
given in Section 4. Let e, (z,y) = S¢e,(z) where

(A.1) &y(z) = ey (') ® e (wnt1)
(A.2) e#(x') =y el (2 /7), /R" el(a')ds' =1, €' e SERY),
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(A.3) e2(q) = — {F(%l) + F(q%l)} for F € So(R), /RF(t) dt = 1.

We will use several steps to show that e is an (EL(HMM), So(HMM))-mollifier. First, we will prove
(2.2) using Lemma A.1. Then, we will prove a distributional Fubini’s Theorem, Lemma A.2, and
finally, we will prove the convergence result (2.3) which concludes the proof of Theorem 4.1.

LEMMA A.l. Let vy > 0 be fized, e, be defined by (A.1)-(A.3), and ¢ € SL(R"L). Then, the
function (p,e,(-,y))s.xs. 5 a continuous function of polynomial growth for y € HM and is O for
y ¢ HM. Therefore (¢, e () sy@nt1)xsy®mnt1) € Se(R*T).

Proof. First, using the definition of e,, one proves the map y — e,(-,y) is a continuous map from
HM to Se(R™1). Therefore, (o, e, (-, y))sxs, is continuous for y € HM and is zero if not.

We simplify the problem by reducing the calculation to integrals of functions. By [4] there exists a
multi-index « € NBL'H and a continuous function P, of polynomial growth such that

(A.4) p=D"P,,

(0]
where o = (¢, ap41) and D* = 991 --- O

For y € HM, we obtain

or(Y) = (pre5 (9 xs, = (=1)° Py(x) Dyey(2,y) dx

Rn+l

1
49 =g [ [Rerlual # 4 a2+ ) +
..
+Pp(¥ lynt1l 2+ 4 Y [Yns1l 2011 = lyns1]) | D €} (2') D+ F (2 41) dzn 11 d2,

where we used the substitutions 2’ = (z' — ¢') /(v |yn+1]) and zp41 = (Zps1/|Ynt1] £ 1) /7, as well
as the symmetry of F'. Since P, is polynomially increasing, there exists a constant C, > 0 and a
k > 0 such that

(A.6) |Py(z)| < Cp (1+ ||2[)" as ||lz|| = 00, xR,
Using (A.6) and some simple estimates, we show
Py(ylyns1] 2 + 47 ynst] 2nst £ lymsa )| < Cp 2% (1497 [y * 1201%)" (1 + [ly*)" -
This allows us to estimate (A.5) as
s (W) < Cp2%ay (Y g DT L+ lylP)", yeHM
with ¢y == [en Jo(1 + 72 [yns1]? I2]?)" DY el (2') D+ F(z41) dzny1 dz' < oo which finishes the

proof.O]

Our next task is to prove a distributional Fubini’s theorem that will allow us to examine the pairing
(ey(z,-), B) to show the convergence result (2.3) in Definition 2.1.
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LEMMA A.2 (Distributional Fubini’s Theorem). Let~y > 0 be fized and e., be defined by (A.1)-(A.3).
Further assume that ¢ € SL(R" 1) and B € Se(HM). Then,

(A7) (05 q (- Y)) st (Rr+1)x S (RP+1)5 B) S1(RAA1) x So (M)
= (@, (eq (T, "), B) s (Rn+1) xS (HM)) SLRH1) x So(RPH1) -

Furthermore,
(A.8) By(x) = (ey (=, ')aﬁ)sg(RnH)xSe(HM) € Se(R™1).

Note that here, 3, is a function of z, and in section 2, f, is a function of y.

Proof. We reduce this to a Fubini’s theorem for functions. Since ¢ = D*P,, for a function P, with
polynomial growth by (A.4), we can again use (A.5) to write

(A.9) (@vs Bl st @nt1)xSe(1M) = /’HM /n /ng(ylayn+laxlaxn+l) dzpy1 dz’ dyn g1 dy,
where
Iy ' _ (=D —n—1-a| g(,/ P, (s
W Ynt1, 2 o) = 5 (Y [yn+1l) B Ynt1) Pp(a', xpy1) -
.(Do/el)( ' —y ) {(DO‘"‘HF) ($Tl+1 - |yn+1|> + (D™ F) (anrl + |yn+1|)} .
VYt Y |Yn1] Y |Yn+1]

Using (A.6), y € HM, the fact that F, 3, and e! are in S, as well as some basic inequalities (e.g.,
(1+[la—0b)%)~7 <27 (1+||b]|)7 (1 + [|a]|®)"?, a,b € R*, g € N) we may estimate

T3 s g, @'y )| < (Cpf2) (L4 [l])* (v/M) ™1 By yn)] -

-(1 + M)_ql {(1 + (41 = |yn+1|)2)_q2 + (1 + (Tny1 + |yn+1|)2)_‘12}
V2 Y Y2yio, Yy,

[2(1 + 7 yp gy F

Cp (L+]lz]*)" <l>n1a| AL+ IP)" (L + lynga )
T2 (L lylP)e \M (L4 [l 1%) (1 + |en i [?)o

for arbitrary qi, g2, g3 € N.

We see for sufficiently large g1, g2, g3, that the integrand in (A.9) is bounded by an integrable
function in (z,y) € R*+1 x HM.

This allows us to switch the order of integration in (A.9). Since the integral in this switched version
is smooth with uniformly integrable derivatives in y € HM for = in any compact set, we can pull
the D® out of the inner integral. Finally, we use the definition of derivative on S, to prove (A.7).

To show (A.8), we let @ € Ny be an arbitrary multi-index. We will prove D3, decreases rapidly.
We bring the D® inside the integral for 3, and use estimates as above and we find a constant ¢, > 0
that

DBy ()] <& A+1Y 1™ L +yn) ™, (¥ ynt1) ERTT

for arbitrary numbers qi, g2 € N since 8 € Se(HM) and v is fixed. Now, using similar arguments
as for the bound on |I}}|, we prove assertion (A.8).0
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The final key is the following important convergence result.

LEMMA A.3. Let e, be defined by (A.1)-(A.3), B € Se(HMM), and let « € Ny be a multi-index.
Assume that B, is defined by (A.8). Then, D*B, — D®B(z) pointwise in HMM  and DB, is
uniformly bounded in (x,v) € HMM x (0,1).

Proof. We first use the symmetry of F' to write

— 1 1 $I_y, Tnt1 /
w10) = [ (SR ((2 1) ) 60 g d

HM’M X HM’M

We assume (z,y) €

(A11) d =@ =) gmabn, = (P -1)/

n+1

and then we use the change of variables,

and we have the following simple but important estimate

1 < 1 < 1 < M
M? M|z 41] |Yzny1 + 1| |Zn+1]

(A.12) < M?.

Then, the integral in (A.10) becomes

(A.13) (z —// e' (') F(zns1) -
m 1 |y H1|<M?

B ($/ _ V|En41] 2, Tn41 ) 1
Yzny1 + 1 vz + 1/ [yzpgn + 1|

dz'dz, 1

where the limits of integration in (A.13) are determined because 1/M < |y,4+1| < M and supp
B CR" x[1/M,M].
In order to subtract B(x) within the integral (A.13), we define an auxiliary function that simplifies

the calculation:

1
bx:ﬁx/ el (2) F(zpt1) ————— dzpy1 -
’Y( ) ( ) Vlyms1 1| <M2 ( ) (n+ ) |’YZn+1+1| n+

We must calculate D[y — b,], and show this difference goes to zero as v — 0. To do this, we take
the derivative inside the integral:

D5, () = byt = [ [ () Flznin) -
n J1/|yen1+1<M?
1
A.14 D% 1 V|Tn1l 4 Ln+1 . }7(1 "d ‘
( ) v {5(:5 |’an+1 + 1| ¢ YZn+1 + 1) 5(*’1;) |’7zn+1 + 1| @ @n

To show that (A.14) converges to zero, we must do two things:

1. We need to show for each z € HM M that the integrand in (A.14) is bounded by an integrable
function uniformly in v € (0, 1).
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2. We need to show D®f, is bounded by an integrable function, uniformly in y € (0, 1).

To show 1., we need to examine the derived integrand. The Dg,, terms are evaluated on § in both
terms of (A.14) and they don’t cause a problem, so we will evaluate them first. This gives an
expression

D (x/ _ Y |Zn41] Z, Tn+1 ) (e =
x{ﬁ |V zn1 + 1] Ty zpg1 + 1 pla)

' Tnt1] Tpt1
A15 Den+1(DY, (x’— Yl 2, ) — D%B(x).

However, because z,1 appears in both coordinates of the first 5 in (A.15), some of the derivatives
in Dz t! fall on the first coordinate. We will let ' = (81, ...,d,) denote a multi-index in Nj. An
explicit calculation shows, that the integrand in (A.14) can be written for z,41 > 1/M > 0 as a
sum of terms in which some derivatives in x,; fall on the first coordinates of 4 and then the term
in which all derivatives fall on the last coordinate, the integrand in (A.14) becomes:

(') F(2n11) [ 5 ( Al (=2)"

v 201 + 1] 0< |6/ [<amss 1Y 21 + U191 (y 241 + 1)antr=10]
FY 7 ’ T 1| , i1
A.16 ,(aan+l [07] D5,+a ) (:L‘, . 'Y| n+ 2, )

- Y|zl o Tap
—i—{ Zpy1 + 1)7 %+ (D” (:1:' — z, ) — D%B(x }] .
(')/ n+1 ) ( IB) |')/Zn+1 + 1| Y Znit + 1 IB( )

A similar formula is obtained for z,1; < —1/M < 0.

Because 1/|yzp11 + 1| < M2, it can be seen from (A.16) that the integrand of (A.14) can be
bounded by an integrable function uniformly in v € (0,1). Hence, an application of Lebesgue’s
Dominated Convergence Theorem shows D*(3, — b,) — 0 pointwise for z € H*M. This is valid
for two reasons: the sum in (A.16) is a factor of  times a bounded function, and the difference
in braces goes to zero as v — 0. Since (by — 8) — 0 in Se(HM"M) we thus have D*(8, — 8) — 0
pointwise in HM-M

A similar boundedness argument shows that D®f3, is bounded by an integrable function uniformly
invy e (0,1).0

At last, we finish the proof of Theorem 4.1. Recall that in the statement of this theorem, ¢ has
compact support in HMM and ¢ = D*P, for a function P, of polynomial growth (A.4). Thus,
there are compactly supported functions 11 (z') and 1) (zy41) such that 1 is one on [-M, —1/M|U
[1/M, M] and supported in [-2M,—1/2M] U [1/2M,2M] and 9(z) = 91(z")p2(2n11) is one on a
neighborhood of supp ¢. Then, ¢ = D*P,.

By Lemma A.2,

(@rs B) st ®r+1)xSe(mMM) = (@, By ) sL(HMM) xS (RP+1)
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(A.17) = (=1)l Py (z) D*{4h(x) B, ()} dz .

fHM,M

By the product rule for derivatives and the convergence result Lemma A.3, we see that the derivative
in (A.17) converges pointwise on any compact set in z, and it is uniformly bounded. Therefore, we
can use Lebesgue’s Dominated Convergence Theorem again to finish the proof of Theorem 4.1.
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