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Abstract

In this paper we prove a lemma on the higher integrability of functions and discuss its
applications to the regularity theory of two-dimensional generalized Newtonian fluids.

Mathematics Subject Classification (2000): 76M30, 49N60, 35J50, 35Q30

1 Introduction

As a starting point, let us look at the following non-linear generalization of the classical Stokes
problem studied in [5]: given a bounded Lipschitz domain @ C R, n > 2, and a system of
volume forces g : 2 — R together with a boundary function ug: 92 — R, find a velocity field
v: = R" and a pressure function 7: 2 — R such that

—div{T(e(v))} +Vr=g in Q,
divo =0 on (), (1.1)
v = ug on Of.

Here T is the gradient of a potential f: S™*™ — R defined on the space of all symmetric matrices
of order n, which is assumed to be of class C2, and e(v) = (Dv+(Dv)")/2 denotes the symmetric
gradient of v. In [5] the first two authors consider the anisotropic (i.e. non-uniformly elliptic)
case, that is, the potential f satisfies

A1+ [e[)"2" |of> < D*f(e)(0,0) < AL+ [e2) "7 [o]? (1.2)

for all e, ¢ € S™*™ with positive constants A\, A and with exponents 1 < p < g < oc. As outlined
in [5], (1.1) is equivalent to a variational problem. Thus, from the point of view of regularity
theory, it is reasonable just to study the local minimizers u of the energy

nmzéﬂmmm

within the class
K = {u € W, 10 (% R") : divu = 0}

and to neglect the unproblematic volume forces g. A detailed discussion is given in Section 2 of
[5]; here we just recall the main results of this paper.

(i). If (1.2) holds with g < p(1 +2/n), then the local J-minimizers are partially of class C1*® in
the interior of 2.

(ii). Let n = 2 together with ¢ = 2. Then singular points can be excluded, i.e. the first
derivatives of local minimizers are Holder continuous in the interior of (2.

As it stands, the 2d-case suffers from one essential restriction on the data: if (1.2) holds with
g < 2, we way just replace g with ¢ := 2 on the right hand side of (1.2) and obtain the result
(ii). Of course, such a trivial replacement is not possible in the case ¢ > 2. It seems that the
argument in [5] does not work for this case (compare to the short discussion given in [5] at the
end of Section 6). The reason is that one of the main tools — the lemma of Frehse and Seregin
(see [13]) — does not apply to this case. In the paper at hand, we prove a new lemma, formulated
as Lemma 1.2 below, and with the help of this lemma we obtain

Theorem 1.1. Let n = 2. Suppose that f satisfies (1.2) with ¢ < min(2p,p + 2). Then any
local J-minimizer is of class C1®(€;R?) for any 0 < o < 1.



Let us remark that the condition ¢ < p + 2 is well known in the study of problems in the
calculus of variations with non-standard growth. The condition was first introduced in [7]. In
[4] it turned out to be the appropriate assumption to establish regularity results for bounded
solutions. A detailed discussion can be found in Chapter 5 of [4]. Moreover, let us remark that
if we assume ¢ < 2 (as in [5]), then we have min(2p,p + 2) = 2p.

In Section 4, we will further apply Lemma 1.2 to the regularity theory of the stationary flow
of generalized Newtonian fluids and give an extension (in the spirit of Theorem 1.1) of the 2d-
results from [3] where the convective term [Vo]v is included in the first line of (1.1). Moreover,
we reinvestigate two-dimensional electrorheological fluids discussed in [10] and [6] and remove
the restriction p(z) < 2 imposed in [6].

Now we formulate our lemma on the higher integrability of functions.

Lemma 1.2. Let d > 1,8 > 0 be two constants. With a slight abuse of notation, let f, g, h
now denote any non-negative functions in Q C R™ satisfying

feLL (), exp(Bg?) € LL.(), helLl. (D).

Suppose that there is a constant C > 0 such that

(][ fddx)agC fgdx+0(][ hddx>z (1.3)
B 2B 2B

holds for all balls B = B,(x) with 2B = Ba.(x) € 2. Then there is a real number ¢y =
co(n,d,C) > 0 such that if h%log®” (e + h) € Ll (Q), then the same is true for f. Moreover,
for all balls B as above we have

dq. cofB / < d d
f 06 (e iy ) do <o (£, owtoatyae) (f,rtae)

h
+c h¢logoP (e + 7) dz,
2B ||f||d,23

(1.4)

where ¢ = ¢(n,d, 5,C) > 0 and ||f||a2B = (fQdedm)l/d.

Let us give several comments on Lemma 1.2. First, if we assume that the function g in Lemma
1.2 is bounded, then (1.3) is the well-known (weak) reverse Holder’s inequality with a nonho-
mogeneous term involving h. The celebrated Gehring Lemma [14] then shows that the function
f actually enjoys higher integrability, f € Lﬁ;ge(Q) for some € > 0. We refer to the monographs
[15] and [19] for detailed discussions of Gehring’s lemma and its applications in analysis. Second,
our assumption on the function g is exponential integrability. In this case, we cannot expect the
same sort of higher integrability as we obtain from Gehring’s lemma. We merely can expect a
very slight degree of improved regularity. Precisely, Lemma 1.2 shows that the scale of improved
degree is logarithmic. Moreover, the lemma gives a precise analysis how the degree of improved
regularity depends on S, i.e. on the constant occurring in the exponential integrability condition
on g. The following example shows that Lemma, 1.2 just can be improved by finding the precise
value of ¢g. Let d = (n + 1)/n and let

1 1\ 7! 1
f4x) B (log — loglog —) (1 + log log —) ,

af || || ||

1 log log =
gl(z) = 2 (log —) S
|z| ) 1+ loglog Tl

bl



be defined on B,-(0). Then these functions satisfy all integrability assumptions in Lemma 1.2
and (1.3) holds with a constant C = C(n) > 0. It is easy to check that f4log®’(e+ f) € L!
with ¢y < 1, but not with ¢y > 1.

The idea for the proof of Lemma 1.2 originates in [11], where similar arguments are used for
the study of the regularity properties of mappings of finite distortion. Lemma 1.2 and Corollary
1.3 given below should be considered as higher integrability results in the framework of Orlicz
spaces. We remark that the nice paper [18] largely extends Gehring’s lemma to Orlicz spaces
but unfortunately our hypotheses do not fit into the setting of [18]. We therefore give a separate
proof of Lemma 1.2 which is based on a modification of Gehring’s original work.

Let us finally compare Lemma 1.2 with the Frehse-Seregin lemma. First, our assumption on g
is weaker. Second, in the Frehse-Seregin lemma the first integral of the right hand side of (1.3)
has to be replaced by an integral w.r.t. the annulus 2B \ B, such that a delicate “hole-filling”
argument for the proof is possible. Third, the Frehse-Seregin lemma shows the Dirichlet growth
of functions, whereas Lemma, 1.2 gives the higher integrability of functions, which implies the
Dirichlet growth. With a bit of work, we have from Lemma 1.2

Corollary 1.3. Suppose that f, g, h are the same as in Lemma 1.2 and that (1.3) is true for
all balls 2B € By (0). Suppose also that h%log®P (e + h) € Ll (B1(0)), where co is as in Lemma
1.2. Then

1
/ fldz < clog=0f (e + —) (1.6)
B |E]

for all measurable set E C By /5(0), where the constant ¢ > 0 depends only on n,d,C, B, f,h but
not on the set E.

We remark here that on one hand, our conclusion (1.6) is stronger than that in the Frehse-
Seregin lemma, since it holds for any measurable sets other than the balls. On the other hand,
our conclusion (1.6) is weaker. In the Frehse-Seregin lemma, (1.6) is true with any exponent
on the right hand side other than cy. The reason is that we have weaker assumptions on the
function g.

The paper is organized as follows: the proof of Theorem 1.1 is given in Section 2. Here we
first prove a Caccioppoli-type inequality for local minimizers in a standard way. We refer to
[5], also for the approximation argument. Second, we apply Hoélder’s inequality and Sobolev-
Poincaré’s inequality to get a reverse inequality. In order to make this reverse inequality satisfy
the assumptions of Lemma 1.2, we require the condition ¢ < p + 2. Actually, in this step, we
have to digress from [5], Section 6 (again compare to the discussion at the end of Section 6 of
[5]). Finally, thanks to Lemma 1.2, we get the higher integrability of a suitable function which
is then enough to finish the proof of Theorem 1.1.

The proof of Lemma 1.2 is given in Section 3 following the ideas outlined above.

In Section 4, we discuss the improvements of the regularity of stationary 2d-flows, where we
concentrate on the study of “anisotropic” generalized Newtonian fluids with non-vanishing con-
vective term as well as electrorheological fluids.

Our notation is standard: B = B, = B,(z) is a ball in R* and 2B = By,(z). |E| denotes the
Lebesgue measure of a set £ C R". f ,wdz = ﬁ [z wdz is the average integral of w over the

set E. The Hardy-Littlewood maximal function Mg of a function g € L'(R") is defined as

1
Mg(x :supi/ g(y)| dy.
= B, @) S 1Y)

For the definitions of the standard Lebesgue and Sobolev spaces, like L‘(iloc), W]f(’loc), ka, we

refer to [2].



2 Proof of Theorem 1.1

Suppose that u € K is a local J-minimizer. In [5] the properties of u have been investigated via
a suitable local regularization procedure. Since we need certain inequalities — stated in [5] only
for the solutions of the regularized problems — we recall the terminology used in [5]. Fix a disc
Bog = Bar(Z) € Q. For a sequence {u,,} of mollifications of u we define

-1
S = (1 +m+ ||e(um)lli‘é(3w)) ’
FlE) = F(€) + 61 4+ ), € €67

(2.1)

and denote by v,, the unique solution of the minimization problem

fm(e(w)) dz — min
Byr

in the class wu,,+ Wp1 (Bar; R?) subject to divw = 0. According to Lemma 4.4 and Corollary 4.2
of [5], we know that

sup vmllw(s,) < o0 (2.2)

for any radius r < 2R and any finite exponent ¢, and that {v,,} converges weakly in each class
W (B,; R?) to the function u (by combining (2.2) with Lemma 4.1 ii) of [5]). We remark here
that the proof of (2.2) just requires the assumption g < 2p. Let By.(z9) € Bar and choose a
cut-off function n € C§°(Ba,(z¢)) such that n = 1 in B, (z¢),n > 0, and |Vn| < 4/r. We further
let
1/2
Hn = (D fin(e(0m)) Ok (0), Ok (vrn)) !

and recall (see (6.2) of [5]) that
HZ dz < ¢(p) < o0 (2.3)
By (%)

for all p < 2R.
Next we recall (6.1) of [5] and use the estimates given after (4.11) of [5] to get from (6.1) of [5]
the starting inequality

/ H? dz < cr_l/ Hphpy | Vo, — Q| dz, (2.4)
Br($0)

Ba, (550)

where oo
hm = (1 + |e(vm)?) T

and @ is an arbitrary 2 X 2 matrix, not necessarily symmetric. To estimate the integral on the
right hand side of (2.4), we apply Holder’s and Sobolev-Poincaré’s inequality to get (v = 4/3)

][ H? dz < cr_l][ Hyphon | Vo — Q| dx
Br(xo) B27'($0)

1/ 1 1/4
<c ][ (Hmhm)" dz = ][ Vo — Q|* dz (2.5)
B (z0) r Ba, (z0)

1/

1/
<c ][ (Hphy)? dz ][ |V20,,|" dx :
Bzr(wo) B2r($0)



provided we choose Q = f Bo, (wO)V’Um dz. Observe that we have the identity
0;0kv" = Bjein(v) + Oheij(v) — Bigjk (v),

hence
V20| < ¢|Ve(vm)|

and from (1.2) it follows that

2-p

Ve (vm)| < cHm(1+ |e(vm)]*) "+
Thus (2.5) implies
1y

1/
][ H? dz <c ][ (Hphim)? da;) (][ H(1+ |€(Um)\2)27Tp7 dw) ;
B (z0) Ba,(z0) Bj,(z0)

hence
1/

1/2
][ H? dz <c ][ (Hyphom)" dm) , (2.6)
B'r(xo) B?T(EO)

P, := max {hm, 1+ |5(vm)|2)2_Tp} .

Inequality (2.6) is valid for any disc By,(xzg) € Bgor with constant ¢ independent of m and
By (). With these preliminaries it is possible to apply Lemma 1.2 with the choices

where

d:2/7:3/27 f: ;Yna g:il,yma h:Oa

provided that exp(Bg?) = exp(ﬂﬁ?n) € Ll (Bag) for some 8 > 0. Actually, we claim that
| exp(gh2)do < c(p,6) < o0 (2.7)
B,

for any 8 > 0 and any p < 2R, where B, = B,,(z). Indeed, by (4.20) of [5], we know that the
sequence

G = (1 + [e(vm) PP/

is uniformly bounded in WZI’IOC(BZ r). By Trudinger’s inequality (see e.g. Theorem 7.15 of [16]),
this implies that

/ exp(Bod?y) di < c(R) < oo

By

where 8y > 0 depends only on the uniform bound of the W3 (B,) norms of ¢,,, and also that
| expl8gim)do < c(p, 6,0 < o0 (28)
By

for any 1 > k > 0, 8 > 0. On the other hand, we have
hZ, < ¢F " (2.9)
for some small k = k(p,q) > 0. Indeed, from the assumption ¢ < p + 2 it follows that

—2
o= r@2-x

B2, = (1+ le(n)?) T < (1 + [e(om)?) T = g2%.



Clearly, since p > 1,

(L4 lelwm)?) 7 < (14 [e(om)?) 1.

Thus (2.9) follows and (2.7) is a consequence of (2.8) and (2.9).
Lemma 1.2 implies that HZ log®® (e + H,,) € L} .(Bag) for any 8 > 0, where ¢ is the constant
in Lemma 1.2. Moreover by (1.4), we have

/ H2 1og®P (e + H,,) dz < ¢(B,p) < o0 (2.10)
By

for all p < 2R. Here we used (2.3) and (2.7).
As in [5], we let oy, = D f(e(vpm,)) and observe (compare (1.2))

-2

Vom| < cHm(1 + |e(wm)|?) T = cHphu.

We will show that (2.10) and (2.7) imply the inequality

/ Vo |*log®(e + |[Von|) dz < ¢(R, ) < 0o (2.11)
Br

for any o > 0. To prove (2.11), we need the following elementary inequality. Let a,b > 0.Then
for any a > 0, there is a constant ¢(«) > 0 such that

(ab)?log®(e + ab) < 2% 1log® 2 (e + a) + c(a) exp(6b), (2.12)

which can be easily proven by considering two cases: b < log(e 4+ a) and b > log(e + a). Thus

/ |Vom|*log®(e + |Von,|) dr < / (cHpmhm)? log® (e + cHyphy,) da
Bgr Br

<cla) [ H:log®?(e + H,,)da
Bg

+c(a)/B exp(6chy,) dz
< ¢(R,a),

where the first inequality follows from the fact that the function y?log®(e + y) is an increasing
function in [0, 00), the second inequality follows from (2.12) and the final one is a consequence of
(2.10) and (2.7). This proves (2.11). If & > 1, (2.11) shows that the tensors o,, are continuous
uniformly w.r.t. m, see e.g. [20] (in particular Example 5.3). Note that it is also possible to
argue with the help of Corollary 1.3 and a lemma due to Frehse (see [12], p. 287).

Now we may argue as in [5], Section 6, compare also to [3], Corollary 5.1, to deduce first the
Holder continuity of (u), which then implies the Holder continuity of Vu. The proof of Theorem
1.1 is finished.

3 Proof of Lemma 1.2

We fix a ball By = B,,(z) € Q. We will prove that (1.4) is true for 2B = By. Notice that (1.3)
and (1.4) are invariant under replacing f, h,g by cf, ch, g, respectively, for any constant ¢ > 0.
Thus, we may assume that

; fldz =1, (3.1)
0



otherwise we argue with f replaced by f/(fB0 fdz)'/® and with h replaced by h/(fB0 flda)/e.
Let us introduce the auxiliary functions defined in R" by

f(z) = d(2)""f,
w(z) = XBy(7), (3.2)
h(z) = d(z)"/*h(z),

where d(z) = dist(z,R" \ By) and xg is the characteristic function of the set E. We claim that

(][ fddx)a <c(n,d,C) fgdz + ¢(n,d,C) (][ ide:v>E
B 2B 2B

e (§, was)’

for all balls B C R". Indeed, we may assume that B intersects By since otherwise (3.3) is trivial.
Our derivation of (3.3) splits naturally into two cases.
Case 1. We assume that 3B C By. By an elementary geometric consideration we find that

(3.3)

< 4 mi .
e ) = 4 1 )

Applying (1.3) yields

Y . :
(][ded:v> Smgxd(x) d(][ded:v>
d hid )d
ZBfg x+(][ZB ! ]
i Y
23fgdx+(][23h d:l:) ]

Case 2. We assume that 3B is not contained in By and recall that B intersects By;. We have
that

< 4™4C min d(z)™¢
2B

1
d < d < 2B N Byl|~.
max (z) < max (z) < c(n)| ol

Hence we conclude that

7d a nd [ 1 d z
(f 7)< mpeatorr (g, [, 4442

1

2B N B d

< ¢(n,d) (7| |;| ol : fddx>
0

1 i
< eln-d) (m /23’“““) !

where we used (3.1). Combining these two cases proves inequality (3.3).
Since (3.3) is true for all balls B C R™, we have the following point-wise inequality for the
maximal functions. For all y € R",

M(fh(y)7 < eM(fg)(y) + M (R)(y)

AL
+
o

=
g
—~
<
~—
=



from which it follows that for A > 0
{z € R* : M(f%)(2) > A}| <{z € R* : cM(fg)(z) > M}
+ {z € R* : eM(h%)(z) > XU} (3.6)
+ {z e R* : cM(w)(z) > A},
where ¢ = ¢(n,d,C) > 0. We recall that w(z) = xp,(z). So M(w)(z) <1 in R”, and then the
set {z € R" : cM(w)(z) > A%} is empty for A > A\; = A\;(n,d, C). Hence
{z €R* : M(f*)(z) > A}| <|{z € B" : cM(fg)(z) > N}
+ {z € R" : eM(h%)(z) > X}

for all A > A;. Now applying Proposition 2.1 in [11] yields

fddx < c(n))\d_1 /~

cfg>A

fgdz + c(n) /~ h¢ dx (3.8)

>x ch>A

for all A > A;. We may assume that the constant ¢ in (3.8) is bigger than one.
Let a > 0 be a constant, which will be chosen later and set

-1
T(\) = log® A +log® ' \.

Notice that p Jo1
B(N) = () = " log® TA+ O‘;

L log® 2\ >0
for all A > A2 = exp(1/(d — 1)), and that

dai\ (X oget ).

We multiply both sides of (3.8) by ®(\), and integrate with respect to A over (\g,j) for Ay =
max (A1, A2) and j large, and finally change the order of the integration to obtain that

min( f N min(cfg,j)
/ / ) d\dz <c(n) / fg / A=1®(N) dadz
>Xo Ao cfg>Ao

mm(ch,j
/ / A) ddz,
ch>Xo Ao

ML) =

that is,
[ (wmin,3) - ¥00) fde <etw) [ GGoda
f2% e o (3.10)
c(n min(ch, 7))h¢ dx
T )/M‘P( (ch, ) da,
where

G(z) = fgmin(cfg, j)* ' log® ' min(cfg, 5).

Here the constant c¢ is bigger than 1. Taking into account the normalization (3.1), we have

/ T(No)f¥dz < ¢(n,d,C,a)|Byl. (3.11)
f>Xo



Thus, it follows from (3.10) and (3.11) that

d—1 ~ ~
—— [ fYlog®min(f, ) dz < ¢(n) /~ G(z)dx
@ Jf>x cfg>io

+ e(n,d, G, a) / i1og® (e + B) dz + c(n, d, C, )| Bo|
By

<c(n) / G(z) dz + c(n) / G(z) dz
cfg>2x0,f>Xo cfg>X0,f<Ho

+ C(’n, da Ca CV) ﬁd loga (6 + il) dz + C(n’ d7 07 Ol)|Bo|
By

(3.12)

<c(n) /~ ~ G(z)dz +¢(n,d,C, ) / h4log®(e + h) dz
cfg>Xo,f>Xo By

+ ¢(n,d, C,a,ﬂ)/ exp(Bg?) dz,
Bo
where in the last step, we used the facts that G(z) is supported in By and that G(z) <
¢(n,d,C, o, B) exp(Bg?) in the set where f < Ag.
In the remaining part of the proof, we will choose a suitable constant « > 0 such that the first
integral in the right hand side of (3.12) can be absorbed in the left. We claim that on the set
{cfg > Ao, f > Ao}

c(n,d, C)
B

for any j > exp(a/(d—1)). We first finish the proof of the lemma and then prove (3.13). Letting
a=p(d—-1)/2¢(n)c(n,d,C), (3.12) becomes

G(z) < fé log® min(f,j) + ¢(n,d,C, o, B) exp(ﬁgd). (3.13)

/ F4log® min(f, j) de <c(n,d, C, ) / exp(Bg*) dz

>Xo Bo

+ ¢(n,d,C,B) h?log®(e + h) dz.
By

Now letting 7 — oo, by the monotone convergence theorem, we end up with

/ ftlog® f dz < ¢(n,d,C, B) (/ exp(Bg?) dz + hlog®(e + h) dx) ,
B

f>Xo o By
that is,
d(w)"fdloga(e+d(w)"/df)dx = fd loga(e-i-f) dx
Bo Fo (3.15)
<e¢(n,d,C,pB) (/ exp(Bg?) dz +/ hdlog®(e + h) dx) .
Bo By

Noticing that in ¢By with 0 < ¢ < 1 we have d(z)" > (1 — o)"rg > ¢(n,0)|By|, and taking
account of the normalization (3.1), we arrive at (¢g := o/ = (d — 1)/2¢(n)c(n, d, C))

d cof f % d d
/ g, 8 (“nfnd,Bo) o < (J[ " p(ﬁg’dx) (][ ml dw)

h
+c h% log®? (e + ) dz,
Bo I1.f 1,0

which proves (1.4).



To finish the proof of the lemma, it remains to prove (3.13). To this end, first, we notice that
we may assume that g(z) > 1 in Q; otherwise, we may replace g(z) by g(z) + 1. Thus, since
c>1,

mln(cfg, ) < cg mln(f 7)-

We also notice that A% log®~1 A is an increasing function of A when A > Ay = exp(1/(d — 1)).
Thus on the set By = {x € R" : ¢fg > Ao} we have that

G(z) = fgmin(cfg,j)* ' log® ! min(cfg, j) (317)

< cf min(f, j)*"g*1og*" (cg min(f, 7)). '

We continue to estimate the right hand side of (3.17) by the elementary inequality
ab < aloga + exp(2b)

for @ > 1,b> 0. On the set By = {z € R" : f > A}, we have (by letting a = min(f, j)4,b =

Bg? [2¢(d))

min(f, j)* g% < 20;“) (min(f,j)d—llog min(f, )" +exp<%gd>) RNERE)

where ¢(d) > 0 is a large constant, which will be chosen later. Combining (3.17) and (3.18), we
have on the set F; N Ey that

G(z) < o f (mln(f 7)* ' log min(f, j) + exp(igd)) log®™" (cg min(f, 7))
p c(d) (3.19)
Cz < (F oad-1 B 4 a e
< Ef (mln(f,]) —i—exp(@g )) log®*(cg min(f,7)).
Next, we have that
log®(cg min(f, 7)) < 2log® min(f, 5) + ¢(e) log®(cg), (320)
which follows from the elementary inequality
(z 4+ y)* <22% 4+ c(a)y® (3.21)
for x > 0,y > 0, > 0. Thus by (3.19) and (3.20), we arrive at
Gla) < g Fmin(f,)"~" + exp(_{z50) (2log? min(7. ) + c(a) log™(cg))
< 5(F*log™ min(,§) + e(n,d, G, 1, ) exp(Bg).
which proves (3.13). The last inequality holds because of the estimates
flog® min(f, 5) exp(c(id)gd) < f"1og® min(f, j) + ¢(d, @) exp(Bg?), (3.22)
and 5 ~ B B
c(a) f min(f, 5)* ! log®(cg) < f*log® min(f, j) + ¢(n, d, a, B) exp(Bg*), (3.23)
and 5
c(a) f exp(=—g%) log®(cg) < f*log® min(f, j) + ¢(n, d, o, B) exp(Bg?), (3.24)

c(d)
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valid for the lower order terms. We prove (3.22): if exp(8g%/c(d)) < f4 ', then the left hand
side of (3.22) is bounded from above by the first item in the right hand side. Otherwise, it is
bounded from above by the second item in the right hand side, by chosing the constant ¢(d)
large enough, for example, ¢(d) = (d+ 1)/(d — 1). (3.24) is easily seen to hold on the set under
consideration and we finish the proof of Lemma 1.2 by establishing (3.23).

Let us first consider the case ¢() log®(cg) < log® f. Then the left hand side of (3.23) is bounded
from above by f min(f, j)% ! log® f, which is bounded from above by f%log® min(f, ). In fact,
this is obviously true if f < j. If f > j, this follows from the fact that the function A% !log™®
is increasing function when A > exp(a/(d — 1)). So the argument works if j > exp(a/(d — 1)).
In the case c(a)log®(cg) > log® f we easily see that the left hand side of (3.23) is bounded from
above by the second item in the right hand side. The proof is finished. a

4 Further improvements of the regularity of stationary 2d-flows

4.1 Steady states of anisotropic generalized Newtonian fluids with non-vanish
ing convective term

We replace the system (1.1) by the boundary value problem

—div{T(e(v))} + [VvJv+Vmr=¢g in Q,
divo =0 on 01, (4.1)
v=>0 on 01,

where © C R? is a bounded Lipschitz domain, g is of class L (§2; R2) and T' = D f for a potential
f satisfying condition (1.2). The following result is shown in [3]: suppose that (1.2) holds with

p>6/5, p<q<2p (4.2)

o
Then there exists a function u € Wpl(Q; R?) such that
u € Wi_ . 100(Q R?) for any 0 < 5 < 1; (4.3)

u satisfies (4.1) a.e. (4.4)

The first claim (4.3) can be found in Remark 1.2 and Corollary 3.1 of [3], (4.4) follows from
Theorem 3.1 of [3] together with (4.3). Note that Lemma 4.1 of [3] holds in the two-dimensional
case as well, i.e. we have in addition to (4.3) and (4.4)

V(1 Je(u) P)P/* € Li (4 R?). (4.5)

The C1®-regularity of u is also established in [3], however the restriction ¢ = 2 is needed there.
Now we will apply Lemma 1.2 and prove the following result.

Theorem 4.1. Suppose that (4.2) holds together with ¢ < p + 2. Then the solution u belongs
to the space C1*(Q;R?) for any 0 < a < 1.

The idea of the proof of Theorem 4.1 is similar to that of the proof of Theorem 1.1. Essentially,
the difference (and difficulty) comes from the convective term [Vuv]v in the system (4.1). Since
the solution u fixed above itself is locally bounded, we have a nice estimate for this quantity.
Nevertheless, the reverse inequality we get here is different from the one in Section 2. More
precisely, now this inequality is of type (1.3) with a function A not identically zero. But we can
still apply Lemma 1.2 and prove the higher integrability.

11



Proof of Theorem 4.1. Fix a disc Bor(z) € Q. Let Bg, = Bo,(xg) € Bor(Z) and consider a
standard cut-off function n € C§°(By,). The following inequality is shown at the beginning of
Section 6 of [3] (being valid also in the case ¢ > 2)

][ 7200 : Ope(u) dx < — 2][ Noko : [Vn ® Ok(u — Q)] dz
Bz,« BZ’I‘
+ ][ Okl @ u] : e(*Oh[u — Qx)) dz
Bar
~f g-adrou-qois

- 2][ okl : [Vn © Ok(u — Qx)] dz
B2'I‘
=h + I+ I3 + 1y,

where 0 = Df(e(u)), m denotes the pressure function related to the problem and @ is an
arbitrary 2 X 2 matrix. As in Section 2, we let

D=

= (D*f(e(u)(Ore(u), Ore(w)) ? 5
= 1L+ @) (4.7)

)
ﬁ:max{ L (1 + |e(w)| )%}

Note that H € L2 .(Q). This can be deduced from Lemma 3.3 of [3] by passing to the limit
d — 0. For the left hand side of inequality (4.6) we have the equality

][ "’ H? do = ][ 1?00 : Oge(u) de. (4.8)
BQT B2'r

We will estimate each term on the right hand side of (4.6) from above in order to prove

5 2/
][ " H?dz < ¢ <][ (Hh)7 dw) +c][ G dz, (4.9)
By Bs, B,

G=>0+|VuP), t= max{4%p, 1} :

Starting with the first integral on the right hand side of the inequality (4.6) we argue in the
same way as in Section 2 when passing from (2.4) to (2.6). We note that

where

|Vo| < cHh (4.10)

and that ~
|V2u| < ¢|Ve(u)| < cHh. (4.11)
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Thus, as in Section 2, we have (y = 4/3)
1] < niol|V]Va - Qs ds
By

<er™t Hh|Vu — Q|dz
Bay

/7 1/4
<c(f mmrac) L(f 1vu-qrtas) (4.12)
B2r r B27‘
1/v 1/vy
<c ( (Hh)" da:) ( |V2u|? dac)
B2r BZT

ol f, )

by choosing Q@ = By, Vudz. To estimate the second integral on the right hand side of (4.6), we
use the local boundedness of v and obtain (compare (6.3) and (6.4) of [3])

|15 Slﬁ][ 772H2d:13+c(ﬁ:)][ (1 |Vu|) 2 d

Bor Bor (4.13)

ef alVallVu|Vu - Qlds
Bay

where k > 0 is arbitrary. Thus, by letting x = 1/4, we can absorb the first integral on the right
hand side of (4.13) in the left hand side of (4.6). We will keep the second integral since it is
bounded from above by ¢ f B,, G dz, and estimate the third one in the following way:

c 1/4 1/v
£ alvallvulivu - Qlds < £ (][ Vu Q|4dw> (][ |Vu|“*dw)
B2, r B2r BZ'r
1/ 1/
<c (][ |V 2u|” dav) (][ |Vul? dx)
B27- B2’r
. 1/y 1/2
<c (][ (Hh)Y da:) (][ |Vu|? da:)
Ba, Bay
~ 2/v
§c(][ (Hh)Y da:) +C][ |Vu|? dz,
Ba, Bay

where we used Holder’s inequality in the first inequality, Sobolev-Poincaré’s inequality in the
second one (recall the choice of @), (4.11) and Hoélder’s inequality in the third one and Schwarz’s
inequality in the final one. In particular, the Lh.s. of (4.14) is bounded by terms occuring on
the r.h.s. of (4.9).

Next, let us consider I3, the volume force term. Since g is bounded, we have

(4.14)

|13|3c][ \nIIVnIIVu—QIderc][ 72|V de
B2r

B2r

c 1/4 1/
<- (][ |Vu — Q[* dm) —i—c(][ |V2u|? dm)
T By Bay
1/ . 1/
<c (][ |V2u|7 d:v) <c (][ (Hh)” dw)
B27l BQT

. 2/
<c (][ (Hh)Y dx) +c,
Ba

13
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where as before, we used Holder’s inequality, Sobolev-Poincaré’s inequality and (4.11). Thus
I5 is also controlled by the right hand side of (4.9). Finally we discuss I, the pressure term.
Actually, we can “ignore” this integral, as explained in Section 6 of [3]. We have

A SC][B 0| Vo [Vl Va - Qx| da
27r

+ c][ 0|V (u @ w)||Vn||Vu — Q| do
Bay
(4.16)
+ch nlgl| V||V — Q| da
27

. 2/~
<c <][ (Hh)%) —i—c][ (1+|Vul|?) dz
Bzr B2'r

by the estimates (4.12), (4.14) and (4.15). This finishes the proof of (4.9).
Now we rewrite (4.9) as

v/2 . v/2
( H? dw) <c ][ (Hh)Vdz + ¢ ( ][ de> (4.17)
B, Ba, Ba;

and apply Lemma 1.2 with the choices
d=2/y=3/2, f=H", g=h", h=G"

The assumptions of Lemma 1.2 are all satisfied. Indeed, we have

/ exp(Bg?) do = / exp(Bh?) dz < ¢(R, ) < oo
Bsr

Bar

for any B > 0 which follows from the same argument as in Section 2, since now we also know
that (1+|e(u)|?)P/* € W} (Bagr(Z)) (recall (4.5)). Thus g = A7 is an admissible choice in Lemma
1.2, the assumptions on f and h clearly hold as well.

Lemma 1.2 implies that H?log®’(e + H,,) € Li (Bar(z)) for any 8 > 0. We can therefore
proceed in the same way as outlined in Section 2 after (2.10) and complete the proof of Theorem

4.1. We omit the details.

4.2 Stationary electrorheological fluids

In this subsection, we discuss the the following system for the velocity field of so-called elec-
trorheological fluids in the stationary case

—div{S(e(v),E)} + [VvJv+ Vr=g in Q,
dive =0 on Q, (4.18)
v=20 on 01,

where Q C R? is a bounded Lipschitz domain, g is a vector field of class L>®(Q; R?), E denotes
the smooth electrical field and 7 stands for the a priori unknown pressure function. A detailed
discussion can be found in [24] (see also [23]), monographs dealing with the mechanical or
engineering background are, for instance, [8], [17], [21], [22], [25]. If n > 3, then partial regularity
of solutions is established in [1]. Here we consider the case n = 2 of planar motions and follow
the discussions given in [9], [10] and [6].
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The existence of a strong solution u € ﬁo<,¢<1W22_n,loc(Q; R?) to (4.18) is established in [9], [10]

under the following growth and ellipticity conditions on the tensor valued function S: S2%2 x
R2 - SQXQ, S = (Sij), Sij = Sij(E,H), 1,7 = 1,2,

0S;; (E|%)-2
e (D, E)BasBy > (1 + D)5 B

(6%
S,;(D, E)Dy; > c(1 + |DI2) "7 | D,

. (4.19)

‘st B)| <00 +|pP) =,

oS 3
‘aﬂw E)| < O(1+ D)™ (1 +log(1 + D)

for all D, B € S?*? with vanishing trace and for all E € R?. Here p € C!(R) is a given material
function with 6/5 < ps < p(|E|?) < po < oo for given numbers py, and po.

It is proved in [6] that such a solution is actually of class C1*® for any 0 < a < 1, provided that
po = 2. Now we show that the result is still true without this restriction.

Theorem 4.2. Suppose that 6/5 < po < p(|E|?) < po < 0o holds. Suppose further that (4.19)
is true. Then the solution u described above is of class C1*(2;R?) in the interior of Q for any
0<a<l.

The proof of Theorem 4.2 is quite similar to that of Theorem 4.1 and will require only a few
minor changes. We will just indicate the differences and leave the details to the reader.

Proof of Theorem 4.2. We fix a small disc Bag(Z) € € such that p; < p(|E(z)[?) < ps for all
z € Bog(Z) with p1 > ps > 6/5 and pe < min(2p1,p1 + 2),p2 < po. This is possible since p
and E are smooth functions. Actually, there is a radius Ry = Ry(p, E) > 0 such that this claim
holds for any z € Q and for any R < Ry.

Note that the counterpart to (4.5) is valid, i.e. as in (8) of [6] we have

V(1 + [e(w) )4 da < e(B') |V€( )P (1 + [e(u)?) P =272 dz < oo
B/
for all B' € Bag with a local constant ¢(B').

Now let By, = Bo.(xz9) C Bar(z) and 1 be a cut-off function as before. We use the same
notation as in [6] and as before, and introduce the quantities

o = S(e(u), B),
8, 1/2
— (525 et Preg Orrcas 00)) 0
b= max { (1+]e(w) )0, (1+ () 2) "},
G =(1+|Vul),

where ¢ > 0 is sufficiently large. We proceed in the same way as in the proof of Theorem 3 of
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[6] and obtain that

][ 7?00 : e(Opu) dz Sc][ n|Ve||Vn||Vu — Q| dz
Bs,

2r

+ ][ 0| V|| V||V — Q| da
B27‘
+][ n2|Vu|\V2u|d:c (4.21)
B2’!‘
+][ 917 V||V — Q| de
B2'r
+][ |lg|n*|V?ul dz,
B27"

from which we will deduce the following estimate similar to (4.9)

- 2/
][ n?H?dz < ¢ ( ][ (Hh)Y dz) +c G dx. (4.22)
By Bay Bay

The integrals in (4.21) can be estimated exactly in the same way as in section 4.1, except for
the first two integrals involving o. In the present case o = o(e, E) depends not only on & but
also on E. We follow [6] to estimate this two terms. For the first one, we have that

85,']'
OE
> H? — o1 + [e(w)[2) " (1 +log(1 + [e(w)[*))|Ve(w)|
> H? = c(1 + [e(w) )P/ Ve(u)|.

Opo : €(Opu) = H? + (e(u), E) - OpEeij(Oku)

(4.23)

and that by the Young inequality

(1 + le(u) )72/ Ve (w)]
<61+ e@)?)™'z |Ve(w)? +c(6) (1 + e(w)?)

po—p1+2

<OH? + c(8)(1 + |e(u)]?) 2

p2—p1+2
2

(4.24)

for any 6 > 0. Thus

p2—p1+2
2

0o : e(Ogu) > %HQ — (1 + |e(u)[?)

and we see that we do not have any problem with the first integral in (4.21). For the second
integral in (4.21), we estimate in the same way as (10) and (11) in [6] to get

|Vo| < cHh + ¢(1 + |e(u)[?)P2/?,

and then we proceed as in (4.12) and (4.14) (with minor modifications) to get the desired
inequality (4.22). We omit the details. Then we finish the proof of Theorem 4.2 as in Section
4.1.
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