
High Order Boundary Element Methods

Dissertation

zur Erlangung des Grades des
Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

von
Lucy Weggler

Saarbrücken
August 2011



Tag des Kolloquiums: 19. Dezember 2011

Mitglieder des Prüfungsausschuÿes:

Vorsitzender: Prof. Dr. A. K. Louis, Universität des Saarlandes
Protokollführer: Dr. R. Grzibovskis, Universität des Saarlandes
1. Berichterstatter: Prof. Dr. S. Rjasanow, Universität des Saarlandes
2. Berichterstatter: Prof. Dr. S. Kurz, Tampere University of Technology
3. Berichterstatter: Prof. Dr. U. Langer, Johannes Kepler Universität Linz (nicht anwesend)



Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne Be-

nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen oder

indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Ar-

beit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren

zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, 18. August 2011

(Lucy Weggler)





Abstract

This thesis is a major contribution to the state of research in the �eld of boundary element methods
in general and to the electromagnetic engineering sciences in particular. The �rst contribution is
the development and implementation of high order boundary element methods. It is explained how
to set up a high order boundary element implementation which provides solvers for elliptic, Maxwell
and mixed problems. The second contribution is a complete mathematical theory for a stabilized
boundary variational formulation describing scattering problems. The stabilized formulation pre-
sented in this thesis is equivalent to the classical formulations, however, it does not su�er from the
low-frequency break-down. The high order methods have been applied to the classical and stabi-
lized formulations describing electromagnetic scattering and the theoretical results on asymptotic
convergence and stability have been veri�ed by the numerical computations.

Kurze Zusammenfassung

Die vorliegende Arbeit befaÿt sich mit der Entwicklung von Randelementmethoden höherer Ord-
nung. Die Implementierung, die im Zuge dieser Arbeit entstand, unterscheidet sich von herkömm-
licher Software dadurch, dass sie zur numerischen Lösung von elliptischen Problemen, von Maxwell
Problemen und insbesondere zur numerischen Lösung von gemischten Formulierungen benutzt wer-
den kann. In der Arbeit werden die theoretisch bewiesenen Konvergenzraten für all diese Prob-
lemklassen veri�ziert. Um die Leistungsfähigkeit der Software zu demonstrieren, wird insbesondere
eine gemischte Formulierung zur Lösung eines elektromagnetischen Streuproblems entwickelt. Diese
sogenannte stabilisierte Formulierung ist gleichsam das zweite Forschungsergebnis dieser Arbeit. Im
Unterschied zu der klassischen Formulierung gewährleistet die stabilierte Formulierung numerische
Stabilität im Grenzfall quasi-elektrostatischer Prozesse. Die theoretischen und numerischen Resul-
tate, die diese Aussage rechtfertigen, werden in der Arbeit geliefert.
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Zusammenfasung

Der Begri� Randelementmethoden bezeichnet eine Klasse numerischer Verfahren zur Lösung von
Randwertproblemen. Eine der grundlegenden Voraussetzungen zur Anwendung der Randelement-
methode ist, dass der im Randwertproblem auftauchende Di�erentialoperator eine Fundamental-
lösung besitzt. Ist dies der Fall, dann unterscheidet man weiterhin elliptische Probleme, Maxwell
Probleme und gemischte Formulierungen. Diese Art von Einteilung ermöglicht eine Klassi�zierung
der Randintegralgleichungen und insbesondere die Klassi�zierung der abgeleiteten Galerkin Vari-
ationsformulierungen. Die Diskretisierung dieser Variationsformulierungen in geeigneten endlich-
dimensionalen Ansatz- und Testräumen wird als Randelementmethode bezeichnet und der Zusatz
'höhere Ordnung' bezieht sich auf die polynomiale Ordnung der Ansatz- und Testfunktionen. Theo-
retischen Ergebnissen zufolge, führen die Randelementmethoden höherer Ordnung zu hohen asymp-
totischen Konvergenzraten. Aus diesem Grund ist das Interesse von Seiten der Industrie an der
Realisierung von Randelementmethoden höherer Ordnung groÿ, zumal in kommerziellen Software-
paketen oft nur lineare Ansatz- und Testfunktionen zur Verfügung stehen. Die vorliegende Arbeit
beschäftigt sich mit der De�nition und der Anwendung von geeigneten Ansatz- und Testräumen, die
Funktionen von polynomialem Grad p ≥ 1 bereitstellen. Die grundlegende Idee hierbei ist, dass ein
und dieselbe Implementierung neben elliptischen Problemen auch Maxwell Probleme und gemischte
Formulierungen behandeln soll. Das ist eine nicht-triviale Aufgabe, da die Ansatz- und Testräume
sich je nach Typ des Problems unterscheiden. Die Räume sind allerdings auf kontinuierlicher Ebene
durch exakte Sequenzen verknüpft und die zielführende Strategie, um zu einer numerisch sta-
bilen und praktikablen Implementierung zu gelangen, ist, diese Eigenschaft auf diskretem Level
zu erhalten und auszunutzen. Ein in sich geschlossenes Konzept hierfür wird in dieser Arbeit en-
twickelt. Das wiederkehrende Leitmotiv dieses Konzeptes ist das sogenannte Bidualitätprinzip. Das
Bidualitätsprinzips ist Ausdruck eines fundamentalen Zusammenhangs zwischen dem metrik-freien
di�erentialgeometrischen Apparatus und den metrik-behafteten Funktionalen, die zur Anwendung
der Hilbert Raum Theorie benötigt werden. Diese Erkenntnis ist das bemerkenswerteste theoretische
Ergebnis, das im Zuge dieser Arbeit entstand.

Um die Leistungsfähigkeit der höheren Elemente zu demonstrieren, wird die Streuung einer
elektromagnetischen Welle an einem perfekt leitenden Körper betrachtet. Dieses Modellproblem
kann mit Hilfe der Randelementmethoden gelöst werden und die Galerkin Lösung besitzt theo-
retisch quasi-optimales Konvergenzverhalten. Das bedeutet, dass die Konvergenzrate p erreicht
wird bei Verwendung von Randelementen der Ordnung p. Um ein solches Konvergenzverhalten
nachzuweisen, wird die Streuung an der perfekt leitenden Kugel untersucht. In diesem Fall ist eine
analytische Lösung durch die Mie Reihe gegeben und die Konvergenzrate p wird bei Verwendung
von isoparametrischen Randelementen der Ordnung p veri�ziert. Darüber hinaus wird gezeigt, dass
die Randelemente höherer Ordnung zur Lösung von hochfrequenten Streuproblemen geeignet sind.
Hierzu wird ein realistisches Streuproblem an einer komplizierten Geometrie gelöst. Die Aufgaben-
stellung und eine numerische Referenzlösung wurden von EM Software & Systems bereitgestellt.

Die Struktur der Implementierung ermöglicht einen �exiblen Einsatz der Software, weil neben
Maxwell Problemen auch elliptische Probleme gelöst werden können. Um dies zu demonstrieren,
wird eine gemischte Formulierung zur Lösung des elektromagnetischen Streuproblems entwickelt.
Diese sogenannte stabilisierte Formulierung ist das zweite Forschungsergebnis dieser Arbeit. Die
eindeutige Lösbarkeit der stabilisierten Formulierung läÿt sich aus der eindeutigen Lösbarkeit der
klassischen Formulierung auf Grund der Äquivalenz der Formulierungen folgern. Die stabilisierende
Eigenschaft im elektrostatischen Grenzfall kann theoretisch begründet werden, da die stabilisierte
Formulierung in eine Sattelpunktformulierung für ein elektrostatisches Potentialproblem überge-
ht. Das hat zur Folge, dass die stabilisierte Formulierung, im Unterschied zu der klassischen For-
mulierung, numerische Stabilität im Grenzfall quasi-elektrostatischer Prozesse gewährleistet. Diese
Aussage wird mit der notwendigen mathematischen Theorie und den entsprechenden numerischen

vi



Resultaten unterlegt.
Nach dem Kenntnisstand der Autorin, ist diese Arbeit die erste, die den Stand der Wissenschaft

im Bereich der Randelementmethoden höherer Ordnung in dieser Vollständigkeit zusammenfaÿt
und mit numerischen Experimenten veri�ziert. Im Hinblick auf die Lösung elektromagnetischer
Streuprobleme, kann man zusammenfassend sagen, dass erstmalig gezeigt worden ist, wie mit ein und
derselben numerischen Methode Streuprobleme im gesamten Frequenzspektrum numerisch stabil
und e�zient gelöst werden können.
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Chapter 1

Overview

Research on high order �nite element methods started in the late 1980s with results on the adaptive
hp-version [33]. Babu²ka and Gui considered an elliptic problem in two dimensions and they showed
that the discretization error decreases exponentially with the number of degrees of freedom when
geometrically graded meshes are used. During the last thirty years, research on optimal mesh
generation lead to the so-called adaptive hp-methods delivering exponential convergence [27]. Here,
h refers to the mesh size and p denotes the polynomial degree of the trial and test functions on the
master element. The idea is to adaptively optimize the mesh with respect to those two parameters.
A local error estimator decides whether to re�ne an element or to increase its order p. There are �nite
element implementations for automatic hp-re�nement available solving two-dimensional or three-
dimensional elliptic and Maxwell problems. The existing expertise is mainly due to Demkowicz and
his coworkers. A self-contained documentation of the current state of research in this �eld can be
found in [27] and [28].

In what concerns the boundary element method, one barely �nds any publication on numerics of
high order discretization. This is because the boundary element method itself has been developed
much later [20]. The origin of the �rst numerical implementation for boundary integral equations
can be traced back to the late 1960s. However, the full emergence of the boundary element method
occurred in the 1980s when its theoretical foundation has been given [23, 24]. We refer to the
monographs [44, 52, 54] for a detailed derivation and discussion. Since elliptic problems have been
understood, the attention turned towards Maxwell problems. For pioneering work on the analysis of
integral equations connected to scattering problems, we refer to the monographs written by Colton
and Kress [21, 22], and to the book by Nédélec [48]. During the last few years, di�erent mathe-
maticians revisited the topic Maxwell equations in order to complete and generalize the numerical
analysis. The latest contributions of Costabel, Bu�a, Hiptmair and their collaborators, cover the
solution theory for Lipschitz polyhedra [14,18].

The Galerkin discretization of boundary integral equations yields fully populated matrices. This
peculiarity has long been a major disadvantage of the numerical scheme. However, the latest research
shows how to generate the system matrices e�ciently. The method mentioned explicitly is called
the adaptive cross approximation and it is developed by Rjasanow and Bebendorf [51]. The idea
is to exploit the behavior of the kernel function in order to compute low rank approximations of
the matrix whenever it is possible. The adaptive cross approximation makes the boundary element
method competitive for industrial applications.

Coming back to the question whether there are hp-adaptive high order implementations for solving
boundary integral equations, the answer is no. The solvers which were developed use mainly linear
shape functions and work with linear meshes only [8, 51]. However, latest publications con�rm an
increasing interest in high order discretization. In what concerns elliptic problems, theoretical and
numerical results are found in [43, 52]. In what concerns the Maxwell equations, Bespalov, Heuer
and Bespalov, Heuer and Hiptmair proved that the high order boundary element method solving
the Maxwell equations converges with quasi optimal rates [5,6] and corresponding numerical results
are reported in a paper written by Maischak, Stephan and Leydecker [55]. Inspired by this, we came
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Chapter 1. Overview

up with a simple question: Is there a feasible way of implementing a boundary element method
which has the following features:

1. High order discretization of the geometry (optimal manifold representation).

2. Simultaneous discretization of all trace spaces that appear in boundary element formulations
(mixed methods).

3. Fast assembling of the system matrices and optimal memory requirements (fast methods).

4. Uniform h-re�nement and uniform p-re�nements (better convergence rates).

5. Administration of locally varying orders of approximation (projection-based interpolation).

6. Administration of irregular meshes (projection-based interpolation).

A new boundary element code which ful�lls these requirements has been developed. The imple-
mentation builds up on a �nite element implementation for two-dimensional problems. The source
code for the latter is published in [27]. The success of the research presented in this thesis is due
to a fundamental knowledge of theory and numerics of boundary element methods and thus, the
development of the high order boundary elements is a consolidation of current research in two dif-
ferent �elds of applied mathematics. It is the goal of this thesis to explain the di�erent steps which
are necessary to realize this.
In order to demonstrate the features of this high order boundary element implementation, an

electromagnetic scattering problem is solved. The boundary value problem which characterizes
the scattering of an electromagnetic �eld from a perfectly conducting body is derived from the
Maxwell equations. The Maxwell equations are four partial di�erential equations which describe
electromagnetic phenomena. Table 1.1 contains a list of all physical quantities which appear in
the Maxwell equations. The Gauÿ law relates the electric �ux density D with the electric charge
distribution ρ. For x ∈ R3 and t > 0, it reads

divD(x, t) = ρ(x, t) .

The Gauÿ law for magnetism states that the divergence of the magnetic �ux density B vanishes
for x ∈ R3 and t > 0

divB(x, t) = 0 .

Due to the Ampère law, the magnetic �eld H is generated either by an electrical current J or by
changing the electric �ux density D. For x ∈ R3 and t > 0, it holds

curlH(x, t) =
∂

∂t
D(x, t) + J(x, t) .

The Faraday law describes how a change of the magnetic �ux density B creates an electric �eld E.
For x ∈ R3 and t > 0, it holds

curlE(x, t) = − ∂

∂t
B(x, t) .

Under the assumption that the constitutive relations are linear, there exist linear operators ε and
µ such that [41]

D = ε (E) ,

B = µ (H) .

2



Physical quantity Symbol SI Unit
Electric �ux density D N/Vm

Magnetic �ux density B Vs/m2

Electric �eld E V/m

Magnetic �eld H A/m

Electric current J A/m2

Electric surface current j A/m

Volume charge ρ C/m3

Surface charge ρΓ C/m2

Permittivity ε As/Vm

Permeability µ Vs/Am

Table 1.1.: The physical quantities

We further consider a local, isotropic and homogeneous material which leads to the simple relations

D(x, t) = εE(x, t) ,

B(x, t) = µH(x, t) ,

where ε > 0 and µ > 0 are constant for all x ∈ R3 and t > 0 [39]. Thus, the original Maxwell
equations turn into the so-called linear Maxwell equations. By the validity of linear material laws,
the number of unknown �elds in the Maxwell equations reduces to the electrical �eld E and the
magnetic �eld H. The pair (E,H) is called the electromagnetic �eld.

The harmonic Maxwell equations describe �elds which propagate harmonically in time, i.e.,

F (x, t) = e−iωtF̃ (x) ,

where F stands for E or H. The oscillatory term e−iωt factors out and the harmonic Maxwell
equations are usually written in terms of the vector-valued amplitudes depending only on x ∈ R3

div
(
εẼ(x)

)
= ρ̃(x) ,

div
(
µH̃(x)

)
= 0 ,

curl H̃(x) = −iωεẼ(x) + J̃(x) ,

curl Ẽ(x) = iωµH̃(x) .

As we consider only the harmonic Maxwell equations, we omit the tilde and keep in mind that the
time variation is harmonic. Moreover, we assume that there are no volume sources, i.e.,

ρ(x) = 0 and J(x) = 0 .

Let (Ei,H i) be the incoming electromagnetic �eld which impinges on a perfectly conducting
body Ω ⊂ R3. The incoming �eld leaves a surface current j on the boundary Γ = ∂Ω [39]. The
surface current j is the unknown source of a new electromagnetic �eld, the so-called scattered
electromagnetic �eld (E,H). The superposition of the incoming and the scattered �eld is the total
electromagnetic �eld (Et,Ht), i.e.,

Et = Ei +E and Ht = H i +H .

3



Chapter 1. Overview

As the total electromagnetic �eld vanishes inside the conductor, i.e.,

Et
∣∣
Ω

= 0 and Ht
∣∣
Ω

= 0 ,

the scattered �eld (E,H) is unknown only in the exterior domain Ωc = R3\Ω. The mathematical
model describing it are the linear, harmonic Maxwell equations in Ωc. Let x ∈ Ωc, it holds

div
(
εE(x)

)
= 0 ,

div
(
µH(x)

)
= 0 ,

curlH(x) = −iω εE(x) ,

curlE(x) = iω µH(x) .

The values of the scattered �eld on Γ are prescribed by the incoming signal (Ei,H i). If the
boundary Γ is a Lipschitz surface, the outer normal vector �eld n exists at almost every x ∈ Γ and
for those x, the Dirichlet boundary conditions read

n(x)×E(x) = −n(x)×Ei(x) ,

n(x) · (µH)(x) = −n(x) · (µH i)(x) .

Moreover, the decrease of the electromagnetic �eld for |x| → ∞ is given by the radiation condition
of Silver-Müller, i.e., ∣∣∣ (curlE(x))× x

|x|
− iω εE(x)

∣∣∣ = O
(

1

|x|2

)
,

∣∣∣ (curlH(x))× x

|x|
− iω µH(x)

∣∣∣ = O
(

1

|x|2

)
.

In the subsequent chapters, it is explained how to solve this boundary value problem by the use of
high order boundary element methods.

Chapter 2 contains an introduction to the functional analytic background of boundary element
methods. Most fundamental for this is the de�nition of manifolds given in Section 2.1. Test function
spaces and the space of distributions are de�ned in Section 2.2. Variational formulations are studied
in Hilbert spaces. Basic properties of Hilbert spaces are stated in Section 2.3. The energy spaces,

H1(Ω), H(curl,Ω), H(div,Ω) ,

are Hilbert spaces which provide the functional analytic tools to analyze integral equations. They
are introduced in Section 2.4. In the context of boundary element methods, we need the so-called
generalized formulae of partial integration. The trace spaces

H
1
2 (Γ) , H−

1
2 (curlΓ,Γ) , H−

1
2 (divΓ,Γ) , H−

1
2 (Γ) ,

from Section 2.5 are necessary to derive them.

As mentioned above, the scattering of an incoming electromagnetic �eld at a perfectly conducting
body Ω ⊂ R3 is our model problem. The goal of Chapter 3 is to provide the Galerkin variational
formulations which are later solved by high order boundary element methods. Also, the basic
theorems on solvability of the Galerkin formulations in the in�nite-dimensional setting are stated.
In Section 3.1 a short overview on the contents of the chapter is given. The original Maxwell
equations are considered in Section 3.2. The Stratton-Chu representation formula leads to the
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classical Galerkin formulations with respect to the duality of the trace spaces H−
1
2 (curlΓ,Γ) and

H−
1
2 (divΓ,Γ). Besides this well known approach, the so-called stabilized representation formula

is derived in Section 3.3. The starting point for the stabilized formulation is the so-called Picard
system. It leads to a mixed Galerkin formulation where, also, the duality between the trace spaces
H

1
2 (Γ) and H−

1
2 (Γ) appears. For the classical and the stabilized formulations it is assumed that

the frequency of the incoming electromagnetic wave is greater than zero, namely ω > 0. This
assumption is dropped in Section 3.4 and the electrostatic case, ω = 0, is considered. The contents
of Chapter 3 is shortly summarized in Section 3.5.

Chapter 4 is about the de�nition of �nite-dimensional high order function spaces which are appro-
priate to approximate the in�nite-dimensional trace spaces. By an introductory section, Section 4.1,
an overview is given on the contents of the �ve subsections of Section 4.2. In Subsection 4.2.1, the
master element is de�ned as a structure which comprises a parametrization of the reference triangle
and a polynomial exact sequence of arbitrary order. In Subsection 4.2.2, the parametric element
is de�ned as a conforming lift of the reference triangle onto a physical triangle. The parametric
element is also a structure equipped with the parametrization of the triangle and an exact sequence.
The introduction of parametric spaces is done in Subsection 4.2.3. The parametric spaces contain
the actual basis functions attributed to global degrees of freedom. An important class of operators
for high order discretization are the projection-based interpolation operators Π1, Πc and Π0. They
are de�ned in Subsection 4.2.4 and basic properties are discussed. To complete the set of parametric
spaces involved in variational formulations for boundary integral equations the bidual spaces are
introduced in Subsection 4.2.5. A short conclusion and an outlook for ongoing work is given in
Section 4.3.

The numerical analysis of the high order boundary element methods is addressed in Chapter 5.
Our special interest concerns the algebraic properties of the system matrices. After the short
introduction given in Section 5.1, the classical method is treated in Section 5.2. The stabilized
method is considered in Section 5.3 and the electrostatic case is, �nally, considered in Section 5.4.
Section 5.5 is most fundamental for the implementation of the high order boundary element methods
because explicit formulae for the entries of the system matrices and the right hand side are presented.
Chapter 5 is thematically closed by a short outlook given in Section 5.6.

The veri�cation of the theoretical results is the subject of Chapter 6. Section 6.1 serves to recall
the basic mathematical task. Results for the high order boundary element methods applied to the
scattering problem in its classical and its stabilized formulation are presented in the Sections 6.2
and 6.3, respectively. A conlusion concerning the principal results of convergence and stability of
the high order methods is drawn in Section 6.4.

A short summary and an outlook concerning this work are given in Chapter 7.

The appendix comprises four chapters. They contain supplementary material on the numerics of
high order methods. They are closely connected to the contents of the chapters of this work and
we refer to them at the actual position in the text.
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Chapter 2

Mathematical Framework

The goal of this chapter is to introduce the basic vocabulary and to state theoretical results needed
in the Chapters 3-6. This vocabulary and the fundamental tools for a solution theory concerning
partial di�erential equations stem mainly from functional analysis.
The discussion on functionals starts in Section 2.1 with the case of the di�erentiable functions

de�ned on manifolds Mn embedded in the Euclidean space R3. The outcome of the �rst section
is the de�nition of di�erentiable manifolds and the introduction of di�erential operators for the
so-called smooth case. The closing example of Section 2.1 clari�es, however, that these regularity
assumptions are too restrictive. Lipschitz manifolds which appear most often in applications do not
belong to the class of di�erentiable manifolds. To develop an analogous vocabulary for this situation,
we need two more concepts from functional analysis. The �rst are the distributions introduced in
Section 2.2 and the second are the Hilbert spaces explained in Section 2.3. A special class of Hilbert
spaces is de�ned in Section 2.4. The so-called energy spaces contain square integrable functions
with square integrable derivatives. Due to this last property, the energy spaces are appropriate
within the context of partial di�erential equations. For boundary element methods, we further need
the so-called trace spaces introduced in Section 2.5.
The results of the Sections 2.1-2.5 are used at many places in this work and it might help to get

an idea of their central role before we go into detail. To apply theorems from functional analysis
one needs a functional setting, i.e., a topological vector space and its dual space, the space of
all functionals de�ned on the vector space. A realization of the dual space is explained when a
representation of any functional is known. In general vector spaces, we call such a representation
a duality. In a Hilbert space, a possible duality is given by the inner product. There is a crucial
di�erence between �nite and in�nite-dimensional vector spaces. A vector space of �nite dimension n
identi�es naturally with Rn and, therefore, its topology is simple. In�nite-dimensional vector spaces
do not identify with Rn and their topology is more di�cult. It turns out that the smooth setting
discussed in Section 2.1 leads to a �nite-dimensional setting with Euclidean structures whereas the
energy and trace spaces are in�nite-dimensional and, thus, their topology is much more complicated.
However, on an abstract level, the smooth setting from Section 2.1 and the setting induced by square
integrable functions from Section 2.4 and Section 2.5 are very similar. Of particular importance
here is the characterization of di�erential operators as functionals on tangent spaces. Finally, it is
not the vocabulary which changes but the duality pairing.

2.1. Manifolds

The boundary element methods are numerical schemes to solve boundary value problems. This
means that we seek a solution of a partial di�erential equation in a three-dimensional domain
Ω ⊂ R3 under speci�c boundary conditions on the boundary Γ of Ω. As Ω ∪ Γ is the domain
of de�nition of our solution, it is clear that the mathematical theory leading to the boundary
element method relies on the topology, the metric structure and the regularity of Ω and Γ. In what
concerns the topology, we consider the simplest possible case, i.e., Ω is an open, connected and
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Chapter 2. Mathematical Framework

simply-connected domain and, therefore, Γ is closed, connected and simply-connected.
In order to describe the metric structure of Ω and Γ, respectively, the metric structure of the

background manifold R3 must be stated �rst. We assume R3 to be Euclidean space spanned by the
standard basis {el}3l=1. A point P ∈ R3 possesses a vector representation which is typically denoted
x with Cartesian coordinates xl, l = 1, 2, 3, i.e.,

x =
3∑
l=1

xl el . (2.1)

In the following, the boldface letters x and y are used to denote the vector representations in
Cartesian coordinates of points in R3. The inner product of any two vectors x,y ∈ R3 is de�ned by

x · y =

3∑
l,k=1

xl yk el · ek =

3∑
l=1

xl yl , (2.2)

and the norm of x is |x| =
√
x · x.

A convenient tool to assess the analytical properties of Ω and Γ is to classify them as manifolds [40].

De�nition 1 A set of points Mn ⊂ R3 is called a manifold of dimension n ≤ 3, if there exists a cover
of Mn,

Mn =

N⋃
i=1

Ui , (2.3)

with mappings Xi : Ui → Rn such that the domains Ui ⊂ Mn are open and homeomorphic to their images
Xi(Ui). The mappings Xi are called charts. Given the Cartesian coordinates x of a point P ∈ Ui, then Xi

returns the representation of P in terms of parameter coordinates.
For a three-dimensional manifold, the parameter coordinates coincide with the Cartesian coordinates and

both are denoted x. For a two-dimensional manifold, the parameter coordinates are typically denoted ξ and
in case n = 1 the parameter coordinate ξ is used.

A collection of charts with (2.3) is called an atlas A = {Xi}Ni=1 for Mn. Let Xi : Ui → Rn and
Xj : Uj → Rn, i, j ∈ {1, . . . , N} be two charts with overlapping domains. The continuous injection

Xj ◦X−1
i : Xi(Ui ∩ Uj)→ Rn

is called a transition function. Each transition function maps Rn to Rn and, thus, we can ask
whether it is continuously di�erentiable. The manifold Mn is said to be of class Cr if all transition
functions can be r times continuously di�erentiable. We call a manifold smooth if the transition
functions are in�nitely often di�erentiable. Due to homeomorphy of Xi(Ui) and Ui ⊂ Mn the
inverse X−1

i is a parametrization of Ui ⊂Mn

X−1
i : Xi(Ui)→ Ui .

When the local parametrizations are given explicitly, the preimages are denoted Vi = Xi(Ui) and,
instead of X−1

i , we write X̂i, i.e.,
X̂i : Vi → Ui ⊂Mn.

An atlas A for Mn allows us to de�ne di�erentiable mappings to and from Mn. A function
ϕ : Mn → R is said to be of class Ck(Mn) if all functions

ϕ̂i = ϕ ◦ X̂i : Vi → R with Vi = Xi(Ui) ⊂ Rn , i = 1, . . . , N , (2.4)

are k times continuously di�erentiable. A function ϕ ∈ C∞(Mn) is called smooth.
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2.1. Manifolds

The tangent space TxM
n at x ∈Mn is the subspace of R3 consisting of all vectors τ such that

τ =
dγ

dt
(0) for some C1 curve γ : (−1, 1)→Mn with γ(0) = x . (2.5)

Thus, TxM
n is a linear approximation of the manifold at x ∈Mn.

We have a closer look now at the types of manifolds which are relevant for this work starting
with a smooth, three-dimensional manifold Ω. Obviously, Ω is canonically embedded in R3 and all
charts are identity mappings. The tangent space TxΩ at arbitrary x ∈ Ω coincides with Euclidean
space R3 and we choose the standard basis {el}3l=1 to span TxΩ. The standard unit vectors are
especially orthonormal with respect to the Euclidean metric, meaning that

el · ek = δlk =

{
1, l = k,

0, l 6= k,
l, k = 1, 2, 3 . (2.6)

We consider smooth functions and vector �elds with smooth coe�cient functions given in para-
meter coordinates as follows

ϕ(x) = ϕ̂(x), ϕ̂ ∈ C∞(Ω) ,

ϕ(x) =
3∑
l=1

ϕ̂l(x)el, ϕ̂l ∈ C∞(Ω) .

Although trivial in this case, we indicate the switch from Cartesian to parameter coordinates by the
hat. The di�erential operators ∇, curl and div are well de�ned and yield the well-known formulae

∇ϕ(x) =
∂ϕ̂(x)

∂x1
e1 +

∂ϕ̂(x)

∂x2
e2 +

∂ϕ̂(x)

∂x3
e3 ,

curlϕ(x) =

(
∂ϕ̂3(x)

∂x2
− ∂ϕ̂2(x)

∂x3

)
e1 +

(
∂ϕ̂1(x)

∂x3
− ∂ϕ̂3(x)

∂x1

)
e2 +

(
∂ϕ̂2(x)

∂x1
− ∂ϕ̂1(x)

∂x2

)
e3 ,

divϕ(x) =
∂ϕ̂1(x)

∂x1
+
∂ϕ̂2(x)

∂x2
+
∂ϕ̂3(x)

∂x3
.

These di�erential operators are related to each other, meaning that

ϕ
∇−−→ ϕ =

3∑
j=1

ϕ̂jej
curl−−−→ ϕ =

3∑
j=1

ϕ̂jej
div−−→ ϕ with curl∇ϕ = 0 and div curlϕ = 0 . (2.7)

An important observation is that the Riesz representation theorem applies on (2.6) in the sense
that el is the unique vector representation of a functional el ∈ (TxΩ)′ provided the duality pairing
between (TxΩ)′ and TxΩ is realized by the inner product (2.2), i.e.,

el(ek) = el · ek , l, k = 1, 2, 3 . (2.8)

The di�erential operators can, therefore, equivalently be de�ned in terms of the functionals el,
l = 1, 2, 3. This consideration leads to the notion of the exterior derivatives known from di�erential
geometry [40]. In what concerns the manifold Ω, there is obviously no need to distinguish between
these points of view. However, this is a special feature of the canonical embedding of Ω into R3 and
the orthonormality of the standard basis vectors.

The situation is di�erent for manifolds which are not canonically embedded in R3 as it is the
case for Γ. Before general Γ are considered, we look at the simpler case of an open domain T
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parametrized by a smooth function

X̂ : T̂ → T , ξ 7→ x , (2.9)

where T̂ is the parameter domain. Recall that the parametrization X̂ is a bijection relating the
Cartesian coordinates x and the parameter coordinates ξ of any point P ∈ T such that x = X̂(ξ).
Thus, di�erentiation of X̂ with respect to ξ1 and ξ2, respectively, is well de�ned and yields a
holonomic basis of the tangent space TxT . The tangent vectors and the Jacobian at �xed x ∈ T
are given by

al =
∂X̂

∂ξl
, l = 1, 2 , (2.10)

J =

√
det(DX̂

>
DX̂), DX̂ = (a1 : a2) ∈ R3×2 . (2.11)

In the following, the Jacobian also appears as scalar-valued basis function. To emphasize the
di�erence, another notation is used in this case, namely,

a12 = |a1 × a2| = J . (2.12)

We consider smooth functions and tangent vector �elds with smooth coe�cient functions given
in the form

ϕ(x) = ϕ̂12(ξ)a12 , ϕ̂12 ∈ C∞(T̂ ) , (2.13)

ϕ(x) = ϕ̂1(ξ)a1 + ϕ̂2(ξ)a2 ∈ TxT , ϕ̂l ∈ C∞(T̂ ), l = 1, 2 . (2.14)

Then, applying the classical surface di�erential operators curlΓ and divΓ yields [45]

curlΓϕ =
1

J

(
∂(Jϕ̂12)

∂ξ2
a1 −

∂(Jϕ̂12)

∂ξ1
a2

)
, (2.15)

divΓϕ =
1

J

(
∂(Jϕ̂1)

∂ξ1
+
∂(Jϕ̂2)

∂ξ2

)
. (2.16)

These di�erential operators are related to each other, meaning that

ϕ = ϕ̂12 a12
curlΓ−−−→ ϕ = ϕ̂1a1 + ϕ̂2a2

divΓ−−−→ ϕ = ϕ̂ with divΓcurlΓϕ = 0 . (2.17)

The tangent vectors {al}2l=1, are intrinsically de�ned and they are, in general, neither normed
nor orthogonal to each other with respect to the Euclidean metric and the exterior derivatives will,
therefore, not canonically identify with the classical surface di�erential operators (2.15) and (2.16).
In order to show this, we consider a holonomic basis {al}2l=1 of the dual space (TxT )′ and, further,
smooth functions and functionals on the tangent space with smooth coe�cient functions given in
the form

ϕ(x) = ϕ̂(ξ) , ϕ̂ ∈ C∞(T̂ ) , (2.18)

ϕ(x) = ϕ̂1(ξ)a1 + ϕ̂2(ξ)a2 ∈ (TxT )′ , ϕ̂l ∈ C∞(T̂ ), l = 1, 2 . (2.19)
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2.1. Manifolds

Then, applying the exterior derivatives d0 and d1 yields [40]

d0ϕ =
∂ϕ̂

∂ξ1
a1 +

∂ϕ̂

∂ξ2
a2 , (2.20)

d1ϕ =

(
∂ϕ̂2

∂ξ1
− ∂ϕ̂1

∂ξ2

)
a12, a12 = a1 ∧ a2 , (2.21)

where ∧ denotes the wedge product known from di�erential forms. The exterior derivatives are
related to each other, meaning that

ϕ = ϕ̂
d0−→ ϕ = ϕ̂1a

1 + ϕ̂2a
2 d1−→ ϕ = ϕ̂12 a

12 with d1d0ϕ = 0 . (2.22)

Obviously, the de�nition of the operators d0 and d1 requires nothing but a holonomic basis of
(TxT )′. The path-leading idea is to pick a speci�c basis among the in�nitely many possible bases
spanning (TxT )′. We choose the basis functionals such that

al(ak) = δlk , l, k = 1, 2 . (2.23)

Thus, the functionals al, l = 1, 2, belong to the tangent vectors al, l = 1, 2, and the complete set
{al,al}2l=1 is called a bidual basis. Once, a bidual basis is determined, a12 is given by a12 = a1 ∧ a2

and it must hold
a12(a12) = 1 . (2.24)

So far, we speci�ed properties for the functionals of the bidual basis, however, we did not specify
the duality pairing in (2.23). Also there are many possible realizations. The one we choose relies
on the metric structure of the background manifold R3. To obtain the vector representation al of
the functional al for l = 1, 2, we require

al(ak) = al · ak = δlk , l, k = 1, 2 . (2.25)

Thus, our construction is extrinsic and, in order to satisfy the condition (2.25), we need the unit
normal vector given by

n = J−1a1 × a2 . (2.26)

Then, (2.25) and (2.24) is satis�ed for

a1 = J−1n× a2 , a2 = J−1a1 × n , (2.27)

a12 = |a1 × a2| = J−1 . (2.28)

In the following, the boldface letters al, l = 1, 2, and a12 denote the vector representations (2.27)
and (2.28) of the corresponding functionals. Note, that {al}2l=1 is also a holonomic basis for TxT .

In terms of the surface di�erential operators, the identifying of functionals with their vector
representation yields, consequently,

ϕ(x) =̂ ϕ(x) = ϕ̂12(ξ)a12 , ϕ̂ ∈ C∞(T̂ ) , (2.29)

ϕ(x) =̂ ϕ(x) = ϕ̂1(ξ)a1 + ϕ̂2(ξ)a2 ∈ TxT , ϕ̂l ∈ C∞(T̂ ), l = 1, 2 . (2.30)

The corresponding di�erential operators are denoted surface gradient ∇Γ and scalar-valued surface
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curl operator curlΓ and it holds

∇Γϕ =
∂ϕ̂

∂ξ1
a1 +

∂ϕ̂

∂ξ2
a2 , (2.31)

curlΓϕ =

(
∂ϕ̂2

∂ξ1
− ∂ϕ̂1

∂ξ2

)
a12 . (2.32)

These di�erential operators are related to each other, meaning that

ϕ = ϕ̂
∇Γ−−→ ϕ = ϕ̂1a

1 + ϕ̂2a
2 curlΓ−−−→ ϕ = ϕ̂12 a

12 with curlΓ∇Γϕ = 0 , (2.33)

The di�erence between (2.22) and (2.33) is that the original sequence (2.22) is based on functionals
and, therefore, it is metric-free. The sequence (2.33) is not metric-free since the functionals are
realized and this always requires a metric structure � in our case it is the inner product of R3.

Finally, the sequences on the level of vector �elds, (2.33) and (2.17), are related by the commuting
diagram

ϕ = ϕ̂
∇Γ−−−→ ϕ = ϕ̂1a

1 + ϕ̂2a
2 curlΓ−−−→ ϕ = ϕ̂12 a

12

↓ 1 ↓ n× ↓ 1

ϕ = J−1 ϕ̂a12
curlΓ−−−→ ϕ = J−1 (ϕ̂2a1 − ϕ̂1a2)

divΓ−−−→ ϕ = J−1 ϕ̂12 .

(2.34)

Recall that Γ denotes a closed, connected and simply-connected manifold of dimension two. For
now, Γ is assumed smooth and exactly described by an atlas of the form

Γ =
N⋃
i=1

Γi with Γi ∩ Γj = ∅ for i 6= j , and X̂i : T̂ → Γi, i = 1, . . . , N . (2.35)

Let {ai,12,ai,12} and {ai,k,ai,k}2k=1 denote the bidual bases induced by the parametrization X̂i of
the element Γi and consider a function ϕ given piecewise in parameter coordinates

ϕ
∣∣
Γi

= ϕ̂i , ϕ̂i ∈ C∞(T̂ ) , i = 1, . . . , N .

We de�ne the surface gradient of the function ϕ piecewise by

(∇Γϕ)
∣∣
Γi

= ∇Γ(ϕ
∣∣
Γi

), i = 1, . . . , N . (2.36)

To render ∇Γϕ well de�ned on Γ, necessary and su�cient conditions at the intersection points of
elements need to be found. Let the two elements Γi and Γj intersect at x. The regularity of Γ
guarantees that the tangent planes TxΓi, TxΓj coincide and, without restriction of any kind, we
can, therefore, assume that the parametrizations X̂i, X̂j are such that the bidual basis vectors at
x also coincide and there is no need to keep the indices i, j, i.e., let

al = ai,l = aj,l ,

al = ai,l = aj,l ,
with al · ak = δlk , l, k = 1, 2 , (2.37)

and
a12 = ai,12 = aj,12 ,

a12 = ai,12 = aj,12 ,
with a12 · a12 = 1 . (2.38)
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Thus, we obtain at the intersection point x

∇Γ(ϕ
∣∣
Γi

) =
∂ϕ̂i
∂ξ1

a1 +
∂ϕ̂i
∂ξ2

a2 and ∇Γ(ϕ
∣∣
Γj

) =
∂ϕ̂j
∂ξ1

a1 +
∂ϕ̂j
∂ξ2

a2 , (2.39)

and from (2.39) we conclude, that the surface gradient at x is well de�ned if

∂ϕ̂i
∂ξl

=
∂ϕ̂j
∂ξl

for l = 1, 2 . (2.40)

Let ϕ be a tangent vector �eld given piecewise in parameter coordinates

ϕ
∣∣
Γi

= ϕ̂i,1a
i,1 + ϕ̂i,2a

i,2 ϕ̂i,l ∈ C∞(T̂ ) , l = 1, 2, i = 1, . . . , N . (2.41)

We de�ne the scalar-valued surface curl operator piecewise by

(curlΓϕ)
∣∣
Γi

= curlΓ(ϕ
∣∣
Γi

), i = 1, . . . , N , (2.42)

and we obtain at the intersection point x

curlΓ(ϕ
∣∣
Γi

) =

(
∂ϕ̂i,2
∂ξ1

− ∂ϕ̂i,1
∂ξ2

)
a12 and curlΓ(ϕ

∣∣
Γj

) =

(
∂ϕ̂j,2
∂ξ1

− ∂ϕ̂j,1
∂ξ2

)
a12 , (2.43)

and from here, we conclude that the scalar-valued curl operator at x is well de�ned if

∂ϕ̂i,2
∂ξ1

− ∂ϕ̂i,1
∂ξ2

=
∂ϕ̂j,2
∂ξ1

− ∂ϕ̂j,1
∂ξ2

. (2.44)

Analogously, the surface di�erential operators curlΓ and divΓ are de�ned piecewise and their de�-
nition is independent of the atlas.

So far, we considered smooth manifolds and smooth functions only. Due to regularity, it is clear
that di�erentiation was not an issue. However, whenever the manifold is not di�erentiable, the
surface di�erential operators cannot be de�ned as in the smooth case. A more general setting must
be considered. For instance, let Γ be the boundary of a Lipschitz polyhedron. This means that Γ
is in�nitely smooth almost everywhere and the transition functions are Lipschitz continuous. Now,
the regularity of Γ does not guarantee that the tangent planes TxΓi and TxΓj at an intersection
point x of two elements Γi and Γj coincide. This means that the piecewise de�nition of the surface
di�erential operators is not meaningful. We consider the case that the elements Γi and Γj share an
edge eij . Without restriction of any kind it is assumed that eij is parametrized on both elements
for ξ2 = 0. Then, it holds for any x ∈ eij

ai,1 ‖ aj,1 , (2.45)

and, in general,

ai,2 ∦ aj,2 , ai,1 ∦ aj,1, ai,2 ∦ aj,2 and ai,12 6= aj,12 and ai,12 6= aj,12 . (2.46)

Thus, even if (2.40) holds, the surface gradient at any x ∈ eij is not uniquely de�ned by (2.36) since

∇Γ(ϕ
∣∣
Γi

) =
∂ϕ̂i
∂ξ1

ai,1 +
∂ϕ̂i
∂ξ2

ai,2 6= ∂ϕ̂j
∂ξ1

aj,1 +
∂ϕ̂j
∂ξ2

aj,2 = ∇Γ(ϕ
∣∣
Γj

) . (2.47)

However, we may consider the projections with respect to the tangent vectors ai,1 and aj,1, respec-
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tively. Provided (2.40), we obtain by use of the biduality of the tangent vectors

∇Γ(ϕ
∣∣
Γi

) · ai,1 =
∂ϕ̂i
∂ξ1

= ∇Γ(ϕ
∣∣
Γj

) · aj,1 =
∂ϕ̂j
∂ξ1

. (2.48)

This observation suggests to de�ne the surface gradient in weak sense, meaning that (2.48) holds.
However, for points on Γ where more than two elements intersect, even this de�nition fails because
we cannot assume (2.48) anymore. Let us call these points the critical points. A meaningful
de�nition of the surface gradient using (2.48) requires a comprehensive functional setting where the
critical points do not matter.
Also, the piecewise de�nition of the scalar-valued curl operator (2.42) is not unique on any

intersection point because of geometrical reasons. However, the surface curl operator is given a
weak sense by the piecewise multiplication with ai,12 and aj,12 respectively, because

curlΓ(ϕ
∣∣
Γi

) · ai,12 =
∂ϕ̂i,2
∂ξ1

− ∂ϕ̂i,1
∂ξ2

= curlΓ(ϕ
∣∣
Γj

) · aj,12 =
∂ϕ̂j,2
∂ξ1

− ∂ϕ̂j,1
∂ξ2

, (2.49)

provided (2.44) holds.
Similarly, consider a function given piecewise in parameter coordinates

ϕ
∣∣
Γi

= ϕ̂i,12ai,12 . (2.50)

Due to geometrical reasons, this function is in general not globally continuous, however, we can
de�ne weak continuity because

ai,12 · ϕ
∣∣
Γi

= aj,12 · ϕ
∣∣
Γj
, (2.51)

provided
ϕ̂i,12 = ϕ̂j,12 . (2.52)

Also, to explain the vector-valued surface curl operator at intersection points on edges a projection
is used. With the same notation as above, we obtain

Jia
i,2 · curlΓ(ϕ

∣∣
Γi

) = Jja
j,2 · curlΓ(ϕ

∣∣
Γj

) , (2.53)

provided
∂(Jiϕ̂i)

∂ξl
=
∂(Jjϕ̂j)

∂ξl
for l = 1, 2 . (2.54)

There are some important observations left to state. The non-smoothness of the Lipschitz bound-
ary requires to de�ne the surface di�erential operators in weak sense. A convenient tool to end with
this is to consider the tangent vectors decomposed with respect to bidual basis vectors. We have
seen that vectors given in terms of a1, a2 are classical tangent vectors and vectors given in terms
of a1, a2 are vector representations of functionals. The construction of the bidual basis vectors
requires the well-de�nedness of point evaluation and relies on the metric structure of Euclidean
space R3. In order to generalize the de�nition of di�erential operators and make them robust with
respect to critical intersection points, the inner product of Euclidean space is not appropriate. The
Sobolev spaces introduced in Section 2.5 provide an appropriate functional setting.
Note, that the manifold Ω is always smooth and, thus, the only regularity assumption to be

weakened concerns the regularity of the functions.

From now on, Ω ⊂ R3 denotes an open domain of dimension three. Its boundary Γ is a manifold
of dimension two, which is non-canonically embedded in Euclidean space R3. Γ is given in the
form (2.35) where the parametrizations are smooth and globally Lipschitz continuous or r times
continuously di�erentiable with r ≥ 1.
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2.2. Distributions

The space of test functions and the space of distributions are de�ned in this section. The functional
setting connecting these two spaces will be used in Chapter 3 to reformulate the boundary value
problems we are interested in.

De�nition 2 1. The space of in�nitely smooth functions with compact support in R3 is

D(R3) =
{
ϕ ∈ C∞(R3) : ∃K ⊂ R3; compact , suppϕ ⊂ K

}
.

D(R3) is called the space of test functions. A sequence (ϕj)
∞
j=1 is said to converge towards ϕ ∈ D(R3)

if there exists a compact set K ⊂ R3 such that suppϕj ⊂ K for all j

lim
j→∞

sup
x∈K
|Dα(ϕj(x)− ϕ(x))| = 0 ,

for all α ∈ N3
0 [58,59]. Due to [57], the topology of the test function space is de�ned as inductive limit

with respect to the compact sets K ⊂ R3 of the subspaces

forK ⊂ R3 compact : DK(R3) =
{
ϕ ∈ C∞(R3) : suppϕ ⊂ K

}
.

We use the notation D(R3) for the space of three-dimensional test vector �elds, i.e., each component
belongs to D(R3).

2. A continuous, linear map V : D(R3)→ C is called distribution. Let V be a distribution, then, for all
compact sets K ⊂ R3, there are constants c = c(K) > 0 and m ∈ N0 with

∀ϕ ∈ D(R3) , suppϕ ⊂ K : |V (ϕ)| < c max
|α|≤m

sup
x∈K
|Dαϕ(x)| ,

for α, |α| =
3∑
i=1

αi ≤ m. The angular brackets denote the evaluation of a functional on a test function

V ∈ D(R3)′, ϕ ∈ D(R3) : V (ϕ) = 〈V, ϕ〉 .

We use the notation D(R3)′ for the space of distributions on D(R3).

Moreover, we de�ne the support of a distribution.

De�nition 3 A distribution V ∈ D(R3)′ is said to vanish on an open subset G ⊂ R3 if its evaluation on
every test function whose support is contained in G vanishes:

∀ϕ ∈ D(R3) , suppϕ ⊂ G : 〈V, ϕ〉 = 0 .

The complement of this subset G is called the support of the distribution V

suppV ⊂ R3\G .

2.3. Hilbert Spaces

Besides the test functions and the distributions, complex Hilbert spaces are needed in this work.
A Hilbert space H is a complete vector space equipped with an inner product. The inner product
satis�es

(u, v)H = (v, u)H ,

(αu1 + βu2, v)H = α(u1, v)H + β(u2, v)H ,

(u, u)H ≥ 0, (u, u)H = 0⇔ u = 0 .

15
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Thus, it is a sesquilinear map, which induces a norm on H by

||v||H =
√

(v, v)H .

H turns into a Banach space with respect to this norm.

Classical examples for Hilbert spaces are the Lebesgue spaces L2(Rn) equipped with the inner
product

(u, v)L2(Rn) =

∫
Rn

v udLn .

Here, Ln denotes the Lebesgue measure of Rn [59]. The associated L2-norm of a function u ∈ L2(Rn)
is �nite, i.e.,

||u||L2(Rn) =
(∫
Rn

|u|2 dLn
) 1

2
<∞ .

In what concerns Hilbert spaces, one of the most important results is the representation theorem
of Riesz [59]. It says that the spaces H and H ′ are isomorphic to each other. However, the duality
pairing which characterizes the dual space H ′ is not speci�ed by the Riesz isomorphism: let H
denote a Hilbert space with inner product (·, ·)H . We consider H ′ equipped with the norm

||V ||H′ = sup
||u||H=1

|V (u)| .

Then, for any v ∈ H, V (u) = (v, u)H de�nes a continuous linear functional

V ∈ H ′ with ||V ||H′ = ||v||H .

It follows from the Riesz theorem, that for any V ∈ H ′ there is a unique v ∈ H such that

∀u ∈ H : V (u) = (v, u)H with ||V ||H′ = ||v||H .

Evidently, there exists an isometric isomorphism J

v ∈ H : J(v) = V ∈ H ′ ,

and one can de�ne an abstract duality pairing on H ′ ×H by

〈V, u〉H′×H = V (u) = (J−1V, u)H , for V ∈ H ′, u ∈ H .

In this example, H ′ is an abstract dual space in the sense that we have no characterization for the
elements of H ′ other than the assertion that they are continuous linear functionals on H. In order
to have a concrete characterization for the elements in the dual space, we can choose, for instance,
the inner product of H and identify the Hilbert space itself with its dual, i.e., H ′ =̂ H.

However, this is not the only possible choice: to realize the dual space of the Sobolev spaces on
Rn another duality is used, for instance. Sobolev spaces can be de�ned by the Fourier transform,
i.e.,

H = Hs(Rn) =
{
u ∈ L2(Rn), (1 + |ξ|2)

s
2 û(ξ) ∈ L2(Rn)

}
, s ≥ 0 , n ≥ 1 ,

(u, v)s =

∫
Rn

(1 + |ξ|2)sv̂(ξ)û(ξ) dLn(ξ) ,

where û denotes the unique extension of the Fourier transform of a square integrable function [59].
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The Plancherel identity

∀u, v ∈ L2(Rn) :

∫
Rn

u(x) v(x) dLn(x)

∫
Rn

û(ξ) v̂(ξ) dLn(ξ)

and the dense embedding H ↪→ L2(Rn) are necessary tools to show that

H ′ =̂ H−s(Rn) =
{
f ∈ S ′(Rn), (1 + |ξ|2)−

s
2 f̂(ξ) ∈ L2(Rn)

}
is a realization for the dual of H. Here, S(Rn) denotes the Schwartz space of in�nitely smooth
functions [59]. It is important to note that the realization of the duality pairing is the inner product
of L2(Rn), extended to H ′ ×H. The �rst advantage of this construction is that the duality pairing
results from the inner product of L2(Rn) and not from the inner product of H which might be more
complicated. The second is that one obtains a precise characterization for H ′ in terms of regularity.
In this context, one often calls the L2-space the pivot space meaning that it occupies a position
that is precisely between H and H ′.
Let X be a topological, linear space and H a Hilbert space and the embedding i : X → H is

continuous. By this, we mean, that X ⊂ H and any convergent sequence xn → 0 in X implies
i(xn) → 0 in H, we write X ↪→ H. The continuity of a V ∈ H ′ means, moreover, that yn → 0 in
H implies V (yn)→ 0 in R. Then, it is evident that the continuous embedding X ↪→ H implies the
continuous embedding H ′ ↪→ X ′, i.e.,

i′ : H ′ → X ′ is continuous .

If i : X → H has a dense image, then i′ : H ′ → X ′ is injective. To see this, suppose that i(X) is
dense in H, and i′(V ) = 0. Then

∀x ∈ X : 〈i′(V ), x〉 = 0 .

But
〈i′(V ), x〉 = 〈V, i(x)〉 = 0

and since the elements i(x) are dense in H and V is continuous on H, V must be zero whenever
i′(V ) is zero. From this discussion it follows that the dual space of any Hilbert space in which the
test functions D(R3) or D(R3) are densely included can be identi�ed with a subspace of the space
of distributions D(Rn)′, or D(R3)′.
We end this section with the de�nition of an important class of Hilbert spaces. Let Mn denote

a Lipschitz manifold of dimension n, 1 ≤ n ≤ 3 embedded in R3. Similar to the L2(Rn) case, we
classify functions de�ned on Mn according to their square integrability on the manifold. Instead of
the Lebesgue measure Ln, the Hausdor� measure must be employed in order to take into account
the curvature of the manifold. When Mn is parametrized by a Lipschitz continuous function [59]

X̂ : ξ → x , ξ = (ξ1, . . . , ξn)>, x = (x1, x2, x3)> ,

we obtain the explicit formulae for the Hausdor� measure Hn in terms of the parametrization X̂
and the usual n-dimensional Lebesgue measure Ln, namely,

dHn = J dLn , J =

√
det(DX̂

>
DX̂), DX̂ =

(
∂X̂i

∂ξj

)
ij

∈ R3×n, i = 1, . . . , 3, j = 1, . . . , n .

De�nition 4 Let Mn ⊂ R3 be a Lipschitz manifold of dimension n.
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1. The space of square integrable functions

L2(Mn) =
{
v : Mn → C : ||v||L2(Mn) <∞

}
, ||v||2L2(Mn) =

∫
Mn

|v|2 dHn (2.55)

is a Hilbert space endowed with the inner product [59],

∀u, v ∈ L2(Mn) : (u, v)Mn =

∫
Mn

vudHn . (2.56)

2. The space of square integrable vector �elds

L2(Mn) =
{
v : Mn → C3 : ||v||L2(Mn) <∞

}
, ||v||2L2(Mn) =

∫
Mn

|v|2 dHn (2.57)

is a Hilbert space endowed with the inner product

∀u,v ∈ L2(Mn) : (u,v)Mn =

∫
Mn

v · udHn . (2.58)

Table 2.1 contains a list of the notations we choose in the following for the representatives of
manifolds Mn of speci�c dimension n.

Table 2.1.: Notations for manifolds of speci�c dimension.

Manifold Mn Dimension n Di�erential dHn

Ω 3 dx

Γ 2 dσ

γ 1 dl

2.4. Energy spaces

Appropriate Hilbert spaces for solving problems of theoretical physics are the energy spaces [25]

H1(Ω), H(curl,Ω), H(div,Ω) .

All of them are de�ned as the completion of the test function spaces with respect to graph norms.
The graph norms contain di�erential operators. The energy spaces naturally inherit the Hilbert
space structure of L2(Ω) and L2(Ω), respectively. Di�erent from the Lebesgue spaces, the energy
spaces guarantee the existence of weak derivatives. Thus, it is natural to integrate by parts because
integration and di�erentiation are de�ned in L2-sense. However, the extension of the integration by
parts formulae on energy spaces is non-trivial and it must be postponed until we know more about
trace spaces. But certainly, the embeddings

H1(Ω) ↪→ D(R3)′, H(curl,Ω) ↪→ D(R3)′, H(div,Ω) ↪→ D(R3)′

allow integration by parts in distributional sense. The subject of this section is to develop explicit
formulae for this integration by parts.
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The Hilbert spaces introduced in De�nition 4 give rise to an important class of distributions.

1. For an arbitrary compact subset K ⊂ R3 and arbitrary ϕ ∈ D(R3) with suppϕ ⊂ K and
v ∈ L2(R3) , it holds

|(v, ϕ)R3 | ≤ ||v||L2(R3)||ϕ||L2(R3) ≤ |K| ||v||L2(R3) sup
x∈K
|ϕ(x)| .

Thus, according to De�nition 2, v can be identi�ed with a distribution V ∈ D(R3)′. We call
V a regular distribution and we write

∀ϕ ∈ D(R3) : 〈V, ϕ〉 = (v, ϕ)R3 .

If it is clear from the context, v ∈ L2(R3) and V ∈ D(R3)′ are not distinguished.

2. Let us consider v ∈ L2(Ω). Thus, v is given only in Ω ⊂ R3. By the operator

E : v 7→ ṽ, ṽ =

{
v in Ω ,

0 in Ωc ,

a continuous embedding L2(Ω) ↪→ L2(R3) is de�ned because

||E(v)||L2(R3) = ||v||L2(Ω) .

According to the �rst example, E(v) ∈ L2(R3) identi�es with a distribution V ∈ D(R3)′ in
the sense that

∀ϕ ∈ D(R3) : 〈V, ϕ〉 = (E(v), ϕ)R3 = (v, ϕ)Ω .

By the use of the weak di�erentiation the energy spaces are de�ned [44,59].

H1(R3) =
{
v ∈ L2(R3) : ∇v ∈ L2(R3)

}
, (2.59)

H(curl,R3) =
{
v ∈ L2(R3) : curlv ∈ L2(R3)

}
, (2.60)

H(div,R3) =
{
v ∈ L2(R3) : div v ∈ L2(R3)

}
. (2.61)

H1(R3), H(curl,R3) and H(div,R3) turn into Hilbert spaces equipped with the inner products

u, v ∈ H1(R3) : (u, v)1,R3 = (u, v)R3 + (∇u,∇v)R3 , (2.62)

u,v ∈H(curl,R3) : (u,v)curl,R3 = (u,v)R3 + (curlu, curlv)R3 , (2.63)

u,v ∈H(div,R3) : (u,v)div,R3 = (u,v)R3 + (divu, div v)R3 . (2.64)

The corresponding graph norms are

v ∈ H1(R3) : ||v||H1(R3) = ((v, v)R3 + (∇v,∇v)R3)
1
2 , (2.65)

v ∈H(curl,R3) : ||v||H(curl,R3) = ((v,v)R3 + (curlv, curlv)R3)
1
2 , (2.66)

v ∈H(div,R3) : ||v||H(div,R3) = ((v,v)R3 + (div v,div v)R3)
1
2 . (2.67)

The functions and vector �elds, respectively, have square integrable derivatives and the following
identities hold true for all ϕ ∈ D(R3) and ϕ ∈ D(R3)

v ∈ H1(R3) : 〈∇v,ϕ〉 = −〈v,divϕ〉 = −(v,divϕ)R3 = (∇v,ϕ)R3 , (2.68)

v ∈H(curl,R3) : 〈curlv,ϕ〉 = 〈v, curlϕ〉 = (v, curlϕ)R3 = (curlv,ϕ)R3 , (2.69)

v ∈H(div,R3) : 〈div v, ϕ〉 = −〈v,∇ϕ〉 = −(v,∇ϕ)R3 = (div v, ϕ)R3 . (2.70)
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For truncated test functions

ϕ ∈ D(Ω) =
{
ϕ = ψ|Ω , ψ ∈ D(R3)

}
(2.71)

and truncated test vector �elds

ϕ ∈ D(Ω) =
{
ϕ = ψ|Ω , ψ ∈ D(R3)

}
, (2.72)

we distinguish the following traces on the boundary Γ.

De�nition 5 Let Ω be a bounded Lipschitz domain with a simply connected boundary Γ, the unit normal
vector exists almost everywhere on Γ and is denoted by n. Let x ∈ Γ, y ∈ Ω, for ϕ ∈ D(Ω) and ϕ ∈ D(Ω),
we de�ne

γ0ϕ(x) = lim
y→x

ϕ(y) , (2.73)

γ1ϕ(x) = lim
y→x

n(x) · ∇ϕ(y) , (2.74)

γRϕ(x) = lim
y→x

(n(x)×ϕ(y))× n(x) , (2.75)

γDϕ(x) = lim
y→x

n(x)×ϕ(y) , (2.76)

γNϕ(x) = lim
y→x

n(x)× curlϕ(y) , (2.77)

γnϕ(x) = lim
y→x

n(x) ·ϕ(y) . (2.78)

For a test vector �eld ϕ ∈ D(Ω), we denote

γ0ϕ = (γ0ϕ1, γ0ϕ2, γ0ϕ3)
>
.

Thus, the trace operators are well de�ned when the normal vector is well de�ned and thus, the
operators

γ0 : D(Ω) → L2(Γ) ,

γ1 : D(Ω) → L2(Γ) ,

γR : D(Ω) → L2
t (Γ) ,

γD : D(Ω) → L2
t (Γ) ,

γN : D(Ω) → L2
t (Γ) ,

γn : D(Ω) → L2(Γ)

are continuous. Here, L2
t (Γ) ⊂ L2(Γ) is the space of tangential, thus two-dimensional, vector �elds

which are square integrable on Γ,

L2
t (Γ) =

{
u ∈ L2(Γ), n · u = 0 a.e. on Γ

}
. (2.79)

Until now, we have not yet de�ned function spaces that contain functions which possess weak
derivatives in Ω  R3 only. By this we mean, for example, v ∈ L2(R3) with ∇v ∈ L2(Ω). For such
v, it obviously holds

∀ϕ ∈ D(R3) , suppϕ ⊂ Ω : (v,divϕ)Ω = −(∇v,ϕ)Ω .
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Let the Hilbert spaces

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)

}
, (2.80)

H(curl,Ω) =
{
v ∈ L2(Ω) : curlv ∈ L2(Ω)

}
, (2.81)

H(div,Ω) =
{
v ∈ L2(Ω) : div v ∈ L2(Ω)

}
, (2.82)

be equipped with the inner products

u, v ∈ H1(Ω) : (u, v)1,Ω = (u, v)Ω + (∇u,∇v)Ω , (2.83)

u,v ∈H(curl,Ω) : (u,v)curl,Ω = (u,v)Ω + (curlu, curlv)Ω , (2.84)

u,v ∈H(div,Ω) : (u,v)div,Ω = (u,v)Ω + (divu,div v)Ω . (2.85)

Recall that for v ∈ L2(Ω), we denote by ṽ ∈ L2(R3) the vector �eld

ṽ =

{
v in Ω ,

0 in Ωc .
(2.86)

For v ∈H(div,Ω), it holds, by de�nition,

∀ϕ ∈ D(R3) : 〈div ṽ, ϕ〉 = −〈ṽ,∇ϕ〉 = −(v,∇ϕ)Ω ,

and, moreover, we introduce

〈γnvδΓ, ϕ〉 = (div v, ϕ)Ω + (v,∇ϕ)Ω . (2.87)

Provided γnvδΓ ∈ D(R3)′ is well de�ned, it has support Γ as for all ϕ with suppϕ ⊂ Ω or with
suppϕ ⊂ Ωc, it holds

(div v, ϕ)Ω + (v,∇ϕ)Ω = 0 .

Lemma 2.4.1 For v ∈H(div,Ω), γnvδΓ ∈ D(R3)′ is well de�ned and the following characterization
of div ṽ is valid

∀ϕ ∈ D(R3) : 〈div ṽ, ϕ〉 = (div v, ϕ)Ω − 〈γnvδΓ, ϕ〉 . (2.88)

Proof: First, let v ∈ D(Ω), then for any ϕ ∈ D(R3) with suppϕ ⊂ K, it holds∣∣∣ ∫
Γ

γnv γ0ϕdσ
∣∣∣ = |(div v, ϕ)Ω + (v,∇ϕ)Ω|

≤ 2 ||v||H(div,Ω)||ϕ||H1(Ω)

≤ c max
|α|≤1

sup
x∈K
|Dαϕ(x)| , c = 2 |Ω| ||v||H(div,Ω) .

By density, there exists a unique distribution extending this functional on vector �elds v ∈H(div,Ω).
This distribution is γnvδΓ ∈ D(R3)′. The characterization (2.88) follows from (2.87). 2

Similarly, for v ∈H(curl,Ω), it holds, by de�nition,

∀ϕ ∈ D(R3) : 〈curl ṽ,ϕ〉 = 〈ṽ, curlϕ〉 = (v, curlϕ)Ω ,

and we introduce
〈γDvδΓ,ϕ〉 = (curlv,ϕ)Ω − (v, curlϕ)Ω . (2.89)
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Provided γDvδΓ ∈ D(R3)′ is well de�ned, it has support Γ as for all ϕ with suppϕ ⊂ Ω or with
suppϕ ⊂ Ωc, it holds

(curlv,ϕ)Ω − (v, curlϕ)Ω = 0 .

Lemma 2.4.2 For v ∈ H(curl,Ω), γDvδΓ ∈ D(R3)′ is well de�ned and the following characteri-
zation of curl ṽ is valid

∀ϕ ∈ D(R3) : 〈curl ṽ,ϕ〉 = (curlv,ϕ)Ω − 〈γDvδΓ,ϕ〉 . (2.90)

Proof: First, let v ∈ D(Ω) be a test vector �eld. Then, for ϕ ∈ D(R3) with suppϕ ⊂ K, the
integration by parts yields∣∣∣ ∫

Γ

γDv · γ0ϕdσ
∣∣∣ = |(curlv ,ϕ)Ω − (v , curlϕ)Ω|

≤ 2 ||v||H(curl,Ω)||ϕ||H(curl,Ω)

≤ c max
|α|≤1

sup
x∈K
|Dαϕ(x)| , c = 2 |Ω| ||v||H(curl,Ω) .

Thus, there exists a unique distribution extending this functional on vector �elds v ∈ H(curl,Ω).
This distribution is γDvδΓ ∈ D(R3)′. The characterization (2.90) follows from (2.89). 2

So far, we considered the energy spaces apart from each other. However, provided Ω ⊂ R3 is
simply connected, it is well known that the gradient and the curl operator, along with the divergence
operator, form an exact sequence relating the energy spaces in the following way

H1(Ω)
∇−−→H(curl,Ω)

curl−−−→H(div,Ω)
div−−→ L2(Ω) .

In an exact sequence of operators, the range of each operator coincides with the null-space of the
operator next in the sequence. A vector �eld with curlu = 0 almost everywhere in Ω must have
the following representation

u = ∇u with u ∈ H1(Ω) .

Similarly, if the divergence of a vector �eld vanishes divu = 0 almost everywhere in Ω, u must have
the following representation

u = curlv with v ∈H(curl,Ω) .

2.5. Trace Spaces

In order to study solutions to boundary value problems in the energy spaces de�ned in Section 2.4,
boundary values of the corresponding functions should be de�ned. The graph norms of the energy
spaces do not take into account boundary values and, thus, it is not clear whether traces exist or
not. It turns out that the energy spaces possess weak traces and it is the subject of this section
to de�ne the trace spaces. Moreover, their characterization will yield duality pairings which are
appropriate to replace the distributional pairings from the previous section.
To obtain the most general results, we assume that Γ is the boundary of a curvilinear Lipschitz

polyhedron. For this case, the results are standard forH1(Ω) and can be found in [44]. The de�nition
of the trace spaces of H(curl,Ω) builds up on the original papers [12, 13]. The characterization
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developed here is, however, slightly more general and accounts also for the curvilinear case. A more
abstract de�nition of the trace spaces is found in [15].
As usual, Γ is assumed to be the boundary of a curvilinear Lipschitz polyhedron given by an atlas

of the following kind

Γ =

N⋃
i=1

Γi with Γi ∩ Γj = ∅ for i 6= j , and X̂i : T̂ → Γi, i = 1, . . . , N . (2.91)

Recall that for any vector �eld v ∈H(div,Ω) and any test function ϕ ∈ D(R3) it holds

〈γnvδΓ, ϕ〉 = (div v, ϕ)Ω + (v,∇ϕ)Ω .

The distribution γnvδΓ has support Γ and its evaluation on ϕ ∈ D(R3) depends only on ϕ
∣∣
Γ
.

Further, it holds

|〈γnvδΓ, ϕ〉| = |(div v, ϕ)Ω + (v,∇ϕ)Ω| ≤ 2 ||ϕ||H1(Ω) ||v||H(div,Ω) .

Thus, for �xed v ∈H(div,Ω) the distribution γnvδΓ possesses a unique extension to a continuous
functional on H1(Ω). This is clear because for arbitrary w ∈ H1(Ω), there is a sequence of test
functions (ϕj)

∞
j=1, ϕj ∈ D(R3) with

lim
j→∞

||w − ϕj ||H1(Ω) = 0 .

This density argument makes also clear that the Dirichlet trace γ0w exists for functions in H1(Ω).
The corresponding trace space H

1
2 (Γ) is introduced in De�nition 6.

De�nition 6 Let Γ be the boundary of a curvilinear Lipschitz polyhedron. The Sobolev space H
1
2 (Γ) is

de�ned as the function space which contains all scalar-valued functions ϕ ∈ L2(Γ) that ful�ll the following
two conditions:

1. For all elements Γi, i = 1, . . . , N , ϕ
∣∣
Γi
∈ H 1

2 (Γi), i.e., it holds∫
Γi

∫
Γi

|ϕ(x)− ϕ(y)|2

|x− y|3
dσx dσy <∞ . (2.92)

2. For all edges, i.e., ∂Γi ∩ ∂Γj = eij , it holds

Nij(ϕ) =

∫
Γi

∫
Γj

|ϕ(x)− ϕ(y)|2

|x− y|3
dσx dσy <∞ . (2.93)

The second condition of the de�nition guarantees that functions in H
1
2 (Γ) are globally weakly

continuous.
A realization for the dual spaceH

1
2 (Γ)′ is obtained as an extension of the L2(Γ) inner product [44].

This realization of H
1
2 (Γ)′ is denoted H−

1
2 (Γ) and for the corresponding duality pairing we write

〈·, ·〉 1
2
. Moreover, it is proved in [44] that the operators

γ0 : H1(Ω) → H
1
2 (Γ) ,

γn : H(div,Ω) → H−
1
2 (Γ)

(2.94)

are continuous and surjective with continuous right inverses. The generalized integration by parts

23



Chapter 2. Mathematical Framework

formula applies for v ∈H(div,Ω), w ∈ H1(Ω) and it reads

(div v, w)Ω = − (v,∇w)Ω + 〈γnv, γ0w〉 1
2
. (2.95)

Further, we need the following two subspaces of H
1
2 (Γ) and H−

1
2 (Γ), respecively,

H
1
2
∗ (Γ) =

{
ϕ ∈ H

1
2 (Γ) : 〈1, ϕ〉 1

2
= 0
}
,

H
− 1

2
∗ (Γ) =

{
ϕ ∈ H−

1
2 (Γ) : 〈ϕ, 1〉 1

2
= 0
}
.

Recall that for v ∈H(curl,Ω) and for ϕ ∈ D(R3)

〈γDvδΓ,ϕ〉 = (curlv,ϕ)Ω − (v, curlϕ)Ω .

The following inequality holds

|〈γDvδΓ,ϕ〉| = |(curlv,ϕ)Ω − (v, curlϕ)Ω| ≤ 2 ||v||H(curl,Ω)||ϕ||H(curl,Ω) .

It is clear that there exists a unique extension of the left hand side to a functional on H(curl,Ω)
because the test vector �elds are dense inH(curl,Ω), i.e., each w ∈H(curl,Ω) can be represented
as the limit of a convergent sequence of test vector �elds (ϕj)

∞
j=1, ϕj ∈ D(R3), i.e.,

lim
j→∞

||w −ϕj ||H(curl,Ω) = 0 .

The same reasoning as for H1(Ω) allows to conclude that vector �elds in H(curl,Ω) possess weak

traces. In order to de�ne them, we �rst introduce the Sobolev spaces H
1
2
R(Γ) and H

1
2
D(Γ) of

tangential vector �elds with regularity 1
2 . To explicitly describe the regularity of tangent vector

�elds de�ned on triangles Γi and Γj with common edge eij , it is convenient to introduce bidual
vector �elds {al,al}2l=1. Bidual vector �elds are orthogonal to each other in the sense that it holds∫

Γi∪Γj

al · ak dσ = c δlk, l, k = 1, 2, c = |Γi|+ |Γj | . (2.96)

The bidual basis vectors (2.10) and (2.27) can be de�ned element wise yielding bidual vector �elds
in L2

t (Γi ∪Γj) with (2.96). Without restriction of any kind it is assumed that the parametrizations
X̂i and X̂j are such that the common edge eij is parametrized for ξ2 = 0. Thus, it holds

a1 =

{
ai,1 on Γi ,

aj,1 on Γj ,
with ai,1 ‖ aj,1 for all x ∈ eij , (2.97)

a2 =

{
ai,2 on Γi ,

aj,2 on Γj ,
with ai,2 ⊥ a1, aj,2 ⊥ a1 for all x ∈ eij , (2.98)

a2 =

{
ai,2 on Γi ,

aj,2 on Γj ,
and a1 =

{
ai,1 on Γi ,

aj,1 on Γj .
(2.99)

All those vector �elds are smooth on Γi and Γj but, in general, they are discontinuous across eij .

De�nition 7 Let Γ be the boundary of a curvilinear Lipschitz polyhedron. The Sobolev space H
1
2

R(Γ) is
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2.5. Trace Spaces

de�ned as the function space which contains all tangent vector �elds ϕ ∈ L2
t (Γ) that ful�ll the following two

conditions:

1. For all elements Γi, i = 1, . . . , N , ϕ
∣∣
Γi
∈H

1
2 (Γi), i.e., (2.92) holds for every scalar-valued component.

2. For all edges, i.e., ∂Γi ∩ ∂Γj = eij , it holds

NR,ij(ϕ) = Nij(ϕR) <∞ , where ϕR = ϕ
∣∣
Γi∪Γj

· a1 . (2.100)

The Sobolev spaceH
1
2

D(Γ) is de�ned as the function space which contains all tangent vector �elds ϕ ∈ L2
t (Γ)

that ful�ll the following two conditions:

1. For all elements Γi, i = 1, . . . , N , ϕ
∣∣
Γi
∈H

1
2 (Γi), i.e., (2.92) holds for every scalar-valued component.

2. For all edges, i.e., ∂Γi ∩ ∂Γj = eij , it holds

ND,ij(ϕ) = Nij(ϕD) <∞ , where ϕD = a2 ·ϕ
∣∣
Γi∪Γj

. (2.101)

The spaces H
1
2

D(Γ) and H
1
2

R(Γ) are endowed with the norms

||v||
H

1
2
R (Γ)

=

 N∑
i=1

||v||2
H

1
2 (Γi)

+
∑
eij

NR,ij(v)

 1
2

,

||v||
H

1
2
D(Γ)

=

 N∑
i=1

||v||2
H

1
2 (Γi)

+
∑
eij

ND,ij(v)

 1
2

,

where eij ∈ Γ indicates that the sum runs over all edges.

It is shown in [12] that the Sobolev spaces H
1
2
R(Γ) and H

1
2
D(Γ) are complete and, moreover, they

can be equipped with an inner product given by the parallelogram law. As usual, H
− 1

2
D (Γ) and

H
− 1

2
R (Γ) denote the realizations for the dual spaces of H

1
2
D(Γ) and H

1
2
R(Γ) with L2

t (Γ) as pivot

space. H
− 1

2
D (Γ) and H

− 1
2

R (Γ) are Hilbert spaces endowed with their natural norms.
The Sobolev spaces de�ned in De�nition 7 are tailored to assess the regularity of the vector-valued

surface di�erential operators. To see this, remember that, at the end of Section 2.5, we were left
with the question how to de�ne an appropriate functional to check on the regularity of the surface
di�erentials in the case of curvilinear Lipschitz polyhedral domains. This question is now su�ciently
answered. Namely, (2.100) may be considered to testify exactly the weak continuity of the surface
gradient (2.48) for ϕ ∈ H1(Γ) and (2.101) is appropriate to check if the vector-valued surface curl
(2.53) of ϕ ∈ H1(Γ) is weakly continuous on Γ. More generality is, however, necessary if less regular
functions are considered. It has been proved in [15] that the surface gradient can be extended such
that

∇Γ : H
1
2
∗ (Γ)→H

− 1
2

D (Γ) ,

is continuous and normally solvable. Consequently, the surface divergence divΓ, the dual operator,
is continuous and surjective regarding

divΓ : H
1
2
D(Γ)→ H

− 1
2

∗ (Γ) .

Also, it has been proved in [15] that the vector-valued surface curl operator can be extended such
that

curlΓ : H
1
2
∗ (Γ)→H

− 1
2

R (Γ) ,
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is continuous and normally solvable. Consequently, the scalar-valued surface curl operator curlΓ,
the dual operator, is continuous and surjective with respect to

curlΓ : H
1
2
R(Γ)→ H

− 1
2

∗ (Γ) .

We de�ne

H−
1
2 (divΓ,Γ) =

{
v ∈H−

1
2

R (Γ), divΓ(v) ∈ H−
1
2 (Γ)

}
, (2.102)

H−
1
2 (curlΓ,Γ) =

{
v ∈H−

1
2

D (Γ), curlΓ(v) ∈ H−
1
2 (Γ)

}
. (2.103)

They are Hilbert spaces and the corresponding norms read [12]

||v||
H−

1
2 (divΓ,Γ)

=

(
||v||2

H
− 1

2
R (Γ)

+ ||divΓ(v)||2
H−

1
2 (Γ)

) 1
2

, (2.104)

||v||
H−

1
2 (curlΓ,Γ)

=

(
||v||2

H
− 1

2
D (Γ)

+ ||curlΓ(v)||2
H−

1
2 (Γ)

) 1
2

. (2.105)

Most important for the theory of the Maxwell equations in the context of boundary integral
equations is the following theorem. The proof can be found in [15], for instance.

Theorem 2.5.1 The operators γR and γD can be extended to linear continuous operators acting on
H(curl,Ω). Namely,

γR : H(curl,Ω) → H−
1
2 (curlΓ,Γ) ,

γD : H(curl,Ω) → H−
1
2 (divΓ,Γ)

(2.106)

are linear, continuous and surjective.

Further characterizations of the trace spaces H−
1
2 (divΓ,Γ) and H−

1
2 (curlΓ,Γ) are given in the

next theorem which is proved in [15], for instance.

Theorem 2.5.2 Let Γ be simply connected and set

H(Γ) =
{
ϕ ∈ H1(Γ) : ∆Γϕ ∈ H−

1
2 (Γ)

}
,

where ∆Γ = divΓ∇Γ denotes the Laplace-Beltrami operator. The following decompositions are direct

H−
1
2 (divΓ,Γ) = ∇ΓH(Γ)⊕ curlΓ

(
H

1
2 (Γ)

)
,

H−
1
2 (curlΓ,Γ) = curlΓH(Γ)⊕∇Γ

(
H

1
2 (Γ)

)
.

Let u ∈ H−
1
2 (divΓ,Γ) and v ∈ H−

1
2 (curlΓ,Γ) with u = ∇Γϕu+curlΓψu and v = ∇Γϕv+ curlΓ ψv.

We de�ne
〈v,u〉− 1

2
= 〈∆Γϕv, ϕu〉 1

2
− 〈∆Γψu, ψv〉 1

2
. (2.107)

The following integration by parts formula holds true for u,v ∈H(curl,Ω)

(curlu,v)Ω = (u, curlv)Ω + 〈γRv, γDu〉− 1
2
. (2.108)

The Hodge decompositions stated in Theorem 2.5.2 are the most established theoretical results on
direct decompositions of the trace spaces forH(curl,Ω). The direct decomposition, however, which

26
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is fundamental for the construction of high order boundary element spaces presented in Chapter 4
builds up on yet another direct decomposition which is proved in [6].

Lemma 2.5.3 Let I denote the identity operator and let

H−
1
2 (divΓ0,Γ) =

{
v ∈ H−

1
2 (divΓ,Γ), divΓ v = 0

}
.

There exists a projector R : H−
1
2 (divΓ,Γ)→H

1
2
D(Γ),

∀v ∈ H−
1
2 (divΓ,Γ) : divΓ(Rv) = divΓv and ||Ru||

H
1
2 (Γ)
≤ C||divΓu||

H−
1
2 (Γ)

.

We obtain a stable and direct decomposition H−
1
2 (divΓ,Γ) = V (Γ)⊕W (Γ), where

V (Γ) = R
(
H−

1
2 (divΓ,Γ)

)
, W (Γ) = (I −R)

(
H−

1
2 (divΓ,Γ)

)
= H−

1
2 (divΓ,Γ)∩H−

1
2 (divΓ0,Γ) .

An explicit realization of the H−
1
2 (divΓ,Γ) in terms of H−

1
2 (curlΓ,Γ) and vice versa is possible

by the help of the extrinsic structure of Euclidean space as stated in the following theorem proved
in [15].

Theorem 2.5.4 The operator n× : L2
t (Γ) → L2

t (Γ) can be extended to a linear and continuous

isomorphism from H−
1
2 (curlΓ,Γ) to H−

1
2 (divΓ,Γ) such that for w ∈ H−

1
2 (curlΓ,Γ) there is a unique

u ∈ H−
1
2 (divΓ,Γ) with

∀v ∈ H−
1
2 (curlΓ,Γ) : 〈v,u〉− 1

2
= 〈v,n×w〉− 1

2
. (2.109)

The operator ×n : L2
t (Γ) → L2

t (Γ) can be extended to a linear and continuous isomorphism from

H−
1
2 (divΓ,Γ) to H−

1
2 (curlΓ,Γ) such that for w ∈ H−

1
2 (divΓ,Γ) there is a unique u ∈ H−

1
2 (curlΓ,Γ)

with
∀v ∈ H−

1
2 (divΓ,Γ) : 〈u,v〉− 1

2
= 〈w × n,v〉− 1

2
. (2.110)

Now, we have all tools at hand to explain the following de Rahm diagram

H
1
2
∗ (Γ)

∇Γ−−−→ H−
1
2 (curlΓ,Γ)

curlΓ−−−→ H
− 1

2
∗ (Γ)

↓ 1 ↓ n× ↓ 1

H
1
2
∗ (Γ)

curlΓ−−−→ H−
1
2 (divΓ,Γ)

divΓ−−−→ H
− 1

2
∗ (Γ) .

(2.111)

The de Rham diagram (2.111) is suitable to summarize the results of this section as all trace spaces
and all surface di�erential operators appear. There are three di�erent kinds of information contained
in (2.111) and we point them out now.

1. There is a (horizontal) relation between the trace spaces established by two exact sequences.
The pair of surface di�erential operators (∇Γ, curlΓ) gives rise to the upper row in (2.111) and
the pair of surface di�erential operators (curlΓ, divΓ) gives rise to the lower row in (2.111).

2. There is a (diagonal) relation between the trace spaces established by the fact that the rows
are in duality to each other. This means that for each space in the upper row in (2.111), we
�nd in the lower row its assigned dual. The duality pairing is either 〈·, ·〉 1

2
for the scalar-valued
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functions or 〈·, ·〉− 1
2
for the vector-valued functions. The diagonality of this relation can be

read o� the regularity index of the Sobolev spaces.

3. There is a (vertical) relation between the trace spaces established by isomorphisms, i.e., the
identity mapping 1 and the isomorphism n× from Theorem 2.5.4. This vertical relation shows
how to realize the functionals by the use of extrinsic structures explicitly.

When the convergence of boundary element methods is examined qualitatively, extra smoothness
of the functions to be approximated is indispensable. This extra regularity is restricted to the
regularity of Γ. In case Γ is the boundary of a Lipschitz domain, Sobolev spaces with index s > 1
cannot be de�ned. It is however possible to require more regularity wherever Γ is more regular,
namely, on the elements Γi. According to [52], we de�ne for s ≥ 0

Hs
pw(Γ) =

{
u ∈ Hmin(s,1)(Γ), ui = u

∣∣
Γi
∈ Hs(Γi), i = 1, . . . , N

}
,

||u||Hs
pw(Γ) =

(
N∑
i=1
||ui||2Hs(Γi)

) 1
2

,
(2.112)

And, we de�ne as proposed in [17],

Hs(curlΓ,Γ) =
{
u ∈ L2

t (Γ),ui = u
∣∣
Γi
∈Hs(Γi), i = 1, . . . , N, curlΓu ∈ Hs

pw(Γ)
}
,

||u||Hs(curlΓ,Γ) =

(
N∑
i=1
||ui||2Hs(Γi)

+ ||curlΓu||Hs
pw(Γ)2

) 1
2

,
(2.113)

Hs(divΓ,Γ) =
{
u ∈ L2

t (Γ),ui = u
∣∣
Γi
∈Hs(Γi), i = 1, . . . , N, divΓu ∈ Hs

pw(Γ)
}
,

||u||Hs(divΓ,Γ) =

(
N∑
i=1
||ui||2Hs(Γi)

+ ||divΓu||2Hs
pw(Γ)

) 1
2

.
(2.114)

For unbounded domains, the Lebesgue spaces contain functions which are only locally square
integrable, i.e., for all compact subsets K ⊂ Ωc it holds

u, v ∈ L2
loc(Ω

c) :

∫
K

vudx ≤ ∞ .

Then, the energy spaces for unbounded Lipschitz domains

H1(Ωc), H(curl,Ωc), H(div,Ωc) ,

inherit the Hilbert spaces structure of L2
loc(Ω

c) and L2
loc(Ω

c), respectively. The formulae of inte-
gration of this section hold also in this case. The boundary value problems which we consider in
the following section prescribe boundary values of the unknown function. We denote the set of
functions with prescribed boundary values, as follows

H1
m(Ωc) =

{
v ∈ H1(Ωc) : γ0v = m on Γ

}
,

Hm(curl,Ωc) = {v ∈H(curl,Ωc) : γDv = m on Γ} .
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Chapter 3

Perfect Electric Conductor Problem

3.1. Introduction

In 1861, the Scottish physicist James Clerk Maxwell published a set of four partial di�erential
equations that relate the electromagnetic �eld to its sources, i.e., the charge density and the current
density. Since that time, the so-called Maxwell system is studied in physics, in mathematics and in
the engineering sciences. Current research focuses mainly on industrial application and, thus, one
is interested in fast and accurate solvers for all limiting cases such as electrostatics, magnetostatics,
perfect conducting materials or dielectrics. To satisfy this request, it is necessary to study the
mathematical foundation of the Maxwell system.

The problem, we look at here, is the scattering of an incoming electromagnetic �eld on a perfect
electric conductor Ω ⊂ R3. The scattered electromagnetic �eld (E,H) solves the following exterior
Dirichlet boundary value problem

div ε 0

iω ε curl

−curl iω µ

0 divµ


(
E

H

)
(x) =


0

0

0

0

 , in Ωc , (3.1)

γDE(x) = m(x),

γn (µH(x)) = θ(x),
on Γ , (3.2)

∣∣∣curlE(x)× x

|x|
− iω εE(x)

∣∣∣ = O

(
1

|x|2

)
,

∣∣∣curlH(x)× x

|x|
− iω µH(x)

∣∣∣ = O

(
1

|x|2

)
,

for |x| → ∞ . (3.3)

Here, i is the imaginary unit and ω > 0 denotes the angular frequency of the incoming electro-
magnetic signal. Further, the boundary conditions (3.2) are related to each other by the following
di�erential equation posed on Γ, namely,

iω θ(x) = divΓm(x) .

The equations (3.3) are called the radiation conditions of Silver-Müller [48]. In this work we consider
the unbounded domain Ωc to be connected and simply connected. We assume, further, that Ωc is
a dielectric with constant permeability µ and constant permittivity ε.

The boundary value problem (3.1)-(3.3) is overdetermined, as there are eight scalar equations for
six scalar unknowns. However, a closer look at the Ampère law,

curlH + iω εE = 0 in Ωc ,
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makes clear that the electric �eld is automatically divergence free

div (εE) = 0 in Ωc .

This last equation is called the Gauÿ law for the electric �eld. The same argument shows that the
Faraday law

−curlE + iω µH = 0 in Ωc ,

contains the Gauÿ law for the magnetic �eld, namely,

div (µH) = 0 in Ωc ,

is automatically ful�lled. This means that the Gauÿ laws are redundant provided ω > 0 and skipping
them turns the Maxwell system into six scalar equations for six scalar unknowns. However, it will
turn out that the implicit built-in of the Gauÿ laws is problematic for low frequencies. The reason
is that the Gauÿ laws become independent equations characterizing electrostatic and magnetostatic
phenomena for ω = 0. All further considerations focus on the electric �eld and this is why the Gauÿ
law for the electric �eld will remain enlisted in the set of relevant Maxwell equations whereas the
Gauÿ law for the magnetic �eld is neglected.
In the context of boundary integral methods, a theoretical analysis of (3.1)-(3.3) is done in [22,48]

for Ωc with smooth boundary Γ. Recent results on trace operators and function spaces on Lipschitz
domains [12, 13, 15], pave the way for a successful theory in this case [14, 18, 19]. In the context of
�nite element methods, we refer to the monographs [27,28,35] for a theoretical analysis.
The aim of this chapter is to develop boundary element formulations describing weak solutions

of (3.1)-(3.3). The focus here is to use the distributional settings from Section 2.4. This allows
for an explicit incorporation of the traces of the solution. Besides the classical boundary element
formulation analyzed in Section 3.2, we develop a new boundary element formulation in Section 3.3.
By this so-called stabilized formulation the Gauÿ law is explicitly recovered. In Section 3.4 we
investigate the relation between the electrostatic case and the stabilized formulation. We summarize
the main results in Section 3.5.

3.2. The Classical Formulation

The original transmission problem describing the total �eld (Et,Ht) is the starting point of our
discussion. First, we derive the induced problem, denoted the Maxwell system, for the scattered
�eld (E,H). In Subsection 3.2.1, it is shown that the Maxwell system can be written in terms of
the electric �eld E only. The so-called second order equation in distributional sense gives rise to
the classical variational formulation in the energy space H(curl,Ωc). Of particular interest for this
work are the boundary element formulations connected to the second order equation. The most
important results, as representation formulae for E, the mapping properties of the layer potentials
SE , SM and the boundary integral equations are further stated. In Subsection 3.2.2, the solvability
of the variational formulations of these integral equations is discussed.
Let Ω be a perfect electric conductor which is externally irradiated by an electromagnetic wave

(Ei,H i). The conductor is impenetrable for the incoming signal (Ei,H i) and electromagnetic
energy is re�ected in form of the so-called scattered �eld (E,H). The total electromagnetic �eld is

Ẽ
t

=

{
Et = Ei +E in Ωc,

0 in Ω ,
and H̃

t
=

{
Ht = H i +H in Ωc,

0 in Ω .
(3.4)

Note, that (Ẽ
t
, H̃

t
) belongs formally to the class of vector �elds analyzed in Section 2.4. A classical
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solution (Ẽ
t
, H̃

t
) of the Maxwell equations ful�lls at x ∈ Ω ∪ Ωc div ε 0

iω ε curl

−curl iω µ

( Ẽ
t

H̃
t

)
(x) =

 0

0

0

 in Ω ∪ Ωc . (3.5)

On the boundary Γ, the transmission conditions[
γDẼ

t]
(x) = 0,[

γn(µH̃
t
)
]
(x) = 0,

on Γ , (3.6)

hold. Here, the brackets [·] denote the jumps of the actual trace across Γ. The scattered �eld
(E,H) must decay at in�nity such that the radiation condition of Silver-Müller is ful�lled,∣∣∣ (curlE(x))× x

|x|
− iω εE(x)

∣∣∣ = O
(

1

|x|2

)
,

∣∣∣ (curlH(x))× x

|x|
− iω µH(x)

∣∣∣ = O
(

1

|x|2

)
,

for |x| → ∞ . (3.7)

Due to �nite energy considerations for the electromagnetic �eld [49], it makes sense to study the
existence of solutions for (3.5)-(3.7) in weak form. Thus, our modelling assumptions are

Et ∈ H(div ,Ωc) and Ẽ
t ∈ H(curl,R3) ,

Ht ∈ H(curl ,Ωc) and µH̃
t ∈ H(div,R3) .

(3.8)

These regularity assumptions account for the decomposition of the electromagnetic �eld given by
(3.4) and, also, the behavior of the di�erent contributions on Γ as reported in Table 3.1 is induced.
It is clear that the Maxwell equations are point-wise ful�lled inside the perfect electric conductor Ω
as the total electromagnetic �eld identically vanishes there, i.e.,

Ẽ
t

= 0 in Ω ,

H̃
t

= 0 in Ω .

In Ωc, however, the regularity assumptions require a reformulation of the Maxwell equations because
point evaluations of (Ẽ

t
, H̃

t
) in Ωc are not allowed. Therefore, the Gauÿ law is imposed in L2(Ωc),

i.e., for all ϕ ∈ D(R3) it holds

(div (εEt), ϕ)Ωc = 0 .

Similarly, the Ampère law is only de�ned in L2(Ωc), i.e., for all ϕ ∈ D(R3) it holds

iω(εEt,ϕ)Ωc + (curlHt,ϕ)Ωc = 0 .

The Faraday law even holds in L2(R3) because [γDE] = 0 on Γ and Ẽ
t ∈ H(curl,R3), i.e., for all

ϕ ∈ D(R3) it holds
iω(µHt,ϕ)R3 − (curlEt,ϕ)R3 = 0 .

Except for the Faraday law, the domains Ω and Ωc were considered separately. In order to obtain
a global formulation, the di�erential operators must be understood in distributional sense.
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Chapter 3. Perfect Electric Conductor Problem

Table 3.1.: The electromagnetic �elds (Ei,Hi), (Et,Ht) and (Ẽ
t
, H̃

t
).

Notation Regularity assumptions Boundary data
Ei H(div,R3) H(curl,R3) [γDE

i] = 0

Et H(div,Ωc) H(curl,Ωc) γDE
t = −γDEi

Ẽt H(div,Ω ∪ Ωc) H(curl,R3) [γDẼ
t
] = 0

µH i H(div,R3) H(curl,R3) [γn(µH i)] = 0

µHt H(div,Ωc) H(curl,Ωc) γn(µHt) = −γn(µH i)

µH̃
t

H(div,R3) H(curl,Ω ∪ Ωc) [γn(µH̃
t
)] = 0

Lemma 3.2.1 Let (Ẽ
t
, H̃

t
) be such that for all ϕ ∈ D(R3), ϕ ∈ D(R3), it holds

(div (εEt), ϕ)Ωc = 0 , (3.9)

(curlHt,ϕ)Ωc = −iω(εEt,ϕ)Ωc , (3.10)

−(curlEt,ϕ)R3 = −iω(µHt,ϕ)R3 . (3.11)

Then, it holds in distributional sense

〈div(εẼ
t
), ϕ〉 = −〈γn

(
εEt

)
δΓ, ϕ〉 , (3.12)

〈curl H̃t
,ϕ〉 = −iω(εEt,ϕ)Ωc − 〈γDHtδΓ,ϕ〉 , (3.13)

−〈curl Ẽt
,ϕ〉 = −iω(µH̃

t
,ϕ)R3 . (3.14)

Proof: Due to Lemma 2.4.1, it holds for all ϕ ∈ D(R3)

〈div(εẼ
t
), ϕ〉 = (div(εEt), ϕ)Ωc − 〈γn

(
εEt

)
δΓ, ϕ〉 .

The Gauÿ law in distributional sense (3.12) follows from (3.9). Due to Lemma 2.4.2, it holds for
all ϕ ∈ D(R3)

〈curl H̃t
,ϕ〉 = (curlHt,ϕ)Ωc − 〈γDHtδΓ,ϕ〉 .

Thus, the Ampère law in distributional sense (3.13) follows from (3.10). For the Faraday law, note

that curl Ẽ
t ∈ L2(R3), hence a regular distribution, and due to (2.69), it holds

〈curl Ẽt
,ϕ〉 = (curl Ẽ

t
,ϕ)R3 .

2

The Gauÿ law in distributional sense (3.12) means that the distribution div(εẼ
t
) vanishes almost

everywhere in R3 and it exhibits a surface delta distribution with weight γn(εEt). Similarly, (3.13)

means that the distribution curl H̃
t
can be identi�ed almost everywhere in R3 with the vector �eld

iω εEt and it exhibits a surface delta distribution with weight γDHt. The surface delta distributions,
γn (εEt)δΓ and γNEtδΓ are supplementary unknowns of the problem but they are connected by the
continuity equation as the next lemma shows. The fact that the continuity equation shrinks to an
identity of traces is peculiar for the perfect electric conductor problem.
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Lemma 3.2.2 Let (Ẽ
t
, H̃

t
) be given with (3.12)-(3.14). For ω > 0, the surface delta distributions

γnE
tδΓ and γNE

tδΓ are connected by the continuity equation

∀ϕ ∈ D(R3) : 〈γNEtδΓ,∇ϕ〉 = ω2µ 〈γn(εEt)δΓ, ϕ〉 . (3.15)

Moreover, for ω = 0, it holds

∀ϕ ∈ D(R3) : 〈γNEtδΓ,ϕ〉 = 0 . (3.16)

Proof: The Faraday law says that curl Ẽ
t
identi�es with iω µH̃

t ∈ L2(R3). Thus, for ω > 0 it
holds

H̃
t

= −i(ωµ)−1curl Ẽ
t

with γDH
t = −i(ωµ)−1γNE

t .

Inserting these identities in the Ampère law (3.13) leads to

〈curl
(
− i(ωµ)−1curl Ẽ

t)
,ϕ〉+ iω〈εẼt

,ϕ〉 = i(ωµ)−1〈γNEtδΓ,ϕ〉 .

For the special choice of test vector �elds ϕ = ∇ϕ, ϕ ∈ D(R3), it holds by de�nition

〈curl
(
− i(ωµ)−1curl Ẽ

t)
,∇ϕ〉 = −i(ωµ)−1〈curl Ẽt

, curl∇ϕ〉 = 0 ,

and we obtain

ω2µ〈εẼt
,∇ϕ〉 = 〈γNEtδΓ,∇ϕ〉 .

By virtue of (3.12), it holds

〈div (εẼ
t
), ϕ〉 = −〈εẼt

,∇ϕ〉 = −〈γn
(
εEt

)
δΓ, ϕ〉

and, therefore, for all ω > 0

ω2µ 〈γn(εEt)δΓ, ϕ〉 = 〈γNEtδΓ,∇ϕ〉 .

In case ω = 0, the Faraday law
〈curlEt,ϕ〉 = 0

yields that supp (curl Ẽ
t
) = ∅ and (3.16) must hold. 2

So far, we considered the total electromagnetic �eld (Ẽ
t
, H̃

t
). However, we are interested in

(Ẽ, H̃), namely, the scattered �eld restricted to Ωc

Ẽ =

{
E in Ωc,

0 in Ω ,
and H̃ =

{
H in Ωc,

0 in Ω ,
(3.17)

where
E , H ∈H(curl ,Ωc) ∩H(div,Ωc) . (3.18)

Due to the linearity of the problem, the interface conditions (3.6) turn into boundary conditions for
the scattered electromagnetic �eld. By the use of the notations γDEi = −m and γn(µH i) = −θ
for the given traces of the incoming electromagnetic �eld, it must hold

γDE = m and γn (µH) = θ . (3.19)

Following the same procedure as for the total �eld, we obtain the harmonic Maxwell equations in
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Chapter 3. Perfect Electric Conductor Problem

distributional sense for the scattered electromagnetic �eld. An overview on the regularity assump-
tions which underly the di�erent �eld components that appear in Lemma 3.2.3 is given in Table 3.2.

Lemma 3.2.3 Let (Ẽ, H̃) as in (3.17)-(3.19) with (E,H) such that

(div (εE), ϕ)Ωc = 0 , (3.20)

(curlH,ϕ)Ωc = −iω(εE,ϕ)Ωc , (3.21)

−(curlE,ϕ)Ωc = −iω(µH,ϕ)Ωc , (3.22)

for all ϕ ∈ D(R3) and ϕ ∈ D(R3), respectively. Then, it holds in distributional sense

〈div(εẼ), ϕ〉 = −〈γn (εE) δΓ, ϕ〉 , (3.23)

〈curl H̃,ϕ〉 = −iω(εE,ϕ)Ωc − 〈γDHδΓ,ϕ〉 , (3.24)

−〈curl Ẽ,ϕ〉 = −iω(µH,ϕ)Ωc + 〈mδΓ,ϕ〉 . (3.25)

Table 3.2.: The electromagnetic �elds (E,H) and (Ẽ, H̃).

Notation Regularity assumptions Boundary data
Ẽ H(div,Ω ∪ Ωc) H(curl,Ω ∪ Ωc) [γDẼ] = m

E H(div,Ωc) H(curl,Ωc) γDE = m

µH̃ H(div,Ω ∪ Ωc) H(curl,Ω ∪ Ωc) [γn(µH̃)] = θ

µH H(div,Ωc) H(curl,Ωc) γn(µH) = θ

3.2.1. Second order equation

Let E ∈ Hm(curl,Ωc) ∩H(div ,Ωc) and H ∈ H(curl,Ωc) ∩H(div ,Ωc) denote a solution of the
Maxwell system in distributional sense

〈div (εẼ), ϕ〉 = −〈γn(εE)δΓ, ϕ〉 ,

〈curl H̃,ϕ〉 + iω〈εẼ,ϕ〉 = −〈γDHδΓ,ϕ〉 ,

−〈curl Ẽ,ϕ〉 + iω〈µH̃,ϕ〉 = 〈mδΓ,ϕ〉 .

Provided ω > 0, it follows from the Faraday law

H̃ = −i(ωµ)−1curl Ẽ − i(ωµ)−1mδΓ ,

γDH = −i(ωµ)−1γNE .

Thus, curl curlE ∈ L2(Ωc) because for all ϕ ∈ D(R3) with suppϕ ⊂ Ωc it holds

(H,ϕ)Ωc = −i(ωµ)−1(curlE,ϕ)Ωc and H ∈H(curl,Ωc) .

Inserting this into the Ampère law yields

〈curl (−i(ωµ)−1curl Ẽ),ϕ〉+ 〈curl (−i(ωµ)−1mδΓ),ϕ〉+ iω〈εẼ,ϕ〉 = i(ωµ)−1〈γNEδΓ,ϕ〉 .
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3.2. The Classical Formulation

By de�nition, it holds

〈curl (mδΓ),ϕ〉 = 〈mδΓ, curlϕ〉 ,

〈curl curl Ẽ,ϕ〉 = 〈curl Ẽ, curlϕ〉 .

From this, we obtain

〈curl Ẽ, curlϕ〉 − ω2µ〈εẼ,ϕ〉 = −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉 , (3.26)

〈div (εẼ), ϕ〉 = −〈γn(εẼ)δΓ, ϕ〉 . (3.27)

The next lemma shows that equation (3.26) contains (3.27) in L2-sense.

Lemma 3.2.4 The validity of (3.26) for ω > 0 yields the validity of the Gauÿ law (3.20) for all
ϕ ∈ D(R3) with suppϕ ⊂ Ωc.

Proof: For all test vector �elds of the form ϕ = ∇ϕ, ϕ ∈ D(R3), equation (3.26) reads

−ω2µ〈εẼ,∇ϕ〉 = −〈γNEδΓ,∇ϕ〉 .

This means that for all ϕ ∈ D(R3)

−ω2µ〈εẼ,∇ϕ〉 = ω2µ〈div (εẼ), ϕ〉 = ω2µ(div (εE), ϕ)Ωc − ω2µ〈γn(εE)δΓ, ϕ〉 = −〈γNEδΓ,∇ϕ〉 .

Therefore, it holds for the test functions with suppϕ ⊂ Ωc

(div (εE), ϕ)Ωc = 0 .

2

A closer look at the proof of Lemma 3.2.4 shows that a distributional solution Ẽ of (3.26) must
also ful�ll the continuity equation, namely it holds for all ϕ ∈ D(R3)

〈γNEδΓ,∇ϕ〉 = ω2µ〈γn(εE)δΓ, ϕ〉 . (3.28)

The material parameters µ, ε > 0 and the frequency ω > 0 are often united in one single constant,
the wave number κ2 = ω2µε > 0. With this notation, the second order Maxwell equation in
distributional sense reads

〈(curl curl − κ2)Ẽ,ϕ〉 = −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉 . (3.29)

To prove that the second order equation has a unique solution E ∈ H(curl,Ωc), it is necessary
to relax the regularity of the test vector �elds and consider the energy space H(curl,Ωc) instead
of D(R3). The duality pairing on the left corresponds then to the inner product of L2(Ωc). Of
particular importance in the context of boundary element formulations is that the pairings on the
right hand side are the functional pairings in the trace spaces introduced in Section 2.5. The
functional setting obtained in energy spaces corresponds to the setting which is suitable to develop
a solution theory for the second order equation in the context of boundary element formulations.
The principal theorems from this solution theory are stated in the following and references are given
for details on the proofs.
Due to the following theorem, the original scattering problem has at most one solution. The proof

can be found in [48], for instance.
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Chapter 3. Perfect Electric Conductor Problem

Theorem 3.2.5 Let Ei ∈H(curl curl,Ωc) with

curl curlEi − κ2Ei = 0 in Ωc

and
γDE

i = m ∈ H−
1
2 (divΓ,Γ) .

The perfect electric conductor problem
curl curlE − κ2E = 0 , in Ωc ,

γDE = m , on Γ ,∣∣∣curlE(x)× x

|x|
− iω εE(x)

∣∣∣ = O
(

1

|x|2

)
, for |x| → ∞ ,

(3.30)

has at most one solution E ∈H(curl curl,Ωc). We call it the Maxwell solution.

To develop a boundary element formulation a fundamental solution characterizing the point
sources of the involved di�erential operator is needed. For κ > 0, the second order Maxwell
operator curl curl − κ2 has a fundamental solution. In the following, the Hesse matrix of a two
times di�erentiable function v : R3 → C is denoted Hv. The proof of the following lemma can be
found in [48,54].

Lemma 3.2.6 Let κ > 0 and let I3 ∈ R3×3 denote the identity matrix. The function u∗ ∈
C∞(R3\{0}),

u∗(x) = I3Gκ(x) +
1

κ2
HGκ(x) , Gκ(x) =

e−iκ|x|

4π|x|
(3.31)

is a fundamental solution of the second order Maxwell equation, i.e., for all ϕ ∈ D(R3) it holds〈
(curl curl − κ2)u∗,ϕ

〉
= 〈δ0,ϕ〉 = ϕ(x) . (3.32)

For all κ > 0, Gκ ∈ C∞(R3\{0}) is a fundamental solution of the Helmholtz equation, i.e., for all
ϕ ∈ D(R3) it holds

− 〈(∆ + κ2)Gκ, ϕ〉 = 〈δ0, ϕ〉 = ϕ(x) . (3.33)

For κ = 0, G0 ∈ C∞(R3\{0}) is a fundamental solution of the Laplace equation, i.e., for all
ϕ ∈ D(R3) it holds

− 〈∆G0, ϕ〉 = 〈δ0, ϕ〉 = ϕ(x) . (3.34)

It is well known [52], that for any v ∈ L1(Ωc), v ∈ L1(Ωc) the single layer potentials for the
Helmholtz operator, de�ned by

(Sκv)(x) =

∫
Γ

Gκ(x− y)v(y) dσy , (Sκv)(x) =

∫
Γ

Gκ(x− y)v(y) dσy , (3.35)

satisfy for κ ≥ 0 and x ∈ Ωc the di�erential equations

−∆(Sκ(v))(x)− κ2Sκ(v)(x) = 0 , −∆(Sκ(v))(x)− κ2Sκ(v)(x) = 0 . (3.36)

The analysis of boundary integral equations connected to the second order Maxwell operator relies
very much on the properties of Sκ for κ ≥ 0. Here, it is most important that functions of the form
Sκ(v), Sκ(v) possess traces on the boundary and, moreover, that the domain of de�nition of Sκ and
Sκ, respectively, can be extended to the trace spaces de�ned in Section 2.5. The functional analytic
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properties of these extended operators depend on interior eigenvalues for the Laplace operator and
the curl curl operator.

De�nition 8 Let Ω denote a bounded Lipschitz domain in R3. λ ∈ R is called an interior eigenvalue of the
Laplace operator, if there is a non-vanishing u ∈ H1

0 (Ω) such that

(∇u ,∇v)Ω = λ(u, v)Ω

for all v ∈ H1
0 (Ω).

Similarly, for a bounded Lipschitz domain Ω ⊂ R3, λ ∈ R is called an interior eigenvalue of the curl curl
operator, if there is a non-vanishing E ∈H0(curl,Ω) such that

(curlE, curlv)Ω = λ(E,v)Ω

for all v ∈H0(curl,Ω).

It is a peculiarity of many boundary integral equations connected to the Helmholtz or the second
order Maxwell operator that they fail to have unique solutions if κ2 is an interior eigenvalue of the
corresponding operator, even if an exterior problem is considered. Now and in the following, we
assume that κ2 is neither an interior eigenvalue of the Laplace operator nor an interior eigenvalue
of the curl curl operator.
The properties of Sκ and Sκ are summarized in Theorem 3.2.7. The proof as found in [14, 36],

for instance, build up on the fundamental results published in [23,52,54].

Theorem 3.2.7 For all κ ≥ 0, the operators

Sκ : H−
1
2 (Γ)→ H1(Ωc) , (3.37)

Sκ : H
− 1

2
R (Γ)→H1(Ωc) , (3.38)

Sκ : H
− 1

2
D (Γ)→H1(Ωc) , (3.39)

are linear and continuous. Moreover, the boundary integral operators are continuous

γ0 Sκ : H−
1
2 (Γ)→ H

1
2 (Γ) , (3.40)

γR Sκ : H−
1
2 (divΓ,Γ)→ H−

1
2 (curlΓ,Γ) . (3.41)

The boundary integral operators for κ = 0 are selfadjoint with respect to the duality pairings 〈·, ·〉 1
2
,

〈·, ·〉− 1
2
and satisfy

∀ υ ∈ H−
1
2 (Γ) : 〈υ, γ0S0υ〉 1

2
≥ c||υ||2

H−
1
2 (Γ)

, (3.42)

∀φ ∈ H−
1
2 (divΓ0,Γ) : 〈γRS0(φ),φ〉− 1

2
≥ c||φ||2

H−
1
2 (divΓ,Γ)

, (3.43)

with constants c > 0 depending only on Γ. Moreover, it holds that the following operators are
compact for all κ > 0

γ0S0 − γ0Sκ : H−
1
2 (Γ)→ H

1
2 (Γ) , (3.44)

γRS0 − γRSκ : H−
1
2 (divΓ,Γ)→ H−

1
2 (curlΓ,Γ) . (3.45)

Besides the single layer potential for the Helmholtz operator, Sκ, there is the single layer potential
for the Maxwell operator, SE , and there is the double layer potential for the Maxwell operator,
SM . Their de�nition and mapping properties are stated in Lemma 3.2.8 and more details can be
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found in [19]. For notational brevity, we introduce the operator [γR] which applies on functions
v ∈H(curl,Ω) in the form [γR](v) = [γR(v)].

Lemma 3.2.8 Let κ > 0 and u ∈ H−
1
2 (divΓ,Γ). The single layer potential for the Maxwell operator

SE(u) = Sκ (u) +
1

κ2
∇Sκ (divΓ(u)) (3.46)

is a continuous operator

SE : H−
1
2 (divΓ,Γ)→H(curl curl,Ωc) .

For u ∈ H−
1
2 (divΓ,Γ), SE(u) is a weak solution of the second order Maxwell equation, namely

(curl curl − κ2)SE(u) = 0 . (3.47)

The boundary integral operator

γRSE : H−
1
2 (divΓ,Γ)→ H−

1
2 (curlΓ,Γ) (3.48)

is continuous, this means that for all φ ∈ H−
1
2 (divΓ,Γ) it holds

〈[γR]SE(u),φ〉− 1
2

= 0 . (3.49)

The double layer potential for the Maxwell operator

SM (u) = curlSκ (u) (3.50)

is a continuous operator

SM : H−
1
2 (divΓ,Γ)→H(curl curl,Ωc) .

For u ∈ H−
1
2 (divΓ,Γ), SM (u) is a weak solution of the second order Maxwell equation, namely

(curl curl − κ2)SM (u) = 0 . (3.51)

The boundary integral operator

γRSM : H−
1
2 (divΓ,Γ)→ H−

1
2 (curlΓ,Γ) (3.52)

is discontinuous, because it holds for all φ ∈ H−
1
2 (divΓ,Γ) that

〈[γR]SM (u),φ〉− 1
2

= −〈[γR]u,φ〉− 1
2
. (3.53)

As shown in [19], the previous results yield the direct representation formula for E.

Lemma 3.2.9 Let E ∈ H(curl curl,Ωc) be the unique solution of (3.30) with j = γNE and
m = γDE. The scattered electric �eld E can be formally represented for almost all x ∈ Ωc by

E(x) = SM (m) (x) + SE (j) (x) . (3.54)

In the following, (3.54) is called the direct representation formula. An integral equation for the
unknown Neumann trace j is obtained when (3.54) is subjected to the trace operator γR, i.e.,

γRSE (j) = γR
(
E − SM (m)

)
= m× n− γRSM (m) . (3.55)
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Recall that the Dirichlet trace m is imposed by the boundary value problem (3.30) and, thus, the
boundary integral equation (3.55) is an equation for the unknown Neumann trace j.
Besides the direct representation (3.54), E can formally be given by

E(x) = SE(jt)(x) , (3.56)

because, by virtue of (3.47), the electric �eld given by (3.56) is a weak solution of the second order
Maxwell equation. In order to obtain a solution of the boundary value problem (3.30), the density
jt must be found such that

γRSE(jt) = m× n . (3.57)

The engineering community calls the boundary integral equation (3.57) the electric �eld integral
equation, whereas the mathematicians refer to it as the boundary integral equation resulting from
an indirect representation formula for E. The latter formulation is, however, misleading because
the density jt is physically meaningful as

jt = γN
(
Ei +E

)
. (3.58)

Instead of the boundary value problem for E deduced from (3.17), we could have considered the
transmission problem for scattered electric �eld, i.e.,

Ẽ =

{
E in Ωc,

−Ei in Ω .

This leads to the indirect representation formula (3.56) because [γDẼ] = 0.

3.2.2. Boundary Element Formulation

The solvability of Galerkin formulations deduced from elliptic partial di�erential operators follows
usually from the coercivity of the underlying bilinear form, that is, the fact that the zeroth order
term is a compact perturbation of the second order term and that a general Gårding inequality holds.
For the second order Maxwell equation, however, this concept does not apply as the null-space of
the operator curl is in�nite-dimensional and, thus, the embedding H(curl,Ωc) ↪→ L2(Ωc) is not
compact. This problem is theoretically solved by the splitting of the �elds into two components.
Similarly, H−

1
2 (divΓ,Γ)-coercivity for the Galerkin variational formulations of the boundary integral

equations (3.55) and (3.57) are established only when an appropriate Hodge decomposition of the
trace space is assumed. In [14, 19], it is shown that the operator γRSE is a Fredholm operator
with index zero. The bilinear form which underlies the proof is derived from the duality between
the trace spaces H−

1
2 (divΓ,Γ) and H−

1
2 (curlΓ,Γ). Provided κ2 > 0 is not an interior eigenvalue of

the curl curl operator for the domain Ω, γRSE is also injective and, thus, the boundary integral
equations (3.55) and (3.57) are uniquely solvable. The proof of this fundamental result can be found
in [14,19].

Theorem 3.2.10 If κ2 > 0 is not an interior eigenvalue of the curl curl operator, the boundary
integral equation (3.55) admits a unique solution j ∈ H−

1
2 (divΓ,Γ) with

||j||
H−

1
2 (divΓ,Γ)

≤ c||m||
H−

1
2 (divΓ,Γ)

. (3.59)

The variational formulation reads: �nd j ∈ H−
1
2 (divΓ,Γ) such that for all φ ∈ H−

1
2 (divΓ,Γ) it

holds
〈γRSE (j) ,φ〉− 1

2
= 〈m× n,φ〉− 1

2
− 〈γRSM (m),φ〉− 1

2
. (3.60)
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Under the same condition for κ, the boundary integral equation (3.57) admits a unique solution

jt ∈ H−
1
2 (divΓ,Γ) with

||jt||
H−

1
2 (divΓ,Γ)

≤ c||m||
H−

1
2 (divΓ,Γ)

. (3.61)

The variational formulation reads: �nd jt ∈ H−
1
2 (divΓ,Γ) such that for all φ ∈ H−

1
2 (divΓ,Γ) it

holds
〈γRSE

(
jt
)
,φ〉− 1

2
= 〈m× n,φ〉− 1

2
. (3.62)

3.3. The Stabilized Formulation

It is well known that the numerical schemes which rely on the second order equation (3.29),

〈(curl curl − κ2)Ẽ,ϕ〉 = −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉 , κ2 = ω2εµ > 0 ,

are not stable when passing to the limit κ → 0. This problem is often called the low frequency
problem because it is actually the angular frequency ω of the incoming signal Ei which tends to
zero. Recall, that the reason why we concentrated on the second order equation (3.29) was that an
electric �eld E that satis�es (3.29) ful�lls the Gauÿ law according to Lemma 3.2.4. Moreover, the
mathematical theory presented in Subsection 3.2.2, is valid for all κ > 0 and, therefore, it is not
clear why numerical instabilities occur. A closer look at the continuity equation (3.28),

〈γNEδΓ,∇ϕ〉 = κ2〈γnEδΓ, ϕ〉 , κ ≥ 0 ,

shows, however, that one looses control over |〈γNEδΓ,∇ϕ〉| as it is of order κ2. For κ = 0 the distri-
bution γNEδΓ vanishes and for this reason, magnetostatic vector potential problems are formulated
in H−

1
2 (divΓ0,Γ) [36]. The key point is that the distribution γnEδΓ does not vanish unless E ≡ 0

in R3. This means that the smaller κ the more important gets the normal trace γnE and the idea
of stabilization is to incorporate the Gauÿ law explicitly because γnE appears in it.
There are several publications concerned with numerical experiments for stabilizing formulations,

for �nite element formulations, see [29, 37] and, in the context of boundary integral methods, see
[1, 42, 56] for instance. Stabilization is basically achieved by the incorporation of the Gauÿ law to
recover the static phenomena. There are basically two di�erent methods that come out of this. The
�rst is an elliptization of the Maxwell equations as it is proposed in [42]. This leads to a uniquely
solvable variational formulations posed in classical trace spaces. The draw-back of this idea is that
the equivalence to the original Maxwell system gets lost at least for non-smooth domains and thus,
the unique solution of this elliptic problem is in general not a Maxwell solution. More recent ideas
published in the engineering community propose to accept the non-ellipticity of the second order
equation and to add the Gauÿ law [56].
The stabilized formulation presented here is of this kind. Similar to [56] the idea is to consider an

extended boundary value problem including the Gauÿ law for the electric �eld. Our contribution to
the subject is to explain the mathematical justi�cation and well-posedness of the idea. Further, we
provide a complete and not yet published analysis showing the unique solvability of the boundary
element formulation and stability of the numerical method.
The new approach of stabilizing the Maxwell system in the context of boundary element methods

is presented in the following subsections. The basic question we start with in Subsection 3.3.1 is
how to construct an extended boundary value problem which incorporates the Gauÿ law explicitly
and which is equivalent to the original Maxwell system. The extended boundary value problem is
called the Picard system. Following the same steps as in Section 3.2 for the Maxwell system, we
derive in Subsection 3.3.1 a second order system of equations. It is further shown that the second
order di�erential operator possesses a fundamental solution for all κ ≥ 0. The representation for a
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3.3. The Stabilized Formulation

solution of the Picard system in terms of layer potentials is presented and the Galerkin variational
formulations of the deduced boundary integral equations are, �nally, discussed in Subsection 3.3.2.

3.3.1. Second order equation

In [50], Picard analyzes the low frequency asymptotic of the Maxwell system by means of an
extended system. We adopted the idea of Picard to develop a novel boundary element formulation.
The starting point is a boundary value problem with seven partial di�erential equations for seven
unknowns (E,H, ψ) iω εµ div ε 0

∇ iω ε curl

0 −curl iω µ


 ψ

E

H

 (x) =

 0

0

0

 , in Ωc , (3.63)

with imposed boundary conditions

γ0ψ(x) = 0,

γDE(x) = m(x),

γnH(x) = θ(x),

on Γ , (3.64)

and radiation conditions ∣∣∇ψ(x) · x
|x|
− iωψ(x)

∣∣ = O
(

1

|x|2

)
,

∣∣∣ (curlE(x))× x

|x|
− iω εE(x)

∣∣∣ = O
(

1

|x|2

)
,

∣∣∣ (curlH(x))× x

|x|
− iω µH(x)

∣∣∣ = O
(

1

|x|2

)
,

for |x| → ∞ . (3.65)

The Picard system (3.63)-(3.65) di�ers from the Maxwell system only by the additional terms with
the scalar function ψ.

Again, weak solutions (E,H, ψ) with the following regularity

ψ ∈ H1(Ωc), E ∈H(curl,Ωc) ∩H(div ,Ωc), H ∈H(curl ,Ωc) ∩H(div,Ωc) (3.66)

are considered. Before the Picard system is written in distributional sense and a second order
system is deduced, we prove a lemma which makes clear why the Picard system is equivalent to the
Maxwell system in L2-sense.

Lemma 3.3.1 Let (E,H, ψ) be given with (3.64) and (3.65). If the triple (E,H, ψ) ful�lls
(div(εE), φ)Ωc + iω εµ(ψ, φ)Ωc = 0 ,

(H, curlφ)Ωc + iω(εE,φ)Ωc + (∇ψ,φ)Ωc = 0 ,

−(curlE,φ)Ωc + iω(µH,φ)Ωc = 0 ,

(3.67)
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for all φ ∈ H1
0 (Ωc), φ ∈H0(curl,Ωc), then, (E,H) satis�es

(div(εE), φ)Ωc = 0 ,

(H, curlφ)Ωc + iω(εE,φ)Ωc = 0 ,

−(curlE,φ)Ωc + iω(µH,φ)Ωc = 0 ,

(3.68)

for all φ ∈ H1
0 (Ωc), φ ∈H0(curl,Ωc) and

ψ ≡ 0 on Ωc .

The crucial idea for proving Lemma 3.3.1 is the unique solvability of an elliptic Dirichlet boundary
value problem. This is the contents of Lemma 3.3.2. This result is proved in [48], for instance.

Lemma 3.3.2 Let ψ ∈ H1
0 (Ωc) with∣∣∣∇ψ(x) · x

|x|
− iκψ(x)

∣∣∣ = O
(

1

|x|2

)
, for |x| → ∞ .

The variational problem

∀φ ∈ H1
0 (Ωc) : (∇ψ,∇φ)Ωc − κ2(ψ, φ)Ωc = 0 .

is uniquely solvable for all κ ∈ R. The unique solution is ψ ≡ 0 on Ωc.

Proof of Lemma 3.3.1: Assume that ψ vanishes on Ωc, then the boundary value problem (3.67)
shrinks obviously to the original Maxwell boundary value problem (3.68). Thus, let us prove that
the potential ψ identically vanishes provided (3.67) holds. To see this, we employ test functions of
the form φ = ∇φ with φ ∈ H1

0 (Ωc). This is allowed as ∇H1
0 (Ωc) ⊂H0(curl,Ωc) and it follows

∀φ ∈ H1
0 (Ωc) : iω(εE,∇φ)Ωc + (∇ψ,∇φ)Ωc = 0 .

Moreover, it holds

∀φ ∈ H1
0 (Ωc) : (div(εE), φ)Ωc = −(εE,∇φ)Ωc = −iω εµ(ψ, φ)Ωc ,

and, thus, we are left with the variational problem depicted in Lemma 3.3.2, namely, �nd ψ ∈ H1
0 (Ωc)

such that for all φ ∈ H1
0 (Ωc)

(∇ψ,∇φ)Ωc − κ2(ψ, φ)Ωc = 0 .

The unique solution vanishes on Ωc for all κ. 2

Thus, it makes sense to further investigate the Picard system because it contains the Gauÿ law
explicitly. The regularity assumptions for (E,H, ψ) can be used to reformulate the Picard system
(3.63)-(3.65) in distributional sense. By use of the trivial extensions into Ω,

Ẽ =

{
E in Ωc,

0 in Ω ,
H̃ =

{
H in Ωc,

0 in Ω ,
and ψ̃ =

{
ψ in Ωc,

0 in Ω ,

it holds for all ϕ ∈ D(R3), ϕ ∈ D(R3) that
〈div(εẼ), ϕ〉 + iω εµ〈ψ̃, ϕ〉 = −〈γn(εE)δΓ, ϕ〉 ,

〈curl H̃,ϕ〉 + iω〈εẼ,ϕ〉 + 〈∇ψ̃,ϕ〉 = 〈(γ0ψn)δΓ,ϕ〉 − 〈γDHδΓ,ϕ〉 ,

−〈curl Ẽ,ϕ〉 + iω〈µH̃,ϕ〉 = 〈mδΓ,ϕ〉 .

(3.69)

42



3.3. The Stabilized Formulation

The additional surface distribution on the right hand side results from the distribution ∇ψ̃ which
ful�lls for all ϕ ∈ D(R3)

〈∇ψ̃,ϕ〉 = (∇ψ,ϕ)Ωc + 〈(γ0ψn)δΓ,ϕ〉 .

Following the same reasoning as in Section 3.2, the magnetic �eld H̃ can be eliminated, leading to
a second order system. By the use of the abbreviation Ψ̃ = iω µψ̃ and by inserting the boundary
condition γ0Ψ̃ = 0, this reads{

〈curl curl Ẽ,ϕ〉 − κ2〈Ẽ,ϕ〉+ 〈∇Ψ̃,ϕ〉 = −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉 ,

〈divẼ, ϕ〉+ 〈Ψ̃, ϕ〉 = −〈γnEδΓ, ϕ〉 .
(3.70)

The two equations in (3.70) are naturally separated by the test function spaces and, thus, we can,
equivalently, consider their sum, namely,

〈curl curl Ẽ,ϕ〉 − κ2〈Ẽ,ϕ〉+ 〈∇Ψ̃,ϕ〉+ 〈divẼ, ϕ〉+ 〈Ψ̃, ϕ〉 = −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉

−〈γnEδΓ, ϕ〉 .

Employing the de�nition of the distributional derivatives yields the following equation

〈Ẽ, curl curlϕ〉 − κ2〈Ẽ,ϕ〉 − 〈Ψ̃,divϕ〉 − 〈Ẽ,∇ϕ〉+ 〈Ψ̃, ϕ〉 = −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉

−〈γnEδΓ, ϕ〉 .

Now, we introduce the Picard operators A and A′ by

A =

(
curl curl− κ2 ∇

div I

)
, A′ =

(
curl curl− κ2 −∇

−div I

)
. (3.71)

By use of the Picard operators the previous relations obtain a clear structure, i.e.,〈
A

(
Ẽ

Ψ̃

)
,

(
ϕ

ϕ

)〉
=

〈(
Ẽ

Ψ̃

)
, A′

(
ϕ

ϕ

)〉
= −〈γNEδΓ,ϕ〉 − 〈mδΓ, curlϕ〉

−〈γnEδΓ, ϕ〉 . (3.72)

The reason for a further investigation of (3.72) in the context of boundary integral equations is
given in Lemma 3.3.3.

Lemma 3.3.3 The operator A′ is elliptic in the sense of Douglas-Nirenberg [38] and it possesses a
fundamental solution (U∗,u∗)> ∈ C∞(R3\{0})3×4 × C∞(R3\{0})4 for all κ ≥ 0. Namely,(

U∗(x)

u∗(x)

)
=

(
I3 ∇
∇> −κ2

)
Gκ(x) , Gκ(x) =

e−iκ|x|

4π|x|
, (3.73)

ful�lls for all (ϕ, ϕ) ∈ D(R3)×D(R3) the distributional equation〈
A′
(
U∗

u∗

)
,

(
ϕ

ϕ

)〉
=

〈(
δ0 0

0 δ0

)
,

(
ϕ

ϕ

)〉
=

(
ϕ

ϕ

)
(x) .
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Proof: The di�erential operators in A′ transform the fundamental solution in the following way

A′
(
U∗

u∗

)
=

=

(
curl curl (GκI3)− κ2(GκI3)−∇(∇Gκ)> curl curl (∇Gκ)− κ2∇Gκ + κ2∇Gκ

−div (I3Gκ) +∇>Gκ −div (∇Gκ)− κ2Gκ

)

=

(
I3 0

0 1

)
(−∆− κ2)Gκ .

2

When comparing the analytical properties of the fundamental solution of the Picard operator with
the fundamental solution of the second order Maxwell operator, it turns out that (3.73) exhibits a
singularity of order O(|x|−2) whereas the Hesse matrix in (3.31) is hypersingular of order O(|x|−3).
A representation for the Picard solution can be derived by means of the integral representation

formulae for a solution of the scalar Helmholtz equation and the theory of distributions [48]. The
key point is that the dual operator of the Newton potential induced by the distributional right
hand side (3.72) extends the boundary data into Ωc and is of the form (3.37), (3.38) and (3.50).
This theory is standard and the details are found in [23, 44], for instance. A simple, non-rigorous
explanation of the representation formula shall be given here. In order to obtain the representation
formula for (E,Ψ) in Ωc, we must simply evaluate the right hand side of (3.72) for the special
case ϕ = U∗ and ϕ = u∗. Provided the traces are regular enough, the surface distributions can
be identi�ed with boundary integral operators and an easy calculation yields that it must hold at
almost every x ∈ Ωc (

E

Ψ

)
=

(
SM (m) + Sκ(γNE)−∇Sκ(γnE)

Sκ(divΓ(γNE) + κ2γnE)

)
. (3.74)

Obviously, (3.74) comprises the Stratton-Chu representation formula for E in its most classical
form [22,48]. Moreover, if Ψ = 0 in Ωc, as anticipated, the second equation can be interpreted as a
weak form of the continuity equation (3.28) by virtue of Lemma 3.3.1.
In order to formulate boundary integral equations for the unknown traces (γNE, γnE), we apply

the trace operators (γR, γ0) on (3.74) and obtain(
γR 0

0 γ0

)(
E

Ψ

)
=

(
γR 0

0 γ0

)(
SM (m) + Sκ(γNE)−∇Sκ(γnE)

Sκ(divΓ(γNE) + κ2γnE)

)
. (3.75)

Recall, that γRE = m × n and γ0Ψ = 0 are prescribed by (3.64) and, thus, we are left with two
boundary integral equations for the pair (γNE, γnE)(

γRSκ −∇Γγ0Sκ
γ0Sκ(divΓ) κ2γ0Sκ

)(
γNE

γnE

)
=

(
m× n− γRSM (m)

0

)
. (3.76)

We summarize this result in the following lemma.

Lemma 3.3.4 Let m ∈ H−
1
2 (divΓ,Γ) and the pair of densities (j, ρΓ) with j ∈ H−

1
2 (divΓ,Γ) and

ρΓ ∈ H−
1
2 (Γ) given with

γ0Sκ(divΓj) = −κ2γ0Sκ(ρΓ) . (3.77)
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Then, the vector �eld
E(x) = SM (m)(x) + Sκ(j)(x)−∇Sκ(ρΓ)(x) (3.78)

for x ∈ Ωc is a Maxwell solution in H(curl curl,Ωc) with

γDE(x) = m(x) , γNE(x) = j(x) , γnE(x) = ρΓ(x) . (3.79)

Di�erent from the classical formulation, an additional condition, namely the weak form of the
continuity equation (3.77), is built in. The continuity equation accounts for the Gauÿ law by means
of the normal trace γnE and, thus, the quasi-electrostatic character of the electromagnetic �eld is
recovered.

3.3.2. Boundary Element Formulation

The principal question is whether the system of boundary integral equations (3.76) is uniquely
solvable. A positive answer is given by the following Lemma 3.3.5.

Lemma 3.3.5 Assume that κ2 > 0 is neither an interior eigenvalue of the Laplace nor of the
curl curl operator.

Then, the variational formulation for the direct formulation is uniquely solvable and it reads: �nd
j ∈ H−

1
2 (divΓ,Γ) and ρΓ ∈ H−

1
2 (Γ) such that for all φ ∈ H−

1
2 (divΓ,Γ), for all υ ∈ H−

1
2 (Γ) it

holds 〈γRSκ(j),φ〉− 1
2

+ 〈divΓφ, γ0Sκ(ρΓ)〉 1
2

= 〈m× n,φ〉− 1
2
− 〈γRSMm,φ〉− 1

2
,

〈υ, γ0Sκ(divΓj)〉 1
2

+ κ2 〈υ, γ0Sκ(ρΓ)〉 1
2

= 0 .
(3.80)

Also, the variational formulation for the indirect formulation is uniquely solvable and it reads:
�nd jt ∈ H−

1
2 (divΓ,Γ) and ρtΓ ∈ H

− 1
2 (Γ) such that for all φ ∈ H−

1
2 (divΓ,Γ), for all υ ∈ H−

1
2 (Γ)

it holds 
〈
γRSκ(jt),φ

〉
− 1

2
+

〈
divΓφ, γ0Sκ(ρtΓ)

〉
1
2

= 〈m× n,φ〉− 1
2〈

υ, γ0Sκ(divΓj
t)
〉

1
2

+ κ2
〈
υ, γ0Sκ(ρtΓ)

〉
1
2

= 0 .
(3.81)

Proof: Let j ∈ H−
1
2 (divΓ,Γ) denote the unique solution of the classical formulation (3.60), which

exists according to Theorem 3.2.10. Provided κ2 is not an interior eigenvalue of the Laplace operator
for the domain Ω, there exists a unique density ρΓ ∈ H−

1
2 (Γ) [44] with

∀υ ∈ H−
1
2 (Γ) κ2 〈υ, γ0Sκ (ρΓ)〉 1

2
= −〈υ, γ0Sκ (divΓj)〉 1

2
,

where the right hand side is uniquely de�ned by j. Then, the pair (j, ρΓ) uniquely solves (3.80).
The same holds for the indirect stabilized formulation. 2

3.4. The Electrostatic Case

To understand the limiting behavior of the stabilized formulation, we �rst look at the electrostatic
equations. We will �nd that the stabilized formulation corresponds to a saddle point formulation
which yield for κ = 0 an indirect potential formulation for an electrostatic boundary value problem.
Considering the limiting case κ → 0, we should have in mind that it is the frequency ω of the

incoming signal which is sent to zero. The case κ = 0 equals ω = 0 and, thus, the �eld Ei is an
electrostatic �eld and not an electromagnetic signal anymore. By de�nition, electrostatic �elds can
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be represented as potential �elds
Ei(x) = −∇ϕi(x) .

Moreover, the Maxwell system shrinks to a decoupled system of partial di�erential equations,
namely,  div ε 0

0 curl

−curl 0

( E

H

)
(x) =

 0

0

0

 , in Ωc . (3.82)

and, since Ωc is simply connected, E can be represented also in the form

E(x) = −∇ϕ(x) (3.83)

and it must hold divΓj
t = 0 in H−

1
2 (Γ). Recall that the Sobolev space that accounts for this

conditions was denoted

H−
1
2 (divΓ0,Γ) =

{
u ∈ H−

1
2 (divΓ,Γ), divΓu = 0

}
. (3.84)

Moreover, we need Sobolev spaces which account for the null-space of the vector-valued surface curl
operator curlΓ, namely,

H
1
2
∗ (Γ) =

{
u ∈ H

1
2 (Γ), 〈1, u〉 1

2
= 0
}
, (3.85)

H
− 1

2
∗∗ (Γ) =

{
u ∈ H−

1
2 (Γ), 〈u, γ0S0(1)〉 1

2
= 0
}
. (3.86)

The Dirichlet boundary condition is given in terms of the potential by

γD∇ϕ(x) = m(x) = −γD∇ϕi(x) on Γ . (3.87)

Note, that by (3.87), the solvability condition curlΓm = 0 is ful�lled because γD∇ = ∇Γ. The
decay condition reads ∣∣ϕ(x)

∣∣ = O
(

1

|x|

)
for |x| → ∞ .

Di�erent from electrodynamics, the Faraday law plays a minor role as it is trivially ful�lled by
(3.83). Thus, the boundary value problem describing our electrostatic �eld as limiting case of the
scattering situation reads 

−∆ϕ = 0 , in Ωc ,

γD(∇ϕ) = m , on Γ ,∣∣ϕ(x)
∣∣ = O

(
1

|x|

)
, for |x| → ∞ .

(3.88)

It is shown in [54] that the solution ϕ ∈ H1(Ωc) of the boundary value problem (3.88) can be
represented by the indirect representation formula

ϕ(x) =

∫
Γ

γ1,yG0(x− y) p(y) dσy = W0(p)(x) , (3.89)

with a density p ∈ H
1
2 (Γ). Here, W0 is the double layer potential for the Laplace equation and it

holds
W0 : H

1
2 (Γ)→ H1(Ωc) . (3.90)
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Provided Γ is connected, it holds that the hypersingular operator

γ1W0 : H
1
2 (Γ)→ H−

1
2 (Γ) .

is elliptic on H
1
2
∗ (Γ) [54]. Moreover, it holds for all φ ∈ H

1
2
∗ (Γ) [51]

〈γ1W0(p), φ〉 1
2

= 〈curlΓ φ, γRS0(curlΓ p)〉− 1
2
.

The function given by (3.89) solves (3.88) only if the boundary condition in (3.88) is ful�lled. To
obtain the determining equation for p, note that the equations (3.81) must also hold for κ = 0. This

yields for the special case of test vector �elds curlΓφ with φ ∈ H
1
2
∗ (Γ)

〈curlΓ φ, γRS0(curlΓ p)〉− 1
2

= 〈m× n, curlΓ φ〉− 1
2
,

and, thus, the density p ∈ H
1
2
∗ (Γ) must be such that

〈γ1W0(p), φ〉 1
2

= 〈m× n, curlΓ φ〉− 1
2

for all φ ∈ H
1
2
∗ (Γ).

Lemma 3.4.1 Let Ωc be simply connected. There is a unique solution p ∈ H
1
2
∗ (Γ) given by the

variational equation

∀φ ∈ H
1
2
∗ (Γ) : 〈γRS0(curlΓ p), curlΓ φ〉− 1

2
= 〈m× n, curlΓ φ〉− 1

2
. (3.91)

With this density p a solution ϕ of the boundary value problem (3.88) is given by (3.89) and, then,
the Maxwell solution can be represented as follows

E(x) = −∇W0(p)(x) . (3.92)

Proof: The variational equation (3.91) is uniquely solvable due to the H
1
2
∗ (Γ)-ellipticity of the

hypersingular operator γ1W0. 2

Now, we consider the stabilized variational formulation for κ = 0. It reads
〈
γRS0(jt),φ

〉
− 1

2
+

〈
divΓφ, γ0S0(ρtΓ)

〉
1
2

= 〈m× n,φ〉− 1
2
,〈

υ, γ0S0(divΓj
t)
〉

1
2

= 0 .
(3.93)

This is obviously a saddle point formulation for (3.91) where the condition divΓj
t = 0 is built in

as side constraint. To precisely formulate the conditions that guarantee the unique solvability of
(3.93), we need the following lemma. The proof goes back to the work of Engleder and Bu�a [10,31].

Lemma 3.4.2 For κ = 0, there exists a constant C > 0 such that

sup

0 6=φ∈H−
1
2 (divΓ,Γ)

|〈υ, γ0S0(divΓφ)〉 1
2
|

||φ||
H−

1
2 (divΓ,Γ)

≥ C||υ||
H−

1
2 (Γ)

holds for all υ ∈ H−
1
2

∗∗ (Γ).
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Proof: Due to [10] there exists a constant C > 0 such that

||∇Γφ||
H−

1
2 (curlΓ,Γ)

≥ C||φ||
H

1
2 (Γ)

holds for all φ ∈ H
1
2
∗ (Γ). Also, we have

||∇Γφ||
H−

1
2 (curlΓ,Γ)

= sup

0 6=φ∈H−
1
2 (divΓ,Γ)

|〈∇Γφ,φ〉− 1
2
|

||φ||
H−

1
2 (divΓ,Γ)

= sup

0 6=φ∈H−
1
2 (divΓ,Γ)

|〈divΓφ, φ〉 1
2
|

||φ||
H−

1
2 (divΓ,Γ)

.

Therefore, the inf-sup condition holds

sup

0 6=φ∈H−
1
2 (divΓ,Γ)

|〈divΓφ, φ〉 1
2
|

||φ||
H−

1
2 (divΓ,Γ)

≥ C||φ||
H

1
2 (Γ)

for all φ ∈ H
1
2
∗ (Γ). The H

1
2 (Γ)-ellipticity and self-adjointness of γ0S0 allows for the following

transformation

||φ||
H

1
2 (Γ)

= ||γ0S0(υ)||
H

1
2 (Γ)

= sup

0 6=ψ∈H−
1
2 (Γ)

|〈ψ, γ0S0(υ)〉 1
2
|

||ψ||
H−

1
2 (Γ)

≥
|〈υ, γ0S0(υ)〉 1

2
|

||υ||
H−

1
2 (Γ)

≥ C||υ||
H−

1
2 (Γ)

which �nishes the proof. 2

The inf-sup condition of the previous lemma is used to prove the unique solvability of the saddle
point formulation (3.93).

Theorem 3.4.3 There exists a unique pair of densities jt ∈ H−
1
2 (divΓ,Γ) and ρtΓ ∈ H

− 1
2

∗∗ (Γ) such

that the variational formulation (3.93) holds for all φ ∈ H−
1
2 (divΓ,Γ) and υ ∈ H−

1
2

∗∗ (Γ).

Proof: The variational formulation (3.93) is a classical saddle point problem. The side constraint

∀ υ ∈ H−
1
2

∗∗ (Γ) :
〈
υ, γ0S0(divΓj

t)
〉

1
2

= 0

yields that divΓj
t = 0 in H−

1
2 (Γ) and, thus, jt ∈ H−

1
2 (divΓ0,Γ). The ellipticity of the principal

part, i.e.,
∀φ ∈ H−

1
2 (divΓ0,Γ) :

〈
γRS0(φ),φ

〉
− 1

2
≥ c||φ||

H−
1
2 (divΓ,Γ)

together with the inf-sup condition from Lemma 3.4.2 guarantees the unique solvability of (3.93)
by the theorem of Brezzi [9]. 2

3.5. Conclusion

One of the most often studied problems in electromagnetics is the scattering of an electromagnetic
�eld at a perfectly conducting body. The di�erential equations describing the characteristic of
the scattered electromagnetic �eld are the linear, harmonic Maxwell equations. The mathematical
solution theory which treats the boundary integral variational formulation deduced by the Maxwell
equations is well-known. By means of this existing theory, the so-called stabilized formulation has
been developed in this chapter. It has been shown that the stabilized formulation is related to the
classical formulation for electromagnetics and the unique solvability of the stabilized formulation
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3.5. Conclusion

in the in�nite-dimensional setting has been proved. Di�erent from the classical formulation, the
stabilized formulation is suited to solve also problems from electrostatics.

In comparison to other publications on the stabilization of the classical boundary integral formu-
lation, the starting point for our presentation are the original Maxwell equations. The use of the
distributional setting is most important to understand that the stabilized formulation incorporates
a weak form of the continuity equation whereas the classical formulation does not account for the
continuity equation. The contribution of our work to the state of research is that it is shown that the
stabilization strategy is not an abstract mathematical tool but it is naturally related by physics.
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Chapter 4

High Order Boundary Elements

4.1. Introduction

It has been known for a long time that elliptic and Maxwell boundary value problems can be
reformulated into boundary integral equations [44,48]. The essential point here is that, in order to
boundary value problem posed in a three-dimensional domain Ωc, one has to solve an equation on
its boundary Γ, i.e., on a manifold of dimension two.

The principal theorems in the context of partial di�erential equations characterize the type of
the di�erential equation and the type of the boundary data which guarantee the unique solvability.
To solve the boundary value problem by a numerical scheme, the continuous formulation must be
replaced by a discrete formulation. One obtains an approximation ϕhp ∈ Hp

h of the exact solution
ϕ ∈ H, provided the discretized formulation is also uniquely solvable. If the �nite-dimensional space
Hp
h is a subspace of H, we call the resulting numerical method conforming. The construction of

Hp
h relies on an approximation of the domain of interest by a set of �nite elements. The index h

denotes the typical element size and p refers to the (polynomial) order of element shape functions.
For our purposes, the space H is one of the trace spaces introduced in Section 2.5. The principal
question to answer is how to construct appropriate �nite-dimensional subspaces of the trace spaces.

Following the basic principles given in [27], the construction of the so-called parametric spaces as
�nite-dimensional counterparts of the trace spaces is presented in Section 4.2. The Subsections 4.2.1
to 4.2.4 build up on each other as follows. The construction of high order elements starts in Sub-
section 4.2.1 with a detailed discussion of the reference triangle T̂ . Based on Nédélec's polynomial
exact sequence de�ned on the reference triangle T̂ , the master element (T̂ ,p) is introduced. The
characteristics of the master element (T̂ ,p) are the �xed geometry T̂ and a speci�ed exact sequence
of variable polynomial order p. The lifting procedure from the master element T̂ onto a physical
boundary element Γi is the subject of Subsection 4.2.2. Provided Γi ⊂ R3 is parametrized by an in-
�nitely smooth function X̂i with domain T̂ , element shape functions ϕ are de�ned in terms of master
element shape functions ϕ̂. This concept is basic for the de�nition of the parametric elements (Γi,p)
of variable order p. In Subsection 4.2.3, the parametric spaces Hph(Γ), Ep−1h (Γ) and Qp−2

h (Γ) which
contain basis functions de�ned on Γ are �nally introduced. Subsection 4.2.4 is about the projection-
based interpolation operators Π1, Πc and Π0. These operators connect in�nite-dimensional trace
spaces with the �nite-dimensional parametric spaces. The set of parametric spaces is completed
with the de�nition of the bidual space Vp−1h (Γ) and the projection-based interpolation operator Πd,
This is done in Subsection 4.2.5. Concluding remarks and further references are given in Section 4.3.

Closely connected to the access which is chosen here to introduce the high order boundary elements
is the idea of considering the de Rham cohomology on the boundary as a structure. This relates to
a di�erential geometrical point of view [2,3] and is explicitly mentioned in [7].
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Chapter 4. High Order Boundary Elements

4.2. Hierarchical High Order Boundary Elements

As usual, Ω ⊂ R3 denotes a curvilinear Lipschitz polyhedron with boundary Γ. We assume that Γ
is piecewise given by

Γ =

N⋃
i=1

Γi .

Thus, each element Γi is parametrized by a bijective and smooth map X̂i : T̂ → Γi as described in
Section 2.1. The intersection of any two elements Γi and Γj , with i 6= j, is either empty, reduces to
a single vertex or consists of a whole common edge. Such partition is called a regular mesh. As an

Figure 4.1.: Element degrees of freedom for Pp, p = 1, p = 2 and p = 3.

example, let us assume Γi ⊂ Γ are plane triangles and let P3(Γi) denote the space of polynomials of
maximal order three de�ned on Γi. It holds dim(P3(Γi)) = 10 and, thus, given a basis {ϕlloc

}10
lloc=1,

for each q ∈ P3(Γi), there is a unique set of coe�cients {αlloc
}10
lloc=1 such that

q ∈ P3(Γi) : q(x) =
10∑

lloc=1

αlloc
ϕlloc

(x) .

To obtain a general rule to �nd the coe�cients αlloc
for a speci�c q ∈ P3(Γi), the set of element

degrees of freedom {Λlloc
}10
lloc=1 ⊂

(
P3(Γi)

)′
is introduced. The element degrees of freedom are

chosen such that
q ∈ P3(Γi) : Λlloc

(q) = αlloc
.

The dots in Figure 4.1 symbolize element degrees of freedom for P1(Γi), P2(Γi) and P3(Γi).
The basis functions ϕlloc

are called element shape functions. The lower index refers to the number
of the element degree of freedom in the ordered set of element degrees of freedom. This notation is
unique if the set of element shape functions and the set of element degrees of freedom are isomorphic
to each other.
In order to represent a polynomial q ∈ Pp(Γ) on the whole surface Γ, a set of global basis functions{
φlglob

}
lglob

and a set of global degrees of freedom
{

Λlglob

}
lglob

are needed. Then,

q ∈ Pp(Γ) : q(x) =
∑
lglob

αlglob
φlglob

(x), Λlglob
(q) = αlglob

.

The global basis functions are constructed in terms of element shape functions. This means, however,
that the global degrees of freedom are given by element degrees of freedom and that local coe�cients
αlloc

coincide with the global coe�cients αlglob
whenever elements are connected to each other. The

dots lying on the common edge of the triangles in Figure 4.2 are global degrees of freedom.

4.2.1. The Master Element

By assumption, the domain of de�nition of the local parametrizations X̂i is for all i = 1, . . . , N the
same, namely the reference triangle shown in Figure 4.3. It will get clear in the following subsections,
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4.2. Hierarchical High Order Boundary Elements

Figure 4.2.: Local degrees of freedom and global, namely shared, degrees of freedom.

that the reference triangle plays a fundamental role within the construction of the hierarchical high
order boundary elements. We de�ne

T̂ = {v̂1, v̂2, v̂3} ∪ {ê1, ê2, ê3} ∪ T̂ ,

where the vertices v̂i, i = 1, 2, 3, are

v̂1 = (0, 0)>, v̂2 = (1, 0)>, v̂3 = (0, 1)> , (4.1)

the edges êi, i = 1, 2, 3, are parametrized as follows

ê1 =
{

(t, 0)>, t ∈ [0, 1]
}
, τ̂ 1 = (1, 0)> ,

ê2 =
{

(1− t, t)>, t ∈ [0, 1]
}
, τ̂ 2 = 1√

2
(−1, 1)> ,

ê3 =
{

(0, 1− t)>, t ∈ [0, 1]
}
, τ̂ 3 = (0,−1)> ,

(4.2)

and the element interior is given by

T̂ =
{
ξ = (ξ1, ξ2)>, 0 < ξ1, ξ2 < 1, ξ1 + ξ2 < 1

}
. (4.3)

Figure 4.3.: The reference triangle.

The reference triangle is canonically embedded in R3 by simply adding the third component

ξ3 = 0. Thus, whenever we consider T̂ ⊂ R3, this canonical embedding is assumed without further
comment.
In the following, functions de�ned on elements Γi are distinguished from functions de�ned on

the reference triangle. The �rst are called element shape functions and the argument is typically
denoted x. The latter are called master element shape functions and they depend on master
element coordinates ξ. To indicate that the reference triangle is their domain of de�nition, the
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master element shape functions are given a hat.

Let Pp(T̂ ) denote the space of polynomials with domain T̂ of order less or equal p and let, further,
Pp(T̂ ) = Pp(T̂ )2 denote the polynomial vector �elds of order less or equal p. Starting with Pp(T̂ ),
we obtain for p ≥ 2 the exact sequence

Pp(T̂ )
∇Γ−−−→ Pp−1(T̂ )

curlΓ−−−→ Pp−2(T̂ ) .

For arbitrary ϕ̂ ∈ Pp(T̂ ) and ϕ̂ = ϕ̂1e1 + ϕ̂2e2 ∈ Pp(T̂ ), it holds due to (2.31) and (2.32)

∇Γ : ϕ̂ 7→ ∂ϕ̂

∂ξ1
e1 +

∂ϕ̂

∂ξ2
e2 and curlΓ : ϕ̂1e1 + ϕ̂2e2 7→

∂ϕ̂2

∂ξ1
− ∂ϕ̂1

∂ξ2
, (4.4)

since the bidual basis vectors coincide with the standard basis vectors

al = al = el , l = 1, 2 , and a12 = a12 = 1 .

We obtain a much �ner distinction of the polynomials de�ned on T̂ when we classify the polyno-
mials according to their polynomial degree on edges êi and in the interior T̂ . Now, let ϕ̂ ∈ Pp(T̂ )
and let ϕ̂

∣∣
êi
be its restriction on the ith edge. We say that ϕ̂ has variable order

p = (p, p1, p1, p3) ∈ N4, 1 ≤ pi ≤ p, i = 1, 2, 3 ,

if ϕ̂
∣∣
êi
∈ Ppi(êi). This classi�cation leads to the de�nition of the space of polynomials with variable

order

Pp(T̂ ) =
{
ϕ̂ ∈ Pp(T̂ ), ϕ̂

∣∣
êi
∈ Ppi(êi), i = 1, 2, 3

}
⊂ Pp(T̂ ) .

Similarly, we de�ne the space of vector-valued polynomials of variable order. Here, we consider the
parallel projection of the restrictions on the edges êi, namely,

ϕ̂
∣∣
êi
· τ̂ i , i = 1, 2, 3 .

The space of vector-valued polynomials of variable order p is given by

Pp(T̂ ) =
{
ϕ̂ ∈ Pp(T̂ ), ϕ̂

∣∣
êi
· τ̂ i ∈ Ppi(êi) , i = 1, 2, 3

}
⊂ Pp(T̂ ) .

We adopt the notation
p− 1 = (p− 1, p1 − 1, p2 − 1, p3 − 1) .

Then, these polynomial spaces are related to each other by

Pp(T̂ )
∇Γ−−−→ Pp−1(T̂ )

curlΓ−−−→ Pp−2(T̂ ) , (4.5)

and this sequence is exact. When a basis for Pp(T̂ ) is chosen, there is a natural access to the
two subsequent spaces via di�erentiation. The gradient is, however, not surjective and this means
that ∇Γ(Pp(T̂ )) is only a subspace of Pp−1(T̂ ). To obtain a basis for Pp−1(T̂ ) one has to add
the missing number of linear independent polynomial vector �elds. The operator curlΓ in (4.5) is
surjective and, thus, the last space in the sequence is given by Pp−2(T̂ ) = curlΓ (Pp−1(T̂ )).

The de�nition that follows is important for understanding the complexity of the high order bound-
ary elements and it is helpful to start with a short motivation. Consider Pp1(T̂ ) with uniform order
p1 = (1, 1, 1, 1) and Pp2(T̂ ) with variable order p2 = (2, 2, 1, 1). These spaces are di�erent because
the latter contains quadratic polynomials and the �rst obviously not. However, not all quadratic
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4.2. Hierarchical High Order Boundary Elements

Figure 4.4.: Number of degrees of freedom for Pp(T̂ ) with uniform p = 1, p = 2, p = 3, p = 4.

Table 4.1.: Notations for the hierarchical master element shape functions of second kind for p ≥ 2

Set Notation Index k Index i Index l

Pp(T̂ )

âi ϕ̂ik k = 1 i = 1, 2, 3 l = 0

â3+i ϕ̂ik 2 ≤ k ≤ pi i = 1, 2, 3 l = 0

â7 ϕ̂3+l
k 3 ≤ k ≤ p i = 0 1 ≤ l ≤ k − 2

Pp−1(T̂ )
â3+i ϕ̂ik 0 ≤ k ≤ pi − 1 i = 1, 2, 3 l = 0

â7 ϕ̂3+l
k 2 ≤ k ≤ p− 1 i = 0 1 ≤ l ≤ 2(k − 1) + 1

Pp−2(T̂ ) â7 υ̂lk 0 ≤ k ≤ p− 2 i = 0

{
l = 1, k = 0

1 ≤ l ≤ k + 1 k > 0

polynomials are allowed in Pp2(T̂ ) but only those with

ϕ̂
∣∣
ê1
∈ P2(ê1) and ϕ̂

∣∣
êi
∈ P1(êi), i = 2, 3 .

The dots in Figure 4.4 illustrate the number of basis functions for Pp(T̂ ) for uniform order of
approximation p = 1 to p = 4. The distribution of points on the edges and in the element interior
varies in the sense that the higher p, the more basis functions are associated with the edges and the
element interior.
It is convenient to introduce for each geometrical entity an abstract notation and assign to it a

polynomial order. For a vertex v̂i, i = 1, 2, 3, we introduce the abstract notation vertex node âi,
i = 1, 2, 3, and assign to it the polynomial order one. For an edge êi, i = 1, 2, 3, we introduce the
abstract notation midedge node â3+i, i = 1, 2, 3, and assign to it the polynomial order pi. Finally,
for the interior T̂ , we introduce the abstract notation middle node â7 and assign to it the polynomial
order p.
This notation is used here to explain the hierarchical structure of the polynomial basis functions

for arbitrary orders p ∈ N4. In Subsection 4.2.4 it will become clear that the association of basis
functions with either vertex nodes, midedge nodes or middle nodes goes along with the choice of
the high order degrees of freedom.

De�nition 9 The master element (T̂ ,p) of order p, is a structure with the following attributes:

1. The reference triangle given by (4.1)-(4.3).

2. A set of �xed bases of Pp(T̂ ), Pp−1(T̂ ) and Pp−2(T̂ ). The bases for Pp(T̂ ) and Pp−1(T̂ ) are hierar-
chical.

To characterize the hierarchical bases, the notations listed in Table 4.1 are used. A set of functions
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spanning Pp(T̂ ) is called a hierarchical basis if the functions are divided into three kinds of sets.
The �rst set contains the linear basis functions, uniquely de�ned by

i = 1, 2, 3 : ϕ̂i1 ∈ P1(T̂ ) with ϕ̂i1(v̂j) = δij for j = 1, 2, 3 . (4.6)

The linear basis functions are called vertex node shape functions because the only information which
is necessary to specify them is related to the vertex nodes âi for i = 1, 2, 3.

The second set contains the basis functions which have polynomial order 2 ≤ k ≤ pi and which
vanish at the vertices v̂j such that

i = 1, 2, 3 : 2 ≤ k ≤ pi : ϕ̂ik ∈ Pk(T̂ ) with ϕ̂ik(v̂j) = 0 for j = 1, 2, 3 . (4.7)

The basis functions of the second set are called midedge node shape functions because, besides (4.7),
the only information which is necessary to specify them is the polynomial degree pi associated to
the midege nodes â3+i for i = 1, 2, 3.

The third set contains basis functions which have polynomial order 3 ≤ k ≤ p and which vanish
on the boundary of the reference triangle, i.e.,

3 ≤ k ≤ p : 1 ≤ l ≤ k − 2 : ϕ̂3+l
k ∈ Pk(T̂ ) with ϕ̂3+l

k

∣∣
êj

= 0 for j = 1, 2, 3 . (4.8)

The basis functions of the third set are called bubble functions because, besides (4.8), the only
information which is necessary to specify them is the polynomial degree p associated to the middle
node â7. Note, that for polynomial degree k ≥ 2, there are up to three functions in the set of
midedge node shape functions of polynomial degree k. This is why the running index is 3 + l.

Similarly, a set of vector �elds spanning Pp−1(T̂ ) is called a hierarchical basis if the vector �elds
are divided into two kinds of sets. The �rst set contains the midedge node shape vector �elds
associated to the midege nodes â3+i with associated orders pi, i.e.,

i = 1, 2, 3 : 0 ≤ k ≤ pi − 1 : ϕ̂ik
∣∣
êi
· τ̂ i ∈ Ppi−1(êi) . (4.9)

The second set contains the basis vector �elds associated to the middle node â7. They are called
bubble vector �elds because their parallel projection restricted to the edges vanish, i.e.,

2 ≤ k ≤ p−1 : 1 ≤ l ≤ 2(k−1)+1 : ϕ̂3+l
k ∈ Pk(T̂ ) with ϕ̂3+l

k

∣∣
êj
·τ̂ j = 0 for j = 1, 2, 3 . (4.10)

The choice of hierarchical bases for Pp(T̂ ) and Pp−1(T̂ ) is not unique. The construction of the
polynomial bases which underly the numerical part of this work is explained in Appendix D.

By the overview given in Table 4.1 it is easily seen that a speci�c master element shape function in
each of the polynomial spaces is uniquely de�ned by the set of indices {i, k, l}. Besides this nomen-
clature, another notational convention is used in the following. We assume that the master element
shape functions spanning the polynomial spaces are ordered and, thus, there is an isomorphism

{i, k, l} 7→ lloc , (4.11)

which assigns to {i, k, l} the number lloc of the master element shape function in the ordered set of
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â1 â2

â3

â4

â5â6

â7

Figure 4.5.: Symbolical vertex nodes, midedge nodes and middle node of T̂ .

the master element shape functions spanning the speci�c polynomial space. Namely,

Pp(T̂ ) = span { ϕ̂1
1, ϕ̂2

1, ϕ̂3
1, ϕ̂1

2, . . . , ϕ̂1+p
p } ,

=̂ span { ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4, . . . , ϕ̂nH } = {ϕ̂lloc
}nHlloc=1 ,

Pp−1(T̂ ) = span { ϕ̂1
0, ϕ̂2

0, ϕ̂3
0, ϕ̂1

1, . . . , ϕ̂2p
p−1 } ,

=̂ span { ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4, . . . , ϕ̂nE } =
{
ϕ̂lloc

}nE
lloc=1

,

Pp−2(T̂ ) = span { υ̂1
0, υ̂1

1, υ̂2
1, υ̂1

2, . . . , υ̂p−1
p−2 } ,

=̂ span { υ̂1, υ̂2, υ̂3, υ̂4, . . . , υ̂nQ } = {υ̂lloc
}nQlloc=1 .

The subscript loc is used here to emphasize that lloc does not coincide with the index l from
Table 4.1. Whenever it is clear from the context, the subscript loc is skipped in the following.
A �nal remark about the master element concerns the choice of basis for Pp−2(T̂ ). The sequence

(4.5) is exact and, thus, we extract from

{curlΓϕ̂l}
nE
l=1 , (4.12)

our basis functions. In this set of basis functions {υ̂l}
nQ
l=1 any function has a representation of the

following kind
υ̂l = curlΓϕ̂il , l = 1, . . . , nQ, il ∈ {1, . . . , nE} , (4.13)

where il is the running index collecting only the linear independent functions in the set (4.12).

4.2.2. The Parametric Element

Figure 4.6.: The parametrization X̂ : T̂ → T .

Let us consider a curvilinear triangle T ⊂ R3 parametrized by a smooth map X̂ as illustrated in
Figure 4.6. The parametrization X̂ is, in general, non-linear and, thus, the embedding of T in R3

is not canonic. Recall that at any x = X̂(ξ) we obtain bidual basis vectors {al,al}2l=1 according to
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(2.10),(2.27) and {a12,a12} according to (2.12),(2.28). The bidual basis vectors are used to de�ne
the element shape functions in terms of parameter coordinates.

De�nition 10 1. Let {ϕ̂l}nH
l=1 denote a �xed hierarchical basis of Pp(T̂ ). At x = X̂(ξ), we de�ne

Hp(T ) = span {ϕl}nH
l=1 : ϕl(x) = ϕ̂l(ξ) , l = 1, . . . , nH ,

with ∇Γϕl(x) =
∂ϕ̂l(ξ)

∂ξ1
a1 +

∂ϕ̂l(ξ)

∂ξ2
a2 .

(4.14)

2. Let {ϕ̂l}
nE
l=1 denote a �xed hierarchical basis for Pp−1(T̂ ). At x = X̂(ξ), we de�ne

Ep−1(T ) = span
{
ϕl
}nE

l=1
, ϕl(x) = ϕ̂l,1(ξ)a1 + ϕ̂l,2(ξ)a2 , l = 1, . . . , nE ,

with curlΓϕ
l(x) =

(
∂ϕ̂l,2(ξ)

∂ξ1
− ∂ϕ̂l,1(ξ)

∂ξ2

)
a12 .

(4.15)

3. Let {υ̂l}nQ
l=1 denote a �xed basis of Pp−2(T̂ ). At x = X̂(ξ), we de�ne

Qp−2(T ) = span {υl}nQ
l=1 , υl(x) = υ̂l(ξ)a12 , l = 1, . . . , nQ ,

with υl = curlΓϕ
il , il ∈ {1, . . . , nE} .

(4.16)

The element shape functions and vector �elds are smooth and non-polynomial unless the parametriza-
tion X̂ is linear. The spaces of element shape functions, however, naturally inherit the most im-
portant properties from the polynomial spaces.

Lemma 4.2.1 The element shape functions spanning Hp(T ) are hierarchical. Also, the element
shape vector �elds spanning Ep−1(T ) are hierarchical. Moreover, the sequence

Hp(T )
∇Γ−−−→ Ep−1(T )

curlΓ−−−→ Qp−2(T ) (4.17)

is exact.

Proof: The bases for Hp(T ) and Ep−1(T ) are hierarchical because the corresponding polynomial
bases Pp(T̂ ) and Pp−1(T̂ ) are hierarchical. The sequence (4.17) is exact because the underlying
polynomial sequence (4.5) is exact. 2

Figure 4.7.: Symbolical vertex nodes, midedge nodes and middle node of T .

As illustrated in Figure 4.7, the geometrical entities of the curvilinear element T are given abstract
notations, i.e., we introduce the set of vertex nodes ai with assigned order one for i = 1, 2, 3. Further,
we introduce the midedge nodes a3+i with assigned order pi for i = 1, 2, 3 and, also, the middle
node a7 with assigned order p.

De�nition 11 The parametric element (T,p) is a structure with the following attributes.

1. The geometry of the parametric element is given by a smooth bijection X̂ : T̂ → T .

2. A set of bases for the spaces Hp(T ), Ep−1(T ) and Qp−2(T ). The bases for Hp(T ) and Ep−1(T ) are
hierarchical and (4.17) is exact.
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Table 4.2.: Notations for the hierarchical element shape functions of second kind for p ≥ 2

Set Notation Index k Index i Index l

Hp(T )

ai ϕik k = 1 i = 1, 2, 3 l = 0

a3+i ϕik 2 ≤ k ≤ pi i = 1, 2, 3 l = 0

a7 ϕ3+l
k 3 ≤ k ≤ p i = 0 1 ≤ l ≤ k − 2

Ep−1(T )
a3+i ϕik 0 ≤ k ≤ pi − 1 i = 1, 2, 3 l = 0

a7 ϕ3+l
k 2 ≤ k ≤ p− 1 i = 0 1 ≤ l ≤ 2(k − 1) + 1

Qp−2(T ) a7 υlk 0 ≤ k ≤ p− 2 i = 0

{
l = 1, k = 0

1 ≤ l ≤ k + 1 k > 0

The indexing of the element shape functions spanning the local spaces Hp(T ), Ep−1(T ) and
Qp−2(T ) is the same as for master element shape functions. Again, there is an isomorphism between
the single running index introduced in De�nition 10 and the nomenclature presented in Table 4.2.
The index notation listed in Table 4.2 is used if the information captured in the indices is explicitly
needed.

4.2.3. The Parametric Spaces

In this subsection, the �nite-dimensional spaces used later as approximations of the in�nite-dimen-
sional trace spaces are de�ned. Thus, the basis functions which span these so-called parametric
spaces are de�ned on the whole boundary Γ and not on elements Γi ⊂ Γ. However, the spaces of
element shape functions de�ned in Subsection 4.2.2 serve as building blocks to construct the basis
functions. The new aspect here is that the elements are connected to each other by vertices and
edges and, thus, the order of approximation on edges between neighboring elements should coincide.
To precisely formulate this condition, consider Γ as either the boundary of a curvilinear Lipschitz
polyhedron or of class Cr with r ≥ 1 described by a set of parametric elements

{(Γi,pi)}
N
i=1 with Γ =

N⋃
i=1

Γi , (4.18)

where pi = (pi, pi,1, pi,2, pi,3)> with pi,j ≤ pi for j = 1, 2, 3. Moreover, we consider a decomposition
of Γ in sets of vertices vi, edges ei and elements Γi. Let

SI = {vi}NI
i=1 , SII = {ei}NII

i=1 , SIII = {Γi}Ni=1 , (4.19)

then
Γ = SI ∪ SII ∪ SIII . (4.20)

The hp-meshes which suit our purposes can be de�ned now.

De�nition 12 Let Γ be given by (4.18) with (4.19). The hp-mesh is called regular, if for an arbitrary pair
of elements Γi and Γj with i 6= j, it holds that

1. the intersection Γi ∩ Γj is either empty,

2. or, there exist el ∈ SII and vl1 ,vl2 ∈ SI such that Γi ∩ Γj = el ∪ vl1 ∪ vl2 ,

3. or, there exists vl ∈ XI such that Γi ∩ Γj = vl.
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Table 4.3.: Notations for the basis functions, elements of second kind for p ≥ 2

Set Notation Index k Index l = l(k) Index i

Hph(Γ)

SI φI,ik,l k = 1 l = 0 1 ≤ i ≤ NI

SII φII,ik,l 2 ≤ k ≤ pei l = 0 1 ≤ i ≤ NII

SIII φIII,ik,l 3 ≤ k ≤ pΓi 1 ≤ l ≤ k − 2 1 ≤ i ≤ N

Ep−1h (Γ)

SI � � � �

SII φII,ik,l 0 ≤ k ≤ pei − 1 l = 0 1 ≤ i ≤ NII

SIII φIII,ik,l 2 ≤ k ≤ pΓi − 1 1 ≤ l ≤ 2(k − 1) + 1 1 ≤ i ≤ N

Qp−2
h (Γ)

SI � � � �

SII � � � �

SIII νIII,ik,l 0 ≤ k ≤ pΓi − 2

{
l = 0, k = 0

1 ≤ l ≤ k + 1 k > 0
1 ≤ i ≤ N

The hp-mesh is called compatible if neighboring elements impose the same order of approximation on the
common edge, or, in other words, if each edge ei ∈ SII is assigned a unique order pei .

Let Γ be described by a regular and compatible hp-mesh (4.18) with the components (4.19), then,
the parametric spaces can be de�ned.

De�nition 13 The parametric spaceHph(Γ) is spanned by three sets of basis functions. The �rst set contains

basis functions connected to the set of vertices SI . The support of the basis function φ
I,i
1,0 which belongs to

vi ∈ SI comprises all parametric elements which share the vertex vi. Let us assume that the number of
these support elements is m = m(i) ∈ N. We denote the support elements by Γil , where l = 1, . . . ,m(i), and
the index il refers to the actual number of the element in the set SIII . Then, 1 ≤ i ≤ NI

suppφI,i1,0 =

m⋃
l=1

Γil , m = m(i) ∈ N .

The basis function φI,i1,0 is de�ned as follows

φI,i1,0

∣∣∣
Γj

=

{
ϕiloc1 ∈ Hp(Γj), j ∈ {i1, . . . , im} ,

0, j 6∈ {i1, . . . , im} .
(4.21)

Here, iloc ∈ {1, 2, 3} refers to the local vertex node number. The �rst lower index, k = 1, corresponds to the
order of the basis function and the second lower index, l = 0, does not bear any meaning and it is, therefore,
zero.

The second set of basis functions is connected to the set of edges SII . The support of the basis function
φII,ik,0 belongs to ei ∈ SII and it coincides with the two elements Γi1 ,Γi2 which share the edge ei. Let

suppφII,ik,0 = Γi1 ∪ Γi2 , 1 ≤ i ≤ NII .

We de�ne

φII,ik,0

∣∣∣
Γj

=

{
ϕilock ∈ Hp(Γj), j ∈ {i1, i2} ,

0, j 6∈ {i1, i2} .
(4.22)

Here, iloc ∈ {1, 2, 3} refers to the local midedge node number and k refers to the order of the basis function.
The range of k is listed in Table 4.3. All basis functions of this second set vanish at the vertices vi ∈ SI and
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this is why we call any linear combination

v =

NII∑
i=1

∑
k

αII,ik,0 φ
II,i
k,0 , αII,ik,0 ∈ C ,

an edge bubble function.

The third set of basis functions is connected to the set of elements SIII . The support of the basis function
φIII,ik,l is Γi. We de�ne

φIII,ik,l

∣∣∣
Γj

=

{
ϕ3+l
k ∈ Hp(Γi), j = i ,

0, j 6= i .
(4.23)

Here, the index k refers to the order of the basis function and the additional index l refers to the lth basis
function of order k. The ranges of l and k are listed in Table 4.3. All basis functions of this third set vanish
at the vertices vi ∈ SI and on the edges ei ∈ SII and this is why we call any linear combination

v =

NIII∑
i=1

∑
k,l

αIII,ik,l φIII,ik,l , αII,ik,l ∈ C ,

a bubble function.

Since Γ is at least a Lipschitz continuous manifold, all basis functions are at least globally continuous
by de�nition and it holds

Hph(Γ) ⊂ C(Γ) ⊂ H
1
2 (Γ) . (4.24)

De�nition 14 The parametric space Ep−1h (Γ) is spanned by two sets of basis vector �elds. With the
notations from the De�nitions 12 and 13, the basis vector �elds are de�ned as follows

φII,ik,0

∣∣∣
Γj

=

{
ϕilock ∈ Ep−1(Γj), j ∈ {i1, i2} ,
0, j 6∈ {i1, i2} ,

1 ≤ i ≤ NII , (4.25)

φIII,ik,l

∣∣∣
Γj

=

{
ϕ3+l
k ∈ Ep−1(Γi) , j = i ,

0, j 6= i ,
1 ≤ i ≤ N . (4.26)

Here, the index k refers to the order of the basis function and the additional index l refers to the lth basis
function of order k. The range of the indices l and k are listed in Table 4.3. The basis vector �elds which
belong to the element interiors have a vanishing tangential component on the edges and, therefore, any linear
combination

v =

NIII∑
i=1

∑
k,l

αIII,ik,l φIII,ik,l , αII,ik,l ∈ C ,

is called vector-valued bubble function.

The continuity of the basis vector �elds can be assessed by considering a decomposition with respect
to the bidual basis vector �elds. The support of any basis vector �eld comprises maximal two
elements Γi and Γj . Without restriction of any kind, we can assume that (2.97)-(2.99) hold since Γ
is at least Lipschitz continuous. Thus, for an arbitrary basis vector �eld φ, (2.100) is ful�lled and,
therefore,

Ep−1h (Γ) ⊂H
1
2
R(Γ) . (4.27)

From (4.15), we can even conclude that the scalar-valued projection φR = φ · a1 is strongly con-
tinuous on suppφ = Γi ∪ Γj as the parallel projections of the polynomial master element functions
coincide on the common edge eij due to the de�nition of Pp−1(T̂ ).
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De�nition 15 The parametric space Qp−2
h (Γ) is spanned by functions of the form

νIII,ik,l

∣∣∣
Γj

=

{
υlk ∈ Qp−2(Γi) , j = i ,

0, j 6= i .
1 ≤ i ≤ N . (4.28)

The range of the indices l and k are listed in Table 4.3.

The lowest order basis functions of Qp−2
h (Γ) are the piecewise constant functions. All others basis

functions are middle node shape functions which vanish on the edges and at the vertices. Thus, it
holds

Qp−2
h (Γ) ⊂ L2(Γ) ⊂ H−

1
2 (Γ) . (4.29)

Note that by the indices given in the De�nitions 13-15, each basis function is uniquely de�ned by
four indices {∗, i, k, l}. The index ∗ stands for I, II or III and it speci�es one of the sets SI , SII
or SIII . The index i refers to the global node number in the actual ordered set S∗. The index k is
the order and the index l is used to distinguish basis functions of the same order when necessary.
An ordered list of the basis functions of a parametric space gives rise to an isomorphism

{∗, i, k, l} 7→ lglob (4.30)

Whenever there is no need to write the four indices {∗, i, k, l}, the simple index lglob is used.
Finally, the restriction of a basis function to a support element corresponds to a speci�c element

shape function. This means that when the support element is determined, Γi for instance, there
exists a unique relation

lglob 7→ (i, lloc) (4.31)

between the global basis function with global number lglob and the element shape function with
local number lloc in the ordered set of element shape functions with domain Γi.

4.2.4. Projection Based Interpolation

The parametric spaces introduced in Subsection 4.2.3 are �nite-dimensional subspaces of the in�nite-
dimensional trace spaces de�ned in Section 2.5. To estimate their approximation properties, we
need to say �rst how to determine the approximant. This is achieved by applying the projection-
based interpolation operators Π1, Πc and Π0. The projection-based interpolation operators involve
operations as point evaluation or integration on edges and, thus, they are de�ned on spaces of more
regular functions as introduced by (2.112)-(2.114).
The basic assumptions behind the construction of Π1, Πc and Π0 are locality, optimality and

global continuity [26,27]. Locality means that the projection-based interpolation can be performed
element-wise. Optimality means that the error between the approximant and the exact function
should be minimized with respect to an appropriate norm. This step requires the solution of a linear
system of equations because the minimization of an energy functional is equivalent to a variational
problem. Finally, the interpolant must preserve global properties depicted in (4.24), (4.27) and
(4.29).
The projection-based interpolation operators build the most fundamental block to set-up a high

order boundary element implementation. The focus of the following presentation are not theoretical
details but the goal is to state the formulae which are �nally implemented. For a more comprehensive
derivation and, especially, a more detailed explanation of the steps of simpli�cation we refer to [27].
Let s ≥ 1. The operator

Π1 : Hs
pw(Γ)→ Hph(Γ) (4.32)

Π1 is de�ned on continuous functions. The construction proposed in [27] determines the interpolant
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Π1(u) ∈ Hph(Γ) in maximal three steps

Π1(u)(x) =

NI∑
i=1

αI,i1,0φ
I,i
1,0(x)︸ ︷︷ ︸

= uI(x)

+

NII∑
i=1

pei∑
k=2

αII,ik,0 φ
II,i
k,0 (x)︸ ︷︷ ︸

= uII(x)

+

N∑
i=1

pΓi∑
k=3

k−2∑
l=1

αIII,ik,l φIII,ik,l (x)︸ ︷︷ ︸
= uIII(x)

. (4.33)

The �rst step returns uI , which is the interpolation of the values at the vertices vi ∈ SI , namely,

αI,i1,0 = u(vi) .

Thus, uI is a globally continuous function and it is of order p = 1. Moreover, uI is exact at all
vertices and, this means, that all remaining steps should not change this interpolation property.
This is certainly assured if uII is an edge bubble function and uIII is a bubble function. Thus,
the goal of the second step is to �nd an edge bubble function uII such that the remaining error(
uI + uII − u

)
is minimal with respect to an appropriate edge norm. The norm which is used for

practical computations is the �rst order Sobolev norm weighted with an additional geometrical
factor. It is de�ned locally on each edge ei ∈ SII by

||v||2ei =

∫
ei

∣∣∣dv
dl

∣∣∣2(dl

dt

)
︸ ︷︷ ︸
weight

dl =

1∫
0

∣∣∣dv̂
dt

∣∣∣2 dt .

Here, v̂ coincides with v|ei in parameter coordinates, i.e., on the reference interval (0, 1) and ei
is parametrized by t ∈ (0, 1). The minimization problem is formulated in terms of the quadratic
functionals

JII,i(v) =
1

2

∫
ei

∣∣∣dv
dl

∣∣∣2 dl

dt
dl ,

where v denotes an arbitrary edge bubble function. Thus, �nd uII such that for all ei ∈ SII , it
holds

JII,i(uI + uII − u) = min
v
JII,i(v) ,

where the minimization takes place over all edge bubble functions v. Each local minimization
problem is equivalent to a variational problem on each edge ei ∈ SII : �nd uII such that on each
ei ∈ SII for all φII,ik,0 it holds [27]

2 ≤ k ≤ pei :

∫
ei

duII

dl

dφII,ik,0

dl

dl

dt
dl =

∫
ei

d
(
u− uI

)
dl

dφII,ik,0

dl

dl

dt
dl . (4.34)

To explain the third step, we introduce on each element Γi ∈ SIII the quadratic functional

JIII,i(v) =
1

2

∫
Γi

∣∣∣∇Γv
∣∣∣2 dσ ,

where v denotes an arbitrary bubble function. To obtain the best approximation, a bubble function
uIII shall be found such that for all Γi ∈ SIII , it holds

JIII,i(Π1(u)− u) = min
v
JIII,i(v)
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for all bubble functions v. These local minimization problems for uIII are equivalent to the following
set of linear equations on each Γi ∈ SIII

3 ≤ k ≤ pΓi , 1 ≤ l ≤ k − 2 :

∫
Γi

∇Γu
III · ∇Γφ

III,i
k,l dσ =

∫
Γi

∇Γ

(
u− uI − uII

)
· ∇Γφ

III,i
k,l dσ .

Thus, the residuum that remains after the second step is minimized with respect to all H1
0 (Γi)

semi-norms [27].

The projection-based interpolant Π1(u) is at least globally continuous.

When the mesh Γ consists only of plane elements, it is called linear. As shown in [27], the
projection-based interpolation operator Π1 reproduces polynomials on linear meshes, i.e.,

∀ q ∈ Pp(Γ) : Π1(q)(x)− q(x) = 0 .

This is used to prove the following approximation property as it is done in [26,52], for instance.

Theorem 4.2.2 Let Γ be given by a regular hp-mesh consisting of isoparametric elements of uni-
form order p ≥ 2. Let u ∈ Hs

pw(Γ) for 1 ≤ s ≤ p+ 1, then, it holds

||u−Π1(u)||H1(Γ) ≤ Chmin(s,p+1)||u||Hs
pw(Γ) . (4.35)

The constant C depends on the order of approximation p, on the derivatives of the local parametriza-
tions X̂i up to order p and on the uniformity of the mesh size h.

Let s ≥ 1, the projection-based interpolation operator

Πc : Hs(curlΓ,Γ)→ Ep−1h (Γ) , (4.36)

is obtained by a three-step algorithm [27], i.e.,

Πc(u)(x) =

NII∑
i=1

αII,i0,0 φ
II,i
0,0 (x)︸ ︷︷ ︸

= uI(x)

+

NII∑
i=1

pei−1∑
k=1

αII,ik,0 φ
II,i
k,0 (x)︸ ︷︷ ︸

= uII(x)

+
N∑
i=1

pΓi
−1∑

k=2

2(k−1)+1∑
l=1

αIII,ik,l φ
III,i
k,l (x)︸ ︷︷ ︸

= uIII(x)

. (4.37)

As for Π1, the �rst step is an interpolation. The lowest order basis vector �elds, φII,i0,0 , are called

Nédélec functions. Within the basis of Ep−1h (Γ), they play a peculiar role. The coe�cients for the
Nédélec functions are

αII,i0,0 =

∫
ei

u · τ i dl .

The second contribution, uII , is such that the quadratic functional

JII,i (v · τ i) =
1

2

∫
ei

∣∣v · τ i∣∣2 dl

dt
dl

is minimized over all vector-valued edge bubble functions v. This leads to the local sets of linear
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equations which determine uII

1 ≤ k ≤ pei − 1 :

∫
ei

(uII · τ i) (φII,ik,0 · τ i)
dl

dt
dl =

∫
ei

(
(u− uI) · τ i

)
(φII,ik,0 · τ i)

dl

dt
dl .

Thus, by the second step the error of the residuum is minimized locally with respect to the edge
vector bubble functions and with respect to the edge norm

||v||2ei =

∫
ei

∣∣v · τ i∣∣2 dl

dt
dl .

Once the interpolant over the element boundary is determined, locality and optimality again implies
that a projection on the vector-valued bubble functions should be used to determine the optimal
uIII . The choice of the local functionals follows from the energy norm of the space H(curlΓ,Γi)
and it reads for each Γi ∈ SIII

JIII,i(v) =
1

2

(
||v||2

L2(Γi)
+ ||curlΓ(v)||2L2(Γi)

)
,

where v is an arbitrary vector-valued bubble function. Again, the vector-valued bubble function
uIII is computed such that for all Γi ∈ SIII , it holds

JIII,i(Πc(u)− u) = min
v
JIII,i(v) .

This minimization problem is equivalent to local variational formulations: �nd uIII such that on
all elements Γi ∈ SIII and for all φIII,ik,l it holds∫

Γi

(
curlΓu

IIIcurlΓφ
III,i
k,l + uIII · φIII,ik,l

)
dσ

=

∫
Γi

(
curlΓ

(
u− uI − uII

)
curlΓφ

III,i
k,l +

(
u− uI − uII

)
· φIII,ik,l

)
dσ . (4.38)

The exact sequence property implies that the vector bubbles contain gradients of scalar bubbles.
This implies that the following compatibility equation is automatically satis�ed∫

Γi

(Πc(u)− u) · ∇Γφ
III,i
k+1,l dσ = 0 .

Reimposing the compatibility condition in the original system at the expense of a Lagrange multi-
plier p, we obtain∫

Γi

(
curlΓ (Πc(u)− u) curlΓφ

III,i
k,l + (Πc(u)− u) · φIII,ik,l

)
dσ +

∫
Γi

∇Γp · φIII,ik,l dσ = 0 ,

∫
Γi

(Πc(u)− u) · ∇Γφ
III,i
k+1,l dσ = 0 .

In order to obtain commutativity of the projection-based interpolation on the master element,
namely, Πc(∇Γϕ̂) = ∇ΓΠ1(ϕ̂), it is necessary to relax the �rst variational formulation. There-
fore, the contributions are written now separately and the element shape functions in parameter
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coordinates are inserted. According to De�nition 10, it holds∫
Γi

curlΓu curlΓφ
III,i
k,l dσ =

∫
T̂

curlΓû curlΓϕ̂
3+l
k Ji dξ

=

∫
T̂

(
∂û2

∂ξ1
− ∂û1

∂ξ2

)
ai,12

(∂ϕ̂3+l
k,2

∂ξ1
−
∂ϕ̂3+l

k,1

∂ξ2

)
ai,12 Ji dξ ,

∫
Γi

u · φIII,ik,l dσ =

∫
T̂

(
û1a

i,1 + û2a
i,2
)
·
(
ϕ̂3+l
k,1 a

i,1 + ϕ̂3+l
k,2 a

i,2
)
Ji dξ ,

∫
Γi

∇Γp · φIII,ik,l dσ =

∫
T̂

(
∂p̂

∂ξ1
ai,1 +

∂p̂

∂ξ2
ai,2
)
·
(
φ̂3+l
k,1 a

i,1 + φ̂3+l
k,2 a

i,2
)
Ji dξ .

It is shown in [27] that the skipping of the second term is reasonable by an asymptotic consider-
ation Ji → 0. This simpli�cation, moreover, enables Πc(∇Γϕ̂) = ∇ΓΠ1(ϕ̂) on T̂ . The variational
formulation (4.38) is �nally replaced by a two-step projection on every element Γi ∈ SIII , i.e., uIII
is such that on every Γi ∈ SIII it holds

2 ≤ k ≤ pΓi − 1, 1 ≤ l ≤ 2(k − 2) + 1 :∫
Γi

curlΓu
IIIcurlΓφ

III,i
k,l dσ +

∫
Γi

∇Γp · φIII,ik,l dσ =

∫
Γi

curlΓ
(
u− uII − uI

)
curlΓφ

III,i
k,l dσ ,

3 ≤ k ≤ pΓi , 1 ≤ l ≤ k − 2 : ∫
Γi

uIII · ∇Γφ
III,i
k,l dσ =

∫
Γi

(
u− uII − uI

)
· ∇Γφ

III,i
k,l dσ .

The continuity of the approximant Πc(u) corresponds to the continuity of the basis functions it
is built of. Thus, Πc(u) is a tangential vector �eld with a globally continuous component parallel
to each edge ei ∈ SII .
It is proved in [27] that Πc reproduces tangential polynomial vector �elds on linear meshes, i.e.,

∀ q ∈ Pp−1(Γ) : Πc (γRq) (x)− γRq(x) = 0 .

This is used to proof the approximation properties as stated in Theorem 4.2.3 on linear meshes [55],
see also [6, 16].

Theorem 4.2.3 Let Γ be given by a linear mesh. Consider Ep−1(Γ) with uniform order p− 1 ≥ 1.
The projection-based interpolation operator Πc ful�lls for
u ∈ Hs(curlΓ,Γ)

||u−Πc(u)||
H−

1
2 (curlΓ,Γ)

≤ Chmin(p−1,s)||u||
Hs− 1

2 (curlΓ,Γ)
. (4.39)

Let s ≥ 0. The third operator
Π0 : Hs

pw(Γ)→ Qp−2
h (Γ) (4.40)

returns in one step the approximant

Π0(u)(x) =
N∑
i=1

pΓi
−2∑

k=0

pΓi
−1∑

l=1

αIII,ik,l νIII,ik,l (x) = uIII(x) . (4.41)
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For all Γi ∈ SIII , the following set of linear equations

0 ≤ k ≤ pΓi − 2, 1 ≤ l ≤ pΓi − 1 :

∫
Γi

uIIIνIII,ik,l dσ =

∫
Γi

u νIII,ik,l dσ

is solved to determine the L2(Γ) projection uIII . As the lowest order basis functions are globally
discontinuous, the approximant Π0(u) ∈ Qp−2

h (Γ) is also discontinuous.
The proof of the following theorem can be found in [52], for instance.

Theorem 4.2.4 Let Γ be given by a regular hp-mesh consisting of isoparametric elements of uni-
form order p ≥ 2, this means that the space Qp−2(Γ) is spanned by the piecewise constant functions
for p = 2. The projection-based interpolation operator Π0 ful�lls for u ∈ Hs

pw(Γ)

||u−Π0(u)||L2(Γ) ≤ Chmin(p−1,s)||u||Hs
pw(Γ) . (4.42)

The constant C depends on the order of approximation p, on the derivatives of the local parametriza-
tions X̂i up to order p and on the uniformity of the mesh size h.

The following diagram may serve to summarize the contents of this subsection. We have given ex-
plicit formulae for the projection-based interpolation operators which connect the in�nite-dimensional
trace spaces with the �nite-dimensional parametric spaces. For s ≥ 1, we have

Hs
pw(Γ)

∇Γ−−→ Hs(curlΓ,Γ)
curlΓ−−−→ Hs−1

pw (Γ)

Hs
pw(Γ) Hs(curlΓ,Γ) Hs−1

pw (Γ)

Π1 ↓ Πc ↓ Π0 ↓

Hph(Γ)
∇Γ−−→ Ep−1h (Γ)

curlΓ−−−→ Qp−2
h (Γ) .

(4.43)

The di�erential operators on the second row are skipped to emphasize that the diagram does not
commute on curved surfaces.

4.2.5. The Bidual Spaces

Given a basis
{
ϕlglob

}NE
lglob=1

of the parametric space Ep−1h (Γ), the so-called bidual space Vp−1h (Γ)

is de�ned as linear hull of basis functions ϕlglob
given in terms of ϕlglob according to

ϕlglob
= n×ϕlglob , lglob = 1, . . . , NV = NE . (4.44)

Then, the following diagram commutes

Hph(Γ)
∇Γ−−→ Ep−1h (Γ)

curlΓ−−−→ Qp−2
h (Γ)

↓ 1 ↓ n× ↓ 1

Hph(Γ)
curlΓ−−−−→ Vp−1h (Γ)

divΓ−−−→ Qp−2
h (Γ) .

(4.45)

The projection-based interpolation operator Πd for the parametric space Vp−1h (Γ) is also de�ned
in terms of Πc, namely,

Πd : Hs(divΓ,Γ)→ Vp−1h (Γ), Πd(u) = n×Πc(u) (4.46)
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and we obtain
Hs
pw(Γ)

curlΓ−−−→ Hs(divΓ,Γ)
divΓ−−−→ Hs

pw(Γ)

Hs
pw(Γ) Hs(divΓ,Γ) Hs

pw(Γ)

Π1 ↓ Πd ↓ Π0 ↓

Hph(Γ)
curlΓ−−−→ Vp−1h (Γ)

divΓ−−−→ Qp−2
h (Γ) .

(4.47)

Recall the fundamental observations we read o� the commuting diagram (2.111) describing the
in�nite-dimensional trace spaces. Exactly the same conclusions are to draw from (4.45).

1. There is a (horizontal) relation between the parametric spaces established by the locally exact
sequences.

2. There is a (diagonal) relation between the trace spaces established by the fact that the rows
are in duality to each other. This means especially that Qp−2

h (Γ) is the dual of Hph(Γ) and
Vp−1h (Γ) is the dual of Ep−1h (Γ) or vice versa.

3. There is a (vertical) relation between the parametric spaces established by isomorphisms, i.e.,
the identity mapping 1 and the isomorphism n×.

The key point here is that the (vertical) isomorphisms are in line with the concept of the biduality:
starting with a �xed set of bases for the spaces in the upper row, we apply the isomorphisms and
obtain basis functions of the spaces in the lower row which are automatically given in terms of the
bidual vector �elds being appropriate for a (diagonal) pairing with respect to the inner products of
the pivot spaces L2(Γ) and L2

t (Γ), respectively.
Consider, for instance, an arbitrary basis function with support Γi such that

Hph(Γ) : φlglob

∣∣
Γi

= ϕi,lloc = ϕ̂lloc
,

Ep−1h (Γ) : φlglob
∣∣
Γi

= ϕi,lloc = ϕ̂lloc,1a
i,1 + ϕ̂lloc,2a

i,2 ,

Qp−2
h (Γ) : νlglob

∣∣
Γi

= υi,lloc = υ̂lloc
ai,12 .

In the following, we simply write l instead of lloc. The element shape function is given in terms of
master element shape functions due to De�nition 10. The corresponding element shape functions
of the bidual spaces in the lower row of (4.45) are de�ned by the isomporphism 1 and n×

ϕ̂l
∇Γ−−→ ϕ̂l,1a

i,1 + ϕ̂l,2a
i,2 curlΓ−−−→ υ̂l a

i,12

↓ 1 ↓ n× ↓ 1

J−1
i ϕ̂l ai,12

curlΓ−−−→ J−1
i (ϕ̂l,2ai,1 − ϕ̂l,1ai,2)

divΓ−−−→ J−1
i υ̂l .

(4.48)

Now, the circle is closed as (4.48) corresponds to the commuting diagram (2.34) describing the
smooth case. The only non-trivial isomorphism concerns Vp−1h (Γ) and it is reasonable to write the
formulae again, i.e.,

Vp−1h (Γ) : φlglob

∣∣
Γi

= ϕi,l = J−1
i (ϕ̂l,2ai,1 − ϕ̂l,1ai,2) ∈ Vp−1(Γi) . (4.49)

with

divΓϕi,l =
1

Ji

(
∂ϕ̂l,2
∂ξ1

−
∂ϕ̂l,1
∂ξ2

)
= curlΓϕ

i,l =
1

Ji
υ̂l = νi,l ∈ Qp−2(Γi) . (4.50)
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4.3. Conclusion

A high order boundary element implementation which can be used to solve elliptic as well as
Maxwell problems relies on the appropriate construction of �nite-dimensional test and trial spaces.
A possible construction has been explained in detail in this chapter. The basic concepts are inspired
by the high order �nite element methods. Most fundamental for a systematic construction of the
so-called parametric spaces are two construction principles: the exact sequence property and the
hierarchy of the basis functions.

A boundary element implementation has to account for two-dimensional, closed surfaces embed-
ded in R3. This is a challenge because the manifolds which are considered may be curved and,
consequently, a high order, non-linear approximation of the geometry should be employed. The
formulae derived in this chapter are of enormous importance because they stay valid for arbitrary
non-linear parametrizations of the boundary.

An open question and subject of future research is to prove the asymptotic approximation prop-
erties of the parametric space Ep−1h (Γ) when the manifold Γ is given by isoparametric elements of
high polynomial order.

Another topic of future research is concerned with the projection-based interpolation operators.
The operators as they are de�ned right now yield a discretization procedure which lacks consistency
as the diagrams (4.43) and (4.47), respectively, do not commute in general. An idea to solve
this problem is to formulate the projection-based interpolation operators in terms of bidual bases.
Commutativity might be restored as due to the biduality of the basis functions, the metric cancels
out.
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Chapter 5

High Order BEM for PEC

5.1. Introduction

In this chapter, the high order boundary element methods are analyzed. The starting point to apply
a boundary element method is a uniquely solvable variational formulation of a boundary integral
equation. The relevant functional setting is dictated by the in�nite-dimensional trace spaces de�ned
in Section 2.5, i.e.,

H
1
2 (Γ), H−

1
2 (curlΓ,Γ), H−

1
2 (divΓ,Γ), H−

1
2 (Γ) .

We assume that Γ is exactly described by a discrete mesh

Γ =
N⋃
k=1

Γk .

This assumption allows for the de�nition of the parametric spaces

Hph(Γ) , Ep−1h (Γ) , Vp−1h (Γ) , Qp−2
h (Γ) .

They serve as �nite-dimensional approximations of the above trace spaces according to the results
of Subsection 4.2.3. Besides the parametric spaces, the projection-based interpolation operators

Π1 , Πc , Πd , Π0

from the Subsections 4.2.4 and 4.2.5 are well de�ned.
Solving a boundary value problem by a boundary element method means a two-step procedure.

First, the boundary integral equations must be solved to obtain boundary data and, then, this data
is used to evaluate a representation formula for the solution of the boundary value problem.
In Chapter 3, the electromagnetic scattering from a perfectly conducting body Ω has been theo-

retically analyzed. Due to the results obtained in the Subsections 3.2.2 and 3.3.2, the electromagnetic
scattering suits as a model problem to apply the high order boundary element methods. The
question that comes now is if the numerical solution converges towards the exact solution. It is
answered in Section 5.2 for the classical formulation and Section 5.3 is concerned with the stabilized
formulation. The case κ = 0 is treated separately in Section 5.4. We end this chapter by explicit
formulae to compute the matrix entries of the various linear operators appearing by discretization.
This is done in Section 5.5. The principal ideas are summarized in Section 5.6.

5.2. The Classical Formulation

The unique solvability of the Galerkin formulations in the in�nite-dimensional space H−
1
2 (divΓ,Γ)

is a necessary but not su�cient condition to prove that the discretized Galerkin formulations in
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Vp−1h (Γ) yield convergent numerical schemes. The numerical analysis is very involved because the
unique solvability of the variational formulations is shown by the help of a Hodge decomposition.
Discrete Hodge decompositions, however, are not conforming anymore and, to obtain convergence
results, a more general theory must be applied. It turns out that three properties are necessary to
guarantee optimal convergence of the Galerkin solution [11,19], namely,

(A) There exists a stable direct splitting H−
1
2 (divΓ,Γ) = V (Γ)⊕W (Γ) such that Theorem 3.2.10

holds.

(B) There exists a �nite-dimensional space Vp−1h (Γ) with corresponding decomposition

Vph(Γ) = VN (Γ) +WN (Γ), WN ⊂W (Γ), N = N(p, h) . (5.1)

The discrete splitting is uniformly stable with respect to the typical mesh size h and the
uniform polynomial degree p.

(C) The gap property holds, namely,

sup
vN∈VN

inf
v∈V

||v − vN ||
H−

1
2 (divΓ,Γ)

||vN ||
H−

1
2 (divΓ,Γ)

≤ C

√
h

p+ 1
. (5.2)

Provided (A)-(C) hold, it is shown in [19] that the boundary element method returns the best
approximation of jt in Vp−1h (Γ).
In a recent paper by Bespalov, Heuer and Hiptmair [6], it is proved for the case of linear meshes

that the Hodge decomposition ofH−
1
2 (divΓ,Γ) from Lemma 2.5.3 and the parametric space Vp−1h (Γ)

ful�ll the conditions (A)-(C) and the discrete the Hodge decomposition (5.1) is generated by the
projection-based interpolation operator Πd de�ned in Subsection 4.2.5. Theorem 5.2.1 summarizes
the fundamental result about the best approximation properties of the Galerkin solution.

Theorem 5.2.1 Assume that κ2 > 0 is not an interior eigenvalue of the curl curl operator and
let jt denote the solution of (3.62). There exists h0 > 0 and C0 > 0 such that for the right hand

side m × n ∈ H−
1
2 (curlΓ,Γ) and for uniform order of approximation p satisfying

√
h
p+1 < C0,

h < h0, the boundary element discretization of (3.62) admits a unique solution jthp ∈ Vp−1h (Γ).

The Galerkin solution jthp converges quasi-optimally, i.e.,

||jt − jthp||H− 1
2 (divΓ,Γ)

≤ C inf
v∈Vp−1

h

||jt − v||
H−

1
2 (divΓ,Γ)

.

Both constants C0 and C may depend on the geometry Γ.

Provided jt ∈ Hs
pw(divΓ,Γ) for s > 0, the h-version of the high order boundary element scheme

shows asymptotic rates of convergence due to Theorem 4.2.3.

Theorem 5.2.1 holds also for the direct formulation as only the right hand side is di�erent.
However, in the remaining part of this work, the indirect formulation

〈γRSκ(jt),φ〉− 1
2
− 1

κ2
〈divΓφ, γ0Sκ(divΓ(jt))〉 1

2
= 〈m× n,φ〉− 1

2
(5.3)

is considered and we start to explain how to discretize (5.3). Let {φl}
NV
l=1 denote the set of vector-

valued basis functions spanning the parametric space Vp−1h (Γ). As the Galerkin solution jthp lies
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itself in Vp−1h (Γ), there is a unique representation by a linear combination of the basis functions

jthp =

NV∑
l=1

αl φl , with αc = (α1, . . . , αNV )> ∈ CNV . (5.4)

We call (5.4) the ansatz for the Galerkin solution with unknown coe�cient vector αc. For an
approximation of the Dirichlet data m by mhp ∈ Vp−1h (Γ), the projection-based interpolation
operator Πd is applied

mhp = Πd(m) ,

where

mhp =

NV∑
l=1

βl φl , with β = (β1, . . . , βNV )> ∈ CNV

with known coe�cient vector β.
These representations comprise only regular vector �elds and thus, inserting them into (5.3) yields

integrals over Γ with weakly singular kernels. Theorem 5.2.1 guarantees that there exists exactly
one vector αc with(

γRSκ(jthp),φl
)

Γ
− 1

κ2

(
divΓφl, γ0Sκ(divΓj

t
hp)
)

Γ
= (mhp × n,φl)Γ (5.5)

for all 1 ≤ l ≤ NV . This set of linear equations is conveniently written in a matrix-vector form.
The linear operators which are needed for this formulation are de�ned now.

De�nition 16 Consider a regular hp-mesh for Γ. Let {φl}
NV
l=1 denote the vector-valued basis functions

spanning the parametric space Vp−1h (Γ).

1. The lkth entry of the matrix M ∈ CNV×NV is de�ned by

(M)lk = (φk × n,φl)Γ =

∫
Γ

φl(x) · (φk(x)× n(x)) dσx . (5.6)

M is called the mass matrix.

2. The lkth entry of the matrix Aκ ∈ CNV×NV is de�ned by the following weakly singular double integral

(Aκ)lk = (γRSκ(φk),φl)Γ =

∫
Γ

∫
Γ

φl(x) · (Gκ(x− y)φk(y)) dσy dσx . (5.7)

Aκ is called the vectorial single layer potential matrix.

3. The lkth entry of the matrix Ṽ κ ∈ CNV×NV is de�ned by the following weakly singular double integral

(Ṽ κ)lk = (divΓφl, γ0Sκ(divΓφk))Γ =

∫
Γ

∫
Γ

divΓφl(x)Gκ(x− y) divΓφk(y) dσy dσx . (5.8)

Ṽ κ is called the scalar single layer potential matrix for the Maxwell system.

With this notation, (5.5) becomes (
Aκ −

1

κ2
Ṽ κ

)
αc = Mβ . (5.9)

The system matrix

Ac = Aκ −
1

κ2
Ṽ κ (5.10)
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of the classical boundary element method is regular due to Theorem 5.2.1. However, the scalar
single layer potential matrix for the Maxwell system, Ṽ κ, is never regular. The reason for this is
the non-trivial null-space of the surface divergence. The null-space consists of vector �elds of the
following form

φ = curlΓφ with φ ∈ Hph(Γ) . (5.11)

This means that the equation Ṽ κα̃ = 0 has always non-trivial solutions α̃ and

rank
(
Ṽ κ

)
< NV . (5.12)

The impact of the singular matrix Ṽ κ on the condition number of the system matrix is signi�cant
for small wave numbers. To see this, consider the scaled equation(

κ2Aκ − Ṽ κ

)
αc = κ2Mβ . (5.13)

5.3. The Stabilized Formulation

As alternative to the classical formulation, the stabilized formulation has been developed in Sub-
section 3.3.2. It is given by a system of variational equations 〈γRSκ(jt),φ〉− 1

2
+ 〈divΓφ, γ0Sκ(ρtΓ)〉 1

2
= 〈m× n,φ〉− 1

2
,

〈ν, γ0Sκ(divΓj
t)〉 1

2
+ κ2〈ν, γ0Sκ(ρtΓ)〉 1

2
= 0 ,

(5.14)

where, in addition to the Neumann data jt, the density ρtΓ appears. To discretize the system (5.14),
we need an ansatz for jthp ∈ Vp−1h (Γ) and an ansatz for ρthp ∈ Q

p−2
h (Γ), namely,

jthp =

NV∑
l=1

α1,l φl , with α1 = (α1,1, . . . , α1,NV )> ∈ CNV , (5.15)

ρthp =

NQ∑
k=1

α2,k νk , with α2 = (α2,1, . . . , α2,NQ)> ∈ CNQ . (5.16)

This means that αs = (α1,α2)> is searched such that
(
γRSκ(jthp),φl

)
Γ

+
(

divΓφl, γ0Sκ(ρthp)
)

Γ
= (mhp × n,φl)Γ ,(

νk, γ0Sκ(divΓj
t
hp)
)

Γ
+ κ2

(
νk, γ0Sκ(ρthp)

)
Γ

= 0 ,
(5.17)

for all 1 ≤ l ≤ NV and for all 1 ≤ k ≤ NQ. Before we address the question if (5.17) is solvable and
if the solution αs is unique, we introduce two more linear operators.

De�nition 17 Consider a regular hp-mesh for Γ. Let {φl}
NV
l=1 denote the vector-valued basis functions

spanning the parametric space Vp−1h (Γ) and let {νl}NQ
l=1 denote the basis functions spanning Qp−2

h (Γ).

1. The lkth entry of the scalar single layer potential matrix V κ ∈ CNQ×NQ is de�ned by a weakly singular
double integral

(V κ)lk = (νl, γ0Sκ(νk))Γ =

∫
Γ

∫
Γ

νl(x)Gκ(x− y) νk(y) dσy dσx . (5.18)
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2. The lkth entry of the transition matrix Qκ ∈ CNV×NQ is de�ned by a weakly singular double integral

(Qκ)lk = (divΓφl, γ0Sκ(νk))Γ =

∫
Γ

∫
Γ

divΓφl(x)Gκ(x− y) νk(y) dσy dσx . (5.19)

With these linear operators, we can write (5.17) in matrix-vector notation, namely,(
Aκ Qκ

Q>κ κ2V κ

)
=

(
α1

α2

)
=

(
Mβ

0

)
. (5.20)

To show that any solution of (5.20) yields a solution of the classical system (5.9), we will use
properties of the single layer potential matrix for the Helmholtz equation, V κ. As always, we exclude
values for κ2 that correspond to interior eigenvalues for the Laplace or the curl curl operator and
consider h small enough to ensure that κ2 is not an interior eigenvalue of the discretized Laplace
operator. Then, due to Theorem 3.2.7, the operator γ0Sκ is coercive and injective and, therefore,
the matrix V κ is invertible.

Lemma 5.3.1 Assume that κ2 > 0 is not an interior eigenvalue of the Laplace operator or the
curl curl operator. There exists h0 > 0 and C0 such that for all h < h0, the linear system (5.20)
is uniquely solvable. The �rst component α1 of the solution vector αs = (α1,α2)> is a solution of
the classical problem (5.9), namely α1 = αc.

Proof:1 The idea is to consider the linear operators Ṽ κ and Qκ and to show that there exists a
matrix D ∈ RNV×NQ such that

Ṽ κ = DV κD
> , (5.21)

Qκ = DV κ . (5.22)

Provided (5.21) and (5.22) hold, we can further use that V κ is symmetric and invertible and obtain

1

κ2
Ṽ κ =

1

κ2
DV κD

> =
1

κ2
DV κ(V −1

κ V κ)D> = (DV κ)(κ2V κ)−1(DV κ)>

= Qκ(κ2V κ)−1Q>κ . (5.23)

Thus, the system matrix of the classical method (5.10) is exactly the Schur complement of the
stabilized system matrix, i.e.,

Aκ −
1

κ2
Ṽ κ = Aκ −Qκ(κ2V κ)−1Q>κ .

Thus, (5.20) is uniquely solvable with αc = α1.
To prove (5.21) and (5.22), recall that the surface divergence

divΓ : Vp−1h (Γ)→ Qp−2
h (Γ)

is surjective and, by virtue of (4.50), the surface divergence applied on any φl ∈ Vp−1h (Γ) is a linear
operation of the form

divΓφl =

NQ∑
i=1

dli νi, l = 1, . . . , NV . (5.24)

1The proof presented here is due to an idea of Stefan Kurz. In the original version we have shown (5.23) by a direct
computation of the matrix entries.
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Thus, we obtain (5.21) and (5.22) by inserting (5.24) into (5.8) and (5.19) and extracting the linear
operator

D ∈ RNV×NQ : (D)li = dli , l = 1, . . . , NV , i = 1, . . . , NQ .

2

By Lemma 5.3.1 it is shown that the solution of the stabilized system returns exactly the same so-
lution as the classical system and, therefore, we inherit the convergence properties of Theorem 5.2.1.
However, di�erent from the classical formulation, the stabilized formulation allows the limiting

case κ = 0. It is shown in Section 5.4 that the resulting system corresponds to a classical saddle
point formulation for the electrostatic case and one has to deal with the one-dimensional null-space
which appeared already when we considered the in�nite-dimensional situation in Section 3.4.

5.4. The Electrostatic Case

To understand the algebraic properties of the linear system (5.20), it is useful to investigate again
the electrostatic case as the stabilized formulation turns for κ = 0 into the saddle point problem
discussed in Section 3.4{

〈γRS0(jt),φ〉− 1
2

+ 〈divΓj
t, γ0S0(ρtΓ)〉 1

2
= 〈m× n,φ〉− 1

2
,

〈ν, γ0S0(divΓj
t)〉 1

2
= 0 .

(5.25)

The unique solvability of (5.25) has been proved in Theorem 3.4.3 if jt, φ ∈ H−
1
2 (divΓ,Γ) and

ρtΓ, ν ∈ H
− 1

2
∗∗ (Γ), respectively. When testing in the bigger space H−

1
2 (Γ), the formulation has a

one-dimensional kernel, namely, the non-trivial solutions of the variational problem

∀ ν ∈ H−
1
2 (Γ) : 〈ν, γ0S0φ〉 1

2
= 〈ν, 1〉 1

2
(5.26)

as those lie in the null-space of the operator curlΓ : H
1
2 (Γ)→ H−

1
2 (divΓ,Γ). Thus, by continuity, it

is clear that the discretization of the stabilized formulation (5.20) converges to the following system(
A0 Q0

Q>0 0

)(
α1

α2

)
=

(
Mβ

0

)
, (5.27)

where the system matrix is singular with

rank

(
A0 Q0

Q>0 0

)
= NV +NQ − 1 . (5.28)

To obtain a linear system which is regular in the limit, one has to eliminate the one-dimensional
null-space, as it is done in [8, 54] by a stabilization term.

5.5. The Linear Operators

The formulae given in De�nition 16 and De�nition 17 have just symbolic character. In order to
obtain expressions which allow for a numerical integration, we need to employ the parametrization
of Γ leading to integrations over T̂ . Switching to master element coordinates allows to employ the
master element shape functions.
Since all element shape functions are given in terms of master element shape functions, namely,

for x = X̂i(ξ), any integration over the support of a basis function decomposes into integrations
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over the reference triangle T̂ . One way of generating the system matrices is to systematically sum
up the element contributions to the global matrix entries given in the De�nitions 16 and 17. Explicit
formulae for these element contributions for each matrix are given now. In order to indicate that
there might be more element contributions to the same global degree of freedom, the notation + =
is used.

First, we consider the mass matrix M . For two basis function φlglob
, φkglob

∈ Vp−1h (Γ) with
common support element Γi, the corresponding element shape functions are given by

φlglob

∣∣
Γi

= ϕi,lloc
and φkglob

∣∣
Γi

= ϕi,kloc
.

In the following, we simply write l and k instead of lloc and kloc.

Thus, the element shape functions ϕi,l,ϕi,k ∈ Vp−1(Γi) contribute to the (lglob, kglob)th entry of
M . With (4.49), (4.15) and (2.96), the element contribution to the entry in M reads

(M)lglob,kglob
+ =

∫
Γi

ϕi,l(x) ·
(
ϕi,k(x)× n(x)

)
dσx =

∫
Γi

ϕi,l(x) ·ϕi,k(x) dσx

=

∫
T̂

1

Ji
(ϕ̂l,2(ξ)ai,1 − ϕ̂l,1(ξ)ai,2) ·

(
ϕ̂k,1(ξ)ai,1 + ϕ̂k,2(ξ)ai,2

)
Ji dξ

=

∫
T̂

(ϕ̂l,2(ξ)ϕ̂k,1(ξ)− ϕ̂l,1(ξ)ϕ̂k,2(ξ)) dξ . (5.29)

All entries which belong to a pair of basis functions whose supports do not intersect are zero and,
thus, the mass matrix M is sparse.

To obtain an explicit formula for the element contribution to the vectorial single layer potential
matrix Aκ, consider two basis functions φlglob

, φkglob
∈ Vp−1h (Γ) with

φlglob

∣∣
Γi

= ϕi,l and φkglob

∣∣
Γj

= ϕj,k .

Thus, the element shape functions ϕi,l ∈ Vp−1(Γi) and ϕj,k ∈ Vp−1(Γj) contribute to the entry
with index (lglob, kglob). By (4.49), we obtain

(Aκ)lglob,kglob
+ =

∫
Γi

ϕi,l(x) ·
∫
Γj

Gκ(x− y)ϕj,k(y) dσy dσx =

=

∫
T̂

∫
T̂

1

Ji
(ϕ̂l,2(ξ)ai,1 − ϕ̂l,1(ξ)ai,2) ·

(
Gκ(x(ξ)− y(η))

1

Jj
(ϕ̂k,2(η)aj,1 − ϕ̂k,1(η)aj,2)

)
JiJjdξdη

=

∫
T̂

∫
T̂

(ϕ̂l,2(ξ)ai,1 − ϕ̂l,1(ξ)ai,2) ·
(
Gκ(x(ξ)− y(η))(ϕ̂k,2(η)aj,1 − ϕ̂k,1(η)aj,2(η))

)
dξ dη

=

∫
T̂

∫
T̂

(
ϕ̂l,1
ϕ̂l,2

)>(
Gκ (ai,2 · aj,2) −Gκ (ai,2 · aj,1)

−Gκ (ai,1 · aj,2) Gκ (ai,1 · aj,1)

)(
ϕ̂k,1
ϕ̂k,2

)
dξ dη . (5.30)

The same pairing contributes to the scalar single layer potential matrix for the Maxwell system
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Ṽ κ and yields with (4.50)

(Ṽ κ)lglob,kglob
+ =

∫
Γi

divΓϕi,l(x)

∫
Γj

Gκ(x− y) divΓϕj,k(y) dσy dσx

=

∫
T̂

∫
T̂

1

Ji

(
∂ϕ̂l,2
∂ξ1

(ξ)−
∂ϕ̂l,1
∂ξ2

(ξ)

)
Gκ(x(ξ)− y(η))

1

Jj

(
∂ϕ̂k,2
∂η1

(η)−
∂ϕ̂k,1
∂η2

(η)

)
JiJj dξ dη

=

∫
T̂

∫
T̂

(
∂ϕ̂l,2
∂ξ1

(ξ)−
∂ϕ̂l,1
∂ξ2

(ξ)

)
Gκ(x(ξ)− y(η))

(
∂ϕ̂k,2
∂η1

(η)−
∂ϕ̂k,1
∂η2

(η)

)
dξ dη . (5.31)

The support of an arbitrary basis function νlglob
∈ Qp−2

h (Γ) is only a single element in the mesh,
supp νlglob

= Γi, for instance, and it holds

νlglob
= υlloc

.

Again, we simply write l instead of lloc and due to (4.16), the formula for an element contribution
to the matrix V κ reads

(V κ)lglob,kglob
+ =

∫
Γi

υi,l(x)

∫
Γj

Gκ(x− y)υj,k(y) dσy dσx

=

∫
T̂

∫
T̂

1

Ji
υ̂l(ξ)Gκ(x(ξ)− y(η))

1

Jj
υ̂k(η)JiJj dξ dη

=

∫
T̂

∫
T̂

υ̂l(ξ)Gκ(x(ξ)− y(η)) υ̂k(η) dξ dη . (5.32)

Finally, an element contribution to the rectangular transition matrix Qκ is given by

(Qκ)lglob,kglob
+ =

∫
Γi

divΓϕi,l(x)

∫
Γj

Gκ(x− y) υj,k(y) dσy dσx

=

∫
T̂

∫
T̂

1

Ji

(
∂ϕ̂l,2
∂ξ1

(ξ)−
∂ϕ̂l,1
∂ξ2

(ξ)

)
Gκ(x(ξ)− y(η))

1

Jj
υ̂l(η)JiJj dξ dη

=

∫
T̂

∫
T̂

(
∂ϕ̂l,2
∂ξ1

(ξ)−
∂ϕ̂l,1
∂ξ2

(ξ)

)
Gκ(x(ξ)− y(η)) υ̂k(η) dξ dη . (5.33)

To realize the boundary element methods derived from the direct representation formula, (3.60),
the so-called double layer potential matrix appears on the right hand side. According to (3.50), the
entry with index (lglob, kglob) reads

(Dκ)lglob,kglob
= (γRSM (φkglob

),φlglob
)Γ =

∫
Γ

∫
Γ

φlglob
(x) ·

(
∇xGκ(x− y)× φkglob

(y)
)

dσy dσx .

The same pair of element shape functions contributing to the vectorial single layer potential matrix,
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leads the explicit formula

(Dκ)lglob,kglob
+ =

∫
Γi

∫
Γj

ϕj,l(x) ·
(
∇xGκ(x− y)×ϕi,k(y)

)
dσy dσx =

=

∫
T̂

∫
T̂

(ϕ̂l,2(ξ)ai,1 − ϕ̂l,1(ξ)ai,2(ξ)) · ((∇xGκ(x(ξ)− y(η))× (ϕ̂k,2(η)aj,1 − ϕ̂k,1(η)aj,2))) dξdη

=

∫
T̂

∫
T̂

(
ϕ̂l,1
ϕ̂l,2

)>(
∇Gκ · (ai,2 × aj,2) −∇Gκ · (ai,2 × aj,1)

−∇Gκ · (ai,1 × aj,2) ∇Gκ · (ai,1 × aj,1)

)(
ϕ̂k,1
ϕ̂k,2

)
dξ dη . (5.34)

The formulae (5.29)-(5.34) are crucial for the high order boundary element methods as they
are valid for any high order approximation of the boundary. Appropriate integration schemes to
compute the singular integrals can be found in [52], for instance.

5.6. Conclusion

The numerical analysis of the high order boundary element methods is the subject of this chapter.
The most fundamental result has been that the classical formulation gives rise to a numerical scheme
with quasi-optimal convergence. It has been shown that also on the discrete level, the stabilized
formulation is equivalent to the classical formulation and, thus, the stabilized formulation gives rise
to a stable numerical boundary element method.

The content of Section 5.5 is of principal importance for the realization of a high order boundary
implementation because explicit formulae for the matrix entries are given. The formulae (5.29) to
(5.34) are general in the sense that they are valid for any non-linear parametrization of the elements.
In this context, it is to emphasize that it has been proved as a byproduct of our approach that the
information about the embedding of the boundary Γ into R3 is completely contained in the kernels

Gκ for Ṽ κ, V κ, Qκ ,(
Gκ (ai,2 · aj,2) −Gκ (ai,2 · aj,1)

−Gκ (ai,1 · aj,2) Gκ (ai,1 · aj,1)

)
for Aκ ,(

∇Gκ · (ai,2 × aj,2) −∇Gκ · (ai,2 × aj,1)

−∇Gκ · (ai,1 × aj,2) ∇Gκ · (ai,1 × aj,1)

)
for Dκ .

All other expressions in the integrands and especially the mass matrix M are independent of the
parametrizations X̂i. This result is fundamental when it comes to realization of a high order
boundary element method as the evaluation of the integration points can be precomputed on the
master element shape functions and used when needed.

Connected with the linear operators was the question how to compute the system matrices with
optimal memory requirements. Similar to the classical boundary element methods, the high order
boundary element methods lead to fully populated system matrices. It is well-known that a possible
tool to deal with this di�culty is the adaptive cross approximation. The assembling of the matrices
of the high order scheme is done order-wise, which means that the matrices possess an additional,
hierarchic structure and the adaptive cross approximation [51] must be applied to submatrices.
This so-called high-dimensional adaptive cross approximation has already been implemented and
the optimal handling of it and further research on the subject will be done in the future.

79





Chapter 6

Numerical Results

6.1. Introduction

In this chapter, the Dirichlet boundary value problem describing the scattered electric �eld E
curl curlE − κ2E = 0 , in Ωc ,

γDE = m , on Γ ,∣∣∣(curlE(x)× x

|x|
− iωεE(x)

∣∣∣ = O
( 1

|x|2
)
, for |x| → ∞

(6.1)

is considered. In the context of boundary element methods, we seek the densities jt and ρtΓ such
that

E(x) =

∫
Γ

Gκ(x− y) jt(y) dσy −∇
∫
Γ

Gκ(x− y) ρtΓ(y) dσy (6.2)

is a solution of (6.1) and such that the weak form of the continuity equation∫
Γ

Gκ(x− y) divΓj
t(y) dσy = −κ2

∫
Γ

Gκ(x− y) ρtΓ(y) dσy (6.3)

holds. Besides the representation formula (6.2), it is convenient to use the far-�eld approximation

Efar(θ, φ) =
1

r

∫
Γ

eiκer·y

4π
jt(y) dσy (6.4)

for x = rer(θ, φ). How to derive the far-�eld approximation is explained in Appendix B.
The theoretical results from Chapter 5 suggest that the high order boundary element methods

are suitable numerical schemes to compute an approximation Ehp and this remains to verify. The
results presented in this chapter are realizations of the discrete formulations discussed in Chapter 5.
In order to understand the high order boundary element methods, it is fundamental to analyze the
error of the geometrical input data and its impact on the input mhp as well as the error of the
solution.
So far, we did not consider a geometrical input error because we assumed that the manifold Γ

is exactly given by a discrete mesh. This is, however, an idealistic situation and, in general, the
discrete mesh is only an approximation of the exact geometry. From now on, we denote by Γ the
exact geometry and by Γhp the computational boundary approximating Γ. In our case, Γhp consists
of isoparametric elements {(Γi, p)}Ni=1 of uniform order p and characteristic mesh size h, namely,

Γhp =

N⋃
i=1

Γi .
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The characteristic mesh size h is the minimal length of all edges in Γhp, for instance. The elements
Γi in the mesh Γhp are given by polynomial parametrizations of maximal order p, i.e.,

X̂i : T̂ → Γi, X̂i ∈
(
Pp(T̂ )

)3
.

Once Γhp is determined, the parametric spaces

Hp(Γhp) , Ep−1(Γhp) , Vp−1(Γhp) , Qp−2(Γhp)

from Subsection 4.2.3 are de�ned because all bases are given in terms of the parametrizations of the
elements. Moreover, the projection-based interpolation operators from the Subsections 4.2.4 and
4.2.5 are de�ned and, thus, we obtain especially the approximated Dirichlet data by

mhp = Πd(m) =

NV∑
l=1

βlφl , β = (β1, . . . , βNV )> ∈ CNV .

The necessary input data to start the boundary element scheme is on the one hand the mesh
Γhp and on the other hand the Dirichlet data mhp. The pair (Γhp,mhp) speci�es the discretization
of the boundary value problem (6.1). We say that (Γhp,mhp) de�nes the hp-model and the term
setting-up the hp-model describes the two approximation steps which lead to the hp-model.

To control the errors of the numerical input and output data, we will use di�erent error estimators.
Approximations of traces on Γhp such as mhp and j

t
hp are measured with respect to Err1 which is

Err1 =

( ∫
Γhp

∣∣fhp(x)− f(B(x))
∣∣2 dσx

) 1
2 /( ∫

Γ

∣∣f(x)
∣∣2 dσx

) 1
2

. (6.5)

Here, B : Γhp → Γ denotes a projection on the exact geometry and, thus, the geometrical approxi-
mation is explicitly considered. This kind of error estimator is necessary to compare the numerical
solution with an analytical solution which is available on the exact geometry Γ. To assess the
accuracy of the scattered �eld Ehp and Ehp,far in Ωc, we compute

Err2 =
1

M

M∑
i=1

∣∣F hp(xi)− F (xi)
∣∣ . (6.6)

Here, M is the number of the sample points.

In the Sections 6.2 and 6.3, the performance of the high order boundary element methods is
analyzed for di�erent hp-models and di�erent Galerkin formulations. The goal of Section 6.2 is
to demonstrate convergence of the classical formulations with respect to uniform h-re�nement and
�xed uniform order p = 1, . . . , 4. This means that the number of elements N are quadrupled and
the convergence factor (CF) is computed by dividing either Err1 or Err2 of the numerical solutions
obtained on subsequently re�ned meshes. The qualitative relation between the convergence factor
and the convergence rate (CR) is CR≈ log2 CF.

In Section 6.3, we compare the numerical stability of the classical method with the numerical
stability of the stabilized method with respect to the limit κ→ 0. Here, it is the condition number
of the system matrices which is analyzed.
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6.2. The Classical Formulation

In this section, we present numerical solutions for the classical formulation leading to

Acα = βc with Ac =

(
Aκ −

1

κ2
Ṽ κ

)
and βc = Mβ . (6.7)

The accuracy of the Galerkin solution

jthp =

NV∑
l=1

αl φl (6.8)

and the accuracy of the scattered electric �eld at x ∈ Ωc

Ehp(x) =

∫
Γhp

Gκ(x− y) jthp(y) dσy +
1

κ2
∇
∫

Γhp

Gκ(x− y) divΓj
t
hp(y) dσy , (6.9)

Ehp,far(θ, φ) =
1

r

1

4π

∫
Γhp

eiκer·y jthp(y) dσy (6.10)

depend on the speci�c hp-model. In the following subsections, we investigate three di�erent hp-
models. The �rst scattering problem we look at is the plane wave scattering from the unit sphere
S2. In Subsection 6.2.1, S2 is approximated by linear elements. The same scattering problem for an
isoparametric approximation of S2 is discussed in Subsection 6.2.2. In Subsection 6.2.3, we study a
plane wave scattering at a more realistic geometry, the boundary of a ship, which is exactly given
by a linear mesh.

6.2.1. Icosaeder

Figure 6.1.: Approximation of the sphere by uniform re�nement of the icosaeder.

In this subsection high order trial and test functions are employed on a linear mesh. The geometry
we start with to obtain a linear approximation of the unit sphere S2 is the icosaeder shown in
Figure 6.1 on the left. After two steps of uniform re�nement of the icosaeder, the mesh on the right
with N = 320 triangles is obtained.
It is well known that the boundary value problem describing the scattering of a plane wave

from the unit sphere can be solved analytically. Explicit formulae for the Mie series describing the
exact surface current jt, the Mie series for the scattered electrical �eld E in Ωc and the far-�eld
approximation are given in Appendix B.
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We assume that Ωc is dielectric with

ε = ε0 = 8.854 · 10−12 As

Vm
and µ = µ0 = 4π · 10−7 Vs

Am
.

The wave vector κ and its absolute value, the wave number, κ = |κ|, are related to the material
data by the dispersion relation

κ = |κ| = ω
√
ε0µ0 .

The scattering is initiated by an incoming signal of the form

Ei(x, t) = Ẽ
i
(x)e−iωt = ei(κ·x−ωt)e .

Here, we choose the angular frequency ω and the plane of propagation {κ, e} to be

ω = 1.5 · 109 1

s
, κ = κ(0, 0,−1)> , e = e1 .

Thus, the complex valued amplitude of the plane wave reads

Ẽ
i
(x) = e−iκx3e1 .

The wave number κ does not coincide with interior eigenvalues, neither of the Laplace operator nor
the curl curl operator [30, 60]. The tilde is skipped in the following. All lengths are normalized to
1 m, and, thus, the electric �eld can be regarded dimensionless due to the linearity of the problem.

A uniform h-re�nement yields quadratic convergence of the approximation S2
h to the exact geom-

etry S2 in L2-norm.

The convergence of the high order boundary element method (6.7) with respect to uniform h-
re�nement is reported in Table 6.1. Each block row of Table 6.1 contains the convergence analysis
for �xed uniform order of approximation p, where Nédélec elements of �rst kind are used and p
varies from p = 1 to p = 4. The number of elements N and the corresponding number of global
degrees of freedom NV for Vp−1(S2

h) are listed in the second column. The columns three to six
contain the numerical convergence analysis for input and output data of the high order boundary
element method. The convergence for uniform h-re�nement for the input data mhp = Πd(m) is
reported in the third column. The fourth column shows the accuracy of the numerical solution
jthp. The di�erence between the numerical data and the exact data is measured by Err1 with
B : S2

h → S2, B(x) = x/|x|. The scattered �eld E in the exterior domain Ωc is analyzed in the �fth
column. Here, the representation formula (6.9) is evaluated in M = 360 sample points distributed
on a sphere S2

r (0) with radius r = 2. The di�erence between the numerical solution and the exact
solution is measured by Err2 de�ned by (6.6). Err2 is also used to assess the accuracy of the far-�eld
approximation Ehp,far and the corresponding results are shown in the sixth column.

The high order Galerkin ansatz does not lead to an increase of the convergence rates because the
geometrical error decreases only by a convergence rate CR ≈ log2CF, see Appendix A. This does not
contradict Theorem 5.2.1 because quasi-optimality was proved under the essential assumption that
the linear mesh is exact, i.e., Γ = Γhp. This is, however, an ideal situation and one has to consider
the impact of the geometrical approximation error. The stability estimates given by the lemma of
Strang show explicitly that the geometrical error deteriorates the convergence rate of the Galerkin
solution whenever the geometrical convergence rate is lower than the asymptotic convergence of the
Galerkin solution [52]. Thus, whenever the surface Γ is not exactly given by plane triangles and
the uniform h-re�nement of a linear mesh is used to approximate the geometry, the convergence is
bounded to a quadratic rate.
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Table 6.1.: Convergence analysis for high order BEM with icosaeder as test geometry, Nédélec's �rst sequence.

Order N NV
||mhp −m|| ||jthp − jt|| ||Ehp −E|| ||Ehp,far −Efar||
Err1 CF Err1 CF Err2 CF Err2 CF

p = 1

20 30 9.33e-1 / 0.15e-1 / 4.85e-1 / 0.45e+1 /
80 120 5.20e-1 1.8 6.99e-1 2.2 1.75e-1 2.8 0.16e+1 2.8
320 480 2.65e-1 2.0 4.01e-1 1.7 4.35e-2 4.0 3.91e-1 4.0
1280 1920 1.33e-1 2.0 1.87e-1 2.1 1.07e-2 4.1 9.63e-2 4.1

p = 2

20 100 6.56e-1 / 7.59e-1 / 2.85e-1 / 0.28e+1 /
80 400 2.53e-1 2.6 2.69e-1 2.8 8.67e-2 3.3 8.16e-1 3.4
320 1600 1.01e-1 2.5 9.04e-2 3.0 2.24e-2 3.9 2.09e-1 3.9
1280 6400 4.60e-2 2.2 3.59e-2 2.5 5.67e-3 4.0 5.29e-2 4.0

p = 3

20 210 5.94e-1 / 6.31e-1 / 2.63e-1 / 0.26e-1 /
80 840 2.28e-1 2.7 2.27e-1 2.8 8.36e-2 3.1 7.93e-1 3.2
320 3360 9.63e-2 2.4 8.95e-2 2.5 2.21e-2 3.8 2.06e-1 3.8
1280 13440 4.54e-2 2.1 4.18e-2 2.1 5.64e-3 3.9 5.26e-2 3.9

p = 4

20 360 5.87e-1 / 6.12e-1 / 2.61e-1 / 0.56e+1 /
80 1440 2.27e-1 2.6 2.28e-1 2.7 8.34e-2 3.1 7.91e-1 3.2
320 5760 9.63e-2 2.4 9.04e-2 2.5 2.21e-2 3.8 2.06e-1 3.8
1280 23040 4.54e-2 2.1 4.22e-2 2.1 5.64e-3 3.9 5.26e-2 3.9

6.2.2. Isoparametric Sphere

When the boundary is given analytically, the projection-based interpolation operator Π1 can be
employed to obtain a high order polynomial approximation of the geometry. The usage of isopara-
metric elements of order p means that this geometrical approximation is of the same order p as the
approximation of the physical unknowns. Di�erent from the previous section, the local parametriza-
tions of the elements are polynomials and, thus, the elements are curved triangles. The numerical
tests presented in this subsection use isoparametric elements of uniform order p. The exact geome-
try is again the unit sphere S2 ⊂ R3 and the computational domain is denoted S2

hp. Details on the
geometrical approximation of the sphere are given in Appendix A. It is shown in Table A.1 that a
uniform order of approximation p yields a convergence factor CF= 2(p+1), thus a convergence rate
CR= p+ 1. Figure 6.2 shows the triangulation of the isoparametric sphere with N = 128 elements

Figure 6.2.: Isoparametric approximation S2
hp of S

2 with p = 1 and p = 4 for N = 128.
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Table 6.2.: Convergence analysis for high order BEM with isoparametric sphere as test geometry, Nédélec's
�rst sequence.

Order N NV
||mhp −m|| ||jthp − jt|| ||Ehp −E|| ||Ehp,far −Efar||
Err1 CF Err1 CF Err2 CF Err2 CF

p = 1

128 192 4.41e-1 / 5.60e-1 / 1.15e-1 / 0.11e+1 /
512 768 2.24e-1 2.0 4.72e-1 1.2 3.01e-2 3.8 2.78e-1 3.8
2048 3072 1.13e-1 2.0 1.51e-1 3.1 7.44e-3 4.0 6.68e-2 4.2
8192 12288 5.63e-2 2.0 6.38e-2 2.4 1.85e-3 4.0 1.66e-2 4.0

p = 2

32 160 3.20e-1 / 1.06e-1 / 7.72e-2 / 6.70e-1 /
128 640 1.01e-1 3.2 1.88e-1 0.6 9.07e-3 8.5 7.75e-2 8.6
512 2560 2.74e-2 3.7 4.11e-2 4.6 6.25e-4 15 5.40e-3 14
2048 10240 6.99e-3 3.9 1.09e-2 3.8 4.77e-5 13 4.16e-4 13

p = 3

32 336 1.50e-1 / 0.12e+1 / 2.32e-2 / 1.88e-2 /
128 1344 2.60e-2 5.8 4.12e-2 29 1.07e-3 22 9.04e-3 21
512 5376 3.54e-3 7.3 5.24e-3 7.9 4.07e-5 26 3.71e-4 24
2048 21504 4.53e-4 7.8 6.37e-4 8.2 2.23e-6 18 2.04e-5 18

p = 4

8 144 3.73e-1 / 9.20e-1 / 1.29e-1 / 0.12e+1 /
32 576 6.36e-2 5.9 1.08e-1 8.5 4.50e-3 29 4.27e-2 27
128 2304 5.72e-3 11 9.21e-3 12 7.75e-5 58 6.60e-4 65
512 9216 4.05e-4 14 6.60e-4 14 8.68e-7 89 7.98e-6 83

for p = 1 on the left and p = 4 on the right. Thus, the geometrical error decreases faster as the
optimal convergence rate of the Galerkin solution.

The convergence of the high order boundary element method (6.7) with respect to uniform h-
re�nement is reported in Table 6.2. For isoparametric elements of uniform order p, the input data
mhp converges towards the exact tracem with a convergence factor CF= 2p, i.e., with a convergence
rate of CR= p. This is the optimal convergence due to the projection-based interpolation operator
Πd. The solution of the boundary element method jthp converges towards the exact trace jt by
convergence rate CR= p as well. This is the quasi-optimal convergence of the numerical method.
The point evaluations shown in the last two columns converge approximately by CR= p + 1. To
get a visual impression, Figure 6.3 shows the absolute values of the Cartesian components of the
numerical solution, |jthp,k| for k = 1, 2, 3 on the left and the point-wise di�erence |jthp,k − jtk| for
k = 1, 2, 3 on the right. The plots belong to the hp-model with N = 128 and p = 4. Note that
the point-wise error in the upper right �gure is localized where the plane of propagation of the
incoming signal intersects with S2

hp. The hot spot might result from the di�cult mesh topology at
the intersection point, see Figure 6.2.

To check the e�ciency of this high order boundary element method, the number of degrees of
freedom are �xed to NV ≈ 1000. In order to obtain a hp-model with approximately this number
of degrees of freedom for p = 1 to p = 4, the element number N varies as well as the kind of
Nédélec elements. As presented in Table 6.3, the computations with high order elements are more
accurate for the same numerical costs. The polar plots in the Figure 6.4 and 6.5 show the far-�eld
approximation of Efar given by the Mie series together with the numerical results Ehp,far for p = 1
and p = 4.
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Figure 6.3.: Numerical solution on the left and point-wise error on the right for p = 4 and N = 128.
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Figure 6.4.: Far-�eld pattern of the electric �eld in yz-plane visualizing test runs p = 1, 4 from Table 6.3.

Figure 6.5.: Far-�eld pattern of the electric �eld in xz-plane visualizing test runs p = 1, 4 from Table 6.3.
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Table 6.3.: Comparable degrees of freedom solving plane wave scattering at the sphere.

Order Nédélec N NV
||mhp −m|| ||jthp − jt|| ||Ehp −E|| ||Ehp,far −Efar||

Err1 Err1 Err2 Err2

p = 1 1 648 972 1.87e-1 7.79e-1 2.38e-2 2.14e-1
p = 2 1 200 1000 6.68e-2 1.02e-1 3.90e-3 3.33e-2
p = 3 2 128 940 4.08e-2 1.08e-1 4.37e-3 4.25e-2
p = 4 2 72 1008 2.29e-2 6.52e-2 1.47e-3 1.34e-2

Figure 6.6.: Ship with N = 926 elements.

6.2.3. Ship

The boundary Γ of the ship shown in Figure 6.6 is given analytically by a triangular mesh. The
mesh contains triangles with varying sizes, the minimal mesh size is hmin = 0.38 m, the maximal
mesh size is hmax = 7.67 m. The exterior domain Ωc is dielectric with ε0 and µ0. The plane wave
scattering is initiated by an incoming signal of the form

Ei(x, t) = Ẽ
i
(x)e−iωt = ei(κ·x−ωt)e ,

where

ω = 3.14 · 108 1

s
, κ =

(
−0.785

1

m
, −0.453

1

m
, −0.524

1

m

)>
, e = (−0.66, 0.436, 0.112)> .

Thus, the wave number and the wave length can be computed and we get

κ = |κ| = 1.047
1

m
,

λ = 6.0 m .

As usual, we omit the tilde and denote the complex valued amplitude of the plane wave by Ei.
Figure 6.7 shows as an example the �rst vector component, i.e., (mhp)1 = Re(mhp)1 + i Im(mhp)1

of the Dirichlet trace mhp which is obtained for p = 4. The length of the ship is 100 m such that
about sixteen periods of the wave take place on Γ. Thus, this scattering problem is a high frequency
problem.
As there is no analytical solution for the ship, a numerical solution computed by the commercial

software package FEKO is used as a reference [32]. The reference solution is obtained on a triangular
mesh with N = 40072 elements. The reference solution is computed by Nédélec elements of �rst
kind with uniform order p = 1 which yields NV = 60108 unknowns. The high order boundary
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Figure 6.7.: Dirichlet data: Real part Re(mhp)1 on top, Im(mhp)1 below for p = 4.

Table 6.4.: Electromagnetic scattering at the ship geometry, Nédélec's �rst sequence.

Order Nédélec N NV ||mhp −m||L2(Γ) Err2 Efar

reference solution p = 1 1 40072 60108 �
p = 2 1 3704 18520 1.21e-1 2.61e-1
p = 3 1 926 9723 1.65e-1 2.88e-1
p = 4 1 926 16668 5.02e-2 2.56e-1

element method given by (6.7) is applied with varying orders of approximation, namely, from p = 2
to p = 4. The relative point-wise error of the far-�eld approximation Ehp,far is reported in the sixth
column in Table 6.4. Note, that the reference solution itself is a numerical approximation of the
exact solution, thus, the error listed in the Table 6.4 does not report on convergence towards the
exact solution but it shows that all numerical solutions are close to each other. This is also seen by
Figure 6.9 where the far-�eld approximation of the angular components Eθ and Eφ obtained by a
scan in the xy-plane are plotted.

6.3. The Stabilized Formulation

In Section 5.3, theoretical considerations concerning the loss of the continuity equation

κ2〈γnE, ϕ〉 = 〈γNE,∇ϕ〉

for the limiting case κ = 0 lead to an alternative boundary element method as solution scheme for
the scattering problem (6.1). The alternative method has been derived from the Picard system. It
has been proved in Section 5.3, that the Picard system yields a uniquely solvable Galerkin method.
Those are called the stabilized formulations. As far as theory is concerned, the classical and the
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Figure 6.8.: Neumann data: Re(jthp)1 on top, Im(jthp)1 below for p = 4.

Figure 6.9.: Far-�eld scattering ship, xy-plane: Eφ on the left, Eθ on the right
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stabilized formulations are formally equivalent for all κ > 0. Thus, the necessity to derive a stabilized
formulation comes from praxis. It is due to the fact that iterative solvers applied to (6.7) do not
converge for small κ. The goal of this section is to demonstrate that this low frequency problem does
not occur for the stabilized formulation. The focus of this section is therefore not the convergence
analysis of the high order boundary element methods but the numerical robustness of the classical
formulation versus the numerical robustness of the stabilized formulation with respect to κ→ 0.
Recall that the discretization of the stabilized formulation leads to

Asαs = βs , (6.11)

with

As =

(
Aκ Qκ

Q>κ κ2V κ

)
, αs =

(
α1

α2

)
, βs =

(
Mβ

0

)
.

An appropriate norm to characterize the numerical solution (jthp, ρ
t
hp) reads

||(jthp, ρthp)|| =
(
||jthp||2L2

t (Γhp)
+ ||divΓj

t
hp||2L2(Γhp) + ||ρthp||2L2(Γhp)

) 1
2
. (6.12)

As proved in Section 5.4 the system matrix As is singular for κ = 0 and this means As becomes ill
conditioned for κ → 0. The null-space has dimension one and this means that the set of singular
values of As

sing(As) =
{
σ1, . . . , σNV+NQ

}
, with σi ≤ σi+1 for i = 1, . . . , NV +NQ − 1 ,

contains an isolated singular value σ1 which converges to zero for κ → 0 while all other singular
values are uniformly bounded away from zero. Isolated singularities do not destroy the matrix
properties in the sense that iterative solvers still converge. This is why one usually neglects the
isolated singular values when computing the condition number. AsAs must have an isolated singular
value σ1, we de�ne the essential condition number for As by

cond (As) =
max
i
σi

min
i,i 6=1

σi
=
σNV+NQ

σ2
. (6.13)

We call cond(As) the essential condition number to indicate that the isolated singular value is left
out.
As mentioned above, we aim to compare the properties of As with the properties of Ac from (6.7)

Acαc = βc .

The set of singular values of Ac

sing(Ac) = {σ1, . . . , σNV} , with σi ≤ σi+1 for i = 1, . . . , NV − 1 ,

has no isolated singular values and thus, the condition number is de�ned by

cond (Ac) =
max
i
σi

min
i
σi

=
σNV
σ1

. (6.14)

The numerical solution consists only of jthp and an appropriate energy norm reads

||jthp|| =
(
||jthp||2L2

t (Γhp)
+ ||divΓj

t
hp||2L2(Γhp)

) 1
2
. (6.15)
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The scattering problem which is considered for the stability test is again the plane wave scattering
from the unit spere S2. The incoming harmonic signal is given by

Ei(x) = e−iκx3e1 .

and the material parameters of the exterior domain Ωc are

ε = ε0 = 8.854 · 10−12 As

Vm
and µ = µ0 = 4π · 10−7 Vs

Am
.

Two test series are presented, the �rst for uniform order of approximation p = 1 and the second for
uniform order of approximation p = 4. In both cases, we consider the isoparametric spheres S2

hp

with N = 128 elements shown in Figure 6.2. Nédélec elements of �rst kind lead to the numbers
of degrees of freedom NV and NQ speci�ed in Table 6.5. The stability of the system matrices is
analyzed for an exponential decrease of κ, as seen in the �rst row of Table 6.6. We start with
κ = 5.0 1

m and go down to κ = 5.0 · 10−4 1
m . Moreover, all linear systems are solved with a direct

solver from the linear algebra package LAPACK.

Table 6.5.: Number of degrees of freedom for the model problem.

N p NV NQ
128 1 192 128
128 4 1792 768

The evaluation of the �rst test is reported in Table 6.6. The �rst column shows the decrease of the
wave number κ. The second column contains the information on the relative errors of the Dirichlet
trace mhp and the Neumann trace jthp. The input and output coincides for the classical and the
stabilized method because a direct solver is used. In the third column of Table 6.6 the behavior of
the classical method is shown. The energy norm (6.15) given on the left decreases by the same rate
as the wave number κ. The condition number cond(Ac) of the system matrix shows an exponential
increase depending on κ. This is the low frequency problem for the classical method. The set of
singular values of Ac is shown in Figure 6.10 for κ = 5.0 · 10−4 1

m . Obviously, the singular values
cluster in two pairs leading to the break-down of iterative solvers. The asymptotic increase of the
condition number cond(Ac) for the complete test run is seen in Figure 6.11.

The corresponding results for the stabilized method are presented in the fourth column of Ta-
ble 6.6. The energy norm (6.12) for the solution (jthp, ρ

t
hp) is shown on the left and the comparison

with the norm of the classical solution shows that the surface charge density ρthp contributes mostly.
The block column entitled 'Matrix' shows the essential condition number of As and the isolated
singular value σ1. Most important is that the essential condition number stays constant with re-
spect to κ → 0. All singular values of the system matrix Ac for κ = 5.0 · 10−4 1

m are plotted in
Figure 6.10. The singular value σ1 is isolated from the rest of the singular values as expected. The
essential condition numbers cond(As) for the complete test run are shown in Figure 6.11. The
essential condition numbers stays constant, in di�erence to the condition number of the classical
system matrix.

An overview on the numerical tests for p = 4 is presented in Table 6.7. The same qualitative
results show that the stabilized method is robust with respect to κ→ 0. The spectra of the system
matrices for κ = 5.0 · 10−4 1

m are seen in Figure 6.12 and the condition numbers of the system
matrices for all tests are plotted in Figure 6.13.
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Figure 6.10.: All singular values of Ac and As for p = 1 and κ = 5.0 · 10−4 1
m .

Figure 6.11.: Stability of system matrices Ac vs. As for p = 1.
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6.3. The Stabilized Formulation

Figure 6.12.: All singular values of Ac and As for p = 4 and κ = 5.0 · 10−4 1
m .

Figure 6.13.: Stability of system matrices Ac vs. As for p = 4.
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Table 6.6.: Stabilization for low frequencies on S2
hp with N = 128 and p = 1

p = 1 Err1 Err1
Classical (6.7) Stabilized (6.11)

Energy Norm Matrix Energy Norm Matrix
κ [ 1

m ] mhp jthp jthp cond(Ac) (jthp, ρ
t
hp) cond(As) σ1

5.0e-0 4.41e-1 5.10e-1 5.62e+1 3.9e+1 13.7 1.6e+1 3.5e-1
5.0e-1 1.54e-1 1.42e-1 0.16e+1 3.5e+2 4.82 1.1e+2 2.3e-2
5.0e-2 1.48e-1 1.60e-1 7.33e-2 3.5e+4 4.09 6.2e+1 2.4e-2
5.0e-3 1.48e-1 1.60e-1 7.34e-3 3.5e+6 4.09 6.2e+1 2.5e-4
5.0e-4 1.48e-1 1.60e-1 7.29e-4 3.5e+8 4.09 6.2e+1 2.5e-6

Table 6.7.: Stabilization for low frequencies on S2
hp with N = 128 and p = 4

p = 4 Err1 Err1
Classical (6.7) Stabilized (6.11)

Energy Norm Matrix Energy Norm Matrix
κ [ 1

m ] mhp jthp jthp cond(Ac) (jthp, ρ
t
hp) cond(As) σ1

5.0e-0 8.19e-3 2.46e-2 4.83e+1 7.9e+3 18.0 3.1e+6 2.7e-3
5.0e-1 4.97e-4 5.33e-3 0.15e+1 2.9e+5 4.82 9.4e+4 2.7e-3
5.0e-2 4.51e-4 7.35e-3 7.16e-2 2.9e+7 4.00 5.8e+4 2.7e-3
5.0e-3 4.50e-4 1.40e-2 7.07e-3 2.9e+9 4.00 5.8e+4 2.7e-3
5.0e-4 4.50e-4 1.19e-1 7.07e-4 2.9e+11 4.00 5.8e+4 2.1e-4

6.4. Conclusion

The numerical tests presented here show that the theoretical results developed in Chapter 5 are of
practical importance. The model problem to assess the stability and robustness of the boundary
element implementation is the scattering of a plane wave at a perfectly conducting body. The key
result is that our implementation o�ers stable numerical methods for all frequencies, except for
interior resonances of the curlcurl operator or the Laplace operator. The high order elements are
appropriate to solve high frequency problems whereas the stabilized formulation is robust in the
low frequency regime.

To verify the asymptotic convergence of the Galerkin solution, the plane wave scattering at the
unit sphere has been considered. The h-version of the classical high order boundary element method
shows convergence of the Galerkin solution of order p when isoparametric elements of uniform order
p are used. To obtain this result, it is essential that the geometrical error decreases faster than
order p. This is either achieved by the use of the exact geometry or by a high order approximation
of the geometry.

The e�ciency of the high order boundary element methods are demonstrated by solving a high
frequency problem proposed by our industrial partner EM Software & Systems GmbH, Böblingen,
Germany. To obtain comparable far-�eld approximations of the scattered electric �eld, the high
order boundary element methods needed less than a third of the unknowns than needed by the
software package FEKO using linear edge elements.

In what concerns the numerical stability of the boundary element methods for low frequencies,
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the condition numbers of the system matrices for the classical and the stabilized method have been
compared. The condition number of the classical method blows up for low frequencies whereas the
essential condition number characterizing the system matrix of the stabilized method stays constant.
In accordance to the theoretical considerations concerning the stabilized method, there is only one
isolated singular value which converges to zero and all other singular values are uniformly bounded
away from zero. These algebraic properties are independent of the order of approximation and stay
valid for uniform order p = 1 to p = 4.

The solver used for all numerical experiments shown in this chapter are standard direct solvers
from the library LAPACK. Future research in this �eld is about the developing of appropriate
preconditioner for the linear system and the use of iterative solvers.
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Chapter 7

Summary

This thesis is a major contribution to the state of research in the �eld of boundary element methods
in general and to the electromagnetic engineering sciences in particular. The �rst contribution is
the development and implementation of high order boundary element methods. It is explained how
to set up a high order boundary element implementation which provides solvers for elliptic, Maxwell
and mixed problems. The second contribution is a complete mathematical theory for a stabilized
boundary variational formulation describing scattering problems. The stabilized formulation pre-
sented in this thesis is equivalent to the classical formulations, however, it does not su�er from the
low-frequency break-down. The high order methods have been applied to the classical and stabi-
lized formulations describing electromagnetic scattering and the theoretical results on asymptotic
convergence and stability have been veri�ed by the numerical computations. A short review on how
the discussion about these topics has been realized in the thesis is now given, followed by an outlook
on future work.

The solutions of second order boundary value problems can be described by certain surface and
volume potentials when a fundamental solution of the underlying partial di�erential equation is
known. The mathematical background which is needed to analyze the mapping properties of these
surface potentials is given in Chapter 2.
The scattering problems derived from the Maxwell equations belong to the class of problems

which are solvable by the boundary element methods. The theory concerned with the classical
formulation is presented in Chapter 3. Besides this, the stabilized formulation is developed. The
lower the frequency of the incoming wave, the more important becomes the Gauÿ law because it
recovers the quasi-electrostatic character of the electric scattered �eld. In terms of the boundary
data this means, however, that one has to solve also for the normal trace of the electric �eld.
This is achieved by the use of the stabilized formulation. A mathematical theory of the stabilized
formulation is presented and the unique solvability of the boundary integral variational formulation
is proved. Further, it is explained that the stabilized formulation turns into a saddle point problem
describing an electrostatic potential in the limiting, electrostatic case.
Di�erent from the classical boundary element formulation, the stabilized formulation belongs to

the class of mixed problems. This means that di�erent trace spaces are needed to formulate the
variational formulation. By learning from the high order �nite element methods, it is clear that
the approximations of the di�erent function spaces are not independent from each other. It is of
fundamental importance to understand that the trace spaces are connected by surface di�erential
operators. The simultaneous, high order approximation of the trace spaces relies on the construction
of locally exact sequences. It is explained in Chapter 4 how to de�ne �nite-dimensional counterparts
for the relevant trace spaces that may appear in boundary element formulations. A feature which
is important for practical reasons is that our access allows for curvilinear element shapes.
In Chapter 5, the most important results on the numerical analysis of the high order boundary

element methods describing the scattering problems are given. Besides the well-known results
concerning the classical formulation, the stabilized formulation is analyzed and algebraic properties
of the system matrices are discussed with the help of the electrostatic case.
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Chapter 7. Summary

Various numerical tests presented in Chapter 6 prove that the h-version of the high order boundary
element methods converge quasi optimally. For the scattering problems, this means that convergence
of order p is obtained provided isoparametric elements of uniform order p are used. To analyze the
numerical robustness of the stabilized formulation, an exponential decrease of the wave number is
considered and it is shown that the essential condition number of the system matrix stays constant.

The implementation provides all necessary tools to use the high order boundary element method
with locally varying order of approximation and this feature will be tested and examined next.
Besides that, future work will focus on the automatic hp-adaptivity. To enable automatic hp-

adaptivity, the projection-based interpolation operators are already equipped with more �exibility,
i.e., the constrained approximation necessary for hanging nodes. Also, appropriate numerical inte-
gration schemes for the system matrices have been written and tested. In order to run the code in
hp-adaptive mode, an appropriate automatic re�nement strategy with optimal local error estimators
must be developed furthermore.
Another question concerns the optimal compression algorithm for the system matrices. First

tests show that the adaptive cross approximation is suitable for the high order boundary element
methods. However, the built-in of more sophisticated solvers still needs to be done.
In what concerns theoretical topics, there will be ongoing research on the concept of biduality.

The biduality has been a recurring theme throughout the thesis expressing a fundamental relation
between the metric-free di�erential geometrical apparatus and the most basic duality pairings needed
to apply the Hilbert space theory. The bene�ts of the consistent use of the biduality concept has
become most obvious when writing down the explicit formulae for the system matrices of the
boundary element method. It is most likely that a rewriting of all projection-based interpolation
operators using the biduality concept brings insights that might clarify what needs to be done
to render the de Rham diagrams commutative and to prove approximation theorems on curved
surfaces.
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AppendixA

Code Verification

This chapter contains supplementary numerical results concerning the projection-based interpola-
tion operators Π1,Πd and Π0 from Subsection 4.2.4 and 4.2.5. Recall that the projection-based
interpolation operators are essential to set up the hp-model, namely, to project the given boundary
data into the parametric spaces and, also, to provide a high order mesh approximation. We focus
on the high order mesh generation �rst.

The numerical results for plane wave scattering presented in Subsection 6.2.2 built up on the use
of isoparametric elements. The starting point for the high order approximation of the unit sphere
S2 is an exact parametrization by spherical coordinates, for instance,

S2 = {x = r(ϕ, θ), 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π} , r(ϕ, θ) =

 cosϕ sin θ

sinϕ sin θ

cos θ

 . (A.1)

Let S2 be covered by a �nite number of curvilinear triangles

S2 =

N⋃
i=1

Si, Si ∩ Sj = ∅ for i 6= j ,

with characteristic element size h. When p is speci�ed, the projection-based interpolant Π1(u) with
respect to this cover is computed. By this, an approximation S2

hp of S
2 is obtained such that each

triangle Si of the exact mesh is approximated by a parametric element (Γi, p). The collection of the
parametric elements covers S2

hp, i.e.,

S2
hp =

N⋃
i=1

Γi, Γi ∩ Γj = ∅ for i 6= j .

Clearly, the local parametrizations are polynomials of order p with domain T̂ , i.e.,

X̂i : T̂ → Γi , i = 1, . . . , N .

The construction starts with a decomposition of the unit sphere in spherical octants shown in Fig-
ure A.1. The vertices, the edges and the interior of each octant is analytically given and, thus, the
projection-based interpolation operator Π1 of order p is applied to determine the polynomial approx-
imation of each octant. For a uniform re�nement of the sphere, each spherical octant gets divided
into four smaller triangles, see Figure A.2. Again, the geometry of the subtriangles is analytically
given and Π1 is applied. The triangulations shown in Figure A.2 illustrate the approximations for
the original geometry with N = 8 elements and two re�nement steps for p = 1 and p = 4. The
meshes on the right have N = 128 elements.

The convergence of the high order approximation of the sphere can be analyzed with respect to
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Figure A.1.: Sphere divided in spherical octants.

the error

Err3 =

(∫
S2
hp

(|Π1(r)(x)| − 1)2 dσx

) 1
2 /√

4π . (A.2)

The results reported in the third column of Table A.1 show that CF= 2(p+1) for uniform order of
approximation p. The so-called convergence factor (CF) is computed by dividing the error Err3 of
the approximations obtained on subsequently re�ned meshes. The relation between the convergence
factor and the convergence rate is CR≈ log2CF. Thus, the geometrical error decreases by CR= p+1
and this means, especially, that the convergence of a linear mesh with plane triangles towards the
unit sphere is only quadratic, CR= 2.
Further, the operators Π1,Πd and Π0 are tested on polynomials of arbitrary polynomial degree q

on the isoparametric sphere S2
hp. As the parametrizations are non-linear mappings, it is clear that

polynomials cannot be reproduced exactly. Let

Err4 =

( ∫
S2
hp

∣∣Π (f) (x)− f(B(x))
∣∣2 dσx

) 1
2 /( ∫

S2

∣∣f(x)
∣∣2 dσx

) 1
2

. (A.3)

where Π, f stands for one of the following pairs

Π = Π1 or Π = Π0, f(x) = u(x) = (x2
1 + x2

2)(x1 − x2
1)(x2 − x2

2) ∈ P6(R3) ,

Π = Πd, f(x) = u(x) = (x6
1,−x6

2, 0)> ∈ P6(R3) .

The fourth to the sixth column of Table A.1 show the convergence rates for projection-based inter-
polation obtained by Π1, Πd and Π0 with respect to uniform h-re�nement. This means that the
number of elements N are quadrupled and the convergence factor (CF) is computed by dividing the
error Err4 of the approximations obtained on subsequently re�ned meshes.
It is veri�ed that Π1 yields a convergence of order p+ 1, whereas the convergence rate of Πd and

Π0 is p. For these tests, Nédélec elements of �rst kind are used. Note, that the projection-based
interpolation operators Πd and Πc are equivalent and there is no need to show the results explicitly
for Πc.
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Figure A.2.: Uniform re�nements of the sphere with p = 1 above and p = 4 below.

Table A.1.: Projection based interpolation by Π1, Πd and Π0

Order N
S2
hp Π1(u) ∈ Hph(S2

hp) Πd(u) ∈ Vp−1h (S2
hp) Π0(u) ∈ Qp−2

h (S2
hp)

Err3 CF Err4 CF Err4 CF Err4 CF

p = 1

32 1.15e-1 � 4.98e-1 � 6.56e-1 � 5.37e-1 �
128 3.20e-2 3.6 1.04e-1 4.8 4.33e-1 1.5 2.01e-1 2.7
512 8.36e-3 3.8 2.61e-2 4.0 2.35e-1 1.8 1.12e-1 1.8
2048 2.12e-3 3.9 6.54e-3 4.0 1.19e-1 2.0 5.62e-2 2.0
8192 5.30e-4 4.0 1.64e-3 4.0 5.89e-2 2.0 2.82e-2 2.0

p = 2

32 1.14e-2 � 8.67e-2 � 4.03e-1 � 1.07e-1 �
128 1.40e-3 8.1 1.31e-2 6.6 1.17e-1 3.4 4.74e-2 2.3
512 1.68e-4 8.3 1.86e-3 7.0 3.10e-2 3.8 1.21e-2 3.9
2048 2.06e-5 8.2 2.38e-4 7.8 7.90e-3 3.9 3.08e-3 3.9
8192 2.56e-6 8.0 2.99e-4 8.0 1.98e-3 4.0 7.73e-4 4.0

p = 3

32 3.26e-3 � 2.92e-2 � 1.10e-1 � 5.68e-2 �
128 2.05e-4 16 2.54e-3 12 2.53e-2 4.4 6.72e-3 8.5
512 1.29e-5 16 1.65e-4 15 3.42e-3 7.4 9.75e-4 6.9
2048 8.17e-7 16 1.06e-5 16 4.33e-4 7.9 1.24e-4 7.9
8192 5.12e-8 16 6.65e-7 16 5.45e-5 7.9 1.56e-5 7.9

p = 4

32 4.66e-4 � 9.80e-3 � 5.90e-2 � 1.34e-2 �
128 1.83e-5 26 3.52e-4 28 5.13e-3 12 1.34e-3 10
512 6.74e-7 27 1.33e-5 27 3.56e-4 14 8.51e-4 16
2048 2.13e-8 32 4.31e-7 31 2.35e-5 15 5.44e-6 16
8192 6.69e-10 32 1.36e-8 32 1.47e-6 16 3.42e-7 16
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Appendix B

Mie Series

The veri�cation of numerical results builds up on reference solutions. A reference solution might
be given by a commercial software as in case of the ship geometry from Subsection 6.2.3, or by an
analytical solution. If no analytical solution is given, it is helpful to analyze some other charac-
teristics of the solution and, then, to check if the numerical solution ful�lls them. The scattered
electromagnetic �eld for instance exhibits the characteristic behavior of a spherical wave far away
from the scatterer. We derive the so-called far-�eld approximation for the scattered electric �eld.
In the second part of this chapter, the analytical formulae for the Mie series are presented.
Let E : Ωc → C3 denote a solution of the following boundary value problem

curl curlE − κ2E = 0, in Ωc ,

γDE = m, on Γ ,∣∣∣curlE(x)× x

|x|
− iωεE(x)

∣∣∣ = O
(

1

|x|2

)
, for |x| → ∞ .

(B.1)

Here, the wave number κ > 0 and the Dirichlet trace m = −γDEi is given by an incoming
electrical signal Ei. It has been shown in Subsection 3.2.1, (3.46) and (3.56), that E at x ∈ Ωc can
be represented by

E(x) =

∫
Γ

Gκ(x− y) jt(y) dσy +
1

κ2

∫
Γ

∇xGκ(x− y) divΓj
t(y) dσy ,

where the surface current density jt is the Neumann trace of the total �eld Et = E +Ei, i.e.,

jt = γNE
t = γN

(
E +Ei

)
.

Recall that for x 6= y

Gκ(x− y) =
1

4π

e−iκ|x−y|

|x− y|
and ∇xGκ(x− y) = Gκ(x− y)

(
−iκ− 1

|x− y|

)
x− y
|x− y|

.

Thus, it holds

E(x) =

∫
Γ

Gκ(x− y) jt(y) dσy +
1

κ2

∫
Γ

Gκ(x− y)

(
−iκ− 1

|x− y|

)
x− y
|x− y|

divΓj
t(y) dσy . (B.2)

We introduce the following notations for the spherical unit vectors

er =

 cosϕ sin θ

sinϕ sin θ

cos θ

 , eϕ =

 − sinϕ

cosϕ

0

 , eθ =

 cosϕ cos θ

sinϕ cos θ

− sin θ

 .
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Chapter B. Mie Series

With r = |x| for x ∈ Ωc and r′ = |y| for y ∈ Γ, we rewrite |x− y| for r →∞

|x− y| =
(
r2 + r′ 2 − 2x · y

)1/2
= r

(
1 +

r′ 2

r2
− 2

r
er · y

)1/2

= r

(
1− 2

r
er · y +O

(
1

r2

))1/2

,

and for the reciprocal expression, one obtains

1

|x− y|
=

1

r

(
1− 2

r
er · y +O

(
1

r2

))−1/2

.

For r →∞, it holds further er · y/r → 0 for any y ∈ Γ, and, therefore,(
1− 2

r
er · y +O

(
1

r2

))−1/2

= 1 +
1

r
er · y +O

(
1

r2

)
.

With respect to the limit r →∞, we can neglect all terms of higher order O(1/r2) and obtain

|x− y| ≈ r

(
1− 1

r
er · y

)
,

1

|x− y|
≈ 1

r

(
1 +

1

r
er · y

)
≈ 1

r
,

x− y
|x− y|

≈ er −
y

r
.

Consequently, the asymptotic behavior of the oscillatory kernel for r →∞ is

e−iκ|x−y|

|x− y|
≈ 1

r
e−iκr(1− 1

r
er·y) =

e−iκr

r
eiκer·y .

The indirect representation formula (B.2) yields for r →∞ a spherical wave

E(x(r, ϕ, θ)) ≈ e−iκr

κr

 κ

4π

∫
Γ

eiκer·y jt(y) dσy −
i

4π
er

∫
Γ

eiκer·y divΓj
t(y) dσy

 . (B.3)

The term in the brackes is the amplitude of the spherical wave. Obviously, the amplitude does not
depend on r anymore but only on θ and ϕ. Note further, that the radial component of the scattered
far-�eld vanishes for r →∞, as an integration by parts of the second integral in (B.3) yields

i

∫
Γ

eiκer·y divΓj
t(y) dσy = −i

∫
Γ

∇Γ

(
eiκer·y

)
· jt(y) dσy

= κ

∫
Γ

eiκer·y er · jt(y) dσy . (B.4)

The far-�eld approximation Efar is de�ned as follows

Efar(ϕ, θ) =
1

r

1

4π

∫
Γ

eiκer·y jt(y) dσy = Efar,θ eθ + Efar,ϕ eϕ ,
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with the angular components

Efar,θ =
1

r

1

4π

∫
Γ

eiκer·y jt(y) dσy

 · eθ and Efar,ϕ =
1

r

1

4π

∫
Γ

eiκer·y jt(y) dσy

 · eϕ . (B.5)

One of the few problems in electromagnetic scattering which possess an analytical solution is the
plane wave scattering at a perfectly conducting sphere. A detailed derivation of the Mie series is
found in many textbooks. The formulae we outline here are proved in [4] and [34]. Let us assume
that the electric �eld of a uniform plane wave is polarized in e1 direction and it is traveling along
the e3 axis. The electric �eld of the incident wave reads

Ei(x) = e−iκx3e1 = e−iκr cos θe1 .

In the following, we use

Ĥ(2)
n (κr) = (κr)h(2)

n (κr) and Ĵn(κr) = (κr)jn(κr) ,

where h(2)
n denotes the nth spherical Hankel function of second kind, jn the nth spherical Bessel

function. Moreover, P 1
n denotes the nth associated Legendre function. The radius a of the unit

sphere S2 is a = 1 and we de�ne the coe�cients for the Mie series

an = i−n
(2n+ 1)

n(n+ 1)
,

bn = −an
Ĵ ′n(aκ)

Ĥ
(2) ′
n (aκ)

= −an
Ĵ ′n(κ)

Ĥ
(2) ′
n (κ)

,

cn = −an
Ĵn(aκ)

Ĥ
(2)
n (aκ)

= −an
Ĵn(κ)

Ĥ
(2)
n (κ)

.

The surface current jt = γNE
t of the total electric �eld Et = E +Ei is given by in�nite sums

jt · eθ = jtθ = cosϕ
∞∑
n=1

an

(
sin θ ∂

∂(cos θ)P
1
n(cos θ)

∂
∂κĤ

(2)
n (κ)

+
iP 1
n(cos θ)

sin θĤ
(2)
n (κ)

)
,

jt · eϕ = jtϕ = sinϕ
∞∑
n=1

an

(
P 1
n(cos θ)

sin θ ∂
∂κĤ

(2)
n (κ)

−
sin θ ∂

∂(cos θ)P
1
n(cos θ)

iĤ
(2)
n (κ)

)
.

The analytical forumlae for the evaluation of the scattered electric �eld at x = x(r, θ, ϕ) ∈ Ωc is
given by

E = Er er + Eθ eθ + Eϕ eϕ

with

Er(r, ϕ, θ) = −i cosϕ

∞∑
n=1

bn

(
∂2

∂(κr)2
Ĥ(2)
n (κr) + Ĥ(2)

n (κr)

)
P 1
n(cos θ) ,

Eθ(r, ϕ, θ) =
1

κr
cosϕ

∞∑
n=1

(
ibn

∂

∂(κr)
Ĥ(2)
n (κr) sin θ

∂

∂(cos θ)
P 1
n(cos θ)− cnĤ(2)

n (κr)
P 1
n(cos θ)

sin θ

)
,

Eϕ(r, ϕ, θ) =
1

κr
sinϕ

∞∑
n=1

(
ibn

∂

∂(κr)
Ĥ(2)
n (κr)

P 1
n(cos θ)

sin θ
− cnĤ(2)

n (κr)sin θ
∂

∂(cos θ)
P 1
n(cos θ)

)
.
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Chapter B. Mie Series

The angular components Efar,θ and Efar,ϕ of the far-�eld approximation Efar read

Efar,θ(ϕ, θ) =
i cosϕ

κr

∞∑
n=1

in
(
bn sin θ

∂

∂(cos θ)
P 1
n(cos θ)− cn

P 1
n(cos θ)

sin θ

)
,

Efar,ϕ(ϕ, θ) =
i sinϕ

κr

∞∑
n=1

in
(
bn
P 1
n(cos θ)

sin θ
− cn sin θ

∂

∂(cos θ)
P 1
n(cos θ)

)
.
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Appendix C

Elliptic Problems

We aim to present in this chapter numerical results for the high order boundary element methods
applied to an elliptic problem. In the context of the boundary element methods, elliptic operators
allow for a systematic and general theory and the fundamentals of this theory are given in [44,52],
for instance. Of major importance here is the fact that the theoretical results are valid for the high
order schemes. Besides the well documented theory, one �nds publications concerned with numerics
of boundary element methods for elliptic problems. Of particular importance for our presentation
is [51] because we are going to apply the high order methods on the model problem presented in
Subsection 4.2.4 of [51].
The simplest example for a second order partial di�erential equation is the Laplace equation for

a scalar function u : R3 → R satisfying for x ∈ Ω ⊂ R3

−∆u(x) = −
3∑
i=1

∂2

∂x2
i

u(x) = 0 . (C.1)

It is shown in [39] that the Laplace equation occurs, for instance, when modelling electrostatic
potentials. We consider (C.1) together with Dirichlet boundary conditions, this means that the
interior Dirichlet trace of the function u is given for x ∈ Γ = ∂Ω

m(x) = γ0u(x) . (C.2)

Note, that the symbol γ0 denotes the trace taken from inside of Ω on the boundary Γ.

Theorem C.0.1 Let Ω be a Lipschitz domain. The boundary value problem (C.1)-(C.2) is for

m ∈ H
1
2 (Γ) uniquely solvable with u ∈ H1(Ω).

The solution of the Dirichlet boundary value problem (C.1)-(C.2) can formally be represented at
almost every x ∈ Ω by

u(x) =

∫
Γ

G0(x− y)γ1u(y) dσy −
∫
Γ

n(y) · ∇yG0(x− y)γ0u(y) dσy .

Thus, u is represented by two boundary integral operators. The �rst is called the single layer
potential, it holds

S0 : H−
1
2 (Γ)→ H1(Ω) with S0(j) =

∫
Γ

G0(x− y)j(y) dσy ,

where G0 : R3\{0} → R denotes the fundamental solution of the Laplace equation, namely,

G0(x) =
1

4π|x|
.
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The second integral operator is called the double layer potential

W0 : H
1
2 (Γ)→ H1(Ω) with W0(m) =

∫
Γ

n(y) · ∇yG0(x− y)m(y) dσy .

Now and in the following, the interior Neumann trace is denoted j = γ1u. With these notations,
we obtain for x ∈ Ω the following direct representation formula

u(x) = S0(j)(x)−W0(m)(x) . (C.3)

A boundary integral equation for unknown Neumann trace j is formally obtained when the Dirichlet
trace γ0 is applied to (C.3), i.e.,

γ0u = γ0S0(j)− γ0W0(m) . (C.4)

This boundary integral equation is, for instance, studied in [24,52,54].

Theorem C.0.2 Due to the H−
1
2 (Γ)-ellipticity of the operator γ0S0 : H−

1
2 (Γ) → H

1
2 (Γ), (C.4)

admits a unique solution j ∈ H−
1
2 (Γ) with

||j||
H−

1
2 (Γ)
≤ c||m||

H
1
2 (Γ)

. (C.5)

The Neumann trace solves for all ν ∈ H−
1
2 (Γ)

〈ν, γ0S0(j)〉 1
2

= 〈ν,m+ γ0W0(m)〉 1
2
. (C.6)

To set up the hp-model, we consider a high order approximation Γhp of the exact boundary Γ and
a high order approximation mhp of the analytically given Dirichlet data m. Let {φi}NHi=1 denote a
basis of Hph(Γhp), then we obtain the latter by applying the projection-based interpolation operator
Π1, i.e.,

mhp = Π1(m) =

NH∑
i=1

βiφi . (C.7)

Let {νi}NQi=1 denote the basis of Q
p−2
h (Γhp), then the Galerkin ansatz for the discrete Neumann trace

reads

jhp =

NQ∑
i=1

αiνi . (C.8)

Thus, the discretization of (C.6)

(νi, γ0S0(jhp))Γhp
= (νi,mhp + γ0W0(mhp))Γhp

for all i = 1, . . . , NQ , (C.9)

leads to a linear system of equations

Sα = (I +W )β , α = (α1, . . . , αNQ)> , β = (β1, . . . , βNH)> , (C.10)

for the unknown coe�cient vector α from (C.8). The following result is proved in [52].

Theorem C.0.3 Provided the exact solution j of the boundary integral equation (C.4) is more
regular, namely, j ∈ Hs(Γ) for s ≥ 0. Then, the numerical solution jhp ∈ Hph(Γhp) for a regular

110



hp-mesh Γhp with isoparametric elements of uniform order p converges quasi-optimally with

||j − jhp||
H−

1
2 (Γ)
≤ Ch

1
2

+min(p+1,s)||j||Hs(Γ) , (C.11)

where C depends on the order of approximation p and the uniformity of the mesh.

We present now numerical results for the reference solution

u(x) = (1 + x1) exp(2πx2) cos(2πx3) . (C.12)

Thus, the function u is an analytical solution for the Dirichlet boundary value problem{
−∆u(x) = 0 in Ω ,

m(x) = γ0u(x) on Γ .

Note that the reference solution u is an exact solution for all geometrical approximations Γhp of Γ.
Di�erent from the Mie series analyzed in Chapter 5, there is no need to explicitly account for the
approximation of the boundary Γ. A suitable error estimator to analyze the accuracy of input and
output data reads

Err5 =
||fhp − f ||L2(Γhp)

||f ||L2(Γhp)
, where f = m or f = j . (C.13)

To check the accuracy of the numerical solution inside the unit ball Ω we use

Err6 =
1

M

M∑
i=1

|uhp(xi)− u(xi)| , (C.14)

where M = 360 and the sample points xi are uniformly distributed on the slope

x(t) =

 −0.3

−0.5

−0.7

+ t

 0.6

1.0

1.4

 , 0 ≤ t ≤ 1 . (C.15)

The �rst test geometry is the unit sphere Γ = S2 approximated by isoparametric elements of
uniform order p = 1 up to p = 4. The result of the computations is shown in Table C.1. Each
block row contains the convergence analysis with respect to uniform h-re�nement. The number of
boundary elements N , and the dimension NH of the parametric space Hph(Γhp) and the dimension
NQ of the parametric space Qp−2(Γhp) are listed in the �rst column. The convergence factor (CF)
is computed by dividing the error of the numerical solutions on subsequently re�ned meshes. The
results given in the columns three and four show that the Nédélec elements of �rst kind of order p
yield a convergence factor CF= 2(p+1) for Dirichlet data m and CF= 2p for Neumann data j. This
corresponds to the convergence rate CR= p+ 1 for m and CR= p for j, respectively.
In order to analyze the e�ciency of the high order methods, we choose the isoparametric sphere

with p = 1 with N = 1152 elements and compare the numerical solution with a computation
performed on the isoparametric sphere with p = 4 and N = 128 elements. These hp-meshes yield
comparable numbers of unknowns in Qp−2

h (Γhp) as seen in the third column of Table C.2. As
reported by the �fth and the sixth column of Table C.2, the high order method performs better
while the numerical costs are approximately the same. For a visual comparision, Figure C.1 contains
plots of the exact solution u and the approximations for p = 1 and p = 4 on the slope (C.15).
Our second test geometry is the uniformly re�ned icosaeder as approximation of the unit sphere

S2. The result of the computations are shown in Table C.3. Each block row contains the con-
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Chapter C. Elliptic Problems

Table C.1.: Convergence analysis for interior Laplace problem, solution u from (C.12)

Isoparametric Sphere with Nédélec elements of �rst kind

Order N NH NQ
||mhp −m|| ||jhp − j|| ||uhp − u||
Err5 CF Err5 CF Err6 CF

p = 1

32 18 32 5.13e-1 / 1.03e-1 / 2.17e+1 /
128 66 128 2.65e-1 3.2 7.46e-1 1.4 0.26e+1 8.2
512 258 512 7.58e-1 2.0 3.68e-1 2.0 5.04e-1 5.2
2048 1026 2048 1.94e-2 3.8 1.75e-1 2.1 1.26e-1 4.0

p = 2

32 66 96 9.95e-1 / 6.87e-1 / 0.11e+1 /
128 258 384 1.32e-1 7.5 2.22e-1 3.1 5.29e-1 2.0
512 1026 1536 1.63e-2 8.0 9.62e-2 2.3 2.21e-2 24
2048 4098 6144 2.05e-3 7.9 2.79e-2 3.4 1.42e-3 16

p = 3

32 146 192 3.15e-1 / 4.20e-1 / 0.24e+1 /
128 578 768 2.32e-2 14 1.00e-2 4.2 1.55e-1 16
512 2306 3072 1.98e-3 12 1.55e-2 6.5 1.87e-3 83
2048 9218 12288 1.42e-4 14 1.92e-3 8.1 9.66e-5 19

p = 4

8 66 80 6.47e-1 / 6.66e-1 / 0.67e+1 /
32 258 320 8.04e-1 8.0 2.46e-1 2.7 7.72e-2 87
128 1026 1280 6.40e-3 13 2.57e-2 9.6 1.22e-2 6.3
512 4098 5120 2.73e-4 23 2.40e-3 11 5.90e-5 207

Figure C.1.: Numerical results from Table C.2 for p = 1, 4 on slope (C.15).

112



Table C.2.: Comparable degrees of freedom for the Laplace problem, direct formulation

Order Nédélec N NQ
||mhp −m|| ||jhp − j|| ||uhp − u||

Err5 Err5 Err6

p = 1 1 1152 1152 5.78e-2 2.10e-1 2.25e-1
p = 4 1 128 1280 6.40e-3 2.56e-2 1.22e-2

Table C.3.: Direct single layer formulation for interior Laplace, solution u from (C.12)

Icosaeder with Nédélec elements of �rst kind

Order N NH NQ
||mhp −m|| ||jhp − j|| ||uhp − u||
Err5 CF Err5 CF Err6 CF

p = 1

42 80 42 4.97e-1 / 9.86e-1 / 0.45e+1 /
162 320 162 2.19e-1 2.3 4.95e-1 2.0 4.21e-1 11
642 1280 642 6.08e-2 3.6 2.20e-1 2.3 1.02e-1 4.1
2652 5120 2652 1.54e-2 3.9 1.04e-1 2.1 2.52e-2 4.0

p = 2

12 42 60 5.40e-1 / 9.91e-1 / 0.39e+1 /
42 162 240 1.73e-1 3.1 3.44e-1 2.9 2.54e-1 15
162 642 960 2.89e-2 6.0 1.17e-1 2.9 1.43e-2 18
642 2652 3840 3.50e-3 8.3 3.63e-2 3.2 8.96e-4 16

p = 3

12 92 120 3.10e-1 / 5.11e-1 / 0.15e+1 /
42 362 480 3.69e-2 4.5 1.23e-1 4.2 1.03e-1 14
162 1442 1920 2.23e-3 17 1.81e-2 6.8 2.18e-3 47
642 5726 7680 1.88e-4 12 2.33e-3 7.8 3.15e-5 69

p = 4

12 162 200 7.72e-2 / 2.50e-1 / 6.80e-1 /
42 642 800 4.43e-3 17 2.63e-2 9.5 3.25e-3 209
162 2562 3200 2.90e-4 15 1.93e-3 14 2.14e-4 15
642 10242 12800 7.96e-6 36 1.46e-4 13 1.06e-6 202

vergence analysis for uniform h-re�nement. The number of boundary elements, and the assigned
dimensions of the parametric spaces Hph(Γhp) and Qp−2(Γhp) for Nédélec elements of �rst kind are
listed in the �rst column. Again, Err5 is used to estimate the relative error of the projection-based
interpolation mhp = Π1(m) and the numerical solution jhp. Further, the point-wise absolute error
Err6 is considered to analyze the evaluation on the slope (C.15). The convergence factors reported
by Table C.3 show the same qualitative behavior as for the isoparametric sphere. This was exhib-
ited already because the function u is an analytical solution for all geometries and the low order
approximation of the unit sphere does not pollute the error.
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AppendixD

Polynomial Exact Sequences

For a multi index p = (p, p1, p1, p3) ∈ N4 we de�ne

Pp(T̂ ) =
{
u ∈ Pp(T̂ ) : u

∣∣
êi
∈ Ppi(êi), i = 1, 2, 3

}
,

Pp(T̂ ) =
{
u ∈ Pp(T̂ ) , u · τ̂ i ∈ Ppi(êi) , i = 1, 2, 3

}
.

The gradient and the scalar curl operator connect these polynomial spaces by the following exact
sequence

Pp(T̂ )
∇Γ−−→ Pp−1(T̂ )

curlΓ−−−→ Pp−2(T̂ ) . (D.1)

The construction of a particular basis for Pp(T̂ ) presented in the following is due to Zaglmayr and
Schöberl [53] and the pioneering work on this subject is due to Nédélec [46, 47]. It builds up on
Legendre polynomials `p : [−1, 1] → [−1, 1] of arbitrary order p ≥ 0. The latter are de�ned by the
following recurrence relation

`0(t) = 1 ,

`1(t) = t ,

(k + 1)`k+1(t) = (2k + 1)t`k(t)− k`k−1(t), 1 ≤ k ≤ p− 1 .

The Legendre polynomials span the polynomial space Pp([−1, 1]) and they are orthogonal with
respect to the inner product of L2([−1, 1]), this means

∀ l, k ∈ N0 :

1∫
−1

`k(t)`l(t) dt =
2

2k + 1
δkl .

Furthermore, we need the triangular domain T̃ plotted in Figure D.1

T̃ =
{

(s, t) ∈ R2, t > |s|, s ∈ (−1, 1), t ∈ (0, 1)
}
,

∂T̃ = e1 ∪ e2 ∪ e3 =
{

(s, 1) ∈ R2, s ∈ [−1, 1]
}
∪ {(1− s, 1− s), s ∈ (0, 1)} ∪ {(−s, s), s ∈ (0, 1)} .

The so-called scaled and integrated Legendre polynomials LSk : T̃ → [−1, 1] of polynomial order
k ≥ 2 are given by the recurrence relation

LS2 (s, t) =
1

2
(s2 − t2) ,

LS3 (s, t) =
1

3
s(s2 − t2) ,

(k + 1)LSk+1(s, t) = (2k − 1)sLSk (s, t)− (k − 2)t2LSk−1(s, t) , k ≥ 3 .
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(0,0)

(-1,1) (1,1)

s

t

T̃

Figure D.1.: The triangular domain T̃ .

The restriction of LSk to the horizontal edge e1, is denoted LSk (·, 1). It holds that LSk (·, 1) ∈ P k0 ([−1, 1])
where the lower index means that the polynomials vanish at the vertices, i.e.,

LSk (−1, 1) = LSk (1, 1) = 0 .

However, the restriction on the other two edges of T̃ vanishes identically

∀ t ∈ (0, 1] : LSk (−t, t) = LSk (1− t, 1− t) = 0 .

Thus, the polynomials LSk vanish on all vertices of T̃ and, thus, they are suited for the construction
of high order shape functions on the reference triangle. By the use of the barycentric coordinates
of the reference triangle λi : T̂ → (0, 1)

λ1(ξ) = 1− (ξ1 + ξ2) ,

λ2(ξ) = ξ1 ,

λ3(ξ) = ξ2 ,

we introduce three parametrizations of the domain T̃

(s(ξ), t(ξ))[n1,n2] = (λn1(ξ)− λn2(ξ), λn1(ξ) + λn2(ξ))> ,

where the double index refers to one of the midedge nodes of the reference triangle, i.e.,

â4 : n1 = 1, n2 = 2 , â5 : n1 = 2, n2 = 3 , â6 : n1 = 3, n2 = 1 .

And we de�ne

u
[n1,n2]
k (ξ) = LSk ((s, t)[n1,n2](ξ)) , k ≥ 2 .

The functions u[n1,n2]
k are polynomials of order k ≥ 2 de�ned on T̂ . They are zero at all vertex

nodes of the reference triangle T̂ . Moreover, the midedge node speci�ed by the double index [n1, n2]

belongs to u[n1,n2]
k in the sense that u[n1,n2]

k also vanishes on the other two edges. Furthermore, we
use the parametrization of the interval [−1, 1] in terms of the barycentric coordinates

t : T̂ → [−1, 1] , t(ξ) = λ3(ξ)− λ1(ξ)− λ2(ξ)
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to de�ne the polynomials

v
[3]
k+1(ξ) : T̂ → [−1, 1], v

[3]
k+1(ξ) = λ3(ξ) `k(t(ξ)) , k ≥ 0 .

The functions v[3]
k+1 are at least linear polynomials and vanish all on the edge with double index

[1, 2]. The polynomials u[n1,n2]
k and v[3]

k+1 are the so-called building blocks for the construction of
the polynomial exact sequence (D.1). Let p = (p, p1, p2, p3) be �xed with

p ≥ 2 and 2 ≤ pi ≤ p .

In the following it is described in detail how to construct hierarchical bases for the polynomial
spaces Pp(T̂ ), Pp−1(T̂ ) and Pp−2(T̂ ) of variable order p = (p, p1, p2, p3). In each basis, the basis
functions are ordered according to increasing polynomial degree. Each basis function is uniquely
de�ned by two indices. The lower index k at the basis function coincides with its polynomial degree
and the upper index i is a symbolic running index to distinguish functions of the same polynomial
degree k. This notational convention is made explicit for some examples at the end of this chapter,
see Table D.2.

The �rst shape functions to build up a basis for Pp(T̂ ) are the linear polynomials

â1 : ϕ̂1
1(ξ) = λ1(ξ)

â2 : ϕ̂2
1(ξ) = λ2(ξ)

â3 : ϕ̂3
1(ξ) = λ3(ξ) .

The functions ϕ̂i1 are denoted vertex node shape functions because

ϕ̂i1(v̂j) = δij , i, j = 1, 2, 3 . (D.2)

If the polynomial degree of the edge nodes exceeds one, 1 < pi ≤ p, we add polynomials of higher
order. Hierarchical basis means that the choice of a of these polynomials is such that they vanish
on all vertex nodes. The polynomials u[n1,n2]

k satisfy this requirement. We obtain the following
construction rule for the midedge node shape functions

â4 : for 2 ≤ k ≤ p1 ϕ̂1
k(ξ) = u

[1,2]
k (ξ) ,

â5 : for 2 ≤ k ≤ p2 ϕ̂2
k(ξ) = u

[2,3]
k (ξ) ,

â6 : for 2 ≤ k ≤ p3 ϕ̂3
k(ξ) = u

[3,1]
k (ξ) .

Whenever pi ≥ 3, the vertex node and midedge node shape functions alone do not span Pp(T̂ ).
Following the hierarchical construction principle, polynomials of degree 3 ≤ k ≤ p which vanish on
all edges are added. Recall that the functions v[3]

j+1 vanish on the horizontal edge e1. Thus, the
middle node shape functions

â7 : for 3 ≤ k = l + j + 1 ≤ p ϕ̂ik(ξ) = u
[1,2]
l (ξ) v

[3]
j+1(ξ) , j ≥ 0, l ≥ 2 ,

have the desired property. The set vertex, midedge and middle node functions is a basis of Pp(T̂ )
and we call the basis functions the master element shape functions. Note, that the lower index k
of an arbitrary master element shape functions refers to its polynomial degree. The running index
i = i(l, j) is necessary to distinguish master element shape functions of the same polynomial degree.

If p = (p, p, p, p) we say that the master element has uniform order p. This means, that the
polynomial space Pp(T̂ ) for uniform order p = 3 is spanned by the ten functions: the vertex node
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shape functions

â1 : ϕ̂1
1(ξ) = 1− (ξ1 + ξ2) ,

â2 : ϕ̂2
1(ξ) = ξ1 ,

â3 : ϕ̂3
1(ξ) = ξ2 ,

two midedge node shape function per edge

â4 : ϕ̂1
2(ξ) =

1

2

(
(1− 2ξ1 − ξ2)2 − (1− ξ2)2

)
,

ϕ̂1
3(ξ) =

1

2
(1− 2ξ1 − ξ2)

(
(1− 2ξ1 − ξ2)2 − (1− ξ2)2

)
,

â5 : ϕ̂2
2(ξ) = −2ξ1ξ2 ,

ϕ̂2
3(ξ) = −2ξ1ξ2(ξ1 − ξ2) ,

â6 : ϕ̂3
2(ξ) =

1

2

(
(1− 2ξ2 − ξ1)2 − (1− ξ1)2

)
,

ϕ̂3
3(ξ) =

1

2
(1− 2ξ2 − ξ1)

(
(1− 2ξ2 − ξ1)2 − (1− ξ1)2

)
,

and one middle node function

â7 ϕ̂4
3(ξ) =

1

2

(
(1− 2ξ1 − ξ2)2 − (1− ξ2)2

)
ξ2 .

Due to (D.1), high order elements for Pp−1(T̂ ) are given by di�erentiation for p ≥ 2. The
di�erentiation of the linear functions ϕ̂k1 returns three linear dependent vector �elds. However, one
obtains a set of linear independent vector �elds by

â4 : ϕ̂1
0(ξ) = ∇Γλ1(ξ)λ2(ξ)−∇Γλ2(ξ)λ1(ξ) ,

â5 : ϕ̂2
0(ξ) = ∇Γλ2(ξ)λ3(ξ)−∇Γλ3(ξ)λ2(ξ) ,

â6 : ϕ̂3
0(ξ) = ∇Γλ3(ξ)λ1(ξ)−∇Γλ1(ξ)λ3(ξ) .

These vector �elds are called �rst order Nédélec elements. Di�erent from our notational convention,
the lower index is zero although the vector �elds ϕ̂k0 are linear vector �elds. This is the only exception
from our notational convention and it is used to emphasize that the construction of the �rst order
Nédélec elements di�ers from the general construction principle. For pi ≥ 2, we obtain all midedge
node shape vector �elds by di�erentiation

â4 : for 1 ≤ k < p1 ϕ̂1
k(ξ) = ∇Γϕ̂

1
k+1 ,

â5 : for 1 ≤ k < p2 ϕ̂2
k(ξ) = ∇Γϕ̂

2
k+1 ,

â6 : for 1 ≤ k < p3 ϕ̂3
k(ξ) = ∇Γϕ̂

3
k+1 .

Correspondingly, p ≥ 3 yields middle node shape vector �elds. However, as the gradient is not
surjective onPp−1(T̂ ), we have to add linear independent polynomial vector �elds. Our construction
is as follows

â7 : for 2 ≤ k = 2 + j < p ϕ̂i1k (ξ) = ϕ̂1
0(ξ) v

[3]
j+1(ξ) ,

for 2 ≤ k = l + j < p ϕ̂i2k (ξ) = ∇Γu
[1,2]
l (ξ) v

[3]
j+1(ξ)− u[1,2]

l (ξ)∇Γv
[3]
j+1(ξ) ,

for 2 ≤ k = l + j < p ϕ̂i3k (ξ) = ∇Γu
[1,2]
l (ξ) v

[3]
j+1(ξ) + u

[1,2]
l (ξ)∇Γv

[3]
j+1(ξ) .
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The lower index k refers again to the polynomial degree of the vector �elds and the upper indices
i1, i2, i3 are all running indices to distinguish the vector �elds of the same polynomial order. In
Table D.2, we use the shorter notations

ϕ̂i2k (ξ) = ∇Γϕ
i2
k+1,−(ξ) and ϕ̂i3k (ξ) = ∇Γϕ

i2
k+1(ξ) .

Figure D.2.: Vector �elds ϕ̂1
0, ϕ̂

1
1, ϕ̂

1
2 for midedge node â4 .

The explicit formulae for shape vector �elds for uniform order p = 3 comprise three vector �elds
per edge node

â4 : ϕ̂1
0(ξ) =

(
ξ2 − 1 ,−ξ1

)>
,

ϕ̂1
1(ξ) =

(
4ξ1 + 2ξ2 − 2 , 2ξ1

)>
,

ϕ̂1
2(ξ) =

(
(1− ξ2)2 − 3(1− 2ξ1 − ξ2)2,−3

2
(1− 2ξ1 − ξ2)2 +

1

2
(1− ξ2)(3− 4ξ1 − 3ξ2)

)>
,

â5 : ϕ̂2
0(ξ) =

(
ξ2,−ξ1

)>
,

ϕ̂2
1(ξ) =

(
− 2ξ2 ,−2ξ1

)>
,

ϕ̂2
2(ξ) =

(
2ξ2

2 − 4ξ2ξ2 ,−2ξ2
1 + 4ξ1ξ2

)>
,

â6 : ϕ̂3
0(ξ) =

(
ξ2 , 1− ξ1

)>
,

ϕ̂3
1(ξ) =

(
4ξ2 + 2ξ1 − 2 , 2ξ2

)>
,

ϕ̂3
2(ξ) =

(
(1− ξ1)2 − 3(1− 2ξ2 − ξ1)2,−3

2
(1− 2ξ2 − ξ1)2 +

1

2
(1− ξ1)(3− 4ξ2 − 3ξ1)

)>
,

and three vector �elds attributed to the middle node

â7 : ϕ̂4
2(ξ) = ξ2

(
ξ2 − 1 ,−ξ1

)>
,

ϕ̂5
2(ξ) = 2ξ2

(
2ξ1 + ξ2 − 1 , ξ1

)> − 1

2

(
(1− 2ξ1 − ξ2)2 − (1− ξ2)2

) (
0 , 1

)>
,

ϕ̂6
2(ξ) = 2ξ2

(
2ξ1 + ξ2 − 1 , ξ1

)>
+

1

2

(
(1− 2ξ1 − ξ2)2 − (1− ξ2)2

) (
0 , 1

)>
.

Note, that the �rst summand of the vector �elds ϕ̂5
2 and ϕ̂6

2 coincides and that the contribution
which is di�erent is much smaller. This is the reason why the �elds are not distinguishable in
Figure D.3.

Due to the surjectivity of curlΓ from Pp−1(T̂ ) on Pp−2(T̂ ), the construction principle for Pp−2(T̂ )
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Figure D.3.: Vector �elds ϕ̂4
2, ϕ̂

5
2, ϕ̂

6
2 for middle node â7 .

is clear, i.e.,

â7 : p = 2 υ̂0(ξ) = 1 ,

1 ≤ k < p− 1 υ̂i1k (ξ) = curlΓ ϕ̂
i1
k+1(ξ) ,

1 ≤ k < p− 1 υ̂i2k (ξ) = curlΓ ϕ̂
i2
k+1(ξ) .

Note, that υ̂0 = curlΓ ϕ̂
i
0 = 1 for all i = 1, 2, 3. For uniform p = 3 we obtain three master element

shape functions

â7 : υ̂0(ξ) = 1 ,

υ̂1
1(ξ) = 1− 3ξ2 ,

υ̂2
1(ξ) = 4(1− 2ξ1 − ξ2) .

All other vector basis �elds are gradients and therefore they do not contribute to a basis for Pp−2(T̂ ).

Nédélec elements of �rst kind are another choice for the de�nition of the master element due to
the following exact sequence for p = (p, p1, p2, p3)

Pp(T̂ )
∇Γ−−→ Pp−1(T̂ )⊕ P̃ p̃

(T̂ )
curlΓ−−−→ Pp−1(T̂ ) ,

where

p− 1 = (p− 1, p1 − 1, p2 − 1, p3 − 1) ,

p̃ = (p, p1 − 1, p2 − 1, p3 − 1) .

This is an extension to the original sequence. The idea is to change the polynomial order of the
vector shape functions by adding the midedge shape vector �elds of order p + 1 which are not
gradient �elds. One has to leave the gradient �elds out to keep the exact sequence property. For
details on this, we refer to [27] and Table D.2.

Table D.1 lists the numbers of degrees of freedom which belong to variable order p = (p, p1, p2, p3)
for p ≥ 2 in case of elements of �rst kind and p ≥ 1 in case of elements of second kind. The variable
order elements are crucial for automatic hp-re�nement. The presented computations, however, are
done with uniform order of approximation only.

Table D.2 contains an overview on the systematic built-up of high order shape functions, up to
uniform order p = 4. Note that for elements of second type we listed in the �rst column of the table
all lowest order elements, namely, the barycentric coordinates spanning P1(T̂ ), the linear Nédélec
elements spanning a subspace of P1(T̂ ) and the constant function spanning P0(T̂ ). This re�ects the
feature of the implementation to employ for uniform order p = 1 always the lowest order sequence
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Table D.1.: Variable order of approximation and corresponding number of degrees of freedom.

Nédélec elements of second kind for p = (p, p1, p2, p3), p ≥ 2

Number of element degrees of freedom
Node Pp(T̂ ) Pp−1(T̂ ) Pp−2(T̂ )

â1 1 � �
â2 1 � �
â3 1 � �
â4 p1 − 1 p1 �
â5 p2 − 1 p2 �
â6 p3 − 1 p3 �
â7 (p− 2)(p− 1)/2 p(p− 2) (p− 1)p/2

# d.o.f. 3 +
3∑
i=1

(pi − 1) + (p− 2)(p− 1)/2
3∑
i=1

pi + p(p− 2) (p− 1)p/2

Nédélec elements of �rst kind for p = (p, p1, p2, p3), p ≥ 1

Number of element degrees of freedom

Node Pp(T̂ ) Pp−1(T̂ )⊕ P̃ p̃
(T̂ ) Pp−1(T̂ )

â1 1 � �
â2 1 � �
â3 1 � �
â4 p1 − 1 p1 �
â5 p2 − 1 p2 �
â6 p3 − 1 p3 �
â7 (p− 2)(p− 1)/2 p(p− 1) (p+ 1)p/2

# d.o.f. 3 +

3∑
i=1

(pi − 1) + (p− 2)(p− 1)/2

3∑
i=1

pi + p(p− 1) (p+ 1)p/2

for both element types.
We close this chapter with some concluding remarks. The sets of polynomial functions comprise

obviously linear independent functions and by counting the number of linear independent functions it
is also clear that we obtain a complete sets of basis functions [46]. The polynomial spaces presented
here possess a hierarchical structure and this hierarchical structure is used in Subsection 4.2.4
to construct projection-based interpolation operators, i.e., the dual basis, to solve approximation
problems on the master element or, as it is shown in Chapter 5 on the parametric element.
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Table D.2.: Elements of second type above, and elements of �rst type below.

p = 1 p = 2 p = 3 p = 4

Pp

Vertices
ϕ̂1

1 = λ1

ϕ̂2
1 = λ2

ϕ̂3
1 = λ3

Midedge

ϕ̂1
2 = u

[1,2]
2

ϕ̂2
2 = u

[2,3]
2

ϕ̂3
2 = u

[3,1]
2

ϕ̂1
3 = u

[1,2]
3

ϕ̂2
3 = u

[2,3]
3

ϕ̂3
3 = u

[3,1]
3

ϕ̂1
4 = u

[1,2]
2

ϕ̂2
4 = u

[2,3]
2

ϕ̂3
4 = u

[3,1]
2

Middle ϕ̂4
3 = u

[1,2]
2 v

[3]
1

ϕ̂4
4 = u

[1,2]
3 v

[3]
1

ϕ̂5
4 = u

[1,2]
2 v

[3]
2

Pp−1

Midedge
ϕ̂1

0

ϕ̂2
0

ϕ̂3
0

ϕ̂1
1 = ∇Γϕ̂

1
2

ϕ̂2
1 = ∇Γϕ̂

2
2

ϕ̂3
1 = ∇Γϕ̂

3
2

ϕ̂1
2 = ∇Γϕ̂

1
3

ϕ̂2
2 = ∇Γϕ̂

2
3

ϕ̂3
2 = ∇Γϕ̂

3
3

ϕ̂1
3 = ∇Γϕ̂

1
4

ϕ̂2
3 = ∇Γϕ̂

2
4

ϕ̂3
3 = ∇Γϕ̂

3
4

Middle
ϕ̂4

2 = ϕ̂1
0v

[3]
1

ϕ̂5
2 = ∇Γϕ̂

4
3,−

ϕ̂6
2 = ∇Γϕ̂

4
3

ϕ̂4
3 = ϕ̂1

0v
[3]
2

ϕ̂5
3 = ∇Γϕ̂

4
4,−

ϕ̂6
3 = ∇Γϕ̂

5
4,−

ϕ̂7
3 = ∇Γϕ̂

4
4

ϕ̂8
3 = ∇Γϕ̂

5
4

Pp−2 Middle υ̂0 = 1
υ̂1

1 = curlΓϕ̂
4
2

υ̂2
1 = curlΓϕ̂

5
2

υ̂1
2 = curlΓϕ̂

4
3

υ̂2
2 = curlΓϕ̂

5
3

υ̂3
2 = curlΓϕ̂

7
3

Pp

Vertices
ϕ̂1

1 = λ1

ϕ̂2
1 = λ2

ϕ̂3
1 = λ3

Midedge

ϕ̂1
2 = u

[1,2]
2

ϕ̂2
2 = u

[2,3]
2

ϕ̂3
2 = u

[3,1]
2

ϕ̂1
3 = u

[1,2]
3

ϕ̂2
3 = u

[2,3]
3

ϕ̂3
3 = u

[3,1]
3

ϕ̂1
4 = u

[1,2]
2

ϕ̂2
4 = u

[2,3]
2

ϕ̂3
4 = u

[3,1]
2

Middle ϕ̂4
3 = u

[1,2]
2 v

[3]
1

ϕ̂4
4 = u

[1,2]
3 v

[3]
1

ϕ̂5
4 = u

[1,2]
2 v

[3]
2

Pp−1

⊕
P p̃

Midedge
ϕ̂1

0

ϕ̂2
0

ϕ̂3
0

ϕ̂1
1 = ∇Γϕ̂

1
2

ϕ̂2
1 = ∇Γϕ̂

2
2

ϕ̂3
1 = ∇Γϕ̂

3
2

ϕ̂3
2 = ∇Γϕ̂

1
3

ϕ̂4
2 = ∇Γϕ̂

2
3

ϕ̂5
2 = ∇Γϕ̂

3
3

ϕ̂4
3 = ∇Γϕ̂

1
4

ϕ̂5
3 = ∇Γϕ̂

2
4

ϕ̂6
3 = ∇Γϕ̂

3
4

Middle
ϕ̂1

2 = ϕ̂1
0v

[3]
1

ϕ̂2
2 = ∇Γϕ̂

4
3,−

ϕ̂6
2 = ∇Γϕ̂

4
3

ϕ̂1
3 = ϕ̂1

0v
[3]
2

ϕ̂2
3 = ∇Γϕ̂

4
4,−

ϕ̂3
3 = ∇Γϕ̂

5
4,−

ϕ̂7
3 = ∇Γϕ̂

4
4

ϕ̂8
3 = ∇Γϕ̂

5
4

ϕ̂1
4 = ϕ̂1

0v
[3]
3

ϕ̂2
4 = ∇Γϕ̂

4
5,−

ϕ̂3
4 = ∇Γϕ̂

5
5,−

ϕ̂4
4 = ∇Γϕ̂

6
5,−

Pp−1 Middle υ̂0 = 1
υ̂1

1 = curlΓϕ̂
1
2

υ̂2
1 = curlΓϕ̂

2
2

υ̂1
2 = curlΓϕ̂

1
3

υ̂2
2 = curlΓϕ̂

2
3

υ̂3
2 = curlΓϕ̂

3
3

υ̂1
3 = curlΓϕ̂

1
4

υ̂2
3 = curlΓϕ̂

2
4

υ̂3
3 = curlΓϕ̂

3
4

υ̂4
3 = curlΓϕ̂

4
4
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