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Abstract

The human immunode�ciency virus (HIV) is the causative agent of the acquired immun-
ode�ciency syndrome (AIDS) which claimed nearly 30 million lives and is arguably among
the worst plagues in human history. With no cure or vaccine in sight, HIV patients are
treated by administration of combinations of antiretroviral drugs. The very large number
of such combinations makes the manual search for an e�ective therapy practically impos-
sible, especially in advanced stages of the disease. Therapy selection can be supported
by statistical methods that predict the outcomes of candidate therapies. However, these
methods are based on clinical data sets that are biased in many ways. The main sources
of bias are the evolving trends of treating HIV patients, the sparse, uneven therapy rep-
resentation, the di�erent treatment backgrounds of the clinical samples and the di�ering
abundances of the various therapy-experience levels.
In this thesis we focus on the problem of devising bias-aware statistical learning methods for
HIV therapy screening � predicting the e�ectiveness of HIV combination therapies. For this
purpose we develop �ve novel approaches that when predicting outcomes of HIV therapies
address the aforementioned biases in the clinical data sets. Three of the approaches aim
for good prediction performance for every drug combination independent of its abundance
in the HIV clinical data set. To achieve this, they balance the sparse and uneven therapy
representation by using di�erent routes of sharing common knowledge among related ther-
apies. The remaining two approaches additionally account for the bias originating from
the di�ering treatment histories of the samples making up the HIV clinical data sets. For
this purpose, both methods predict the response of an HIV combination therapy by taking
not only the most recent (target) therapy but also available information from preceding
therapies into account. In this way they provide good predictions for advanced patients in
mid to late stages of HIV treatment, and for rare drug combinations.
All our methods use the time-oriented evaluation scenario, where models are trained on
data from the less recent past while their performance is evaluated on data from the more
recent past. This is the approach we adopt to account for the evolving treatment trends
in the HIV clinical practice and thus o�er a realistic model assessment.
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Kurzfassung

Das Humane Immunde�zienz-Virus (HIV) ist der Erreger des erworbenes Immundefektsyn-
droms (AIDS), das fast 30 Millionen Menschen das Leben gekostet hat und wohl als eine
der schlimmsten Seuchen in der Geschichte der Menschheit gelten kann. Da in absehbarer
Zeit keine Heilung oder Impfung gegen diese Krankheit zu erwarten ist, werden HIV-
Patienten durch die Verabreichung von Kombinationen von anti-retroviralen Medikamen-
ten behandelt. Die sehr groÿe Zahl solcher Kombinationen macht die manuelle Suche nach
einer e�ektiven Therapie vor allem in fortgeschrittenen Stadien der Erkrankung praktisch
unmöglich. Dieser Prozess der Therapieauswahl kann mit Hilfe statistischer Verfahren un-
terstützt werden, welche die Ergebnisse der Therapie vorherzusagen versuchen. Allerdings
beruhen diese Methoden auf klinischen Datensätzen die verschiedene Biases enthalten. Die
wichtigsten Quellen für Bias sind die sich entwickelnden Trends in der Behandlung von
HIV-Patienten, die sparse, ungleichmäÿige Repräsentation der Therapien, die verschiede-
nen Behandlungshintergründe der klinischen Proben sowie die variablen Häu�gkeiten der
Therapieerfahrungen.
In dieser Arbeit konzentrieren wir uns auf die Aufgabe, Bias-bewusste statistische Lern-
verfahren für das HIV-Therapie Screening zu konzipieren und die E�ektivität von HIV-
Kombinationstherapien vorherzusagen. Zu diesem Zweck entwickeln wir fünf neue Ansät-
ze, welche die erwähnten Biases in klinischen Datensätzen bei der Vorhersage von HIV-
Therapien berücksichtigen. Drei dieser Ansätze zielen auf eine gute Vorhersageleistung
für jede Medikamentenkombination unabhängig von deren Frequenz in den klinischen Da-
ten. Um dies zu erreichen versuchen die Ansätze die sparsen und ungleichmäÿig verteilten
Therapie-Repräsentationen auszugleichen, indem sie Informationen über verwandte The-
rapien auf verschiedenen Weise ausnutzen. Die verbleibenden zwei Ansätze berücksichti-
gen zudem den Bias, der von den verschiedenen Behandlungshintergründen der Proben in
den klinischen Datensätzen herrührt. Zu diesem Zweck sagen die Methoden das Therapie-
Ansprechen für HIV-Kombinationstherapien auf eine Weise vorher, die nicht nur die di-
rekt vorhergehende Therapie berücksichtigt sondern auch auch Informationen über andere,
zeitlich früher gelegene Therapien mit einbezieht. Auf diese Weise bieten die vorgestellten
Ansätze gute Vorhersagen für fortgeschrittene Patienten im mittleren bis späten Stadium
der HIV-Behandlung sowie für seltene Medikamentenkombinationen.
Alle unsere Methoden verwenden ein zeitorientiertes Evaluierungsszenario, in dem Modelle
auf Daten aus der entfernteren Vergangenheit trainiert werden, während ihre Vorhersagelei-
stung auf Daten aus der jüngeren Vergangenheit ausgewertet werden. Dieser Ansatz wurde
gewählt, um die entwickelnden Trends in der klinischen HIV-Behandlung zu berücksichti-
gen und damit eine realistische Bewertung der vorgestellten Modelle zu ermöglichen.
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1 Introduction

The HIV challenge

The human immunode�ciency virus (HIV) infects and destroys the cells of the human im-
mune system causing the acquired immunode�ciency syndrome (AIDS). The deterioration
of the immune system is eventually accompanied by opportunistic infections which typi-
cally lead to the death of the patient. With no cure or vaccine in sight, HIV is among the
deadliest pathogens in the history of mankind. Since its discovery in 1981, AIDS claimed
nearly 30 million lives and the current number of infected people worldwide is larger than
33 million.
In developed regions of the world a whole arsenal of antiretroviral drugs that inhibit dif-
ferent stages of the HIV replication cycle is available for the treatment of HIV patients.
Despite the large number of available antiretroviral drugs, the virus cannot be eradicated
completely from the patient's body and AIDS continues to cause high rates of mortality.
The feature that makes HIV so vigorous is its high genetic diversity due to its fast replica-
tion cycle with an error-prone reverse transcription step. This brings forth a very dynamic
virus population within each infected patient that is able to rapidly evolve and adapt to
the selective pressure of administered drugs by developing resistant variants. While each
of these drugs is insu�cient by itself for substantially delaying the progression of the HIV
infection towards AIDS, the administration of combinations of several drugs routinely leads
to prolonged virus suppression and restoration of immunologic function. Therefore, modern
HIV treatment follows an approach called highly active antiretroviral therapy (HAART)
that comprises combinations of several antiretroviral drugs. More speci�cally, each drug
cocktail consists of at least three compounds that provide at least two di�erent mechanisms
of inhibiting viral replication. The introduction of HAART was a major breakthrough in
the clinical management of HIV infections, resulting in an impressive decrease of HIV-
related mortality in the industrialized countries. Nonetheless, drug combination therapies
are eventually defeated by the evolution of HIV to resistance as well. In such a case the
physician needs to administer a new e�ective drug combination.
The search for an optimal therapy combination for a given patient is hard because it re-
quires the analysis of a large pool of information. First of all, the increasing number of
antiretroviral drugs leads to a very large number of putative drug combinations (hundreds
to thousands), each characterized by complex drug interactions. Secondly, a large number
of resistance-relevant mutations emerge in the course of the virus' response to the adminis-
tered combination therapies. While such mutations disappear in the viral population found
in the patient's blood as the respective drug combination is taken out, they remain present
in the latent virus population in several tissues and organs. These hidden mutations are
quickly accessed if this is bene�cial for the virus which renders previously administered
therapy combinations useless. Hence, an important goal in HIV treatment management is

1



2 1 Introduction

keeping therapy options open, as running out of options means disease progression to AIDS
followed by death of the patient. Last but not least, the amount of knowledge acquired in
30 years of HIV research and treatment is constantly expanding. Brie�y, for the purpose
of selecting an optimal combination therapy, all information mentioned above needs to be
appropriately taken into account in a short period of time on a per-patient basis. Thus,
�nding optimal therapies for HIV patients becomes increasingly impractical to do manu-
ally. This illustrates the need for an automated, objective procedure able to exhaustively
search through the space of available drug combinations for an optimal therapy that is
selected on the basis of the relevant information available on the patient's individuality
and history.

Goals

The large amount of clinical data combined with the use of advanced statistical learning
methodologies o�er a framework for an automated approach to utilizing the available
knowledge for predicting the e�ectiveness of a potential antiretroviral combination therapy.
Such a technology can therefore assist the screening for an optimal, e�ective regimen for
an HIV patient and thereby enhance the clinical management of HIV infections. However,
having been collected from many patients over many years, the HIV clinical data sets are
biased in many ways. The main sources of these biases are the following:

• The trends of treating HIV patients evolve over time as a result of the experience
gained in clinical practice and the introduction of new antiviral compounds.

• The clinical data sets comprise many di�erent combination therapies with highly
unbalanced sample representation: while for some therapies many samples exist, for
others there are very few.

• The data samples originate from patients with di�erent treatment backgrounds. Also
the speci�c treatment histories for the majority of the therapy-experienced samples
are unique.

• The various levels of therapy experience ranging from therapy-naïve to heavily pre-
treated are represented with widely di�ering sample frequencies.

Such biases in�uence the distribution of the data which in turn impacts the predictive
power of the statistical models derived from these data.
Inspired by the aforementioned problems, the main purpose of this thesis is to develop
statistical learning methods for HIV therapy screening by addressing the di�erent kinds of
bias a�ecting the HIV clinical data sets.

Outline

Figure 1.1 presents a schematic overview of the outline of this thesis. In the following we
will describe this outline in more detail.
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Chapter 2 provides a brief introduction to the epidemiology of HIV, including its dis-
covery, spread and current geographical distribution in the di�erent regions of the world.
Afterwards, we give a description of the HIV virion, its replication cycle and the HIV
disease progression. Then, we provide a brief summary of the available anti-HIV drugs
in terms of their targets and mechanism of action followed by a description of the mod-
ern anti-HIV treatment. In this context, we also review the existing statistical learning
methods developed for assisting the administration of HIV treatments. The chapter closes
with a short overview of statistical learning theory and methods that play a major role
throughout this thesis as they make up the foundations of the models presented in the
subsequent chapters.

Chapter 3 addresses the sparse and uneven sample representation of the di�erent drug
combinations comprising the HIV clinical data sets when predicting therapy e�ectiveness.
In order to achieve this we �rst develop a novel multi-task learning approach that considers
each combination therapy as a separate task. Our approach trains a separate model for each
therapy by using data from all available therapies with properly derived sample weights.
These weights are derived such that they match the distribution of all available data to
the target distribution of the therapy of interest. In this way our method compensates for
the sparse representation of many therapies in the clinical data. Then, we introduce the
time-oriented evaluation scenario by which our models are trained on the data stemming
from the more distant past, while their performance is assessed on data stemming from the
more recent past. In this fashion we address the existence of evolving trends in treating
HIV patients over time. We close the chapter by describing the clinical data sets and report
on experimental results that compare the performance of the newly introduced approach
to the corresponding performance of relevant reference approaches.

In Chapter 4 we approach the task of predicting outcomes of HIV combination therapies
from viral genotypes. We develop a prediction method that concentrates on producing
high quality models for rare therapies, i.e. therapies with very few training samples,
by taking the sparse therapy representation in the clinical data sets into account. For
this purpose, we �rst introduce two di�erent similarity measures that quantify pairwise
similarities of drug combinations. Then, a separate model is trained for each distinct
therapy combination by using not only the samples comprising the target therapy, but also
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genotypic information from the available samples pertaining to similar therapies weighted
with their appropriate similarities. Afterwards, we demonstrate how the existing method
is able to utilize additional phenotypic knowledge on the therapy e�ectiveness stemming
from resistance testing. Finally, we present the experimental results realized in the time-
oriented evaluation scenario that assess the quality of the presented approach in terms of
both prediction performance and interpretability.

The methods we introduce in Chapter 5 use the abundance of samples involving each
individual drug to deal with the sparse and highly unbalanced therapy representation
when predicting e�ectiveness of HIV therapies. After we review the general approach of
multi-task hierarchical Bayes modeling, we devise two scenarios in the hierarchical Bayesian
framework that tackle the problem of predicting the outcome of HIV combination therapies.
According to the �rst approach, each antiretroviral drug is considered as a separate task
with the assumption that the e�ects of the drugs comprising a combination therapy are
additive. The second approach builds upon the previous one by adding information on
the previous administration of each of the drugs making up the target therapy. This is
achieved by creating two separate tasks for each drug in the target therapy that distinguish
whether the drug was administered in earlier treatments of the patient or not. Then we
describe the experimental setting and report on experimental results.

Chapter 6 presents two novel methods that account not only for the sparse, uneven
therapy representation but also for the bias originating from the di�erent treatment back-
grounds of the samples making up the clinical data sets. To achieve this, both methods
predict the response of an HIV combination therapy by considering not only the most re-
cent therapies but also information from previous therapies administered to the considered
patient. We again present the experimental results in the time-oriented evaluation scenario
that compare the two novel approaches to the relevant reference approaches and to each
other.

Chapter 7 concludes the work presented in this thesis and describes its potential future
extensions.



2 Background

This chapter provides the background information necessary for the understanding of this
thesis. It consists of two parts. The �rst part gives a brief overview of the human im-
munode�ciency virus (HIV) and the current standard approach to treating HIV-infected
patients. The second part focuses on statistical learning in general terms and in the frame-
work of assisting clinical management of HIV infections. There is an extensive amount of
material and information on both considered topics and we will only provide aspects of
direct relevance for this thesis.

2.1 HIV

The human immunode�ciency virus (HIV) is the causative agent of the acquired immun-
ode�ciency syndrome (AIDS) observed for the �rst time in 1981 in the USA. Since its
discovery it claimed nearly 30 million lives and is arguably among the worst plagues in
human history. The AIDS pandemic has presented a great medical challenge to humanity
rendering HIV the most studied virus in the medical history. HIV is also a great success
story of modern medicine in that applying modern therapy has led to a dramatic decline
of HIV-related mortality.

2.1.1 History and Prevalence

The �rst clinical cases of AIDS were observed in the USA in 1981 (Centers for Disease Con-
trol, CDC). The HIV virus was �rst discovered and isolated in 1983 by two research groups,
the group of Robert Gallo (Gallo et al., 1983) and the group of Luc Montagnier (Barre-
Sinoussi et al., 1983), independently. Popovic et al. (1984) demonstrated that HIV is the
cause of AIDS, described the isolation and characterization of HIV from AIDS patients
and, most importantly, developed an immunoassay for screening for HIV which enabled
diagnosis that prevented new infections and thus saved many lives.
HIV is a retrovirus that is thought to have entered the human population in the early
20th century (1931 [95% CI 1915 − 1941]) as a result of several cross-species transfers
from non-human primates infected with the simian immunode�ciency virus (SIV) (Korber
et al., 2000). There are two types of HIV: type-1 (HIV-1) and type-2 (HIV-2). HIV-1 is far
more infective and virulent than HIV-2. Therefore, HIV-1 is responsible for the majority
of the infections worldwide, whilst the spread of HIV-2 is mainly restricted to West Africa
(Reeves and Doms, 2002; Azevedo-Pereira et al., 2005; de Silva et al., 2008).
HIV expanded at a fast pace from its cradle in Africa to the rest of the world and signi�-
cantly a�ected the global health of the human population. According to UNAIDS/WHO
since the beginning of the epidemic in 1981 more than 60 million people have been infected
with the HIV virus and nearly 30 million people have died of AIDS (UNAIDS/WHO,

5



6 2 Background

2010). Furthermore, at the end of 2009 there were an estimated 33.3 million people living
with HIV, 2.64 million new infections and 1.8 million AIDS-related deaths. As depicted
in Figure 2.1 (a), the HIV prevalence varies between di�erent regions of the world with
the highest rate observed in sub-Saharan Africa where two thirds of all HIV/AIDS in-
fected people live. In four Southern African countries (Botswana, Lesotho, South Africa
and Swaziland) the prevalence exceeds 15%. The numbers of infected individuals in the
di�erent parts of the world are presented in Figure 2.1 (b).
There are three major transmission routes for HIV: sexual intercourse, exchange of con-
taminated blood and blood products (blood transfusions, needle sharing by intravenous
drug users, persons receiving medical care in third world countries, health-care workers
exposed to contaminated material) and mother-to-child transmission during pregnancy, at
childbirth and via breastfeeding. In the industrial countries where antiretroviral drugs are
available the risk of mother-to-child transmission is only one percent (Coovadia, 2008).
Also the routine prescreening of blood products renders the risk of transmission by blood
transfusion negligible. The majority of HIV infections are caused by unprotected sexual
intercourse, with much higher rates in low-income countries (Boily et al., 2009).

2.1.2 Virion Structure and Genome

HIV is a member of the genus of lentiviruses in the family of retroviruses. This means that
it has a long incubation period (Lévy, 1993) which is believed to be the main reason for its
silent spread in the human population from the time of the �rst cross-species transmissions
from SIV (around 1931) until the �rst AIDS cases appeared (in 1981). Furthermore, as
other retroviruses, HIV encodes its genomic information in the form of ribonucleic acid
(RNA) and can only replicate in a host cell by reversely transcribing its viral RNA to
deoxiribonucleic acid (DNA) and incorporating its genes into the host genome.
An HIV virion is schematically depicted in Figure 2.2. Its shape is roughly spherical with
a diameter of about 100 − 120 nm. Protected in a cone-like capsid, the core of the virus
consists of two copies of positive-sense single-stranded RNA tightly bound to nucleocapsid
proteins (p6 and p7), and two viral enzymes, namely, the reverse transcriptase and the
integrase. The viral capsid together with the viral enzyme protease is surrounded by the
spherical matrix composed of about 2000 copies of the viral protein p17. This whole
complex is engulfed by a phospholipid bilayer referred to as viral envelope. The 72 spikes
embedded in the envelope consist of three copies of the viral transmembrane protein gp41
and three copies of the viral envelope protein gp120.
The viral RNA strand is approximately 9.7kb long and comprises nine genes: Gag, Pol,
Env, Vif, Vpr, Vpu, Rev, Tat, and Nef that code for 15 viral proteins in overlapping reading
frames. The genome of HIV is schematically illustrated in Figure 2.3. The �rst three genes
code for precursor proteins that have to be cleaved into functional subunits and the rest
are mainly regulatory genes. The Gag gene encodes the four viral structural proteins:
p17 (matrix), p24 (capsid), p7 (nucleocapsid) and p6 (nucleocapsid). The Pol gene is the
precursor of the three viral proteins: protease, reverse transcriptase and integrase. The last
precursor gene Env is responsible for encoding the proteins gp41 and gp120 that build up
the viral spikes. The other genes code for various regulatory proteins that are important
for the replication e�ciency of the virus, its ability to infect cells or to defeat the defense
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(a)

(b)

Figure 2.1: (a) Global prevalence of HIV; and (b) Estimated counts of HIV infected individ-
uals in di�erent regions of the world in December 2009. The �gures are taken
from the WHO 2010 Report on the global AIDS epidemic (UNAIDS/WHO,
2010) available at http://www.who.int/hiv/pub/global_report2010/en/.
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Figure 2.2: Schematic representation of an HIV virion borrowed from Wikipedia (http:
//commons.wikimedia.org/wiki/File:HIV_Virion-en.png).

mechanisms of the host.
Further details on the structure and the genome of the HIV virion can be found in Fields
et al. (2007).

Figure 2.3: Organization of the HIV-1 genome. From Freed (2004).

2.1.3 HIV Replication Cycle

For many years now the HIV replication cycle has been the topic of extensive research
that resulted in deeper understanding of its complex stages. Nevertheless, many details
of this complex process still remain a mystery. In what follows we brie�y describe the
basic steps of the HIV life cycle important for the development of the available anti-HIV
drugs. Further details and more in-depth explanations are available in Freed (2001); Fields
et al. (2007). Figure 2.4 presents a graphical overview of the essential steps in the HIV
replication cycle.
The process of virus replication is completed in about 1.5 days and consists of two main
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Figure 2.4: The essential steps in the replication cycle of HIV: viral entry, reverse
transcription, integration, assembly, budding and maturation of new vi-
ral particles. Courtesy from the National Institute of Allergy and Infec-
tious Diseases (http://www.niaid.nih.gov/SiteCollectionImages/topics/
hivaids/hivReplicationCycle.gif).

stages: the early stage, and the late stage. The early stage starts with the viral entry
of HIV in the host cell and ends with the integration of the viral genome in the genome
of the host cell. The late stage comprises the process of production of new HIV virions.
The main targets of HIV are the CD4+ T cells, the dendritic cells and the macrophages.
They all express the CD4 receptor which is very important for HIV cell entry (Dalgleish
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et al., 1984). In order to enter the cell one of the viral gp120 surface proteins binds to the
CD4 cell protein forming a complex that undergoes structural changes allowing speci�c
domains of gp120 to interact with the target chemokine receptor (referred to as coreceptor)
� a process called anchoring. The two important coreceptors for HIV binding in vivo are
CCR5 and CXCR4 (Berger et al., 1999). Upon binding, the membranes of the virus
and the host cell are fused (Esté and Telenti, 2007) and the viral core is released into the
cytoplasm of the host cell. Shortly after the viral capsid is uncoated, the enzyme reverse
transcriptase (RT) transcribes the single-stranded viral RNA into a double-stranded DNA.
The process of reverse transcription is highly error-prone because of the lack of a proof-
reading mechanism. According to Gao et al. (2004) the estimated mutation rate of HIV in
one replication round is 5.4× 10−5 mutations per nucleotide. This causes a highly diverse
viral population even in a single patient enabling the virus to evade the patient's immune
system or to escape the selective pressure presented by drug therapy.
Right after the transcription phase is completed the so called preintegration complex (PIC)
comprising the viral DNA together with viral and host proteins is formed and transported
to the nucleus. Then the viral enzyme integrase (IN) catalyzes the integration of the viral
DNA into the genome of the host cell. At this point the cell is irreversibly infected and
becomes a potential virus producer (Simon et al., 2006). The integrated viral DNA is
referred to as the provirus which can enter the lysogenic cycle enabling it to remain in
the cell for a long period of time (in the range of several decades) without being actively
transcribed. In this way latent copies of many di�erent viral strains remain dormant in the
host cells and are thus not recognized as targets by the host immune system. Therefore,
it is virtually impossible to eradicate HIV from infected patients.
Once HIV enters the late stage it exploits the transcription mechanism of the host cell
to produce viral messenger RNA (mRNA). Firstly, spliced mRNA is exported from the
nucleus to the cytoplasm where it is used for the production of the regulatory proteins
Tat and Rev. Secondly, the Rev protein binds to the viral RNA in the nucleus allowing
unspliced mRNAs to be transported to the cytoplasm (Cullen, 1991; Pollard and Malim,
1998) where it is translated to the viral structural polyproteins Gag and Env. The process
of the assembly of the new viral particles begins with the glycosylation of the protein Env
(gp160) in the endoplasmatic reticulum and its transport to the Golgi complex where it
is cleaved into the viral glycoproteins gp120 and gp41. These are then transported to the
plasma membrane of the host cell where gp41 anchors the gp120 to the cell membrane. As
the Gag and GagPol polyproteins along with the viral RNA also associate with the inner
surface of the plasma membrane, the new viral virion buds from the infected cell. The very
last stage of the HIV replication cycle is the virus maturation which occurs either during
or after the process of budding from the cell. The viral enzyme protease (PR) plays the
key role during viral maturation since it cleaves the HIV precursor polyproteins to form
all functional components of an HIV virion. Only mature virus particles are able to infect
new host cells.

2.1.4 Course of Infection and Pathogenesis

The course of an HIV infection depicted in Figure 2.5 is commonly characterized by three
consecutive stages: acute phase, latent phase, and AIDS (last) phase. These stages are
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determined by measuring two markers, namely the level of CD4+ T cells (cell count per
microliter (µl) blood), and the viral load (copies of viral RNA per milliliter blood plasma
cp/ml).

Figure 2.5: Typical course of the time progression of an untreated HIV infection depicted
in terms of viral and CD4+ T cell dynamics. From Wikipedia (http://en.
wikipedia.org/wiki/File:Hiv-timecourse_copy.svg).

The acute phase starts right after the patient is infected when the virus replicates at a
very high rate and the viral load is in the range of millions of copies per milliliter blood
plasma (Piatak et al., 1993). Since HIV mainly targets CD4+ T cells, their count during
the acute phase is halved resulting in in�uenza-like symptoms (fever, sore throat, rash,
headache, nausea) appearing at about two weeks after the initial virus exposure. These
nonspeci�c symptoms render the HIV infection di�cult to diagnose and thus increase the
risk of virus transmission to new uninfected individuals. The end of the acute phase is
characterized by a strong immune response that leads to a reduction of the viral load to a
level of several thousand copies along with an increase of the count of CD4+ T cells.
The subsequent phase is the latent phase when the viral load slowly increases and at the
same time the CD4+ count continuously decreases. The span of this phase ranges from
several months to more than two decades.
AIDS is the �nal phase of the HIV infection when the immune system of the patient col-
lapses with only up to 200 CD4+ T cells per microliter blood. This causes a sharp increase
in the viral load level and occurrence of various AIDS-related opportunistic diseases. These
infections are typical for AIDS. In fact they are used to de�ne the AIDS syndrome. They
range from repeating respiratory tract infections, chronic diarrhea, tuberculosis and skin
rashes to cancer (Moore and Chaisson, 1996; Chaisson et al., 1998). While many of these
diseases are not that dangerous for healthy people they are life-threatening for the weak
immune system of a progressed HIV patient. Usually the AIDS phase rather quickly ends
with death caused by some of the AIDS-related infections.
The time period between the primary HIV infection and AIDS is di�erent for di�erent
patients ranging from six months to more than 20 years. Furthermore, the disease devel-
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opment of a small percentage of HIV patients deviates from the typical progression we
described in the text above. These patients are able to retain a high level of CD4+ T cells
by keeping the replication rate of the virus low without antiretroviral treatment. They
are grouped in two groups, namely, the long-term nonprogressors with virus load bellow
5000 cp/ml, and the elite controllers with virus load bellow 50 cp/ml (Grabar et al., 2009;
Blankson, 2010). In recent years patients belonging to these two groups have been re-
cruited for more detailed studies which aim at discovering the reasons for their natural
virus suppression (Fellay et al., 2007).

2.1.5 Genetic Variability

One of the main characteristics of HIV is its high genetic diversity due to its fast replication
cycle with an error-prone reverse transcription step. This brings forth a very dynamic virus
population in each infected patient able to rapidly evolve and adapt to the selective pressure
of administered drugs by developing resistant variants.
Molecular dating studies estimate that HIV entered the human population in the early 20th
century (around 1931) as a result of several cross-species transmissions from nonhuman
primates infected with SIV (Korber et al., 2000). The phylogenetic tree of SIV and HIV is
depicted in Figure 2.6. As we already mentioned, two types of HIV are known: HIV-1 and
HIV-2. It is very likely that HIV-1 originates from a zoonotic transmission from chimpanzee
populations infected with SIVcmp to humans (Keele et al., 2009). HIV-2 is most probably
derived from multiple cross-species transfers of SIVmm from sooty mangabeys (Heeney
et al., 2006). Note that, unlike HIV, SIV is typically non-pathogenic in its natural host.
HIV-1 is divided into three groups, M (main), N (non-M, non-O) and O (outlier), each
corresponding to a separate zoonosis event. There is a hypothesis for the existence of
a fourth group P (Plantier et al., 2009) probably derived from gorilla SIV. Group M
is responsible for the majority of observed infections and is further divided into eight
genetically distinct subtypes (A to D, F to H, and J), with subtypes C, A, B and D being
the most prevalent ones (Robertson et al., 2000). Subtype B is mostly found in Europe
and North America, subtypes A and D are dominant in Africa and subtype C is mostly
occurring in Africa and Southeast Asia (Hemelaar et al., 2004).
In the case of HIV-2 the groups A to H are known to exist with groups A and B responsible
for the majority of infections in West Africa (Santiago et al., 2005).
Note that di�erent subtypes can form recombinants. These mostly appear as unique re-
combinant forms (URFs) generated in single patients coinfected with two or more distinct
virus subtypes. Further, there are also established circulating recombinant forms (CRFs)
when at least three representative full-length genomes have been sequenced from individ-
uals whose infections cannot be epidemiologically linked.
The most dominant subtype in the developed world is HIV-1 subtype B. This is the reason
why it is the most studied subtype and why the majority of antiretroviral drugs target HIV-
1 subtype B infections (Parkin and Schapiro, 2004). Furthermore, most of the available
clinical data stem from Europe and North America and thus also from patients infected
with subtype B. In this thesis we will focus on HIV-1 subtype B simply because the
majority of the clinical data at our disposal originate from HIV-1 subtype B. Extending
the conclusions of such analysis to non-B HIV-1 subtypes or to HIV-2 requires further
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Figure 2.6: Phylogenetic tree depicting the relations among SIV and HIV types
and subtypes. From Wikipedia (http://en.wikipedia.org/wiki/File:
HIV-SIV-phylogenetic-tree.png).

careful research involving more data from the analyzed variant.
The high genetic variability is the central problem for anti-HIV therapy and for vaccine
development (Walker and Burton, 2008) where conserved regions are necessary for the
vaccine to be e�ective against all HIV variants.

2.1.6 Antiretroviral Drugs

To date no cure has been discovered that eradicates the virus from HIV patients. However,
the extensive research of the HIV virus revealed many details of its replication cycle which,
in turn, facilitates the development of a whole array of anti-HIV drugs. Although these
drugs are not able to completely remove the virus from the patients' body they successfully
delay HIV disease progression, reduce the risk of transmission and prolong the life span and
life quality of infected patients. Therefore, anti-HIV drugs are the main building blocks of
modern antiretroviral therapy.
Zidovudine (ZDV) was the �rst anti-HIV drug approved for clinical use from the US Food
and Drug Administration (FDA) in 1987. Now there are about 25 drugs approved for
treating HIV patients by the FDA and the European Medicines Agency (EMEA) that
target the di�erent stages of the HIV replication cycle (see Figure 2.4). They are listed
in Table 2.1. Moreover, several other drugs are under investigation and the development
of novel drugs is a topic of continuous research. Based on their target and mechanism
of action the anti-HIV drugs are divided into several classes: protease inhibitors, reverse
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transcriptase inhibitors, integrase inhibitors and entry inhibitors. In the following we will
brie�y describe each of the di�erent drug classes.

Table 2.1: Antiretroviral drugs approved by the US Food and Drug Administration (FDA).
The presented information is adapted from the FDA Website.

Abbreviation Generic name Interval of FDA approval

Nucleoside Reverse Transcriptase Inhibitors (NRTIs)
zidovudine, azidothymidine AZT,ZDV 1987-
didanosine, dideoxyinosine ddI 1991-

zalcitabine ddC 1992-2006
stavudine d4T 1994-
lamivudine 3TC 1995-
abacavir ABC 1998-
didanosine ddI 2000-
tenofovir TDF 2001-

emtricitabine FTC 2003-

Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs)
nevirapine NVP 1996-
delavirdine DLV 1997-
efavirenz EFV 1998-
etravirine ETV 2008-

Protease Inhibitors (PIs)
saquinavire SQV 1995-
indinavir IDV 1996-
ritonavir RTV 1996-
nel�navir NFV 1997-
amprenavir APV 1999-

lopinavir/ritonavir LPV/RTV 2000-
fos-/amprenavir FOS/APV 2003-

atazanavir ATV 2003-
tipranavir TPV 2005-
darunavir DRV 2006-

Fusion Inhibitors (FIs)
enfuviritide ENF,T-20 2003-

Entry Inhibitors (EIs)
maraviroc MVC 2007-

Integrase Inhibitors (InIs)
raltegravir RAL 2007-
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Protease inhibitors. The protease is essential for the virus maturation as it cleaves the
precursor polyproteins Gag and GagPol into the functional HIV proteins and enzymes. The
cleavage takes place in the active site of the protease which is the target of the protease
inhibitors. They are small molecules that competitively bind to the active site of the
protease and disrupt its cleavage function. More details on this drug class can be found in
Wensing et al. (2010).

Reverse transcriptase inhibitors. The reverse transcriptase catalyzes the production of
the DNA copy from the viral RNA and blocking this process is the goal of the reverse
transcriptase inhibitors. Based on their mechanism of action the drugs in this drug class are
further divided into two subclasses, namely the nucleoside/nucleotide reverse transcriptase
inhibitors (NRTIs) and the non-nucleoside reverse transcriptase inhibitors (NNRTIs).
The NRTIs are deoxynucleotide analogs incorporated in the newly transcribed viral DNA
by the reverse transcriptase. Due to a lack of a 3′-hydroxyl group they act as chain
terminators halting the further synthesis of the viral DNA after added to the DNA chain
(Cihlar and Ray, 2010).
The NNRTIs are small molecules that reduce the �exibility of the reverse transcriptase by
binding to a hydrophobic pocket in close proximity of its active site. In this manner they
render the reverse transcriptase unable to synthesize viral DNA (Cihlar and Ray, 2010).

Integrase inhibitors. The goal of this class of drugs is to obstruct the process of integration
of the viral DNA in the chromosome of the host cell. The single approved integrase inhibitor
is raltegravir (RAL). It disrupts the transfer of the viral DNA by binding to the catalytic
site of the integrase and thus inhibits the process of integration of the virus in the host
genome (McColl and Chen, 2010).

Entry inhibitors. These drugs aim at preventing the virus from entering the host cell and
can be grouped into two di�erent groups: fusion inhibitors and coreceptor antagonists.
The fusion inhibitors interrupt the fusion of the membranes of the virus and the host cell.
Currently, enfuviritide (ENF, T-20) is the only fusion inhibitor approved for treating HIV
patients. It binds to a subunit of the viral transmembrane protein gp41 in order to inhibit
the conformational change necessary for the fusion of the viral and host membranes (Esté
and Telenti, 2007).
The only drug class that targets host rather than viral proteins is the one of coreceptor
antagonists that prevent the binding of the viral protein gp120 to the coreceptor of the
host cell by binding to it themselves. Maraviroc (MVC) is the �rst and only approved
drug for clinical use from this class. It binds to the CCR5-receptor and thus prior its
administration it is necessary to determine whether this coreceptor is used by the virus in
the target patient (Lengauer et al., 2007; Thielen et al., 2010; Dybowski et al., 2010).

2.1.7 Highly Active Anitertoviral Therapy (HAART)

Not long after the approval of the �rst antiretroviral drug (ZDV) it was observed that after a
prolonged treatment due to the selective drug pressure the virus develops resistance variants
rendering the drug ine�ective (Larder et al., 1989; Larder and Kemp, 1989). The main
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reasons for the emergence of resistance are the error-prone reverse transcription process that
results with high mutation rates (Gao et al., 2004), the short replication time of about 1.5

days and the high replication rate of the virus. Resistance mutations have been reported for
all anti-HIV drugs introduced so far (Johnson et al., 2010). Under monotherapy consisting
of a single drug compound the resistance variants appear within weeks (Simon and Ho,
2003). Moreover, due to the phenomenon of cross resistance, resistance mutations that
emerge as a result of the selective pressure of one drug can also confer resistance to other
drugs from the same drug class (Clavel and Hance, 2004). This phenomenon is especially
pronounced for all but the newest compound (termed etravirine) from the class of NNRTIs
where a single resistance mutation selected under monotherapy with one of the NNRTIs
also confers resistance to all the other NNRTIs.

All these observations led to the idea of using drug cocktails that combine several drugs
into a so called combination therapy or Highly Active Antiretroviral Therapy (HAART).
The general rule for HAART is to administer at least three drugs from at least two di�erent
classes (Clavel and Hance, 2004). In this manner, the viral replication cycle is targeted
at several stages simultaneously which makes it more di�cult for the virus to develop
resistance as it needs to develop a speci�c set of resistance mutations in several drug
targets. Furthermore, the use of drugs from di�erent classes in a speci�c combination
therapy ensures that the resistance-relevant mutations of one drug do not provide cross
resistance to the other drugs in the combination. HAART was a major breakthrough
in treating HIV-infected patients since it prolonged their life span by slowing down the
progression of the disease substantially and thus it dramatically decreased HIV-related
mortality (Clavel and Hance, 2004; Crum et al., 2006). Due to its success combination
therapy has become the standard way of treating HIV patients. Although HAARTs remain
e�ective much longer than monotherapies based on single drugs, each drug therapy is
eventually defeated by the evolution of the virus to resistance. The reason for this is that
even in the presence of HAART the virus continues to replicate at a very low rate and
after a certain amount of time resistance mutations emerge that inhibit the e�ectiveness
of the therapy. Eventually high viral load results constituting therapy failure. In such a
case the physician needs to administer a new e�ective drug combination. Note that a large
number of resistance-relevant mutations can emerge in the course of the response of the
virus to a combination therapy. As the therapy is changed, such mutations disappear in
the viral population found in the patient's blood serum, but they remain present in the
latent virus population in several tissues and organs. Such hidden mutations are quickly
accessed if this is bene�cial for the virus. This is the reason why previously administered
therapy combinations are not considered as potential therapies and an important issue in
HIV treatment is keeping therapy options open.

To summarize, modern treatment of HIV patients consists of a life-long administration
of di�erent therapy combinations and is schematically illustrated in Figure 2.7. Its two
main goals are to choose a combination therapy e�ective against the patient's current viral
population, on the one hand, and to keep therapy options open as long as possible, on
the other hand. Running out of therapy options eventually results in progression to AIDS
followed by death of the patient.

The development of drug resistance is not the only issue of HAART. Ubiquitous adherence
problems compound the issue. Since the anti-HIV drugs have many side e�ects ranging
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Figure 2.7: Diagram of a common life-long anti-HIV treatment comprising repeated admin-
istration of di�erent drug combinations. Whenever the currently administered
combination therapy fails a treatment change occurs and a new one needs to
be prescribed.

from headache and diarrhea to peripheral nerve damage (Moore and Chaisson, 1996; Spu-
dich and Ances, 2011), combination therapy has substantial impact on the patient's life
quality which in turn gives rise to the problem of incomplete adherence. However, in order
to be able to suppress virus replication over a long period of time HAART requires com-
plete adherence. Taking the drugs in irregular time intervals, skipping some of them or
taking lower doses allows the virus to escape to resistance faster and renders the therapy
ine�ective (Glass et al., 2008). Because of the large impact of the patients' adherence on
the e�ectiveness of the combination therapies, the severity of side e�ects and the level of
toxicity are gaining importance in the process of development of novel drug compounds.

2.2 Statistical Methods for Assisting the Administration of HIV
Combination Therapies

Every combination therapy is eventually defeated by the evolution of the virus to resistance
and in such a case the physician needs to decide on a new therapy. It is very important for
the patient that the new therapy is e�ective. The knowledge gained over the years spend
on HIV research and the practical experience of treating HIV patients demonstrate the
importance of the analysis of the information acquired from resistance tests prior to the
administration of a new HAART (Durant et al., 1999; Alcorn and Faruki, 2000). There
are two types of resistance assays: genotyping � sequencing the genomic regions of the
viral drug targets from the viral strain(s) in the patient's blood serum, and phenotyping

� assessment of the level of resistance of each individual drug compound against a given
viral strain.
The genotyping assay sequences the regions of the viral genome relevant for the e�ectiveness
of the anti-HIV drugs. It is cheap and the results are available within days. However, the
result of genotyping amounts to a set of mutations de�ned in reference to a wild type virus
which is di�cult to interpret via manual inspection because of the large number of known
resistance-relevant mutations (Johnson et al., 2010). This motivated the development of
many rules-based systems that rely on expert knowledge from clinicians and virologists
providing the links between a mutation and the change of the virus susceptibility towards
a certain drug. HIVdb (Rhee et al., 2003), Rega (Van Laethem et al., 2002), HIV-GRADE,
ANRS (Meynard et al., 2002) and AntiRetroScan (Zazzi et al., 2009) are several popular
examples for such rule-based systems.
Phenotyping uses a speci�c experimental assay (Walter et al., 1999; Petropoulos et al.,
2000) to quantify the in vitro resistance of a given virus (isolated from a given patient) to a
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speci�c anti-HIV drug. In this assay the replication rate of the patient's virus is compared
to the one of a wild type virus strain when exposed to a varying concentration of the
inspected drug. More speci�cally, �rst, the drug concentrations that cut the replication
rate by half (termed IC50) in the target and in the reference virus are measured. Then, the
fold-change in resistance or the resistance factor (RF) for the patient's virus is determined
as the ratio between the measured drug concentrations of the target and the reference
virus:

RF =
IC50(target)

IC50(reference)
.

When deciding on a therapy combination phenotyping needs to be performed for every
available drug which makes it a time-consuming (in the range of weeks) and expensive
process limited to specialized labs with high security levels. Therefore, the availability
of data sets comprising genotype-phenotype pairs (GPP) (Rhee et al., 2006) generated
from the phenotypic tests for a set of virus sequences for the di�erent drugs promoted the
development of statistical models that aim at predicting the resistance factors for each
single drug for unknown genotypes. We will refer to these models as phenotypic models.
In clinical practice, the most widely used phenotypic models are VircoTYPE (Vermeiren
et al., 2007) based on linear regression with pairwise interaction terms for the mutations,
and geno2pheno[resistance] (Beerenwinkel, 2004) based on linear support vector machines.
The genotyping resistance tests and their associated rules-based and statistical models pre-
dict the in vitro drug resistance of single drugs. Although this information is very useful
and highly accepted in the clinical management of HIV infections, composing a suitable
combination drug therapy from it remains a challenging task. The main reasons for this are
the large number of pharmacokinetic drug interactions that occur when combining multiple
drugs (Bo�to et al., 2005), various host-speci�c characteristics, the importance of the pre-
viously administered therapies and the latent virus population they created. Furthermore,
the very large number of potential drug combinations resulting from the increasing num-
ber of antiretroviral drugs makes the manual search for an optimal therapy increasingly
impractical, especially in advanced stages of the disease. This illustrates the need for a
systematic and quantitative procedure able to predict e�ectiveness of a potential HAART
on the basis of the information available about the patient. An estimate of the therapy
outcome can assist physicians in choosing a successful regimen for an HIV patient. The
availability of large clinical data sets has paved the way for statistical methods that o�er
an automated procedure for predicting the outcome of a potential antiretroviral therapy.
These data sets contain samples from applications of many di�erent drug combinations in
the clinical practice over many years.

In recent years a wide range of approaches for predicting the outcome of antiretroviral
combination therapies has been developed. They di�er in the algorithmic approach taken,
the used inputs, and the scope of their prediction. Machine learning methods, including
arti�cial neural networks (Wang et al., 2003) and fuzzy rules combined with a genetic al-
gorithm (Prosperi et al., 2004), were used to tackle the problem of predicting virological
response to a given therapy combination. Moreover, Lathrop and Pazzani (1999) applied
combinatorial optimization to the same problem using features extracted from the viral
genotype and the drugs in the combination, and Prosperi et al. (2005) used case-based
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reasoning. The methods mentioned above predict virological response to therapy by using
the viral genotype and the drugs in the applied treatment as features. Altmann et al.
(2007) approaches the problem of predicting virological response by including various phe-
notypic and evolutionary information evaluated with several standard statistical learning
techniques and demonstrated that phenotypic information improves the predictive per-
formance of the response to antiretroviral combination therapies. Larder et al. (2007)
tackle the problem of predicting virological response to a given HIV drug combination
with neural networks. Several studies also include information on the patient's treatment
history in their methods and demonstrate its value for predicting e�ectiveness of potential
combination therapies (Bratt et al., 1998; Revell et al., 2010; Prosperi et al., 2010).
However, the HIV clinical data sets su�er from di�erent kinds of bias, which can negatively
a�ect the usefulness of the derived statistical models. First of all, the trends of treating
HIV patients evolve over time due to the introduction of new anti-HIV drugs and the
practical experience of treating HIV patients. There are also di�erences in the treatment
patterns of HIV patients among the di�erent countries. Then, the data samples originate
from patients with di�erent levels of therapy experience, from therapy naïve to heavily
pretreated. Furthermore, they contain data on di�erent combination therapies with widely
di�ering frequencies. In particular, many therapies are only represented with very few
data points. To our knowledge, none of the available statistical methods for predicting
the e�ectiveness of HIV combination therapies take these important issues into account.
Developing methods that address the di�erent biases pertaining to the HIV clinical data
sets is the main focus of this thesis.

2.3 Statistical Learning

Large amounts of data are being produced in many areas of science and industry. Statistical
learning methods play a major role in the process of extracting meaningful information
and drawing conclusions from such often unstructured and cryptic data. Based on their
objective, statistical learning problems are classi�ed in three groups:

• Supervised learning problems � The inputs together with their corresponding outputs
for a set of entities are observed or measured. The aim is to use the available labeled
data to derive a method that models the relationship between inputs and outputs
and thus enables accurate predictions of the outputs for unseen entities based on
their corresponding inputs.

• Unsupervised learning problems � Only the inputs of a set of entities are observed
and the goal is to develop methods that discover structure in the unlabeled data by
clustering them into groups according to some similarity criterion.

• Semi-supervised learning problems � The goal is to devise models that utilize relevant
information from both labeled and unlabeled data to accurately predict outputs from
inputs.

This thesis concentrates on the supervised learning problem of predicting outcomes of HIV
combination therapies. Therefore, in what follows we provide more formal description of
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supervised learning theory focussing mainly on aspects and methods relevant for the work
we present in the thesis. For further details we refer the reader to Hastie et al. (2009).
Let x ∈ Rp denote a real valued random input vector and y denote a random output
variable with joint input-output distribution p(x, y). In supervised learning the goal is to
�nd a function f(x) that correctly predicts the output y given the input x. To achieve this
a loss function `(f(x), y) that quanti�es the prediction quality and penalizes prediction
error is required. Based on the type of the output y the supervised learning problems
are divided into two groups: regression � when the output is quantitative (continuous),
and classi�cation � when the output is qualitative (categorical). For example, y ∈ R for
regression, and y ∈ {−1, 1} for binary classi�cation. The most common loss function for
regression problems is the squared error loss given by:

`(f(x), y) = (y − f(x))2. (2.1)

For classi�cation problems the most popular loss functions are the logistic loss:

`(f(x), y) = log(1 + exp(−yf(x))) (2.2)

used by logistic regression (see Subsection 2.3.1), the hinge loss:

`(f(x), y) = max(0, (1− yf(x))) (2.3)

used in support vector machines (see Subsection 2.3.2), and the zero-one loss that assigns
ones for the misclassi�ed and zeros for the correctly classi�ed samples. The zero-one loss
is most intuitive, but it is not convex and not continuous in the parameters of f which
makes it di�cult to use in optimization problems. Therefore, the logistic and the hinge
loss, which are convex and continuous, are most widely used in practice. For a given loss
function `(f(x), y) the task of learning a prediction function f(x) amounts to minimizing
the expected loss with respect to the joint distribution p(x, y):

E(x,y)∼p(x,y)[`(f(x), y)] =

∫ ∫
`(f(x), y)p(x, y)dxdy. (2.4)

In practice the distribution p(x, y) is unknown and only a �nite set of training samples D =

{(x1, y1), . . . , (xm, ym)} drawn from p(x, y) is available. Therefore, the joint distribution
p(x, y) in Equation 2.4 is replaced by the empirical distribution over the data set D. In this
case, the task of �nding a prediction function f(x) amounts to minimizing the empirical
expected loss given by:

E(x,y)∼D[`(f(x), y)] =
1

|D|
∑

(xi,yi)∈D

`(f(x), y). (2.5)

Furthermore, in practice a regularization penalty J(f) is added to the empirical expected
loss which leads to the penalized empirical expected loss:

E(x,y)∼D[`(f(x), y)] + λJ(f) =
1

|D|
∑

(xi,yi)∈D

`(f(x), y) + λJ(f), (2.6)

where λ ≥ 0 controls the amount of penalty. The penalty functional J(f) is large for ragged
functions and guards against over�tting. A suitable choice for J(f) facilitates maximum
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generalization power (minimum test error) of the prediction function f . In the Bayesian
framework J re�ects the prior beliefs about f , i.e. J is the log-prior of the parameters of
f and Equation 2.6 is the log-posterior distribution. Common regularization functions are
the L2/L1-norm of the parameters of f or the square of the second derivative of f .
The prediction function f obtained by minimizing Equation 2.6 is then used for predicting
the outcome for a target sample xt as follows. In the case of regression the target outcome
is given by yt = f(xt). For a binary classi�cation task the target outcome yt is obtained
by using an application-speci�c threshold tr such that:

yt =

{
1, f(xt) > tr;
-1, f(xt) ≤ tr.

(2.7)

For example, for logistic regression the threshold is typically set to tr = 0.5.
In what follows we describe two widely used supervised learning methods: logistic regres-
sion and support vector machines (SVMs).

2.3.1 Logistic Regression

All methods we present in this thesis are based on some form of logistic regression, so in
the following we will provide a more detailed description of this method based on Hastie
et al. (2009).
Assuming the existence ofK classes and multinomial distribution of the outcome y, logistic
regression models the log-odds of the posterior probabilities of the classes {P (y = k|x), k =

1, . . . ,K} via linear functions (hyperplanes) in the input x. P (y = k|x) is the conditional
probability of a sample x to belong to class k. In order to ensure that the posterior
probabilities of the K classes sum to 1 the model is speci�ed with K − 1 log-odds (also
termed logit transformations):

log
P (y = 1|x)

P (y = K|x)
= β10 + βT1 x

log
P (y = 2|x)

P (y = K|x)
= β20 + βT2 x (2.8)

...

log
P (y = K − 1|x)

P (y = K|x)
= β(K−1)0 + βTK−1x.

The posterior probabilities derived from Equations 2.8 are given by:

P (y = k|x) =
exp(βk0 + βTk x)

1 +
K−1∑
i=1

exp(βi0 + βTi x)

, k = 1, . . . ,K − 1 (2.9)

P (y = K|x) =
1

1 +
K−1∑
i=1

exp(βi0 + βTi x)

.

In practice for a given training data set D = {(x1, y1), . . . , (xm, ym)} the logistic regression
model is usually estimated by a maximum likelihood approach. More formally the solution
of:
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Optimization Problem 1. Over parameters β = {βk, k = 1, . . . ,K− 1} and λ maximize∑
(xi,yi)∈D

log(p(yi|xi)) + λJ(β)

is a maximum a posteriori estimation of the logistic regression model with parameters
{βk, k = 1, . . . ,K − 1} and regularizer J(β) controlled by the regularization parameter λ.
In practice only a �nite sample of the data is available. The regularizer is then used to
counter over�tting and thus improve the generalization performance of the �tted model
on unseen data (Schölkopf and Smola, 2002; Hastie et al., 2009). Throughout this thesis
we will use the square of the L2-norm of the model parameters β denoted by ‖ β ‖2 as
a regularizer function J(β). This is also a very common choice in practice because of its
nice properties � it is convex and can be interpreted as a Gaussian log-prior of the model
parameters (Hastie et al., 2009). Optimization problem 1 can be solved by gradient-
based optimization procedures like the Newton-Raphson algorithm. Note that e�cient
model estimation for large high-dimensional data sets is facilitated by special optimization
procedures. For more details on the optimization procedures for �tting large-scale logistic
regression we refer the reader to Subsection 4.1.1 of Chapter 4.
In what follows we brie�y describe two frequently used forms of logistic regression, namely
logistic regression for binary classi�cation, and kernel logistic regression.

Logistic regression for binary classification. In the binary classi�cation scenario where
K = 2 the logistic regression model is very simple as it only estimates a single linear
function. By encoding the two classes as 1 and −1 respectively, the parameters β of this
linear function are obtained by minimizing the negative log-likelihood of the data:

Optimization Problem 2. Over parameters β, minimize

1

|D|
∑

(xi,yi)∈D

log(1 + exp(−yβTx)) +
‖ β ‖2

2σ2
β

. (2.10)

In the optimization problem above the square of the L2-norm of the parameters β is
used as a regularizer with λ = 1

2σ2
β
. In this manner the regularizer can be interpreted

as a Gaussian log-prior with mean 0 and isotropic covariance matrix σ2I on the model
parameters β (Evgeniou et al., 2000).

Kernel logistic regression. Logistic regression �ts linear functions for the purpose of
discriminating between the di�erent classes. However, since the boundaries between the
classes are not necessarily linear, in many applications the goal is to �t nonlinear discrim-
inant functions. This can be achieved by casting logistic regression in the more general
framework of regularization methods and reproducing kernel Hilbert spaces (Berlinet and
Thomas-Agnan, 2004).

De�nition 1 (Reproducing Kernel Hilbert Space (RKHS)). Let x, z ∈ Rp. The space HK
of functions f such that f is a linear combination of the form f(x) =

∑
m αmK(x, zm)

is called a reproducing kernel Hilbert space. Here each kernel term K is considered as a
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function of the �rst argument x and indexed by the second argument. Given the eigen-

expansion of K:

K(x, z) =
∞∑
i=1

γiφi(x)φi(z) (2.11)

with γi ≥ 0,
∑∞

i=1 γ
2
i < ∞ the elements of HK can be represented in terms of the eigen-

functions as:

f(x) =
∞∑
i=1

ciφi(x) (2.12)

with ‖f‖2HK <∞.

Using the theory of RKHS a general regularization problem with loss function `(., .) has
the form:

min
f∈HK

(
m∑
i=1

`(f(xi), yi) + λ‖f‖2HK

)
(2.13)

According to the representer theorem (Kimeldorf and Wahba, 1970; Wahba, 1990) the
solution to the regularization problem speci�ed by Equation 2.13 in the RKHS HK with
reproducing kernel K is �nite-dimensional of the form:

f(x) =
m∑
i=1

βiK(x,xi) (2.14)

where the regularization function ‖f‖2HK is given by:

‖f‖2HK =

m∑
i=1

m∑
j=1

K(xi,xj)βiβj . (2.15)

In the theoretical framework of RKHS the optimization problem of logistic regression is
speci�ed by:

min
β
` (Kλβ, y) + λβTKλβ (2.16)

where Kλ ∈ Rm×m is a matrix with entries (Kλ)ij = Kλ(xi,xj) and y is an m-vector of
class labels (Zhu and Hastie, 2002). In this way a feature mapping φ maps the samples
from the original input feature space to the reproducing kernel Hilbert space (RKHS) in
which the scalar product φ(xi)

Tφ(xj) is determined by the kernel function K. The linear
decision boundaries computed in the RKHS are nonlinear when mapped back in the original
feature space. This enables �tting nonlinear logistic regression models and is referred to as
kernel logistic regression (KLR) (Zhu and Hastie, 2002). The KLR model has comparable
performance to the one of a support vector machine with the same kernel (Zhu and Hastie,
2002).
Throughout this thesis we will provide nonlinear decision boundaries for the �tted logistic
regression classi�ers by using a Gaussian kernel function often referred to as radial basis
function (RBF) kernel speci�ed by:

K(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
(2.17)

where ‖ · ‖ is the L2-norm.
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2.3.2 Support Vector Machines

Support vector machines are a popular statistical learning method for classi�cation and
regression. In the following we describe the standard soft margin SVM used for binary
classi�cation.
The optimal separating hyperplane separates two perfectly separable classes such that the
distance to the closest point from either class, i.e. the margin between the two classes is
maximized (Vapnik, 1996). The soft margin SVM (Boser et al., 1992; Cortes and Vapnik,
1995) generalizes this idea to the case of nonseparable classes by allowing for some points to
be on the wrong side of the margin. Given a training data set D = {(x1, y1), . . . , (xm, ym)}
for a binary classi�cation problem (yi ∈ {1,−1}) the support vector classi�er solves the
following optimization problem:

Optimization Problem 3. Over parameters {β, β0} minimize

1

2
‖β‖2 + C

m∑
i=1

ξi

subject to yi(φ(xi)
Tβ + β0) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . ,m, where φ(xi) maps xi into a

potentially higher dimensional space and C > 0 is the regularization parameter.

The solution for this problem is obtained by solving the following dual objective function:

Optimization Problem 4. Over parameters α maximize

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjφ(xi)
Tφ(xj)

subject to
∑m

i=1 αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . ,m.

The optimal solution β∗ satis�es:

β∗ =
m∑
i=1

yiαiφ(xi) (2.18)

The prediction function then has the form:

f(x) =
m∑
i=1

yiαiφ(xi)
Tφ(x) + β0 (2.19)

and the label y for x is speci�ed by using tr = 0 in Equation 2.7. It can be observed
that both the dual Optimization Problem 4 and the prediction function in Equation 2.19
contain only inner products of the feature mapping φ. Hence, only the kernel function:

K(xi,xj) = φ(xi)
Tφ(xj) (2.20)

needs to be speci�ed and no knowledge of the mapping φ is required. This is often referred
to as the kernel trick, which renders support vector machines applicable for both linear
and non-linear classi�cation. For example, by using the scalar product as kernel function
K(xi,xj) = xT

i xj one obtains linear classi�cation and by using the RBF kernel one obtains
non-linear classi�cation.
Note that SVM can also be formulated as a regularization problem by using the hinge loss
(Equation 2.3):
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Optimization Problem 5. Over parameters {β, β0} minimize
m∑
i=1

max(0, (1− yf(x))) +
1

2C
‖ β ‖2 .

2.4 Learning Under Differing Training and Test Distributions

A major assumption in many statistical learning methods is that the training and the test
data are drawn from the same distribution pγ(x, y) with parameters γ (Hastie et al., 2009).
However, in practice the training and test data are often governed by di�erent distributions.
As an example, consider the case of experimental data (e.g. DNA microarrays) related to
the same medical problem (e.g. cancer diagnosis) obtained from di�erent labs and thus
under di�erent conditions.
Let pγ(x, y) denote the joint distribution of the training set and pθ(x, y) the joint distri-
bution of the test set. Then the prediction function obtained by minimizing the expected
loss with respect to the training distribution does not coincide with the prediction function
that minimizes the expected loss with respect to the test distribution:

arg min
f

E(x,y)∼pγ(x,y)[`(f(x), y)] 6= arg min
f

E(x,y)∼pθ(x,y)[`(f(x), y)]. (2.21)

In recent years many statistical learning approaches that address the problem of di�ering
training and test distribution have emerged in the machine learning community. Their goal
is to �nd the prediction function that minimizes the expected loss with respect to the test
distribution and thus provide good prediction quality for the test data. In what follows
we brie�y overview two popular settings that account for the problem of di�ering training
and test distribution: covariate shift and multi-task learning.

2.4.1 Covariate Shift

Let D{(x1, y1), . . . , (xm, ym)} denote a labeled training set drawn from the unknown joint
distribution p(x, y|γ) = p(y|x, γ)p(x|γ), where the inputs x are drawn from the training
distribution p(x|γ) and the labels y are assigned based on the conditional distribution
p(y|x, γ). In the covariate shift setting, an unlabeled test set T governed by the unknown
test distribution p(x|θ) is available. The two main assumptions in this setting are:

• the training and test distributions are di�erent p(x|γ) 6= p(x|θ), and

• the training and test labels are assigned based on an identical conditional distribution
p(y|x) = p(y|x, γ) = p(y|x, θ).

The goal is then to �nd a prediction function f : x 7→ y that minimizes the expected loss
with respect to the unknown joint test distribution p(x, y|θ).
Shimodaira (2000) shows that when the support of the test distribution p(x|θ) is contained
in the support of the training distribution p(x|γ), the expected loss with respect to the
joint test distribution p(x, y|θ) equals the expected weighted loss with respect to the joint
training distribution p(x, y|γ) with sample-speci�c weights given by p(x|θ)

p(x|γ) :

E(x,y)∼p(x,y|θ)[`(f(x), y)] = E(x,y)∼p(x,y|γ)

[
p(x|θ)
p(x|γ)

`(f(x), y)

]
. (2.22)
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In practice, p(x|γ) and p(x|θ) are unknown, but can be estimated from the data sets D
and T , respectively. To this end, Shimodaira (2000) and Sugiyama and Müller (2005)
use kernel density estimation to obtain empirical estimates of the mentioned distributions.
Then they use these estimates to resample or reweight the training set and compute the
target prediction function f . However, estimating high-dimensional input distributions
requires complex modeling which su�ers from the curse of dimensionality problem (Hastie
et al., 2009). Therefore, there has been a line of statistical methods that estimate the
density ratio p(x|θ)

p(x|γ) , i.e. the sample-speci�c weights, directly without any explicit modeling
of the training and test distributions.
Huang et al. (2007) develop the kernel mean matching procedure that estimates the sample-
speci�c weights for the training set such that the means of the training and test sets
are matched in a reproducing kernel Hilbert space. The method KLIEP introduced in
Sugiyama et al. (2008) estimates these weights such that the Kullback-Leibler divergence
between the test and the weighted training distribution is minimized.
Some approaches for direct estimation of the density ratio p(x|θ)

p(x|γ) are inspired by the so-
called sample selection bias setting (Heckman, 1979; Zadrozny, 2004). In this setting the
data generation process is modeled with a binary selector variable s that indicates whether
a sample x drawn from the test distribution p(x|θ) belongs to the training set (s = 1), or
not (s = −1). Only the samples in the training set are labeled according to p(y|x). Given
that s is independent of the label y:

p(s = 1|x, y, γ, θ) = p(s = 1|x, γ, θ), (2.23)

the training distribution p(x|γ) is given by:

p(x|γ) ∝ p(s = 1|x, γ, θ)p(x|θ). (2.24)

Then, according to Zadrozny (2004) the expected loss with respect to the joint test dis-
tribution p(x, y|θ) is proportional to the weighted expected loss with respect to the joint
training distribution p(x, y|θ) with weights p(s = 1|x, γ, θ)−1:

E(x,y)∼p(x,y|θ)[`(f(x), y)] ∝ E(x,y)∼p(x,y|γ)

[
1

p(s = 1|x, γ, θ)
`(f(x), y)

]
. (2.25)

In practice, p(s = 1|x, γ, θ) is estimated by training a model that discriminates labeled
training (s = 1) against unlabeled test samples (s = −1).
Dudik et al. (2005) investigate the maximum entropy density estimation under sample
selection bias. Bickel and Sche�er (2007) apply a hierarchical Bayesian model with a
Dirichlet process prior on several problems with related sample selection bias. Inspired by
learning under sample selection bias Bickel et al. (2007) estimate the density ratio p(x|θ)

p(x|γ) in
the covariate shift setting directly by discriminating between training and test data with
a probabilistic classi�er and provide an integrated optimization problem for training all
model parameters jointly.

2.4.2 Multi-task Learning

In the multi-task learning setting the data from several distinct but related prediction tasks
are available with di�ering task sample abundances. Each task is governed by a distinct



2.4 Learning Under Di�ering Training and Test Distributions 27

task-speci�c joint distribution of input and output variables and for many of the tasks
there are usually not many samples available. The aim is to use the available data from
all tasks to develop a model that provides correct predictions for a given target task. In
the context of our discussion so far, the test distribution in this setting is the input-output
distribution of the task of interest and it di�ers from the training distribution which is the
input-output distribution of all tasks. Compared to the covariate-shift setting the multi-
task setting is more general because not only the distributions of the inputs but also the
conditional output densities for a given task are di�erent from the corresponding densities
of all the other tasks.
A common assumption in most of the existing multi-task learning methods is that all
tasks have a common model structure and all task parameters can be estimated jointly.
Their objective is to simultaneously provide a good generalization across tasks and correct
predictions for each task. The hierarchical Bayes model (Gelman et al., 2004) can easily
be applied to multi-task modeling and, therefore, is widely used in the machine learning
community. It assumes that all task parameters have the same prior probability. Bakker
and Heskes (2003) use a Gaussian prior for the parameters of task-speci�c neural network
models and Evgeniou and Pontil (2004) impose a Gaussian prior for support vector machine
models. Yu et al. (2005) impose a normal-inverse Wishart hyperprior on the mean and
covariance of a Gaussian process prior shared by the task-speci�c prediction functions.
Moreover, Xue et al. (2007) use a Dirichlet process prior in the hierarchical Bayes framework
for task clustering, and Teh et al. (2006) uses a hierarchical Dirichlet process prior.
Standard statistical approaches that rely on the assumption that the training and the test
data are drawn from the same distribution are not directly applicable for our HIV therapy
screening application due to the di�erent biases pertaining to the HIV clinical data sets.
For example, assume the goal is to develop a method that provides accurate predictions for
a given therapy combination of interest. However, since the number of samples available
for the target therapy is very limited the training set comprises all available samples from
all therapies and its joint distribution di�ers from the joint distribution of the therapy of
interest. Hence, throughout this thesis we will develop several methods that address the
di�erent biases in the clinical data by casting the problem of predicting e�ectiveness of HIV
combination therapies in the multi-task learning framework. Only the methods presented
in Chapter 5 utilize the assumption that all tasks share a common model structure. All
other approaches presented in Chapters 3, 4 and 6 of this thesis after specifying the tasks
train a separate model for each of them.
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3 Multi-task Learning for HIV Therapy
Screening

HIV patients are treated by administration of combinations of several antiretroviral drugs.
The very large number of such combinations makes the manual search for an e�ective
therapy increasingly impractical, especially in advanced stages of the disease. Therapy
selection can be supported by statistical methods derived from HIV clinical data that
predict the outcomes of candidate therapies. These data contain samples from applications
of many di�erent drug combinations over many years. The evolving trends in treating HIV
patients result in a highly unbalanced representation of di�erent therapies in the available
clinical data sets: while for some therapies many samples exist, for others there are very
few. This might negatively a�ect the usefulness of the statistical models derived from such
data sets. Furthermore, due to the large number of possible combination therapies and the
introduction of new antiretroviral agents, for many combinations no samples are available
at all.
In this chapter we present a multi-task learning approach that considers each combination
therapy as a separate task. It compensates for the lack of samples for some therapies by
basing its predictions also on samples from related therapies. This approach was initially
presented in Bickel et al. (2008).

3.1 Problem Setting

We tackle the problem of predicting outcomes of HIV combination therapies by consid-
ering each therapy a separate task in a multi-task learning setting. In this setting, each
of several tasks z is characterized by an unknown joint distribution p(x, y|z) of input fea-
tures x and label y given the task z. The joint distributions of di�erent tasks may di�er
arbitrarily, but usually the tasks are related so they have similar joint distributions. Let
D = {(x1, y1, z1), . . . , (xm, ym, zm)} denote the training set comprising samples from all
tasks. There may be tasks with no data. For each sample, the input features xi, class label
yi, and its associated task zi are known. The training set D is governed by the mixed joint
density p(x, y, z) = p(z)p(x, y|z). The prior p(z) speci�es the task proportions.
In the HIV therapy screening application each combination therapy is considered a task
z, and each task has an associated binary vector z that indicates the individual drugs
comprising the therapy. Since drug combinations often share a subset of identical drugs,
or a subset of di�erent drugs with similar mechanisms of action, they can be considered as
related tasks. The input features x comprise the viral genotype and the drug history for
the speci�c therapy sample. The input is represented with a binary vector, where the part
corresponding to the viral genotype indicates the occurrence of a set of resistance-relevant
mutations (Johnson et al., 2007), and the part corresponding to the drug history comprises

29
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the drugs known to be part of previous therapies. The binary class label y indicates the
success (1) or failure (-1) of each sample therapy.
The goal is to train a classi�er fz : x 7→ y that correctly predicts the outcome for an HIV
combination therapy z. This classi�er should minimize the expected loss

E(x,y)∼p(x,y|z)[`(fz(x), y)]

with respect to the unknown joint distribution p(x, y|z) for each therapy z.

3.2 Related Work

A straightforward approach for multi-task learning is to train an independent model for
each target task t by using only the data associated with the task Dt = {(xi, yi, zi) ∈ D :

zi = t}. The other extreme is a one-size-�ts-all model f∗(x) trained on the data from all
tasks.
In many applications, task-level descriptions or prior knowledge on task similarity encoded
in a kernel are available. Bonilla et al. (2007) study an extension of the one-size-�ts-all
model and �nd that training with a kernel de�ned as the multiplication of an input feature
kernel and a task-level kernel outperforms a gating network. Task-level features have also
been utilized for task clustering and for a task-dependent prior on the model parameters
(Bakker and Heskes, 2003).
Another simple extension to the one-size-�ts-all model would be to train a model for a
target task from all data with weighted examples from other tasks, using one �xed uniform
weight for each task. Such a model is described in Wu and Dietterich (2004).
Our work is inspired by learning under covariate shift (see Section 2.4 in Chapter 2). In the
covariate shift setting the marginals ptrain(x) and ptest(x) of training and test distributions
di�er, but the conditionals are identical ptrain(y|x) = ptest(y|x). If training and test
distributions were known, then the loss on the test distribution could be minimized by
weighting the loss on the training distribution with an instance-speci�c factor. Shimodaira
(2000) illustrates that the scaling factor has to be:

ptest(x)

ptrain(x)
. (3.1)

Bickel et al. (2007) derive a discriminative expression for this marginal density ratio that
can be estimated � without estimating the potentially high-dimensional densities of training
and test distributions � by discriminating training against test data.
Hierarchical Bayesian models for multi-task learning are based on the assumption that
task-speci�c model parameters are drawn from a common prior. The task dependencies
are captured by estimating the common prior. Yu et al. (2005) impose a normal-inverse
Wishart hyperprior on the mean and covariance of a Gaussian process prior that is shared
by all task-speci�c regression functions. Mean and covariance of the Gaussian process are
estimated using the Expectation Maximization (EM) algorithm (Hastie et al., 2009). A
Dirichlet process can serve as prior in a hierarchical Bayesian model and cluster the tasks
(Xue et al., 2007); all tasks in one cluster share the same model parameters. Evgeniou and
Pontil (2004) derive a kernel that is based on a hierarchical Bayesian model with Gaussian
prior (covariance matrix is scalar) on the parameters of a regularized regression.



3.3 Methods 31

Various statistical learning methods, including arti�cial neural networks, decision trees,
random forests, support vector machines (SVMs) and logistic regression (Lathrop and
Pazzani, 1999; Wang et al., 2003; Prosperi et al., 2005; Altmann et al., 2007; Larder et al.,
2007; Rosen-Zvi et al., 2008; Altmann et al., 2009a; Prosperi et al., 2009), have been used
to predict the virological response to HIV combination therapies. All these methods supply
the drugs comprising the corresponding therapy as part of the input feature space.

3.3 Methods

The most accurate model for the target task t, the so-called target model, is the one that
minimizes the loss with respect to the conditional probability p(x, y|t). The straightforward
way to do this minimization is to �t a model by only using the portion of samples from
the training set pertaining to the therapy t. However, for most therapies the number
of available samples is not su�cient for generating accurate individual therapy models.
Therefore, we exploit the available data from all therapies distributed according to the
sample density

∑
z p(z)p(x, y|z) to train the target model for therapy t as follows. Each

sample in the training set D is assigned a therapy-speci�c weight rt(x, y) such that the
training distribution

∑
z p(z)p(x, y|z) is matched to the target distribution p(x, y|t). In this

way, the weighted sample is governed by the correct target distribution, but is still larger
as it draws from the sample pool for all tasks. Formally, the expected loss with respect
to the training distribution

∑
z p(z)p(x, y|z) weighted by rt(x, y) equals the expected loss

with respect to the target distribution p(x, y|t):

E(x,y)∼p(x,y|t)[`(f(x, t), y)] = E(x,y)∼
∑
z p(z)p(x,y|z) [rt(x, y)`(f(x, t), y)] . (3.2)

In the following we will show that the equation above holds if:

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)

.

E(x,y)∼p(x,y|t)[`(f(x, t), y)] (3.3)

=

∫ ∑
z p(z)p(x, y|z)∑
z′ p(z

′)p(x, y|z′)
p(x, y|t)`(f(x, t), y)dxdy

=

∫ ∑
z

(
p(z)p(x, y|z) p(x, y|t)∑

z′ p(z
′)p(x, y|z′)

`(f(x, t), y)

)
dxdy (3.4)

= E(x,y)∼
∑
z p(z)p(x,y|z)

[
p(x, y|t)∑

z′ p(z
′)p(x, y|z′)

`(f(x, t), y)

]
(3.5)

In the derivation above Equation 3.3 expands the expectation and introduces a fraction that
equals one. Then, Equation 3.4 expands the sum over z in the numerator to run over the
entire expression because the integral over (x, y) is independent of z. Finally, Equation 3.5
is the expected loss over the distribution of all tasks weighted by p(x,y|t)∑

z p(z)p(x,y|z)
.

Equation 3.5 signi�es that the model for task t that minimizes the expected loss with
respect to the target distribution p(x, y|t) can be trained by minimizing the expected loss
over the distribution of all tasks weighted by rt(x, y).
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What remains is the problem of estimating the density ratio:

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)
. (3.6)

Obtaining estimators for the high-dimensional densities p(x, y|t) and
∑

z p(z)p(x, y|z) di-
rectly is a di�cult modeling task. In order to avoid such estimation we derive a dis-
criminative model that directly evaluates the resampling weights rt(x, y) as follows. We
reformulate the density ratio p(x,y|t)∑

z p(z)p(x,y|z)
in terms of a conditional model p(t|x, y):

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)
(3.7)

=
p(t|x, y)p(x, y)

p(t)

1∑
z p(z)

p(z|x,y)p(x,y)
p(z)

(3.8)

=
p(t|x, y)

p(t)
∑

z p(z|x, y)
(3.9)

=
p(t|x, y)

p(t)
(3.10)

The derivation above underlies the assumption that the prior on the size of the target
sample is greater than zero, p(t) > 0. In Equation 3.8 Bayes' rule is applied twice and in
Equation 3.9 p(x, y) and p(z) are canceled out. Equation 3.10 follows by

∑
z p(z|x, y) = 1

and shows how the resampling weights rt(x, y) = p(x,y|t)∑
z p(z)p(x,y|z)

can be determined without
any knowledge of the task densities p(x, y|z).
Intuitively, the conditional p(t|x, y) quanti�es the probability that a sample (x, y) randomly
drawn from the training set D of samples of all therapies belongs to the target therapy t,
i.e. how much more likely (x, y) is to occur in the target distribution than it is to occur
in the mixture distribution of all tasks. This conditional probability can be estimated
with a model that discriminates the labeled samples of the target therapy from the labeled
samples of all therapies.
We realize this with a multi-class version of logistic regression (Hastie et al., 2009), the so
called soft-max model, with model parameters v that estimates the discriminative models
for all therapies in the training set simultaneously. The model parameter v is a concate-
nation of the therapy-speci�c vectors vz, one for every therapy z. With this model an
estimate for p(t|x, y) is given by the evaluation of the soft-max model with respect to task
t, i.e. p(z = t|x, y,v). Formally, the soft-max model is given by:

p(z|x, y,v) =
exp(vT

z Φ(x, y))∑
z′ exp(vT

z′Φ(x, y))
(3.11)

where Equation 3.11 requires a problem-speci�c feature mapping Φ(x, y). Without loss of
generality we de�ne this mapping for binary labels y ∈ {+1,−1} as:

Φ(x, y) =

[
δ(y,+1)Φ(x)

δ(y,−1)Φ(x)

]
(3.12)

where δ is the Kronecker delta (δ(a, b) = 1, if a = b, and δ(a, b) = 0, if a 6= b). In
the absence of prior knowledge about the similarity between the successful and failing
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combination therapies, input features x of samples with di�erent class labels y are mapped
to disjoint subsets of the feature vector. With this feature mapping the models for positive
and negative examples do not interact and can be trained independently.
The soft-max model is trained by maximizing the regularized log-likelihood of the training
data:

Optimization Problem 6. Over parameters v, maximize∑
(xi,yi,zi)∈D

log(p(zi|xi, yi,v))− vTΣ−1v.

The solution of Optimization Problem 6 is a maximum a posteriori (MAP) estimation of
the soft-max model (Equation 3.11) over the model parameters v using a Gaussian prior
N(0,Σ) on the parameter vector.
Available prior knowledge on the similarity of tasks, represented as a positive semi-de�nite
kernel function k(z, z′), can be encoded in the covariance matrix Σ of the Gaussian prior
N(0,Σ). We set all main diagonal entries of Σ to the scalar parameter σ2

v and set the sec-
ondary diagonal entries corresponding to the covariances between vz and v′z to k(z, z′)ρσ2

v

(assuming kernel values 0 ≤ k(z, z′) ≤ 1). Parameter σ2
v speci�es the variance of each

element in v. k(z, z′)ρ is the correlation coe�cient between elements of subvectors vz
and v′z; parameter ρ speci�es the strength of this correlation. The covariance matrix Σ is
required to be invertible and therefore 0 ≤ ρ < 1. All other entries of Σ are set to zero.
When prior knowledge on the therapy similarities is encoded in the prior on the model
parameters, then this prior knowledge dominates the optimization criterion for small sam-
ples (e.g. therapies with very few available samples) while the data-driven portion of the
criterion becomes dominant and overrides prior beliefs as more data arrives. Furthermore,
for therapies with no training examples the Gaussian prior with the task kernel k(z, z′)

encoded in the covariance matrix determines the model.
Usually there are several hundred di�erent therapies. In order to obtain good predictions we
need a non-linear version of the soft-max model. Therefore, we use a kernelized variant of
Optimization Problem 6 by applying the representer theorem. Details on the kernelization
of multi-class logistic regression are found in Zhu and Hastie (2002) and section 2.4 in
Chapter 2.
From the results of Optimization Problem 6 we can obtain the sample weights rt(x, y)

for the target therapy t. Using these weights we can evaluate the expected loss over the
weighted training data as displayed in Equation 3.13:

E(x,y)∼D

[
p(t|x, y,v)

p(t)
`(f(x, t), y)

]
+

wT
t wt

2σ2
w

. (3.13)

We can train the �nal model for the target therapy t by minimizing the weighted regularized
loss (Equation 3.13) over the training samples. This is realized with a standard logistic
regression model with a Gaussian log-prior with variance σ2

w on the parameters wt:

Optimization Problem 7. For task t: over parameters wt, minimize

1

|D|
∑

(xi,yi)∈D

p(t|xi, yi,v)

p(t)
`(f(xi,wt), yi) +

wT
t wt

2σ2
w

.
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In the Optimization Problem 7 each example is weighted by the discriminatively estimated
density fraction from Equation 3.10 using the solution of Optimization Problem 6. An
instance of this problem is solved for each task independently to produce a separate model
for this task.
To summarize, our approach trains an individual model for each therapy by using the
available data from all therapies with proper sample weights. This enables the therapy-
speci�c model to exploit data from related therapies and base its predictions on samples
relevant for the target therapy. The method is summarized in Algorithm 1.

Algorithm 1: Multi-task learning method

Input: Training data D and sample x associated with a target therapy t.

1. Estimate sample weights rt(x, y) � train a discriminative model for p(t|x, y)

that discriminates labeled instances of the target therapy against labeled
instances of the pool of samples for all therapies.

2. Use the weights rt(x, y) to estimate the �nal model for the target therapy t �
regularized logistic regression model that minimizes the weighted loss on the
training data D.

3.4 HIV Therapy Screening

In this chapter we describe an approach that models the problem of HIV therapy screening
in a multi-task learning framework, where each antiretroviral therapy is considered a sepa-
rate task. In the next subsections we describe the clinical data sets, the validation setting,
the reference methods, and the empirical results of the computational experiments.

3.4.1 Clinical Data Sets

The training data are extracted from the EuResist database that contains information on
52846 antiretroviral therapy samples administered to 16999 HIV-1 (subtype B) patients
from several countries in the period from 1988 to 2007. This information includes the
individual drugs that comprise a therapy, virus load measurements (copies of viral RNA per
ml blood plasma, cp/ml) during the course of a therapy, all available therapies administered
to each patient, as well as consensus sequences of the predominant viral strains in the
patients' blood. We include a therapy as a sample in the training data if there is a viral
sequence obtained shortly before the therapy was started (up to 90 days before) and if it
can be assigned a label (success or failure) based on the virus load values measured during
its course.
We use two di�erent de�nitions of therapeutic success and failure to label the data: virus
load labeling andmulti-conditional labeling. According to the virus load labeling represented
in Figure 3.1 (a), a therapy is successful if the viral load drops below 400 cp/ml during
the time of the treatment. Otherwise the treatment is a failure. In the multi-conditional
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labeling illustrated in Figure 3.1 (b), a therapy is successful if at least one of the following
conditions is ful�lled:

• the viral load measured in the time range between 28 and 84 days after the start
of the therapy decreases by at least two orders of magnitude compared to the most
recent viral load measured one to three months before the start of the therapy,

• the viral load drops below 400 cp/ml 56 days after the start of the therapy.

A drawback of this de�nition is that due to the strict time intervals it imposes on the
measurements, class labels that adhere to this labeling are only available for a small number
of records. The virus load labeling does not require these strict time intervals by making
use of any viral load measurement during the course of therapy to label it.

start stop

sequencing

therapy2

>=14 >=0

therapy1
startstop

>=0

VL < 400 ? 
<=90

(a)

start stop

sequencing

therapy2

>=14 >=0

therapy1

84

startstop

>=0

follow-up VL < 400 ? 

baseline VL 

28 56

drop of VL
<=90

(b)

Figure 3.1: Assigning a label and a viral sequence to therapy2, where therapy1 and ther-

apy2 are two consecutive therapy administered to a patient: (a) the virus load
labeling, and (b) the multi-conditional labeling.

We extract two types of features for each therapy sample: a genotypic description of the
virus and information about the treatment history of the patient. We use the viral genotype
taken from the patient shortly before the therapy start (up to 90 days before) and represent
it by a binary vector indicating the presence of any from a set of prede�ned resistance-
relevant mutations. These mutations are derived from the list in Johnson et al. (2007).
Drug-resistant viral quasi-species evolve during the course of the therapy due to selective
pressure imposed by the drugs. As they remain in the patient's body, the treatment history
plays an important role for predicting the outcome of a potential treatment. Hence, we
extract all drugs given to the patient in all known previous treatments and use a binary
vector representation indicating the occurrence of the drugs given to the patient in the
treatment history. The 82-dimensional feature vector x for each data point results from
the concatenation of 65 genotypic and 17 treatment history features.
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Finally, out of all available treatment records we extract two di�erent data sets using the
two labelings. With the virus load labeling we extract 3260 and with the multi-conditional
labeling 2011 treatment records with corresponding ratios of 65.7% and 64.1% successful
treatments. The size of these data sets is much smaller than the size of the original data
due to missing viral load measurements, or missing virus sequence information.
Figure 3.2 depicts a histogram of the frequencies of the di�erent combination therapies in
the two training data sets. A number of 545 distinct drug combinations (tasks z) occur
at least once in the virus load data set; 433 occur in the multi-conditional data set. For
many combinations, only a few examples occur in the data. For instance, in the virus load
data set we observe 253 out of 545 drug combinations with only one data point and 411

with less than �ve instances. Similarly, the multi-conditional data set has 213 out of 433

drug combinations with a single data point and 331 with less than �ve observations.

Figure 3.2: Histogram over number of treatment records for drug combinations (tasks) in
the virus load data set (gray) and multi-conditional data set (red).

3.4.2 Prior Knowledge on Therapy Similarity

We encode the prior knowledge about the similarity of di�erent drug combinations with
two kernels: the drug indicator kernel, and the mutation table kernel.
The drug indicator kernel is based on the number of common drugs that two combination
therapies share. Let uz and uz′ be binary vectors indicating the distinct drugs comprising
the therapies z and z′, respectively. The similarity kd(z, z

′) between the combination
therapies z and z′ is given by:

kd(z, z
′) =

uTz uz′

max(‖uz‖2, ‖uz′‖2)
. (3.14)

where xTy is the scalar product of the vectors x and y and ‖ · ‖ is the L2-norm. According
to this kernel the more drugs therapies z and z′ have in common the higher their similarity.
Its values are in the [0, 1]-interval.
The mutation table kernel uses the table of resistance-associated mutations of each drug
a�orded by the International AIDS society (Johnson et al., 2007). First, we construct
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binary vectors indicating resistance-relevant mutations for the set of drugs occurring in
a combination. Then, in the same way as the drug indicator kernel, the mutation table
kernel computes the normalized inner product between such binary vectors for two drug
combinations.

3.4.3 Validation Setting and Reference Methods

Reference methods. The �rst reference method is training of a separate logistic regression
model for each task without any interaction (�separate�). Tasks without any training
examples get a constant classi�er that assigns each test example with 50% to each of both
classes.
The next baseline is a one-size-�ts-all model; all examples are pooled and only one com-
mon logistic regression is trained for all tasks (�pooled�). For the experiments with prior
knowledge on task similarity we multiply the feature kernel with the task kernel values
k(x,x′)(k(z, z′) + 1) and train one model using this kernel (Bonilla et al., 2007). For task
kernels that can have a value of zero we include a �+1� term to ensure that the feature
kernel does not vanish.
The third reference method (�hier. Bayes kernel�) is a logistic regression with the hierar-
chical Bayesian kernel of Evgeniou and Pontil (2004):

khBayes(x,x
′) = (λ+ δ(z, z′))k(x,x′), (3.15)

where δ(z, z′) is the Kronecker delta and λ is a tuning parameter. For the experiments
with task similarity kernel the hierarchical Bayes and the task kernel are multiplied. As
second hierarchical Bayesian method (�hier. Bayes Gauss. proc.�) we use the Gaussian
process regression of Yu et al. (2005).

Time-oriented validation scenario. The trends of treating HIV patients change over time
as a result of the gathered practical experience with the drugs and the introduction of
new antiretroviral drugs. In order to account for this phenomenon we use a time-oriented

validation scenario which makes a time-oriented split when selecting the training and the
test set. First, we order all available training samples by their corresponding therapy
starting dates. We then make a time-oriented split by selecting the most recent 20% of
the samples as the test set and the rest as the training set. This procedure is depicted in
Figure 3.3 and yields 653 and 403 test examples for the virus load and multi-conditional
data set, respectively. For the model selection we split the training set further in a similar
manner. We take the most recent 25% of the training set for selecting the best model
parameters and refer to this set as tuning set. We use it to tune the prior and regularization
parameters of all methods, the Dirichlet parameter γ, and the variance of the RBF kernels.
In this way, our models are trained on the data from the more distant past, while their
performance is measured on the data from the more recent past.
The performance of all considered approaches is quanti�ed by the accuracy of predicting
the correct label (success or failure of a treatment) on the test set. In order to compare the
accuracies of two methods on a separate test set, the signi�cance of the di�erence of two
accuracies are calculated based on a paired t-test. In the following we explain the details
of these calculations.
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Figure 3.3: Time-oriented validation scenario. The arrow depicts the therapy starting times
of the therapy samples.

Let S and T be the training and test data of a binary classi�cation problem, respectively.
Let A and B denote two classi�cation methods trained on S and let vA denote a binary
vector with length |T | such that:

vAi =

{
1, if method A correctly predicts the outcome for the i-th test sample;
0, otherwise.

(3.16)
vB has the same de�nition as vA, but for method B. Then, vA and vB can be considered
as realizations of two Bernoulli random variables. The signi�cance of their di�erence can
be evaluated by using a paired t-test and the standard error of this di�erence is calculated
by:

SE(vA − vB) =
sd(vA − vB)√

|T |
, (3.17)

where sd stands for standard deviation. The standard error of a single method (for example
the method A) is given by:

SE(vA) =
sd(vA)√
|T |

. (3.18)

3.4.4 Experimental Results and Discussion

In our experiments we study the bene�t of distribution matching for HIV therapy screening
compared to the reference methods described in the previous subsection. Optimization
Problem 6 is solved with limited-memory BFGS (see Chapter 4) and Optimization Problem
7 with Newton gradient descent using a logistic loss. We use RBF kernels for all methods.
For the prior term p(t) required in Optimization Problem 7 we use a maximum a posteriori
(MAP) estimate with a symmetric Dirichlet prior given by:

|Dt|+ γ∑
z(|Dz|+ γ)

. (3.19)

Table 3.1 summarizes the prediction accuracies for all methods over both data sets without
and with the two di�erent types of prior knowledge on combination similarity. The columns
�ste.∆� placed next to the accuracy columns display the standard errors of the di�erences
to the distribution matching method.
Multi-task learning by distribution matching outperforms, or is as good as, the best alter-
native method in all cases. The improvement over the separate model baseline is about
10− 14%. We can reject the null hypothesis that the pooled and the hierarchical Bayesian
kernel baseline is at least as accurate as distribution matching in four and �ve cases re-
spectively out of six according to a paired t-test at signi�cance level α = 0.05.
As can be observed in Figure 3.4, prior knowledge does not improve the accuracy for
the distribution matching method. The pooled baseline bene�ts from prior knowledge for
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Table 3.1: Classi�cation accuracies with standard errors of di�erences to the distribution
matching method (ste.∆). Symbols (•,◦,∗,�) indicate statistical signi�cance ac-
cording to a paired t-test with signi�cance level α = 0.05, (•) compared to
separate baseline, (◦) compared to pooled baseline, (∗) compared to hierarchi-
cal Bayesian kernel baseline, (�) compared to hierarchical Bayesian Gaussian
process baseline.

virus load data set

method
prior

none ste.∆ drugs ste.∆ mutations ste.∆

separate 67.87% 1.80 67.87% 1.76 67.87% 1.78

pooled 75.00% 1.47 75.46% 1.39 75.61% 1.37

hierarchical Bayes 76.69% 1.39 75.31% 1.34 76.84% 1.16

hierarchical Bayes GP 76.53% 1.36

distribution matching • ◦ ∗ � 79.14% • ◦ ∗ 77.91% • ◦ ∗79.29%

multi-condition data set

method
prior

none ste.∆ drugs ste.∆ mutations ste.∆

separate 64.64% 2.41 64.64% 2.29 64.64% 2.38

pooled 76.67% 1.13 78.41% 1.63 78.66% 1.11

hierarchical Bayes 77.17% 1.29 75.19% 1.44 77.42% 1.24

hierarchical Bayes GP 76.43% 1.44

distribution matching • ◦ ∗ � 79.40% • ∗ 78.16% • 79.16%

the multi-condition data set. For the case without prior knowledge we do not observe a
statistically signi�cant di�erence of the two hierarchical Bayesian methods, but they are
both signi�cantly worse than distribution matching according to the paired t-test. Note
that the Gaussian process baseline is a regression model; all other methods are classi�cation
models. Furthermore, we do not use any prior knowledge on therapy similarity in the
Gaussian process model, since it is unclear how to formally introduce such knowledge in
this model.

Table 3.2: Sample counts in the bins grouping the test samples based on their corresponding
number of available training instances.

data set multi-condition virus load

bin 0− 1 2− 5 6− 20 > 20 0− 2 3− 9 10− 38 > 38

count 87 112 96 108 164 162 177 149

Figures 3.5 and 3.6 display the accuracy over the combinations in the test set grouped by
the number of available examples for the settings without and with the mutation table
kernel. For instance, an accuracy of 74% for the �rst group 0 − 2 means, that only test
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Figure 3.4: Classi�cation accuracies for the distribution matching method.

examples from combinations are selected that have zero, one, or two training examples
each, and the accuracy on this subset of the test examples is 74%. The error bars indicate
the standard error of the di�erences to the distribution matching method. Note, that the
statistical tests described above are based on all test data and are not directly related to
the group-speci�c error bars in the diagrams. The sample counts on each of the four groups
for the two considered data sets are given in Table 3.2.
All methods bene�t from larger numbers of training examples per drug combination. The
slightly decreasing accuracy for the virus load data set for test samples with more than
38 training examples is surprising. Further analysis reveals that in this case there is
an accumulation of test examples with history pro�les very di�erent from the training
examples of the same combination.
For all methods that generalize over the tasks the bene�t compared to the separate model
baseline is the largest for the smallest group (0−2 and 0−1 training examples respectively).
It is worth noting that the approach of training individual models for each drug combination
also remedies potential deviations that can occur in the HIV treatment patterns originating
from di�erent countries. For example, Figure 3.7 depicts slight di�erences between the HIV
treatment patterns from Italy and Germany for our clinical data set.

3.5 Conclusions

In this chapter, we devised a multi-task learning method that centers around resampling
weights which match the distribution of the pool of examples of multiple tasks to the target
distribution for a given task at hand. The method creates a weighted sample that re�ects
the desired target distribution and exploits the entire corpus of training data for all tasks.
We showed how appropriate weights can be obtained by discriminating the labeled sample
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Figure 3.5: Accuracies for all considered methods over di�erent number of training exam-
ples for test therapy sample for the virus load data set. Error bars indicate the
standard error of the di�erences to the distribution matching method.

for a given task against the pooled sample. After weighting the pooled sample, a classi�er
for the given task can be trained.
In our experiments on HIV therapy screening we found that the distribution matching
method improves on the prediction accuracy over independently trained models by 10 −
14%. According to a paired t-test, distribution matching is signi�cantly better than the
reference methods for 17 out of 20 experiments.
A combination of drugs is the standard way of treating HIV patients. The accuracy to
which the likely outcome of a combination therapy can be anticipated can therefore directly
impact the quality of HIV treatments.
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Figure 3.6: Accuracies for all considered methods over di�erent number of training exam-
ples for test therapy sample for the multi-condition data set. Error bars indicate
the standard error of the di�erences to the distribution matching method.
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Figure 3.7: Distribution of the di�erent combination therapies in the Italian and German
subsets of our clinical data set. The numbers on the x-axis represent the di�er-
ent therapy combinations ordered by their �rst appearance in our clinical data:
from older to newer. The y-axis depicts the density.
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4 Therapy-similarity Method for Predicting
Effectiveness of HIV Therapies

The multi-task learning approach for HIV therapy screening presented in the previous chap-
ter trains a separate model for each combination therapy from all available samples with
properly derived sample weights. The weights are computed by matching the distribution
of all samples to the distribution of the samples of each individual therapy. In this way it
tackles the highly unbalanced representation of di�erent therapies in the available clinical
data sets and compensates for the lack of samples for the rare therapies by basing their
predictions also on samples from related therapies. However, this method computes the
similarities between therapies and the prediction model in a single integrated procedure.
While being statistically sound, the method is also quite compute-intensive, as it involves
a multi-class logistic regression with as many classes as there are therapies (usually several
hundred).
In this chapter we follow this line of research and present a somewhat more heuristic but
much more e�cient and con�gurable alternative model, referred to as therapy-similarity
model, which also utilizes information from similar therapies to train an individual model
for each target therapy. However it separates the computation of the therapy similari-
ties in a preprocessing step from the estimation of the model. First of all, this reduces
the computation time of the therapy similarities to a few seconds. Secondly, it has the
advantage that the resulting similarities can be recon�gured at the users discretion and
then used to train a new model. Finally, by training a separate model for each therapy
by using data from similar drug combinations, the therapy-similarity approach balances
the uneven therapy representation in the data sets and produces higher quality models for
drug combinations with very few training samples. This model was initially presented in
Bogojeska et al. (2010).

4.1 Methods

The therapy-similarity approach to the problem of predicting outcomes of HIV combination
therapies trains a separate model for each of them by using the viral genotypic information
from similar therapies. This is done in the model-�tting procedure by using precomputed
weights that up-weight samples originating from therapies similar to the therapy of interest.
In this way the separate models are tuned to focussing on information coming from drug
combinations akin to the target therapy. The mathematical concept of therapy similarity
is governed by a speci�c prede�ned understanding of what similar therapies are. This
paper describes and evaluates two di�erent approaches for quantifying pairwise therapy
similarity. The therapy-speci�c models that we describe in this chapter also o�er the
possibility of incorporating phenotypic information on the e�ectiveness of the individual
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drugs comprising the therapy of interest. All this sums up to easy-to-interpret linear logistic
regression models �tted for each individual drug combination with a learning procedure
that takes advantage of additional information (similar therapies, phenotypic information)
and therefore can deal with therapies that have only few training samples available.
Let x denote the input features that comprise the viral genotype encoded as a binary
vector indicating the occurrence of a set of resistance-relevant mutations (Johnson et al.,
2008). The drug combinations are denoted by z � each of them is represented by a bi-
nary vector that indicates the individual drugs administered in the combination. The
binary class label y marks each therapy sample with success (1) or failure (−1). Let
D = {(x1, z1, y1), . . . , (xm, zm, ym)} denote the training set and t denote the therapy of
interest.
We model the problem of predicting the outcome of the therapy t with weighted linear
logistic regression using a logarithm of a Gaussian prior with mean µt and isotropic co-
variance matrix σ2I shared by all therapies (see Chapter 2 and Evgeniou et al. (2000)).
The model parameters wt for therapy t are obtained by solving the optimization problem
given as follows.

Optimization Problem 8. Over parameters wt, minimize

1

|D|
∑

(xi,zi,yi)∈D

k(zi, t)
γ · `(f(xi,wt), y) +

(µt −wt)
T (µt −wt)

2σ2
. (4.1)

k(zi, t) is a function that provides sample-speci�c weights that quantify the similarity of
the therapy of interest t with the therapy zi from the i-th sample (see Subsection 4.1.2),
and γ is its smoothing parameter. The expression:

`(f(x,wt), y) = ln(1 + exp(−ywT
t x)) (4.2)

is the loss of linear logistic regression. µt is phenotypic prior knowledge on the outcome of
therapy t as explained in Subsection 4.1.3. We will refer to this model as therapy similarity
model. The large number of distinct therapies and our approach of training a separate
model for each of them demand an e�cient method for solving Optimization Problem 8.
To achieve this, we apply a trust region Newton method for training logistic regression (Lin
et al., 2008) that takes advantage of the sparseness of our feature space. This enables
fast model �tting which results in e�cient model selection. In what follows we �rst give a
short overview of the optimization methods used for training large-scale logistic regression
followed by a detailed description of the therapy similarity kernels and the prior phenotypic
knowledge on the therapy outcomes.

4.1.1 Optimization methods for large-scale logistic regression

Many unconstrained optimization methods, such as iterative scaling (Darroch and Ratcli�,
1972; Pietra et al., 1997; Goodman, 2002; Jin et al., 2003), conjugate gradient (Nocedal
and Wright, 2006), quasi-Newton (Dong and Nocedal, 1989; Benson and Moré, 2001) and
truncated Newton (Komarek and A.W., 2005; Lin et al., 2008), have been used for training
large-scale logistic regression. According to Malouf (2002); Sutton and McCallum (2006)
the limited memory BFGS � a quasi-Newton approach that uses a limited memory vari-
ation of the Broyden - Fletcher - Goldfarb - Shanno (BFGS) update to approximate the
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inverse Hessian matrix � is the most e�cient method. However, for large and sparse high-
dimensional training data sets Lin et al. (2008) show that for �tting logistic regression
a trust region Newton method (truncated Newton method adapted from Lin and Moré
(1999)) is more e�cient than the quasi-Newton approach.

Newton’s method. The Newton's method is an iterative procedure for �nding roots of
equations and critical points of twice-di�erentiable functions. Thus, for a given initial
guess x0 and a twice-di�erentiable function f(x) with gradient ∇f(x) and Hessian ∇2f(x)

the Newton's update rule is given by:

xk+1 = xk + pk (4.3)

where k is the iteration index and the Newton direction (step) pk is the solution of the
system of linear equations:

∇2f(xk)pk = −∇f(xk). (4.4)

In this form, the sequence xk produced by the update rule in Equation 4.3 is not guaranteed
to converge to an optimal solution. Convergence is assured by adjusting the length of the
Newton direction in either a line search or a trust region framework. Moreover, when
the number of features is large the Hessian cannot be explicitly stored in main memory.
Therefore, for large-scale logistic regression, e�cient approaches that do not require second
derivatives, like the limited memory BFGS method (Dong and Nocedal, 1989), or e�cient
approaches that do not store the entire Hessian matrix, like the trust region Newton method
(Lin et al., 2008), are more suitable. In the following we will brie�y describe these two
methods.

Limited memory LBFGS method. This method belongs to the class of quasi-Newton
methods (Nocedal and Wright, 2006) where the gradient evaluations are utilized for ap-
proximating the inverse of the Hessian matrix in an iterative fashion. Unlike the popular
BFGS update rule which stores the approximation of the entire Hessian matrix, the limited
memory BFGS (Dong and Nocedal, 1989) uses only a small number of updates from the
previous iterations (the most recent ones) to represent the approximation of the Hessian
implicitly. Furthermore, using the most recent updates this method provides an e�cient
calculation of ∇2f(xk)pk. These properties make the limited memory BFGS approach
very well suited for problems with large number of features like the large-scale logistic
regression problem. In order to apply it one needs to specify the objective function and
its gradient.

Trust region Newton method. Truncated Newton methods are doubly iterative proce-
dures where the outer iteration focuses on the optimization problem and the inner itera-
tion computes the Newton direction. Conjugate gradients are the most used methods for
�nding the Newton direction. However, since they often produce lengthy iterations, in the
early stages of the outer iteration the inner iteration is stopped (truncated) before the so-
lution to the Newton equations is obtained. Global convergence is achieved by specifying
certain stopping conditions for the inner iterations. Although they use an approximate
Newton direction they still use the exact Hessian matrix and compared to the limited
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memory quasi-Newton methods, which use approximate Hessian matrices, tend to have
faster convergence. Further details on truncated Newton methods can be found in Nash
(2000); Nocedal and Wright (2006).
In Lin et al. (2008) it is shown that a simpli�ed version of the trust region method from Lin
and Moré (1999), which is a truncated Newton method for bound-constrained optimization
problems, is more e�cient than a quasi-Newton method for training sparse large-scale
logistic regression. For a given iterate xk and a size of the trust region ∇k this method
�rst approximates the value f(xk + p)− f(xk) with a quadratic function qk(p). Then, it
uses the conjugate gradient method to �nd the step pk that minimizes qk(p) subject to the
constraint ‖p < ∇k‖. Finally, the direction pk is accepted by checking if the ratio between
the actual reduction of the function to the predicted reduction in the quadratic model qk
is larger than a speci�ed value. More details on the algorithm and the implementation can
be found in Lin et al. (2008). Because of its e�ciency for sparse large-scale linear logistic
regression we use the trust region Newton method for solving the Optimization Problem 8.
In order achieve this, beside the objective function given in Optimization Problem 8, we
also need to specify its gradient and Hessian. Let L denote the objective function speci�ed
in Optimization Problem 8. Then the gradient has the form:

∂L

∂wt
=

m∑
i=1

{xi(p(xi; wt)− yi)}+
wt − µt
σ2

, (4.5)

and the Hessian is given by:

∂2L

∂wt∂wT
t

=

m∑
i=1

{xixTi p(xi; wt)(1− p(xi; wt))}+ diag(1/σ2), (4.6)

where p(x; wt) = 1
1+exp(−wT

t x)
and diag(1/σ2) is a diagonal matrix with all diagonal ele-

ments equal to 1/σ2.
Once the gradient and Hessian are available we can use the trust region Newton method
from Lin and Moré (1999) to e�ciently solve the Optimization Problem 8.

4.1.2 Therapy Similarity Kernels

We quantify the pairwise similarity between the di�erent drug combinations with two
kernels: the drugs kernel and the groups additivity kernel. The method also allows for
alternative de�nitions of pairwise therapy similarity that can include di�erent types of
additional information, e.g. expert knowledge or information obtained from phenotypic
drug resistance tests.
The drugs kernel similarity is identical to the drug indicator kernel described in Section 3.4
of Chapter 3. It is based on the number of common drugs that two combination therapies
share � the higher this number the higher the similarity of the considered therapies. Its
values are in the [0, 1]-interval.
The groups additivity kernel assumes that the similarity between di�erent drug groups is
additive. This is a reasonable assumption since drugs belonging to di�erent groups have
di�erent targets and/or modes of inhibiting virus replication and thus can be assumed to act
independently (Beerenwinkel et al., 2003b). Let G denote the set of di�erent drug groups.
In our data set we have three drug groups: NRTIs (Nucleoside Reverse Transcriptase
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Inhibitors), NNRTIs (Non-Nucleoside Reverse Transcriptase Inhibitors) and PIs (Protease
Inhibitors). Let uzg and uz′g be binary vectors indicating the set of drugs occurring in drug
group g ∈ G of the therapies z and z′, respectively. The similarity between the group-g
drugs of the two therapies z and z′ is then calculated by:

simg(z, z
′) =

uTzguz′g

max(‖uzg‖2, ‖uz′g‖2)
, (4.7)

where xTy denotes the scalar product of the vectors x and y, and ‖ · ‖ is the L2-norm.
Intuitively, the larger the number of common drugs making up a speci�c drug group of the
two therapies of interest, the higher their group similarity.
We derive the similarity ka(z, z′) between the therapies z and z′ by averaging the similarities
of their corresponding drug groups:

ka(z, z
′) =

∑
g∈G

(simg(z, z
′))/|G|. (4.8)

Since the group similarities simg(z, z
′) lie in the interval [0, 1], ka(z, z′) also has values

within [0, 1].
Note that while �tting a single multi-class logistic regression model with several hundred
classes required for the distribution matching approach described in Chapter 3 can take
up to �ve days for some values of its respective tuning parameter, the computation of the
therapy similarity kernels for all therapies is performed in several seconds.

4.1.3 Phenotypic Prior Knowledge on Therapy Outcome

Phenotypic resistance tests are laboratory experiments that produce continuous values,
referred to as resistance factors, that measure the e�ectiveness of individual drugs against
a given viral strain. Genotype-phenotype pairs (GPP) are sequences with the associated
resistance factor measured in a phenotypic test using the virus de�ned by the sequence.
The models trained on GPP data aim at predicting the resistance factors for each single
drug for unknown genotypes. We will refer to these models as phenotypic models. One
such model is described in Beerenwinkel et al. (2003a). Furthermore, this paper reveals
the bimodal nature of the distribution of the resistance factors common to all drugs. Such
a distribution can be approximated with a two-component Gaussian mixture model. We
derive drug-speci�c resistance cut-o�s from the intersection of the two mixture compo-
nents. The cut-o�s can then be used to infer the e�ectiveness of each drug against a given
genotype: a drug is e�ective when its resistance value is smaller than its resistance cut-o�,
otherwise it is ine�ective.
Unlike other approaches that add predictions facilitated by phenotypic models as additional
features in their input feature space (Altmann et al., 2007, 2009b), we incorporate the
models themself via a logarithm of a Gaussian prior on the model parameters for each
therapy combination. We choose a Gaussian prior for two reasons. First, it is easy to
integrate into regularized logistic regression as can be seen from Optimization Problem
8. Second, the trust region Newton method (Lin et al., 2008) which a�ords an e�cient
solution of the problem requires this prior. For a given therapy t we do this as follows.

• Consider the subset of the GPP data comprising the virus genotypes that have an
associated resistance factor for all individual drugs that appear in the clinical data;
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• Label each virus sequence based on the e�ectiveness of the best performing drug from
the drugs comprising therapy t: success if e�ective, failure if ine�ective;

• Fit a logistic regression model to the labeled data with model parameters (weights)
pt;

• Use the model parameters pt from the �tted logistic regression as means µt = pt for
the Gaussian prior (N(µt, σ

2I)) on model parameters wt in Optimization Problem
8.

We repeat the procedure described above for every individual combination therapy. We will
show that with this procedure one can better utilize the phenotypic knowledge compared
to using the prediction of the phenotypic model as additional input feature in a single
logistic regression model estimated for all therapies. Instead of using the e�ectiveness of
the best performing drug to label a drug combination, one can also use other quantities
such as for example the average of the e�ectiveness of the drugs comprising the therapy of
interest. For further details on this see Section 4.2.
GPP data provide knowledge on the e�ciency of individual drugs against HIV that is
especially valuable for assessing therapies for which not many clinical samples are available.
For example, while there can be a considerable amount of available GPP data for newly
introduced drugs, clinical data for therapies that include these newly introduced drugs may
be very sparse. This is the case simply because after the approval of a new antiretroviral
agent it is spared as an option for highly treatment-experienced patients.

4.2 Results and Discussion

We described a model that targets the problem of predicting the outcome of HIV combina-
tion therapies from the genotype of the most abundant virus strain in the patient's blood
serum. In the next sections we describe the data sets, the details of the computational
study that assesses the quality of our model, as well as its results.

4.2.1 Data Sets

Our clinical data stem from an updated version the EuResist database (Rosen-Zvi et al.,
2008) described in Chapter 3. It incorporates information of 88469 antiretroviral therapies
administered to 18255 HIV-1 (subtype B) patients from several European countries in the
period from 1988 through 2008. This information includes the combination of drugs given
to the patients, the sequence of the predominant viral variant, and virus load measurements
at di�erent time points during a therapy.
The data set we use to train our models is derived from the EuResist database as described
in Chapter 3. Each sample of the data corresponds to a therapy given to a patient and
contains information describing the viral sequence obtained shortly before the respective
therapy was administered. The virus genotype is represented by a binary vector indicating
the occurrence or absence of a set of prede�ned resistance-relevant mutations based on the
mutation list reported in Johnson et al. (2008). Each therapy is denoted by a binary vector
indicating the presence or absence of the individual drugs comprising it. Note that we only
consider the combination therapies composed of drugs for which GPP data are available.
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Figure 4.1: Assigning a label and a viral sequence to therapy2, where therapy1 and therapy2
are two consecutive therapies administered to a patient.

While in Chapter 3 we use two di�erent de�nitions to assign a label to each therapy sample,
namely the virus load labeling and the multi-conditional labeling, in this chapter and in the
rest of the thesis we will focus on one de�nition. It is a modi�ed version of the virus load
labeling and is de�ned as follows. We label each therapy sample as success or failure based
on the virus load measured in the course of the therapy. If the virus load drops bellow 400

cp/ml in the period from 21 days after the start of the therapy to the end of the therapy
we label it with success (1); otherwise with a failure (−1). Figure 4.1 depicts the labeling
procedure. In this way we create a labeled data set that includes 6336 therapy samples with
638 distinct therapy combinations. Note that having a single labeling de�nition enables
e�cient process of conducting computational experiments and comprehensive presentation
of results.
As we mentioned in the previous chapter the di�erent drug combinations are not evenly
represented in the clinical data sets: while some therapies are represented with many
samples, others have only few. The histogram in Figure 4.2, shows that this observation is
valid for the updated version of the data set as well where for most therapies we have fewer
than 50 samples available. Additionally, almost 500 antiretroviral therapies are represented
by fewer than �ve examples.
We take the GPP data from the Arevir database (Roomp et al., 2006). As described
in Subsection 4.1.3, the GPP data comprise drug resistance factors that characterize the
e�ectiveness of individual drugs on speci�c viral variants. We consider only the virus
sequences that have an associated resistance factor value in the database for all individual
drugs that are relevant for our clinical data set. This is necessary because the construction
of the prior knowledge on the therapy outcome for a speci�c therapy requires resistance
factors for all drugs comprising the respective therapy. We label the GPP viral sequences
as success or failure with respect to a given therapy of interest based on the resistance
factor of the most e�ective drug. After the �ltering we end up with 200 samples associated
to 17 drugs. For representing the genotypic information describing the virus we use the
same binary encoding as for the clinical data.

4.2.2 Validation Setting and Reference Methods

Validation setting. The practical experience with the drugs acquired over time and the
introduction of new antiretroviral drugs a�ect the treatment trends for HIV patients. Our
data collected over a period of two decades cannot be representative for a given time point.
In order to account for the changing treatment trends over time we use the time-oriented



52 4 Therapy-similarity Method for Predicting E�ectiveness of HIV Therapies

Figure 4.2: Histogram that groups the HIV combination therapies based on the number of
samples present in the clinical data set.

validation scenario from Chapter 3 where our models are trained on the data from the
more distant past, while their performance is measured on more recent data. Such a
setting is realistic since it captures how a given model would perform on the recent trends
of selecting combinations of drugs from established drug classes. We apply it as follows.
First, we order all available training samples by their corresponding therapy starting dates.
We then make a time-oriented split by selecting the most recent 20% of the samples (from
June 2006 to January 2008) as the test set and the rest as the training set. For the model
selection we split the training set further in a similar manner. We take the most recent 25%

of the training set for selecting the best model parameters and refer to this set as tuning
set. Figure 4.3 depicts the di�erent treatment trends in the training, tuning and test sets,
de�ned as explained in the text above. One can observe that, unlike the treatment trends
in the training set, the treatment trends in the tuning set closely resemble those in the
test set. This justi�es the choice of the tuning set. Figure 4.3 also shows the changing
treatment trends over time in the clinical data.

Reference methods. In the computational experiments we compare the performance of
our therapy similarity methods to the performances achieved by three other reference
methods.

The �rst reference method consists of training a separate logistic regression model for each
combination therapy using only the samples from the target therapy. If we had enough
data for each therapy combination this would be the best choice as the separate model
captures the characteristics speci�c to the corresponding therapy and therefore can also
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Figure 4.3: Distribution of the di�erent combination therapies in the training, tuning and
test set chosen in the time-oriented scenario. The numbers on the x-axis rep-
resent the di�erent therapy combinations ordered by their �rst appearance in
our clinical data: from older to newer. The y-axis depicts the density.

make the best predictions for it. In our case we �t the separate models by using the data
available for each individual therapy in the clinical database. The therapies with no samples
available are either randomly classi�ed as success or failure both with equal probability
of 50%, or the phenotypic model (Subsection 4.1.3) is used to assign their labels. For
therapies represented only with successful or only with failing examples we assign success
probabilities of 1 or 0, respectively. We will refer to this approach as partitioned evaluation
scenario.

The second reference method, referred to as transfer evaluation scenario, implements the
distribution matching approach by Bickel et al. (2008) described in the previous chapter. In
order to provide a fair comparison we use a linear instead of a nonlinear logistic regression
for the separate models estimated for each therapy. The sample-speci�c weights for each
therapy are obtained by using a nonlinear multi-class logistic regression as described in
Bickel et al. (2008).

The last reference method, referred to as one-for-all evaluation scenario, �ts a single logistic
regression model to the viral genotypes of all therapies. The information about the drugs
comprising the corresponding therapies is added to the input feature space. This is the
most common approach in the �eld (Larder et al., 2007; Altmann et al., 2009b).
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Table 4.1: Classi�cation accuracies (ACCs) and AUCs with their corresponding standard
errors (SE) for our therapy similarity model (drugs kernel) and the three ref-
erence models (one-for-all, partitioned, transfer) that predict the outcomes of
drug combination therapies.

method
ACC ± SE AUC ± SE

no prior with prior no prior with prior
drugs kernel 0.850± 0.010 0.848± 0.010 0.703± 0.022 0.695± 0.023

one-for-all 0.850± 0.010 0.856± 0.010 0.700± 0.023 0.703± 0.022

partitioned 0.830± 0.011 0.822± 0.011 0.624± 0.025 0.608± 0.026

transfer 0.848± 0.010 � 0.625± 0.024 �

Performance measures. The goal of each model is to predict the outcomes of the combi-
nation therapies for the most recent samples in the data set. We are primarily interested
in the accuracy as a measure of the quality of the considered models. However, sometimes
one is not only interested in the absolute results, but also in the quality of the ranking of
the therapies based on their success probability. This is especially important when choos-
ing a future therapy for a patient. Therefore we also carry out model selection based on
AUC (Area Under the ROC Curve) performance and report AUC results. Resampling
techniques (e.g. bootstrap) to estimate the standard errors of these measurements are not
readily applicable in the time-oriented validation scenario in which the data samples are
ordered by the starting times of their corresponding therapies. Therefore, we resort to
calculating standard errors (SE) of the accuracies as detailed in Section 3.4 of Chapter 3.
Standard errors of the AUCs are computed as described in Hanley and McNeil (1983).

4.2.3 Experimental Results and Discussion

In this subsection we present and discuss the results of the validation experiments. We
�rst show the results pertaining to the therapy similarity models that use the drugs kernel
followed by those pertaining to the therapy similarity models that use the group additivity
kernel. Both therapy similarity approaches and each of the di�erent reference models, as
explained in the previous subsection, are trained on the EuResist clinical data set using
the time-oriented validation scenario. As we mentioned before, e�cient model �tting is
important for the approaches that train a separate model for each combination therapy.
By using the trust region Newton method for training logistic regression (Lin et al., 2008)
we �t a single model in a fraction of a second. For example, �tting 154 separate models
for the di�erent therapies in the test set takes about 13 seconds on a normal desktop
computer. Finally, we discuss di�erent aspects of model interpretability for the therapy
similarity approach.

Therapy similarity model with drug additivity kernel. Table 4.1 summarizes the classi�-
cation accuracies (ACCs) and the AUCs for the considered methods: drugs kernel denotes
our therapy similarity models with the drugs kernel therapy similarities as sample-speci�c
weights; partitioned denotes the reference models �tted for each distinct therapy using only
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Table 4.2: AUCs for the therapy similarity model (drugs kernel) and the two reference
models (one-for-all, transfer) with their corresponding standard errors (SE) for
two groups of test therapies: with 0− 20 and > 20 available training samples.

method
drugs kernel one-for-all

transfer
no prior with prior no prior with prior

0− 20 (SE) 0.659(0.041) 0.690(0.039) 0.641(0.041) 0.642(0.041) 0.608(0.043)

> 20 (SE) 0.694(0.028) 0.681(0.028) 0.697(0.029) 0.700(0.029) 0.637(0.029)

the samples belonging to the target therapy; the label with prior (no prior) can refer to
any of the previously described models with (without) additional phenotypic knowledge
encoded as a Gaussian prior; one-for-all refers to the reference method that �ts a single
logistic regression model to the samples from all combination therapies where the therapy
information is encoded as a part of the input feature space; the label with prior for the
one-for-all approach refers to encoding the prediction of the phenotypic model described in
Subsection 4.1.3 as an additional feature; transfer refers to the linear version of the transfer
model by Bickel et al. (2008). In what follows we will �rst discuss the performance of the
di�erent models with respect to the accuracy and then continue with a similar discussion
for the AUC.
As shown in Table 4.1, our approach (drugs kernel) of utilizing information of similar
therapies, the transfer model and the model from the one-for-all scenario perform signif-
icantly better than training separate models by solely using the samples from the target
therapies (partitioned scenario). We assess the signi�cance of the accuracy with a paired
t-test where we observe p-values ≤ 0.01 for all pairwise comparisons between the models
from the partitioned scenario and the other models. The performance of the partitioned
models is worse because for many therapies there are only few samples in the data set
(see Figure 4.2). The therapy similarity kernels in our approach and the sample-speci�c
weights in the transfer scenario compensate for this lack of data by utilizing the samples
from similar therapies for making the predictions.
In order to further investigate the performance of the models we take the uneven represen-
tation of the di�erent therapies into account. We do this by grouping the therapies in the
test set based on the number of samples they have in the training set and then computing
the accuracies of all the groups. The results are depicted in Figure 4.4. All models, includ-
ing the ones derived in the partitioned scenario, deliver very good predictions for therapies
for which there is a reasonable number of samples (≥ 15) available in the training data
set. In such cases the models have enough samples to capture the characteristics of each
di�erent combination therapy.
As can be anticipated the models derived in the partitioned scenario achieve much worse
performance compared to the other models for the therapies that have fewer samples in
the training set (0 − 14). Our model (drugs kernel) and the transfer model that utilize
therapy similarity in the learning process signi�cantly outperform the one-for-all model
for the therapies that have only very few (0 − 3) samples in the training set. Although
this group comprises only about 8% of the test set, it contains 61 of the 154 di�erent
drug combinations in the test set which is around 40% of all distinct drug combinations
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Figure 4.4: Classi�cation accuracy of the di�erent models over groups of test samples
grouped by the number of training examples for their corresponding therapy
combinations. Error bars indicate the standard errors of the accuracies.

occurring among the test therapies. We veri�ed the signi�cance of the improvements with
paired t-test: p-value = 0.04 for the drugs kernel and p-value = 0.09 for the transfer model.
For the group of therapies with 4 to 14 samples the therapy similarity model and the
transfer model perform slightly worse than the one-for-all model. However, according to
paired t-test this di�erence is only signi�cant (p-value = 0.03) for the transfer model. The
p-value for the comparison with the drugs kernel model is 0.31.
The results of the partitioned models for therapies with only very few (0 − 3) training
samples signi�cantly improve by incorporating the phenotypic prior knowledge: the paired
t-test shows signi�cant improvement of the accuracy (p-value = 0.006). However, including
this prior knowledge makes the results worse for the therapies with 14−40 training samples.
It also does not improve the accuracy results for the therapy similarity or the one-for-all
models. The reason for this may be that with respect to accuracy the samples from the
similar therapies in the clinical data probably carry at least as much relevant information
as the prior itself. It is encouraging to see that the added phenotypic information does not
deteriorate the similarity models either.
Inspecting the overall AUC performance in Table 4.1 we can observe that all models ex-
cept for the partitioned models and the transfer model have comparable performance. The
reason for the poor performance of the partitioned models is that they often assign proba-
bilities of 1 or 0 for therapies with very few training samples because they are often either
all successful or all failing. That is why we do not look at the AUC performance of the
partitioned models into more detail. As to the transfer model, the decision functions of



4.2 Results and Discussion 57

the individual therapy models are not guaranteed to be identically calibrated and thus the
AUC performance calculated over all test samples is low.
We take the uneven therapy representation into account by splitting the data into two
groups: one with 0−20 training samples and another with more than 20 samples. The AUC
results for the di�erent methods are shown in Table 4.2. In this case our therapy similarity
model with phenotypic prior knowledge signi�cantly improves the AUC results compared to
those of the transfer model (p-value = 0.002) for the therapies with 0−20 available training
samples. This group of therapies comprises about 25% of the test data. Integrating the
prediction of the phenotypic model as additional input feature in the one-for-all model does
not boost its AUC performance for the therapies with fewer training samples. Our therapy
similarity model that incorporates the model parameters of the phenotypic model via a
Gaussian prior outperforms the one-for-all model with prior knowledge for the therapies
with 0 − 20 available training samples (p-value = 0.04). This demonstrates the ability of
our approach to better integrate the additional information provided with the phenotypic
model. The di�erences between the AUCs of the one-for-all model (with and without
prior) and the therapy similarity model (with and without prior) for the therapies with
> 20 available training samples were not signi�cant (all p-values > 0.149). We compute
the signi�cance of the di�erence of the AUCs and its standard error as described in DeLong
et al. (1988).
Note that there are di�erent alternatives to using the e�ectiveness of the best performing
drug to label a combination therapy for the phenotypic prior models. For example, an-
other approach is to compute the labeling based on the average e�ectiveness of all drugs
comprising the combination therapy. As can be seen in Figure 4.5 the accuracy results ob-
tained using the average are similar to those obtained when using the e�ectiveness of the
best performing drug. However, the AUC performance for the test therapies with 0 − 20

available training samples is signi�cantly lower with a p-value= 0.04 (see Table 4.3).

Table 4.3: AUCs pertaining to the therapy similarity models (drugs kernel) with their
corresponding standard errors (SE) for two groups of test therapies: with 0−20,
and > 20 available training samples. The labeling based on the best performing
drug is denoted as max prior and the prior knowledge with labeling based on the
average of the e�ectiveness of all drugs comprising the target therapy is referred
to as avg prior.

method drugs kernel + max prior drugs kernel + avg prior
0− 20 (SE) 0.690 (0.039) 0.667 (0.041)

> 20 (SE) 0.681 (0.028) 0.680 (0.028)

We should also mention that considering the e�ectiveness of the most ine�ective drug
from a target therapy might not be a well justi�ed labeling approach. This is the case
because the therapies administered to therapy-experienced patients (patients that have
had at least one antiretroviral therapy) mostly include drug(s) already contained in the
previous therapy. These previously administered drugs render low in-vitro e�ectiveness of
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Figure 4.5: Classi�cation accuracy of the di�erent models using di�erent priors over groups
of test samples grouped by the number of training examples for their corre-
sponding therapy combinations. Error bars indicate the standard errors of the
accuracies.

the whole drug combination.
To summarize, with respect to measured accuracies our therapy-similarity approach that
trains separate models for each therapy has its prime advantage for therapies with few
(less than four) training samples. The transfer model also achieves good prediction results
for this group of therapies. However, it has lower accuracy for the group of therapies with
4 − 14 available training samples and has a signi�cantly worse AUC performance due to
the potentially di�erent calibrations pertaining to the decision functions of the individual
therapy models. Another disadvantage of this method is the compute-intensive calculation
of the sample-speci�c weights: �tting a single multi-class logistic regression model for
a large number of classes (in our case several hundreds) and training samples is a very
time-consuming task � in order to update such model with new data one has to �t many
multi-class logistic regression models since they also have a tuning parameter.
The phenotypic prior knowledge added to the therapy similarity model signi�cantly im-
proves the AUC performance for therapies with 0 − 20 available training samples. Here
the added phenotypic information is essential in bringing the performance of the model to
a level, which is also achieved for the abundant therapies.

Therapy similarity model with drug additivity kernel. The results obtained when using the
group additivity kernel in our therapy similarity models are comparable to those obtained
when using the drugs additivity kernel. The only di�erence is the slightly higher p-value
(0.08) for the accuracy performance of the group of therapies with few (0 − 3) training
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samples compared to the one-for-all model.
We should also point out that the calculated correlation between the values of the two
similarity kernels is higher than 0.6 for 90% of the therapies in our data set.
Table 4.4 and Figure 4.6 summarize the detailed results for the group additivity kernel.
They contain the same information as Table 4.2, and Figure 4.4 of the drugs kernel, re-
spectively. A visual comparison of the detailed accuracy results of both kernels is depicted
in Figure 4.7.

Figure 4.6: Classi�cation accuracy of the di�erent models over groups of test samples
grouped by the number of training examples for their corresponding therapy
combinations. Error bars indicate the standard errors of the accuracies.

Table 4.4: AUCs for the therapy similarity model (using the groups additivity kernel) and
the two reference models (one-for-all, transfer) with their corresponding stan-
dard errors (SE) for two groups of test therapies: with 0−20, and > 20 available
training samples.

method
additivity kernel one-for-all

transfer
no prior with prior no prior with prior

0− 20 (SE) 0.654(0.041) 0.689(0.038) 0.641(0.041) 0.642(0.041) 0.608(0.043)

> 20 (SE) 0.691(0.028) 0.685(0.028) 0.697(0.029) 0.700(0.029) 0.637(0.029)

Our method also allows for alternative de�nitions of therapy similarity. For example, one
can derive a similarity measure that includes phenotypic knowledge.
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Figure 4.7: Classi�cation accuracy over groups of test samples grouped by the number of
training examples for their respective therapy combinations for the two di�erent
therapy similarity measures: drugs kernel (drugs ker) and additivity kernel (ker
add).

Model interpretability. In a medical setting the model interpretability is important since
it enables access to the argumentative basis of the predictions. The therapy similarity
approach makes two contributions to model interpretability.
On the one hand, one can analyze the pro�le of similar therapies associated to the model
of a given target therapy that harbors relevant information. An interesting example is
illustrated in Figure 4.8. This �gure shows a heatmap that depicts the magnitude of
similarity of each of six randomly chosen test drug combinations from the group of therapies
with no available training samples when compared with all therapies from the training set
with similarity values greater than 0.5 according to the drugs kernel. In this way we
can easily see how much each of the drug combinations contributed to predicting the
outcome for the test treatments with no training samples available. As an example, let us
consider the model for the combination therapy ZDV 3TC ABC TDF RTV ATV. From
the heatmap we can easily see that the model assigns the highest weights to the examples
from the therapies: ZDV 3TC TDF RTV LPV, 3TC ABC TDF RTV ATV, ZDV 3TC

ABC TDF SQV RTV ATV, and ZDV 3TC ABC RTV ATV.
On the other hand, we can assess how di�erent mutations in the viral genome contribute
to predicting the outcome of a given target therapy. Since we have a separate model
for the target therapy we can simply do this by quantifying the importance of the model
features. One way to do this is to calculate z-scores for each of the model coe�cients, which
corresponds to a test of the null hypothesis that the coe�cient of interest is zero, while all
the others are not. The coe�cients with the highest z-scores are the most signi�cant ones.
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Figure 4.8: Heatmap of the similarity pro�le of six test therapies with no training samples
available. The pro�le considers only the training therapies with similarity val-
ues greater than 0.5. The test therapies are depicted on the horizontal axis and
the training therapies are depicted on the vertical axis. The similarity values
are derived according to the drugs kernel.

Table 4.5 contains the z-scores for the coe�cients of the therapy similarity model (using
the drugs kernel) for the combination therapy ZDV 3TC ABC TDF RTV ATV. According
to them, for this therapy the three most important positions in the protease sequence are
54, 90 and 10; and in the reverse transcriptase sequence the most relevant positions are
215, 210 and 41.

4.3 Conclusion

This paper presents an approach that tackles the problem of predicting virological response
to combination therapies by training a separate logistic regression model for each di�erent
combination therapy. Each model is �tted using not only the data from the target therapy
but also the information from therapies similar to it. For this purpose we introduce and
evaluate two di�erent measures of pairwise therapy similarity which are used as weights in
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the logistic regression models. The model is also able to incorporate phenotypic knowledge
on the therapy outcomes through a Gaussian prior. With such an approach we balance the
uneven therapy representation in the clinical data sets and produce higher quality models
for the therapies with very limited number of training samples. Our approach is not only
advantageous for therapies with few training samples, but also for all other therapies.
Having a separate model for each drug combination increases the interpretability of the
�tted models in that users have access to the argumentative basis of the prediction. On
the one hand, the scores of the mutations contributing to therapy e�ectiveness which result
from the linear predictions are derived in a therapy-speci�c manner and can therefore be
considered more informative than for a general model. On the other hand, the therapy
similarity kernel a�ords information on which similar therapies were most informative for
the prediction. It has to be stressed that interpretability of the prediction is a prime
requirement for use of a prediction method in a medical setting. Finally, the use of an
e�cient optimization method that takes advantage of the sparseness of our input data
ensures very fast model �tting and selection, although we train a separate model for each
combination therapy.
In terms of accuracy, our therapy similarity model performs signi�cantly better (at the
1% signi�cance level) than training separate models for each therapy by using solely its
samples. Furthermore, the therapy similarity model signi�cantly outperforms (at the 4%

signi�cance level for the drugs kernel and the 8% signi�cance level for the groups additiv-
ity kernel) the one-for-all scenario for the group of therapies with fewer than four training
samples. Although this group comprises only about 8% of the test data, it contains around
40% of the di�erent drug combinations in the test set. For therapies with a sizeable number
of samples (above four) both the similarity and the one-for-all models have comparable per-
formance. Our model achieves similar accuracy and signi�cantly better AUC performance
than the transfer model, which uses a compute-intensive distribution matching approach to
quantify the therapy similarities. This demonstrates the quality of our therapy similarity
measures.
The phenotypic prior knowledge included via a Gaussian prior does not improve the predic-
tion accuracies of the similarity models, but it signi�cantly improves (at the 4% level) the
AUC of the test therapies that have 0−20 available training samples. This group comprises
about 25% of the test data and contains around 77% of the di�erent drug combinations in
the test set.
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Table 4.5: Table of z-scores with their corresponding p-values showing the importance of
the di�erent positions in the reverse transcriptase sequence (left column) and
the protease sequence (right column) for the combination therapy ZDV 3TC

ABC TDF RTV ATV.

reverse transcriptase(RT) protease(PR)
sequence position z-score p-value sequence position z-score p-value

10 -6.982 1.458043e-12 41 -4.527 2.990632e-06
11 -0.702 2.411966e-01 62 -0.495 3.102540e-01
13 -2.436 7.423252e-03 65 0.855 1.963060e-01
16 -0.363 3.584558e-01 67 -3.338 4.220042e-04
20 -4.067 2.379967e-05 70 -0.137 4.455815e-01
24 -2.188 1.435101e-02 74 -1.369 8.556330e-02
30 4.481 3.715210e-06 75 -2.122 1.693959e-02
32 -2.823 2.376032e-03 77 -2.130 1.658176e-02
33 -5.703 5.876144e-09 90 -1.042 1.486348e-01
34 -2.617 4.441481e-03 98 0.117 4.533519e-01
35 1.469 7.094346e-02 00 -0.889 1.871202e-01
36 -3.438 2.929115e-04 01 -1.273 1.015777e-01
43 -2.178 1.470533e-02 03 -0.800 2.119379e-01
46 -6.823 4.454905e-12 06 0.571 2.840376e-01
47 -2.436 7.425982e-03 08 -0.088 4.648635e-01
48 -1.206 1.139030e-01 15 -0.645 2.594725e-01
50 -2.209 1.357249e-02 16 -2.934 1.673395e-03
53 -3.910 4.622426e-05 38 -0.298 3.827428e-01
54 -10.91 5.022132e-28 51 -3.579 1.722739e-04
58 -2.699 3.472476e-03 79 -2.577 4.977403e-03
60 -0.715 2.374222e-01 81 -1.181 1.188574e-01
62 0.015 4.939747e-01 84 -2.231 1.283414e-02
63 -2.975 1.462568e-03 88 -3.663 1.244663e-04
64 0.201 4.204933e-01 90 -1.360 8.692458e-02
69 -2.480 6.568336e-03 10 -5.379 3.740906e-08
71 -6.374 9.222044e-11 15 -9.336 5.023530e-21
73 -4.013 3.000900e-05 19 -2.636 4.197186e-03
74 -2.383 8.589538e-03 25 0.686 2.463370e-01
76 -2.500 6.206607e-03 30 2.831 2.319453e-03
77 -0.672 2.506833e-01 36 -0.489 3.123181e-01
82 -6.640 1.563237e-11
83 0.575 2.826479e-01
84 -5.231 8.423786e-08
85 -1.849 3.223458e-02
88 0.827 2.041891e-01
89 -2.446 7.216124e-03
90 -7.322 1.219247e-13
93 -0.621 2.673961e-01
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5 Hierarchical Bayes Model for Predicting
Outcomes of HIV Combination Therapies

The method we present here a�ords a simple, direct, e�ective and e�cient approach to mod-
eling the response to HIV combination therapies based on the hierarchical Bayes paradigm.
The individual drugs comprising each therapy combination are considered as separate tasks
in a multi-task model that estimates their additive e�ects on the therapy outcome from
the available clinical data. In this way, the model makes use of the abundance of samples
involving each individual drug. Doing so improves the predictive power on target therapies
that are scarcely represented in the clinical database. Note that this chapter elaborates on
the work initially presented in Bogojeska and Lengauer (2011).

5.1 Related Work

The approaches in Bickel et al. (2008) and Bogojeska et al. (2010) (explained in detail in
Chapters 3 and 4, respectively) deal with the problem of uneven and sparse therapy repre-
sentation in the HIV data by training a separate model for each combination therapy which
uses the available samples from all therapies with properly derived sample weights. The
weights re�ect the similarities between the target therapy and the corresponding therapies
of all training samples. While these therapy-speci�c models achieve very good accuracy
(Bogojeska et al., 2010), their AUC (Area Under the ROC Curve) performance can be
improved.
The hierarchical Bayes paradigm (Gelman et al., 2004) can easily be applied to multi-task
modeling and, therefore, is widely used in the machine learning community (Evgeniou and
Pontil, 2004; Yu et al., 2005; Dudik et al., 2005; Teh et al., 2006). Our work is inspired
by the work of Evgeniou and Pontil (2004) who present a feature mapping method for
multi-task learning with support vector machines based on a hierarchical Bayes approach.
Bickel (2009) shows that a modi�ed version of this method with a logistic loss function
is equivalent to a hierarchical Bayes model. In this chapter we adapt this method to the
problem at hand which yields a novel method that models the individual e�ects of the
drugs on therapy outcome.

5.2 Methods

Here we derive the multi-task hierarchical Bayes learning method for the problem of pre-
dicting the outcomes of HIV drug combination therapies. Our goal is to model the e�ects
of the drugs making up a target combination therapy on its outcome by using the viral
genotype information and the available information on previously administered drugs as
input features. Since the individual drugs comprising the combination therapies appear in

65
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many samples we can consider each drug as a separate task in a multi-task setting. We
use an additivity assumption to model the combined e�ects of the individual drugs com-
prising a target therapy on its response. Clearly this assumption is a gross simpli�cation
of the complex and little understood process of drug interaction. Still, the drug additivity
approach is a widely used simple assumption in a situation where little information is avail-
able on actual interactions, and it exhibits good prediction performance. The sum of the
drug-speci�c contributions provides a score quantifying the propensity of the therapy to be
e�ective. For each drug model we have a comparatively data-rich scenario, thus avoiding
the necessity to make predictions on the basis of only very few informative samples.

5.2.1 Hierarchical Bayes Model

In the hierarchical Bayes setting the posterior probability p(w, ϕ|D) is computed by using
the likelihood p(D|w) of the training data D under model parameters w, the prior proba-
bility p(w|ϕ) of model parameters w under hyperparameters ϕ, and the prior p(ϕ) of the
hyperparameters ϕ:

p(w, ϕ|D) ∝ p(D|w)p(w|ϕ)p(ϕ). (5.1)

Then, the maximum a posteriori (MAP) estimate of the model parameters:

(ŵ, ϕ̂) = arg max
w,ϕ

p(w, ϕ|D) (5.2)

is used for the �nal prediction ŷ = arg maxy p(y|x, ŵ) for a target sample x.
A multi-task problem with several related tasks that share a common prior can easily be
realized in the hierarchical Bayes framework. Let w1, . . . ,wT denote the task parameters of
each of the T di�erent tasks appearing in the training dataD = {(x1, y1, t1), . . . , (xm, ym, tm)},
and Dt = {(xi, yi, ti)|ti = t} is the training data for task t. All task parameters have the
same prior probability p(wt|ϕ) and are conditionally independent given the prior. The
posterior is then given by:

p(w1, . . . ,wT , ϕ|D1, . . . , DT ) = p(ϕ)
∏
t

p(Dt|wt)p(wt|ϕ) (5.3)

where the parameters are approximated with a MAP estimate. Intuitively, the prior models
what all tasks have in common, while the task parameters capture task-speci�c information.
The structure of such a hierarchical Bayes model is schematically depicted in Figure 5.1.

5.2.2 Outcome Prediction for HIV Combination Therapies

Let x denote the input features that comprise the viral genotype and the drug history for
the speci�c therapy example. The input is represented with a binary vector, where the
part corresponding to the viral genotype indicates the occurrence of a set of resistance-
relevant mutations (Johnson et al., 2008), and the part corresponding to the drug history
comprises the drugs known to be part of previous therapies. Let z denote the therapy
combination encoded as a binary vector that indicates the individual drugs comprising the
therapy. The label y indicates the success (1) or failure (-1) of each sample therapy. Let
D = {(x1, y1, z1), . . . , (xm, ym, zm)} denote the training data set.
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Figure 5.1: Image of the hierarchical structure of a multi-task Bayes model with T tasks.

The most common approach in the �eld trains a single statistical model (e.g. a linear
logistic regression model) for all available therapy samples in the data set. Here the infor-
mation on the individual drugs comprising the target therapy is encoded in a binary vector
and supplied together with the other input features. In what follows we will present the
details of the derivation of a hierarchical Bayes model that predicts the outcomes of HIV
combination therapies.

The goal is to train a classi�er fz : x 7→ y that correctly predicts the outcome for an HIV
combination therapy z. We model the class likelihood p(y|x, z) with a logistic regression
model that calculates predictions of the e�ectiveness of drug combinations by using the
assumption that the drugs making up the therapy have a cumulative e�ect on the therapy
outcome. This is re�ected in the formula:

p(y|x, z,w) =
1

(1 + exp(−y
∑

d∈z wT
d x))

(5.4)

where z denotes the set of drugs comprising the combination therapy and wd are the
model parameters of the individual drugs, i.e. the drug-speci�c weights pertaining to
the resistance-relevant mutations and the previously administered drugs. These drug pa-
rameters are trained via the multi-task hierarchical Bayes framework where each drug is
considered a separate task. The model parameters wd for each drug are drawn from a
common Gaussian prior wd ∼ N(w0, σ

2
wI) with a mean drawn from a Gaussian hyperprior

w0 ∼ N(0, σ2w0
I). In this way all tasks (drugs) are related and their similarity is modeled

with the common Gaussian prior. In fact, some drugs are more similar than others in that
they belong to the same drug class or evoke a similar genomic �ngerprint in terms of viral
resistance mutations. More formally, all task parameters wd deviate to some extent from a
mean function w0 (in our case the mean of the Gaussian prior). The smaller the distance
between two distinct drug parameters wd1 and wd2 the more similar the e�ect of drugs d1

and d2.

Let n denote the number of di�erent drugs in our data set and Dd = {(xi, yi, zi) ∈ D|d ∈
zi} denote all training samples whose corresponding therapies contain the drug d. In the
following we derive the log-posterior of all parameters given the data in accordance with
Equation 5.3 and the assumptions made in the previous paragraph.
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log p(w1, . . . ,wn,w0|D1, . . . , Dn, σ
2
w0
, σ2

w)

∝ logN(w0|0, σ2w0
I) +

n∑
d=1

log N(wd|w0, σ
2
wI)

+
n∑
d=1

∑
(x,y,z)∈Dd

log p(y|x, z,wz) (5.5)

∝− ‖w0‖2

2σ2
w0

−
n∑
d=1

‖wd −w0‖2

2σ2
w

−
n∑
d=1

∑
(x,y,z)∈Dd

log(1 + exp(−y
∑
d∈z

wT
d x)) (5.6)

=− ‖w0‖2

2σ2
w0

−
n∑
d=1

‖vd‖2

2σ2
w

−
n∑
d=1

∑
(x,y,z)∈Dd

log(1 + exp(−y(|z|w0 +
∑
d∈z

vd)
Tx)) (5.7)

=− ‖v0‖2

2σ2
w

−
n∑
d=1

‖vd‖2

2σ2
w

−
n∑
d=1

∑
(x,y,z)∈Dd

log(1 + exp(−y(
|z|σw0

σw
v0 +

∑
d∈z

vd)
Tx)) (5.8)

=− ‖v‖
2

2σ2
w

−
∑

(x,y,z)∈D

log(1 + exp(−yvTΦ(x, z))) (5.9)

Equation 5.5 uses Equation 5.3 to derive the logarithm of the posterior probability. In
Equation 5.6 the Gaussian density functions are expanded up to constant terms. Since
wd ∼ N(w0, σ

2
wI) each individual drug parameter wd can be replaced by wd = w0 + vd

yielding Equation 5.7 where |z| is the number of drugs comprising therapy z. In Equation
5.8 w0 is replaced with σw0

σw
v0. Finally, in the last Equation 5.9 the vector v denotes

the concatenation of all parameter vectors v = [v0, . . . ,vn] and Φ(x, z) is a new feature
mapping de�ned as follows. Let cz = [

|z|σw0
σw

, z] denote an extension of the therapy vector z,
where each vector component is a vector itself with dimension equal to the dimension of the
input feature vector x. The new feature mapping is then given by Φ(x, z) = cz · [x, . . . ,x]

(where · denotes componentwise vector multiplication). In other words, it maps the input
features of the training samples to a new feature space that provides a separate set of
dimensions for each drug comprising the target therapy: the feature vector x for a given
training sample is copied to the sections corresponding to the drugs comprising the target
therapy z; all other sections except the �rst one are �lled with zeros; the �rst section is
shared by all drugs and models their similarity. For example, let us assume that a target
drug combination z comprises only two drugs z = {d1, d2|d1 < d2, d1, d2 ∈ 1, . . . , n}. Then
for given input features x the feature mapping Φ(x, z) is given by:

Φ(x, z) =

2σw0

σw
x,0, . . . ,0︸ ︷︷ ︸

1,...,d1−1

, x︸︷︷︸
d1

, 0, . . . ,0︸ ︷︷ ︸
d1+1,...,d2−1

, x︸︷︷︸
d2

,0, . . . ,0︸ ︷︷ ︸
d2+1,...,n

 . (5.10)
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As can be observed from Equation 5.9, by using the feature mapping Φ(x, z) we obtain
the objective function of a logistic regression model with model parameters v. The dimen-
sionality of the new input feature space is the dimension of x multiplied by (n+ 1).
To summarize, the MAP estimate of the parameters of a hierarchical Bayes model with
Gaussian prior and hyperprior applied to the problem of predicting outcomes of HIV ther-
apies with drug additivity assumption is given by:

v̂ = arg max
v
{−

∑
(x,y,z)∈D

log(1 + exp(−yvTΦ(x, z)))− ‖v‖
2

2σ2
w

}. (5.11)

We obtain the maximum v̂ with logistic regression. This also yields the prediction of the
label (success probability) of a target therapy z administered to a sample x:

ŷ = arg max
y

1

(1 + exp(−yv̂TΦ(x, z)))
. (5.12)

We will refer to this method as drug additivity Bayes. A slightly modi�ed version of the
drug additivity Bayes is the drug additivity + hist Bayes described as follows. For each of
the drugs comprising a target combination therapy two tasks are created: one for the case
when the drug is administered for the �rst time to the considered patient, and another one
for the case when the drug was administered previously in the patient's drug history. Once
the tasks are de�ned, a task additivity assumption is applied, and the model is derived
in the same way as the drug additivity Bayes. The dimensionality of the input feature
space of the new model is the dimension of x multiplied by (2n+ 1). The two hierarchical
Bayes scenarios for predicting e�ectiveness of HIV combination therapies are sketched in
Figure 5.2.

Figure 5.2: Multi-task hierarchical Bayes models for the problem of predicting e�ectiveness
of HIV combination therapies.

Since we use Gaussian priors in our Bayes models, we can employ the trust-region Newton
method for training logistic regression (Lin et al., 2008). This is an e�cient implemen-
tation for sparse data sets with large number of features and samples (see Chapter 4 for
more details). With this approach our models are trained in about one second, albeit the
increased dimensionality of the input feature space and the large number of training sam-
ples. The Bayes methods have two tuning parameters: one replacing the fraction |z|σw0

σw
in

the feature mapping Φ(x, z) and one for the regularizer in Equation 5.11.
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Note that by using kernel logistic regression (Zhu and Hastie (2002) and brie�y described in
Chapter 2) one can train non-linear hierarchical Bayes models as follows. The correspond-
ing kernel function kΦ((x, z), (x′, z′)) for the feature mapping Φ derived from Equation 5.10
is given by:

kΦ((x, z), (x′, z′)) = Φ((x, z))TΦ((x′, z′)) = (
σ2
w0

σ2
w

|z||z′|+ zTz′)xTx′. (5.13)

Now replacing the linear kernel xTx′ in Equation 5.13 with any non-linear kernel func-
tion k(x,x′) renders a nonlinear version of the hierarchical Bayes models. However, we
observed that training non-linear Bayes models does not improve the methods' prediction
performance for our HIV therapy screening application. Therefore, in the following we
only consider linear multi-task Bayes methods.

5.3 Experiments and Results

5.3.1 Data Sets

The training data are again extracted from the EuResist database � the same version as
in Chapter 4. We include a therapy as a sample in the training data if there is a viral
sequence obtained shortly before the therapy was started (up to 90 days before) and if it
can be assigned a label (success or failure) based on the virus load values measured during
its course. The information on the viral genotype is given in terms of the presence of any
from a set of prede�ned resistance-relevant mutations (based on the list in Johnson et al.
(2008)) encoded with a binary vector. The therapy label is determined as in Chapter 4:
if the virus load drops below 400 cp/ml in the period from 21 days after the start of the
therapy to its end we label it successful (1); otherwise we label it failing (−1). We represent
the individual drugs comprising each therapy by a binary vector indicating the presence
or absence of all drugs appearing in the data set. Finally, we end up with a training set
that includes 6750 labeled therapy samples with 805 distinct therapy combinations. Note
that the labeled data set is larger than the one in Chapter 4. The reason for this is that
we no longer need to remove the combination therapies comprising drugs for which GPP
(genotype-phenotype pairs) data are not available.
In the two previous chapters we observed that the HIV clinical data sets have uneven and
sparse therapy representation. The histogram of therapy frequencies in Figure 5.3 con�rms
this observation for our current labeled data set: almost 500 therapies occur less than �ve
times; for almost all therapies there are no more than 50 samples. While there are many
rare therapies, there is a reasonable number of samples in which each of the di�erent drugs
appear. This can be observed in Figure 5.4, where the majority of the drugs are involved
in hundreds of samples.

5.3.2 Validation Settings

The quality of our approach is assessed in two validation scenarios: the therapy-strati�ed
cross-validation scenario, and the time-oriented scenario.
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Figure 5.3: Histogram that groups the 805 distinct combination therapies in our labeled
training data set based on their corresponding number of available training
examples. The image displays the uneven therapy representation in the data
where almost 500 therapies are represented with less than �ve samples.

Therapy-stratified cross-validation scenario. In order to provide an assessment of the
performance of a target method that strati�es for therapy abundance in the training data
set, we introduce the therapy-strati�ed cross-validation scenario. We start by describing the
procedure of creating therapy-strati�ed cross-validation folds. First, all available samples
are grouped in therapy bins based on their corresponding therapies. Then, we populate
the cross-validation folds with samples: the folds are repeatedly visited one after the other
and one sample is assigned to each fold at a time; the assigned samples are chosen at
random from the therapy bins, which are traversed in a round-robin fashion. In this way
we make sure that both infrequent and abundant therapy samples are distributed evenly
among the cross-validation folds. In the following we detail the therapy-strati�ed cross-
validation scenario that we applied for our computational experiments. We �rst construct
a separate test set, that comprises 20% of the available data, by selecting one fold from a
�ve-fold therapy-strati�ed cross validation. Then, we conduct a 10-fold therapy-strati�ed
cross validation on the remaining data and use it for the model selection. At the end,
we �rst report the cross-validation results and then evaluate the selected model on the
separate test set.

Time-oriented scenario. The practical experience with the drugs acquired over time and
the introduction of new antiretroviral drugs a�ect the trends of treating HIV patients. In



72 5 Hierarchical Bayes Model for Predicting Outcomes of HIV Combination
Therapies

N
um

be
r 

of
 tr

ai
ni

ng
 s

am
pl

es

0
10

00
20

00
30

00
40

00

ZDV

ddC

ddI

d4T

3TC

ABC

TDF

NVP

DLV

EFV

ETV

SQV IDV

RTV

NFV
APV

LPV

ATV

TPV DRV
T20

MVC

Figure 5.4: Sample abundances for each of the distinct drugs that appear in our labeled
clinical data.

order to account for the changing treatment trends over time we use the time-oriented
scenario introduced in Chapter 3. In this setting we select the training and test data with
a time-oriented approach. So in order to make sure that we have a reasonable amount
of training samples for each individual drug that appears in the test set, we remove the
therapy samples which contain very recent drugs from our data set. Our multi-task Bayes
approach utilizes the high frequencies of samples involving the individual drugs to address
the problem of the low frequencies of samples corresponding to speci�c combination ther-
apies. As a side remark, in practice one cannot expect quality predictions for therapy
samples comprising a drug for which there are only few training samples. The resulting
data set contains 6336 samples.

Model performance. We assess the performance of the target models by taking the un-
even representation of the di�erent therapies into account. We do this by grouping the
therapies in the test set based on the number of samples they have in the training set,
and then measuring the model performance on each of the groups. We thereby assess
the performance of the models for the rare and the abundant therapies, separately. We
carry out the model selection based on AUC (Area Under the ROC Curve) results and
use the AUCs to assess the model performance. In this way we evaluate the quality of
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the ranking of the therapies based on their success probabilities. For the comparison of
the cross-validation AUC performances of two methods we use a paired t-test. In order to
compare the performance of two methods on a separate test set, the standard errors of the
AUC values and the signi�cance of the di�erence of two AUCs are estimated as described
in Hanley and McNeil (1983). We use the ROCR package to plot the ROC curves (Sing
et al., 2005).
In this chapter, we are primarily interested in improving the quality of the ranking of the
therapies based on their success probability. However, for the sake of completeness, on the
one hand, and in order to demonstrate the quality of the absolute results, on the other
hand, we also carry out the model selection using the accuracy (ACC) as a performance
measure and report the accuracy results. For the comparison of the cross-validation ac-
curacy performances of two methods we again use a paired t-test. Furthermore, in order
to compare the performance of two methods on a separate test set, the signi�cance of the
di�erence of two accuracies as well as their standard errors are calculated as described in
Section 3.4 of Chapter 3.

Reference methods. In our computational experiments we compare the performance of
the two multi-task Bayes methods described in this chapter to those of two reference
approaches, namely the one-for-all model and the therapy-speci�c model. The one-for-

all method mimics the most common approach in the �eld where a single linear logistic
regression model is trained on all available therapy samples in the data set. The information
on the individual drugs comprising each of the therapies is encoded in a binary vector and
supplied together with the other input features. The therapy-speci�c model represents
the approaches that deal with the uneven and sparse therapy representation by training a
separate model for each combination therapy using not only the samples from the target
therapy but also the available samples from similar therapies with appropriate sample
weights. It implements the drugs kernel therapy similarity model (Bogojeska et al., 2010)
on the input feature space de�ned in this chapter. Since training separate models for every
di�erent therapy in a cross-validation setting is very time-consuming, we only consider
this approach as a reference model in the time-oriented validation scenario. Note also that
in the papers where they are introduced (Bickel et al., 2008; Bogojeska et al., 2010) the
performance of the therapy-speci�c approaches is evaluated in the time-oriented validation
scenario.

5.3.3 Experimental Results

In this subsection we �rst present the results of the computational experiments for the
therapy-strati�ed cross-validation scenario, followed by the results of the time-oriented
scenario.

Therapy-stratified cross-validation scenario. Table 5.1 summarizes the cross-validation
AUC performance of the considered methods: drug additivity Bayes; drug additivity +

history Bayes; and one-for-all as the reference method. The two Bayes approaches signif-
icantly outperform the one-for-all method for the therapies that have few (0− 7) available
samples in the training set. We veri�ed the signi�cance of the improvements with the
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Table 5.1: AUCs with their corresponding standard errors for our two multi-task Bayes
models (drug additivity, drug additivity + hist) and the reference (one-for-all)
method. Generated by a 10-fold therapy-strati�ed cross validation for three
groups of test therapies: with 0− 7, 8− 30, and more than 30 training samples,
they summarize the AUC performance for both the rare and the abundant test
therapy samples.

method
multi-task Bayes

one-for-all
drug additivity drug additivity + hist

0− 7 (SE) 0.771 (0.016) 0.774 (0.016) 0.749 (0.015)

8− 30 (SE) 0.745 (0.011) 0.738 (0.012) 0.732 (0.010)

> 30 (SE) 0.772 (0.017) 0.765 (0.018) 0.759 (0.012)

paired t-test: p-value = 0.05 for the drug additivity and p-value = 0.06 for the drug ad-

ditivity + hist model. Moreover, for the group of therapies with 8 − 30 training samples
the drug additivity approach also shows signi�cantly better cross-validation performance
than the reference model (p-value = 0.05). All models deliver comparable predictions for
the group of therapy samples for which there is a reasonable number (more than 30) of
available samples in the training set. According to the AUC results for the separate test
set, depicted in Figure 5.5, the drug additivity model has better AUC performance than
the reference method for all three therapy groups (0− 7, 8− 30, and more than 30). How-
ever, the improvements are only signi�cant for the test therapies with 0−7 and more than
30 training samples, with p-values of 0.045 and 0.002, respectively. The p-value for the
therapies with 8 − 30 training samples is 0.157. The drug additivity + hist model shows
signi�cantly better AUC performance than the one-for-all method for the rare therapies
with a p-value = 0.034. Figure 5.6 depicts the ROC curves for all considered methods for
the rare test therapies in the separate test set.
The accuracy results for the therapy-strati�ed cross validation and the separate test set
for all considered methods are shown in Table 5.2 and Figure 5.7, respectively. It can
be observed that all approaches have comparable accuracy performance for all considered
groups of test therapies, i.e. for both the rare and the abundant ones. This observation
is con�rmed by the relevant statistical tests with p-values larger than 0.1 for all pairwise
method comparisons.

Time-oriented scenario. The AUC results for the time-oriented scenario are summarized
in Figure 5.8. Note that in this case both the one-for-all and the therapy-speci�c models
are considered as reference methods. As can be observed, the drug additivity method
outperforms the one-for-all method for the test therapies with 0 − 7 and 8 − 30 training
samples. According to the paired di�erence test described in (Hanley and McNeil, 1983),
the improvement is signi�cant only for the test therapies with 0 − 7 samples (p-value=

0.078). The p-value for the test therapies with 8−30 training samples is 0.132. Compared
to the therapy-speci�c model the drug additivity model has better AUC performance for the
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Figure 5.5: AUC results of the di�erent models obtained on the separate test set in the
cross-validation therapy-strati�ed scenario. The test samples are grouped based
on the number of training examples for their corresponding therapy combina-
tions. Error bars indicate the standard errors of the AUCs.

Table 5.2: Accuracies (ACC) with their corresponding standard errors for our two multi-
task Bayes models (drug additivity, drug additivity + hist) and the reference
(one-for-all) method. Generated by a 10-fold therapy-strati�ed cross validation
for three groups of test therapies: with 0− 7, 8− 30, and more than 30 training
samples, they summarize the accuracy performance for both the rare and the
abundant test therapy samples.

method
multi-task Bayes

one-for-all
drug additivity drug additivity + hist

0− 7 (SE) 0.723 (0.041) 0.719 (0.039) 0.714 (0.034)

8− 30 (SE) 0.748 (0.039) 0.753 (0.032) 0.746 (0.037)

> 30 (SE) 0.849 (0.019) 0.847 (0.023) 0.841 (0.022)

test therapies with 0− 7 training samples, yet this improvement is not signi�cant (p-value
= 0.253). For the test therapies with 8 − 30 training samples both the therapy-speci�c

and the drug additivity models have comparable performance. The drug additivity + hist

model outperforms all considered approaches for the rare test therapies (with 0−7 training
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Figure 5.6: ROC curves displaying the performance of the di�erent methods on the rare
therapies (with 0− 7 training samples) of the separate test set obtained in the
cross-validation therapy-strati�ed scenario.

samples) with estimated p-values of 0.007 for the one-for-all, 0.042 for the therapy-speci�c
and 0.033 for the drug additivity model; for the test therapies with 8−30 training samples
it delivers similar performance as the one-for-all method. The AUC results of the drug

additivity + hist model for the test therapies with 8−30 training samples are slightly worse
compared to the therapy-speci�c and the drug additivity models. However the respective
di�erences in performance are not signi�cant (p-values > 0.1). Considering the abundant
test therapies (with more than 30 training samples) all approaches deliver comparable
results. The relevant ROC curves for the rare test therapies are shown in Figure 5.9.
Figure 5.10 depicts the accuracy results for the two Bayes approaches and the two con-
sidered reference methods in the time-oriented scenario. All methods deliver comparable
accuracies for the test therapies with 0 − 7 and 8 − 30 available training samples with
p-values from all pairwise comparisons larger than 0.1. Considering the abundant test
therapies with more than 30 available training samples the drug additivity Bayes model
and the therapy-speci�c model achieve signi�cantly better accuracies than the one-for-all
method with estimated p-values of 0.052 and 0.002, respectively. All other pairwise method
comparisons for this group yield p-values larger than 0.2.

To summarize, according to the presented AUC results, the two multi-task Bayes ap-
proaches have their prime advantage for therapies with few (less than eight) available
training samples in both validation scenarios. The drug additivity Bayes performs better
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Figure 5.7: Accuracy (ACC) results with their corresponding standard errors for the dif-
ferent models obtained on the separate test set in the cross-validation therapy-
strati�ed scenario. The test samples are grouped based on the number of
training examples for their corresponding therapy combinations.

than the one-for-all and the therapy-speci�c methods for the therapies with 8 − 30 avail-
able samples, however the improvement is statistically signi�cant (corresponding p-value

< 0.1) only for the cross-validation results. For the abundant test therapies (with more
than 30 training samples) all considered methods have comparable performance in almost
all validation scenarios � one exception is the signi�cantly better performance of the drug
additivity Bayes method for the separate test set in the cross-validation scenario. Finally,
the accuracy performance of the multi-task Bayes approaches is at least as good as the
accuracy performance of all considered reference approaches.

5.4 Discussion

This chapter presents an approach to predicting virological response to HIV combination
therapies by considering each individual antiretroviral drug as a separate task in a multi-
task hierarchical Bayes framework. With our method the additive e�ects of the individual
drugs comprising each combination therapy on its response are modeled from the data. It
is worth noting that the most common approaches in the �eld that use linear models and
encode the therapy information in the input feature space, also implicitly use a drug addi-
tivity assumption. However, in this case, the e�ects of the drugs comprising each therapy
on its response are not explicitly modeled. Instead, a generic statistical learning method
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Figure 5.8: AUC results of the di�erent models obtained on the test set in the time-oriented
validation scenario. The test samples are grouped based on the number of
training examples for their corresponding therapy combinations. Error bars
indicate the standard errors of the AUCs.

that simultaneously models the contributions of all available information (e.g. therapy,
viral genotype) on the therapy outcome is used. Above all, such methods do not take the
uneven therapy representation in the clinical data sets into account. By considering each
drug as a separate task, our Bayes approach uses the abundance of samples that pertain
to each drug to circumvent the lack of samples for the speci�c combination therapies. In
this way we provide more accurate predictions (rankings) for rare therapies by maintaining
the prediction quality for the more frequent therapies. The samples corresponding to rare
therapies (represented with 0− 7 samples in our clinical data) make up only around 18%

of the available data, but they contain 83% of the di�erent therapies i.e. they make up the
therapy variety in our data set. Moreover, our approach uses an extended input feature
space where each drug has a separate range and it thereby models the interactions among
the input features of the di�erent drugs.

The use of an e�cient optimization method (Lin et al., 2008) that takes advantage of
the sparseness of our input data ensures very fast model �tting (one second) and model
selection. For example, the model selection procedure performed with a 10-fold cross
validation for the drugs additivity model screens 289 di�erent value combinations for the
two model selection parameters speci�ed in the Methods section and is completed in about
ten hours.

According to the cross-validation AUC results both our multi-task Bayes models perform
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Figure 5.9: ROC curves displaying the performance of the di�erent methods on the rare
therapies (with 0 − 7 training samples) of the test set obtained in the time-
oriented validation scenario.

signi�cantly better (at the 5% signi�cance level for the drugs additivity and the 6% level for
the drugs additivity + hist model) than the one-for-all model for rare test therapies (with
0−7 available training samples). The drugs additivity model also signi�cantly outperforms
the one-for-all scenario for the group of therapies with 8 − 30 training samples. For
therapies with a sizeable number of samples (above 30) all approaches show comparable
cross-validation performance. The AUC results on the left-out set in the cross-validation
scenario con�rms the advantage of both multi-task Bayes models for the less frequent
therapies (the signi�cance level is 5% for the drugs additivity and the 3% level for the
drugs additivity + hist model). Furthermore, the drugs additivity model achieves better
AUC performance for the other two groups of test therapies (with 8 − 30 and more than
30 training samples). However, the improvement is only signi�cant for the test therapies
with more than 30 available training samples.

According to the time-oriented scenario both Bayes models signi�cantly outperform (at
the 8% signi�cance level for the drugs additivity and the 1% signi�cance level for the drugs
additivity + hist model) the one-for-all model for the test therapies with less than eight
available training samples. Moreover, the drugs additivity + hist model also outperforms
the drugs additivity model (at the 3% signi�cance level) and the therapy-speci�c model (at
the 4% signi�cance level) for the group of rare test therapies. All models show comparable
AUC performance for the abundant test therapies.

It is also worth noting that the accuracy performance of the multi-task Bayes approaches is
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Figure 5.10: Accuracy (ACC) results with their corresponding standard errors for the dif-
ferent models obtained on the test set in the time-oriented validation scenario.
The test samples are grouped based on the number of training examples for
their corresponding therapy combinations.

at least as good as the accuracy performance of all considered reference approaches for all
test therapies in both validation scenarios. This demonstrates the quality of the absolute
results achieved by the Bayes approaches.
In summary, the approach presented in this chapter models the e�ects of the individual
drugs comprising an HIV combination therapy on its e�ectiveness by using a multi-task
hierarchical Bayes approach. The AUC performance of this approach is at least as good
as an approach that encodes therapy information in the input feature space for the abun-
dant therapies and signi�cantly better for therapies with few training samples. The same
observation holds when comparing the AUC performance of the hierarchical Bayes ap-
proaches to the therapy-speci�c approach which trains a separate model for every di�erent
drug combination. In this case the Bayes models have the additional advantage of being
more time-e�cient compared to the therapy-speci�c approach. Note that the group of rare
therapies is very important as it makes up the therapy variety in the available clinical data.
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In previous chapters (Chapters 3 to 5) we observed that the clinical data sets contain
data on di�erent combination therapies with widely di�ering frequencies. In particular,
many therapies are only represented with very few data points. Nonetheless, beside the
sparse therapy representation there are several other important issues a�ecting the HIV
clinical data sets. First of all, they comprise only viral strain(s) that can be detected in
the patients' blood serum. However, past therapies leave a genomic �ngerprint of associ-
ated resistance mutations among the latent viral population stored in di�erent organs of
the patient. This information is important for making accurate predictions for therapy-
experienced HIV patients. Second, the clinical data comprise therapy samples that orig-
inate from patients with di�erent treatment backgrounds. Also the speci�c treatment
histories for the majority of the therapy-experienced samples are unique. Furthermore, the
various levels of therapy experience ranging from therapy-naïve to heavily pretreated are
represented with di�erent sample abundances � especially samples stemming from patients
with higher therapy-experience levels are underrepresented. All these issues create what
we will refer to as treatment bias in the data sets which in�uences the predictions of the
derived statistical models, especially the predictions pertaining to samples originating from
therapy-experienced patients and to samples associated with rare therapies.

This chapter presents two novel methods that account not only for the sparse, uneven
therapy representation but also for the bias originating from the di�erent treatment back-
grounds of the samples making up the clinical data sets. More speci�cally, in the �rst half
of the chapter we present a statistical learning method that incorporates information on
the latent virus population, the speci�c therapies previously given to a patient and the
order in which they were administered to deal with the di�erent kinds of bias present in
the clinical data. In the second half of the chapter we consider two additional problems
pertaining to the available HIV clinical data sets. The �rst one is that the clinical data
do not necessarily have the complete information on all administered HIV therapies for all
patients and the information on whether all administered therapies are available or not is
also missing for the majority of the patients. The second issue is the increasing imbalance
between the e�ective and ine�ective therapies over time. The quality of treating HIV pa-
tients has largely increased in the recent years due to the knowledge acquired from HIV
research and clinical practice. This renders the amount of e�ective therapies in recently
collected data samples much larger than the amount of ine�ective ones. To this end, we
present an approach that addresses all previously mentioned problems simultaneously. To
tackle the issues of the uneven therapy representation and the di�erent treatment back-
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grounds of the samples, we use information on both the current therapy and the patient's
treatment history. Additionally, our method uses a distribution matching approach to ac-
count for the problems of missing information in the treatment history and the growing
gap between the abundances of e�ective and ine�ective HIV therapies over time in the
clinical data sets.
We should point out that this chapter provides an extended version of the work presented
in Bogojeska et al. and Bogojeska (2011).

6.1 Related Work

In the recent years there have been several statistical learning methods (Bickel et al., 2008;
Rosen-Zvi et al., 2008) that utilize information from previous therapies when predicting
the outcome of a potential antiretroviral therapy. Moreover, two recent studies (Revell
et al., 2010; Prosperi et al., 2010) show that a substantial amount of information about the
e�ectiveness of a therapy can be deduced from the treatment history even if viral genotypic
information is absent. In the aforementioned publications the information on treatment
history has been �attened to the set of di�erent drugs that have been administered in
any of the therapies that comprise the relevant treatment history record. While this sim-
ple approach can easily be incorporated in every statistical learning method, it neglects
the information on the speci�c makeup of the drug combinations comprising the patient's
treatment history, their resulting viral genetic �ngerprints in the latent virus population
and the order in which they were administered. There is medical evidence that the order
in which therapies are administered a�ects therapy response (Robbins et al., 2003). More-
over, Saigo et al. (2010) present an approach denoted as sequence boosting for predicting
therapy e�ectiveness targeted at therapy-experienced patients with completely recorded
treatment history. It uses novel feature encoding, referred to as sequence representation,
for capturing all available history information: previous therapies and their corresponding
responses, previous viral genotypes. Then, it searches for subsequences discriminative for
therapy response by �rst enumerating all sequence features using a tree structure and then
pruning the tree based on a gain function. The sequence boosting method incorporates in-
formation on the order in which the therapies were administered and shows the importance
of such information for treatment-experienced patients. The two main shortcomings of this
method are given as follows. Firstly, in the available HIV clinical data the information on
whether the available treatment history is complete or not as well as information on pre-
vious genotypes and outcomes of past therapies is missing for the majority of the samples.
Secondly, sequence boosting is non-linear and thus computationally very demanding � in
terms of complexity it is NP-hard.
None of the approaches mentioned above tackles the bias introduced by the di�erent treat-
ment backgrounds of the samples and their sparse representation in the clinical data sets.

6.2 History-similarity Model for HIV Therapy Screening

We present an approach, referred to as history-similarity model, that tackles the treat-
ment bias in the HIV clinical data by introducing a notion of treatment similarity which
includes not only information on the current therapy but also detailed information on the
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treatment history. More speci�cally, it considers two treatments as similar if they have
similar treatment patterns and their genomic �ngerprint in the latent viral population is
similar. Our approach trains a separate model for each sample of interest by using all
available training samples, each with a speci�c weight, that re�ects the similarity of the
corresponding treatment pattern to the treatment pattern of the target sample. In this way
we address the di�erent treatment backgrounds of the clinical samples, their di�ering sam-
ple abundances, the hidden latent virus population and the uneven therapy representation
in the clinical data sets. In what follows we �rst describe the problem setting, then provide
detailed description of the similarity measure of therapy sequences and �nally present the
history-similarity model.

6.2.1 Problem Setting

Let x denote the viral genotype represented as a binary vector indicating the occurrence of
a set of resistance-relevant mutations, let z denote the therapy combination encoded as a
binary vector that indicates the individual drugs comprising the current therapy and let h

denote a binary vector representing the drugs administered in all known previous therapies
for the speci�c therapy example. The label y indicates the success (1) or failure (−1) of
each therapy sample. Let D = {(x1, z1,h1, y1), . . . , (xm, zm,hm, ym)} denote the training
set and let t denote the therapy sample of interest. Let start(t) denote the point of time
when the therapy t was started and patient(t) denote the patient identi�er corresponding
to the therapy sample t. Then:

r(t) = {z | (start(z) ≤ start(t)) and (patient(z) = patient(t))}

denotes the complete treatment record associated with the therapy sample t and is referred
to as therapy sequence. It contains all known therapies administered to patient(t) not later
than start(t) ordered by their corresponding starting times, from older to newer. Note
that each therapy sequence also contains the current therapy, i.e. the most recent therapy
in the therapy sequence r(t) is t. Our goal is to train a model f(x, t,h) that correctly
predicts the outcome of the target therapy t for given viral genotypes by utilizing the
information from its associated therapy sequence.

6.2.2 Similarity of Therapy Sequences

Our main objective when quantifying the similarity of therapy sequences is to consider
two therapy sequences similar if they consist of similar drug combinations administered in
a similar order and producing similar genomic �ngerprints in the latent viral population.
We �rst quantify the pairwise similarity between di�erent drug combinations and then use
it together with the order in which the therapies were administered to compute the overall
similarity between two therapy sequences. Since we lack primary data on the latent virus
population, the pairwise therapy similarity measure considers the genomic �ngerprint the
therapies leave in the viral genome as a surrogate. This �ngerprint comprises resistance-
relevant mutations of the drugs making up the therapy.
We quantify the pairwise similarities between di�erent therapy combinations with the
resistance mutations kernel, which uses the table of resistance-associated mutations of
each drug a�orded by the International AIDS society (Johnson et al., 2008). The kernel
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assumes that the similarity between di�erent drug groups is additive. This is a reasonable
assumption since drugs belonging to di�erent groups have di�erent targets and/or modes
of action and thus can be assumed to act independently (Beerenwinkel et al., 2003b).
Formally, the kernel is de�ned as follows. Let G denote the set of di�erent drug groups. In
our clinical data set we have three drug groups: NRTIs (Nucleoside Reverse Transcriptase
Inhibitors), NNRTIs (Non-Nucleoside Reverse Transcriptase Inhibitors) and PIs (Protease
Inhibitors). Let uzg and uz′g be binary vectors indicating the resistance-relevant mutations
for the set of drugs occurring in drug group g ∈ G of the therapies z and z′, respectively.
The similarity between the drug-g mutations of the two therapies z and z′ is then calculated
by:

simg(z, z
′) =

uT
zguz′g

max(‖uzg‖2, ‖uz′g‖2)
,

where xTy denotes the scalar product of the vectors x and y, and ‖ · ‖ is the L2-norm. We
derive the similarity km(z, z′) between the therapies z and z′ by averaging the similarities
of their corresponding drug groups:

km(z, z′) =
∑
g∈G

simg(z, z
′)

|G|
.

Since the group similarities simg(z, z
′) lie in the interval [0, 1], the values of the resistance

mutations kernel are also within [0, 1]. Intuitively, the higher the number of common
resistance relevant mutations associated with the corresponding sets of drugs making up
the two therapies of interest, the higher their similarities. In this way the therapy similarity
also accounts for the similarity of the genetic �ngerprint of the potential latent virus
populations of the compared therapies. Furthermore, our kernel represents drugs in terms
of their mutation pro�le and, by doing so, allows for high group similarity for non-identical
drugs that have very similar resistance mutation pro�les. In this way we take the high
level of cross resistance within the same drug class into account.
Once we have determined the pairwise similarities of di�erent drug combinations, we will
use them to quantify the pairwise similarities between complete therapy sequences. We
need a similarity score that accounts for both the similarity of the di�erent therapies
comprising the therapy sequences and the order in which they were administered. Thus
we can adapt the score commonly used for assessing the quality of an alignment of protein
or nucleic acid sequences. In what follows we give the details of how to align therapy
sequences.
Let X = [x1, . . . , x|X|] and Y = [y1, . . . , y|Y |] be two therapy sequences de�ned over a �nite
alphabet Σ with lengths |X| and |Y |, respectively. The pair of sequences (X ′, Y ′) de�ned
over the alphabet {Σ ∪ "−"} that includes the gap character "−" denotes their sequence
alignment when the following conditions are ful�lled:

• |X ′| = |Y ′|.

• X ′ and Y ′ become X and Y , respectively, after deleting all gap characters "−".

• There is no position i such that x′i = y′i = −.
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Each alignment can be associated with a score that determines its quality:

S(X ′, Y ′) =

|X′|∑
i=1

s(x′i, y
′
i),

where s is a similarity function that quanti�es all pairwise similarities of all letters in the
alphabet {Σ ∪ "−"}. Of course only good alignments with as few gaps as possible are
of interest. In this sense an optimal alignment (X∗, Y ∗) is the one that maximizes the
alignment score S:

(X∗, Y ∗) = arg max
(X′,Y ′)

S(X ′, Y ′).

The solution of this maximization problem is obtained by applying the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970) speci�ed with the following recursion:

S00 = 0

Si,0 = Si−1,0 + s(xi,−)

S0,j = S0,j−1 + s(−, xj)

Si,j = max


Si−1,j + s(xi,−)

Si−1,j−1 + s(xi, yj),

Si,j−1 + s(−, xj)

where Si,j is the score of the optimal alignment of the subsequences x1, . . . , xi and y1, . . . , yj ,
and s(x,−) and s(−, x) are the gap costs.

T1 T4T3T2

T1 T3T2
_

TS1

TS2

Figure 6.1: Alignment of the blue therapy sequence TS2 to the red therapy sequence TS1
comprising three and four therapies, respectively. Their most recent therapies
� T4 in TS1 and T3 in TS2 � are matched. Since the therapy sequence TS2 is
shorter than TS1 the alignment contains one gap.

The alphabet used for the therapy sequence alignment comprises all distinct drug com-
binations making up the clinical data set. The mutations kernel determines the pairwise
similarities s between its letters. Each therapy sequence ends with the current (most re-
cent) therapy � the one that determines the label of the sample. Therefore, we adapt the
sequence alignment algorithm such that the rightmost (most recent) therapies (characters)
are always matched, i.e. we do not allow for gaps at the right end of an alignment. In
this way we also address the problem of the sparse, uneven representation of the di�erent
therapies. We apply linear gap cost penalty. The parameter specifying the gap cost is
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selected in the model selection procedure. The score of such an optimal alignment quanti-
�es the pairwise similarity of therapy sequences and is referred to as alignment similarity
kernel. An example alignment of two therapy sequences is depicted in Figure 6.1. It should
also be pointed out that since it is a sum that uses the mutations kernel values, the align-
ment similarity kernel also re�ects the similarity of the accumulated mutations (genetic
�ngerprints) of the latent virus population of the compared therapy sequences.

6.2.3 History-similarity Method

The history-similarity model utilizes the alignment similarity kernel to train a separate
model for every sample of interest. The details of this method for a given target sample
are summarized in Algorithm 2.

Algorithm 2: History-similarity method

Input: Target sample with corresponding current therapy t and therapy sequence
r(t).

1. Calculate the weights for all training samples {S(r(zi), r(t)), i = 1, . . . ,m}.

2. Apply linear rescaling to normalize the alignment similarity weights
to the range of [0, 1]:

S(r(zi), r(t)) =
S(r(zi), r(t))−mini S(r(zi), r(t))

maxi S(r(zi), r(t))−mini S(r(zi), r(t))
.

3. Use the weights {S(r(zi), r(t)), i = 1, . . . ,m} to estimate the �nal model
for the target sample � minimize weighted loss on training data.

The �rst step utilizes the alignment similarity kernel: the therapy sequence of the tar-
get sample r(t) is aligned to the corresponding therapy sequences of all training samples
{r(zi), i = 1, . . . ,m} and the resulting alignment scores {S(r(zi), r(t)), i = 1, . . . ,m} are
the weights for the training samples. Then, the second step applies linear rescaling to nor-
malize the sample weights to the range of [0, 1]. Once the sample weights are available we
can proceed to step three and train the �nal model that predicts the therapy response for
the sample of interest. For this purpose we use regularized logistic regression model (de-
scribed in Chapter 2 and Evgeniou et al. (2000)) that minimizes the loss over the weighted
training samples:

arg min
wt

1

|D|
∑

(xi,zi,hi,yi)∈D

S(r(zi), r(t))γ · `(f(xi, zi,hi,wt), yi) + σwT
t wt, (6.1)

where σ is the regularization parameter, γ is the smoothing parameter and wt is the model
parameter. In the minimization above we use all available training samples, from therapy-
naïve to heavily pretreated, to produce a separate model for each sample of interest or, if we
have a speci�c test set, for each test sample. Intuitively, the history-alignment approach
estimates a model tailored towards the sample of interest such that it up-weights those
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samples that are relevant for the target sample and down-weights the remaining samples.
In this manner the method accounts for the various treatment backgrounds associated
with the samples making up the clinical data sets, the di�erent abundances of the levels
of therapy experience, the latent virus population and the sparse therapy representation.
Note also that by using the alignment similarity kernel which allows for gaps enables our
method to utilize information from samples with incomplete treatment histories.
As an important aspect in every biomedical application, interpretability should be one of
the properties of our prediction models. We thus use linear logistic regression and the loss
function in the formula above is given by:

`(f(x, z,h,wt), y) = ln(1 + exp(−ywT
t [x, z,h])).

Our approach of training a separate model for each target sample demands an e�cient
method for minimizing the loss function. The choice for linear models and the sparse
input feature space, provided by the binary input features, o�er the possibility to use the
trust region Newton method for training linear logistic regression (for more details see
Chapter 3 and Lin et al. (2008)). In this way we ensure real-time model �tting (in the
range of few milliseconds) and time-e�cient model selection.

6.2.4 Validation Setting

Data set. Same as in the previous chapters, the data source for our models is the Eu-
Resist database (Rosen-Zvi et al., 2008) that contains information on 93014 antiretroviral
therapies administered to 18325 HIV (subtype B) patients from several countries in the
period from 1988 to 2008. We point out that the clinical data do not necessarily have the
complete information on all administered HIV therapies for all patients. Furthermore, the
information on whether all administered therapies are available or not is also missing for
the majority of the patients. Therefore, the statistical methods utilize only the available
information. The viral sequence assigned to each therapy sample is obtained shortly be-
fore the respective therapy was started (up to 90 days before). The response to a given
therapy is quanti�ed with a label (success or failure) based on the virus load values mea-
sured during its course. The label assignment is identical to the one described in Chapter
4. The information on the viral genotype is given in terms of a binary vector indicating
the presence (1) or absence (0) of a set of prede�ned resistance-relevant mutations derived
from the list given in Johnson et al. (2008). The currently administered therapy is also
encoded by a binary vector that indicates the presence or absence of all drugs appearing in
the data set. The set of drugs administered in all available therapies preceding the current
therapy is represented in the same manner. Finally, our training set comprises all samples
providing a viral sequence and a label; it includes 6537 labeled therapy samples from 690

distinct therapy combinations.

Time-oriented validation scenario. The trends of treating HIV patients change over time
as a result of the gathered practical experience with the drugs and the introduction of new
antiretroviral drugs. As in the previous chapters, in order to account for this phenomenon
we use the time-oriented validation scenario introduced in Chapter 3 which makes a time-
oriented split when selecting the training and the test set. In this way, our models are
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trained on the data from the more distant past, while their performance is measured on
the data from the more recent past. This scenario is more realistic than other scenarios
since it captures how a given model would perform on the recent trends of combining the
drugs.
The therapy samples gathered in the HIV clinical data sets are associated with patients
whose treatment histories di�er in length: while some patients receive their �rst antiretro-
viral treatment, others are heavily pretreated. Moreover, these di�erent sample groups,
from treatment-naïve to heavily pretreated, are represented with di�erent abundances in
the HIV clinical data. Figure 6.2 depicts a histogram of the frequencies of the previously
mentioned sample groups in the training data set, where it can be observed that the num-
ber of samples stemming from patients in early stages of HIV treatment is much higher
than the number of samples from therapy-experienced patients (with more than �ve or
more than ten previously administered therapies). The numbers are based on the therapy-
history information in our clinical data set. We should also point out that most of the
therapy sequences associated with patients in the mid or late stages of HIV treatment are
unique, i.e. the representation of speci�c longer therapy sequences in the clinical data sets
is very sparse.
The search for an e�ective HIV therapy is particulary challenging for patients in the mid
to late stages of antiretroviral therapy when the number of therapy options is reduced and
e�ective therapies are increasingly hard to �nd because of the accumulated drug resistance
mutations from all previous therapies. Therefore, in our computational experiments we
want to elucidate the predictive power of the models in dependence on the level of therapy
experience. In order to do this, we group the therapy samples in the test set into di�erent
bins based on the number of therapies administered prior to the therapy of interest � the
current therapy. Note that for some patients some therapy information might be missing.
Thus, with the sample binning we make sure that the samples in the treatment-experienced
bin (denoted by > 5) originate from patients that had at least �ve previous therapies. Some
details on each of the bins are given in Table 6.1. We assess the quality of a given target
model by reporting its performance for each of the bins.

Table 6.1: Details on the bins grouping the test samples based on their corresponding
number of previous therapies.

Bin 0− 2 3− 5 > 5

Sample count 807 225 275

Success rate 89% 82% 68%

Another important property of our approach is its ability to address the uneven and sparse
representation of the di�erent therapies. This property arises from the de�nition of simi-
larities of therapy sequences where the current therapies are always matched. In order to
consider the sparse representation of the di�erent therapies when assessing the performance
of our models we adopt the validation scenario from Chapters 4 and 5: the therapies in
the test set are grouped based on the number of samples they have in the training set, and
then the model performance on each of the groups is measured. The details on the sample
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Figure 6.2: Histogram that groups all labeled samples in our clinical data set based on their
corresponding number of known previous therapies. The histogram illustrates
the uneven representation with respect to the length of the treatment history
in the data, where the largest group with size 2600 consists of samples with
none or only one known previous therapy.

counts and the success rates in each of the bins are given in Table 6.2.

Table 6.2: Details on the bins grouping the test samples based on the number of training
examples for their corresponding therapy combinations.

Bin 0− 7 8− 30 > 30

Sample count 217 242 848

Success rate 77% 82% 85%

In order to be able to assist the selection of a potential combination therapy for HIV
patients our method should provide a good ranking based on the probability of therapy
success. For this reason, we carry out the model selection based on AUC (Area Under the
ROC Curve) results and use AUC to assess the model performance. The standard errors
of the AUC values and the signi�cance of the di�erence of two AUCs used for the pairwise
method comparison are estimated as described in Hanley and McNeil (1983).
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Reference methods. In our computational experiments we compare the results of our
history-similarity approach, denoted as history-similarity validation scenario, to those of
the one-for-all validation scenario and the one-for-all + hist mutations validation scenario,
which are used as reference methods. The one-for-all reference method mimics the most
common approach in the �eld where a single linear logistic regression model is trained on
all available therapy samples in the data set. The information on the individual drugs
comprising the target (most recent) therapy and the drugs administered in all its available
preceding therapies are encoded in a binary vector and supplied as input features. On the
one hand, this is a very simple way of incorporating knowledge on treatment history into a
statistical model. On the other hand, however, it neglects the information on the speci�c
drug combinations comprising the patients' treatment history and the order in which they
were administered. We should also point out that removing the similarity score weights
from the history-similarity approach yields the one-for-all method. The one-for-all + hist

mutations approach is a modi�ed version of one-for-all approach where the drugs from the
drug indicator representation of the treatment history are replaced with their respective
cumulative resistance-mutation pro�les. In this way the accumulated mutations of the
latent virus population are encoded in the input feature space.
When assessing the ability of our history-similarity model to address the uneven represen-
tation of the di�erent therapies in the clinical data sets we also consider the therapy-speci�c
model as a second reference method. It represents the approaches that deal with the un-
even, sparse therapy representation by training a separate model for each combination
therapy by using not only the samples from the target therapy but also the available
samples from similar therapies with appropriate sample weights. It implements the drugs
kernel therapy similarity model as described in Bogojeska et al. (2010) on the input feature
space de�ned in the beginning of this section.

6.2.5 Experimental Results

In what follows, we �rst present the results of the validation experiments of the time-
oriented validation scenario strati�ed for the length of treatment history, followed by the
results strati�ed for the abundance of the di�erent therapies.
The experimental results for the history-similarity method and the two one-for-all reference
methods strati�ed for the length of treatment history are summarized in Figure 6.3. For
samples with a small number of previously administered therapies (≤ 5), i.e. with short
treatment histories, the three considered models have comparable performance. The low
AUC values of all methods for the group of samples with very short history lengths (≤ 2)
are to be expected. Based on the information available in our clinical data this group
comprises samples from therapy-naïve patients (about 75%) and samples from patients
who had only one or two previous HIV therapies. Therefore, most of them are successful
� the success rate is 89%. The main reason for ine�ectiveness of initial therapies is lack
of adherence. An additional reason for observing failing therapies in the bin of samples
with short treatment histories is the wrong assignment of treatment history lengths due
to the incomplete records on patient histories in the database. All these issues may be
causes for the low AUCs for the samples with short treatment history. One should also
point out that there are speci�c guidelines for both treating therapy-naïve patients with
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�rst-line therapy and administering the �rst couple of follow-up therapies, which normally
are successfully applied. This is also re�ected in the high success rate in our clinical data
for this group of therapy samples (see Table 6.1). Thus assistance is mainly necessary for
therapy-experienced patients. According to the paired di�erence test described in Hanley
and McNeil (1983) the history-similarity model that incorporates knowledge on the speci�c
therapies comprising the treatment history, their latent virus population and the order in
which they were applied signi�cantly improves the performance for the test samples stem-
ming from patients with longer treatment histories (> 5) over the two reference models
with p-value= 0.001 for the one-for-all and p-value= 0.005 for the one-for-all + hist mu-
tations model. Figure 6.4 depicts the ROC curves for this group created by using ROCR
(Sing et al., 2005).

0−2 3−5 >5

history similarity                 
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one−for−all + hist muts
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Figure 6.3: Experimental results strati�ed for the length of treatment history obtained
on the test set in the time-oriented validation scenario. The depicted barplot
represents the AUC values with their corresponding standard errors for the
history-similarity approach and the reference (one-for-all, one-for-all + hist mu-
tations) models. The test samples are grouped by their corresponding number
of available previously administered therapies � length of treatment history.

The experimental results strati�ed for the abundance of the therapies are summarized in
Figure 6.5. As can be observed, the history-similarity method achieves better results than
the three reference methods for the test therapies with 0 − 7 available training samples.
According to the paired di�erence test described in Hanley and McNeil (1983), the im-
provement is signi�cant with estimated p-value= 0.018 for the one-for-all, p-value= 0.050

for the one-for-all + hist mutations, and p-value= 0.008 for the therapy-speci�c model.
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Figure 6.4: ROC curves depicting the performance of the history-similarity approach and
the reference models for the group of test samples with more than �ve previously
administered therapies (> 5). The AUC values for each method are given in
the legend.

Considering the test therapies with 8−30 and more than 30 training samples all considered
approaches deliver comparable results with no signi�cant di�erences. The relevant ROC
curves for the rare test therapies are shown in Figure 6.6.

6.2.6 Discussion

We presented the history-similarity learning approach for predicting the outcome of com-
bination therapies that trains individual model for each target sample. Each of these
models weights di�erent training samples di�erently: the more similar the respective ther-
apy sequences to the target therapy sequence the higher their importance for the respective
model. The similarity of the therapy sequences is quanti�ed by means of sequence align-
ment which incorporates information on the resistance-relevant mutations as described in
Subsection 6.2.2. In this way we account for the bias imposed by the di�erent treatment
histories of the samples in the clinical data and we extract information on the genetic
�ngerprint of the latent virus population. According to the experimental results this ap-
proach signi�cantly outperforms the reference method for test therapies associated with
treatment-experienced patients (with at least �ve previous treatments) and exhibits com-
parable performance for the rest of the test therapies. Moreover, the comparison of the
history-similarity approach to the one-for-all + hist mutations method demonstrates once
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Figure 6.5: Experimental results strati�ed for the abundance of therapies obtained on the
test set in the time-oriented validation scenario. The depicted barplot repre-
sents the AUC values with their corresponding standard errors for the history-
similarity approach and the three reference models: the one-for-all, the one-
for-all + hist mutations, and the therapy-speci�c model. The test samples
are grouped based on the number of training examples for their corresponding
therapy combinations.

again that the detailed information on all therapies previously given to a patient and the
order in which they were administered re�ected in the alignment similarity kernel is im-
portant for the performance gain of our approach. Considering the available guidelines
for choosing the several initial HIV treatments and their high success rates, on the one
hand, and the di�culty of choosing successful therapies for heavily pretreated patients,
on the other hand, availability of statistical methods that focus on providing high-quality
models for treatment-experienced patients is becoming increasingly important. We should
also point out that the history-similarity approach is very patient speci�c since it trains
sample-speci�c models that use very detailed treatment history information. In this man-
ner it makes one step further in the direction of personalized HIV treatment.

Our model also addresses the uneven therapy representation in the clinical data sets and
outperforms the reference methods for rare test therapies. This is an important feature
because the rare therapies comprise 61% of the di�erent therapies in the test set.

An example of how the history-similarity approach can tackle the bias in the clinical
data sets introduced from the di�erent treatment backgrounds of the samples and their
sparse representation is illustrated in Figure 6.7. From the image of the therapy sequence
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Figure 6.6: ROC curves displaying the performance of the history-similarity approach and
the reference models for the rare therapies (with 0− 7 training samples) of the
test set. The AUC values for each method are given in the legend.

corresponding to the sample of interest (Figure 6.7 (a)) we can observe that the target
model predicts the outcome of the therapy ZDV 3TC SQV TDF RTV LPV � this is
the most recent therapy in the therapy sequence, and the therapy sequence has a length
of nine. Furthermore, Figure 6.7 (b) depicts the three most relevant therapy sequences
for this speci�c model. Here the relevance is re�ected in the similarity of the training
therapy sequences to the target therapy sequence. One can observe that the most recent
therapies in these sequences are similar to the most recent target therapy. Moreover, the
corresponding training samples originate from pretreated patients. Also the average length
of the therapy sequences for the 100 most relevant training samples for the considered model
is 11. In this way the target model assigns the highest relevance to the training samples
originating from therapy-experienced patients with therapy sequences similar to the target
therapy sequence and thereby compensates for the bias caused by the di�erent treatment
backgrounds of the training samples and the sparse representation of therapy sequences.
Furthermore, the available information on the contribution of each training combination
therapy to predicting the outcome of the sample of interest is an important aspect of model
interpretability. Such information details the most relevant training therapy sequences for
a given target therapy sequence and thereby enables access to the argumentative basis of
the predictions. More detailed insight of the impact of the complete training sample on the
predictions for the target sample (Figure 6.7 (a)) is depicted in Figure 6.8. It images the
distribution of the training sample weights for the therapy sequence of the target sample.
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ZDV DDI > ZDV DDC > ZDV 3TC > ZDV 3TC IDV > D4T 3TC IDV > 
D4T 3TC SQV RTV > DDI D4T 3TC NFV > DDI D4T EFV > DDI D4T NVP > 
ZDV 3TC ABC > DDI ABC NVP > D4T 3TC RTV LPV

ZDV > ZDV DDI > D4T 3TC > D4T 3TC SQV > D4T SQV RTV > D4T 3TC SQV > 
D4T SQV RTV > DDI D4T NFV > D4T 3TC EFV > 3TC TDF EFV > 
ZDV 3TC RTV APV >  3TC TDF RTV APV

ZDV > ZDV DDI > ZDV > ZDV 3TC SQV > DDI D4T RTV LPV > DDI D4T EFV > 
DDI TDF EFV >  ZDV 3TC TDF > ZDV 3TC TDF SQV RTV LPV

a)

ZDV > ZDV DDI > ZDV 3TC > ZDV 3TC IDV > D4T 3TC IDV > D4T ABC EFV > 
D4T ABC TDF EFV > D4T TDF > D4T 3TC TDF RTV LPV

b)

Figure 6.7: Example demonstrating the ability of the history similarity approach to tackle
the bias introduced by the di�erent treatment backgrounds of the samples. (a)
target therapy sequence; (b) therapy sequences of the three most relevant train-
ing therapies for the given target therapy sequence. The therapies comprising
each therapy sequence are given from older to newer where the current (latest)
therapy is depicted in red and > denotes a treatment change.

An additional contribution to model interpretability is achieved by assessing the relevance
of the di�erent input features, namely, the mutations in the viral sequence, the drugs
comprising the current therapy and the drugs appearing in all previous therapies. This
can easily be accomplished if we observe that we have a separate model for each sample and
each of these models is trained on features describing the viral genome, the current therapy
and the drugs from all previous therapies. In such a setting the importance of an input
feature of the target model quanti�es its relevance. One way to quantify feature importance
is by computing the z-scores for each model coe�cient: the higher the magnitude of the
z-score the more signi�cant the feature. In this manner we perform a statistical test for
each model coe�cient that checks the null hypothesis that the considered coe�cient is
zero, while all others are not. Figure 6.9 and 6.10 illustrate an interesting example for the
relevance of the di�erent input features for the sample with therapy sequence depicted in
Figure 6.7 (a). In Figure 6.9 one can observe the importance of the di�erent mutations
for the considered therapy sequence. Thus, the three most important mutations are given
as follows: 16, 30 and 54 for the protease sequence; and 151, 70 and 230 for the reverse
transcriptase sequence. According to Figure 6.10 the drugs comprising the current therapy
ordered by their relevance are given by: LPV TDF 3TC RTV ZDV SQV, and the three
most important drugs from the drugs administered in the history of the considered therapy
sequence are: LPV, RTV and DDI.

One disadvantage of the history-similarity method is that it is quite compute-intensive,
since it trains an individual model for each target sample. To overcome this problem we
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Figure 6.8: Distribution density of the sample-speci�c similarity weights for the training
set corresponding to the therapy sequence depicted in Figure 6.7 (a).

use the trust region Newton optimization for logistic regression (Lin et al., 2008) and thus
provide an e�cient way for training the individual models � one model is trained in a
fraction of a second. Moreover, the alignment similarities of the target therapy sequence
to all training therapy sequences is computed in about four minutes for our training data
with 5230 samples. The only bottleneck is computing the pairwise similarity alignments for
all training samples in the model selection procedure. However, they can be precomputed
and stored for all di�erent therapy sequences in the available clinical data set. Thus, new
alignment scores need to be computed only if the training set is extended with new samples
whose corresponding therapy sequences are not among the ones appearing in the previous
version of the training data. Whenever we encounter such sequences we can compute
their alignment scores for all training therapy sequences and store them together with
the others. This enables fast model selection procedure whenever there is an update of
the training data. More speci�cally, our tuning set comprises 261 di�erent combination
therapies, and thus for a given precomputed similarity alignment kernel the model selection
procedure screens 456 di�erent value combinations for the two model selection parameters
(the regularization and the smoothing parameter) speci�ed in Optimization Problem 6.1 in
Subsection 6.2.3. In total, we train 119016 logistic regression models. Our implementation
completes the model selection procedure in less than 12 hours and this procedure only
needs to be repeated whenever there is an update of the training data set.
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Figure 6.9: Barplot of z-scores showing the importance of the di�erent viral sequence re-
lated input features: (a) protease mutations; and (b) reverse transcriptase
mutations for the therapy sequence depicted in Figure 1 (a). The features
appearing in the speci�c target sample are depicted in black.
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Figure 6.10: Barplot of z-scores showing the importance of the di�erent drug input fea-
tures: (a) drugs comprising the current therapy; and (b) drugs appearing in
treatment history for the therapy sequence depicted in Figure 1 (a). The
features appearing in the speci�c target sample are depicted in black.
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6.3 History Distribution Matching Method

The history distribution matching approach predicts the e�ectiveness of HIV combina-
tion therapies by simultaneously addressing several problems regarding the available HIV
clinical data sets: the di�erent treatment backgrounds of the samples, the uneven rep-
resentation of the di�erent levels of therapy experience, the missing treatment history
information, the uneven therapy representation and the unbalanced therapy outcome rep-
resentation especially pronounced in recently collected samples. The main idea behind this
method is that the predictions for a given patient should originate from a model trained
using samples from patients with treatment backgrounds similar as the one of the target
patient. The details of this method are summarized in Algorithm 3. In what follows, we
explain each step of this algorithm.

Algorithm 3: History distribution matching method

1. Cluster the training samples by using the pairwise dissimilarities of their
corresponding therapy sequences.

2. For each (target) cluster:

• Match the distribution of all available training samples to the distribution
of samples in the target cluster.

• Train a sample-weighted linear logistic regression model with the sample
weights computed in the distribution matching step.

6.3.1 Clustering Based on Similarities of Therapy Histories

Clustering partitions a set of objects into clusters, such that the objects within each cluster
are more similar to one another than to the objects assigned to di�erent clusters (Hastie
et al., 2009). In the �rst step of Algorithm 3, all available training samples are clustered
based on the pairwise dissimilarity of their corresponding therapy sequences. In the fol-
lowing, we �rst describe a similarity measure for therapy sequences and then present the
details of the clustering.

Similarity of therapy sequences. In order to quantify the pairwise similarity of therapy
sequences we use a slightly modi�ed version of the alignment similarity kernel introduced
in the �rst part of this chapter. It adapts sequence alignment techniques (Needleman and
Wunsch, 1970) to the problem of aligning therapy sequences by considering the speci�c
therapies given to a patient, their respective resistance-relevant mutations, the order in
which they were applied and the length of the therapy sequence. It has one parameter
that speci�es the gap cost.
For the history distribution matching method, we modi�ed the alignment similarity kernel
described in the paragraph above such that it also takes the importance of the di�erent
resistance-relevant mutations into account. This is achieved by updating the resistance
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mutations kernel, where instead of using binary vectors that indicate the occurrence of a
set of resistance-relevant mutations, we use vectors that indicate their importance. If two
or more drugs from a certain drug group that comprise a target therapy share a resistance
mutation, then we consider its maximum importance score. This is the most intuitive
way of assigning importance for the resistance mutations relevant for a set of drugs that
target the same virus protein. Importance scores for the resistance-relevant mutations are
derived from in-vivo experiments and can be obtained from the Stanford University HIV
Drug Resistance Database (Liu and Shafer, 2006). Furthermore, we want to keep the cluster
similarity measure parameter-free, such that in the process of model selection the clustering
Step 1 in Algorithm 3 is decoupled from the Step 2 and is computed only once. This results
in time-e�cient model selection procedure and is achieved by computing the alignments
with zero gap costs. However, in this case only the similarities of the matched therapies
comprising the two compared therapy sequences contribute to the similarity score and thus
the di�ering lengths of the therapy sequences are not accounted for. Having a clustering
similarity measure that takes the di�ering therapy lengths into account is important for
tackling the uneven sample representation with respect to the level of therapy experience.
In order to achieve this we normalize each pairwise similarity score with the length of the
longer therapy sequence. This yields pairwise similarity values in the interval [0, 1] which
can easily be converted to dissimilarity values in the same range by subtracting them from
1.

Clustering. Given the measure of dissimilarity of therapy sequences, we cluster our data
using the most popular version of K-medoids clustering (Hastie et al., 2009), referred to
as partitioning around medoids (PAM) (Kaufman and Rousseeuw, 1990). The details of
PAM are presented in Algorithm 4.
After an initial cluster assignment based on randomly chosen K data samples as cluster
medoids (centers), PAM exchanges each medioid with non-medoid data samples and selects
the exchange that results in maximum decrease of the objective function. This process is
repeated until no exchanges bene�cial for the objective function can be found. The main
reason why we choose this approach instead of the simpler K-means clustering (Hastie
et al., 2009) is that it can use any precomputed dissimilarity matrix. We select the number
of clusters with the silhouette validation technique (Rousseeuw, 1987), which uses the so
called silhouette value de�ned as follows.

De�nition 2 (Silhouette Value). Let C1, . . . , Ck denote a cluster assignment for a given

data set {x1, . . . ,xn} based on a dissimilarity matrix d with ij-th element denoted as d(i, j).

Let

a(i) :=
1

|Ck − 1|
∑

j∈Ck,j 6=i
d(i, j)

be the average dissimilarity of xi to the data points in its cluster Ck. Let

b(i) := min
Cj 6=Ck

dc(i, Cj),

where

dc(i, C) :=
1

|C|
∑
j∈C

d(i, j)
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Algorithm 4: Partitioning Around Medoids (PAM)

Input: An arbitrary dissimilarity matrix d and the number of clusters K.

1. Initialize medoids {µj , j = 1, . . . ,K}
by randomly choosing K numbers (data samples) from {1, . . . , n}.

2. Assign each data point i to the closest medoid by computing:

C(i) = arg min
j=1,...,K

d(i, µj).

3. Repeat until convergence:
For each {µj , j = 1, ...,K}:

For each {i = 1, . . . , n and i 6= µj}:
Swap i with µj .
Compute the objective function:

n∑
i=1

min
j=1,...,K

d(i, µj).

Select the swap that yields the maximum decrease of the objective function.

4. Compute the resulting cluster assignment as in step 2.

denotes the average dissimilarity of xi to all data samples in the cluster C. The silhouette

value is then de�ned as:

s(i) :=
b(i)− a(i)

min(a(i), b(i))
.

The silhouette values lie in the interval [−1, 1], where higher values indicate better clus-
tering of a given target sample. Intuitively, the more similar the target data sample xi is
to the samples in its respective cluster compared to the samples in any other cluster the
higher its corresponding silhouette value s(i). By averaging over the silhouette values of all
data samples one obtains the cluster's silhouette width. Finally, the silhouette validation
technique uses the magnitude of the average silhouette width to assess the quality of the
clustering and select the optimal number of clusters.

6.3.2 Cluster Distribution Matching

The clustering step of the history distribution matching method groups the training data
into di�erent bins based on their corresponding therapy sequences. However, the complete
treatment history (all previously administered combination therapies) is not necessarily
available for all patients in our clinical data set. Moreover, the information regarding the
completeness of a patient's treatment history is also missing for many patients. There-
fore, by restricting the prediction model for a target sample only to the data from its
corresponding cluster, the model might ignore relevant information from the other clus-
ters. The approach we use to deal with this issue is inspired by the multi-task learning
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with distribution matching method introduced in Bickel et al. (2008). More details on this
method are given in Chapter 3.
For the sake of simplicity, in the rest of the chapter we will denote the set of all input
features by x, i.e. x = (x, t,h) (see Subsection Problem Setting). In our current problem
setting, the goal is to train a prediction model fc : x → y for each cluster c of similar
therapy sequences, where x denotes the input features and y denotes the label. The
straightforward approach to achieve this is to train a prediction model by using solely the
samples from cluster c. However, since the available treatment history for some samples
might be incomplete, totally excluding the samples from all other clusters (6= c) ignores
relevant information about the model fc. Furthermore, the cluster-speci�c tasks are related
and the samples from the other clusters especially those close to the cluster boundaries of
cluster c also carry valuable information for the model fc. Therefore, we use a multi-task
learning approach where a separate model is trained for each cluster by not only using the
training samples from the target cluster, but also the available training samples from the
remaining clusters with appropriate sample-speci�c weights. These weights are computed
by matching the distribution of all samples to the distribution of the samples in the target
cluster and they thereby re�ect the relevance of each sample for the target cluster. In
this way, the model for the target cluster uses information from the input features to
extract relevant knowledge from the other clusters. Such knowledge is available because
of the missing information from the treatment histories and the similarity of the tasks fc
associated with each cluster.
More formally, let D = {(x1, y1, c1), . . . , (xm, ym, cm)} denote the training data, where ci
denotes the cluster associated with the training sample (xi, yi) in the history-based clus-
tering. The training data are governed by the joint training distribution

∑
c p(c)p(x, y|c).

The most accurate model for a given target cluster t minimizes the loss with respect to
the conditional probability p(x, y|t) referred to as the target distribution. In Bickel et al.
(2008) and Chapter 3 we have shown that:

E(x,y)∼p(x,y|t)[`(ft(x))] = E(x,y)∼
∑
c p(c)p(x,y|c)[rt(x, y)`(ft(x))], (6.2)

where:

rt(x, y) =
p(x, y|t)∑

c p(c)p(x, y|c)
. (6.3)

In other words, by using sample-speci�c weights rt(x, y) that match the training distribu-
tion

∑
c p(c)p(x, y|c) to the target distribution p(x, y|t) we can minimize the expected loss

with respect to the target distribution by minimizing the expected loss with respect to the
training distribution. In this way we train the model for the target cluster t by using all
available training samples and thereby tackle the problem of missing data that arises from
the incomplete treatment history information. The weighted training data is governed by
the correct target distribution p(x, y|t) and the sample weights re�ect the relevance of each
training sample for the target model. The weights are derived based on information from
the input features. If a sample was assigned to the wrong cluster due to the incompleteness
of the treatment history, by matching the training to the target distribution it can still
receive high sample weight for the model of its correct cluster.
In order to avoid the estimation of the high-dimensional densities p(x, y|t) and p(x, y|c) in
Equation 6.3, we follow the example of Bickel et al. (2007, 2008) and compute the sample
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weights rt(x, y) using a discriminative model for a conditional distribution with a single
variable:

rt(x, y) =
p(t|x, y)

p(t)
, (6.4)

where p(t|x, y) quanti�es the probability that a sample (x, y) randomly drawn from the
training set D belongs to the target cluster t. p(t) is the prior probability which can easily
be estimated from the training data.
As in Bickel et al. (2008), p(t|x, y) is modeled for all clusters jointly using a kernelized
version of multi-class logistic regression with feature mapping that separates the e�ective
from the ine�ective therapies:

Φ(x, y) =

[
δ(y,+1)x

δ(y,−1)x

]
, (6.5)

where δ is the Kronecker delta (δ(a, b) = 1, if a = b, and δ(a, b) = 0, if a 6= b). In this way,
we can train the cluster-discriminative models for the e�ective and the ine�ective therapies
independently, and thus, by proper time-oriented model selection address the increasing
imbalance in their representation over time. Formally, the multi-class model is trained
by maximizing the log-likelihood over the training data using a Gaussian log-prior on the
model parameters:

arg max
v

∑
(xi,yi,ci)∈D

log(p(ci|xi, yi,v))− vTΣ−1v.

In the equation above v are the model parameters (a concatenation of the cluster speci�c
parameters vc), and Σ is the covariance matrix of the Gaussian prior.

6.3.3 Sample-weighted Linear Logistic Regression Method

As described in the previous subsection, we use a multi-task distribution matching proce-
dure to obtain sample-speci�c weights for each cluster, which re�ect the relevance of each
sample for the corresponding cluster. Then, a separate linear logistic regression model that
uses all available training data with the proper sample weights is trained for each cluster.
More formally, let t denote the target cluster and let rt(x, y) denote the weight of the
sample (x, y) for the cluster t. Then, the prediction model for the cluster t that minimizes
the loss over the weighted training samples is given by:

arg min
wt

1

|D|
∑

(xi,yi)∈D

rt(xi, y)γ · `(ft(xi), yi) + σwT
t wt, (6.6)

where wt are the model parameters, σ is the regularization parameter, γ is a smoothing
parameter for the sample-speci�c weights and `(ft(x), y) = ln(1+exp(−ywT

t x)) is the loss
of linear logistic regression.
All in all, the history distribution matching method �rst clusters the training data based
on their corresponding treatment sequences and then trains a separate model for each
cluster by using relevant data from the remaining clusters. By doing so it tackles the
problems of the di�erent treatment backgrounds of the samples and the uneven sample
representation in the clinical data sets with respect to the level of therapy experience.
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Since the alignment kernel considers the most recent therapy and the drugs comprising
this therapy are encoded as a part of the input feature space our method also deals with
the di�ering therapy abundances in the clinical data sets.
Once we have the models for each cluster, we use them to predict the label of a given test
sample x as follows. First of all, we use the treatment sequence of the target sample to
calculate its dissimilarity to each of the cluster centers. Then, we assign the sample x to
the cluster c with the closest cluster center. Finally, we use the logistic regression model
trained for cluster c to predict the label y for the target sample x. Note that the target
therapy sequence is only aligned to the therapy sequences of the cluster centers which
enables very fast prediction � in the range of a couple of seconds.
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Figure 6.11: Silhouette widths with their corresponding standard deviations for di�erent
number of clusters: (a) two to �fty; and (b) two to ten. The standard de-
viations are estimated with the bootstrap method (B = 100) (Hastie et al.,
2009).

6.3.4 Validation Setting

Time-oriented validation scenario. The validation setting for the history distribution
matching method is very similar to the one described in the �rst part of this chapter.
The computational experiments are performed on the same clinical data set by using the
time-oriented validation scenario, where the test data are �rst strati�ed with respect to
the length of their corresponding treatment histories and then with respect to the ther-
apy abundance of their corresponding therapies. Since the history distribution matching
method aims at addressing the problem of growing imbalance in the therapy outcome rep-
resentation in the clinical data sets over time, we display the success rates of the training,
tuning and test data sets generated in the time-oriented scenario in Table 6.3. It can be
observed that there is a large gap between the abundances of the e�ective and ine�ective
therapies, especially for the most recent data. The training of the cluster-discriminative
models for the e�ective and the ine�ective therapies independently in concert with the se-
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Figure 6.12: Clustering results for the training data set.

lection of the model parameters on the most recent training data (the tuning set chosen in
the time-oriented validation scenario), enables our history distribution matching approach
to tackle the growing gap between the abundances of the successful and failing therapies
over time.

Table 6.3: Details on the data sets generated in the time-oriented validation scenario.

Data set training tuning test
Sample count 3596 1634 1307

Success rate 69% 79% 83%

Reference methods. In our computational experiments we compare the results of our
history distribution matching approach, denoted as transfer history validation scenario, to
those of four reference approaches: the one-for-all validation scenario, the therapy-speci�c
validation scenario and the history-similarity validation scenario, all explained in the �rst
part of this chapter, and the history-clustering validation scenario. The history-clustering
method implements a modi�ed version of the algorithm of the history aware distribution
matching method which skips the distribution matching step. In other words, a separate
model is trained for each cluster by using only the data from the respective cluster.
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Performance measures. The performances of all considered methods are assessed by
reporting their corresponding accuracies (ACC) and AUCs (Area Under the ROC Curve)
obtained on the test set. The accuracy re�ects the ability of the methods to make correct
predictions, i.e. to discriminate between successful and failing HIV combination therapies.
With the AUC we are able to assess the quality of the ranking based on the probability of
therapy success. For this reason, we carry out the model selection based on both accuracy
and AUC and then use accuracy or AUC, respectively, to assess the model performance. In
order to compare the performance of two methods on a separate test set, the signi�cance of
the di�erence of two accuracies as well as their standard errors are calculated as described
in Section 3.4 of Chapter 3. The standard errors of the AUC values and the signi�cance
of the di�erence of two AUCs used for the pairwise method comparison are estimated as
described in Hanley and McNeil (1983).
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Figure 6.13: Accuracy results with their corresponding standard errors for the di�erent
models obtained on the test set in the time-oriented validation scenario. The
test samples are grouped based on their corresponding number of known pre-
vious therapies.

6.3.5 Experimental Results

According to the results from the silhouette validation technique (Rousseeuw, 1987) dis-
played in Figure 6.11, the �rst clustering step of Algorithm 3 divides our training data
into two clusters � one comprises the samples with longer therapy sequences (with aver-
age treatment history length of 5.507 therapies), and the other one with shorter therapy
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Figure 6.14: AUC results with their corresponding standard errors for the di�erent models
obtained on the test set in the time-oriented validation scenario. The test
samples are grouped based on their corresponding number of known previous
therapies.

sequences (with average treatment history length of 0.308 therapies). Thus, the transfer
history distribution matching method trains two models, one for each cluster. The clus-
tering results are depicted in Figure 6.12. In what follows, we �rst present the results of
the validation experiments of the time-oriented validation scenario strati�ed for the length
of treatment history, followed by the results strati�ed for the abundance of the di�erent
therapies. In both cases we report the test accuracies and AUCs for all considered methods.

The computational results for the transfer history method and the four reference methods
strati�ed for the length of therapy history are summarized in Figures 6.13 and 6.14, where
Figure 6.13 depicts the accuracies and Figures 6.14 depicts the AUCs. For samples with
a small number of previously administered therapies (≤ 5), i.e. with short treatment
histories, all considered models have comparable accuracies. For test samples from patients
with longer treatment histories (> 5) the transfer history approach achieves signi�cantly
better (p-values ≤ 0.004) accuracy compared to the accuracies of all considered reference
methods. According to the paired di�erence test described in Hanley and McNeil (1983),
the history-similarity method achieves signi�cantly better AUC than the transfer history
approach for test samples with long treatment histories (> 5) with estimated p-value=

0.021. The transfer history approach has signi�cantly better AUC performance for test
samples with longer (> 5) treatment histories compared to the one-for-all (p-value= 0.043)
and the history-clustering (p-value= 0.044) reference methods. It also has better AUC
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Figure 6.15: ROC curves depicting the performance of the history-similarity approach and
the reference approaches for the group of test samples with more than �ve
previously administered therapies (> 5). The AUC values for each method
are given in the legend.

performance compared to the one of the therapy-speci�c model, yet this improvement is not
signi�cant (p-value = 0.253). Furthermore, the transfer history approach achieves better
AUCs for test samples with less than �ve previously administered therapies compared
to all reference methods. However, the improvements are only signi�cant for the one-
for-all method (p-value= 0.007) and the history-clustering method (p-value= 0.080). The
corresponding p-values for the history-similarity and the therapy-speci�c methods are 0.189

and 0.178, respectively. Figure 6.15 depicts the ROC curves for the group of test samples
with more than �ve previously administered therapies corresponding to the AUC results
presented in Figure 6.14.

The experimental results strati�ed for the abundance of the therapies summarizing the
test accuracies and AUCs for all considered methods are depicted in Figures 6.16 and 6.17,
respectively. As can be observed from Figure 6.16, all considered methods have comparable
accuracies for the test therapies with more than seven samples. The transfer history
method achieves signi�cantly better (p-values ≤ 0.0001) accuracy compared to all reference
methods for the test therapies with few (0 − 7) available training samples. Considering
the AUC results displayed in Figure 6.17, the transfer history approach outperforms the
one-for-all, the therapy-speci�c and the history-clustering models for the rare test therapies
(with 0− 7 training samples) with estimated p-values of 0.05, 0.042 and 0.1, respectively.
According to the paired di�erence test described in Hanley and McNeil (1983), the slightly
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Figure 6.16: Accuracy results with their corresponding standard errors for the di�erent
models obtained on the test set in the time-oriented validation scenario. The
test samples are grouped based on the number of available training examples
for their corresponding therapy combinations.

better AUC value of the history-similarity method for the rare test therapies compared to
the one of the transfer history model is not signi�cant (p-value= 0.170). The one-for-all, the
therapy-speci�c and the history similarity models have slightly better AUC performance
than the transfer history and the history-clustering approaches for test therapies with 8−30

available training samples. However, the improvements are not signi�cant with p-values

larger than 0.141 for all pairwise comparisons. Considering the test therapies with more
than 30 training samples the transfer history approach signi�cantly outperforms the one-
for-all and the history-clustering reference approaches with estimated p-values of 0.037

and 0.064, respectively. It also has slightly better AUC performance compared to those
of the history-similarity and the therapy-speci�c models, however these improvements are
not signi�cant (with p-values≥ 0.136). Figure 6.18 depicts the relevant ROC curves for
all considered methods for the rare test therapies (with 0 − 7 available training samples)
corresponding to the AUC results from Figure 6.17.

To summarize, for test samples stemming from patients with long treatment history and
for test samples associated with rare therapies the transfer history approach achieves sig-
ni�cantly better accuracy than all considered reference approaches. Furthermore, its AUC
performance for this group of test samples is signi�cantly better than those of the one-for-
all and the history-clustering methods. The history-similarity approach has better AUC
performance than the one of the transfer history method for the test therapies with long
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Figure 6.17: AUC results with their corresponding standard errors for the di�erent models
obtained on the test set in the time-oriented validation scenario. The test
samples are grouped based on the number of available training examples for
their corresponding therapy combinations.

treatment histories and the rare test therapies, however the improvement is only signi�cant
for the test therapies with long treatment histories. For the remaining test samples both
the accuracy and the AUC performance of the transfer history method is comparable to
the corresponding performance of the reference methods.
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Figure 6.18: ROC curves displaying the performance of the di�erent methods on the rare
therapies (with 0 − 7 training samples) of the test set in the time-oriented
validation scenario. The AUC values for each method are given in the legend.
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6.4 Conclusions

This chapter presents two approaches that deal with the bias introduced from the treat-
ment history when predicting the e�ectiveness of HIV combination therapies: the history-
similarity approach, which contributes information on the latent viral population and deals
with the various treatment backgrounds associated with the samples making up the clinical
data sets, the uneven sample representation with respect to the level of therapy experience,
the sparse therapy representation; and the history distribution matching method, which
addresses the di�erent treatment backgrounds of the samples, the uneven representation
of the di�erent levels of therapy experience, the incomplete treatment history information,
the uneven therapy representation and the increasing imbalance between the abundances
of the e�ective and the ine�ective therapies over time. While the history-similarity ap-
proach uses detailed information on the treatment history, available through the alignment
similarity kernel, to provide patient(sample)-speci�c predictions, the history distribution
matching method uses the alignment kernel only in the �rst clustering step. However, by
doing so this method trades some detail of the treatment history information for the ability
to also explicitly account for the problems of missing treatment history information and the
increasing imbalance between the abundances of e�ective and ine�ective therapies in the
clinical data sets over time. It should also be pointed out that the model selection proce-
dure for the history distribution matching method is more e�cient compared to the history
similarity approach because it does not train a separate model for each therapy sequence
and it uses a parameter-free version of the alignment similarity kernel. Furthermore, while
computing the prediction for a given target sample using the history-similarity requires
several minutes, the same computation takes only a couple of seconds for the history dis-
tribution matching approach. This is the case because when using the latter approach
the target therapy sequence needs to be aligned only to the cluster centers and not to the
therapy sequences of all training samples.
The computational experiments show that both history methods signi�cantly outperform
the most commonly used approach � the one-for-all reference method, that does not ac-
count for the issues mentioned above. Both history models have their prime advantage
for samples stemming from patients with long treatment histories and for samples asso-
ciated with rare therapies. When compared to each other, the history similarity method
has signi�cantly better AUC performance (ranking) for the test samples associated with
long treatment histories, while the transfer history method achieves signi�cantly better
accuracy for both the test samples associated with long treatment histories and the rare
test samples. The reasons that makes these two groups particulary interesting are given
as follows. Since there are speci�c guidelines for both treating therapy-naïve patients with
�rst-line therapy and administering the �rst couple of follow-up therapies, which normally
are successfully applied, assistance is mainly necessary for therapy-experienced patients.
Moreover, because of the lack of data and practical experience for the rare HIV combina-
tion therapies, predicting their e�ectiveness is more challenging compared to estimating
the e�ectiveness of the frequent therapies. It is worth noting that the performance of both
history approaches for samples stemming from patients with shorter treatment history, or
samples associated with abundant therapies is at least as good as the one of the considered
reference methods.



7 Conclusions

This chapter presents the complete puzzle that assembles the di�erent pieces presented in
all previous chapters. In other words, it provides an overview of the statistical methods
for predicting e�ctiveness of HIV therapies presented throughout this thesis together with
the insights they provide for the considered application. The chapter closes by sketching
potential extensions of the presented work �rst in the area of HIV research and then also
to other challenging applications.

Summarizing Remarks

The main objective of the work presented in this thesis is to develop statistical learning
approaches which are able to enhance the clinical management of HIV infections. For this
purpose we take up the challenge of devising bias-aware statistical learning methods for
HIV therapy screening � predicting the e�ectiveness of HIV combination therapies. The
methods we develop are able to deal with various kinds of bias relevant for the available
HIV clinical data sets, such as:

• the evolving trends of treating HIV patients,

• the sparse, unbalanced therapy representation,

• the di�erent treatment backgrounds of the clinical samples,

• the uneven sample representation of the various levels of treatment experience.

If these biases are not accounted for they propagate to the derived statistical models and
in�uence their predictions. Throughout the thesis we introduce �ve novel approaches for
HIV therapy screening which depending on their objective tackle the aforementioned issues.
The �rst three approaches � the distribution matching approach presented in Chapter 3,
the therapy-similarity approach described in Chapter 4 and the multi-task hierarchical
Bayes approach detailed in Chapter 5 � aim for balancing the sparse and uneven therapy
representation in the HIV clinical data sets by using di�erent routes of sharing common
knowledge among related therapies. This results in a good prediction performance for every
drug combination independent of its abundance in the clinical data set. The remaining
two approaches � the history-similarity approach and the history distribution matching
approach presented in Chapter 6 � address the bias originating from the di�erent treatment
backgrounds of the samples making up the clinical data sets. For this purpose, both
methods predict the response of an HIV combination therapy by taking not only the
most recent (target) therapy but also available information from preceding therapies into
account. In this way they achieve good predictions for rare therapies and for advanced
patients in mid to late stages of HIV treatment.

113
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All these methods use the time-oriented evaluation scenario, where models are trained on
data from the less recent past while there performance is evaluated on data from the more
recent past. This is the approach we have chosen to address the evolving treatment trends
in HIV clinical practice and thus o�er a realistic model assessment.

Distribution matching approach. This �rst approach considers each therapy as a separate
task in a multi-task learning setting. It can handle arbitrarily di�erent data distributions
for the di�erent therapies without making assumptions about the data generation process
or the relation between therapies. Brie�y, it �rst computes therapy-speci�c resampling
weights which match the joint input-output distribution of the available data from all
therapies to the joint input-output distribution of a given target therapy. Then, it uses
the weighted training data governed by the desired target distribution to train a separate
predictive model for each target therapy. In this way, the distribution matching approach
exploits the entire corpus of training data for all therapies to compensate for the sparse
therapy representation in the clinical data sets. In the computational experiments we
demonstrate that this method signi�cantly improves the overall prediction accuracy com-
pared to the relevant reference methods. Note however that while being statistically sound,
the method is also quite compute-intensive, as it involves a multi-class logistic regression
with as many classes as there are therapies (usually several hundred) � for some values of
its respective tuning parameter �tting one such multi-class logistic regression model can
take up to �ve days.

Therapy-similarity approach. This method focuses on predicting e�ectiveness of HIV
therapies from genotypic information. Like the distribution matching approach, in order
to address the sparse therapy representation it also trains separate models for each dis-
tinct therapy combination by using not only the samples from the target therapy but also
the available samples from related therapies with appropriate sample weights. However,
instead of the time-consuming distribution matching step we use two di�erent application-
speci�c similarity kernels � the drugs kernel and the groups additivity kernel � that quantify
the pairwise relatedness of the therapies. These kernels are computed in a few seconds in
a preprocessing step. This, together with the use of an e�cient optimization method
that takes advantage of the sparseness of our input data, ensures very fast model �tting
and model selection, although a separate model is trained for each combination therapy.
The therapy-similarity model is also able to directly integrate parameters of phenotypic
models that give information on the in vitro e�ectiveness of each drug as prior knowledge
through a Gaussian prior. According to the accuracy performance from the computational
experiments, this approach has its prime advantage for rare therapies. While integrat-
ing phenotypic prior knowledge did not improve the accuracies of the therapy-similarity
models, it signi�cantly improved the AUC performance for the rare test therapies. Note
that for the abundant therapies, the model has a performance comparable to the con-
sidered reference methods. Last but not least, the therapy-similarity approach provides
increased interpretability of the �tted models. On the one hand, the scores of the muta-
tions contributing to therapy e�ectiveness are derived in a therapy-speci�c manner and
can, therefore, be considered more informative than for a general model. On the other
hand, the therapy similarity kernel a�ords information on which similar therapies were
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most informative for the prediction.

Multi-task hierarchical Bayes approach. The third approach casts the problem of predict-
ing virological response to HIV combination therapies in a hierarchical Bayes framework.
Here we devise a novel approach that considers the individual drugs comprising each ther-
apy combination as separate tasks in a multi-task model that learns their additive e�ects on
the therapy outcome from the available clinical data. In this manner, our Bayes approach
uses the abundance of samples involving each individual drug to circumvent the problem
of data scarcity pertaining to some target therapies. Moreover, it allows for interactions
among the input features of the di�erent drugs by using an extended input feature space
where each drug has a separate set of dimensions. The advantage of the Bayes approach
compared to the two previous therapy-speci�c methods is that it achieves signi�cantly bet-
ter AUC performance (better ranking) for therapies with very few training samples and is
at least as powerful for abundant therapies. Furthermore, since it �ts a single model for all
therapies the Bayes method has the additional advantage of being much more time-e�cient
compared to the therapy-speci�c approaches.

History-aware modeling. The remaining two approaches account not only for the sparse,
uneven therapy representation but also for the bias originating from the di�ering treatment
backgrounds of the samples making up the clinical data. By doing so they provide good
quality predictions for treatment-experienced patients in mid to late stages of HIV treat-
ment and for rare therapies. Furthermore, they also maintain good quality predictions for
the remaining samples.

• History-similarity approach � This approach trains a separate model for each
sample of interest by using all available training samples, each with a speci�c weight,
that re�ects the similarity of their corresponding therapy sequences to the therapy
sequence of the target sample. For this purpose, it introduces a novel quantitative no-
tion of pairwise similarity of therapy sequences (termed alignment similarity kernel)
that adapts techniques from sequence alignment to the problem of aligning sequences
of therapies. This similarity measure also incorporates information on the similarity
of the corresponding genetic �ngerprints in the latent virus population of the com-
pared therapy sequences. In this way the alignment kernel captures information on
the latent virus population, all available therapies given to a patient and the order
in which they were administered. More importantly, this kernel enables the history-
similarity approach to deal with several biases relevant for the clinical data sets: the
sparsity of the various therapy sequences, the uneven sample representation with
respect to the level of therapy experience and the uneven therapy representation.
The history-similarity approach is also patient speci�c since it trains sample-speci�c
models that use very detailed treatment history information. In this manner it makes
one step further in the direction of personalized HIV treatment. Additionally, such
models are also more interpretable compared to one-for-all approaches that train a
single model for all samples which is very important property in medical applications.

• History distribution matching approach � It �rst clusters the training data
based on their corresponding treatment histories and then trains a separate model
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for each cluster by using relevant information from the remaining clusters. The rele-
vance of each sample for a corresponding target cluster is re�ected by sample-speci�c
weights obtained with a multi-task distribution matching procedure. These weights
match the distribution of the entire training set to the distribution of the target clus-
ter. While the history-similarity approach uses detailed information on the treatment
history, available through the alignment similarity kernel, to provide patient-speci�c
predictions, the history distribution matching method uses the alignment kernel only
in the �rst clustering step. By doing so, this method trades some detail of the treat-
ment history information for the ability to also account for the problems coming with
the incomplete treatment history information, the increasing imbalance between the
e�ective and ine�ective therapies over time and to provide time-e�cient prediction
(in the range of a couple of seconds).

Computational experiments show that both history-aware methods signi�cantly outper-
form the most commonly used approach that �ts a single model for all therapies by en-
coding therapy information in the input feature space and does not account for the issues
mentioned above. Both history models have their prime advantage for samples stemming
from patients with long treatment histories and for samples associated with rare thera-
pies. When compared to each other, the history-similarity method has signi�cantly better
AUC performance for the test samples associated with long treatment histories, while the
transfer history method achieves signi�cantly better accuracy for both the test samples
associated with long treatment histories and the rare test samples.

To summarize, this thesis is devoted to the challenge of developing predictive models
for HIV therapy screening while addressing the di�erent kinds of data bias relevant for
the problem at hand. More speci�cally, we begin in Chapters 3 through 5 by developing
statistical methods that consider the bias introduced by the sparse, uneven representation
of the di�erent therapies in the HIV clinical data sets. Then, in Chapter 6 we extended
this initial idea further by introducing the history-aware methods that take not only the
bias introduced by the most recent (target) therapy but also the bias which originates from
the di�erent treatment backgrounds of the clinical samples. By doing so the history-aware
models achieve better predictions for the samples associated with rare drug combinations
and long treatment histories than the considered reference methods. There are a number
of reasons that make these two groups especially interesting. For example, the rare HIV
combination therapies account for most of the therapy variety in the clinical data sets.
Moreover, because of lack of data and practical experience with administering such ther-
apies, predicting their e�ectiveness is more challenging than estimating the e�ectiveness
of frequent therapies. The search for an e�ective treatment is particulary challenging for
patients in the mid to late stages of antiretroviral therapy when the number of therapy
options is reduced and e�ective therapies are increasingly hard to �nd because of the ac-
cumulated drug resistance mutations from all previous therapies. Further, since there are
speci�c guidelines for both treating therapy-naïve patients with �rst-line therapy and ad-
ministering the �rst couple of follow-up therapies, which normally are successfully applied,
assistance is mainly necessary for therapy-experienced patients. Note that the history-
aware models do not require completely recorded treatment history of the patients and
can be utilized to enhance the clinical management of HIV patients. While the history
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distribution matching method provides real-time prediction for a given sample of interest,
the history-similarity method computes this prediction in several minutes. However, the
history-similarity method trains sample-speci�c models which makes the predictions more
patient-speci�c and more interpretable. Therefore, we expect that for the treating physi-
cians the history-similarity model will be the preferred alternative for the use in clinical
practice.

Outlook

HIV-1 subtype B is the best-studied variant of HIV and the main target of the developed
antiretroviral compounds due to its prevalence in the industrialized countries. Since the
majority of the available HIV clinical data stem from HIV-1 subtype B, the prediction
methods devised in this thesis focused on this subtype. In recent years, however, non-B
HIV-1 subtypes have been gaining attention owing to their dominance in the countries in
Africa and Asia with high HIV prevalence. Once data collection e�orts in these regions
produce a reasonable amount of data some of the methodology developed in this thesis
can be adapted to the problem of non-B HIV therapy screening. For example, each HIV-1
subtype can be considered as a separate task in a multi-task learning setting. Like this,
the relation among the di�erent HIV-1 variants can be exploited to transfer the available
knowledge from the subtype B, for which a large amount of clinical data is available, to
non-B subtypes.
The need for devising bias-aware prediction models is very general and extends far beyond
the boundaries of the HIV application presented in this thesis. A similar line of research
can be conducted for many other statistical learning applications after recognizing the
main sources of bias in their respective data sets.
One direction would be to apply the developed approaches to other biomedical applications.
One example that resembles the HIV application considered in this thesis is treatment op-
timization for Hepatitis B and Hepatitis C. Note however that in this case the employment
of our HIV tailored methods requires further research that will take the biomedical back-
ground and the clinical expertise of the new application into account to modify and extend
these methods accordingly.
Another example is the challenge of cancer diagnosis where often the available data sets for
a speci�c cancer type are very limited and originate from di�erent labs. One can use the
available data from all labs by considering each of the labs as a separate task in a multi-
task learning framework. In this way one can obtain good predictions for data produced
in a speci�c target lab by utilizing the joint information available from all labs in a proper
way.
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