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Abstract

Matrix-valued data sets arise in a number of applications including
diffusion tensor magnetic resonance imaging (DT-MRI) and physical
measurements of anisotropic behaviour. Consequently, there arises the
need to filter and segment such tensor fields. In order to detect edge-
like structures in tensor fields, we first generalise Di Zenzo’s concept
of a structure tensor for vector-valued images to tensor-valued data.
This structure tensor allows us to extend scalar-valued mean curvature
motion and self-snakes to the tensor setting. We present both two-
dimensional and three-dimensional formulations, and we prove that
these filters maintain positive semidefiniteness if the initial matrix
data are positive semidefinite. We give an interpretation of tenso-
rial mean curvature motion as a process for which the corresponding
curve evolution of each generalised level line is the gradient descent
of its total length. Moreover, we propose a geodesic active contour
model for segmenting tensor fields and interpret it as a minimiser of a
suitable energy functional with a metric induced by the tensor image.
Since tensorial active contours incorporate information from all chan-
nels, they give a contour representation that is highly robust under
noise. Experiments on three-dimensional DT-MRI data and an indefi-
nite tensor field from fluid dynamics show that the proposed methods
inherit the essential properties of their scalar-valued counterparts.

1 Introduction

Curvature-based partial differential equations (PDEs) play an important role
in image processing and computer vision. They include a number of inter-
esting PDEs such as mean curvature motion [1], self-snakes [43] and geodesic
active contours [8, 25]. Often it is helpful to study their behaviour by in-
vestigating the evolutions of the corresponding level lines. On one hand this
links these techniques to level set methods [14, 35, 32, 33, 46], on the other
hand one may interpret these evolutions as steepest descent strategies for
minimising interesting energy functionals.
While curvature-based PDEs have been extended in various ways to higher
dimensions, surfaces and vector-valued data (see e.g. [27, 33, 43], there are
hardly any attempts so far to use them for processing tensor-valued data
sets. However, such data sets are becoming increasingly important for three
reasons:

1. Novel medical imaging techniques such as diffusion tensor magnetic
resonance imaging (DT-MRI) have been introduced [38]. DT-MRI is a
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3-D imaging method that yields a diffusion tensor in each voxel. This
diffusion tensor describes the diffusive behaviour of water molecules in
the tissue. It can be represented by a positive semidefinite 3×3 matrix
in each voxel.

2. Tensors have shown their use as a general tool in image analysis, seg-
mentation and grouping [19, 31]. This also includes widespread appli-
cations of the so-called structure tensor in fields ranging from motion
analysis to texture segmentation; see e.g. [2, 41].

3. A number of scientific applications require the visualisation and pro-
cessing of tensor fields [47]. The tensor concept is a common physical
description of anisotropic behaviour, especially in solid mechanics and
civil engineering (e.g. stress-strain relationships, inertia tensors, diffu-
sion tensors, permittivity tensors).

The search for good smoothing techniques for DT-MRI data and related
tensor fields is a very recent research area. Several authors have addressed
this problem by smoothing derived expressions such as the eigenvalues and
eigenvectors of the diffusion tensor [12, 39, 48] or rotationally invariant
scalar-valued expressions [36, 57]. Also for fiber tracking applications, most
techniques work on scalar- or vector-valued data [6, 50]. Some image pro-
cessing methods that work directly on the tensor components use linear
[55] or nonlinear [22] techniques that filter all channels independently, thus
performing scalar-valued filtering again. Nonlinear variational methods for
matrix-valued filtering with channel coupling have been proposed both in the
isotropic [48] and in the anisotropic setting [53]. Related nonlinear diffusion
methods for tensor-valued data have led to the notion of a nonlinear structure
tensor [53] that has been used for optic flow estimation [4], texture discrim-
ination and tracking [3]. Recently also tensorial generalisations of median
filtering [54], morphological methods [5], and Mumford–Shah segmentations
[51] have been studied. We are, however, not aware of any attempts to
generalise curvature-based PDEs to the tensor setting.
The goal of the present paper is to introduce three curvature-based PDEs for
analysing and processing two- and three-dimensional tensor fields. They can
be regarded as tensor-valued extensions of mean curvature motion, self-snakes
and geodesic active contours. The key ingredient for this generalisation is
the use of a structure tensor for matrix-valued data.
Our paper is organised as follows. In Section 2 we introduce the generalised
structure tensor for matrix fields. It is then used in Section 3 for designing a
2-D mean curvature type evolution of tensor-valued data. In this section we
also derive a variational formulation of tensorial mean curvature motion that
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is in accordance with its scalar counterpart. Modifying tensor-valued mean
curvature motion by a suitable edge stopping function leads us to tensor-
valued self-snakes. They are discussed in Section 4. In Section 5, we use the
self-snake model in order to derive geodesic active contour models for tensor
fields. Three-dimensional extensions of mean curvature motion, self snakes
and geodesic active contours are presented in Section 6, where we also prove
that tensorial mean curvature motion preserves positive semidefiniteness of
the input data. Algorithmic details are sketched in Section 7, and two- as
well as three-dimensional experiments are presented in Section 8. The paper
is concluded with a summary in Section 9.
A preliminary, shorter version of our paper has been presented at VLSM 2003
[16]. The present paper extends this work substantially: It derives three-
dimensional results, it presents interpretations in terms of energy functionals
that are minimised, and it shows additional experiments with indefinite ten-
sor fields from fluid dynamics.

2 Structure Analysis of Tensor-Valued Data

In this section we generalise the concept of an image gradient to the tensor-
valued setting. This may be regarded as a tensor extension of Di Zenzo’s and
Cumani’s method for vector-valued data [15, 13].
Let us consider some 2 × 2 tensor image (fi,j(x, y)) where the indices (i, j)
specify the tensor channel. We would like to define an ”edge direction”
for such a matrix-valued function. In the case of some scalar-valued image
f(x, y), we would look for the direction v which is orthogonal to the gradient
of a Gaussian-smoothed version of f :

0 = v>∇fσ (1)

where fσ := Kσ ∗ f and Kσ denotes a Gaussian with standard deviation
σ. Gaussian convolution makes the structure detection more robust against
noise. The parameter σ is called noise scale.
In the general tensor-valued case, we cannot expect that all tensor channels
yield the same edge direction. Therefore we proceed as follows. Let fσ,i,j be
a Gaussian-smoothed version of fi,j. Then we define the edge direction as
the unit vector v that minimises

E(v) :=
2

∑

i=1

2
∑

j=1

(v>∇fσ,i,j)
2

= v>
(

2
∑

i=1

2
∑

j=1

∇fσ,i,j∇f>σ,i,j

)

v. (2)
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This quadratic form is minimised, when v is eigenvector to the smallest eigen-
value of the structure tensor

J(∇fσ) :=
2

∑

i=1

2
∑

j=1

∇fσ,i,j∇f>σ,i,j. (3)

The trace of this matrix can be regarded as a tensor-valued generalisation of
the squared gradient magnitude:

trJ(∇fσ) =

2
∑

i=1

2
∑

j=1

|∇fσ,i,j|
2. (4)

The matrix J(∇fσ) will enable us to generalise a number of curvature-based
PDE methods to the tensor-valued setting. Indeed, extending the ideas in
[11] to the matrix-valued case, one my even define level lines of matrix-valued
images as the integral curves of the eigenvector directions to the smallest
eigenvalue of J(∇fσ). Such an interpretation allows to relate the subsequent
tensor-based methods to level set strategies.

3 Mean Curvature Motion

In this section we introduce a tensor-valued mean curvature motion. To
this end, we first have to sketch some basic ideas behind scalar-valued mean
curvature motion.
We start with the observation that the Laplacian of an isotropic linear diffu-
sion model may be decomposed into two orthogonal directions ξ ⊥ ∇u and
η ‖ ∇u:

∂tu = ∂xxu + ∂yyu (5)

= ∂ξξu + ∂ηηu (6)

where ∂ξξu describes smoothing parallel to edges and ∂ηηu smoothes perpen-
dicular to edges. Mean curvature motion (MCM) uses an anisotropic variant
of this smoothing process by permitting only smoothing along the level lines:

∂tu = ∂ξξu (7)

This can be rewritten as

∂tu = |∇u| div

(

∇u

|∇u|

)

. (8)
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Alvarez et al. have used this evolution equation for denoising highly de-
graded images [1], and Kimia and Siddiqi have studied its scale-space prop-
erties [26]. It is well-known from the mathematical literature [17, 20, 23]
that under MCM convex level lines remain convex, nonconvex ones become
convex, and in finite time they vanish by shrinking to circular points (a point
with a circle as limiting shape). Interestingly, mean curvature motion plays
a similar role for morphology as linear diffusion does in the context of linear
averaging. While iterated and suitably scaled convolutions with smoothing
masks approximate linear diffusion filtering, it has been shown that iterated
classic morphological operators such as median filtering are approximating
MCM [21]. Similar approximation results can also be established in the
vector-valued setting [9].
If we want to use a MCM-like evolution for processing tensor-valued data
(fi,j), it is natural to replace the second directional derivative ∂ξξu in (7) by
∂vvu, where v is the eigenvector to the smallest eigenvalue of the structure
tensor J(∇u). This leads us to the evolution

∂tui,j = ∂vvui,j, (9)

ui,j(x, y, 0) = fi,j(x, y) (10)

for all tensor channels (i, j). Note that this process synchronises the smooth-
ing direction in all channels. It may be regarded as a tensor-valued general-
isation of the vector-valued mean curvature motion proposed by Chambolle
[10] and its modifications by Sapiro and Ringach [44]. The synchronisation
of channel smoothing is also a frequently used strategy in vector-valued dif-
fusion filtering [18, 52, 29, 49].

Variational Formulation. It is well-known (see e.g. [43]) that MCM for
scalar-valued images admits a variational formulation: If C is a closed level
set curve of u, then L(C) :=

∮

C

ds with the Euclidean metric ds2 = dx2 + dy2

gives the Euclidean length of C. MCM then turns out to be a gradient
descent for L(C).
In order to formulate a similar statement in the tensor-valued case, two
obstacles have to be overcome. Both result from the fact that the range of
the image values is now of higher dimension than the image domain.
First, there are in general no level lines, i.e. lines in the image domain along
which the image value is constant. However, in [11] Chung and Sapiro have
introduced a concept of generalised level lines for vector-valued images which
can easily be transferred to our tensor-valued setting. They define level lines
as lines of minimal change of the image value. Each regular point of the
image is traversed by one and only one level line, the direction of which is
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given by the eigenvector for the smallest eigenvalue of the structure tensor
J(∇u). The so defined level lines share essential properties with level lines for
scalar-valued functions. Most important, regular level lines are closed curves
and have no crossings. We note that this concept is in perfect harmony with
eq. (9) because it allows to describe MCM as smoothing along level lines,
exactly like in the scalar case.
Second, even with a concept of level lines, it is not obvious how a curve
evolution should correspond to a given image evolution. In general, the
particular tensor values which are present in the image along a certain curve
C at some time t will not be found in the image at another time t. A first idea
that follows the spirit of the level-line concept introduced above is that the
image (tensor) values of curve points moving with the curve should change
as little as possible in time. To this end, the curve evolution C(s, t) should
be chosen such as to minimise ‖∂tu(C(t))‖. Slightly modifying this idea, we
consider the normal curve evolution C = C(s, t) for which the expression

‖∂tu(C(s, t))‖2 − ‖∂tC(s, t)‖2 ‖∂su(C(s, t))‖2 +
1

2
∂t ‖∂su(C(s, t))‖2 (11)

becomes minimal where s is the arc-length parameter of C. Note that the
second and third members of the sum tie the temporal constancy requirement
ruling the curve evolution to the spatial constancy requirement defining level
lines. The second member relaxes the temporal constancy at curve segments
where the deviation from spatial constancy is high while the third member
penalises or rewards deterioration or improvement of the spatial constancy
in time. For a conventional level line evolution, with perfect spatial and
temporal constancy, both summands vanish.
With these ingredients, the MCM evolution (9) is characterised as the image
evolution for which the corresponding curve evolution of each level lines is
the gradient descent for the total length of this level line.
To see this, we remark first that the curvature of a level line of the tensor-
valued image u in the point (x, y) equals

κ(x, y) =

∑

i,j

∂vvui,j ∂zui,j +
∑

i,j

∂vzui,j ∂vui,j

∑

i,j

(∂zui,j)2 −
∑

i,j

(∂vui,j)2
(12)

where v and z are tangential and normal unit vectors for the level line, i.e.
eigenvectors for the smaller and larger eigenvalues of J(∇u). The curvature
flow for the level line C traversing (x, y) which is known (see e.g. [27]) to be
the gradient descent flow for the Euclidean length of C, is exactly Ct = κ · z.
Assume now we have a tensor-valued image evolution ui,j = ui,j(x, y, t) with
i, j ∈ {1, 2}. Assume again that a curve C with tangential vector v and

6



normal vector z traverses through (x, y). Then the normal flow of C that
minimises (11) is given by Ct = τz where τ satisfies

∂τ

(

∑

i,j

(∂zui,jτ + ∂tui,j)
2 − τ 2

∑

i,j

(∂vui,j)
2 +

1

2
τ∂z(∂vui,j)

2

)

= 0 (13)

or

τ
∑

i,j

(∂zui,j)
2 +

∑

i,j

∂zui,j∂tui,j − τ
∑

i,j

(∂vui,j)
2 +

∑

i,j

(∂vui,j∂vzui,j) = 0. (14)

Obviously τ = κ satisfies the last equation if and only if ut = uvv, i.e. if u
evolves according to the MCM equation (9).

4 Self-Snakes

In [42], Sapiro has proposed a specific variant of MCM that is well-suited
for image enhancement. This process which he names self-snakes introduces
an edge-stopping function into mean curvature motion in order to prevent
further shrinkage of the level lines once they have reached important im-
age edges. In the scalar-valued setting, a self-snake u(x, y, t) of some image
f(x, y) is generated by the evolution process

∂tu = |∇u| div

(

g(|∇u|2)
∇u

|∇u|

)

, (15)

u(x, y, 0) = f(x, y), (16)

where g is a decreasing function such as the Perona-Malik diffusivity [37]

g(|∇u|2) :=
1

1 + |∇u|2/λ2
. (17)

In order to make self-snakes more robust under noise it is common to replace
g(|∇u|2) by its Gaussian-regularised variant g(|∇uσ|

2). Self-snakes have been
advocated as alternatives to nonlinear diffusion filters [56], they can be used
for vector-valued images [42], and related processes have also been proposed
for filtering 3-D images [40].
Using the product rule of differentiation, we may rewrite Equation (15) as

∂tu = g(|∇uσ|
2) ∂ξξu + ∇>(g(|∇uσ|

2))∇u. (18)

This formulation suggests a straightforward generalisation to the tensor-
valued setting. All we have to do is to replace |∇uσ|

2 by trJ(∇uσ), and
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∂ξξ by ∂vv where v is the eigenvector to the smallest eigenvalue of J(∇u).
This leads us to the following tensor-valued evolution:

∂tui,j = g(trJ(∇uσ)) ∂vvui,j + ∇>(g(trJ(∇uσ)))∇ui,j, (19)

ui,j(x, y, 0) = fi,j(x, y). (20)

We observe that the main difference to tensor-valued MCM consists of the
additional term ∇>(g(trJ(∇uσ)))∇ui,j. It can be regarded as a shock filter
[28, 34] that is responsible for the edge-enhancing properties of self-snakes.

5 Active Contour Models

Active contours [24] play an important role in interactive image segmentation,
in particular for medical applications. The underlying idea is that the user
specifies an initial guess of an interesting contour (organ, tumour, ...). Then
this contour is moved by image-driven forces to the edges of the object in
question.
So-called geodesic active contour models [8, 25] achieve this by applying a
specific kind of level set ideas. They may be regarded as extensions of the
implicit snake models in [7, 30]. In its simplest form, a geodesic active contour
model consists of the following steps. One embeds the user-specified initial
curve C0(s) as a zero level curve into a function f(x, y), for instance by using
the distance transformation. Then f is evolved under a PDE which includes
knowledge about the original image h:

∂tu = |∇u| div

(

g(|∇hσ|
2)

∇u

|∇u|

)

, (21)

u(x, y, 0) = f(x, y), (22)

where g inhibits evolution at edges of f . One may choose decreasing functions
such as the Perona–Malik diffusivity (17). Experiments indicate that, in
general, (21) will have nontrivial steady states. The evolution is stopped
at some time T , when the process does hardly alter anymore, and the final
contour C is extracted as the zero level curve of u(x, T ).
To extend this idea to tensor valued data hi,j, we propose to use tr(J(∇hσ))
as argument of the stopping function g.

∂tu = |∇u| div

(

g(trJ(∇hσ))
∇u

|∇u|

)

. (23)

Note that, in contrast to the processes in the previous section, this equation
is still scalar-valued, since the goal is to find a contour that segments all
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channels simultaneously. The active contour evolution for this process may
be rewritten as

∂tu = g(trJ(∇hσ)) ∂ξξu + ∇>(g(trJ(∇hσ)))∇u, (24)

u(x, y, 0) = f(x, y). (25)

Since a tensor-valued image involves more channels than a scalar-valued one,
we can expect that this additional information stabilises the process when
noise is present. Our experiments in Section 7 will confirm this expectation.
The geodesic active contour model also allows a description in terms of a
variational problem. Since u is scalar-valued, the transfer from the case of
scalar images works straightforward.
We equip the image domain with the metric defined by

ds2 = g(tr(∇hσ)) (dx2 + dy2) (26)

where dx2 + dy2 is the Euclidean metric. The length of a closed contour C
w.r.t. this metric reads

L(C) =

∮

C

ds =

∮

C

g(tr(∇hσ)) (dx2 + dy2)1/2. (27)

Then the active contour evolution is a gradient descent for L(C) which con-
verges to a contour of minimal length, i.e. a geodesic in the metric ds. For
scalar-valued images this has been proven in [43]. Since the proof does not
rely on any property of g specific to scalar-valued images, it transfers verba-
tim to the tensor-valued setting.

6 Images with 3 × 3-Tensors

All previous discussions are based on tensor fields with 2 × 2 matrices over
a two-dimensional image domain. However, many applications such as DT-
MRI involve 3 × 3 tensor fields over a three-dimensional image domain. Let
us now investigate how our results can be transferred to this situation.

Structure Tensor. The notion of structure tensor defined in (3) can be
extended without any difficulties to the case of 3 × 3 tensor images:

J(∇fσ) :=

3
∑

i=1

3
∑

j=1

∇fσ,i,j∇f>σ,i,j (28)
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where f = f(x, y, z) and ∇ = (∂x, ∂y, ∂z)
>. Again, the symmetric matrix

J(∇fσ) will play a key role in the generalisation of MCM, self-snakes and
active contours to 3× 3 tensor data. We briefly sketch the adjustments that
have to be made.

Mean Curvature Motion. In contrast to the 2×2 tensor case, we consider
the two eigenvectors v, w corresponding to the two smallest eigenvalues of
J(∇fσ). They determine the level surface parallel to which smoothing is
allowed in a MCM-like process for 3×3 tensor data. The governing evolution
equation for MCM reads then as

∂tui,j = ∂vvui,j + ∂wwui,j, (29)

ui,j(x, y, z, 0) = fi,j(x, y, z) (30)

for the tensor channels (i, j) with i, j = 1, 2, 3.

Preservation of Positive Semidefiniteness. A number of tensor fields
such as DT-MR images are positive semidefinite. Hence it would be desirable
that an image processing method does not destroy this property. Let us now
present a proof that twice differentiable solutions of MCM on the unbounded
domain IR3×]0, +∞[ do preserve the positive semidefiniteness of the initial
data. Under some additional technicalities one can expect that the reasoning
below can also be extended to more general solution concepts such as viscosity
solutions.
The tensor field U(x, y, z, t) = (ui,j(x, y, z, t)) satisfying the evolution equa-
tion (29) is associated with the scalar-valued function representing the small-
est eigenvalue λmin(x, y, z, t) of the matrix U(x, y, z, t) at the point (x, y, z, t),
and the well-known Rayleigh quotient

ud(x, y, z, t) = d>U(x, y, z, t) d , (31)

where d ∈ IR3 with ‖d‖ = 1. Let (x0, y0, z0, t0) be a local minimum of the
function λmin. Due to the properties of the Rayleigh quotient we may choose
a suitable eigenvector d to obtain

ud(x0, y0, z0, t0) = λmin(x0, y0, z0, t0). (32)

We assumed in equation (29) that v, w ∈ IR3 are the normalised eigenvectors
of the structure tensor J(∇u). Let us now consider the MCM evolution in the
minimum point (x0, y0, z0, t0). The orthogonal vectors v and w are tangential
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to the iso-surfaces of the tensor field. Due to the linearity of the differential
operators involved, ud satisfies

(ud)t = (ud)vv + (ud)ww for any d ∈ IR3. (33)

A minimum is always a point of convexity, which implies for twice differen-
tiable functions w that its Hessian Hess(w(x0, y0, t0)) is positive semidefinite.
Hence in view of (32),(33) we have

∂tλmin(x0, y0, z0, t0) = ∂vvλmin(x0, y0, z0, t0)

+ ∂wwλmin(x0, y0, z0, t0)

= v>Hess(λmin(x0, y0, z0, t0)) v

+ w>Hess(λmin(x0, y0, z0, t0)) w

≥ 0 (34)

since v and w represent the directions spanning the tangential plane to the
iso-surface of the corresponding tensor field at the point (x0, y0, z0, t0). In
other words: At a minimum point the smallest eigenvalue λmin of the matrix
in that point is increasing in time. This in turn implies preservation of
positivity of the smallest eigenvalue. Hence the positive semidefiniteness of
the initial tensor field is maintained.
It is evident that a corresponding proof is also valid in the 2× 2 case. It can
be found in [16].

Self-Snakes. The next curvature-based method to be extended to 3 × 3
tensor data is the self-snake PDE. Proceeding as in the 2× 2 tensor case we
obtain that its evolution is governed by the equation

∂tui,j = g(trJ(∇uσ)) ∂vvui,j

+ g(trJ(∇uσ)) ∂wwui,j

+ ∇>(g(trJ(∇uσ)))∇ui,j, (35)

ui,j(x, y, z, 0) = fi,j(x, y, z). (36)

As in the 2 × 2-tensor case the shock term ∇>(g(trJ(∇uσ)))∇ui,j accounts
for the edge-enhancing properties of this MCM variant.
With only minor modifications, it is possible to extend the semidefiniteness
preservation proof for tensor-valued MCM also to the case of tensor-valued
self-snakes. Since it does not provide additional insights, we do not present
it here.
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Active Contours. Finally, the geodesic active contour model carries over
to the 3 × 3 setting via the scalar-valued equation

∂tu = g(trJ(∇hσ)) ∂vvu

+ g(trJ(∇hσ)) ∂wwu

+ ∇>(g(trJ(∇hσ)))∇u, (37)

u(x, y, z, 0) = f(x, y, z). (38)

The evolving contour segments all 9 channels simultaneously making the
process more noise resistant.

7 Numerical Implementation

Our implementation is based on explicit finite difference schemes for the
two-dimensional evolutions (9), (19) and (24), as well as for their three-
dimensional counterparts (29), (35) and (37). For computing the structure
tensor of a matrix field, we replace the derivatives by central differences.
Gaussian convolution is performed in the spatial domain with a sampled
renormalised Gaussian Kσ that is truncated at ±3σ. Its symmetry and
separability are used to accelerate the convolution. In the 2-D case the
structure tensor is a 2 × 2 matrix, for which we compute its eigenvectors
analytically. In the 3-D setting, the Jacobi method is used as a simple and
robust strategy to obtain the eigenvectors numerically; see e.g. [45] for a
detailed description.
The time derivative in the evolution PDEs is replaced by a forward difference.
The discretisations of second order directional derivatives are based on the
formulas

∂vvu = v>Hess(u) v, (39)

∂wwu = w>Hess(u) w, (40)

where we approximate the second order spatial derivatives within the Hessian
by central differences.
The shock terms of type ∇>g∇u involve first order spatial derivatives. In
this case we use central differences for approximating ∇g and upwind dis-
cretisations for ∇u. For more details on upwind schemes for level set ideas
we refer to [35].
It is difficult to establish strict stability bounds for discretisations of nonlinear
curvature-based PDEs. In our experiments with explicit schemes we have
observed stable behaviour for

τ

(

1

h2

1

+
1

h2

2

)

≤
1

2
(41)
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in the 2-D case, and for

τ

(

1

h2

1

+
1

h2

2

+
1

h2

3

)

≤
1

2
(42)

in the 3-D case. Here τ denotes the time step size, and h1, h2 and h3 are the
grid sizes in x, y and z direction. These are the same stability restrictions as
in the linear diffusion case with ∂tu = ∆u.

8 Experiments

Figure 1: One slice of the 3-D DT-MRI data set which is used in the experi-
ments. Left: Matrices represented by ellipsoids. Directions and lengths of the
principle axes equal the eigenvectors and eigenvalues of the matrix. Right:
Matrix components represented by grey-values. The 9 sub-images, each cor-
responding to one matrix entry, are arranged like the matrix entries. Because
of the symmetry of the matrices, the three upper right sub-images appear
again in the lower left part. Since all matrices are positive semidefinite, no
negative values (darker than middle grey) appear in the main diagonal tiles.

The first test image we used for our experiments was obtained from a DT-
MRI data set of a human brain. Its voxel size is 1.8mm × 1.8mm × 3mm.
For visualisation, we extract a 2-D section along the x−y plane from the 3-D
dataset. Figure 1 shows the 3 × 3 matrices from the selected 2-D section in
two different ways: tensors as ellipsoids and a tile view. Note that while we
are only showing the results in 2-D, data from all 3 dimensions have been used
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Figure 2: Edge detection with a structure tensor for matrix-valued data.
(a) Left: Original 2-D tensor field extracted from the 3-D DT-MRI data
set by using the channels (1, 1), (1, 2), (2, 1) and (2, 2). Each channel is of
size 128 × 128. The channels (1, 2) and (2, 1) are identical for symmetry
reasons. (b) Middle: Same image with 30 % noise. (c) Top right: Trace of
the structure tensor of the original data. (σ = 1.8). (d) Bottom right: Trace
of the structure tensor from the noisy image (σ = 5.4).

to compute these results. The tiled 2-D image consists of nine sub-images
which show the nine tensor channels of a 3 × 3 matrix. Each channel has a
resolution of 128 × 128 pixels. The top right off-diagonal channels and the
bottom left off-diagonal channels are identical since the matrix is symmetric.
To test the robustness under noise we have replaced 30 % of all data by
noise matrices. Here, the eigenvector directions of the noise matrices are
uniformly distributed on the unit sphere while the eigenvalues are uniformly
distributed in the range which covers the data values themselves. We applied
our methods to both the original image and the noisy image.
Figure 2 demonstrates the use of trJ(∇fσ) for detecting edges in tensor-
valued images. We observe that this method gives good results for the original
data set. When increasing the noise scale σ, it is also possible to handle
situations where massive noise is present.
Our second test image is a 2-D data set from fluid dynamics. It consists of
32 × 32 measurements. In each of these points a 2 × 2 matrix is given that
describes the rate-of-deformation. As opposed to the first example, such ma-
trices are indefinite, i.e. they have positive as well as negative eigenvalues.
Figure 3 shows again the two alternative visualisations of the data by ellip-
soids and in tiles. However, in this case the ellipsoids have to be understood
as deformations of equally sized circles by directed contraction (for negative
eigenvalues) or expansion (for positive eigenvalues).
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Figure 3: An image of size 32×32 containing indefinite 2×2 matrices. They
describe the rate-of-deformation tensor in a fluid dynamics experiment. Left:
Each matrix A is represented by an ellipse; directions and lengths of the
principle axes equal eigenvectors and eigenvalues of I + 0.5 A, where I is the
unit matrix. Therefore a zero matrix is represented by a circle of radius 1.
Right: Matrix components represented by grey-values. Again the symmetry
implies equality between the upper right and lower left sub-image. However,
the main diagonals here contain values of either sign.

15



Figure 4: Tensor-valued 3-D mean curvature motion. Top row, left to right:
One 128×128 slice from the original DT-MRI image, at time t = 34, at time
t = 340. Bottom row: Same experiment with 30 % noise.
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Figure 5: Tensor-valued 2D mean curvature motion. Top, left to right: The
32× 32 fluid dynamics tensor image, its filtered version at time t = 6.25 and
at time t = 12.5. Bottom: The same tensor fields shown as tiled grey-value
images.
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Figure 6: Tensor-valued 3-D self-snakes (σ = 0.5, λ = 100). Top row, left to
right: One 128 × 128 slice from the original tensor image, at time t = 136,
at time t = 680. Bottom row: Same experiment with 30 % noise.
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Figure 7: Tensor-valued 2D self-snakes. Top left: The 32×32 fluid dynamics
tensor image. Top right: Filtered with t = 25, λ = 0.05, σ = 0.5. Bottom:
Tiled grey-value view.
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Figure 8: Top left: Detail from the 3-D DT-MRI brain dataset visualised by
ellipsoids. The detail is taken from the slice shown in figures 4 and 6 and
corresponds to the lower right part of the ventricle there. Top right: Same
with 30 % of all matrices replaced by noise. Bottom left: The same image
portion after applying 3-D MCM to the noisy image, t = 34. Bottom right:
Same after self-snakes evolution, t = 136, σ = 0.5, λ = 100.
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Figure 9: Tensor-valued geodesic active contours (σ = 5.4, λ = 48.7). Top
row, left to right: Tensor image of size 128 × 128 including contour at time
t = 0; t = 3206.4; t = 32064; uncoupled active contours at time t = 32064.
Bottom row: Same experiments with 30 % noise.

In our next experiment we applied the tensor-valued mean curvature model
to the three-dimensional DT-MRI data set. As can be seen in the first
row of Figure 4, one experiences with scalar-valued mean curvature motion:
Convex shapes shrink towards spheres before they vanish in finite time. This
indicates that our method is a good extension to tensor-valued data. The
second row of Figure 4 shows the same algorithm applied to the noisy image.
As expected it possesses a high robustness to noise. Large evolution times
give nearly identical results for the original and the noisy images, only the
background in the noisy image turns lighter due to the noise.
Results of MCM evolution of the fluid dynamics tensor field are displayed
in Figure 5. We observe that tensor-valued MCM has a strong tendency
to simplify the streamlines. It may thus serve as an adequate scale-space
representation for these type of images.
The results for the self-snake algorithm for three-dimensional tensor images
are shown in Figures 6 and 7. They look similar to the three-dimensional
MCM results, but they offer better sharpness at edges due to the additional
shock term. It is also slowing down the evolution speed such that longer times
are required for a similar image simplification. In general, tensor-valued self-
snakes are preferable over tensorial MCM when one is interested in obtaining
segmentation-like results.
Another comparison of MCM and self-snakes is depicted in Figure 8. Here
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one can see a detail from the lower right part of the ventricle as shown in
Figure 1. The tensors are visualised as ellipsoids and coloured according to
the direction of their main axes. The shape is hardly detectable after applying
30 % of noise to the image. Evolving this image under MCM reveals this
structure again, but the edges have softened considerably and the shape has
shrunken in size. The self-snake method, on the other hand, shows the shape
very clearly, with sharp and well-located edges.
Finally, we applied our active contour model to a 2-D tensor data set. In
this case, we show a pure 2-D process. The 2 × 2 tensors consist exactly
of the (1,1), (1,2), (2,1), (2,2) entries of the brain DT-MRI tensors from
Figure 1. A 2-D version of the uniform noise described above was used to
generate the noisy image. The goal was to extract the contour of the human
brain shown on the original image. Figure 9 shows the temporal evolution
of the active contours. First one notices that the evolution is slower in the
noisy case. This is caused by the fact that noise creates large values in the
trace of the structure tensor. This in turn slows down the evolution. For
larger times, however, both results become very similar. This shows the high
noise robustness of our active contour model for tensor-valued data sets. We
contrast the result with the outcome of an uncoupled active contour model
in the right column of Figure 9 to illustrate the superiority of the proposed
channel coupling.

9 Summary and Conclusions

In this paper we have described how the scalar-valued PDE methods based
on mean curvature motion, self-snakes and geodesic active contour models
can be extended to tensor-valued data, both in the 2-D and the 3-D setting.
This extension has been derived for the PDE-based approach as well as for
its interpretation in terms of energy functionals. We have demonstrated that
evolutions under tensor-valued mean curvature motion or tensor-valued self-
snakes give positive semidefinite results for all positive semidefinite initial
tensor fields. Experiments on positive semidefinite DT-MRI data and indef-
inite tensor fields from fluid dynamics illustrate that the proposed tensor-
valued methods inherit characteristic properties of their scalar-valued coun-
terparts. However, by using tensor-valued input data, they robustness under
noise improves significantly. This is a consequence of the fact that all tensor
channels simultaneously contribute to the calculation of the structure tensor
that steers the process. As a result, curvature-driven PDEs appear even more
attractive in the tensor setting than in the scalar framework. We hope that
our paper serves as a starting point for investigating the numerous aspects
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and applications of this promising class of tensor-valued methods in more
detail.
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