
The SEMAINE API
—

A Component Integration Framework for a
Naturally Interacting and Emotionally Competent

Embodied Conversational Agent

Dissertation
zur Erlangung des Grades des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

vorgelegt von

Marc Schröder
Saarbrücken, 2011

ii

Tag des Kolloquiums: 21.12.2011

Dekan der Fakultät: Prof. Dr.-Ing. Holger Hermanns

Mitglieder des Prüfungsausschusses:

• Prof. Dr. Dietrich Klakow (Vorsitzender)

• Prof. Dr. Hans Uszkoreit (Erstgutachter)

• Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster (Zweitgutachter)

• Dr. Patrick Gebhard (Beisitzer)

iii

Kurze Zusammenfassung
Die vorliegende Dissertation behandelt das Thema der virtuellen Agenten mit
Fähigkeiten zur natürlichen Benutzer-Interaktion sowie emotionaler Kompetenz
bzgl. der Wahrnehmung und Generierung emotionalen Ausdrucks. Der Schw-
erpunkt der Arbeit liegt auf den technologischen Grundlagen für die Implemen-
tierung eines echtzeitfähigen Systems mit diesen Fähigkeiten, das aus wiederver-
wendbaren Komponenten erstellt werden kann. Die Arbeit umfasst drei Ker-
naspekte. Zum Einen beschreibt sie ein neues Framework zur Komponenten-
Integration, die SEMAINE API: Diese erleichtert die Erstellung von Emotions-
orientierten Systemen aus Komponenten, die untereinander mittels Standard- oder
Prä-Standard-Repräsentationen kommunizieren. Zweitens wird eine Systemar-
chitektur vorgestellt, welche Vorbereitung und Auslösung von Systemverhalten
entkoppelt und so zu einer substanziellen Beschleunigung der Generierungszeit
führt, wenn Systemäußerungen im Voraus geplant werden können. Drittens
beschreibt die Arbeit die W3C Emotion Markup Language, einen werdenden
Web-Standard zur Repräsentation von Emotionen in technologischen Systemen.
Es werden kritische Aspekte der Systemperformanz untersucht, wodurch gezeigt
wird, dass das Framework eine gute Basis für die Implementierung echtzeitfähiger
interaktiver Agentensysteme darstellt. Anhand von drei Beispielen wird illustriert,
dass mit der SEMAINE API leicht neue Emotions-orientierte Systeme aus neuen
und existierenden Komponenten erstellt werden können.

iv

Short Summary
The present thesis addresses the topic area of Embodied Conversational Agents
(ECAs) with capabilities for natural interaction with a human user and emotional
competence with respect to the perception and generation of emotional expressiv-
ity. The focus is on the technological underpinnings that facilitate the implementa-
tion of a real-time system with these capabilities, built from re-usable components.
The thesis comprises three main contributions. First, it describes a new component
integration framework, the SEMAINE API, which makes it easy to build emotion-
oriented systems from components which interact with one another using standard
and pre-standard XML representations. Second, it presents a prepare-and-trigger
system architecture which substantially speeds up the time to animation for system
utterances that can be pre-planned. Third, it reports on the W3C Emotion Markup
Language, an upcoming web standard for representing emotions in technologi-
cal systems. We assess critical aspects of system performance, showing that the
framework provides a good basis for implementing real-time interactive ECA sys-
tems, and illustrate by means of three examples that the SEMAINE API makes it is
easy to build new emotion-oriented systems from new and existing components.

v

Contents

1 Introduction 1
1.1 The SEMAINE project . 4
1.2 Contribution of the present thesis 4
1.3 Thematic delimitation of the present thesis 5
1.4 Publications . 6
1.5 Collaborations . 9
1.6 Outline . 10

2 Motivation 13
2.1 Emotional machine intelligence 13

2.1.1 Social and emotional intelligence 14
2.1.2 Machines as social entities 16

2.2 The potential benefits of standards for research on emotion-
oriented systems . 19

I Background 21
3 Embodied Conversational Agent systems: elements of natural inter-

action and emotional competence 23
3.1 Types of Embodied Conversational Agent systems 24

3.1.1 TV-style presenter systems 25
3.1.2 Presentation teams . 25
3.1.3 One-to-one human-ECA interaction 26
3.1.4 Multiparty conversations 28

3.2 Expressive behaviour . 30

vi CONTENTS

3.3 Perceiving emotions . 32
3.4 Responsiveness . 34
3.5 Conclusion . 37

4 Component integration frameworks for multimodal interactive sys-
tems 39
4.1 Requirements for a component integration framework in SEMAINE 39
4.2 Existing component integration frameworks 40

4.2.1 Mirage . 40
4.2.2 GECA . 41
4.2.3 VHMsg . 41
4.2.4 MULTIPLATFORM . 42
4.2.5 CHILix . 43
4.2.6 CAST . 43
4.2.7 Others . 44
4.2.8 Summary . 45

4.3 Conclusion . 47

5 Middleware 49
5.1 Message-oriented middlewares 50
5.2 Remote invocation middlewares 52
5.3 Blackboard architectures . 55
5.4 Web services . 56

5.4.1 Service-Oriented Architecture 57
5.4.2 RESTful HTTP . 58

5.5 Linguistic middlewares . 60
5.6 Multimedia middlewares . 61

5.6.1 Network-integrated multimedia middleware 62
5.6.2 Open Sound Control . 63

5.7 How to choose a middleware . 63
5.8 Conclusion . 65

CONTENTS vii

II Infrastructure 67

6 The SEMAINE API 69
6.1 Choice of a middleware for a naturally interacting and emotionally

competent ECA . 69
6.1.1 Requirements for the ECA middleware 70
6.1.2 Selection of a middleware software 73

6.2 Component Integration Framework 75
6.2.1 System integration . 76
6.2.2 Topics . 79
6.2.3 Components . 81
6.2.4 API support for relevant representation types 81
6.2.5 Supported platforms . 82
6.2.6 Status . 83

6.3 Conclusion . 83

7 System architecture of the SEMAINE system 85
7.1 Conceptual framework . 85
7.2 SEMAINE-2.0: A pipeline architecture 86

7.2.1 Feature extraction . 87
7.2.2 Understanding human behaviour 88
7.2.3 Dialogue management 88
7.2.4 Generating SAL behaviour 89

7.3 SEMAINE-3.0: Introducing the prepare-and-trigger architecture . 90
7.3.1 Overview of changes in SEMAINE-3.0 90
7.3.2 Motivation for the prepare-and-trigger architecture: Com-

petitive Queuing . 93
7.3.3 Information flow for output generation in the pipeline ar-

chitecture . 94
7.3.4 Information flow for output generation in the prepare-and-

trigger architecture . 96
7.4 Conclusion . 97

viii CONTENTS

III Communication 99
8 Representation formats 101

8.1 Representation formats supported in the SEMAINE API 101
8.1.1 Feature vectors . 102
8.1.2 EMMA . 103
8.1.3 EmotionML . 104
8.1.4 SemaineML . 105
8.1.5 SSML . 106
8.1.6 FML . 106
8.1.7 BML . 109
8.1.8 Player data . 110

8.2 Callback messages . 111
8.3 A mechanism for defining state information 112
8.4 Conclusion . 113

9 Emotion Markup Language 115
9.1 The process of defining a standard Emotion Markup Language . . 116
9.2 Previous work . 117
9.3 Use cases . 121
9.4 Requirements . 122

9.4.1 Emotion Core . 124
9.4.2 Meta-information about emotion annotation 126
9.4.3 Links to the “rest of the world” 126
9.4.4 Global metadata . 127
9.4.5 Ontologies of emotion 127

9.5 Syntax . 129
9.5.1 Design principles: self-contained emotion annotation . . . 129
9.5.2 Representations of emotion 130
9.5.3 Mechanism for referring to an emotion vocabulary 131
9.5.4 Meta-information . 131
9.5.5 References to the “rest of the world” 132
9.5.6 Time . 133
9.5.7 Representing continuous values and dynamic changes . . 134

CONTENTS ix

9.6 Scientific descriptions of emotion 135
9.7 Vocabularies for EmotionML . 138
9.8 Validating EmotionML . 140

9.8.1 Schema and processor validation in EmotionML 141
9.8.2 An alternative solution based on XML namespaces 142

9.9 Issues for future work . 146
9.10 Conclusion . 148

IV Assessment 151
10 Performance 153

10.1 Middleware . 153
10.2 Architecture . 155
10.3 Conclusion . 158

11 Re-use: Building new emotion-oriented systems with the SEMAINE
API 161
11.1 Hello world . 161
11.2 Emotion mirror . 167
11.3 A game driven by emotional speech: The swimmer’s game 169
11.4 Conclusion . 174

12 Summary and Outlook 175

A Protocol for the Player in SEMAINE 181
A.1 Data flow . 181
A.2 Command messages . 182
A.3 Callback messages . 184
A.4 Error conditions . 184

x CONTENTS

xi

Acknowledgements

Writing a PhD thesis is tough, writing a second one is crazy – as many people
have pointed out to me in recent years. They were of course right. I have done it
nevertheless, and I must say that writing gets easier over the years, but time to do
it gets scarcer even more. So my first thanks go to my family who have supported
me in sparing off family time and sitting in front of a computer instead, typing.

Second, I would like to thank the entire SEMAINE consortium for the excellent
collaboration, notably Björn Schuller, Florian Eyben, Martin Wöllmer (München),
Catherine Pelachaud, Elisabetta Bevacqua, Etienne de Sevin (Paris), Dirk Heylen,
Mark ter Maat (Twente), Maja Pantic, Michel Valstar, Hatice Gunes (London),
Roddy Cowie, Gary McKeown (Belfast), and Sathish Pammi (DFKI). Your pos-
itive and constructive attitude has made the double task of coordinator and WP
leader for system integration manageable.

Furthermore, I would like to thank the members of the Emotion Incubator
groups and the Multimodal Interaction working group at the W3C, in particular
the following people: Paolo Baggia and Enrico Zovato (Loquendo, Turin), Felix
Burkhardt (Deutsche Telekom Laboratories, Berlin), Christian Peter (Fraunhofer
IGD-R, Rostock), and Catherine Pelachaud (ParisTech). You have shown true per-
severence, in an endeavour whose long-term nature only very few of us foresaw
when we started.

Special thanks to Catherine Pelachaud for suggestions on how to improve an
earlier draft version of the ECA state-of-the-art chapter.

Thanks are also due to my colleagues at DFKI who have kindly provided rel-
evant suggestions for structuring the thesis, notably Hendrik Zender, Günter Neu-
mann, and Hans-Ulrich Krieger.

xii CONTENTS

Last but not least, I would like to thank my supervisor Hans Uszkoreit for
encouraging me to pursue this PhD in computer science, as well as for his helpful
comments and suggestions regarding an earlier draft version of this thesis.

1

Chapter 1

Introduction

Making the interaction with computers more natural for humans requires com-
puters to acquire multiple capabilities. Alongside many others, these capabilities
include aspects of communication that are emotion-related and non-verbal. This
thesis is part of a sustained effort to bring together, in one consistent framework,
many of the technologies required to endow a computer with such capabilities,
and describes how these technologies are put to use to implement a specific type
of dialogue system: a fully autonomous implementation of ‘Sensitive Artificial
Listeners’ (SAL).

We consider a one-to-one dialogue situation where, at any given time, one
user is having a conversation with one Embodied Conversational Agent (ECA)
character. The interaction is multimodal, involving speech, head movements, and
facial expressions. One of the key features of human interactions that we expect to
reproduce is that the dialogue will involve some emotional colouring – not in terms
of episodes of intense “basic” emotions, but in the sense of emotion “pervading
everyday life” (Cowie, 2010).

The goal of having a natural conversation in this setting sets technology a num-
ber of substantial challenges. The computer must be able to perceive the user’s
verbal and non-verbal behaviour, i.e. have some awareness of the words spoken,
the prosody with which they are spoken, and the user’s head movements and facial
expressions. While the user is talking, the computer must exhibit suitable listener
behaviour – notably multimodal backchannels (Yngve, 1970) which signal that
the listener is still present and following what is being said, and which may at the

2 Chapter 1. Introduction

same time provide feedback to the speaker about the listener’s reaction (Allwood
et al., 1992). Examples of such listener behaviour are head nods, smiles, or short
vocalisations such as “uh-huh” or “wow”, which may be produced individually
or in combination. The computer must determine when is a good moment to take
the turn (Sacks et al., 1974) and become the speaker itself; it must then produce a
verbal utterance which must fit the dialogue context, and which has to be spoken
with a suitable voice and synchronous facial animation, including lip movements,
facial expressions and head movements. In doing all of this, it must be aware of
any emotional colouring in the user’s behaviour, and react appropriately. If any
of these processes is not performed, does not have the right timing, or in some
other way does not match the user’s sense of natural behaviour, the quality of the
interaction is degraded.

It is important to notice that the requirements formulated above are quite dis-
tinct from the various requirements arising from the task-oriented interactions that
are often studied. For example, an accurate interpretation of the user’s words
depends on high-quality Automatic Speech Recognition (ASR) (Jurafsky et al.,
2000); efficiently achieving a dialogue goal depends on suitable dialogue struc-
tures and on modelling task domains (Allen et al., 2001b); and having a common
experiential basis for an interaction requires grounding of a machine’s knowledge
about the world (Kruijff et al., 2007). We recognise the importance of these goals,
but they are not the goals that we address in this work. They represent one of the
streams that need to converge to produce a competent artificial interactant; our
work represents another, which has received much less attention in the computa-
tional community, but which psychological research suggests is at least equally
important (Mehrabian and Ferris, 1967; Birdwhistell, 1970).

The scenario that we call “Sensitive Artificial Listeners” was developed specif-
ically to let us concentrate on the emotional and non-verbal competences involved
in conversation. Its raison d’être is to avoid the difficulties of task-oriented dia-
logues and instead address directly the emotion-related and non-verbal capabilities
that a system needs in order to have a naturally flowing conversation. A good deal
of experience indicates that the two aspects can operate rather independently (for
example, when a party is too noisy for people to hear most of each other’s words,
and yet interaction flourishes). If so, it makes sense to expect that capabilities de-
veloped in the SAL scenario can later be integrated into task-oriented interactions.

3

Since an ECA-based interactive dialogue system requires multiple input and
output processing functionalities, it is typically built from components. Each com-
ponent provides some specialised functionality; components need to communicate
representations of their processing results to one another. At the most coarse-
grained level, three building blocks of dialogue systems are usually distinguished:
(1) detection and analysis of user behaviour; (2) interpretation, deliberation and
planning; and (3) generation of system behaviour. Each of these blocks typically
has a substructure. For example, we can expect to require individual components
for detecting the emotions and non-verbal behaviour from the voice and from the
face of the user; we may want to separate the generation of the ECA’s behaviour
while speaking from the generation of its listener behaviour; and we will require
separate components for generating the synthetic voice and the visual behaviour
of the ECA. In order to provide a consistent system behaviour, these components
need to communicate with one another using jointly understood representations.

The effort needed for system integration is often underestimated (Thórisson
et al., 2004; Herzog et al., 2004). The naive assumption that it is sufficient to bring
components with the required functionality together is likely to lead to problems
– not at the beginning of the work, but at a later project stage. When integration is
required, for example to build a demonstrator system, issues related to, e.g., inter-
component communication, coordination, or traceability are likely to surface. At
that stage, usually under time pressure, these problems will be difficult to resolve
in a clean way. Making integration of software components a well-organised and
high priority task can avoid or at least reduce these problems.

Whereas each specific ECA system will be somewhat different from others,
many of the functionalities required to build them are actually the same. The bur-
den on integrating components could be somewhat lifted if clear conventions for
their interfaces were defined. Specifically, if the representations used for vari-
ous processing results followed some standard format, it would be much easier to
reuse components when building new systems.

The present thesis reports on an effort to integrate the components needed for a
naturally interacting and emotionally competent ECA into one software architec-
ture, in order to provide the building blocks needed for studying natural one-to-one
conversations between an ECA and a human user. The specific emphasis of the
work lies on the component integration framework as such, as well as on the rep-

4 Chapter 1. Introduction

resentations used for inter-component communication – notably, a standard for
representing emotions.

1.1 The SEMAINE project
This thesis has been carried out in the context of the EU-funded project “SE-
MAINE: Sustained Emotionally coloured Machine-human Interaction using Non-
verbal Expression” (2008–2010)1. The project has built a “Sensitive Artificial
Listener” (SAL) system: a multimodal dialogue system with an emphasis on non-
verbal skills – detecting and emitting vocal and facial signs of emotion and signs
related to the interaction, such as backchannel signals, in order to register and
express information such as continued presence, attention or interest, an evalua-
tion of the content, or an emotional connotation. The system has strong real-time
constraints, because it must react to the user’s behaviour while the user is still
speaking.

The project’s approach is strongly oriented towards making basic technol-
ogy for emotion-oriented interactive systems available to the research commu-
nity, where possible as open source. While the primary goal is to build a system
that can engage a human user in a conversation in a plausible way, it is also an
important aim to provide high-quality audiovisual recordings of human-machine
interactions, as well as software components that can be reused by the research
community.

1.2 Contribution of the present thesis
In order to build a system with the capabilities described above, a framework is
needed for integrating the different components into a coherent system. We can
distinguish two key requirements for this work.

1. Infrastructure: Components written in different programming languages
and running on different operating systems must work together to provide
the requested functionality. A suitable integration framework and system

1http://www.semaine-project.eu

http://www.semaine-project.eu

1.3. Thematic delimitation of the present thesis 5

architecture must be set up to enable the real-time constraints imposed by
the targeted system functionality.

2. Communication: Suitable representation formats are needed to enable sys-
tem components to communicate to one another the concepts that are im-
portant for a natural interaction between the ECA and the human. Where
possible, standard representation formats should be used to facilitate the fu-
ture reuse of components and subsystems. Of particular importance in the
context of emotion-oriented systems is a computer-readable representation
of emotion.

The present thesis describes how we have addressed these requirements. As a
solution to the infrastructure requirements, we have created the SEMAINE API,
a component integration framework based on the principles of an asynchronous
messaging middleware. In order to enable communication in a re-usable way,
we have enabled support for a number of relevant representation languages. In
particular, we have created a specification for an Emotion Markup Language.

We assess these solutions in terms of the performance obtained and in terms of
ease of re-use of the SEMAINE API for building new emotion-oriented systems.

The results of the present thesis have been used for system integration in the
SEMAINE project, thus providing the integration and communication backbone
for the system components provided by the SEMAINE partners.

1.3 Thematic delimitation of the present thesis
The topic of the thesis is the technological framework underpinning a naturally
interacting and emotionally competent interactive system.

The emphasis hereby is on the infrastructure-level technology needed to endow
an interactive system with natural and emotion-related behaviours.

Obviously there are numerous other important aspects needed in order to re-
alise a system with the required capabilities. There need to be components that
can analyse expressive behaviour from the human user’s face and voice; compo-
nents to decide whether the system should speak or listen; components to decide
which behaviour to perform; and components capable of rendering the intended

6 Chapter 1. Introduction

behaviour through face, voice, and gestures. Furthermore, there needs to be an ev-
idential basis for determining the appropriate system behaviour. Corpora need to
be collected and annotated, machine learning algorithms need to be trained, rule-
based algorithms need to be tuned, etc. Finally, the naturalness of the behaviour
of any given interactive system needs to be evaluated in order to verify the effec-
tiveness of the implemented behaviour.

All of these aspects of system design, training, tuning and evaluation are un-
doubtedly necessary to create an interactive system that can claim to be emotion-
ally competent or interacting naturally. In fact, all of these steps have been carried
out in the SEMAINE project by various project partners.

In the context of the present thesis, however, these aspects are considered pe-
ripheral and out of scope of the intended work. For our component integration
framework, the aim is to provide proper integration of the components needed for
this type of system. We describe the components of the SEMAINE system only
briefly, in order to illustrate the difference between the two system architectures
we provide (Chapter 7). Similarly, we do not carry out an interactive system eval-
uation, since it would not allow us to verify whether the requirements identified
above (see Section 1.2) have been met. Instead, we assess the framework in terms
of its performance as measurable in milliseconds, and its ease of use in terms of
the steps needed to build different emotion-oriented systems on the basis of the
framework.

1.4 Publications
The work presented in this thesis is based in parts on the following scientific and
technical publications.

Journal papers
• Schröder, M., Bevacqua, E. Cowie, R., Eyben, F., Gunes, H., Heylen, D., ter

Maat, M., McKeown, G., Pammi, S., Pantic, M., Pelachaud, C., Schuller,
B., de Sevin, E., Valstar, M., and Wöllmer, M. (submitted): Building Au-
tonomous Sensitive Artificial Listeners. Submitted to IEEE Transactions on
Affective Computing.

1.4. Publications 7

• Schröder, M. (2010). The SEMAINE API: Towards a standards-
based framework for building emotion-oriented systems. Advances
in Human-Machine Interaction, Volume 2010, Article ID 319406.
doi:10.1155/2010/319406.

Book chapters
• Schröder, M., Pirker, H., Lamolle, M., Burkhardt, F., Peter, C., and Zovato,

E. (2011). Representing emotions and related states in technological sys-
tems. In P. Petta, R. Cowie, and C. Pelachaud (Eds.), Emotion-Oriented
Systems – The Humaine Handbook (pp. 367-386). Springer.

Conference and workshop proceedings papers
• Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., and Zo-

vato, E. (submitted): EmotionML – an upcoming standard for representing
emotions and related states. Submitted to Affective Computing and Intelli-
gent Interaction, Memphis, TE, USA.

• Schröder, M., and McKeown, G. (2010). Considering Social and Emotional
Artificial Intelligence. Proc. AISB 2010 Symposium ”Towards a Compre-
hensive Intelligence Test”, Leicester, UK.

• Schröder, M., Wilson, I., Jarrold, W., Evans, D., Pelachaud, C., Zovato, E.
and Karpouzis, K. (2008). What is most important for an Emotion Markup
Language? Proc. Third Workshop Emotion and Computing, KI 2008,
Kaiserslautern, Germany.

• Schröder, M., Devillers, L., Karpouzis, K., Martin, J.-C., Pelachaud, C., Pe-
ter, C., Pirker, H., Schuller, B., Tao, J. and Wilson, I. (2007). What should
a generic emotion markup language be able to represent? Proc. 2nd In-
ternational Conference on Affective Computing and Intelligent Interaction
(ACII’2007), Lisbon, Portugal.

• Schröder, M., Pirker, H. and Lamolle, M. (2006). First suggestions for an
Emotion Annotation and Representation Language, LREC 2006 workshop
on Emotion: Corpora for Research on Emotion and Affect, Genoa, Italy.

8 Chapter 1. Introduction

Technical reports
• Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., and Zovato,

E. (2011). Emotion Markup Language (EmotionML) 1.0. W3C Last Call
Working Draft, World Wide Web Consortium. http://www.w3.org/TR/
2011/WD-emotionml-20110407/

• Schröder, M., Pelachaud, C., Ashimura, K., Baggia, P., Burkhardt, F., Oltra-
mari, A., Peter, C., et al. (2011). Vocabularies for EmotionML. W3C Work-
ing Draft, World Wide Web Consortium. http://www.w3.org/TR/2011/
WD-emotion-voc-20110407/

• Schröder, M., Baggia, P., Burkhardt, F., Oltramari, A., Pelachaud, C., Peter,
C., and Zovato, E. (2010). Emotion Markup Language (EmotionML) 1.0.
W3C Working Draft, World Wide Web Consortium. http://www.w3.org/
TR/2010/WD-emotionml-20100729/

• Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., and Zovato,
E. (2009). Emotion Markup Language (EmotionML) 1.0. W3C First Public
Working Draft, World Wide Web Consortium. http://www.w3.org/TR/
2009/WD-emotionml-20091029/

• Schröder, M., Baggia, P., Burkhardt, F., Martin, J., Pelachaud, C., Pe-
ter, C., Schuller, B., Wilson, I. and Zovato, E. (2008). Elements
of an EmotionML 1.0. W3C Final Incubator Group Report, World
Wide Web Consortium. http://www.w3.org/2005/Incubator/emotion/
XGR-emotionml-20081120/

• Burkhardt, F. and Schröder, M. (2008). Emotion Markup Language:
Requirements with Priorities. W3C Incubator Group Report, World
Wide Web Consortium. http://www.w3.org/2005/Incubator/emotion/
XGR-requirements-20080513/

• Schröder, M., Zovato, E., Pirker, H., Peter, C. and Burkhardt,
F. (2007). W3C Emotion Incubator Group Final Report. World
Wide Web Consortium. http://www.w3.org/2005/Incubator/emotion/
XGR-emotion-20070710

http://www.w3.org/TR/2011/WD-emotionml-20110407/
http://www.w3.org/TR/2011/WD-emotionml-20110407/
http://www.w3.org/TR/2011/WD-emotion-voc-20110407/
http://www.w3.org/TR/2011/WD-emotion-voc-20110407/
http://www.w3.org/TR/2010/WD-emotionml-20100729/
http://www.w3.org/TR/2010/WD-emotionml-20100729/
http://www.w3.org/TR/2009/WD-emotionml-20091029/
http://www.w3.org/TR/2009/WD-emotionml-20091029/
http://www.w3.org/2005/Incubator/emotion/XGR-emotionml-20081120/
http://www.w3.org/2005/Incubator/emotion/XGR-emotionml-20081120/
http://www.w3.org/2005/Incubator/emotion/XGR-requirements-20080513/
http://www.w3.org/2005/Incubator/emotion/XGR-requirements-20080513/
http://www.w3.org/2005/Incubator/emotion/XGR-emotion-20070710
http://www.w3.org/2005/Incubator/emotion/XGR-emotion-20070710

1.5. Collaborations 9

Public project deliverable reports
• Schröder, M., Bevacqua, E., Eyben, F., Gunes, H., ter Maat, M., Pammi,

S., de Sevin, E., Valstar, M. and Wöllmer, M. (2010). Final SAL system
(SEMAINE Project Deliverable No. D1d).

• Schröder, M. (2009). First full-scale SAL system (SEMAINE Project De-
liverable No. D1c).

1.5 Collaborations
The work presented in this thesis would not have been achieved without the close
interaction and collaborative work with colleagues in several contexts.

In the SEMAINE project, I have worked with project partners from TU
München, ParisTech/CNRS, Universiteit Twente, Imperial College London,
Queen’s University Belfast, and DFKI. In particular, the design decisions of the
SEMAINE API have been influenced by discussions and brainstorming meet-
ings with Björn Schuller, Florian Eyben, Martin Wöllmer (München), Cather-
ine Pelachaud, Elisabetta Bevacqua, Etienne de Sevin (Paris), Dirk Heylen, Mark
ter Maat (Twente), Maja Pantic, Michel Valstar, Hatice Gunes (London), Roddy
Cowie, Gary McKeown (Belfast), and Sathish Pammi (DFKI).

Similarly, work on the Emotion Markup Language is very much a collabora-
tive endeavour. Work on the predecessor of EmotionML, the HUMAINE EARL,
was carried out in collaboration with Hannes Pirker (OfAI Vienna) and Myriam
Lamolle (IUT Paris), in the context of the HUMAINE project. Subsequent work
on EmotionML in the context of the World Wide Web consortium (W3C) was car-
ried out in collaboration with many people over the years, but most importantly
Paolo Baggia and Enrico Zovato (Loquendo, Turin), Felix Burkhardt (Deutsche
Telekom Laboratories, Berlin), Christian Peter (Fraunhofer IGD-R, Rostock), and
Catherine Pelachaud (ParisTech).

10 Chapter 1. Introduction

1.6 Outline
The thesis is structured as follows.

This Chapter 1 Introduction identifies the topic area and the key contribution
of the thesis. Chapter 2 Motivation describes from a conceptual point of view
why it may be desirable to endow machines with emotional and social intelligence,
and thus provides the reasons for starting an endeavour as the one described here.

The main body of the thesis consists of four parts.
The Background part reports on related work relevant to the thesis. Chap-

ter 3 summarises the state of the art in Embodied Conversational Agent research.
Existing component integration frameworks are reviewed in Chapter 4, and their
key properties are compared to one another and to the requirements for a compo-
nent integration framework that arise from the SEMAINE project. We conclude
that none of the existing frameworks is a suitable match for the project. Chap-
ter 5 therefore reviews the available choices of middleware and describes their
key properties, thus preparing an informed choice of a suitable middleware tech-
nology in our newly created component integration framework.

In the Infrastructure part, we describe the key aspects of system infrastructure
we have provided. Chapter 6 presents the SEMAINE API, including the reasons
for choosing a messaging middleware, and the properties of the SEMAINE API
as a component integration framework. The system architecture of the SEMAINE
system, built on top of the SEMAINE API, is described in Chapter 7. We briefly
summarise the components involved in the system, and present two alternative
system architectures organising the data flow: a naive pipeline architecture, and a
more sophisticated prepare-and-trigger architecture.

The Communication part describes how the present work enables communi-
cation between system components by means of standard or pre-standard represen-
tation formats. Chapter 8 provides an overview of the representation languages
supported in the SEMAINE API, and describes their respective use within the con-
text of a naturally interacting ECA system. Chapter 9 reports on the process of
defining the Emotion Markup Language as a new web standard.

The properties of the SEMAINE API are investigated in the Assessment part.
We measure the performance of key aspects of the system in Chapter 10. In
Chapter 11, we illustrate how the SEMAINE API makes it simple to build new

1.6. Outline 11

emotion-oriented systems from existing and new parts, using the SEMAINE API
as a component integration framework.

In the final Summary and Outlook, we review the contribution of the thesis,
and discuss its potential impact in the context of research on emotionally compe-
tent and naturally interacting machines.

12 Chapter 1. Introduction

13

Chapter 2

Motivation

In this chapter we motivate why we consider the topic area of emotion-oriented
systems to be worthwhile: it can potentially increase the ease of use of complex
technology for non-expert users. Furthermore we point out why a framework pro-
viding standards-based interfaces, encouraging re-use of system components, can
be of benefit to the research community.

2.1 Emotional machine intelligence
Systems with some emotional competence, so-called ‘affective computing’ sys-
tems, are a promising and growing trend in human-machine interaction (HMI)
technology. They promise to register a user’s emotions and moods, for example
to identify angry customers in interactive voice response (IVR) systems; to gen-
erate situationally appropriate emotional expression, such as the apologetic sound
of a synthetic voice when a customer request cannot be fulfilled; in certain con-
ditions they even aim to identify reasons for emotional reactions, using so-called
‘affective reasoning’ technology.

In fact, an increasing number of interactive systems deal with emotions and re-
lated states in one way or another. Common tasks include the analysis of the user’s
affective state (Zeng et al., 2007) from the face (Pantic and Rothkrantz, 2000; Ioan-
nou et al., 2005), the voice (Batliner et al., 2006; Schuller et al., 2007), or physio-
logical measures (Peter and Herbon, 2006); the evaluation of events in the world
according to affective criteria (Gebhard, 2005); and the generation of emotion-

14 Chapter 2. Motivation

related system behaviour, such as facial expression (Tsapatsoulis et al., 2002; Be-
vacqua et al., 2007) and voice (Burkhardt and Sendlmeier, 2000; Schröder, 2008),
but also other media such as music and colour (Castellano et al., 2007).

We discuss the relevance of such emotion-oriented systems in the broader con-
text of machine intelligence.

In his seminal paper, Alan Turing (Turing, 1950) proposed to operationalise
the question “Can machines think?” in terms of an “imitation game”, a written
dialogue between an interrogator and an entity which could be either a human or a
machine imitating a human’s behaviour. The idea in this “Turing Test” is that the
machine can be said to be “intelligent” if the interrogator cannot reliably distin-
guish the machine from the human based on the written interchange. Turing uses
poetry, maths, and chess as examples of intelligent behaviours that could be as-
sessed via the written dialogue, and claims that “the question and answer method
seems to be suitable for introducing almost any one of the fields of human endeav-
our that we wish to include” (p. 435). He proposed to focus on a written inter-
change so as not to “penalise the machine for its inability to shine in beauty com-
petitions, nor to penalise a man for losing in a race against an aeroplane” (p. 435).
In other words, the aim was to allow the human-machine interaction to focus on
the relevant aspects of intelligence by leveling the playing field in other respects
that are not so relevant for intelligence.

Here we argue in favour of a different perspective on intelligence in general
and of machine intelligence in particular. We briefly describe a relevant aspect
of human intelligence that is not covered by Turing’s method, namely social and
emotional intelligence. We discuss the metaphors used by humans to conceptualise
machines, and try to corroborate the claim that the conceptualisation of machines
as “social entities” is becoming increasingly important in the lives of people, thus
motivating the need for social and emotional intelligence in machines.

2.1.1 Social and emotional intelligence
The concept of intelligence has evolved since 1950. Wechsler (1958) states that
“intelligence is the aggregate or global capacity of the individual to act purpose-
fully, to think rationally, and to deal effectively with his environment” (Wechsler,
1958, p. 7). Out of this generic notion of a general intelligence, Turing appears to

2.1. Emotional machine intelligence 15

have focused on the capability to think rationally, the intellectual aspect of intelli-
gence. In the human sciences, concepts have since been developed which are ex-
plicitly complementary to this purely rational notion of intelligence; among them
are the notions of social intelligence and emotional intelligence. Indeed, dual-
processing accounts from diverse literatures in cognitive and social psychology
posit that rational thought is an architecturally and evolutionarily distinct mecha-
nism sited amongst a much broader system or collection of systems that deal with
most of the implicit, nonverbal and emotional aspects of human life and interac-
tion (Evans, 2008). Although Turing sought to level the playing field by ignoring
these aspects, there are likely to be important interactions between rational thought
and this broad base of complementary mechanisms that could, if removed, tilt the
playing field against a machine. A rationality test without social and emotional
context would result in reduced tolerance and opportunity for repair. These are
normally offered to humans due to cordiality, etiquette and a desire not to upset
other individuals which normally incurs some form of social sanction.

Social intelligence is considered to encompass “our abilities to interpret others’
behaviour in terms of mental states (thoughts, intentions, desires and beliefs), to
interact both in complex social groups and in close relationships, to empathize
with others’ states of mind, and to predict how others will feel, think and behave”
(Baron-Cohen et al., 1999, p. 1891). Humans can lack social intelligence while
having a very high general intelligence, as can be the case for people with autism
(Baron-Cohen et al., 1999).

The “social brain hypothesis” suggests that the rational intelligence Turing
sought evolved as an extension and an ability to manipulate and manoeuvre
through the intricacies of social dominance relations and social hierarchies (Dun-
bar, 2003). Almost synonymous with social cognitive abilities is the recognition
of a Theory of Mind (Premack and Woodruff, 1978), the ability to read another’s
mental state and understand another individual as an intentional agent like oneself.

One relevant aspect of social intelligence is the ability to have a conversation
with other people. This requires the respect of social conventions – hello and
goodbye rituals, appropriate turn-taking, speaking at the right time, with appropri-
ate loudness, choice of words, and gaze behaviour, depending on the situational
context, the relation with the interlocutors and many other factors (Brunet et al.,
2009).

16 Chapter 2. Motivation

Emotional intelligence was proposed as “the subset of social intelligence that
involves the ability to monitor one’s own and others’ feelings and emotions, to
discriminate among them and to use this information to guide one’s thinking and
actions” (Salovey and Mayer, 1990, p. 189). It includes the capability to become
aware of, identify and label one’s own or another person’s affective state; the ca-
pability to reason in terms of the appraisals that lead to affective responses, and to
predict possible future actions from the affective state; and finally, a set of capabil-
ities related to the regulation of the affective states, be it the capability to hold back
a socially inappropriate own emotion, or to act in a certain way so as to influence
the emotions of another person. There is evidence that the capability of feeling
one’s own emotion is an essential element of a range of seemingly unrelated capa-
bilities. For example, lesions in emotion-related brain regions leave people unable
to feel emotions, engage in simple decision-making or make socially appropriate
choices (Damasio, 1994). Capgras syndrome disconnects emotional from ratio-
nal areas leading people to conclude impostors have replaced friends or family
(Hirstein and Ramachandran, 1997).

What role should the concepts of social and emotional intelligence play in ma-
chine intelligence? The answer to this question naturally depends on the concept
of machine intelligence one chooses to adopt, which is related to the perspective
on machines in general. From a philosophical point of view, one could ask ba-
sic questions such as whether a machine can potentially be conscious. We will
approach the topic from a more pragmatic perspective here, and view machines
from a utilitarian point of view. From this viewpoint, we can say that a machine is
“intelligent” if it is useful, if it is good at its job. Given the fact that humans have
created machines to do work for them, one can say that a machine’s job in general
is to, in one way or another, make the life of humans easier.

The following section discusses metaphors that people seem to use in defining
their relation with machines, and how this relates to the utilitarian view on machine
intelligence.

2.1.2 Machines as social entities
Humans can conceptualise machines in terms of a range of metaphors, including
the tool and the social entity (cf. Reeves and Nass (1996)). Simple machines such

2.1. Emotional machine intelligence 17

as staplers, loudspeakers or vacuum cleaners are likely to be conceptualised as
tools, not much different from a hammer. The machine, electronic or not, is per-
ceived as an extended hand or arm (Lockman, 2000), as a thing with predictable
properties that one can fully control if one has learned how to use it. In the hands
of an expert, more complex machines such as mechanical clocks or desktop com-
puters may also be approached from the “tools” metaphor: in operating the device,
the human feels in control, and if something doesn’t work as expected, the under-
standing is that there must be something wrong in the mechanism (be it the clock’s
cog wheels or the computer’s programming) which could potentially be fixed.

As the mechanisms of machines become more complex and the causal chains
of functioning become opaque, humans need to replace simple cause and ef-
fect models with more complex mental models of functioning. A natural second
metaphor for machines is that of a social entity. Even though people often explic-
itly deny anthropomorphism regarding machines and computers, they still interact
with them as social entities in states of “mindlessness” (Nass and Moon, 2000) –
states similar to the implicit/automatic systems in dual-processing theories (Evans,
2008). In fact, Reeves and Nass (1996) have shown that people tend to interact
with computers, new media and the likes as they do with people: they are polite,
behave differently with computers that speak with a male vs. a female voice, they
use proximity-regulating behaviour with faces on the screen, and much more. It
seems that people apply rules similar to those governing social behaviour when
interacting with new technology beyond a certain threshold of complexity.

What determines, for a given machine, whether a given person will view it as a
tool or a social entity, whether he or she will “use” or “interact with” the machine?
We can only begin to discuss this point. Biocca et al. (2001) provide elements of
a definition of “social presence”, of the sense of “being with” another social en-
tity. According to them, a sense of social presence requires, firstly, a co-presence,
where one perceives the other and is perceived by the other; some “psychological
involvement” in the sense that the user forms a mental model of the machine as
having “some minimal intelligence in its reactions to the environment and the user”
(Biocca et al., 2001, p. 7); and an element of behavioural engagement, including
interaction and synchronisation between user and machine. From that point of
view, then, the more reactive, interactive, and “intelligent” a machine becomes,
the more likely users would perceive it as a social entity.

18 Chapter 2. Motivation

It seems that users generally prefer to feel “in control” when interacting with
machines (Mick and Fournier, 1998; Dautenhahn, 1999). For simple and pre-
dictable machine behaviour, a sense of control may best be covered by the tool
metaphor. Where the machine’s complexity exceeds a certain threshold, it is com-
mon for users to feel incompetent and to use associated coping strategies (Mick
and Fournier, 1998). One way to avoid this reaction is to design a user inter-
face according to a social entity metaphor that mitigates the information overload
(Maes, 1994); this then raises the expectation that behaviour should be predictable
based on social conventions (Dautenhahn, 1999). Whether or not the same mech-
anism is unconsciously applied by people when dealing with complex machines
in general, even machines not designed to behave as a social entity, remains to be
investigated.

Society at large is clearly moving towards ever-more complex technology, with
ever-fewer people in the position to really understand and control that technology.
Technology is becoming more autonomous, from self-updating software programs
on the desktop to autonomous vacuum cleaner robots. Often they take over roles
previously filled by human service staff, as is the case for train ticket vending ma-
chines or airline self check-in terminals. These machines show some awareness of
the user, they interact and exhibit some limited intelligence, so they seem to fulfill
the minimal criteria for a feeling of social presence. If unpredictable behaviour is
added to that, some users may indeed feel that they are interacting with a social
entity.

At the same time, the functions filled by some of these machines have a high
relevance for their users. If I need my train ticket or boarding card on time, the
utilitarian “intelligence” of the machine has a high impact on my well-being. If it
doesn’t do its “job” right, the machine becomes an obstacle between me and my
goal, and anger or a feeling of helplessness will result (Scherer, 1999).

This discussion is intended to show that there are reasons to believe people
will increasingly use the “social entity” metaphor when interacting with machines.
Whether or not they are designed explicitly for that, a machine’s actions may be
interpreted increasingly as social actions. Human users might, for example, at-
tribute personality traits based on appearance, reaction speed, ease of use, clar-
ity etc. They may apply their own social intelligence in an attempt to infer the
machine’s state of mind – is it thinking, grumbling, unfriendly, or why is it not

2.2. The potential benefits of standards for research on emotion-oriented systems 19

responding? The machine may be perceived as arrogant if the user’s situation of
distress is peacefully ignored by a pre-recorded friendly voice. The machine may
be perceived as hectic or distressed if it moves too fast, or as sluggish or bored if it
moves too slow, etc. Basically, the expectation is that human users will automat-
ically compare the machine’s behaviour with a somehow adapted version of their
mental model of other social entities that they know, such as other humans, pets,
cartoon characters or similar.

A valuable challenge for computer science, from this point of view, would
therefore be to endow machines with the kinds of intelligence they need to be per-
ceived as useful, helpful and intelligent in this utilitarian way, by providing them
with the capabilities to perceive, predict and generate socially and emotionally
relevant signals.

2.2 The potential benefits of standards for research
on emotion-oriented systems

Different emotion-oriented systems have a number of elements in common. All of
them need to represent emotional states in order to process them; and many of the
systems are built from components, such as recognition, reasoning, or generation
components, which need to communicate with one another to provide the system’s
capabilities. In the past, systems used custom solutions to these challenges, usually
in clearly delimited ways that were tailor-made for their respective application ar-
eas (see Chapter 3 for related work). However, existing emotion-oriented systems
seem to be neither explicitly geared towards the use of standard representations,
nor are they available as open source.

Standards enable interoperability and reuse. Nowadays, standards are taken for
granted in such things as the voltage of electricity in a given country, fuel grade,
or the dimensions of screw threads (ISO, 1998). More recently, standards for doc-
ument formats (ISO, 2006) have entered the public debate, under the perspective
of long-term accessibility of documents. Web standards such as the Hyper-Text
Markup Language HTML (Raggett et al., 1999) enable access to information in
the world wide web through a broad variety of software products supporting the
standard format.

20 Chapter 2. Motivation

Proprietary formats, on the other hand, can be used to safeguard a company’s
competitive advantage. By patenting, or even by simply not documenting a rep-
resentation format, a company can make sure not to open up the market to its
competitors.

The same considerations seem to apply in the emerging area of emotion-
oriented systems. Agreeing on standard formats and interfaces would enable inter-
operability and reuse. An initial investment of effort in defining suitably broad but
sufficiently delimited standard formats can be expected to pay off in the long run
by removing the need to start from scratch with every new system built. Where
formats, software frameworks and components are made generally available, for
example as well-defined specifications or as open source software, these can be
used as starting points and building blocks for new systems, speeding up devel-
opment and research. Thus, to the extent that a framework for building emotion-
oriented systems is easy to use, it may be able to promote progress in research in
emotion-oriented technology.

21

Part I

Background

23

Chapter 3

Embodied Conversational Agent
systems: elements of natural
interaction and emotional
competence

In the mid 1990’s, spoken dialogue systems were investigated under the perspec-
tive of human language interfaces to information (Goddeau et al., 1994; Zue and
Glass, 2002). Major concerns at the time were speech recognition and language
understanding accuracy, and the challenge of extending the speech recognition vo-
cabulary for open domains such as yellow pages lookup (Goddeau et al., 1994).
Dialogue interaction was modelled as a ping-pong scenario where user and system
would speak in turn. Naturalness of the interaction was not an aim as such; instead,
criteria related to task performance were investigated, for example in the influen-
tial PARADISE framework for the evaluation of dialogue systems (Walker et al.,
1997). PARADISE quantitatively assesses the quality of task-oriented dialogues
in terms of usability measures. The objective of maximising user satisfaction is
operationalised in terms of task success, and dialogue costs which quantify the
efficiency of the dialogue at carrying out the task.

Conversational dialogue systems (Allen et al., 2001a) improved on the ‘ping-
pong’ dialogue capabilities by adding the notions of system goals and dialogue
obligations, leading to richer mixed-initiative dialogues. The notion of incremen-

24 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

tal analysis of user behaviour is introduced and identified as a precondition for
giving listener feedback in order to ground the degree of mutual understanding in
the dialogue. Similarly, incremental generation is introduced as a means to deal
with issues of turn-taking and interruptions.

Instead of using hand-crafted dialogue designs, dialogue strategies can be op-
timised by statistically learning from simulated dialogues (Lemon and Pietquin,
2007). Statistical machine learning techniques explore in simulation the large
space of possible system behaviours in the presence of a multitude of parameters,
including user behaviour related to cooperativeness and expertise. The aspects of
dialogue strategy that can be learned include selection of high-level plans such as
utterance selection as well as low-level aspects such as turn-taking behaviour.

Despite intense efforts, none of the language processing technologies involved
in a spoken dialogue system, as identified by Zue and Glass (2002), seem to have
reached a state where they “just work”. In particular, the single most important
source of problems for spoken dialogue systems is still considered to be the limited
accuracy of speech recognition technology (Pardo et al., 2010).

As explained in the Introduction to this thesis, the emphasis in the present work
is not on improving these individual technologies, nor is the criterion for success
of a system as we intend to build it appropriately defined in terms of task accuracy.
Instead, important criteria are the naturalness with which a conversation flows, as
well as the dialogue system’s ability to deal with emotions in a competent way. The
following sections review the state of the art of ECA technology with an emphasis
on these factors.

3.1 Types of Embodied Conversational Agent sys-
tems

Embodied conversational agent (ECA) interfaces (Cassell et al., 2000) explicitly
cast the interaction with a “system” in terms of the social metaphor of interacting
with an “agent”. The agent often takes the appearance of a human-like face or
body displayed on a computer screen. ECA interfaces make it natural to reason in
terms of human-human multimodal interaction capabilities.

3.1. Types of Embodied Conversational Agent systems 25

André and Pelachaud (2010) have provided a thorough review of the history
and current state of ECA technology. In the following subsections, we will follow
André and Pelachaud in distinguishing four types of interactive setting into which
the different ECA systems can be grouped. We will then cast a closer look at the
specific aspects of expression and perception of emotion by ECAs, and existing
work on the responsiveness of ECA systems.

3.1.1 TV-style presenter systems
The simplest, non-interactive version of an ECA system produces a monological
presentation, where a single ECA presents information through spoken or textual
verbal output accompanied by facial expression and/or gesture.

The virtual human presenter (Noma et al., 2002) takes as input text enriched
with commands related to the ECA’s body language. The generated speech and 3D
animation are rendered in synchrony to perform a presentation in a virtual reality
environment or on the web.

Similarly, the DFKI PPP persona (André et al., 1999) can present information
by speaking, gesturing, and pointing to items displayed on the screen.

In the same general setting, AutoBriefer (André et al., 2005) can generate mul-
timedia presentations supported by an animated agent, automatically generated
from a high-level outline. Users can create or edit domain knowledge for use in
the presentation using a graphical user interface.

For the present work, presenter systems are of limited interest since they do
not address the issues of natural interaction and emotional competence.

3.1.2 Presentation teams
André et al. (2000) proposed the idea of replacing a single presenter with a team of
characters presenting information in a role-play fashion. This change is inspired
by the evolution of TV commercials, which evolved from experts presenting the
properties of a product towards interactive stories. Similar to TV commercials,
presentation teams can share the task of presenting different viewpoints, discussing
the pros and cons of a topic, etc. In addition, a presentation team can be designed
such that it can be parameterised in different ways, so that a user can watch dif-
ferent variants of the same scene, for example by changing the personality of the

26 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

“customer” character from interested to sceptical, or by changing the topics to be
discussed. André et al. (2000) illustrated the concept using two demonstrators, a
sales scenario and a pair of characters jointly commenting a soccer match.

The sales scenario was carried further in the NECA project’s eShowroom
demonstrator (van Deemter et al., 2008), where scripted dialogues between ECAs
were generated to present and discuss the properties of a car. The dialogue scripts
contained annotations on how to emotionally influence the facial expression and
tone of voice. Users could indicate a number of topics they wanted to see dis-
cussed, such as environmental friendliness, horse power, or family friendliness,
as well as the personality of the salesperson and customer character. The char-
acters’ emotional expressivity was influenced by the personality as well as the
preferences, both of which could be determined by the user.

As for the single presenter case, presentation teams are of limited interest for
the present work due to the lack of a real-time interactive conversational setting.

3.1.3 One-to-one human-ECA interaction
The ECA systems most similar to the present work are those that represent the
communicative situation of a single ECA conversing with a single human user. A
number of systems have been built according to this paradigm.

One of the first ECA systems is Gandalf (Thórisson, 1997), a multimodal di-
alogue system which interacts with the human user via speech, facial expression
and hand gesture. The user’s behaviour is observed using speech recognition, an
eye tracker and a body suit. Gandalf models turn-taking and backchannel feed-
back (Thórisson, 2002). It runs as a multilayered architecture distributed across
eight computers.

The ECA system August (Gustafson et al., 1999) communicates with users
through synthetic speech, facial expression, and head movements. For some of the
synthetic utterances, the prosody has been manually tuned to sound very natural.
The system was placed in a public location (a cultural centre) for a period of six
months to collect data on naive users’ interaction patterns. The dialogue system
supported a variety of topic domains as well as behaviour of different complexity
in order to investigate the effect of these factors on human speech input. For the
human interlocutor, only speech input was analysed. Importantly, given the noisy

3.1. Types of Embodied Conversational Agent systems 27

environment in a public space, users had to press a push-to-talk button in order
to speak to the system. Consequently, natural turn-taking was not an issue in the
August system.

The Real-Estate Agent REA (Cassell et al., 1999, 2001) has been designed
specifically with conversational naturalness in mind. The authors argue that a
human-like appearance is a precondition for bringing the richness and naturalness
of human-human dialogue to human-machine dialogue. User behaviour is ob-
served in terms of face and hand positions, speech detection, and automatic speech
recognition. REA uses gesture, facial expression, posture shifts, and synthetic
voice to fulfil a range of conversational functions. For example, she generates lis-
tener feedback such as head nods or ‘mmh’ vocalisations when the human speaker
makes a short pause, and uses gaze and gestures to reflect the agent’s perception
of turn management. Both task-oriented and social dialogue are supported.

The medical advisor agent Greta (Pelachaud et al., 2002) is an ECA system
with an explicit model of personality, emotion and synchronised verbal and non-
verbal behaviours. An important emphasis is on the generation of high-quality
facial expressions reflecting the agent’s mental state and dialogue message. The ut-
terances produced by the agent are taken from a script of sentences that were man-
ually annotated with the Affective Presentation Markup Language APML (de Car-
olis et al., 2004). Keyword spotting on user input is used to select sentences to be
generated by the agent; no listener behaviour is supported.

The emphasis in the SmartKom system (Wahlster, 2003) is on symmetric mul-
timodality. SmartKom is a multimodal dialogue system in the information kiosk
scenario, with sophisticated support for multiple input and output modalities. The
user interacts with a small i-shaped information agent named “Smartakus”. Non-
verbal behaviour by the user, such as deictic gestures, is interpreted in conjunction
with speech input in order to resolve references. A typical scenario involves a user
pointing to an area on a display and saying “I want to reserve this seat”. In addi-
tion, the system has initial support for emotion recognition from speech and from
facial expressions, and shows some limited expressivity to inform the user about
the system’s internal state while a system response is being generated.

The anthropomorphic agent Max (Kopp et al., 2003) inhabits a CAVE-like
virtual reality environment and is visualised in human size. Max employs synthetic
speech, gesture, facial expression and gaze to communicate with the user. Since

28 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

the user is wearing a data glove, position markers and a microphone, Max can
observe the user’s speech and gesture. The interaction is based on an assembly
task, with Max explaining to the user how to assemble parts into an object. The
agent’s actions are controlled by a combination of reactive and deliberative control
processes.

It is interesting to note that all of these systems have been presented in the years
1997-2003. This is not to say that research on this type of ECA-human dialogue
has stopped there, though. As will be seen in Sections 3.2 to 3.4, the research focus
has rather shifted towards more specific research questions.

3.1.4 Multiparty conversations
A number of projects investigated scenarios involving multiple ECAs and/or users.

Agneta and Frida (Höök et al., 1999) are two ECAs, representing mother and
daughter, that watch the user browsing the web. They make humorous and ironic
comments on the content of the web page, the user’s browsing behaviour, and any
server problems that may occur.

In the context of the Mission Rehearsal Exercise, Traum and Rickel (2002)
have realised a multi-party dialogue system in an immersive virtual environment.
ECAs communicate with a user and with each other. The system addresses issues
relevant to situated communication, including proximity and attention, multimodal
messages including speech and non-verbal signals, and the ability to maintain con-
versations involving multiple parties.

CrossTalk (Gebhard et al., 2003) is an interactive installation designed for dis-
play in public spaces such as trade fairs. It consists of two ECAs conversing with
one another and optionally including a user in the scenario. The user can either
watch passively, or communicate actively. The CrossTalk setup is based on the
“theatre” metaphor, according to which the ECAs represent actors. While no user
is deemed to be present, they switch into an “off-mode” and chat among them-
selves. When a user is detected, they switch into “on-mode” and start performing
their drama. The user can comment via a GUI interface and thus influence the
development of the dialogue. The dialogues in CrossTalk are designed using hi-
erarchical finite state machines. A design tool called “SceneMaker” supports the
developer in creating dialogues, thus reducing the level of expertise required to

3.1. Types of Embodied Conversational Agent systems 29

create new dialogues. By separating the dialogue structure from the textual script,
it is rather straightforward to translate a SceneMaker-based dialogue into a differ-
ent language.

The VirtualHuman project (Kempe et al., 2005) supports dialogues involving
multiple humans and multiple ECAs. Every ECA has its own “Conversational
Dialogue Engine” (CDE); in addition, every user is represented by a CDE. The
CDEs communicate with one another using an ontological representation, which
means that an ECA perceives the actions of humans and of other ECAs in the
same format. A user’s CDE encapsulates the steps of analysing and interpreting
the user’s behaviour. The ECAs’ behaviour is generated by a multimodal gener-
ation component, which takes into account an estimate of the time it will take to
generate the utterance and, if the estimate exceeds a threshold, will insert hesita-
tion vocalisations such as “well…” or “uhm…” to gain time without losing the
floor. Emotions to be expressed by the ECAs are computed by rules operating on
the domain knowledge, and are realised through facial expression, skin texture,
tears, and breathing patterns.

The previous works presented in this section have focused on involving users
in a dialogue situation with multiple ECAs. Isbister’s Helper Agent (Isbister et al.,
2000) does the opposite: it attempts to support human-human conversation in a
video chat environment. Helper Agent is a dog-faced ECA which listens to the
audio of the two persons interacting. Modelled on the role of a party host, it
intervenes if it detects longer silences, and attempts to suggest “safe” topics of
conversation.

A number of multiparty dialogue systems have been created around the idea
of mixed reality games.

The game agent created by Rehm et al. (2005) fills the role of a co-player. It
is projected onto the wall by the side of a table in order to convey the impression
that the agent is sitting at the table with its human co-players, playing a dice game.
An instrumented dice cup serves as a tangible interface which allows the agent to
see the dice. Interaction with the human co-players is driven by the game logic.
Users and ECA communicate via speech.

The project IDEAS4Games (Gebhard et al., 2008) has realised an emotion-
aware poker game, in which two ECAs and a user play against each others with
physical cards equipped with Radio Frequency Identification (RFID) tags. The

30 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

user interacts with the system by placing his own and the ECAs’ poker cards onto
a poker table equipped with an RFID tag reader, and by selecting options from
a graphical user interface (GUI) menu on the screen. The ECAs’ utterances are
determined by game events. The emotions of the ECAs are computed from game
events using an affective reasoner (Gebhard, 2005), and realised through the syn-
thetic voice and through body movements.

3.2 Expressive behaviour
The main justification for the existence of ECA systems is for them to be able to
represent, through their expressive behaviour, the computer’s side of the human-
computer interaction in a way that is natural for humans to interpret (Cassell et al.,
2000). Expressive behaviour includes facial expression, head movements, ges-
tures, body posture, and voice; sometimes other modalities are included as well,
such as skin texture or proxemics. A lot of effort has been invested in improv-
ing the technologies available for generating natural expressive behaviour in these
different modalities. We will briefly review a number of important aspects.

The simulation of facial expressions in animated agent systems has a long his-
tory. Most models are based on Ekman’s work on the six basic emotion-related
facial expressions (Ekman, 2003). MPEG-4 based facial animation systems, such
as the Greta player (Hartmann et al., 2002), can be used to render these expres-
sions; Raouzaiou et al. (2006) have generated mixed expressions as weighted com-
binations of these expressions. Similarly, Albrecht et al. (2005) have interpolated
between emotion-specific facial expressions to generate expressions for interme-
diate emotions.

Kipp et al. (2007) addressed the generation of hand and arm gestures. They
trained a machine learning algorithm on an annotated database of gestures as pro-
duced by one specific person. The algorithm is able to predict from text, annotated
with word and utterance boundaries as well as topic/focus structure, a sequence of
gestures as the training person might have produced it.

The EMOTE system (Chi et al., 2000) makes available the parameters effort
and shape as properties of gestures that can be controlled in a three-dimensional
animated agent system. Similarly, the spatial and dynamic properties of gestures

3.2. Expressive behaviour 31

– the speed of movement, the size of a gesture, etc. – are controlled by Hartmann
et al. (2006) in terms of a small number of expressivity parameter dimensions.

The emotionally expressive sound of an agent’s voice is addressed in the topic
area of expressive speech synthesis. A number of technologies can be applied
to achieve the intended expressive speaking style, such as domain-oriented unit
selection, signal modification, voice conversion or statistical parametric synthesis
trained on expressive speech material. For a detailed review, see Schröder (2009a).

Bodily behaviour is also modelled sometimes, for example in the context of ex-
pressing emotions (Hyniewska et al., 2010), or when using proxemics, i.e. distance
behaviour, as a means to influence the social behaviour of human users (Rehm
et al., 2005).

As additional modalities, the VirtualHuman project (Reithinger et al., 2006)
added breathing patterns to reflect arousal, skin texture to simulate a blush, and
tears to express sadness.

Whereas much certainly remains to be done in order to optimise the technical
properties of these expressive behaviours, it is important to investigate the question
whether and how expressive behaviours are actually perceived by human users as
improving the interaction.

One relevant question in this context is the degree of human-likeness that be-
haviours should show. Experience from the Disney animation studios seems to
suggest that for cartoon-like characters, it is important not to simply mimick be-
haviours as humans would perform them, but to substantially exaggerate them
(Bates, 1994). Other research strives for human-likeness, both in optical realism
(Albrecht et al., 2005) and in gesture dynamics (Kipp et al., 2007).

Regarding the role of expressivity in dialogue, it appears that the expressive
behaviour that is generated can in fact have a positive effect on the dialogue. For
example, Pardo et al. (2010) found that the presence of an ECA showing contex-
tually appropriate gestural behaviour had a positive effect on objective measures
of dialogue success related to turn management and error recovery. At the same
time, the perception of expressive behaviour appears to depend on user charac-
teristics: Krämer et al. (2010) found systematic effects of the users’ gender, age,
and computer literacy on their assessment of an ECA’s non-verbal behaviour. For
example, female users gave better ratings than male ones when the agent showed

32 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

more smiles and self-touching gestures; male users preferred less non-verbal be-
haviour.

3.3 Perceiving emotions
While simulating an emotional expression is relatively easy for an ECA, dealing
competently with human emotion is more difficult. A first major hurdle is the
actual perception of that emotion, from any and all available modalities, which
depending on the specific context may include face, head movement, voice, words
spoken, and physiological measures.

Zeng et al. (2007) present an overview of affect recognition research from face
and voice modalities. It becomes clear from their overview that, despite substantial
progress in the recent past, the issues around emotion recognition are far from re-
solved. Research has moved from recognising simulated emotion displays towards
more naturally occurring emotion; the benefits of multimodal input are starting to
be exploited. However, the quality reached still remains limited. For example,
the CEICES initiative (Batliner et al., 2011) addressed a four-class problem in a
speech corpus of children interacting with the robot dog AIBO. Despite advanced
methods for feature selection from a very large space of acoustic and linguistic
features, the recognition rates stayed below 70% accuracy.

Whereas the majority of emotion recognition works approach the problem as
a discrete classification task, there is also a growing body of literature in which
emotion recognition is addressed as a dimensional, continuous problem (Gunes
and Pantic, 2010a). Rather than predicting the “right category” of an observed
emotion, the recognition task consists in predicting a location in a uni- or multi-
dimensional space. For example, Eyben et al. (2009) predicted positions on the
emotion dimensions arousal and valence from acoustic and linguistic cues, with
correlations of around 0.5 between manually labelled and automatically predicted
values.

While face and voice are the most frequently studied modalities for predicting
emotions, other modalities are also used. For example, Gunes and Pantic (2010b)
report on the prediction of five emotion dimensions from head gestures. Poh et al.
(2010) present a wearable sensor for electrodermal activity and show its ability to
distinguish emotionally aroused from calm states.

3.3. Perceiving emotions 33

Whereas these base technologies are the subject of intense research, the sys-
tems that make use of them to take the human user’s emotion into account are still
relatively few.

The SmartKom system (Wahlster, 2003) uses both speech and face analysis to
determine the user’s emotional state. When fusing the information from different
modalities, dynamic confidence measures are used, since for example, the mouth
region does not provide reliable information about the emotional state while the
user is speaking.

Burkhardt et al. (2005) have presented a research prototype of an emotion-
aware voice portal. The idea is to detect a customer’s anger in time to redirect
the customer to a human agent. A crucial aspect in this context is the challenge
of keeping the false-positive rate low: treating a customer as angry who is not
actually angry may have a very negative impact on the customer relationship.

Other systems also make use of emotion recognition without actually imple-
menting a dialogue with the human.

Clavel et al. (2008) trained a fear-type emotion detector in view of public safety
applications: a surveillance microphone would detect fear-type vocalisations in
public spaces such as underground stations. The detector was trained on panic and
fear scenes vs. non-fear scenes from movies. The error rate is around 30%.

Inanoglu and Caneel (2005) presented an emotionally aware voicemail system:
by analysing the emotion expressed in voice mails, the system could present the
user with a pre-selection of most relevant messages. The percentage of correct
classifications on a number of binary choices, such as urgent vs. not urgent, or
happy vs. sad, is around 60-70% each.

To summarise, it can be suspected that the high error rates found in existing
emotion recognition methods still make it difficult to use these in interactive sys-
tems. On the other hand, also human judges have a rather limited classification
accuracy (e.g., the human subjects in Banse and Scherer (1996) achieved around
60% correct classification in a forced choice setup with 14 categories of exag-
gerated acted emotional speech). Despite the limited accuracy, however, humans
seem quite able to exploit emotional information in interaction. It may be that in-
teractive systems need to develop more refined methods for dealing with emotional
information under high uncertainty.

34 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

3.4 Responsiveness
Attention mechanisms are a first important aspect of a responsive system. Nakano
et al. (2003) implemented a mechanism to observe a human user’s head movements
and gaze direction in the context of the MACK agent (Stocky and Cassell, 2002).
By observing the user’s head with a stereo camera, the system could identify head
nods, and distinguish three gaze types: “looking at agent”, “locking at map” (in a
direction-giving scenario), and “looking elsewhere”. This information is used by
the “grounding module”, together with verbal evidence, to determine whether a
shared understanding between the agent and the user has been achieved. The rules
used by the grounding module have been derived from a study of human-human
direction-giving dialogues. The most important evidence for grounding was found
to be lack of negative feedback.

Similarly, the conversational robot Mel (Sidner et al., 2005) tracks the human
interlocutor’s face to determine whether the user is looking at the robot, at an
object of shared attention, or elsewhere. Mel uses this information to determine
the user’s engagement. This information is used for determining an appropriate
dialogue strategy. Furthermore, the robot can identify head nods and interprets
them as backchannels or agreement depending on the current state of the dialogue.

Observing behaviours relevant for attention is one thing; determining their
meaning is another. Peters (2005) makes this step explicit in terms of a Theory of
Mind: his ECA interprets the behaviours of other inhabitants of a virtual world,
specifically the direction of eyes, head and body, in terms of the other’s attention.
The information is then used to model the other’s presumed goals, and to take
these into account alongside the ECA’s own goals when taking a decision whether
or not to initiate a conversation with the other.

A second important aspect of a responsive dialogue system is its turn-taking
behaviour. A baseline approach consists in the system waiting for the user to be
silent for longer than some threshold before taking the turn.

Edlund et al. (2005) proposed an end-of-utterance detection algorithm that
takes into account not only the duration of silences, but also intonation. Level
boundary tones in the mid pitch range are used as indicators for hesitation pauses,
inhibiting the recognition as end-of-utterance even if a long pause follows. Exper-
iments showed that the algorithm correlates with human judgments of utterance

3.4. Responsiveness 35

segmentation; the algorithm triggered less false alarms than the baseline algorithm
using only pause duration.

Raux (2008) has realised an adaptive threshold detection mechanism, thus re-
ducing the threshold without increasing the error rate. He improved this further
by representing turn-taking state by a finite-state machine, with turn-taking actions
having different cost depending on the current state. In addition to further reducing
the threshold for end-of-turn detection, this approach is also useful for handling
interruptions.

Jonsdottir et al. (2008) implemented a machine learning approach to adapting
the turn-taking behaviour of a dialogue system to the individual interlocutor in real
time. By observing the interlocutor’s prosody, their talking agent tunes its turn-
taking behaviour on-the-fly to the current situation using reinforcement learning.

ter Maat and Heylen (2009) investigated the effect of varying timing of turn-
taking in simulated dialogues on people’s attribution of personality, emotion and
interpersonal stance. They showed that if an agent allows for long pauses before
taking the turn, that agent is perceived differently than if the pauses are shorter
or the agent starts before the interlocutor has finished speaking. Differences were
found in attributions of friendliness, rudeness, arousal and several other dimen-
sions.

In a conversational setting, a third essential aspect of responsiveness is listener
behaviour, i.e. the behaviour of the ECA while it is listening rather than speak-
ing. This includes visual and vocal backchannel behaviour, such as head nods or
“mmh” vocalisations, to signal to the speaker that one is still paying attention. A
crucial decision to make is when to emit such behaviours.

Both turn-taking and listener feedback are addressed in the Ymir Turn-Taking
Model YTTM (Thórisson, 2002), implemented in the Gandalf system (Thóris-
son, 1997). The YTTM is a rule-based system for generating turn-taking deci-
sions, associated behaviour, and backchannel feedback behaviour. It is based on
a multi-layered architecture of perception-action feedback loops running at differ-
ent update frequencies. The rules are based on hypotheses derived from the human
science literature.

Edlund and colleagues built Hummer, a system that automatically generates
synthetic backchannel feedback (Wallers et al., 2006) at suitable moments as
judged from the human speaker’s prosody (Edlund and Heldner, 2006).

36 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

Morency et al. (2010) addressed the question of backchannel timing from a
machine-learning perspective. They trained sequential probabilistic models (Hid-
den Markov Models and Conditional Random Fields) on a human-human inter-
action corpus, to predict the locations of listener backchannels based on the mul-
timodal output features of the speaker (including prosody, spoken words and eye
gaze). For the prediction of head nods, the model significantly outperformed a
previous model based on hand-crafted rules.

Kopp et al. (2008) use listener behaviour as a means to communicate to the
human user the agent’s mental state. Their agent Max shows a range of multi-
modal backchannels, including head nods or shakes, tilts or protrusions varying in
repetitions and movement quality. The choice of behaviour is based on the agent’s
incremental reasoning and deliberative processing while the user is typing his or
her input into a keyboard. The timing of backchannels is based on end-of-utterance
detection, which is simulated using the “enter” key.

Bevacqua et al. (2008) predict both the timing and the meaning to be expressed
in listener behaviour, based on the user’s non-verbal behaviour as well as the
agent’s characteristics such as its personality and emotional state. The meaning
of a listener feedback is represented in terms of “communicative functions”, such
as agreement, interest, or liking. Prediction is based on hand-crafted rules.

The Rapport agent (Gratch et al., 2007) observes the head movements and
voice prosody of a user telling a story, and generates contingent visual listener
behaviour including nods and posture shifts. In a carefully controlled study, the
automatically generated listener behaviour was rated approximately as well as nat-
ural human listener behaviour in a face-to-face condition, and significantly better
than a non-contingent version of the system (effectively playing back the contin-
gent behaviour generated from the previous subject). The rapport agent produces
no vocal feedback, and it never speaks.

In a study with a variant of the Rapport agent, von der Pütten et al. (2009) in-
vestigated the role of perceived agency and of behavioural realism on the feeling
of social presence. They varied the instructions given to subjects such that some
believed they were interacting with a human through an ECA display, whereas the
others believed they were interacting with a computer character. In both groups,
behavioural realism was varied. No effect of perceived agency was found, but
ratings of mutual awareness clearly showed a main effect of behavioural realism.

3.5. Conclusion 37

This seems to indicate that, given suitable expressive behaviour, it should be pos-
sible for an autonomous ECA to induce a sense of social presence.

The effectiveness of contingent emotional adaptation to a user’s emotion in a
dialogue system was investigated by Acosta (2009). In a speech-based dialogue
system aiming to persuade students of the values of graduate school, the emotion-
related prosody of the system’s utterances was modified as a function of the emo-
tion recognised from the preceding user utterance. System utterances were generic
phrases that followed a pre-defined script; only their prosody was adapted. Users
rated the system as significantly better on a number of rapport-related scales, com-
pared to a neutral baseline as well as a non-contingent version where the expres-
sivity matched the previous rather than the current subject.

Adaptation also appears to occur in the other direction. Porzel and Baudis
(2004) investigated effects of a dialogue system on the user’s non-verbal be-
haviour, and found a tendency for the human users to adapt to the non-verbal
behaviour of their interlocutor. Human users produced significantly fewer vo-
cal feedback signals, used less overlapping speech, and made longer pauses when
interacting with a spoken dialogue system than when interacting with a human.

3.5 Conclusion
The present chapter has reviewed current research in Embodied Conversational
Agent systems, specifically in view of natural interaction and emotional compe-
tence.

We presented four types of ECA-based scenarios: monologues, simulated dia-
logues, human-ECA dialogues, and multiparty interactions. For the human-ECA
dialogue scenario, which is the most relevant for the present work, we looked at
existing work on expressivity, emotion awareness, and responsiveness.

We found research on expressive behaviour of ECAs to be well advanced,
with sophisticated and in part highly natural expressive behaviour being simulated
through the face, the voice, body gestures, and sometimes other modalities such
as proxemics or skin texture. There also is some evidence that adding expressive
behaviour to a dialogue system can indeed improve the interaction.

In contrast, despite intense research, the capabilities of ECAs to detect human
emotion are still quite preliminary. A main reason is the high error rate that state

38 Chapter 3. Embodied Conversational Agent systems: elements of natural interaction and emotional competence

of the art research still cannot surmount with naturally occurring, non-acted ex-
pressive data. Recent work attempts to complement the classification task with a
dimensional paradigm, predicting positions on emotion dimensions rather than in-
dividual categories. Again, however, correlations with human judgements remain
moderate. It may be that for interactive systems to make effective use of emotion
detection capabilities, dialogue strategies need to be developed that can deal with
high uncertainty.

In the area of responsiveness, we looked at the observation of human attention,
turn-taking mechanisms, the simulation of listener behaviour, and adaptation to
the user’s expressive behaviour. Individual advances in each of these areas exist,
partly using rule-based, partly using data-driven approaches. Evaluations showed
that responsive systems often outperformed non-responsive baseline systems with
respect to grounding, perceived naturalness, and rapport, and that the choice of
behaviour has an effect on attributions of personality and emotion.

Despite the many efforts that have been reported in the literature, to the best
of our knowledge, no full-scale dialogue system has been built before that takes
into account the user’s emotion and non-verbal behaviour from visual and vocal
cues, and interacts in real time both as a speaker and a listener in a multimodal
conversational setting. It is also significant that none of the systems mentioned
above is publicly available as open source, which makes it difficult to improve
existing work incrementally.

39

Chapter 4

Component integration frameworks
for multimodal interactive systems

The topic of the present thesis is a component integration framework for an ECA
system, suitable for natural interaction and for emotionally competent behaviour.
In this chapter, we will point out a number of requirements as they arise from the
SEMAINE system scenario, and review a number of related endeavours from this
perspective.

4.1 Requirements for a component integration
framework in SEMAINE

In order to be able to discuss and compare, in the following, a number of existing
component integration frameworks for multimodal interactive systems, we start
by making explicit a number of requirements that arise from the targeted type of
system in the SEMAINE project: an ECA system with natural interaction and
emotional competence, based on standard representations to the extent possible.

Given the expected complexity of the system, it is a requirement to keep the
overall system state under control. The framework should provide a dedicated
system manager functionality to keep an overview of the state of all system com-
ponents.

Regarding component interfaces, the framework should provide support for
both standard and custom XML formats, but also for text and binary information.

40 Chapter 4. Component integration frameworks for multimodal interactive systems

A number of practical requirements are also important: the framework must
run on Windows, Linux and Mac OS X; it must be available for research, ideally
as open source, but it must also be usable with closed source components since
not all SEMAINE components will be made open source.

Finally, if possible the framework should be actively maintained so that in case
of problems, there is a chance of getting help to resolve the issues.

4.2 Existing component integration frameworks

4.2.1 Mirage
Thórisson et al. (2004) propose and test-run a design methodology for the creation
of interactive ECA-based systems. Following the basic idea of LEGO bricks, they
conceive of the design as constructionist, i.e., modular in the sense of allowing
re-use of existing building blocks. A key element of their design methodology
appears to be a conceptual modularisation hierarchy, starting with the distinction
of perception, decision/planning, and action/animation, and then distinguishing
further sub-categories. Communication between components is conceptualised
in terms of well-defined message types passing via blackboards with publish-
subscribe functionality.

The design methodology is illustrated with the example of the Mirage system,
an ECA in an augmented-reality setting which can perceive virtual and physical
objects, and communicate with a human user through speech and gesture. The
system uses Psyclone (CMLabs, 2007) as the middleware layer (see Chapter 5) to
integrate components in C++ and Java for Linux, Mac OS X and Windows. All
communication between components passes via a single blackboard. Components
communicate via text messages in an explicitly documented ad-hoc format. The
system runs as a distributed system, with different components running on differ-
ent computers in order to achieve an acceptable run-time performance. Thórisson
et al. (2004) point out that integration across multiple computers brings about a
number of challenges, related to difficult-to-predict network delays and perfor-
mance of individual computers. One means to address this issue is the use of
universal time stamps in messages in order to coordinate events; further steps to

4.2. Existing component integration frameworks 41

increase the fault-tolerance of the system were considered necessary but not yet
implemented.

Mirage is not actually a component integration framework, but rather repre-
sents a design methodology. The Psyclone middleware used in Mirage is available
for research purposes (see also Section 5.3).

4.2.2 GECA
The Generic Embodied Conversational Agent (GECA) framework (Huang et al.,
2008) aims to facilitate the process of building integrated ECA systems from in-
dividual components. Similar to other ECA systems, the authors distinguish the
capabilities of (i) acquiring user behaviour from sensor data, (ii) interpreting the
meaning of the behaviour and deliberative planning; and (iii) generation of ECA
behaviour. Given the fact that several of these functionalities are not domain-
specific and thus potentially reusable, Huang et al. (2008) suggest to provide a
consistent interface and integration platform for such components, across pro-
gramming languages and operating systems.

The GECA platform supports C++, C# and Java components, which communi-
cate via the OpenAIR protocol that is implemented by Psyclone (CMLabs, 2007);
messages are sent using an asynchronous messaging paradigm, using blackboards
with a publish-subscribe mechanism (see also Section 5.1). It is unclear which
operating systems are supported. Messages are represented as XML structures,
in three custom formats: a format for representing user input, partially inspired
by W3C’s Extensible MultiModal Annotation markup language EMMA (Johnston
et al., 2009); a format for representing system behaviour to be generated, with easy
interfaces to Microsoft’s text-to-speech API (MS SAPI) as well as MPEG-4 Facial
and Body Animation Parameters (FAP/BAP); and a scenario markup language for
scripting the dialogue.

There is no mention of a publicly available version of GECA.

4.2.3 VHMsg
The Virtual Human Messaging Library (VHMsg) was created by the University
of Southern California’s Institute for Creative Technologies as part of their Virtual
Human Toolkit (see http://vhtoolkit.ict.usc.edu/index.php/VHMSG) and is

http://vhtoolkit.ict.usc.edu/index.php/VHMSG

42 Chapter 4. Component integration frameworks for multimodal interactive systems

available as open source under a GNU Lesser General Public License (LGPL) from
http://vhmsg.sourceforge.net. It is based on the message-oriented middle-
ware ActiveMQ, and provides an API wrapper to send and receive text messages
between components in a simple way. Client wrappers are available for C++, Java,
C#, and TCL. VHMsg has no built-in support for XML or binary messages; fur-
thermore, it does not provide any central system manager support for verifying the
overall system state, nor does it have any built-in centralised logging functionality.

4.2.4 MULTIPLATFORM

The MULTIPLATFORM (Multiple Language / Target Integration Platform for
Modules) testbed (Herzog et al., 2004) served as the component integration layer
in the projects Verbmobil (Wahlster, 2000) and Smartkom (Wahlster, 2006). Verb-
mobil was a very large joint research project in Germany working on a speech-to-
speech translation system. Smartkom was a large joint project in Germany work-
ing on a multimodal interactive system. In both systems, MULTIPLATFORM in
increasing levels of maturity was used to integrate the components in a distributed
architecture.

Herzog et al. (2004) propose to distinguish a number of different types of com-
ponents: device, recognizer, analyzer, generator, and synthesizer represent vari-
ous stages of the multimodal analysis and synthesis processes; modeller and ser-
vice represent knowledge sources and application-specific functionality, respec-
tively. MULTIPLATFORM supports the programming languages C, C++, Java,
Perl, Prolog, and Lisp, and the operating systems Windows, Linux and Solaris.
It uses the parallel virtual machine PVM (Geist et al., 1994) for communicating
information between components. A custom layer called “pool communication
architecture” was added on top of PVM to support the publish-subscribe model of
message-oriented middleware (see Section 5.1).

In addition to the functional components, MULTIPLATFORM provides a
testbed manager which organises and keeps track of the overall system state, starts
or resets components, and provides a graphical user interface presenting the full
system. A logging component saves all messages to a log file for later inspection.

http://vhmsg.sourceforge.net

4.2. Existing component integration frameworks 43

Messages are represented as XML structures. In Smartkom, MULTIPLAT-
FORM used a unified XML language for multimodal dialogue systems called Mul-
timodal Markup Language (M3L).

At the end of the SmartKom project, the software was released as open source
(http://multiplatform.sourceforge.net), but has not been maintained after
2003. As of February 2011, the source code is not accessible anymore from the
site.

4.2.5 CHILix
In the area of ubiquitous computing, the project Computers in the Human Loop
(CHIL) investigated a broad range of smart space technologies for smart meet-
ing room applications. Its system integration middleware CHILix (Dimakis et al.,
2008) uses XML messages for integrating the components in a smart space appli-
cation. CHILix supports synchronous (request-response) and asynchronous inter-
action, and publish-subscribe as well as point-to-point connections between com-
ponents. The wire format appears to be a custom XML-over-TCP format. The
platform is available on Windows, Linux and Mac OS X, with language bindings
for Java, C/C++, Perl, and TCL. The freely available NIST DataFlow System II
(NIST, 2008) is used for streaming distributed sensor data. CHILix supports the
idea of using well-specified XML representations at component interfaces, in order
to facilitate the exchange of components. However, XML message formats used
in the CHIL project seem to be domain-specific, custom formats; documentation
does not seem to be freely available.

The CHILix framework appears not to be publicly available.

4.2.6 CAST
In the domain of interactive robots research, the project CognitiveSystems (CoSy)
has developed a system integration and communication layer called CoSy Archi-
tecture Schema Toolkit (CAST) (Hawes et al., 2009). The components of a robot’s
architecture are structured into subarchitectures in which components work on a
jointly accessible working memory. Access to data structures is through prede-
fined types, similar to objects. Communication passes through the object-oriented
remote method invocation middleware ICE (Henning, 2009).

http://multiplatform.sourceforge.net

44 Chapter 4. Component integration frameworks for multimodal interactive systems

CAST is available on Linux and Mac OS X. It supports language bindings for
Java, C++ and Python. Definitions of data representations at component interfaces
are written in Slice, ICE’s interface specification format, and compiled into Java,
C++ and Python source code.

The CAST framework is available as open source under a GNU General Public
License (GPL), and is currently being maintained in follow-up projects to CoSy.

4.2.7 Others
A number of component integration frameworks are of general interest but are not
really applicable to the target domain of the present work. We mention them only
briefly.

The Open Agent Architecture OAA (Martin et al., 1999) is a framework for
integrating heterogeneous software agents in a distributed setup. All agents com-
municate with a Facilitator agent which dispatches information to other agents
as needed. All messages between agents are represented in the Interagent Com-
munication Language ICL, which is capable of representing natural language ex-
pressions. The focus of OAA appears to be on coordinating multiple agents for
collaborative problem solving. Language bindings exist for Java, C++, and Pro-
log, for Windows, Linux and Solaris. The software is available free of charge
under a research license.

The OpenInterface Platform (Lawson et al., 2009) aims to facilitate the cre-
ation and reuse of multimodal interactive systems. Components provide inter-
faces to the rest of the system, defined in the Component Interface Description
Language CIDL. Communication between components passes via the OI Kernel,
which runs on Windows and Linux. Components in Java, C++, C# and Matlab
can be connected. Remote connection of components via TCP or RPC appears
to be possible. The software is available as open source under a BSD license
from https://forge.openinterface.org/projects/oikernel/; as of version
0.4.0, released in December 2009, the software still declares its maturity as “alpha
software”.

Sonntag et al. (2010) describe an Ontology-based Dialogue Platform (ODP)
which uses an ontological representation for dialogue management and can flexi-
bly interface with multiple devices and services. The platform itself does not pro-

https://forge.openinterface.org/projects/oikernel/

4.2. Existing component integration frameworks 45

vide support for multiple programming languages; interaction with devices and
services is via a range of industry-standard protocols.

There seem to be no component integration frameworks with specific support
for emotion-oriented systems. Existing commercial programming environments
for character-based expressivity or for user perception technology provide relevant
component technologies, but they do not allow the user to integrate components
across programming languages and operating system platforms. For example, the
EMotion FX SDK (Mystic Game Development, 2010) is a character animation
engine that supports animation designers to streamline the process of designing
the graphical properties of games characters and include them into a game envi-
ronment. It includes facial animation such as emotional facial expressions and lip
synchronisation. Luxand FaceSDK (Luxand, 2010) is a facial feature point de-
tection software, which can be used for face detection, the generation of 3D face
models, and the automatic creation of animated avatars. Both are relevant compo-
nent technologies for an emotion-oriented system, but they do not solve the issue
of how to integrate heterogeneous components across platforms.

4.2.8 Summary
Table 4.1 summarises key properties of the component integration frameworks
presented in this chapter, and compares them with the requirements as defined in
the SEMAINE project proposal.

First of all, it is interesting to note that most of the component integration
frameworks discussed in this chapter have opted for an asynchronous publish-
subscribe mechanism for connecting senders to receivers of information, either
via blackboards or via messaging.

Only the MULTIPLATFORM framework appears to support system manage-
ment explicitly, in the form of its testbed manager which checks that all compo-
nents are in a running state.

Some of the frameworks use XML-based message formats for communication,
others use ad-hoc text formats, and only CAST uses an object interface approach.
All frameworks appear to rely on custom or ad hoc interface formats; none of the
frameworks appears to provide support for any standard representation formats at
component interfaces.

46 Chapter 4. Component integration frameworks for multimodal interactive systems

SEM
AINE

requirements
M

irage
GECA

VHM
sg

M
ULTI-

PLATFORM
CHILix

CAST
Application
domain

ECA
system

ECA
system

ECA
system

ECA
system

M
ultimodal

dialogue
Smart Space

Interactive
Robot

Integration
approach

blackboard
pub/sub

blackboard
pub/sub

messaging
pub/sub

messaging
pub/sub

multiple
blackboard
pub/sub

System
 mgt.

support
yes

no
no

no
yes

?
?

Interface
type

standard and
custom XM

L,
text,binary

ad hoc text
custom XM

L
ad hoc text

custom XM
L

custom XM
L

custom
Object

XM
L

sup-
port

yes
no

yes
no

yes
?

no
Using

 stan-
dard formats

yes
no

no
no

no
no

no
Operating
systems

W
indows,

Linux,M
ac

W
indows,

Linux,M
ac

?
W

indows,
Linux,M

ac
W

indows,
Linux,Solaris

W
indows,

Linux,M
ac

Linux,M
ac

M
iddleware

used
Psyclone

OpenAIR
ActiveM

Q
PVM

NDFSII
ICE

Available for
research

yes
no

no
yes

(yes)
no

yes
Available as
open source

yes
no

no
yes,LGPL

(yes,LGPL)
no

yes,GPL
Usable with
open

 source
components

yes
no

no
yes

yes
no

yes

Usable with
closed source
components

yes
no

no
yes

yes
no

no

Actively
maintained

yes
no?

yes?
no?

no
no

yes

Table4.1:Key properties of several component integration frameworks for multimodal interactive systems

4.3. Conclusion 47

Most frameworks support all three operating systems that are to be supported
in SEMAINE: Windows, Linux and Mac OS X. Exceptions are CAST, which does
not support Windows, and MULTIPLATFORM, which does not mention Mac OS
X support, presumably because support for the framework was discontinued before
Mac OS X was released.

An interesting variety of middlewares are used for supporting the communica-
tion; no clear pattern can be identified at this level.

Of the frameworks presented here, only few are publicly available: VHMsg,
MULTIPLATFORM (assuming that despite the current technical challenges the
code could be obtained), and CAST. Furthermore, the Psyclone middleware used
in Mirage is available, but only under a closed-source research license, not as
open source. The aggressive “viral” GPL license used by CAST, which requires
all software distributed with CAST to also be released under the GPL, makes it
difficult to use CAST with closed-source components.

Most of the frameworks appear not to be actively maintained; the exception
appears to be CAST, where new versions continue to be released.

This comparison has shown that none of the existing frameworks covers all
of SEMAINE’s requirements. Only three frameworks are actually available, of
which only one – CAST – appears to be actively maintained; however, it lacks
support for Windows and follows an integration paradigm different from the XML-
based message paradigm targeted in SEMAINE. Furthermore, it is encumbered by
the GPL license, which makes its use with closed-source SEMAINE components
difficult. MULTIPLATFORM has the most interesting feature set; however, sup-
port for it was discontinued in 2003, and it does not appear to support Mac OS X.
The remaining available framework, VHMsg, lacks important properties such as
XML support and a system manager.

4.3 Conclusion
This chapter has outlined the requirements that the SEMAINE system poses to-
wards its component integration framework.

A number of existing component integration frameworks were reviewed and
compared to the requirements. Since none of them fully – or even approximately

48 Chapter 4. Component integration frameworks for multimodal interactive systems

– addresses all requirements, we conclude that it is necessary to build a new com-
ponent integration framework for SEMAINE.

One particular point for which no best practice pattern could be observed in ex-
isting work is the middleware used for the communication layer in the component
integration framework. For this reason we review existing middlewares in the fol-
lowing chapter, before presenting the new component integration framework we
built in Chapter 6.

49

Chapter 5

Middleware

Middleware is “a general-purpose service that sits between platforms and applica-
tions” (Bernstein, 1996, p. 89); being neither a platform (i.e., a processor architec-
ture and operating system) nor an application, middleware services “are generic
across applications and industries, they run on multiple platforms, they are dis-
tributed, and they support standard interfaces and protocols” (Bernstein, 1996,
p. 90). The concept is very generic, and encompasses examples as diverse as, e.g.,
printing managers, directory servers, relational database systems, e-mail, resource
brokers, authentication services, etc.

Here, we look at communication middlewares only, i.e. methods for making
processes and components working potentially on different machines and in dif-
ferent processes, implemented using different programming languages, to work
together. In the following, the term middleware is used in the sense of communi-
cation middleware.

As described in the previous chapter, we call a component integration frame-
work the software that is used for connecting the components into a system; in
order to implement a distributed system, this framework will use a middleware as
its communication layer. In addition, the component integration framework may
provide functionality such as a system manager to check the state of the compo-
nents, debug tools such as a centralised logging functionality, or utilities such as
XML handling tools.

The present chapter provides a broad review of existing middlewares. This
is motivated by the conclusion of Chapter 4 that a new component integration

50 Chapter 5. Middleware

framework is needed for SEMAINE. The review of existing component integration
frameworks has revealed a preference for messaging or blackboard middlewares,
but no clear pattern was found regarding the specific middleware software used.
For this reason, the present chapter lays the basis for an informed choice for the
middleware used in the SEMAINE API component integration framework.

5.1 Message-oriented middlewares
A message oriented middleware (MOM) (Banavar et al., 1999) is specifically de-
signed to integrate different applications or processes through messages being
routed from message producers to message consumers. The aim is to “glue to-
gether applications both within and across organizations, without having to re-
engineer individual components” (Banavar et al., 1999). One method for describ-
ing how messages should be sent from sources to destinations is a message flow
graph, in which the nodes represent components and the arcs represent message
flows (Banavar et al., 1999).

MOM provides a fundamentally asynchronous communication protocol. The
act of sending a message on the sender’s side is decoupled from the act of re-
ceiving the message on the receiver’s side, both temporally and programmatically.
Whereas in synchronous middlewares, the sender is waiting for a return value or at
least a confirmation from the receiver that the message has been properly received
and handled, in the asynchronous case the sender is free immediately after handing
over the message to the MOM. The sender does not need to consider whether or
not the receiver is currently online and able to receive the message. The reliability
of message delivery can be configured in the MOM in various ways – for example,
messages can be stored persistently so that, even if the middleware itself needs to
be restarted, no messages are lost; messages can be delivered to clients when they
connect as if they had been connected at the time when the message was sent; the
communication between middleware and receiver can include an acknowledge-
ment that the message has been received. Furthermore, a message can have a life
span, so that it is discarded if that time has passed before the message could be
delivered. Naturally, more checks and safety measures add overhead and thereby
reduce the throughput of the middleware.

5.1. Message-oriented middlewares 51

In asynchronous communication, any feedback information from a message
receiver’s side back to the sender needs to be modelled explicitly. Where it is im-
portant to inform the sender about the reception, and possibly the result of some
processing, the receiver needs to send another message back to the sender contain-
ing the relevant information.

Two main types of message communication can be distinguished: queuing
and publish-subscribe. Message queues are essentially one-to-one communication
channels, with a single sender and, in the simplest case, a single receiver. As the
name suggests, a message queue will store messages that are sent until they can
be delivered. In particular, this means that a fast sender does not need to wait for a
slow receiver to process the message before it can send the next one. Queues can
be configured to guarantee that a message has been delivered exactly once. For
applications such as load balancing, where several receivers are supposed to share
the work of processing messages, it is possible to register more than one receiver
to a queue. The receiver that picks up a message will be the only recipient of that
message. This is to guarantee that, for example, a shopping order is processed
exactly once.

A more flexible communication setup is the publish-subscribe model. Here,
communication passes via so-called Topics to which one or more senders can regis-
ter as publishers and one or more receivers can register as subscribers. Whenever
one of the publishers sends a message to the Topic, all subscribers receive the
message. This model allows for the organisation of communication architectures
by type of information: by convention, a Topic can represent a certain type of in-
formation, independently of the source of that information. All processing units
that want to use that information can simply subscribe to the respective Topic to
receive the respective messages.

Communication between the sender and the receiver of a message passes nec-
essarily via the middleware, which can be a single stand-alone server. For im-
proved performance, it is possible to interconnect several instances of a MOM
server on different computers in order to share the task of message routing.

Messages are unconstrained with respect to the types of data they can transport.
Plain text or binary messages are the most generic types of messages possible.
Message-oriented middlewares usually do not provide mechanisms for verifying

52 Chapter 5. Middleware

the adherence of messages to a certain interface definition; any such verifications
need to be carried out by the user of the middleware.

The market of message-oriented middlewares includes commercial as well as
open source players. Well-established commercial solutions include IBM’s MQ-
Series, now called WebSphere MQ; Tibco Rendezvous; and Microsoft’s MSMQ.
In the Java world, the Java Message Service (JMS) is a standardised API for inter-
facing with a MOM from Java code. JMS interfaces exist for all major messaging
solutions, either from the solution vendor itself of from third-party providers. Var-
ious open source implementations of JMS also exist, including Apache ActiveMQ
(Apache Software Foundation, 2008).

As of today, MOMs from different vendors cannot easily be combined, be-
cause there is no agreed over-the-wire protocol for messaging middlewares. With
such a protocol, it would be possible to combine senders, servers and receivers
from different vendors. Recently, a working group of major companies from the
technology and finance sectors have proposed the “Advanced Message Queuing
Protocol” (AMQP) as a standard over-the-wire protocol. The standard has recently
reached version 1.0 (AMQP Working Group, 2010). A number of implementa-
tions exist, including OpenAMQ, RabbitMQ, Qpid, and ZeroMQ. Many of these
use a dual licensing model, providing the system for free download under an open
source license and offering commercial licenses including support.

5.2 Remote invocation middlewares
Remote method invocation (RMI) middleware is centered around the idea of con-
trolling a remote process through a local API as if it was a local process. To this
end, RMI middlewares provide façade programming interfaces which represent
the functionality of a remote process. Every time a method of the façade interface
is called, a sequence of steps is carried out behind the scenes:

• the parameter data provided in the method call are serialised (“marshalled”),
and passed over the wire to the remote process;

• the remote process deserialises (“unmarshals”) the data and re-creates an
internal representation of the data, e.g. as class objects;

5.2. Remote invocation middlewares 53

• the remote method processes the data, and generates an internal representa-
tion of a return value;

• the return value is marshalled and passed over the wire back to the calling
process;

• the calling process unmarshals the return data and re-creates an internal rep-
resentation which is handed over to the calling code.

This sequence of steps is hidden from the user of the remote interface; the code
looks like a local method invocation.

One important difference to MOM is that in RMI, communication is syn-
chronous: while the above-mentioned sequence of steps unfolds, the calling code
is waiting for the method to return. This is different from MOM where sending
and receiving of messages is handled asynchronously. There, if a component at
the other end of a message queue provides a return value, it sends it through a sep-
arate message queue back to the original sender, which receives it independently
of the original request. It is up to the original sender to match the reply to the
query. In RMI, this matching step is trivial due to the synchronous nature of the
remote method call.

A second difference is the definition of interfaces. Where MOM can use un-
constrained messages for communication, the creation of a façade interface in RMI
requires a detailed formal definition of the functionalities provided by the remote
method. In object-oriented RMI, this includes the definition of the structure of the
data that is used as parameters and return values.

One simple RMI middleware is the XML Remote Procedure Call (XML-RPC)
specification. It uses HTTP as the over-the-wire protocol, and defines simple data
structures as combinations of primitives, which can be used for inter-process com-
munication across many different programming languages. The method calls and
return values are encoded in XML structures. XML-RPC does not provide full
object-oriented remoting, but requires the client code to create structures that can
be marshalled in the XML-RPC format. Also, XML-RPC does not perform client-
side parameter checking: if the parameters sent to the remote method do not match
the expectations, this will be noticed only at the remote end, and an error message
is returned. Many vendor-specific non-standard extensions to XML-RPC exist,

54 Chapter 5. Middleware

adding different functionalities such as Java object serialisation, however at the
cost of reduced interoperability.

A genuinely object-oriented RMI middleware is the famous Common Object
Request Broker Architecture (CORBA). Its first version was defined in 1991 and
therefore predates XML which was first defined in 1998. Interfaces to method calls
are formally specified by means of an Interface Definition Language (IDL) which
is converted both in the implementation and the façade into actual source code in
the respective programming language. This allows for compile-time verification
that the method invocation is using the correct format and type of data. Communi-
cation passes via Object Request Brokers (ORBs) which communicate with each
other using one of a number of over-the-wire protocols which all instantiate the
General Inter-ORB Protocol (GIOP). They transport data by means of the Com-
mon Data Representation (CDR), a standardised binary representation of the data.
The most commonly used protocol is the Internet Inter-Orb Protocol (IIOP) that
sends messages over TCP/IP. A wide range of programming languages are sup-
ported. While CORBA has been widely used, it has also been criticised (Henning,
2006) for being an overly complex standard. Its use seems to be declining.

More recently, a company called ZeroC created the Internet Communications
Engine (ICE), a re-implementation of the main ideas behind CORBA while trying
to avoid the mistakes and the complexity that, according to the creators of ICE, en-
cumbered the CORBA standard (Henning, 2006). Similar to CORBA’s IDL, ICE
uses an interface definition (called SLICE, the Specification Language for ICE)
from which client and server code stubs can be automatically generated in vari-
ous programming languages. Over-the-wire communication uses a custom binary
format. Method invocation can be done either synchronously or asynchronously,
using a notification mechanism when the result of a remote invocation becomes
available. ICE is optimised with respect to speed as well as memory and CPU
consumption (Henning, 2009). It uses a dual licensing model: it is available under
the GNU Public License (GPL) for open source projects, and under a commercial
license for closed-source projects.

5.3. Blackboard architectures 55

5.3 Blackboard architectures
Middleware centered around the Blackboard metaphor simulates the concept of a
group of experts standing together in front of a blackboard, jointly trying to solve
a problem. Each “expert” can contribute pieces of the solution, but it is through
their collaboration that the solution is ultimately found. Each “expert” is watching
for information that he/she can process further. The results of that processing steps
can then be processed by other “experts” until some result is obtained.

In Blackboard architectures, a “Blackboard” or a “Space” is a distributed mem-
ory that different components can access jointly. Each of the components that is
registered to a blackboard can place information items onto it and read information
items from it. Specific types of items can be found by phrasing a request to the
blackboard in terms of a template that matches some items but not others. Noti-
fication mechanisms can alert components of new items matching the template as
they become available. Components can either take exclusive control of an item,
by removing it from the blackboard, or merely read it and leave it visible for others.

If used with the Master-Worker pattern, a blackboard can be used for load
balancing in a way that scales easily. The pattern consists of a Master process
handing out work items by placing them on the blackboard; a flexible number
of Workers are registered to the blackboard, each taking exclusive control of one
work item at a time, processing it, and writing the result back to the blackboard.
The master collects the results of processing. It is obvious that this approach can
scale systems merely by adding more workers.

Another possibility is the use of several blackboards in a publish-subscribe
pattern, similar to a MOM. When each blackboard represents a given type of in-
formation, some components can place information onto the blackboard and others
can read it. Through the appropriate definition of blackboards and the correspond-
ing publishers and subscribers, complex system architectures can be defined in a
way that corresponds to a message flow graph in MOM. An important difference
is that the information items stay on the blackboard until they are either removed
or their lifetime expires, whereas in a MOM a message is delivered once to each
subscriber and then discarded.

One moderately influential specification of a Blackboard architecture is the
JavaSpaces specification by Sun Microsystems (Sun Microsystems, 2005). It de-

56 Chapter 5. Middleware

fines a joint object space that can be shared between distributed components. Its
most prominent implementation is the commercial software GigaSpaces, which
extends the pure java approach from Sun towards interoperability with C++ and
.NET. While the software is rather expensive for full-scale commercial use, free
licenses are offered to academia and to startup companies (GigaSpaces, 2009).

Psyclone (CMLabs, 2007) is an implementation of a blackboard architecture
with publish-subscribe capabilities. It is used by some parts of the Embodied Con-
versational Agents (ECA) and Artificial Intelligence (AI) communities. Psyclone
itself runs as a server process on Windows, Linux or Mac OS X; clients connect
to it via the so-called OpenAIR protocol. Client implementations are available
for Java, C++ and other programming languages. While the software is not open
source, it is freely available for research purposes.

5.4 Web services
One specific segment of middleware-type applications has seen substantial growth
in recent years: web services are pieces of reusable technology that are integrated
over the world wide web, and can be combined to provide complex functionalities
across the boundaries of individual service providers. For example, one service
can provide stock quotes that a second service aggregates and analyses, and a third
service presents these analyses to a customer. Another example could be web-
based flight booking portals which provide a single homogeneous interface to their
customers but interact with a broad range of airlines to determine the availability
of flights according to the customer’s wishes.

In other words, the idea behind web services is to provide a web that can be
used by machines – while the human-readable world wide web provides a lot of
information, the presentation of the information is too unstructured for machines
to make reliable use of it. Instead, web services address the main concerns for
software-level integration over the web: mechanisms to reach reliable interoper-
ability over well-defined interfaces, and scalability to work in environments with,
potentially, thousands or millions of simultaneous users.

In the context of the present thesis it is worth mentioning that real-time respon-
siveness is not a requirement for web services. Given that the typical latencies of
web-based message transport are in the order of several tens or hundreds of mil-

5.4. Web services 57

liseconds (Gummadi et al., 2002), sub-millisecond responsiveness is not a priority
for web services.

In the following, we present two approaches to realising web services which
are in widespread use: Service-oriented Architecture and RESTful HTTP.

5.4.1 Service-Oriented Architecture
The Service-Oriented Architecture (SOA) approach to realising web services is
centered around the concept of a self-contained and reusable service realised by
a component over the web. The service, as an atomic process, represents a real-
world task such as looking up a piece of information, booking a ticket, analysing
or transforming data, etc. Each service component appears as a black box to its
customers (Harding, 2006) even though it may be composed of other services.

The programming model for SOA resembles Remote invocation middlewares:
a service is invoked remotely and synchronously, and generates some output from
the given input. However, a number of specific aspects distinguish SOA from
generic RMI architectures.

SOA includes a mechanism for interface definition. In view of interoperabil-
ity, a reliable and full description of a service and how to use it is provided by the
Web Service Description Language (WSDL) (Chinnici et al., 2007). The WSDL
description of a service defines the interface between the service and its users. Ev-
erything the users need to know about the web service is defined in the WSDL
description; in particular, users do not need to know how the service is imple-
mented. This reflects a SOA design principle, the concept of loose coupling (Erl,
2005): interdependencies between services should be minimal and be limited to
well-defined interfaces.

The communication format used between SOA services is the XML-based
Simple Object Access Protocol (SOAP) (Gudgin et al., 2007). All information
communicated in the input and output of a SOA web service is represented in a
SOAP structure. While this is somewhat inefficient, due to the time needed to
marshal, transmit and unmarshal large XML structures, it is a well-documented
and parsable format which supports interoperability. While SOAP as such is in-
dependent of the transport layer, it is predominantly used via HTTP.

58 Chapter 5. Middleware

Applications are built from services by means of a workflow definition (“or-
chestration”) language, the Business Process Execution Language BPEL (Jordan
and Evdemon, 2007). The language provides a syntax for representing workflows
over SOA services, including sequences, conditions, loops, dependencies, etc.

A large number of additional specifications exist to standardise a broad range
of functionalities in the SOA universe. However, these are beyond the scope of
this short overview.

Given the commercial success of the SOA approach to web services, there are
many SOA frameworks available. Open source options include Glassfish, Apache
Geronimo and JBoss; commercial implementations include, for example, Oracle
SOA Suite, TIBCO ActiveMatrix, and IBM Websphere ESB.

Regarding SOA performance, the additional abstraction layers of SOAP-based
encoding of object-type information make the process of sending and receiving
messages more costly than in simpler middlewares such as MOMs. This is not too
problematic for the large-chunk structure of loosely coupled SOA components,
which exchange comparatively few messages; for a real-time interactive system
exchanging a large number of fine-grained messages per second, however, the
overhead in SOA makes it suboptimal for the task.

5.4.2 RESTful HTTP
Roy Fielding, one of the main developers of the standard Hypertext Transfer Pro-
tocol (HTTP) specification (Fielding et al., 1999), defined the concept of Rep-
resentational State Transfer (REST) in his PhD thesis (Fielding, 2000). REST
describes “an architectural style for distributed hypermedia systems” (Fielding,
2000, p. 76): a set of design principles for building distributed systems based on
the same principles as the world wide web. According to Fielding, these principles
are the following.

• Client-server communication. REST architectures are fundamentally
based on the concept of a client interacting with a server.

• Stateless communication. In REST architectures, the communication be-
tween client and server is stateless; all information needed for the server to

5.4. Web services 59

process the client’s request must be contained in the request. The state of
the interaction is fully represented in the client.

• Caching. For efficiency, any resources communicated from the server to
the client make it explicit whether or not they can be cached.

• Uniform interface. Independently of their implementation, all REST
servers expose the same kind of interface to the client. This is a thoroughly
reductionist constraint which forces server implementations to shield off
their implementation specificities for the sake of interoperability. The spe-
cific interface constraints are (1) the unique identification of resources, (2)
the manipulation of resources by the client through representations of these
resources, (3) self-descriptive messages, and (4) the use of hypermedia as
the “engine” of application state.

• Single-layer visibility. Obviously, in any architecture a server can itself
act as a client to additional servers, potentially yielding complex architec-
tures. In REST, however, a client only sees the single layer that it interacts
with. This enables, for example, improved scalability through the use of
caching and load-balancing front-ends, as well as the implementation of se-
curity policies such as access control.

• Code-on-demand. Optionally, REST allows a server to send the client code
to be executed on the client side. This limits the requirements on pre-defined
functionality provided by the client.

This view of a distributed system is fundamentally different from the previ-
ously mentioned SOA approach. Whereas SOA focuses around the notion of pro-
cesses and workflows, REST is phrased in terms of resources and their represen-
tations (Richardson and Ruby, 2007).

While the REST principles are independent of any specific implementation,
by far the most important real-world implementation is what is typically referred
to as “RESTful HTTP”: using the HTTP transfer protocol for the communication
and the interface, and Universal Resource Identifiers (URIs) to identify resources.
This means that all client-server interaction functionality must be phrased in terms
of the four HTTP actions: GET, POST, PUT and DELETE. When a client requests

60 Chapter 5. Middleware

a representation of the resource identified by a given URI, this representation can
contain further URIs; the client’s state changes by using these URIs in subsequent
HTTP requests.

REST is agnostic about the content of the resource representations that a
RESTful server provides to a client; it is merely suggested that standard data types
should be used, and that the MIME type as provided in both requests and responses
of the HTTP protocol be used for identifying the type of data being transferred. For
machine-to-machine interaction, the use of XML formats supports general inter-
operability; however, how to interpret any concrete representations is considered
an application-level concern independent of the REST approach.

Fielding emphasizes the fact that REST principles are intended for the specific
case of web-based systems, and that they may not be optimal for other kinds of
system integration: “The REST interface is designed to be efficient for large-grain
hypermedia data transfer, optimizing for the common case of the Web, but result-
ing in an interface that is not optimal for other forms of architectural interaction.”
(Fielding, 2000, p. 82)

In particular, this approach seems inappropriate for real-time interactive mul-
timodal systems in which many fine-grained messages need to be transmitted.

5.5 Linguistic middlewares
A number of middlewares and component integration frameworks have been cre-
ated specifically in order to facilitate the combination of linguistic analysis com-
ponents.

Unstructured Information Management Architecture (UIMA) version 1.0 (Fer-
rucci et al., 2009) is an OASIS standard defining platform-independent data repre-
sentations and interfaces that allow the analysis of text and multimodal data, with
the aim of enabling interoperability among analysis components. Unstructured
data is represented by means of a Common Analysis Structure (CAS). The CAS is
an object graph consisting of objects representing the Subject of analysis (“Sofa”)
and objects representing the Annotation which points to a section of the Sofa as
a stand-off annotation. All representations use standard object-oriented represen-
tations including Unified Modelling Language (UML) and XML Metadata Inter-
change (XMI). They are grounded in a user-extensible type system. There is not

5.6. Multimedia middlewares 61

yet an agreed body of types, but the specification expresses the intention to set
up domain-specific type systems in the future, to facilitate the interoperability of
components within a given domain area.

Apache UIMA (Apache Software Foundation, 2010) is an implementation of
the UIMA specification from the Apache Foundation. It provides a Java Frame-
work for creating analysis components communicating via the CAS. A C++ frame-
work adaptor is provided to allow for the integration of C++ components via JNI.
For scalability, the UIMA Asynchronous Scaleout (UIMA-AS) manager enables
the definition of distributed systems; the message-oriented middleware ActiveMQ
(see Section 5.1) is used for the communication between components. Apache
UIMA comes pre-packaged with a number of linguistic Annotator components
including a tokenizer, stemmer, part-of-speech tagger, named entity extraction,
and more. For simple integration into other web services, a simple server is pro-
vided that presents a REST interface (see Section 5.4.2) for sending queries and
receiving the analysis results in reply.

SeMantic Information Logistics Architecture (SMILA), an open-source com-
ponent integration framework initiated by the research project Theseus-ORDO,
is aimed towards the creation of “search solutions for unstructured information
in the enterprise” (Schütz, 2008, p. 6). SMILA is founded on the principles of
the SOA approach (see 5.4.1), thus naturally allowing for orchestration via BPEL
and distributed execution of components as web services. It leverages OSGi (The
OSGi Alliance, 2009), the Java component integration technology underlying, for
example, Eclipse, a widely used Integrated Development Environment (IDE). In-
tegration of non-Java components via suitable adaptors is intended for the future;
currently, SMILA is an Eclipse Incubator project working towards its 1.0 release.

5.6 Multimedia middlewares

Several dedicated middlewares have been created for providing connectivity and
interoperability among multimedia components.

62 Chapter 5. Middleware

5.6.1 Network-integrated multimedia middleware

Network-integrated multimedia middleware (NMM) is a middleware specialised
in the distributed handling of multimedia data (Lohse, 2007; Lohse et al., 2008). It
can combine recording, processing, and output of multimedia data across multiple
computers and in multiple formats in a synchronised way.

Technologically, NMM combines elements of message-oriented (see Sec-
tion 5.1) and remote-invocation (see Section 5.2) middlewares.

The flow of data between components follows message-oriented middleware
(MOM) principles. Processing components in NMM are called nodes. They are
interconnected using jacks, as a metaphor for the analog method of connecting
multimedia equipment using jacks and cables. Flow graphs, similar to the message
flow graphs in MOM, are created by connecting one node’s output jack to another
node’s input jack. Messages of two types are transported along these connections:
buffers transporting actual multimedia data, and events transporting control infor-
mation such as requests to change the volume of an output device. The creation
of flow graphs works transparently for the developer, in the sense that the same
approach is used to interconnect two nodes running on the same machine and two
nodes running on remote devices. NMM automatically selects the most efficient
means of transporting the data.

In addition, NMM also contains a remote method invocation (RMI) commu-
nication layer, providing object-oriented interfaces to nodes and jacks which are
defined using an Interface Definition Language (IDL) similar to Corba. This layer
is particularly suited for a high-level, type-safe control of components from the
system application.

NMM provides a temporal synchronisation mechanism to ensure time-aligned
presentation across different devices. A registry service which is part of the mid-
dleware allows for dynamic registration and lookup of nodes. Multiple plugins
exist for handling many different codecs, input and output devices.

The NMM software was developed at the Computer Graphics lab at Saar-
land University, and is now supported by the Motama GmbH, a spin-off company
of Saarland University. Motama provides the software through a dual-licensing
scheme, as open source software under the GPL and under a commercial license.

5.7. How to choose a middleware 63

NMM runs in C++ on Windows, Linux, Mac OS X and PS3. It is not yet
possible to implement NMM nodes in Java.

5.6.2 Open Sound Control
Open Sound Control (OSC) is a protocol for communication among software and
hardware audio components (Wright, 2002), developed as a more versatile suc-
cessor to the Musical Instruments Digital Interface MIDI (MIDI Manufacturers
Association, 1982). It defines message formats in terms of primitive data types,
independently of the transport layer. Data are indexed by hierarchically-organised
OSC Address Patterns, allowing for flexible transport of arbitrary data. The mean-
ing of fields is not standardised; it is up to the application to define a suitable set
of fields for communicating the necessary information.

The downside of this flexibility, paired with the lack of agreed types of infor-
mation, is the problem of interoperability of different implementations of the OSC
protocol. The OSC website (Wright, 2002) lists several dozen implementations of
the OSC specification in both hardware and software; due to the lack of standard-
ised meanings of message fields, these cannot be guaranteed to interoperate.

One important software supporting the OSC protocol is PureData (Puckette,
2009), a graphical programming toolkit for sound and multimedia. It uses OSC
for distributed implementation of complex signal processing setups.

5.7 How to choose a middleware
The choice of the right middleware for a given integration task should, firstly, be
guided by an analysis of requirements.

One important aspect of requirements is the expected main type of interaction
between components. If information mainly travels from one component to the
next, and little synchronisation is required between the individual components’
processing, an asychronous message-oriented (MOM) paradigm may be suited.
If components essentially need to submit data to other components and require a
synchronised response, then a remote-invocation (RMI) paradigm may be more
suited. Where several components repeatedly need to access the same data as
it evolves over time, a blackboard approach may be most suitable. This choice,

64 Chapter 5. Middleware

abstract as it may seem, is the most basic decision to be taken when choosing a
middleware, and it will determine much of the integration experience that will
result.

Another important aspect is the expected type of information flowing between
components. To what extent is it considered desirable to use automatic verification
of representation formats at component interfaces? Is there a need for object-
oriented interfaces? The Interface Definition Language (IDL) formalisms used
in Object Request Broker (ORB) type RMI technology provides this functionality.
It supports the developer in verifying that only syntactically correct requests are
sent, in which objects are marshalled at the sender end into an over-the-wire format
and unmarshalled at the receiver end. The alternative to object-oriented interfaces
are simpler interfaces provided in terms of primitive data types. These can be
used to encode information in XML-based standard formats, or in custom string-
based or binary representations. As a matter of principle, and independently of the
efficiency of any given implementation, there is additional effort required for the
marshalling and unmarshalling steps inherent in the ORB type of object-oriented
communication, which is not necessarily the case in simpler interfaces. Therefore,
object-oriented communication between components must generally be expected
to be slower than communication using basic data types.

A third relevant aspect is the question whether the communication is required
within a local distributed system or across the world wide web. For web com-
munication, web services should be used whereas for local distributed systems,
simpler and potentially much faster approaches can be used. Among the web ser-
vices, there is the basic choice between Service-Oriented Architectures (SOA),
implementing a web-ready version of the RMI paradigm, or the simpler REST
approach. Whereas the latter does not make any commitments about the represen-
tation formats used at component interfaces, it makes very explicit use of optimi-
sation mechanisms on the web today, such as caching.

Less principled but equally important questions concern practical issues.
Which operating systems and programming languages must be supported? How
easy is it to reconfigure a system architecture, to add or remove a system com-
ponent? How fast is a particular implementation of a middleware technology?
How well is it tested, supported, and documented? And, of particular relevance

5.8. Conclusion 65

for open source projects: is an open source version of the software available, and
is its license compatible with the intended licensing scheme of the project?

Finally, there are considerations of interoperability and reuse. Among the suit-
able middlewares, is one more widely used by relevant colleagues in the field? Are
there components available for reuse in some middleware framework? Are there
standardised and well-documented interfaces allowing a user to combine existing
with new components?

5.8 Conclusion
This chapter has provided an overview of different types of communication mid-
dlewares. The principles underlying messaging, remote invocation and blackboard
middlewares were explained. A number of more specialised middlewares were
also presented, including web services, linguistic, and multimedia middlewares.
Finally, the chapter has formulated a number of criteria for selecting a suitable
middleware for a given task.

In the next chapter, we will make use of the overview of middlewares presented
here, and motivate the choice of the middleware used for the communication layer
of the SEMAINE API component integration framework.

66 Chapter 5. Middleware

67

Part II

Infrastructure

69

Chapter 6

The SEMAINE API

This chapter will present the core technology developed in the present thesis: the
component integration framework “SEMAINE API” used as the system integra-
tion backbone in the SEMAINE system. We start by motivating the choice of the
underlying communication middleware from the requirements of the SEMAINE
system, and then go on to describing the component integration framework itself.

6.1 Choice of a middleware for a naturally interact-
ing and emotionally competent ECA

The most efficient method of passing data from one system component to another
would be to maintain data in the run-time memory of one integrated piece of soft-
ware. In such a monolithic system, only a reference to the data would need to be
passed on from one component to the next. However, given the complexity of the
system envisaged in the SEMAINE project, it is unrealistic to expect components
provided by different research partners to be integrated into one piece of software.
Not least, different components existing at different partner sites may be written in
different programming languages; furthermore, they may be running on different
operating systems. Clearly, thus, a middleware as defined in the previous chapter
is required for integrating such a system. In the present section, we analyse the
requirements arising from the target application, and select a suitable middleware.

70 Chapter 6. The SEMAINE API

6.1.1 Requirements for the ECA middleware
Using the criteria for choosing a middleware as elaborated in Section 5.7, we now
define the requirements for choosing the middleware for the SEMAINE API.

Inter-component communication pattern

A reactive ECA system requires functionality for perceiving the user’s behaviour,
for reasoning about that, and for generating system behaviour in a timely manner.
These functionalities can be clearly distinguished and delimited, so that they can
be implemented by separate components. For example, a component for analysing
the user’s speech from the microphone signal is different from the component that
interprets the user’s state on the basis of that analysis; the decision for the system
to act in a certain way, based on the current understanding of the user’s state, can
be clearly distinguished from the audio-visual behaviour generation and rendering
components. The following types of inter-component information flow can be
foreseen:

• periodic or event-based updates of user behaviour assessment;

• the system’s current best guess of the user’s state and of other relevant state
information;

• system behaviour information at various levels of concreteness, from the
proposed or selected action to the concrete data to be rendered.

Out of these, the user analysis data as well as the system output data are nat-
urally described as volatile, momentary representations that need to pass through
a number of components. A given piece of information may need to be analysed
by one or more components; a given component may require one or more types
of information. This is suitably described, in the general case, as a many-to-many
message passing network. There is no obvious requirement to synchronise analy-
sis components; they merely update the internally held information state whenever
the respective analysis results become available. As for system output, there is an
obvious requirement for synchronisation in rendering video and audio data, no-
tably for lip syncing. As for the inter-component communication, however, the
processing steps leading to the player input are loosely coupled in a way similar to

6.1. Choice of a middleware for a naturally interacting and emotionally competent ECA 71

the input components; every component can simply process its input when it be-
comes available. The player must make sure all expected parts of an audio-visual
output are present before it starts to render the output.

The system’s representation of the user state is of a different nature. It con-
stitutes a centrally held piece of information, frequently accessed or updated by
several components.

Comparing these requirements to the basic types of communication middle-
ware introduced in Chapter 5, we see that input and output messages naturally
fit the message-oriented middleware (MOM) paradigm, whereas the state infor-
mation would best fit the Blackboard paradigm. There does not seem to be an
obvious need for a remote-invocation (RMI) functionality.

Representation of information flowing between components

The components closest to the physical world have clear representational con-
straints. On the input side, these are the feature extractors of audio and video
signals. They produce feature vectors at periodic intervals, corresponding to a
video frame for visual feature extraction and to an audio frame for speech feature
extraction. Feature vectors are basically structured collections of values for which
a convention must exist between producer and consumer regarding the meaning
of the various values. Similarly, the input data to the player component consists
of representations that can directly be rendered by the player, such as binary audio
data and visual output parameters. For these representations, an object-oriented
representation seems of little use; important is the possibility to transport the raw
information as quickly and efficiently as possible.

For intermediate processing steps, the application scenario does not impose
any strong constraints. Whether or not an object-oriented representation is chosen
is a design choice.

Local vs. web integration

The real-time ECA system is intended as a local application, which runs as a dis-
tributed system merely for reasons of ease of integration and of distributing com-
putationally intensive components onto several computers. Web capabilities are
not required.

72 Chapter 6. The SEMAINE API

Operating systems

System components that pre-exist at different partners’ sites are developed on
Linux, Mac OS X and Windows.

Programming languages

Some pre-existing components are written in C++, others in Java.

Re-configurability

For research and testing, it should be as easy as possible to re-configure the system.
The system should be robust to the addition or removal of a component, obviously
within the limits of the application logic. This makes it possible to experiment with
additional functionality. An example is a user presence detector, which makes
use of the audio and video features to decide whether a user is present. If the
component is absent, the system should continue to work as before, except that
there is no automatic way of switching the context state regarding user presence.

Speed

Reaction speed is crucial for a real-time ECA system capable of rendering
backchannels. Delays of the order of 350 to 700 ms can be crucial (Ward and
Tsukahara, 2000). Given the fact that this number includes processing time, it is
obvious that as little time as possible should be spent on communication between
components. This argument favours simple middlewares based on raw data inter-
faces rather than object-oriented middlewares.

Quality of documentation and support

The middleware should be properly documented, and support should be available.

Licensing status

The reactive ECA system should be mainly open source, and a purely open source
version should exist; however, individual components will be available only as
freeware in binary form. Therefore, the system’s core component must allow for

6.1. Choice of a middleware for a naturally interacting and emotionally competent ECA 73

redistribution as open source as well as the combination with closed source com-
ponents. This requirement excludes, on the one hand, commercial middlewares,
since they are not redistributable. On the other hand, it also excludes open-source
middlewares released under the GNU General Public License GPL, since that li-
cense disallows redistribution with components which are not themselves open
source. This means that a suitable middleware should be available under a permis-
sive open source license, such as the Apache License or the GNU Lesser General
Public License LGPL.

Interoperability and reuse

The project should try to avoid the reduplication of effort where relevant com-
ponents are already integrated into a suitable middleware. The components for
planning and realising the behaviour of the 3d ECA Greta (Niewiadomski et al.,
2009) are integrated via the Blackboard middleware Psyclone (CMLabs, 2007).
Since the Greta components are an essential part of the targeted ECA system, Psy-
clone should be seriously considered as a candidate technology.

It is an aim of the present endeavour to establish a framework for creating
new emotion-oriented interactive systems. To achieve this, the design choice has
been made to use standards-based XML representations at component interfaces
wherever that is possible and reasonable. This view on interoperability and reuse
favours a middleware that makes it easy to transport XML representations between
components.

6.1.2 Selection of a middleware software
The requirements analysis makes it clear that a suitable middleware should:

• be a message-oriented or Blackboard middleware;

• preferably provide fast primitive or XML-based rather than object-oriented
interfaces;

• run on Windows, Mac OS X and Linux, with support for both C++ and Java;

• be well tested and supported;

74 Chapter 6. The SEMAINE API

• be publicly available for free, ideally under a permissive open source license.

These criteria exclude many of the options presented in Chapter 5. The re-
quirement to support both Java and C++ excludes otherwise interesting technolo-
gies such as NMM, JavaSpaces or SMILA, and casts doubts over predominantly
Java-oriented middlewares such as Apache UIMA. For speed reasons, the entire
web service family must be excluded, including SOA and REST approaches. The
preference for MOM or Blackboard middlewares, as well as the preference for
primitive over object-oriented interfaces, disfavour CORBA. The preference for
well tested and supported code casts doubts over XML-RPC and OSC. The ex-
clusion of commercial middlewares rules out the commercial MOMs from IBM,
Tibco and Microsoft, as well as GigaSpaces.

A small number of contenders remain after this filtering process: open source
MOMs such as ActiveMQ; the research-only Blackboard middleware Psyclone;
and, because of its asynchronous communication possibilities and fast implemen-
tation, the RMI middleware ICE. Their properties are now discussed and compared
in some detail.

Psyclone

Psyclone provides blackboard-based communication with publish-subscribe ca-
pabilities, allowing for the flexible n-to-m type of information flow required in
the project. It offers text-only message content, which is suitable for XML-type
messages but suboptimal for binary audio data or feature vectors. The Psyclone
server is available on Windows, Linux and Mac OS X, and clients for its Open-
AIR protocol exist for C++ and Java. The code is not available as open source;
binary releases are made available under a free research-only license. The degree
of support is uncertain, and given the relatively narrow user base of Psyclone, it
must be expected to contain some bugs. Documentation exists but is rudimentary.
Most importantly though, we have found Psyclone to be very slow compared to
ActiveMQ (see Chapter 10 for details).

ICE

ICE is essentially an object-oriented RMI middleware, providing both asyn-
chronous and synchronous method invocation. It is thoroughly optimised to be

6.2. Component Integration Framework 75

very fast and to require as little CPU and memory resources as possible. It sup-
ports C++ and Java, on Windows, Linux, and Mac OS X. It seems to be well sup-
ported and broadly used. Source code is available under the GPL. In fact, the use
of the GPL is the only reason for not preferring ICE: since in our project we need
to combine open source with closed source components, the GPL would disallow
us to hand the full system to third parties.

ActiveMQ

ActiveMQ is an implementation of the Java Message Service (JMS) specification,
i.e. a MOM implemented in Java. It provides primitive messages in a range of
formats, including text and binary message types. This makes it optimally suited
for the range of messages envisaged in our ECA. The Java server and client code
run on any platform supporting Java; a C++ API runs on Windows, Linux, and Mac
OS X. As an Apache project, ActiveMQ is broadly used, supported and actively
developed. It is available as open source under the permissive Apache license.

In conclusion, out of these options, ActiveMQ and ICE are best from the points
of view of speed and quality of support. The more permissive license speaks in
favour of ActiveMQ. Psyclone remains a serious contender because of the previous
integration of Greta via Psyclone; however, we have found Psyclone to be at least
one order of magnitude slower than ActiveMQ (see Chapter 10).

For these reasons, we have chosen ActiveMQ as the communication middle-
ware for our work. The next section describes the SEMAINE API, our component
integration framework implemented on top of ActiveMQ. It provides additional
functionality which simplifies the task of building a reactive ECA, and to lower
the barrier to reuse existing components when creating new emotion-oriented sys-
tems.

6.2 Component Integration Framework
We have created the SEMAINE API as the component integration framework for
the SEMAINE project (see Section 1.1).

76 Chapter 6. The SEMAINE API

Given the project’s focus on standards-based integration of emotion-oriented
components for real-time interaction, the SEMAINE API has the following main
aims:

• to integrate the software components needed by the SEMAINE project in a
robust, real-time system capable of multi-modal analysis and synthesis;

• to enable others to re-use the SEMAINE components, individually or in
combination, as well as to add their own components, in order to build new
emotion-oriented systems.

The present section describes how the SEMAINE API supports these goals on a
technical level. First, we present the SEMAINE API’s approach to system integra-
tion, including use of the message-oriented middleware ActiveMQ for communi-
cation between components, as well as the software support provided for building
components that integrate neatly into the system and for producing and analysing
the representation formats used in the system.

6.2.1 System integration
The essential building blocks in the SEMAINE API are components, which com-
municate with one another asynchronously by sending and receiving messages.
All communication passes via so-called Topics (see Section 6.2.2); by conven-
tion, all data messages sent between components pass via Topics whose names are
prefixed with ‘semaine.data.’.

In addition to data messages, components can also send and receive callback
messages, which are intended for communicating processing state. For example,
the player component can use callback messages to inform other components of
the fact that a certain piece of system behaviour has started playing, has been com-
pleted, etc. Callback messages by convention are sent via Topics whose names are
prefixed with ‘semaine.callback.’.

Up to here, the component integration framework does not really do more than
providing conventions for using the middleware.

In order to actually provide component integration into a well-defined system,
the SEMAINE API provides a mechanism for verifying and maintaining a global

6.2. Component Integration Framework 77

system state. A system manager component maintains contact with a meta mes-
senger embedded in every component. When a component is started, its meta
messenger registers with the system manager over a special meta communication
channel, the Topic ‘semaine.meta’. At registration time, the meta messenger de-
scribes the component in terms of the data and callback Topics that it sends data
to and that it receives data from; if the component is an input or output compo-
nent (in the sense of the user interface), that status is communicated as well. The
system manager is keeping track of the components that have been registered,
and checks at regular intervals whether all components are still alive by sending
a ‘ping’. In reply to such a ping, each meta messenger confirms the respective
component’s status and sends debug information such as the average time spent
processing incoming requests. The system manager keeps track of the informa-
tion about registered components, and sends global meta messages informing all
components that the overall system is ready or, if a component has an error or is
stalled, that the system is not ready. Also, the system manager broadcasts a global
system time. All components use this global time via their meta messenger, and
thus can meaningfully communicate about timing of user and system events even
across different computers with potentially unsynchronised hardware clocks.

A centralised logging functionality uses the Topics prefixed with
‘semaine.log.’. By convention, messages are sent to ‘semaine.
log.<component>.<severity>’, e.g. the Topic ‘semaine.log.
UtteranceInterpreter.debug’ would be used for debug messages of com-
ponent UtteranceInterpreter. The severities used are ‘debug’, ‘info’, ‘warn’
and ‘error’. Through this design, it is possible for a log reader to subscribe,
e.g., to all types of messages from one component, or to all messages from all
components that have at least severity ‘info’, etc. Furthermore, a configurable
message logger can optionally be used to log certain messages in order to follow
and trace them. Notably, it is possible to read log messages in one central place,
independently of the computer, operating system or programming language used
by any given component.

Figure 6.1 illustrates this system architecture. Components communicate with
each other via Topics in the ‘semaine.data’ and ‘semaine.callback’ hierarchies
(indicated by black arrows). Meta information is passed between each compo-
nent’s meta messenger and the system manager via the ‘semaine.meta’ Topic

78 Chapter 6. The SEMAINE API

message-oriented
middleware

system
manager

semaine.meta

semaine.log.*

semaine.data.* meta
messenger

component

meta
messenger

componentmessage
logger

log reader

...
system monitor

GUI
system monitor

GUI

semaine.callback.*

Figure 6.1: SEMAINE API system architecture

(grey arrows). Optionally, components can write log messages, and a message
logger can log the content messages being sent; a configurable log reader can re-
ceive and display a configurable subset of the log messages (dashed grey arrows).

Optionally, a system monitor GUI visualises the information collected by the
system manager as a message flow graph. Input components are placed at the
bottom left, output components at the bottom right, and the other components are
sorted to the extent possible based on the data producer/consumer relationships,
along a half-circle from left to right. Where there are contradictory partial order-
ing constraints, such as in circular structures, a least-square solution is computed
to minimise the global distance between producer/consumer neighbours. This cri-
terion is overly simplistic for complex architectures, especially with circular mes-
sage flows, but is sufficient for simple quasi-linear message flow graphs. If a new
component is added, the organisation of the flow graph is recomputed. This way,
it is possible to visualise message flows without having to pre-specify the layout.

6.2. Component Integration Framework 79

Figure 6.2 shows the system monitor GUI for the SEMAINE-2.0 system de-
scribed in Chapter 7. Components are represented as ovals, whereas Topics are
represented as rectangles. Data Topics are shown between components; call-
back Topics are located in the middle of the image. Callback topics are blue
when inactive whereas data topics are grey. Both turn yellow when a message
is sent via the respective Topic, and slowly go back to their inactive colour.
In Figure 6.2, it can be seen that there have been recent callback messages in
the Topics ‘semaine.callback.output.BAP’ and ‘semaine.callback.output.
FAP’, but not in ‘semaine.callback.output.audio’. In other words, the player
has recently started or stopped playing an animation without vocal output, such as
a head nod. When the user clicks on a Topic rectangle, the GUI shows a history
of the messages transported by that Topic; debug information about a component
is shown when the user clicks on the component oval. A log message reader is
shown on the right-hand side. It can be configured with respect to the components
and the severity of messages to show.

The remainder of this section describes the various aspects involved in the
system in some more detail.

6.2.2 Topics
In its ‘publish-subscribe’ model, JMS routes messages via so-called Topics which
can be identified by name. The SEMAINE API adopts this terminology. Names
of Topics can be arbitrarily chosen. In order to establish a communication link
from component A to component B, it is sufficient for component A to register as
a ‘publisher’ to a named Topic, and for component B to register as a ‘subscriber’
to the same Topic. Whenever A sends a message to the Topic, B will receive the
message. Topics allow for an arbitrary number of publishers and subscribers, so
that it is trivial to set up n-to-m communication structures.

For a given system, it is reasonable to choose Topics such that they represent
data of a specific type, i.e. with a well-defined meaning and representation for-
mat. This type of data may be produced by several system components, such as
a range of modality-specific emotion classifiers. If there are no compelling rea-
sons why their outputs need to be treated differently, it is possible to use a single
Topic for their joint output, by registering all the components producing this data

80 Chapter 6. The SEMAINE API

Figure 6.2: Screenshot of the System Monitor GUI showing the message flow
graph for the SEMAINE system 2.0.

6.2. Component Integration Framework 81

type as publishers to the Topic. Similarly, several components may reasonably
take a given type of data as input, in which case all of them should register as
subscribers to the respective Topic. Using Topics as ‘information hubs’ in this
way immensely simplifies the clarity of information flow, and consequently the
message flow graph (see Figure 6.2 for an example).

6.2.3 Components
The creation of custom components is made simple by the base class ‘Component’
in the SEMAINE API, which provides the basic functionality required for the com-
ponent to interact with the rest of the system. The ‘Component’ will register as a
subscriber and/or as a publisher to a configurable list of Topics using suitable, pos-
sibly type-specific message receivers and message senders. Whenever a message
is received, the subclass’s ‘react()’ method is called, allowing the component to
process the data and perform some action, including the emission of any output
messages. In addition, the method ‘act()’ is called at configurable intervals (ev-
ery 100ms by default), allowing for actions to be triggered by component-internal
mechanisms such as timeouts or custom process logic.

The ‘Component’ base implementation also instantiates the meta messenger
(see Figure 6.1) which handles all meta communication with the system manager,
without requiring customisation by user code in subclasses.

Examples of simple component classes are provided in Chapter 11.

6.2.4 API support for relevant representation types
The SEMAINE API aims to be as easy to use as possible, while allowing for state
of the art processing of data. This principle is reflected in an extensive set of sup-
port classes and methods for parsing, interpreting and creating XML documents in
general and the representations specially supported (see Section 8.1) in particular.
XML processing is performed by the standards-compliant parser Xerces (Apache
Software Foundation, 2009) which converts between a textual representation con-
tained in messages and a user-friendly Document Object Model (DOM) represen-
tation (Le Hors et al., 2004). Parsing is done in a namespace-aware manner in
order to maintain a clear distinction between the elements used in mixed repre-
sentations. Examples of mixed representations are the use of the Extensible Mul-

82 Chapter 6. The SEMAINE API

timodal Annotation language EMMA to transport a recognition result expressed
in EmotionML, or the use of the Speech Synthesis Markup Language SSML to
encode the speech aspect of ECA behaviour in the Behavior Markup Language
BML. These combinations make perfect sense; namespaces are a suitable method
for clearly identifying the markup type of any given element when interpreting a
mixed representation.

Support classes exist for the representation formats listed in Section 8.1, no-
tably as dedicated receiver, sender and message objects. For example, when a
component registers an ‘EmmaReceiver’ to listen to a given Topic, it will receive
messages directly as ‘SEMAINEEmmaMessage’ objects with methods appropriate for
interpreting the content of the EMMA data; a ‘FeatureSender’ will take an array
of float values and send it as a textual or binary feature message; ‘BinarySender’
and ‘BinaryReceiver’ classes can be used to transport, e.g., audio data between
components. A generic ‘XMLSender’ and ˚XMLReceiver’ can be used to send and
receive arbitrary XML structures.

In sum, these support classes and methods simplify the task of passing mes-
sages via the middleware, and help avoid errors in the process of message-passing
by implementing standard encoding and decoding procedures. Where represen-
tations beyond those previewed by the API are required, the user always has the
option to use lower-level methods such as plain XML or even text messages and
implement a custom encoding and decoding mechanism.

Chapter 8 provides more details on the representations available for represent-
ing callback and data messages, including volatile input and output data as well as
centrally held state information.

6.2.5 Supported platforms

The SEMAINE API is currently available in Java and as a shared library in C++,
for Linux, Mac OS X and Windows. State of the art build tools (Eclipse and ant
for Java, Visual Studio for C++ on Windows, GNU automake/ autoconf for C++
on Linux and Mac) are provided to make the use of the API as simple and portable
as possible.

6.3. Conclusion 83

6.2.6 Status
As of version 3.1, the SEMAINE API is functionally complete and can be consid-
ered to be robust and stable enough for real-world use. There is detailed documen-
tation available on the SEMAINE wiki page (http://semaine.opendfki.de) in-
cluding full API documentation for Java (Javadoc) and C++ (Doxygen), a descrip-
tion of the possibilities for configuring the API and the SEMAINE system, a de-
scription of the representation formats supported (see also Chapter 8) and a tuto-
rial for building new emotion-oriented systems with the SEMAINE API (see also
Chapter 11).

The SEMAINE API starts to be used also outside the SEMAINE project, for
example by Kipp et al. (2010) and by Dibeklioglu et al. (2010).

6.3 Conclusion
The present chapter has presented the technical properties of the SEMAINE API,
the component integration framework developed in this thesis.

We have analysed the requirements for the underlying middleware that arise
from the target system, motivating the choice of the message-oriented middleware
ActiveMQ as the basis for inter-component communication in the SEMAINE API.

We have then presented the architecture of the component integration frame-
work itself. In addition to actual communication between the components, the SE-
MAINE API provides a system manager functionality to keep track of the system’s
state, as well as a centralised logging functionality. The API provides substantial
support to simplify the task of writing components, including a Component base
class and utilities for sending and receiving the supported representation formats
and for XML handling.

The framework is available for Java and C++, for Linux, Mac OS X and Win-
dows. Substantial technical documentation is available.

In the next chapter, we will discuss the architecture of the actual SEMAINE
system built on top of the API, before we take a closer look at inter-component
communication in Part III of this thesis.

http://semaine.opendfki.de

84 Chapter 6. The SEMAINE API

85

Chapter 7

System architecture of the
SEMAINE system

This chapter will present the SEMAINE system with a special emphasis on system
architecture and its effect on the system’s reactivity. We start by presenting briefly
the components making up the SEMAINE system. We then present two versions
of the system. In SEMAINE-2.0, the information flow is organised as a simple
pipeline architecture, where the data flows from one component’s output into the
next component’s input in an essentially linear fashion from user input via dialogue
planning to output generation. We then present SEMAINE-3.0, which implements
an alternative architecture where the output part of the system is organised as a
prepare-and-trigger fashion in order to speed up the time from the decision to act
until the output starts playing.

7.1 Conceptual framework
Conceptually, the architecture that orients the implementation of the SEMAINE
system is very similar to the architectures of other multimodal interactive systems
as described in Chapter 3. Fig. 7.1 shows the main items. First, user behaviour
is observed through a camera and a microphone, and low-level features are com-
puted using a battery of feature extractor components. Features are low-level data
computed from the raw signals, and are typically computed at a constant frame
rate, e.g. every 10 ms for audio data, and every video frame for video data. These

86 Chapter 7. System architecture of the SEMAINE system

features are used by analyser components to compute an estimate of the current
user state. We call analysers such components that try to make some sense of user
behaviour without using context information, such as classifiers. The raw features
and the preliminary estimate of the user state are further interpreted in the light of
all available information by a set of interpreter components. These take decisions
about the system’s ‘current best guess’ about the state of the user, the dialogue
and the agent. Interpreters do such diverse things as conclude when the user is
speaking or not, make a final estimate of the user’s current emotion, and update
the agent state such as the agent’s desire to speak.

In parallel to this analysis and interpretation of the user’s input, a group of ac-
tion proposers continuously take decisions on whether to propose an action given
the current state information. These include the action to speak, i.e. to produce a
verbal utterance, as well as the action to exhibit some listener behaviour, such as a
feedback signal or a mimicry backchannel. An action selection component makes
sure only one action is being realised at a time. The selected action is then rendered
in terms of concrete vocal, facial and gestural behaviour, and finally rendered by
a player component.

The following section provides a description of how this conceptual framework
has been instantiated in the SEMAINE-2.0 system.

7.2 SEMAINE-2.0: A pipeline architecture
The software integration in the SEMAINE project proceeded in stages.
SEMAINE-1.0 represented a first integrated system with preliminary functional-
ity; the main system infrastructure and preliminary versions of most components
were in place. This “early integration” approach was designed to identify prob-
lems with the conceptual setup at an early stage, and thus simplify the integration
of the full system.

SEMAINE-2.0 was then a first full instantiation of SEMAINE’s Sensitive Arti-
ficial Listener system. All key functionality was implemented, and it was possible
to interact with the system and have a multimodal interaction with the system. The
system components were trained on preliminary data, and not optimised for per-
formance. The system architecture was a simple pipeline architecture as depicted
in Figure 7.1.

7.2. SEMAINE-2.0: A pipeline architecture 87

Figure 7.1: Message flow in the SEMAINE system using a pipeline architecture.

We will now describe the concrete instantiations of the components that made
up the SEMAINE-2.0 system. For more technical detail on the system architecture
of SEMAINE-2.0, see Schröder (2009b).

7.2.1 Feature extraction
All understanding of the user’s behaviour that the SAL system may achieve starts
with the extraction of low-level features characterising the user’s voice, head
movements, and facial expression. User behaviour is analysed from a camera and
a microphone signal. The components TumFeatureExtractor and VideoFeature-
Extractor compute features of the audio and video signals, respectively.

The audio feature extraction component performs, first of all, voice activity
detection, in order to determine whether the user is currently speaking or not. Fur-
thermore, the component detects keywords incrementally, and a speaker adapta-
tion on the feature level.

The face feature extraction component starts with a face detection – the de-
cision whether a face is present or not. This component also carries out facial

88 Chapter 7. System architecture of the SEMAINE system

point detection and tracking, and a global head motion estimation. For details and
references for further reading, see Schuller et al. (2009).

7.2.2 Understanding human behaviour
Analysers attempt to find different types of information in the low level features.

Audio analysers identify pitch variations such as rising and falling pitch, which
may be useful for determining when the agent should show backchannel be-
haviour. The system can attempt to identify the user’s gender. Non-linguistic
vocalisations such as laughter and sigh are detected. And, most importantly, emo-
tions are recognised, including interest, valence, arousal, power, anticipation, and
intensity.

Face analysers detect head nods and shakes from head movements; emotions
are detected in terms of arousal and valence based on facial points.

For more details, see Pantic et al. (2009a) and Pantic et al. (2009b).

7.2.3 Dialogue management
A number of interpreter, action proposer and action selection components jointly
make up the dialogue management part of the system.

Interpreter components produce internal state information, which corresponds
conceptually to the system’s “current best guess” regarding the state of the world.
We distinguish user state, agent state, dialogue state, and context state; the latter
covers the relevant aspects of the current setup, such as whether a user is present,
and which of the four SAL characters the user is currently interacting with. State
information is communicated in the system as described in Section 8.3.

One interpreter observes head movements. If for example a head shake is de-
tected, this may lead to an interpretation of a user state of “disagreement”, which
can then be taken into account during utterance selection. Other interpreters spe-
cialise in deciding whether the low-level voice activity detection is to be inter-
preted as the user being actually currently silent or speaking; at this level, dif-
ferent thresholds may be applied than for the low-level detection. An emotion
interpreter consolidates the evidence of detected emotions into the system’s cur-
rent best guess of the user’s emotion. An agent mental state interpreter takes into
account the current user state and the agent’s pre-defined personality, in order to

7.2. SEMAINE-2.0: A pipeline architecture 89

update the propensity of the agent to express different communicative functions
towards the user while listening.

Maybe the most important interpreter is the turn-taking interpreter. It takes into
account a number of variables to compute the agent’s willingness to take the turn.
Relevant factors include not only the time the user has been silent, but also recent
emotions, the length of the user’s turn, the agent’s personality, and other factors.
The resulting “propensity to take the turn” will have an impact on the likelihood
of the agent selecting an utterance action.

Two main action proposers are present in the SEMAINE system: the utterance
action proposer and the listener intent planner, representing the agent’s actions
while speaking and while listening, respectively. The utterance action proposer
uses the available information to select an utterance from the existing script. The
criteria for the selection differ from usual dialogue systems due to the nature of the
Sensitive Artificial Listener scenario which allows for open-domain dialogues with
no semantic modelling. Criteria for selecting an utterance include, for example,
the user’s emotion, introduction of new topics, continuation questions, or specific
questions after long silences.

The listener intent planner, on the other hand, implements rules for triggering
visual and/or vocal backchannel and feedback behaviour, and for determining the
communicative functions to express in these behaviours.

An listener action selection component determines when to allow and when
to block listener behaviour. In particular, the agent must not produce listener
behaviour while it is speaking. Depending on the user’s interest, the number of
listener behaviours that are realised are varied.

For more details, see Heylen et al. (2009).

7.2.4 Generating SAL behaviour
Once the dialogue components have determined whether the agent is in a speaking
or a listening role, and how it should act given that role, its behaviour must be
realised. We use the same components for generating both speaking and listening
behaviour.

In both cases, the multimodal behaviour planner needs to instantiate abstract
communicative functions in its input in terms of character-specific behaviours.

90 Chapter 7. System architecture of the SEMAINE system

For example, one character might realise “agreement” as a head nod while another
character might smile, and a third character might say “yeah”. A character-specific
behaviour lexicon is used for this mapping.

The behaviour realiser renders the behaviour plan in terms of synthetic speech
and synchronised lip movements, facial expressions, and head gestures.

The low-level behaviour specification is then realised by a 3-d audiovisual
ECA player.

For details, see Pelachaud et al. (2009).

7.3 SEMAINE-3.0: Introducing the prepare-and-
trigger architecture

Version 3 of the SEMAINE system represents the functionally final version of
SEMAINE’s SAL implementation.

The architecture of the SEMAINE-3.0 system has been extended and cleaned
up compared to the previous version SEMAINE-2.0. New components were
added; the structure of the architecture was homogenised on the input side; and
the output side was extended with a prepare-and-trigger mechanism to speed up
system responses. Full technical detail is available in Schröder et al. (2010b).

Figure 7.2 shows a schematic Message Flow Graph of the full system. Compar-
ing it with the previous version (Figure 7.1), two main changes should be noticed:

• the input side of the architecture now includes fusion components between
the analysers and the interpreters;

• the output side of the architecture distinguishes between two output
branches, a direct one and a prepare-and-trigger branch.

7.3.1 Overview of changes in SEMAINE-3.0
Analysis of user behaviour

The feature extractors and analysers have been improved in SEMAINE-3.0, in
terms of quality and performance. For example, a more accurate algorithm for
keyword spotting was integrated into the real-time system. Facial analysis now

7.3. SEMAINE-3.0: Introducing the prepare-and-trigger architecture 91

direct
output branch

prepare-and-trigger
output branch

action selection

Action proposersAction proposersaction proposers

user state

agent state

dialog state

Action proposersAction proposersinterpreters

feature extractors

analysers

candidate
actions

selected
action

player

behaviour
data+trigger

fusion

consolidated
analyses

behaviour
data

Action proposersAction proposersbehaviour generatorsAction proposersAction proposersbehaviour generators

trigger

animation
status callback

individual
analyses

low-level
features

Figure 7.2: Message flow in the SEMAINE system using a prepare-and-trigger
architecture.

92 Chapter 7. System architecture of the SEMAINE system

includes an action unit detector. Emotion is now predicted from voice, face, and
head movements.

New fusion components have been added to make explicit the step of con-
solidating evidence from different modalities regarding non-verbal behaviour and
emotion detection. For example, given the fact that arousal is usually more re-
liable conveyed through the voice and valence is easier to detect from the face,
the fusion can, in case of conflict, give preference to the voice-based prediction of
arousal but use the face-based prediction of valence.

Details can be found in Schuller et al. (2010) and Pantic et al. (2010).

Dialogue management

The dialogue management components have been improved with respect to the
reusability of the components: a template system is now used to define the dia-
logue scripts, which means that new dialogues can be scripted in XML without
having to modify any program code. The utterance scripts have been enriched
with non-verbal behaviours, so that the SAL characters are now expressive also
while speaking, not only while listening. A new data-driven criterion for selecting
utterances has been added, based on machine learning from annotated dialogue
scripts.

The utterance action proposer has been adapted to support the new prepare-
and-trigger architecture (see below).

For details on dialogue management in SEMAINE-3.0, see Heylen and ter
Maat (2010).

Behaviour generation

For the behaviour generation, there have been a number of improvements in detail,
such as a better coverage of audio-visual listener behaviour (such as nodding and
saying “uh-huh” at the same time). The most important change, however, concerns
the architecture which complements direct generation with a prepare-and-trigger
branch.

The basic idea is to separate the preparation of an action from its output in the
player. This allows us to prepare likely future actions ahead of time, and to trigger
their immediate start when they are indeed selected. We call this the “prepare-

7.3. SEMAINE-3.0: Introducing the prepare-and-trigger architecture 93

and-trigger” branch in the SEMAINE-3.0 architecture. When actions are selected
which have not been prepared ahead of time, they are realised using the traditional
“direct” branch.

A protocol for the player component was defined to ensure that both the direct
branch and the prepare-and-trigger branch can feed the player without causing
conflicting states. The definition of the player protocol is provided in Appendix A.

Details on the ECA behaviour generation in SEMAINE-3.0 are available in
Pelachaud et al. (2010).

7.3.2 Motivation for the prepare-and-trigger architecture:
Competitive Queuing

The idea for the prepare-and-trigger architecture comes from cognitive neuro-
science, more precisely the notion of Competitive Queuing (CQ) in fluent series
of actions (Bullock, 2004). Traditional action sequence models would consider a
transition from states where in each state, a single action is activated. In CQ, on
the other hand, multiple actions which form a sequence are active in parallel; the
action with the highest activation level is executed next, and then deleted from the
set of active actions. These models are used to explain, for example, anticipatory
behaviour and also re-sequencing errors in well-learned sequences, such as typ-
ing familiar words on a computer keyboard. The anticipation of actions makes it
possible to execute sequences of actions fluently.

Bullock and Rhodes (2003) point out the key properties of architectures based
on CQ as follows.

“competitive queuing models [...] follow naturally from two as-
sumptions: (1) More than one plan representation can be simultane-
ously active in a planning layer; and (2) The most active plan repre-
sentation is chosen, in a second neural layer, by a competition run to
decide which plan to enact next.” (Bullock and Rhodes, 2003, p. 241)

In order to benefit from the ideas of CQ in the context of our ECA system, we
would therefore have to modify our architecture as follows.

• “Activate” predictable future actions ahead of time, without triggering them.

94 Chapter 7. System architecture of the SEMAINE system

• Activate multiple potential actions.

• Establish a fast mechanism for triggering activated actions.
In our case, the “activation” of an action consists in rendering it through the

sequence of steps needed to get from the action, as produced by the utterance action
proposer, to the player input. In other words, rather than first selecting an action
and then starting to render it, the CQ-based method consists in first preparing a
number of likely actions, and upon selection of one of these actions, triggering its
immediate realisation.

It is important to note that the CQ approach is designed to make more fluent the
generation of predictable actions. This means that even an architecture based on
CQ principles must retain the possibility to generate actions which were not pre-
dicted beforehand, such as reactions to unexpected events. In SEMAINE, we have
realised this by complementing the direct pipeline architecture with a “prepare-
and-trigger” branch. The idea is to generate as many actions as possible via the
prepare-and-trigger branch, and to use the direct branch as a fallback.

The following sections show in detail how we have realised the approach. We
start with a closer look at the pipeline approach, so that it is easier to see the dif-
ference to the new prepare-and-trigger approach.

7.3.3 Information flow for output generation in the pipeline ar-
chitecture

In the pipeline approach to output generation, information flows in a simple se-
quence from the action selection to the player. Conceptually this sequence is
the same in the SEMAINE-2.0 system (Figure 7.1) and in the “direct branch”
in SEMAINE-3.0 (Figure 7.2). The following detailed description follows the
SEMAINE-3.0 system in order to be consistent with the description of the prepare-
and-trigger approach.

Starting with an utterance selected by the dialogue components, the following
steps are performed in sequence before the player can start executing the anima-
tion.

• The component SpeechPreprocessor computes the accented syllables and
any phrase boundaries as anchors to which any gestural behaviour can

7.3. SEMAINE-3.0: Introducing the prepare-and-trigger architecture 95

be attached. It reads from Topics ‘semaine.data.action.selected.
function’ and ‘semaine.data.action.selected.behaviour’, and writes
its results to ‘semaine.data.action.selected.speechpreprocessed’.
Whereas conceptually this processing step could work with purely symbolic
specification of prosody-based anchor points, the current implementation of
the behaviour planner component requires absolute timing information. For
this reason the output of the SpeechPreprocessor already contains the de-
tailed timing information.

• BehaviourPlanner determines suitable behaviour elements based on the in-
tended function/meaning of the action. It uses character-specific behaviour
lexicons to map FML to BML (see Chapter 8 for details on these rep-
resentation formats). It reads from ‘semaine.data.action.selected.
speechpreprocessed’ and writes to ‘semaine.data.synthesis.plan’.

• SpeechBMLRealiser carries out the actual speech synthesis, i.e. the gen-
eration of audio data. It reads from ‘semaine.data.synthesis.plan’; it
writes a BML message including the speech timings to ‘semaine.data.
synthesis.plan.speechtimings’, and the binary audio data including a
file header to ‘semaine.data.synthesis.lowlevel.audio’.

• BehaviorRealizer reads from ‘semaine.data.synthesis.plan.
speechtimings’ and ‘semaine.data.action.selected.behaviour’,
and produces the low-level video features in Topics ‘semaine.data.
synthesis.lowlevel.video.FAP’ and ‘semaine.data.synthesis.
lowlevel.video.BAP’. In addition, it sends two types of information to
Topic ‘semaine.data.synthesis.lowlevel.command’: (1) the informa-
tion which modalities form part of a given animation as identified by a
unique content ID; and (2) the trigger commands needed to start playing
back the animation.

• PlayerOgre is the audiovisual player component. It reads the low-level
player data from topics ‘semaine.data.synthesis.lowlevel.audio’,
‘semaine.data.synthesis.lowlevel.video.FAP’ and ‘semaine.data.
synthesis.lowlevel.video.BAP’. A unique content ID is used to match
the various parts of a multimodal animation to be rendered. Two types

96 Chapter 7. System architecture of the SEMAINE system

of information are received via the Topic ‘semaine.data.synthesis.
lowlevel.command’: the information which modalities are expected to be
part of a given animation / content ID; and the trigger to start playing the an-
imation. The Player sends callback messages (see Section 8.2) to the topic
‘semaine.callback.output.Animation’, to inform about the preparation
or playback state of the various animations it receives.

7.3.4 Information flow for output generation in the prepare-
and-trigger architecture

The prepare-and-trigger branch in the SEMAINE-3.0 system (Figure 7.2) repli-
cates the middle part of the processing pipeline of the direct branch, but using
different Topics.

• QueuingSpeechPreprocessor reads from ‘semaine.data.action.
prepare.function’ and ‘semaine.data.action.prepare.behaviour’,
and writes to ‘semaine.data.action.prepare.speechpreprocessed’;

• BehaviorPlannerPrep reads from ‘semaine.data.action.prepare.
speechpreprocessed’ and writes to ‘semaine.data.synthesis.
prepare’;

• QueuingSpeechBMLRealiser reads from ‘semaine.data.synthesis.
prepare’ and writes to ‘semaine.data.synthesis.prepare.
speechtimings’ and ‘semaine.data.synthesis.lowlevel.audio’;

• BehaviorRealizerPrep reads from ‘semaine.data.synthesis.prepare.
speechtimings’ and ‘semaine.data.action.prepare.behaviour’
and writes to ‘semaine.data.synthesis.lowlevel.video.FAP’,
‘semaine.data.synthesis.lowlevel.video.BAP’ and ‘semaine.
data.synthesis.lowlevel.command’.

The difference to the direct branch is at the two ends of the processing pipeline.
At the input end, the UtteranceActionProposer feeds into ‘semaine.data.
prepare.function’ candidate utterances that the current character may perform
in the near future. At the output end, the BehaviorRealizerPrep sends the data

7.4. Conclusion 97

and the content-level description to the player, but it does not send the trigger
commands. Instead, when the player has received all necessary parts of a given
animation, it sends a “ready” callback message which is then registered by the
UtteranceActionProposer. When its utterance selection algorithm determines
that the selected utterance already exists in prepared form in the player, all it
needs to do is send a trigger command directly from UtteranceActionPoposer to
‘semaine.data.synthesis.lowlevel.command’, which then starts the playback
of the prepared animation without any further delay. If no prepared version of
the selected utterance is available, e.g. because it was not expected that this ut-
terance would be selected, or because the preparation has not yet been completed,
the utterance is generated using the direct branch.

The prepare-and-trigger branch is used only for full utterances. Listener ac-
tions are so short and fast to generate that they always use the direct branch. Since
both branches are technically completely independent, this architecture scales well
to multiple computers: it is easy to run the direct branch on one computer and
the prepare-and-trigger branch on a different computer if they jointly would over-
stretch the CPU resources of a single PC.

7.4 Conclusion
This chapter has described the components that make up the SEMAINE system
implementing a set of Sensitive Artificial Listeners. We have only touched upon
the individual components very briefly, pointing to relevant references for the in-
terested reader. We have described two versions of the system, the first full system
SEMAINE-2.0 organised according to the traditional “pipeline” architecture, and
the latest version SEMAINE-3.0 adding the prepare-and-trigger branch inspired
by competitive queuing in order to speed up the reaction time for predictable ac-
tions. We will assess the effectiveness of this approach in Chapter 10.

In the next chapter, we will provide information on the representations that are
used in the communication between the components.

98 Chapter 7. System architecture of the SEMAINE system

99

Part III

Communication

101

Chapter 8

Representation formats

In this chapter, we present the representation formats used in the SEMAINE sys-
tem and supported in the SEMAINE API. We present their status with respect to
standardisation, and the extent to which domain-specific representations appear to
be needed.

8.1 Representation formats supported in the SE-
MAINE API

In view of future interoperability and reuse of components, the SEMAINE API
aims to use standard representation formats where that seems possible and rea-
sonable. For example, results of analysis components can be represented using
EMMA (Extensible Multi-Modal Annotation), a Wold Wide Web Consortium
(W3C) Recommendation (Johnston et al., 2009). Input to a speech synthesiser can
be represented using SSML (Speech Synthesis Markup Language), also a W3C
Recommendation (Burnett et al., 2004).

Several other relevant representation formats are not yet standardised, but are
in the process of being specified. This includes the Emotion Markup Language
EmotionML (see Chapter 9), used for representing emotions and related states in
a broad range of contexts, and the Behaviour Markup Language BML (Kopp et al.,
2006), which describes the behaviour to be shown by an Embodied Conversational
Agent (ECA). Furthermore, a Functional Markup Language FML (Heylen et al.,
2008) is under discussion, in order to represent the planned actions of an ECA on

102 Chapter 8. Representation formats

the level of functions and meanings. By implementing draft versions of these spec-
ifications, the SEMAINE API can provide hands-on input to the standardisation
process, which may contribute to better standard formats.

On the other hand, it seems difficult to define a standard format for representing
the concepts inherent in a given application’s logic. To be generic, such an endeav-
our would ultimately require an ontology of the world. In the SEMAINE system,
which does not aim at any sophisticated reasoning over domain knowledge, a sim-
ple custom format named SemaineML is used to represent those pieces of infor-
mation that are required in the system but which cannot be adequately represented
in an existing or emerging standard format. It is conceivable that other applica-
tions built on top of the SEMAINE API may want to use a more sophisticated
representation such as the Rich Description Format RDF (Becket and McBride,
2004) to represent domain knowledge, in which case the API could be extended
accordingly.

Whereas all of the aforementioned representation formats are based on the Ex-
tensible Markup Language XML (Bray et al., 1998), there are a number of data
types that are naturally represented in different formats. This is particularly the
case for the representations of data close to input and output components. At the
input end, low-level analyses of human behaviour are often represented as feature
vectors. At the output end, the input to a player component is likely to include
binary audio data or player-specific rendering directives.

Table 8.1 gives an overview of the representation formats currently supported
in the SEMAINE API. The following subsections briefly describe the individual
representation formats.

8.1.1 Feature vectors
Feature vectors can be represented in an ad hoc format. In text form (see Fig-
ure 8.1), the feature vectors consist of straightforward key-value pairs – one feature
per line, values preceding features.

As feature vectors may be sent very frequently (e.g., every 10 ms in the SE-
MAINE system), compact representation is a relevant issue. For this reason, a
binary representation of feature vectors is also available. In binary form, the fea-
ture names are omitted, and only feature values are being communicated. The first

8.1. Representation formats supported in the SEMAINE API 103

Type of data Representation format Standardisation status
Low-level input features string or binary feature vectors ad hoc

Analysis results EMMA W3C Recommendation
Emotions and related states EmotionML W3C Working Draft

Domain knowledge SemaineML ad hoc
Speech synthesis input SSML W3C Recommendation
Functional action plan FML very preliminary

Behavioural action plan BML draft specification
Low-level output data binary audio, player commands player-dependent

Table 8.1: Representation formats supported by the SEMAINE API.

0.000860535 rmsEnergy
12.6699 logEnergy
-2.59005e-05 rmsEnergy-De
-0.0809427 logEnergy-De
...

Figure 8.1: Textual representation of a feature vector.

four bytes represent an integer containing the number of features in the vector; the
remaining bytes contain the float values one after the other.

8.1.2 EMMA
The Extensible Multimodal Annotation Language EMMA, a W3C Recommenda-
tion, is “an XML markup language for containing and annotating the interpretation
of user input” (Johnston et al., 2009). As such, it is a wrapper language that can
carry various kinds of payload representing the interpretation of user input. The
EMMA language itself provides, as its core, the <emma:interpretation> ele-
ment, containing all information about a single interpretation of user behaviour.
Several such elements can be enclosed within an <emma:one-of> element in cases
where more than one interpretation is present. An interpretation can have an
emma:confidence attribute, indicating how confident the source of the annotation
is that the interpretation is correct; time-related information such as emma:start,
emma:end, and emma:duration, indicating the time span for which the interpreta-
tion is provided; information about the modality upon which the interpretation is
based, through the emma:medium and emma:mode attributes; and many more.

104 Chapter 8. Representation formats

<emma:emma version=”1.0” xmlns:emma=”http://www.w3.org/2003/04/emma”
xmlns=”http://www.w3.org/2009/10/emotionml”>

<emma:interpretation emma:start=”12457990” emma:end=”12457995”
emma:mode=”voice” emma:verbal=”false”>

<emotion dimension-set=”http://www.w3.org/TR/emotion-voc/xml#fsre-dimensions”>
<dimension name=”arousal” value=”0.3”/>
<dimension name=”valence” value=”0.7”/>

</emotion>

</emma:interpretation>
</emma:emma>

Figure 8.2: An example EMMA document carrying EmotionML markup as inter-
pretation payload.

Figure 8.2 shows an example EMMA document carrying an interpretation of
user behaviour represented using EmotionML (see Chapter 9). The interpretation
refers to a start time. It can be seen that the EMMA wrapper elements and the
EmotionML content are in different XML namespaces, so that it is unambiguously
determined which element belongs to which part of the annotation.

EMMA can also be used to represent Automatic Speech Recognition (ASR)
output, either as the single most probable word chain or as a word lattice, using
the <emma:lattice> element.

8.1.3 EmotionML
The Emotion Markup Language EmotionML is specified, at the time of this writ-
ing, by a W3C Last Call working draft (see Chapter 9 for details).

The SEMAINE API is one of the first pieces of software to implement Emo-
tionML. It is our intention to provide an implementation report as input to the W3C
standardisation process in due course, highlighting any problems encountered with
the current draft specification in the implementation.

EmotionML aims to make concepts from major emotion theories available in
a broad range of technological contexts. Being informed by the affective sciences,
EmotionML recognises the fact that there is no single agreed representation of af-
fective states, nor of vocabularies to use. Therefore, an emotional state <emotion>

8.1. Representation formats supported in the SEMAINE API 105
<semaine:dialog-state xmlns:semaine=”http://www.semaine-project.eu/semaineml”>

<semaine:agent believesHasTurn=”false”/>
</semaine:dialog-state>

Figure 8.3: An example SemaineML document representing dialogue state.

can be characterised using four types of descriptions: <category>, <dimension>,
<appraisal> and <action-tendency>. Furthermore, the vocabulary used can be
identified. The EmotionML markup in Figure 8.2 uses a dimensional representa-
tion of emotions, annotating the two dimensions arousal and valence.

EmotionML is aimed at three use cases: 1. Human annotation of emotion-
related data; 2. automatic emotion recognition; and 3. generation of emotional
system behaviour. In order to be suitable for all three domains, EmotionML is
conceived as a “plug-in” language that can be used in different contexts. In the
SEMAINE API, this plug-in nature is applied with respect to recognition, centrally
held information, and generation, where EmotionML is used in conjunction with
different markups. EmotionML can be used for representing the user emotion
currently estimated from user behaviour, as payload to an EMMA message. It is
also suitable for representing the centrally held information about the user state,
the system’s “current best guess” of the user state independently of the analysis
of current behaviour. Furthermore, the emotion to be expressed by the system
can also be represented by EmotionML. In this case, it is necessary to combine
EmotionML with the output languages FML, BML and SSML.

8.1.4 SemaineML

A number of custom representations are needed to represent the kinds of infor-
mation that play a role in the SEMAINE demonstrator systems. Currently, this
includes the centrally held beliefs about the user state, the agent state, the dialogue
state, and the context state. Most of the information represented here is domain-
specific and does not lend itself to easy generalisation or reuse. Figure 8.3 shows
an example of a dialogue state representation, focused on the specific situation of
an agent-user dialogue as targeted in the SEMAINE system (see Chapter 7).

106 Chapter 8. Representation formats

<speak version=”1.0” xmlns=”http://www.w3.org/2001/10/synthesis”
xml:lang=”en-US”>

<voice gender=”female”>
And then <break/> I <emphasis>wanted</emphasis> to go.

</voice>
</speak>

Figure 8.4: An example standalone SSML document.

The SEMAINE API comes with a generic mechanism for defining custom
XML structures and for making the information available to system components as
“state information” via a unique keyword. Section 8.3 describes this mechanism.

8.1.5 SSML
The Speech Synthesis Markup Language SSML (Burnett et al., 2004) is a well-
established W3C Recommendation supported by a range of commercial text-to-
speech (TTS) systems. It is the most established of the representation formats
described in this chapter.

The main purpose of SSML is to provide information to a TTS system on how
to speak a given text. This includes the possibility to add <emphasis> on certain
words, to provide pronunciation hints via a <say-as> tag, to select a <voice>
which is to be used for speaking the text, or to request a <break> at a certain point
in the text. Furthermore, SSML provides the possibility to set markers via the
SSML <mark> tag. Figure 8.4 shows an example SSML document that could be
used as input to a TTS engine. It requests a female US English voice; the word
“wanted” should be emphasised, and there should be a pause after “then”.

8.1.6 FML
The functional markup language FML is still under discussion (Heylen et al.,
2008). Its functionality being needed nevertheless, a working language FML-
APML was created (Mancini and Pelachaud, 2008) as a combination of the ideas
of FML with the former Affective Presentation Markup Language APML (de Car-
olis et al., 2004).

8.1. Representation formats supported in the SEMAINE API 107
<fml-apml version=”0.1”>

<bml xmlns=”http://www.mindmakers.org/projects/BML” id=”bml1”>
<speech id=”s1” language=”en-US” text=”Hi, I’m Poppy.”

ssml:xmlns=”http://www.w3.org/2001/10/synthesis”>
<ssml:mark name=”s1:tm1”/>

Hi,
<ssml:mark name=”s1:tm2”/>
I’m
<ssml:mark name=”s1:tm3”/>
Poppy.
<ssml:mark name=”s1:tm4”/>

</speech>
</bml>
<fml xmlns=”http://www.mindmakers.org/fml” id=”fml1”>

<performative id=”p2” type=”announce” start=”s1:tm1” end=”s1:tm4”/>
<world id=”w1” ref_type=”person” ref_id=”self”

start=”s1:tm2” end=”s1:tm4”/>
</fml>

</fml-apml>

Figure 8.5: An example FML-APML document.

Figure 8.5 shows an example FML-APML document which contains the key
elements. An <fml-apml> document contains a <bml> section in which the
<speech> content contains <ssml:mark> markers identifying points in time in a
symbolic way. An <fml> section then refers to those points in time to represent
the fact, in this case, that an announcement is made and that the speaker herself
is being referred to between marks s1:tm2 and s1:tm4. This information can be
used, for example, to generate relevant gestures when producing behaviour from
the functional descriptions.

The representations in the <fml> section are provisional and are likely to
change as consensus is formed in the community.

For the conversion from FML to BML, information about pitch accents and
boundaries is useful for the prediction of plausible behaviour time-aligned with the
macro-structure of speech. In our current implementation, a speech preprocessor
computes this information using TTS technology (see Chapter 7). The information
is added to the end of the <speech> section as shown in Figure 8.6. This is an ad
hoc solution which should be reconsidered in the process of specifying FML.

108 Chapter 8. Representation formats

<fml-apml version=”0.1”>
<bml xmlns=”http://www.mindmakers.org/projects/BML” id=”bml1”>

<speech id=”s1” language=”en_US” text=”Hi, I’m Poppy.”
ssml:xmlns=”http://www.w3.org/2001/10/synthesis”>
<ssml:mark name=”s1:tm1”/>
Hi,
<ssml:mark name=”s1:tm2”/>
I’m
<ssml:mark name=”s1:tm3”/>
Poppy.
<ssml:mark name=”s1:tm4”/>
<pitchaccent id=”xpa1” start=”s1:tm1” end=”s1:tm2”/>
<pitchaccent id=”xpa2” start=”s1:tm3” end=”s1:tm4”/>
<boundary id=”b1” time=”s1:tm4”/>

</speech>
</bml>
<fml xmlns=”http://www.mindmakers.org/fml” id=”fml1”>

<performative id=”p2” type=”announce” start=”s1:tm1” end=”s1:tm4”/>
<world id=”w1” ref_type=”person” ref_id=”self”

start=”s1:tm2” end=”s1:tm4”/>
</fml>

</fml-apml>

Figure 8.6: Pitch accent and boundary information added to the FML-APML doc-
ument of Figure 8.5.

8.1. Representation formats supported in the SEMAINE API 109
<bml xmlns=”http://www.mindmakers.org/projects/BML” id=”bml1”>

<speech id=”s1” language=”en_US” text=”Hi, I’m Poppy.”
ssml:xmlns=”http://www.w3.org/2001/10/synthesis”>

<ssml:mark name=”s1:tm1”/>
Hi,
<ssml:mark name=”s1:tm2”/>
I’m
<ssml:mark name=”s1:tm3”/>
Poppy.

<ssml:mark name=”s1:tm4”/>
<pitchaccent id=”xpa1” start=”s1:tm1” end=”s1:tm2”/>
<pitchaccent id=”xpa2” start=”s1:tm3” end=”s1:tm4”/>
<boundary id=”b1” time=”s1:tm4”/>

</speech>
<gaze id=”g1” start=”s1:tm1” end=”s1:tm4”>

...
</gaze>
<head id=”h1” start=”s1:tm3” end=”s1:tm4” type=”NOD”>

...
</head>

</bml>

Figure 8.7: An example BML document containing SSML and gestural markup.

8.1.7 BML
The aim of the Behaviour Markup Language BML (Kopp et al., 2006) is to repre-
sent the behaviour to be realised by an Embodied Conversational Agent. BML is at
a relatively concrete level of specification, but is still in draft status (Mindmakers,
2008).

A standalone BML document is partly similar to the <bml> section of an FML-
APML document (see Figure 8.5); however, whereas the <bml> section of FML-
APML contains only a <speech> tag, a BML document can contain elements rep-
resenting expressive behaviour for the ECA at a broad range of levels, including
<head>, <face>, <gaze>, <body>, <speech> and others. Figure 8.7 shows an ex-
ample of gaze and head nod behaviour added to the example of Figure 8.6.

While creating an audio-visual rendition of the BML document, we use TTS
to produce the audio and the timing information needed for lip synchronisation.
Whereas BML in principle previews a <lip> element for representing this infor-
mation, we are uncertain how to represent exact timing information with it in a

110 Chapter 8. Representation formats

<bml xmlns=”http://www.mindmakers.org/projects/BML” id=”bml1”>
<speech id=”s1” language=”en_US” text=”Hi, I’m Poppy.”

ssml:xmlns=”http://www.w3.org/2001/10/synthesis”
mary:xmlns=”http://mary.dfki.de/2002/MaryXML”>

...
<ssml:mark name=”s1:tm3”/>
Poppy.
<mary:syllable stress=”1”>

<mary:ph d=”0.092” end=”1.011” p=”p”/>
<mary:ph d=”0.112” end=”1.123” p=”A”/>
<mary:ph d=”0.093” end=”1.216” p=”p”/>

</mary:syllable>
<mary:syllable>

<mary:ph d=”0.141” end=”1.357” p=”i”/>
</mary:syllable>
<ssml:mark name=”s1:tm4”/>

...
</bml>

Figure 8.8: An excerpt of a BML document enriched with TTS timing information
for lip synchronisation.

way that preserves the information about syllable structure and stressed syllables.
For this reason, we currently use a custom representation based on the MaryXML
format from the MARY TTS system (Schröder et al., 2009b) to represent the exact
timing of speech sounds. Figure 8.8 shows the timing information for the word
“Poppy”, which is a two-syllable word of which the first one is the stressed sylla-
ble.

The custom format we use for representing timing information for lip synchro-
nisation clearly deserves to be revised towards a general BML syntax, as BML
evolves.

8.1.8 Player data
Player data is currently treated as unparsed data. Audio data is binary, whereas
player directives are considered to be plain text. This works well with the MPEG-
4 player we use (see Chapter 7) but may need to generalised as other players are
integrated into the system.

8.2. Callback messages 111
<callback xmlns=”http://www.semaine-project.eu/semaineml”>

<event data=”Animation” id=”fml_lip_70” time=”1116220”
type=”start” contentType=”utterance”/>

</callback>

Figure 8.9: A callback message sent by the Player component to indicate the start
of an animation representing an utterance.

8.2 Callback messages
Callbacks are required to inform other components about the processing state of a
certain piece of information. Specifically, the player needs to send callback mes-
sages indicating when it is starting and ending the playback of an animation.

This information is used in several places in the system, in particular:
• the speech analysis components use the messages regarding start and end of

audio playback to prevent voice activity detection while the agent is speak-
ing. This is useful so that the system does not reply to itself;

• the dialogue components assign a unique identifier to an utterance that they
request to be played. The player’s callback messages confirm that a given
utterance has been played, and thus allow for a smooth follow-on. In partic-
ular, the ActionSelection component can avoid sending additional playback
requests while the system is still talking, which would interrupt the current
system output.

Callback messages are sent via their own Topic hierarchy. Whereas data mes-
sages pass via Topics below ‘semaine.data’, callback messages are sent to Topics
in the hierarchy ‘semaine.callback’. This way, it is possible to structurally dis-
tinguish the two types of messages very easily. This is also reflected in the layout
of the System Monitor GUI, as explained in Chapter 6.

Figure 8.9 shows an example of a callback message sent to the Topic ‘semaine.
callback.outout.Animation’. It contains information about the time and type
of event, the unique identifier of the data concerned, and the content type of
that data. Possible event types are “ready”, “start”, “end”, as well as “stopped”
and “deleted”. Possible content types are “utterance”, “listener-vocalisation” and
“visual-only”.

112 Chapter 8. Representation formats

8.3 A mechanism for defining state information
The SEMAINE system needs to maintain various kinds of state information: the
context, such as the current character and the information whether or not there
is a user present; the agent’s mental state; the agent’s interpretation of the user’s
behavioural and emotional state; and the state of the dialogue.

In a Message-Oriented Middleware (MOM) it is not straightforward to pre-
serve a centrally held state in such a way that several components can access it,
because a MOM does not provide a shared memory. One option for implementing
distributed access to state information would have been a specialised information
repository component; however, this would have required each component to send
and receive a message every time that it wants to access a certain information.

The solution implemented in the SEMAINE API is of a different kind. A spe-
cialised class StateReceiver is keeping track of state-related messages; it parses
incoming messages and saves the information in a local information repository.
That means, every component has local access to its own copy of the latest state
information. Since the local copies are updated through the same state-related mes-
sages, they are updated in synchrony. Looking up a certain piece of information
is thus as easy as accessing a local variable.

An important challenge in this kind of setup is to make the encoding-decoding
link between the representation of information in XML-based messages, and a
unique “short name” by which components can access the information. For ex-
ample, the dialogue state information that the agent does not have the turn at the
moment is encoded as shown in Figure 8.3; if components had to parse an XML
structure for every information item, this would be complicated and error-prone.

Instead, components should be able to access the information independently of
the representation format, through a unique short name such as ‘agentTurnState’.

If the link between message format and short name were hard-coded in the
program code, it would not allow users to flexibly reuse the state information
mechanism in novel domains and applications, which would be incompatible
with the SEMAINE API’s ambition to be a reusable framework. Therefore, we
have developed and implemented a mechanism that allows developers to repre-
sent this relationship in a configuration file, using namespace-aware XPath ex-
pressions (Berglund et al., 2007). XPath is a formalism for navigating through

8.4. Conclusion 113

XML documents to access information. In the example in Figure 8.3, the in-
formation whether or not the agent believes it has the turn can be accessed by
going to the element <dialog-state> in the namespace http://www.semaine-
project.eu/semaineml, then to the child element <agent> in the same names-
pace, and finally by accessing the value of the attribute believesHasTurn. In
XPath, this can be encoded as:

/semaine:dialog-state/semaine:user/@believesHasTurn

where the namespace prefix ‘semaine’ is bound to the namespace
‘http://www.semaine-project.eu/semaineml’. By associating this XPath ex-
pression with a short name ‘agentTurnState’, it is possible to provide the relation
in a configuration file.

XPath in its general form is a very powerful framework which is intended only
for accessing information in existing XML documents. It is not originally intended
to be used for the generation of documents. However, by using only the subset of
navigating to elements and accessing attribute values or textual content, we can
reuse the XPath expressions also for the generation of XML documents and thus
for encoding the information.

As a result, we have a fully configurable mechanism for encoding and de-
coding state information. Both the relation between short names and XPath
expressions and the namespace prefixes can be given in the configuration file,
providing full flexibility for future extensions. Figure 8.10 shows an ex-
cerpt of the respective configuration file. The latest version of the file itself
can be found at http://semaine.opendfki.de/browser/trunk/java/config/
stateinfo.config; documentation describing the meaning of attributes and legal
values is available at http://semaine.opendfki.de/wiki/StateInfo.

8.4 Conclusion
The present chapter has presented three types of representations that are needed
in a system such as the SEMAINE system and are therefore supported by the SE-
MAINE API. First, there are the representations of data communicated within the
system, such as intermediate processing results of analysing user input or of gen-
erating system behaviour. We have argued that research can benefit from using

http://semaine.opendfki.de/browser/trunk/java/config/stateinfo.config
http://semaine.opendfki.de/browser/trunk/java/config/stateinfo.config
http://semaine.opendfki.de/wiki/StateInfo

114 Chapter 8. Representation formats

[DialogState]
[namespace prefixes]
semaine http://www.semaine-project.eu/semaineml

[short names]
userTurnState /semaine:dialog-state/semaine:user/@believesHasTurn
agentTurnState /semaine:dialog-state/semaine:agent/@believesHasTurn
convState /semaine:dialog-state/semaine:agent/@convState

Figure 8.10: The DialogState section of the state information configuration file
used in the SEMAINE-3.0 system.

standard representations to ease re-use of components to build new systems. In
part, suitable standard representations exist, such as EMMA and SSML; other rep-
resentations are in the process of standardisation, such as EmotionML and BML.

A second type of message, conceptually distinct from the data flow in the sys-
tem, are the callback messages, by means of which one component can inform
other components about the current processing state of an identified item.

The third type of representation is highly domain-specific: the state of the user,
the agent, the dialogue and the context. Here we have presented a generic mecha-
nism for reconciling the need for components to have simple access to information
via a short identifier with the volatile nature of message-oriented middleware. A
configuration file defines the available information and how it is to be encoded in
messages. It does so by providing a mapping between namespace-aware XPath-
structures, representing the message format, and short names under which the in-
formation is accessed by components.

In the next chapter, we will provide a detailed and in-depth presentation of
EmotionML, the Emotion Markup Language, which is of central importance for
creating emotion-oriented systems in general and for the present real-time ECA
system in particular.

115

Chapter 9

Emotion Markup Language

One of the representation formats described in Chapter 8 is EmotionML, the Emo-
tion Markup Language – a format for representing emotions for use in techno-
logical systems. It is obvious that computerised systems, to the extent that they
can recognise, simulate or otherwise process emotion-related information, need a
representation format. If several components are to work collaboratively on the
information, the format must be well-defined. In order to reach the best possible
interoperability, a standard representation format should be used.

This chapter describes the work, in a long-running collaborative effort spear-
headed by the author, on defining and standardising EmotionML. We start with
an outline of the process involved in standardising a language such as this one.
We then build up the logic of the language, starting from use cases and resulting
requirements, and comparing that with scientific representations of emotion. We
describe the syntax of EmotionML in the light of the requirements and discuss its
relation to the aim of scientific validity.

The chapter ends with two comments, one on an alternative solution to the
syntax which was discarded for reasons of common practice, but which still seems
worth reporting; the other making explicit a number of relevant aspects of emotion
that are not covered by the current specification.

116 Chapter 9. Emotion Markup Language

9.1 The process of defining a standard Emotion
Markup Language

The definition of a standard representation format such as EmotionML is a long-
term effort with a large number of intermediate steps. In this section we briefly
identify the main milestones in order to give the reader a sense of the process.

Work on EmotionML started informally in 2006, as a joint effort in the HU-
MAINE Network of Excellence on emotion-oriented technology. The initial
thoughts are reflected in a publication on an “Emotion Annotation and Represen-
tation Language (EARL)” (Schröder et al., 2006). At that time, with a small group
of people we tried to cover the full ground in a short time, spanning the range from
scientific descriptions of emotions, via use cases and requirements of technological
applications, to the definition of an XML syntax.

This initial spark of interest, and positive feedback from the community, led
us to initiate in 2007 a so-called “Incubator” group on the topic at the World Wide
Web Consortium (W3C). Incubator groups can be set up with fewer formal thresh-
olds than full Working Groups. They allow for “experimental” work on topics for
which it is not yet clear whether the work should lead to a standard; their lifetime
is limited to one year.

In the Emotion Incubator group, thus, interested parties from all over the world
came together to discuss the use cases for an emotion markup language and the re-
sulting requirements. The final report of the Emotion Incubator group (Schröder
et al., 2007b) listed 39 individual use cases grouped into three types (see below),
and identified a structured set of requirements resulting from these use cases. The
report also assessed pre-existing markup languages and concluded that none is
available that fully addresses the requirements. The joint work was also reflected
by a joint publication at the Affective Computing conference (Schröder et al.,
2007a).

A second Incubator group was set up in 2008 to work more specifically on the
possible syntax of an Emotion Markup Language. The group started by prioritising
the requirements (Burkhardt and Schröder, 2008; Schröder et al., 2008b), and only
then started working on a syntax for the language itself. By the end of the one-year
lifetime of this second Incubator group, key ideas for the syntax of EmotionML
were in place, and open issues were identified as such (Schröder et al., 2008a). The

9.2. Previous work 117

group at that point also decided that it seemed worthwhile to work on producing a
formal specification of EmotionML in the so-called “Recommendation Track” at
the W3C.

This formal work started in 2009, as part of the W3C’s existing Multimodal In-
teraction (MMI) Working Group. A First Public Working Draft (FPWD) of Emo-
tionML 1.0 was published in 2009, followed by a second Working Draft in 2010
(Schröder et al., 2010a). The specification process consisted mainly in resolving
the open issues in the second Incubator report, in making the syntactic choices
compatible with other works in W3C and in the MMI group, and in ensuring that
the syntax was sufficiently simple to be usable in real-world settings.

A W3C workshop on EmotionML was organised in October 2010 (http:
//www.w3.org/2010/10/emotionml/cfp.html) to invite feedback on the draft
specification from scientific experts as well as from potential users. The work-
shop provided highly relevant feedback and clarification, and played an important
role in the definition of the full specification published as a Last Call Working
Draft (LCWD) in spring 2011 (Schröder et al., 2011a). The definition of a number
of vocabularies for EmotionML was published as a separate W3C Working Draft
(Schröder et al., 2011b) at the same time as the LCWD.

After the publication of the Last Call Working Draft, a number of steps remain
to be done before the final Recommendation status is reached. At LCWD stage,
the specification is thoroughly reviewed by all interested W3C members. All feed-
back must be formally addressed. If changes to the specification are needed, a new
LCWD must be published. Otherwise, the process continues towards the Candi-
date Recommendation, which must include a number of implementation reports of
the specification. The purpose of these reports is to verify the implementability of
the specification. If no major problems occur at this stage, the specification then
moves via the stage of Proposed Recommendation to the final stage of Recom-
mendation.

9.2 Previous work
The representation of emotions and related states has been part of several activities.

In the area of labelling schemes, maybe the most thorough attempt to pro-
pose an encompassing labelling scheme for emotion-related phenomena has been

http://www.w3.org/2010/10/emotionml/cfp.html
http://www.w3.org/2010/10/emotionml/cfp.html

118 Chapter 9. Emotion Markup Language

the work on the HUMAINE database (Douglas-Cowie et al., 2007). The relevant
concepts were identified, and made available as a set of configuration files for the
video annotation tool Anvil (Kipp, 2001). A formal representation format was
not proposed in this work. However, members of the team working on the HU-
MAINE database were active in the first Emotion Incubator group and made sure
that the concepts identified as relevant were present in the discussion on use cases
and requirements.

Markup languages including emotion-related information were defined mainly
in the context of research systems generating emotion-related behaviour of ECAs.
The expressive richness is usually limited to a small set of emotion categories,
possibly an intensity dimension, and in some cases a three-dimensional continuous
representation of activation-evaluation-power space (cf. Schröder et al., 2011c).

For example, the Virtual Human Markup Language VHML (Gustavsson et al.,
2001) was created in order to control the behaviour of animated characters (vir-
tual agents); in addition to markup for facial animation, speech synthesis, dialogue
management etc., the specification also contains a section for representing emo-
tions. The actual representations are very simple: a set of nine emotions is encoded
directly as XML elements, e.g.:

<afraid intensity=”40”>
Do I have to go to the dentist?

</afraid>

The Affective Presentation Markup Language APML (de Carolis et al., 2004)
provides an attribute “affect” to encode an emotion category for an utterance (a
“performative”) or for a part of it:

<performative affect=”afraid”>
Do I have to go to the dentist?

</performative>

The Rich Representation Language RRL (van Deemter et al., 2008) uses an
element “emotion”, embedded in a dialogue act, to represent the emotion. The
emotion category and its intensity can be expressed, as well as the three emotion
dimensions “activation”, “evaluation” and “power”. In addition, there is a con-
ceptual distinction between feeling and expressing an emotion:

9.2. Previous work 119

<dialogueAct>
...
<emotion>

<emotionExpressed type=”afraid” intensity=”0.3”
activation=”0.3” evaluation=”-0.6” power=”-0.3”/>

</emotion>
<sentence><text>Do I have to go to the dentist?</text>...</sentence>

</dialogueAct>

All these languages include the representation of an emotional state as one
aspect in a complex representation oriented towards the generation of behaviour
for an embodied conversational agent (ECA). None of the representations aim for
reusability in different contexts, and none reach a representational power coming
anywhere near the complexity considered to be necessary in emotion research (see
e.g. Cowie et al., 2010).

An interesting contribution to the domain of computerised processing and rep-
resentation of emotion-related concepts is A Layered Model of Affect, ALMA,
provided by Gebhard (2005). The model encompasses the concepts of emotion
(short-term affect), mood (medium-term affect), and personality (long-term af-
fect). Following the OCC model (Ortony et al., 1988), ALMA uses appraisal
mechanisms to trigger emotions from events, objects and actions in the world.
Emotions have an intensity varying over time. Each individual emotion influ-
ences mood as a longer-term affective state. ALMA uses an XML-based markup
language named AffectML in two places: to represent the antecedents to emotion,
i.e. the appraisals leading to emotions, and to represent the impact that emotions
and moods have on a virtual agent’s behaviour.

The following snippet of markup shows how AffectML is used to describe a
given character’s affective predispositions, i.e. its propensity to react emotionally
to different kinds of events (from Gebhard (2005)):

<CharacterAffect name=”Valerie” monitored=”true” docu=”Valerie ”>
<Personality open=”0.4” con=”0.8” extra=”0.6” agree=”0.3” neur=”0.4”/>
<Appraisal>

<Basic>
<GoodEvent desirability=”0.7”/>
...

</Basic>

120 Chapter 9. Emotion Markup Language

<SelfAct type=”Calm”>
<GoodActSelf agency=”self” praiseworthiness=”0.5”/>

</SelfAct>
<DirectAct type=”Attack” performer=”Sven”>

<BadEvent desirability=”-0.5”/>
<BadActOther agency=”other” praiseworthiness=”-0.3”/>

</DirectAct>
<SelfEmotion emotion=”ReproachDisplay”>

<BadEvent desirability=”-0.3”/>
</SelfEmotion>
...

The current affective state of a character, to be expressed in the character’s
behaviour, is represented in AffectML as follows (from Gebhard (2005)):

<AffectOutput>
<CharacterAffect name=”Sven”>

<DominantEmotion name=”Disliking” value=”0.46”/>
<Mood moodword=”Exuberant” intensity=”slightly” p=”0.35” a=”0.39” d=”0.34”/>
<Personality open=”0.3” con=”-0.6” extra=”0.7” agree=”0.4” neu=”-0.1”/>

</CharacterAffect>
...

</AffectOutput>

The focus in ALMA has been on providing a working implementation of a
particular model of affect, based on OCC appraisals and emotions (Ortony et al.,
1988), mood represented using Mehrabian’s Pleasure-Arousal-Dominance (PAD)
space (Mehrabian, 1996), and personality described using the five-factor model
(McCrae and John, 1992). Mappings are used to relate the different models to
one another. The AffectML language used for representing the various aspects of
the model’s data in the system is not described in detail; its focus has not been
on generic reuse or interoperability, but on encoding the concepts relevant to this
specific model. In recent work (Kipp et al., 2010), the output of ALMA has been
represented using EmotionML.

The Emotion Annotation and Representation Language EARL (Schröder et al.,
2006, 2011c) was introduced as an attempt to address reusability and to provide a
representation approaching what is considered scientifically necessary. It can rep-
resent emotions alternatively in terms of categories, dimensions or appraisals; the

9.3. Use cases 121

intensity of the state can be indicated; several kinds of regulation are previewed,
e.g. the simulation, suppression or amplified expression of an emotional state;
complex emotions can be represented, as in situations of regulation or when more
than one emotion is present. For example:

<emotion category=”afraid” intensity=”0.4” suppress=”0.6”
activation=”0.3” evaluation=”-0.6” power=”-0.3”>

Do I have to go to the dentist?
</emotion>

The following sections show how the ideas embedded in EARL were broad-
ened and made more generic and flexibly usable in the development of the Emo-
tionML specification. The resulting syntax of EmotionML (see Section 9.5) has
changed quite substantially from the original EARL ideas; nevertheless, the moti-
vating ideas have largely stayed the same.

9.3 Use cases
The types of technology in which an Emotion Markup Language might be used
are very diverse. The 39 individual use cases collected by the Emotion Incubator
group (Schröder et al., 2007b) include such diverse topics as the annotation of the
emotional connotation in words and sentences, in pictures, or in audio recordings;
the description of the emotional state of participants in a multi-party conversation
as it changes over time; emotion detection for social robots; the use of computer
games to induce emotions in the player; the reasoning about the emotional conse-
quences of events; and the generation of emotional expressivity in synthetic faces
and voices. The group structured the individual use case descriptions into three
main types of use case (Schröder et al., 2007a):

Use Case 1: manual annotation of emotions in data;

Use Case 2: automatic detection of emotions;

Use Case 3: generation of emotion-related system behaviour.

This way of structuring the use cases seemed appropriate because the require-
ments arising from all the exemplars of a given use case are relatively similar. For

122 Chapter 9. Emotion Markup Language

example, the type of detail that humans tend to annotate (Use Case 1) is orders of
magnitude more fine-grained than what machines can detect (Use Case 2). Both
of these have a natural notion of confidence, i.e. of certainty that the annotation is
correct; on the other hand, this notion makes little sense in the context of synthe-
sising system behaviour (Use Case 3).

9.4 Requirements
The Emotion Incubator group extracted requirements from the different use cases
in an iterative process. First, each of the three use cases produced a separate set of
requirements. These sets were then combined and aligned. The alignment process
yielded an interesting exercise of aligning vocabulary: for example, the expressive
behaviour related to an emotion would be called “input” in Use Case 2 (emotion
detection) but it would be considered to be “output” in Use Case 3 (synthesis). The
following principles were agreed upon and used in order to align and consolidate
the sets of requirements (Schröder et al., 2007b):

(1) The emotion language should not try to represent sensor data, facial expres-
sions, environmental data etc., but define a way of interfacing with external
representations of such data.

(2) The use of system-centric vocabulary such as “input” and “output” should be
avoided. Instead, concept names should be chosen by following the phenom-
ena observed, such as “experiencer”, “trigger”, or “observable behaviour”.

The process of aligning requirements and concepts yielded consensus terms
(e.g., “observable behaviour” instead of “input” and “output”) and agreement to
avoid ambiguous or context-specific terms such as “input” or “output”. Other
terms were easier to align: the term “confidence” from Use Case 1 (manual an-
notation) was considered to be identical in its intended meaning with the term
“probability” from Use Case 2; the consensus term in this case was “confidence”
since it was felt to be the more generally applicable term.

The process was also useful to establish the intended boundaries of the Emotion
Markup Language, according to the principle (1) above. With the broad range of

9.4. Requirements 123

targeted use cases, describing the respective domain concepts or modality-specific
expressions was clearly unrealistic.

The emphasis in the Emotion Incubator group was on coverage, in the sense of
including as broad a list of requirements as it seemed reasonable. The group’s final
report (Schröder et al., 2007b) included a list of 22 requirements structured into
five sections: (1) information about the emotion properties, (2) meta-information
about the individual emotion annotations, (3) links to the rest of the world, (4)
information about a number of global metadata, and (5) ontologies.

After collecting this broad and encompassing list, the Emotion Markup Lan-
guage Incubator group focused on extracting a manageable subset by means of a
collaborative prioritisation process involving the research community at large. The
22 requirements were presented in a publicly accessible questionnaire advertised
via the portal emotion-research.net. For each requirement, the respondents had
the choice between the following answers (Burkhardt and Schröder, 2008):

1. must have: The specification must define the feature.
2. should have: The specification should define the feature, if possible.
3. nice to have: The specification may optionally define the feature.
4. future revision: The feature needs additional study before specification.
5. no need: I don’t see the need for this feature in the specification
6. no opinion

Ten group members and four individuals from outside the group filled in the
questionnaire (Burkhardt and Schröder, 2008). The responses were used to estab-
lish a first provisional distinction between mandatory and optional requirements:
if at least 70% of the respondents classified a requirement as a “must have” or
a “should have”, the requirement was included in the mandatory list, otherwise
in the optional list. A subsequent discussion in the group made individual and
well-motivated modifications to this classification, which resulted in a final list of
fourteen mandatory and eight optional requirements.

The prioritised list of requirements (Burkhardt and Schröder, 2008; Schröder
et al., 2008b) is presented in the following subsections.

emotion-research.net

124 Chapter 9. Emotion Markup Language

9.4.1 Emotion Core
The description of the emotion or related state itself naturally receives the most
prominent place in an emotion markup language. Most of the items on the original
requirements list (Schröder et al., 2007b) are considered mandatory, allowing the
user to represent most of the multiple facets of an emotion (Cowie and Cornelius,
2003), but also less intense affective states (Scherer, 2000).

Type of emotion-related phenomenon

The emotion markup language must be suitable for representing different types of
emotion-related states – an emotion in the strong sense, i.e. a momentary, intense
episode triggered by a concrete event, or rather a mood, an attitude, an interper-
sonal stance, etc.

Which taxonomy to use for distinguishing types of emotion-related phenomena
is an open research question, and as for other elements of the emotion markup
language, any standard will only be able to propose a “default” answer. Users must
be able to replace the suggested taxonomy with one that fits their own needs. One
possible starting point for proposing a default set, from the literature on emotion
theory, is provided by Scherer (2000).

Emotion categories, dimensions, appraisals, and action tendencies

The emotion markup language must provide representations of emotions in terms
of the most important descriptions from the scientific literature, namely categories,
dimensions, appraisals, and action tendencies. A brief summary of the facets
of emotion that are distinguished in the scientific literature is given below (Sec-
tion 9.6).

Emotion categories can be chosen from a set of discrete labels. Dimensions,
appraisals and action tendencies seem to be best represented as “scale” values.
Depending on the use case, scales may be either continuous-valued or discrete.

Each of the four types of representation needs a vocabulary of names for the
categories, dimensions etc.; again, the aim will be to propose a meaningful “de-
fault”, and allow users to use a different set if they have specific needs.

9.4. Requirements 125

Multiple and/or complex emotions

The markup must provide a mechanism to represent multiple emotions that are co-
occurring in the same experiencer. Such co-occurrence may be due to the fact that
co-occurring emotions have different triggers (e.g. when a person is angry about
one thing and sad about another); it may be the case that different emotions are
expressed through different modalities (such as when the face shows one emotion
and the voice another).

A more difficult case of multiple or complex emotions is the phenomenon of
emotion regulation which due to its complexity has been demoted to an optional
requirement (see below).

Emotion intensity

The emotion markup must provide an emotion attribute to represent the intensity
of an emotion. The intensity of an emotion is a unipolar scale.

Emotion timing

The emotion markup must provide a generic mechanism for temporal scope. The
temporal scope of an emotion markup may be defined through a combination of
start and end times, or by linking to items located on the time line such as utterances
or gestures.

The time course of an emotion markup may be defined through a sampling
mechanism, providing values at fixed intervals.

Optional requirements

Emotion regulation. Regulation covers a range of manipulations of an emotion
or its expression by the experiencer. In a very basic interpretation, this includes a
difference between the internal and the externalised state, i.e. cases of simulation
and suppression. However, considerably more complex models of emotion regu-
lation are described in the literature. For example, the display of an emotional state
may be impeded due to some socio-cultural rules (Ekman, 2003): the expression
of one emotion may be masked by another one, it may be inhibited, minimised
or even exaggerated. Alternatively, it is possible to regulate, to some extent, the

126 Chapter 9. Emotion Markup Language

emotion itself rather than its expression, through a process of re-appraisal (Gross,
2001). Representing regulation in a scientifically appropriate way appears to be a
non-trivial challenge; for this reason, we avoided making regulation a mandatory
requirement for EmotionML, despite its importance for modelling certain types of
complex emotions.

9.4.2 Meta-information about emotion annotation
Confidence / probability

The emotion markup must provide a representation of the degree of confidence or
probability that a certain element of the representation is correct. This is required
by both machine classifiers and human annotators.

Modality

The emotion markup must be able to represent the modalities in which the emotion
is reflected. Emotion may be expressed specifically in a certain modality, e.g. face,
voice, body posture or hand gestures, but also lighting, font shape, etc.

Optional requirements

Acting. The emotion markup should provide a mechanism to add special at-
tributes for acted emotions such as perceived naturalness, authenticity, quality,
etc.

9.4.3 Links to the “rest of the world”
Emotion markup is always about something; therefore, providing suitable links to
external entities is essential for the interpretation of the emotion markup.

Links to media, and the position on a time line in externally linked objects

The emotion markup must be able to refer to external media of various kinds. A
generic linking mechanism is envisaged, which may point to a media object, such
as a picture, an audio or video file, or a node in an XML document. This may be
complemented with timing information, such as a start time and a duration.

9.4. Requirements 127

The semantics of links to the “rest of the world”

The emotion markup must provide a mechanism for assigning meaning to those
links. Initially, the following meanings are envisaged: the experiencer (who “has”
the emotion); the observable behaviour “expressing” the emotion; the trigger,
cause or eliciting event of the emotion; and the object or target of the emotion
(i.e., the thing that the emotion is about).

9.4.4 Global metadata
In order to facilitate communication between a producer and a consumer of emo-
tional data with respect to application-specific information, the emotional markup
may need to contain global metadata.

A generic mechanism to represent global metadata

The emotion markup must provide a generic mechanism for representing metadata
on a global (per document) and on a local (per annotation) level. This is needed in
order to facilitate communication between a producer and a consumer of emotional
data with respect to application specific information.

Optional requirements

A number of specific types of metadata are listed as optional requirements. These
include information about persons, including descriptions of the person or algo-
rithm that produced the annotation; a description of the social and communicative
environment, including the situational context; the purpose of classification (in
Use Case 2); and the technical environment, such as frame rates, sensor descrip-
tions, etc.

9.4.5 Ontologies of emotion
Ontologies are structured representations that provide a definition of terms and
their relation to one another. In principle, therefore, it would seem appropriate to
define emotion concepts in an ontology.

128 Chapter 9. Emotion Markup Language

However, given the practical constraints that would have arisen from the de-
cision to use ontologies, the group has decided to declare these requirements as
optional. Similarly to the case of regulation, these are optional for practical rather
than principled reasons: their relevance is undisputed, but including them in a first
version of an Emotion Markup Language would have borne the risk of severely
slowing down progress.

Optional requirements

Mappings between different emotion representations. It should be possible
to map between different emotion representations, i.e. to convert data from one
emotion description (categories, dimensions, appraisals, or action tendencies) to
another. These different emotion representations are not independent; rather, they
describe different aspects of the complex phenomenon emotion. Insofar, it is con-
ceptually possible to map from one representation to another one in some cases;
in other cases, mappings are not fully possible. Some use cases require mapping
between different emotion representations: e.g., from categories to dimensions,
from dimensions to coarse categories (a lossy mapping), from appraisals onto di-
mensions, from categories to appraisals, etc. Such mappings may either be based
on findings from emotion theory or they can be defined in an application-specific
way. The requirement concerns first of all the mapping mechanism as such, and
in a number of reasonable cases, the mappings themselves.

Relationships between concepts in an emotion description. The concepts in
an emotion description are usually not independent, but are related to one another.
For example, emotion words may form a hierarchy, as suggested e.g. by proto-
type theories of emotions. For example, Shaver et al. (1987) classified cheerful-
ness, zest, contentment, pride, optimism, enthrallment and relief as different kinds
of joy, whereas irritation, exasperation, rage, disgust, envy and torment represent
different kinds of anger, etc. Such structures, be they motivated by emotion the-
ory or by application-specific requirements, may be an important complement to
the representations in an Emotion Markup Language. In particular, they would
allow for a mapping from a larger set of categories to a smaller set of higher-level
categories.

9.5. Syntax 129

9.5 Syntax
Based on the requirements listed above, a syntax for EmotionML has been pro-
duced in a sequence of steps, first in the Emotion Markup Language Incubator
group (Schröder et al., 2008a), then as formal working drafts (Schröder et al.,
2009a, 2010a, 2011a). The following snippet exemplifies the principles of the
EmotionML syntax.

<sentence id=”sent1”>
Do I have to go to the dentist?

</sentence>
<emotion xmlns=”http://www.w3.org/2009/10/emotionml”

category-set=”http://www.w3.org/TR/emotion-voc/xml#everyday-categories”>
<category name=”afraid” value=”0.4”/>
<reference role=”expressedBy” uri=”#sent1”/>

</emotion>

The following properties can be observed.

• The emotion annotation is self-contained within an ‘<emotion>’ element;

• all emotion elements belong to a specific namespace;

• it is explicit in the example that emotion is represented in terms of categories;

• it is explicit from which category set the category label is chosen;

• the link to the annotated material is realised via a reference using a URI, and
the reference has an explicit role.

In the following subsections, we will discuss the properties of the EmotionML
syntax in some more detail.

9.5.1 Design principles: self-contained emotion annotation
EmotionML is conceived as a plug-in language, with the aim to be usable in
many different contexts. Therefore, proper encapsulation is essential. All infor-
mation concerning an individual emotion annotation is contained within a single
‘<emotion>’ element. All emotion markup belongs to a unique XML namespace.

130 Chapter 9. Emotion Markup Language

EmotionML differs from many other markup languages in the sense that it does not
enclose the annotated material. In order to link the emotion markup with the an-
notated material, either the reference mechanism in EmotionML or another mech-
anism external to EmotionML can be used.

Structurally, EmotionML uses element and attribute names to indicate the type
of information being represented; attribute values provide the actual information.
The use of attribute values (e.g., ‘<category name=”joy”/>’) was preferred over
enclosed text (e.g., ‘<category>joy</category>’) so that adding EmotionML to
an XML node does not change that node’s text content.

A top-level element ‘<emotionml>’ enables the creation of stand-alone Emo-
tionML documents, essentially grouping a number of emotion annotations to-
gether, but also providing document-level mechanisms for annotating global meta-
data and for defining emotion vocabularies (see below). It is thus possible to use
EmotionML both as a standalone markup and as a plug-in annotation in different
contexts.

9.5.2 Representations of emotion
Emotions can be represented in terms of four types of descriptions taken
from the scientific literature (see Section 9.6): ‘<category>’, ‘<dimension>’,
‘<appraisal>’ and ‘<action-tendency>’. An ‘<emotion>’ element can contain
one ore more of these descriptors; each descriptor must have a ‘name’ attribute
and can have a ‘value’ attribute indicating the intensity of the respective descrip-
tor. For ‘<dimension>’, the ‘value’ attribute is mandatory, since a dimensional
emotion description is always a position on one or more scales; for the other de-
scriptions, it is possible to omit the ‘value’ to only make a binary statement about
the presence of a given category, appraisal or action tendency.

The following example illustrates a number of possible uses of the core emo-
tion representations.

<category name=”affectionate”/>
<category name=”amused” value=”0.7”/>
<dimension name=”valence” value=”0.9”/>
<appraisal name=”agent-self”/>
<appraisal name=”urgency” value=”0.2”/>

9.5. Syntax 131

<action-tendency name=”approach”/>
<action-tendency name=”dominating” value=”0.8”/>

9.5.3 Mechanism for referring to an emotion vocabulary
Since there is no single agreed vocabulary for each of the four types of emotion
descriptions (see Section 9.7), EmotionML provides a mandatory mechanism for
identifying the vocabulary used in a given ‘<emotion>’. The mechanism consists
in attributes of ‘<emotion>’ named ‘category-set’, ‘dimension-set’ etc., indi-
cating which vocabulary of descriptors for annotating categories, dimensions etc.
are used in that emotion annotation. These attributes contain a URI pointing to an
XML representation of a vocabulary definition (see Section 9.7). In order to ver-
ify that an emotion annotation is valid, an EmotionML processor must retrieve the
vocabulary definition and check that every ‘name’ of a corresponding descriptor is
part of that vocabulary (see also Section 9.8.1).

For example, the following annotation uses Mehrabian’s PAD model (Mehra-
bian, 1996) for representing a position in three-dimensional space.

<emotion dimension-set=”http://www.w3.org/TR/emotion-voc/xml#pad-dimensions”>
<dimension name=”arousal” value=”0.3”/> <!-- lower-than-average arousal -->
<dimension name=”pleasure” value=”0.9”/> <!-- very high positive valence -->
<dimension name=”dominance” value=”0.8”/> <!-- relatively high potency -->

</emotion>

9.5.4 Meta-information
Several types of meta-information can be represented in EmotionML.

First, each emotion descriptor (such as ‘<category>’) can have a
‘confidence’ attribute to indicate the expected reliability of this piece of the an-
notation. This can reflect the confidence of a human annotator or the probability
computed by a machine classifier. If several descriptors are used jointly within an
‘<emotion>’, each descriptor has its own ‘confidence’ attribute. For example, it
is possible to have high confidence in, say, the arousal dimension but be uncertain
about the pleasure dimension:

<emotion dimension-set=”http://www.w3.org/TR/emotion-voc/xml#pad-dimensions”>
<dimension name=”arousal” value=”0.7” confidence=”0.9”/>

132 Chapter 9. Emotion Markup Language

<dimension name=”pleasure” value=”0.6” confidence=”0.3”/>
</emotion>

Each ‘<emotion>’ can have an ‘expressed-through’ attribute providing a
list of modalities through which the emotion is expressed. Given the open-ended
application domains for EmotionML, it is naturally difficult to provide a complete
list of relevant modalities. The solution provided in EmotionML is to propose
a list of human-centric modalities, such as ‘gaze’, ‘face’, ‘voice’, etc., and to
allow arbitrary additional values. The following example represents a case where
an emotion is recognised from, or to be generated in, face and voice:
<emotion category-set=”http://www.w3.org/TR/emotion-voc/xml#everyday-categories”

expressed-through=”face voice”>
<category name=”satisfaction”/>

</emotion>

For arbitrary additional metadata, EmotionML provides an ‘<info>’ element
which can contain arbitrary XML structures. The ‘<info>’ element can occur as a
child of ‘<emotion>’ to provide local metadata, i.e. additional information about
the specific emotion annotation; it can also occur in standalone EmotionML doc-
uments as a child of the root node ‘<emotionml>’ to provide global metadata, i.e.
information that is constant for all emotion annotations in the document. This can
include information about sensor settings, annotator identities, situational context
etc. How to represent this information below ‘<info>’ is up to the user.

9.5.5 References to the “rest of the world”
Emotion annotation is always about something. There is a subject “experiencing”
(or simulating) the emotion. This can be a human, a virtual agent, a robot, etc.
There is observable behaviour expressing the emotion, such as facial expressions,
gestures, or vocal effects. With suitable measurement tools, this can also include
physiological changes such as sweating or a change in heart rate or blood pressure.
Emotions are often caused or triggered by an identifiable entity, such as a person,
an object, an event, etc. More precisely, the appraisals leading to the emotion are
triggered by that entity. And finally, emotions, or more precisely the emotion-
related action tendencies, may be directed towards an entity, such as a person or
an object.

9.5. Syntax 133

EmotionML considers all of these external entities to be out of scope of the
language itself; however, it provides a generic mechanism for referring to such
entities. Each ‘<emotion>’ can use one or more ‘<reference>’ elements to
point to arbitrary URIs. A ‘<reference>’ has a ‘role’ attribute, which can have
one of the following four values: ‘expressedBy’ (default), ‘experiencedBy’,
‘triggeredBy’, and ‘targetedAt’. Using this mechanism, it is possible to point
to arbitrary entities filling the above-mentioned four roles; all that is required is
that these entities be identified by a URI.

9.5.6 Time
Time is relevant to EmotionML in the sense that it is necessary to represent the
time during which an emotion annotation is applicable. In this sense, temporal
specification complements the above-mentioned reference mechanism.

Representing time is an astonishingly complex issue. A number of different
mechanisms are required to cover the range of possible use cases.

First, it may be necessary to link to a time span in media, such as video or audio
recordings. For this purpose, the ‘<reference role=”expressedBy”>’ mecha-
nism can use a so-called Media Fragment URI (Troncy et al., 2010) to point to a
time span within the media. In the following example, the emotion is expressed
from seconds 3 to 7 in the video ‘party.avi’:

<emotion category-set=”http://www.w3.org/TR/emotion-voc/xml#big6”>
<category name=”happiness”/>
<reference uri=”party.avi#t=3,7”/>

</emotion>

Second, time may be represented on an absolute or relative scale. EmotionML
follows EMMA (Johnston et al., 2009) in representing time in these cases. Abso-
lute time is represented in milliseconds since 1 January 1970, using the attributes
‘start’ and ‘end’. A combination of the ‘start’ and ‘duration’ attributes can
also be used to represent time intervals. For example:

<emotion category-set=”http://www.w3.org/TR/emotion-voc/xml#big6”
start=”1268647331” end=”1268647831”>

<category name=”joy”/>
</emotion>

134 Chapter 9. Emotion Markup Language

or, equivalently,

<emotion category-set=”http://www.w3.org/TR/emotion-voc/xml#big6”
start=”1268647331” duration=”500”>

<category name=”joy”/>
</emotion>

Absolute times are useful for applications such as affective diaries, which
record emotions throughout the day, and whose purpose it is to link back emo-
tions to the situations in which they were encountered.

Other applications require relative time, for example time since the start of
a session. Here, the mechanism borrowed from EMMA is the combination of
‘time-ref-uri’ and ‘offset-to-start’. The former provides a reference to the
entity defining the meaning of time 0; the latter is time, in milliseconds, since that
moment. In case the entity pointed to by ‘time-ref-uri’ is itself a time span, it
is possible to indicate using ‘time-ref-anchor-point’ whether the start or the
end of that time span is supposed to be the reference for the relative time. The
following example represents an emotion observed from seconds 3 to 7 of the
session identified by the URI ‘#my_session_id’:

<emotion category-set=”http://www.w3.org/TR/emotion-voc/xml#big6”
time-ref-uri=”#my_session_id” offset-to-start=”2000” duration=”5000”>

<category name=”surprise”/>
</emotion>

9.5.7 Representing continuous values and dynamic changes
A mentioned above, the emotion descriptors ‘<category>’, ‘<dimension>’,
‘<appraisal>’ and ‘<action-tendency>’ can have a ‘value’ attribute to indi-
cate the position on a scale corresponding to the respective descriptor. In the case
of a dimension, the value indicates the position on that dimension, which is manda-
tory information for dimensions; in the case of categories, appraisals and action
tendencies, the value can be optionally used to indicate the extent to which the
respective item is present.

In all cases, the ‘value’ attribute contains a floating-point number between
0 and 1. The two end points of that scale represent the most extreme possible
values, for example the lowest and highest possible positions on a dimension, or

9.6. Scientific descriptions of emotion 135

the complete absence of an emotion category vs. the most intense possible state
of that category.

The ‘value’ attribute thus provides a fine-grained control of the position
on a scale, which is constant throughout the temporal scope of the individual
‘<emotion>’ annotation. It is also possible to represent changes over time of
these scale values, using the ‘<trace>’ element which can be a child of any
‘<category>’, ‘<dimension>’, ‘<appraisal>’ or ‘<action-tendency>’ element.
The following example illustrates the use of a trace to represent an episode of fear
during which intensity is rising, first gradually, then quickly to a very high value.
Values are taken at a sampling frequency of 10 Hz, i.e. one value every 100 ms.

<emotion category-set=”http://www.w3.org/TR/emotion-voc/xml#big6”>
<category name=”fear”>

<trace freq=”10Hz” samples=”0.1 0.1 0.15 0.2 0.2 0.25 0.25
0.25 0.3 0.3 0.35 0.5 0.7 0.8 0.85 0.85”/>

</category>
</emotion>

9.6 Scientific descriptions of emotion
In the scientific literature on emotion research, there is no single agreed descrip-
tion of emotions. In part this is due to different research traditions – for example,
Cornelius (2000) distinguishes four traditions with deep conceptual differences.
The Darwinian tradition views emotions as evolutionarily shaped responses that
benefit the survival of the individual, such as attack or flight responses. The Jame-
sian tradition, which goes back to William James’ work in the late 19th century,
considers emotions to be the subjective feeling experience of bodily response pat-
terns. The cognitive perspective emphasises the process of appraisal which gener-
ates emotions depending on the relevance of events for the individual. The social
constructivist perspective, finally, considers emotions to fulfil the role of regulat-
ing the social structure, of shaping the interaction among individuals by enforcing
social norms.

To make matters even more challenging, Cowie (2010) suggests that these tra-
ditions focus on the so-called emergent emotions – short-lived, intense response
patterns triggered by clearly identifiable events, whereas the more relevant con-

136 Chapter 9. Emotion Markup Language

cept for technology, according to Cowie, is the notion of “emotional colouring” or
“pervasive” emotion. Whereas the states of “emergent” emotions are rare, most of
human experience appears to show some emotional colouring. Relevant “emotion-
related” states, according to Cowie, include ‘mood’, ‘stance towards object/situa-
tion’, ‘altered states of arousal’, ‘interpersonal bonds’, ‘altered states of control’,
‘emergent emotion’, and ‘interpersonal states’. These terms are listed in decreas-
ing order of frequency according to a study in which each of ten participants was
called 50 times over the phone to indicate their current type of state, at random
times over the course of several weeks. This means that according to this study,
‘mood’, ‘stance towards object/situation’ and ‘altered states of arousal’ are the
most frequent types of emotion-related condition, and the ‘emergent emotion’ that
is studied by traditional emotion theories is a rather rare phenomenon.

Insofar, it appears important for an Emotion Markup Language to be able to
represent the most relevant aspects of emotions in the broader sense, including the
emotion-related conditions. Given the lack of agreement in the literature on the
most relevant aspects of emotion, it is inevitable to provide a relatively rich set of
descriptive devices.

Despite the diversity of approaches, however, there seems to be reasonable
agreement in the scientific literature on a number of ‘components’ or ‘facets’ that
play an important role in relation to emergent emotion and, to some extent, also
for the other emotion-related states. Scherer (2005) distinguishes the following
components:

• cognitive component (appraisal);

• neurophysiological component (bodily symptoms);

• motivational component (action tendencies);

• motor expression component (facial and vocal expression);

• subjective feeling component (emotional experience).

According to this view, which appears to be established consensus in the re-
search community, an emotional episode includes the following relevant aspects.
An emotion-eliciting event is appraised as somehow relevant for the individual,

9.6. Scientific descriptions of emotion 137

Figure 9.1: Components of emotion and how they are linked to external represen-
tations (from Schröder et al. (2007b))

which ‘causes’ or ‘triggers’ the emotion. The experiencer has a subjective experi-
ence of the emotion; this may be accompanied by bodily symptoms and expressive
behaviour in a number of modalities. Finally, the emotion may also induce in the
experiencer a tendency to act in a particular way; such action tendency may be
directed towards an object or target of some sort.

Figure 9.1 illustrates these concepts and how they are taken into account in
the EmotionML specification. Descriptions in terms of categories and dimensions
provide a global account of all five components of the emotion. Appraisals are
represented explicitly, and are complemented with references to the ‘triggers’ of
emotion that are being appraised. Similarly, action tendencies are represented ex-
plicitly, and it is possible to refer to the ‘targets’ towards which they are directed.
Physiology and expressions are not represented in EmotionML itself, but using a
mechanism to refer to ‘observable behaviour’. Feelings are covered by the more
global representations of categories and dimensions.

In conclusion, it can be said that the mechanisms in EmotionML are able to
capture the main elements of what scientific theory considers important of emo-
tion.

138 Chapter 9. Emotion Markup Language

9.7 Vocabularies for EmotionML
Section 9.6 has shown the key concepts from scientific emotion research that are
taken into account in EmotionML. Four types of descriptions are available: cate-
gories, dimensions, appraisals, and action tendencies. Depending on the tradition
of emotion research and on the use case, it may be appropriate to use any single one
of these representations; alternatively, it may also make sense to use combinations
of descriptions to characterise more fully the various aspects of an emotional state
that are observed: how an appraisal of triggers caused the emotion; how it can
be characterised using a global description in terms of a category and/or a set of
dimensions; and the potential actions the individual may be executing as a result.
Insofar, EmotionML is a powerful representational device.

This description glosses over one important detail, however. Whereas emotion
researchers may agree to some extent on the types of facets that play a role in the
emotion process (such as appraisals, feeling, expression, etc.), there is no general
consensus on the descriptive vocabularies that should be used. Which set of emo-
tion categories is considered appropriate varies dramatically between the different
traditions; and even within a tradition such as the Darwinian tradition of emotion
research, there is no agreed set of emotion categories that should be considered as
the most important ones (see e.g. Cowie and Cornelius, 2003). Similarly, dimen-
sional accounts of emotion do not agree on either the number or the names that
should be given to the different dimensions.

For this reason, any attempt to enforce a closed set of descriptors for emotions
would invariably draw heavy criticism from a range of research fields. Given that
there is no consensus in the community, it is impossible to produce a consensus
annotation in a standard markup language.

An obvious alternative would have been to define in EmotionML only the
structure of the representation, but not the descriptors used. Every user would be
free to use the descriptors they consider most appropriate given their theoretical
stance and application needs. This approach, however, would have dramatically
limited the suitability of EmotionML to serve as an interchange format enabling
the interoperability of components processing emotion, for two reasons. On the
one hand, a fully open set would make it impossible to predict and interpret the
multitude of terms that may be defined. On the other hand, the same term may be

9.7. Vocabularies for EmotionML 139

used with markedly different meaning in different research traditions. For exam-
ple, the term ‘anger’ would be considered to represent an attack-type reaction in
the Darwinian tradition; it would be seen as the result of an appraisal of an event
as goal-obstructive in appraisal theories; and it would be seen as a societal device
for ensuring conformity with the social norms in the social constructivist tradi-
tion. Another piece of evidence showing the inherent ambiguity of a term such as
‘anger’ comes from the area of speech emotion research. For example, Banse and
Scherer (1996) distinguish between ‘hot’ and ‘cold’ anger, which show markedly
different vocal profiles but also different action tendencies.

It is thus neither possible to standardise a closed set of emotion terms, nor
is it desirable to leave the choice of labels completely undefined and up to the
user. For this reason, the solution pursued in EmotionML is of a third kind. The
notion of an ‘emotion vocabulary’ is introduced: any specific emotion annotation
must be specific about the vocabulary that is being used in that annotation. This
makes it possible to define in a clear way the terms that make sense in a given
research tradition. Computer systems that want to interoperate need to settle on
the emotion vocabularies to use; whether a given piece of EmotionML markup can
be meaningfully interpreted by an EmotionML engine can be determined.

The specification includes a mechanism for defining emotion vocabularies. It
consists of a ‘<vocabulary>’ element containing a number of ‘<item>’ elements.
A vocabulary has a ‘type’ attribute, indicating whether it is a vocabulary for rep-
resenting categories, dimensions, appraisals or action tendencies. A vocabulary
item has a ‘name’ attribute. Both the entire vocabulary and each individual item
can have an ‘<info>’ child to provide arbitrary metadata.

A separate W3C Working Draft (Schröder et al., 2011b) complements the spec-
ification to provide EmotionML with a set of emotion vocabularies taken from the
scientific literature. When the user considers them suitable, these vocabularies
rather than arbitrary other vocabularies should be used in order to promote inter-
operability. Whenever users have a need for a different vocabulary, however, they
can simply define their own custom vocabulary and use it in the same way as the
vocabularies listed in the Vocabularies document. This makes it possible to add
any vocabularies from scientific research that are missing from the pre-defined
set, as well as application-specific vocabularies. This approach promotes inter-

140 Chapter 9. Emotion Markup Language

operability where this is considered meaningful by the users, but leaves users the
freedom to use the most suitable representations for their application.

In selecting emotion vocabularies, the group has applied the following criteria.
The primary guiding principle has been to select vocabularies that are either com-
monly used in technological contexts, or represent current emotion models from
the scientific literature. A further criterion is related to the difficulty to define map-
pings between categories, dimensions, appraisals and action tendencies. For this
reason, groups of vocabularies were included for which some of these mappings
are likely to be definable in the future.

The following vocabularies are defined. For categorical descriptions, the “big
six” basic emotion vocabulary by Ekman (1972), an everyday emotion vocabulary
by Cowie et al. (1999), and three sets of categories that lend themselves to map-
pings to appraisals, dimensions and action tendencies: the OCC categories from
Ortony et al. (1988), the categories used by Fontaine et al. (2007), and the cate-
gories from the work by Frijda (1986). Three dimensional vocabularies are pro-
vided, the pleasure-arousal-dominance (PAD) vocabulary by Mehrabian (1996),
the four-dimensional vocabulary proposed by Fontaine et al. (2007), and a vocab-
ulary providing a single ‘intensity’ dimension for such use cases that want to
represent solely the intensity of an emotion without any statement regarding the
nature of that emotion. For appraisal, three vocabularies are proposed: the OCC
appraisals from Ortony et al. (1988), the Stimulus Evaluation Checks by Scherer
(1984, 1999), and the EMA appraisals by Gratch and Marsella (2004). Finally,
for action tendencies, only a single vocabulary is currently listed, namely that pro-
posed by Frijda (1986).

While these vocabularies should provide users with a solid basis, it is likely
that additional vocabularies or clarifications about the current vocabularies will
be requested. Due to the rather informal nature of a non-Recommendation-track
Working Draft, it is rather easy to provide future versions of the document that
provide the additional information required.

9.8 Validating EmotionML
One important question for a standard representation format is the issue of vali-
dation, i.e. of verifying in an automatic way whether a given document adheres

9.8. Validating EmotionML 141

to the specification. A well-established approach is to use XML Schema (Thomp-
son et al., 2004) for validation. A Schema document defines the correct form of a
document following the specification.

The specific challenge in the case of EmotionML lies in the fact that users
can select the vocabularies they wish to use in the emotion annotation, including
custom vocabularies which by principle cannot be known at the time of writing
the specification. How, then, can it be automatically verified that the EmotionML
document contains only names for categories, dimensions etc. that are defined in
the vocabulary that the markup declares to be used?

9.8.1 Schema and processor validation in EmotionML
After extensive discussion, the EmotionML specification does not perform
Schema validation of vocabulary items. Instead, the Schema defines and verifies
only the structure of the EmotionML document. The consistency between the ref-
erence to an emotion vocabulary and the vocabulary items used in the annotation
needs to be verified by the emotion engine.

The reason for this decision is not that it would not have been possible to per-
form Schema validation of custom vocabularies. In fact, a solution based solely
on XML Schema, without requiring more complex validation machinery, was de-
veloped and shown to work in principle (see Section 9.8.2 below).

The reason is rather one of consistency with established practice. Where possi-
ble, XML specifications in the W3C should attempt to define a single XML names-
pace (Bray et al., 2009) for all their markup. This is an important issue specifically
in view of keeping open the door for potential future interoperability with the Hy-
pertext Markup Language HTML (Raggett et al., 1999), in which the concept of
namespaces is not supported. In line with this preference, the EmotionML speci-
fication as described above uses a single namespace for its markup.

A second aspect of established practice is that in W3C specifications, user-
defined strings should occur only in attribute values. Element names and attribute
names, on the other hand, should be fully defined by the specification. The reason
behind this custom is to make it easy to recognise a given markup format as such.
User-defined element names would change the appearance of a language to an

142 Chapter 9. Emotion Markup Language

extent that might make it difficult to recognise the markup used. As a result, all
vocabulary items in the EmotionML specification are contained in attribute values.

9.8.2 An alternative solution based on XML namespaces
In the process of discussing the options, we had developed a solution for supporting
custom vocabularies in validation based purely on XML. Even though the solution
was discarded in the context of EmotionML for the reasons of consistency outlined
above, it is presented here as an example of technical feasibility which may be
useful in a different context at some point in the future.

The solution described here uses qualified names (QNames, see Bray et al.
(2009)), to distinguish the different vocabulary sets by namespace. The QName
of an element is that element’s local name, optionally prefixed with a namespace
prefix identifying the element’s namespace.

The central idea is that the plug-in vocabulary is in a different namespace de-
fined by its own Schema file, but at the same time the vocabulary items are part of
a substitution group defined in the main emotion markup Schema. The following
minimalistic example illustrates the mechanism for emotion dimensions.

Figure 9.2 shows a sample document which can be Schema-validated including
the names and syntax of the vocabulary items. Figure 9.3 provides a minimalistic
central Schema for the emotion markup, which defines only a simplistic dimension
annotation. Figure 9.4, finally, is an exemplar of the set of vocabulary-defining
Schemas, in this case for the dimension vocabulary consisting of the identifiers
‘arousal’ and ‘valence’.

When looking at Figure 9.2, the points to notice are the following.

• EmotionML structural elements (<emotionml>, <emotion>,
<dimensions>) are in a different namespace than the specific vocab-
ulary items (<arousal>, <valence>);

• for the two namespaces, two schema locations are indicated in the document.

The combination of the central Schema emo.xsd (Figure 9.3) and the
vocabulary-specific Schema arousalvalence.xsd (Figure 9.4) works as fol-
lows. The structure of the markup is defined in emo.xsd including an element

9.8. Validating EmotionML 143
<!-- emotion-document.xml -->
<e:emotionml xmlns:e=”http://www.example.com/emotionml”

xmlns:av=”http://www.example.com/arousalValence”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.example.com/emotionml file:emo.xsd
http://www.example.com/arousalValence file:arousalvalence.xsd”>
<e:emotion>

<e:dimensions>
<av:arousal value=”0.5”/>
<av:valence value=”0”/>

</e:dimensions>
</e:emotion>

</e:emotionml>

Figure 9.2: Sample document of a variety of emotion markup for which the correct
use of vocabulary items can be Schema-validated.

<dimension> with type dimensionType. That is, emo.xsd defines the places
where the dimension element can occur (in this case, within the <dimensions>
element wrapping one or more dimension elements), and what internal structure
it can have (in this case, a required, string-valued attribute value). The element
<dimension> itself, however, is abstract, which means it cannot actually occur in
the markup.

The vocabulary-specific Schema arousalvalence.xsd (Figure 9.4) reuses
these definitions as follows.

• It imports the generic markup namespace, which allows it to use the defini-
tions in the generic Schema emo.xsd;

• it declares each of the dimension elements in the vocabulary as part of the
substitutionGroup of the generic <dimension> element, which allows the
new dimensions to occur at the same places in the markup structure as the
generic element;

• it defines the type of the new dimension to be the same dimensionType used
for all dimensions.

As a result, the new dimension elements in the vocabulary can occur exactly
where dimension elements are allowed, and they must have the exact internal struc-
ture defined for dimension elements in the generic Schema.

144 Chapter 9. Emotion Markup Language

<!-- emo.xsd -->
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:emo=”http://www.example.com/emotionml”

targetNamespace=”http://www.example.com/emotionml”>

<xsd:complexType name=”dimensionType”>
<xsd:attribute name=”value” type=”xsd:string” use=”required”/>

</xsd:complexType>

<xsd:element name=”dimension” type=”emo:dimensionType” abstract=”true”/>

<xsd:element name=”dimensions”>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=”emo:dimension” minOccurs=”1” maxOccurs=”unbounded”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name=”emotion”>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=”emo:dimensions” minOccurs=”0” maxOccurs=”1”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name=”emotionml”>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=”emo:emotion” minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure 9.3: Minimalistic generic schema emo.xsd for a variety of emotion markup
for which the correct use of vocabulary items can be Schema-validated.

9.8. Validating EmotionML 145
<!-- arousalvalence.xsd -->
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:emo=”http://www.example.com/emotionml”
targetNamespace=”http://www.example.com/arousalValence”>

<xsd:import namespace=”http://www.example.com/emotionml” />

<xsd:element name=”arousal” substitutionGroup=”emo:dimension”
type=”emo:dimensionType”/>

<xsd:element name=”valence” substitutionGroup=”emo:dimension”
type=”emo:dimensionType”/>

</xsd:schema>

Figure 9.4: Schema arousalvalence.xsd for one of the emotion vocabularies for
a variety of emotion markup for which the correct use of vocabulary items can be
Schema-validated.

When placing all three documents into the same folder, this can be Schema-
validated for example using Xerces-Java:

export CLASSPATH=xercesSamples.jar:$CLASSPATH
java dom.Counter -v -s -f emotion-document.xml

Defining a new vocabulary in this framework consists in creating
a new vocabulary Schema as a variant of Figure 9.4. That new vo-
cabulary could then be used in documents in the same way as the
namespace http://www.example.com/arousalValence and the Schema
arousalvalence.xsd have been used in Figure 9.2. In particular, no change to
the generic Schema (Figure 9.3) is required to use a new vocabulary.

The mechanism generalises immediately to appraisals and action tendencies,
which have the same structure as dimensions. For emotion categories, the mecha-
nism can be applied if a category is represented by an element whose element name
is the category name. For example, a categorical annotation using the proposed
solution would look as follows:

<e:emotion>
<e:category>

<big6:happiness/>
</e:category>

</e:emotion>

146 Chapter 9. Emotion Markup Language

Here the generic Schema would need to provide a similar mechanism for cat-
egories as has been made explicit for dimensions; the namespace prefix ‘big6’
refers to a namespace tied to a Schema document defining the ‘big 6’ vocabulary
of emotion categories.

9.9 Issues for future work
The EmotionML 1.0 specification appears to be successful at resolving the major-
ity of the requirements that arise from use cases. This was confirmed from the side
of users as well as by psychological experts in emotion research, at the W3C Emo-
tionML workshop (http://www.w3.org/2010/10/emotionml/cfp.html). The
process of standardisation is therefore being pursued as described in Section 9.1.

A number of important issues have been noted as important but too difficult to
handle in the first version of EmotionML. Among these is a careful solution for
representing regulation in EmotionML (see Section 9.4.1), in order to be able to
represent the fact that an emotion was suppressed, simulated, masked by another
emotion, etc. Another requirement that is not covered in EmotionML 1.0 is the
use of ontologies to define the terms in an emotion vocabulary, to relate the terms
to one another, and to define mappings between emotion vocabularies where pos-
sible. A further difficulty regards the specification of scales. Should a given scale
be discrete, continuous, unipolar or bipolar, etc.? Due to the difficulty of find-
ing a consensus in the emotion community on best practice for scales, we have
postponed a more detailed definition of scales.

With the increasingly broad discussion of EmotionML in different communi-
ties, further use cases are becoming apparent. In the context of accessibility for
people with disabilities, EmotionML may be useful for making emotional infor-
mation available to people who could not otherwise perceive it. Examples include
emotional annotation of material for persons who do not have a natural intuition
about the emotional meaning of other person’s expressive behaviour, such as peo-
ple with autism; the equivalent of subtitles for emotions that are expressed only
in the voice, for people with impaired hearing; and the equivalent of descriptive
text to capture emotion that is only expressed in visual modalities, for people who
cannot see. In each case, the annotation of emotion in EmotionML would have to
be rendered into an easy-to-understand surface form for actual consumption.

http://www.w3.org/2010/10/emotionml/cfp.html

9.9. Issues for future work 147

Another interesting potential application area for EmotionML is user model-
ing (Rich, 1979). Generic user modeling systems attempt to collect general as well
as domain-specific information about a human user in order to enable a computer
system to adapt to the user’s needs (Kobsa, 2001). One generic but highly relevant
aspect of the user’s properties is his or her emotional state. For example, Heck-
mann (2006) presented a General User Model Ontology (GUMO) which includes
the user’s emotional state as one of the basic user dimensions. In GUMO, emotion
categories are included as individual instances of a generic class “emotional state”.

EmotionML is of potential relevance for user modeling on several levels. Ir-
respective of the question whether the XML representation of EmotionML is ap-
propriate for a given user model system, the concepts embedded in EmotionML
can be used as a guideline for representing the most relevant aspects of an emo-
tional experience in a well-defined way. For example, rather than referring to an
unqualified and potentially ambiguous emotion category by a simple label such
as “happiness”, it is possible to indicate precisely the emotion vocabulary which
defines the meaning of that emotion label and the research tradition from which it
stems. The reference mechanism defined in EmotionML makes it explicit that it
can be relevant to know who experiences the emotion, how it is expressed, which
object or event has triggered it, and towards which entity any actions resulting
from the emotion may be targeted. In addition to the emotion itself, it may be
useful to make explicit the appraisals that are formed on the basis of events in
the world. EmotionML provides a formalism and several possible vocabularies
for representing the appraisals as such. Affective reasoning components such as
those by Gebhard (2005) and Gratch and Marsella (2004) can be used to derive the
user’s presumed emotion from those appraisals. Furthermore, the action tenden-
cies that may arise from the emotion could be predicted using a similar reasoning
component. Insofar, the user model could implement to some extent the emotional
aspect of the computer’s “Theory of Mind” (Baron-Cohen et al., 1999) of the user.

When extending user modeling towards the modeling of social relationships
(Eagle and Pentland, 2006), EmotionML could potentially be used to represent
one person’s perception of another person’s emotional expression. Here it becomes
very important to distinguish the encoding from the decoding aspect of emotional
expression (Cowie and Cornelius, 2003; Scherer, 2000): the user model should
capture person A’s presumed perception of person B’s expressive behaviour,

148 Chapter 9. Emotion Markup Language

which may well differ from person B’s actual intentions1. If a user model includes
a representation of emotion perception in this way, affective reasoning models
could be extended to include appraisals of that behaviour in context. Furthermore,
emotional contagion models (Hatfield et al., 1994) could be implemented to cap-
ture, for example, mimickry and imitation effects.

As these use cases are explored further, it remains to be seen whether the exist-
ing representations in EmotionML are appropriate and sufficient, or if additional
functionality is required to address all relevant aspects of these additional areas of
application.

A challenge on a different level is the investigation and possible definition of
emotion-related representations for use in web applications. Important issues in
this context are the minimal representation of small, pertinent pieces of informa-
tion to be represented in a way that goes naturally with HTML, such as stylesheet-
type annotations. Of high importance in this context are also the events that would
need to be fired in relation to emotional material, such as ‘emotion detected’, ‘emo-
tion changed’, ‘emotion ended’ or similar.

Once EmotionML 1.0 has reached its full maturity, the above-mentioned di-
rections can be developed in future versions of EmotionML, or in complementary
specifications that are more appropriate for the respective use cases.

9.10 Conclusion
The present chapter has presented an account of the thinking behind and the defi-
nition of the Emotion Markup Language EmotionML.

We have first set the scene by outlining the process of standardising Emo-
tionML at the W3C and by presenting related work. We have then reported on the
use cases and the resulting requirements as identified by two Incubator groups at
the W3C, before describing the key properties of the EmotionML syntax as defined
in the Last Call Working Draft version of the specification. We have compared the
specification to scientific descriptions of emotion, concluding that the key con-
cepts can be represented in EmotionML. Referring to the lack of agreement in the
community regarding concrete vocabularies of emotion descriptors, we have mo-

1In particular, culture-specific display rules (Ekman, 1972) are likely to cause divergence be-
tween encoding and decoding in cross-cultural interactions.

9.10. Conclusion 149

tivated and described the mechanism in EmotionML to choose a suitable emotion
vocabulary. Finally, we have discussed the issue of validating EmotionML and
pointed out issues for future work.

This concludes the Communication part of the thesis. In the following chapter,
we will look at an assessment of the SEMAINE API, firstly from the perspective
of performance.

150 Chapter 9. Emotion Markup Language

151

Part IV

Assessment

153

Chapter 10

Performance

A crucial aspect for a component integration framework is its performance. The
low-level performance of the underlying communication middleware, in terms of
message routing times, provides a lower bound to the possible reaction times a
system can achieve if its processing takes no time. We will investigate this aspect
in Section 10.1.

For a distributed component integration framework, a number of additional
factors are crucial determinants of reaction times. We will investigate the effects
of system architecture, of distribution across more than one computer, and of op-
timising individual components on the system’s reaction times, in Section 10.2.

10.1 Middleware
A basic but essential aspect of performance in a component integration framework
is the time it takes for a message to get from one component to another. Especially
in a highly modular system consisting of many components, the number of mes-
sages passed from one component to another one can be quite high; any time spent
on message passing is a lower bound on reaction times which cannot be improved
even with components that can process in zero time. For example, if ten messages
passed between the component that decides to execute an action and the compo-
nent that actually renders the physical action, then ten times the message routing
time is a lower bound on reaction times. If it took a message 50 ms to be sent and
received, then the lower bound on reaction time would be 500 ms in this case –

154 Chapter 10. Performance

String length Psyclone ActiveMQ
10 16.00 0.34

100 16.78 0.25
1,000 16.08 0.28

10,000 16.08 0.51
100,000 41.44 2.90

1,000,000 407.53 55.05
Table 10.1: Message routing times for Psyclone and ActiveMQ, in milliseconds,
for string messages of different lengths.

half a second lost by just sending messages. Half a second is a very noticeable
delay in real-time interaction.

We compared the message-oriented middleware ActiveMQ, used in the SE-
MAINE API, with the blackboard middleware Psyclone (CMLabs, 2007), which
is used in systems similar to ours (e.g., Niewiadomski et al., 2009). In order to
compute the mere message routing time ignoring network latencies, we ran either
ActiveMQ 5.1.0 or Psyclone 1.1.7 on a Windows Vista machine with a Core2Duo
2.5 GHz processor and 4 GB RAM with no other load, and connected to each us-
ing a Java client sending and receiving messages in sequence from the localhost
machine. We sent text messages of different lengths to each middleware in a loop,
averaging measures over 100 repetitions for each message length. We used plain
string messages with lengths between 10 and 1,000,000 characters. The message
routing times are shown in Table 10.1 and Figure 10.1. Between 10 and 1,000 char-
acters, round trip message routing times for ActiveMQ are approximately constant
at around 0.3 ms; the times rise to 0.5 ms for 10,000 characters, 2.9 ms for 100,000,
and 55 ms for messages of 1,000,000 characters length. Psyclone is substantially
slower, with routing times approximately constant around 16 ms for messages
from 10 to 10,000 characters length, then rising to 41 ms at 100,000 characters
length and 408 ms at 1,000,000 characters message length.

These results show that in this task, ActiveMQ is approximately 50 times faster
than Psyclone for short messages, and around 10 times faster for long messages.
While it may be possible to find even faster systems, it seems that ActiveMQ is
reasonably fast for our purposes.

10.2. Architecture 155

10 10
0

1,
000

10
,0

00

10
0,

000

1,
00

0,
00

0

0

20

40

60

80

100

Psyclone
ActiveMQ

String length

M
ill

is
e

co
nd

s

Figure 10.1: Round-trip message routing times as a function of message length.

10.2 Architecture
In assessing the performance of a real-time interactive system, many factors influ-
ence the reaction times as observable by the human user, including:

• the message routing times;

• the processing times of the components;

• the available hardware resources;

• the way the components are wired together, i.e. the system architecture;

• and the algorithms for triggering system actions as a function of user actions
and other information.

The first item in this list (message routing) has been investigated above; the
last item (algorithms) is outside the intended scope of this thesis, as defined in
Section 1.3.

In order to assess the effect of the remaining three factors on the system’s
reactivity, we proceeded as follows. We ran the SEMAINE-3.0 system in four
configurations differing in available hardware resources and the processing times

156 Chapter 10. Performance

of components. One hardware setup consisted in all components running on a sin-
gle Windows laptop with 4 GB RAM and a dual-core 2.5 GHz CPU; the second
hardware setup was a distributed system, with video input and output components
running on the Windows laptop, and speech input, dialogue, and speech synthesis
components running on a Mac Book Pro with 8 GB RAM and a dual-core 3.06
GHz CPU. The two laptops were connected via a direct Ethernet cable in order to
minimise the latency introduced by network routing.

The component processing times were controlled by switching on and off the
cache in one of the most processing-intensive components, the MARY TTS speech
synthesis. In one configuration, the cache was enabled, so that TTS processing
could be effectively skipped for previously generated utterances; in the other con-
figuration, the cache was deactivated, forcing TTS processing for every utterance.
In the cache-enabled condition, the system was left running for a while before the
experiment, in order to make sure that many of the typical system utterances were
contained in the cache.

In order to assess the effect of system architecture, we compared, in each of
the four system setups, the measurements for utterances generated along the direct
branch and utterances generated along the prepare-and-trigger branch (see Sec-
tions 7.3.3 and 7.3.4).

The measure used is time-to-animation: the time it takes from the moment
when the action selection has decided that an action should be performed to the
moment the action starts playing. A dedicated measurement component was im-
plemented to observe the messages passed between components. It measured the
time between the action selection’s message triggering an utterance and the time
when the player emits a callback message stating that the playback of that utterance
has started.

The measurements were taken during actual system runs, i.e. while the system
was interacting with a user, over a period of several minutes. This approach yields
measures that are only approximately comparable: since in every system run, the
user’s behaviour is different, the utterances generated in response are not the same.
For this reason, neither the identity nor the number of system utterances is exactly
the same across the different system runs. Furthermore, the number of utterances
generated along the direct branch and the prepare-and-trigger branch vary sub-
stantially, depending on the ability of the utterance action proposer to anticipate

10.2. Architecture 157

Test setup Direct branch Prepare-and-
trigger branch

Distributed system,
no cache in MARY TTS 687 ms (n=82) 7 ms (n=16)
Distributed system,
cache enabled in MARY TTS 201 ms (n=80) 5 ms (n=22)
Single PC,
no cache in MARY TTS 846 ms (n=46) 7 ms (n=22)
Single PC,
cache enabled in MARY TTS 407 ms (n=41) 18 ms (n=39)

Table 10.2: Median time-to-animation in various system setups, in milliseconds.
n is the number of utterances observed.

its own future decisions in time to allow for the use of the prepare-and-trigger
branch. The extent to which the utterance action proposer is able to make such
predictions is part of the application logic and therefore outside the scope of this
investigation. Therefore, the number of utterances generated through one or the
other branch cannot be controlled or assessed; the interesting information is any
difference in time-to-animation between these branches. These measurement con-
ditions mean that results for individual utterances cannot be compared. However,
any consistent difference between the averages over many utterances per condition
are likely to be generic and robust.

Table 10.2 shows the results of the measurements of time-to-animation in the
different system setups. All three factors show observable effects.

The most important effect is achieved by using the prepare-and-trigger branch
in the architecture. Whenever it is used, this reduces the time-to-animation to
around 10 ms for all test setups. This suggests that the most effective means for
a real-time interactive system to improve its reactivity is for the action selection
system to make as extensive use of the prepare-and-trigger facility as possible. For
utterances realised through the prepare-and-trigger branch, no substantial effects
of hardware resources and component processing times can be observed.

The time-to-animation along the direct branch is much longer, of the order of
hundreds of milliseconds. Any differences at this scale are likely to be perceiv-
able by human users (Ward and Tsukahara, 2000), so that any improvements are

158 Chapter 10. Performance

highly relevant. Here, we can observe that both the hardware resources and the
component processing times play a substantial role.

The reduced processing time of the TTS component in the cache-enabled con-
dition is reflected in a reduction of median processing times to less than half, for
both hardware settings. This is fully consistent with expectations for the direct
branch: where the components are executed in sequence, speeding up one of the
major elements in the sequence should have an observable effect on overall reac-
tion times.

Regarding hardware resources, it can be seen that distributing the load across
two machines also helps speed up the generation of output. The effect is clearly
visible, but it is the smallest of all three. This suggests that the hardware resources
in the single PC setup were scarce to some extent but not excessively.

The best improvement to the system’s reaction times is achieved by combining
all three effects. In the best setup – the distributed system with cache enabled –,
the median time-to-animation is only 200 ms in the direct branch, and below 10 ms
in the prepare-and-trigger branch.

10.3 Conclusion
This chapter has assessed the system’s performance on a technical level. Four
aspects were addressed: the low-level message-routing times of the middleware
used for communication between the components; the system architecture, with
respect to direct and prepare-and-trigger rendering of the system’s behaviour; the
effect of limited hardware resources; and the effect of processing times in a single
component.

Findings confirmed that all these aspects play an important role for the reac-
tivity of the system. It was also shown that in the best system configuration, with
the SEMAINE-3.0 system running as a distributed system with the MARY TTS
cache enabled, the median time-to-animation for system utterances is only 200 ms,
which is less than the 350 to 700 ms that Ward and Tsukahara (2000) found to be
the typical delays for human backchannel reactions. Furthermore, the underlying
middleware has been shown to be very fast – less than one millisecond – for mes-
sages up to 10 kB size, and still good – with message routing time of about 3 ms
– for messages of 100 kB size.

10.3. Conclusion 159

In essence, we have shown that the SEMAINE API provides a good basis for
implementing highly reactive real-time interactive systems.

160 Chapter 10. Performance

161

Chapter 11

Re-use: Building new
emotion-oriented systems with the
SEMAINE API

One aim of the SEMAINE API is to support the simple creation of new emotion-
oriented systems, composed of new and existing components. The use of standard
interfaces between components, as well as the component integration and XML
handling support provided by the SEMAINE API, are aimed at making this task
comparatively easy.

This section presents three emotion-oriented example systems, in order to cor-
roborate the claim that the SEMAINE API is easy to use for building new emotion-
oriented systems out of new and/or existing components. Source code is provided
in order to allow the reader to follow in detail the steps needed for using the SE-
MAINE API. The code is written in Java, and can be obtained from the SEMAINE
download page at http://semaine.opendfki.de. A C++ version of the first ex-
ample is also available. Since the relevant parts of the code look very similar in
C++ and in Java, we only show the Java version here.

11.1 Hello world
The “Hello” example realises a simple text-based interactive system. The user
types arbitrary text; an analyser component spots keywords, and deduces an af-

http://semaine.opendfki.de

162 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

1 public class HelloInput extends Component {
2
3 private Sender textSender =

new Sender(”semaine.data.hello.text”, ”TEXT”, getName());
4 private BufferedReader inputReader =

new BufferedReader(new InputStreamReader(System.in));
5
6 public HelloInput() throws JMSException {
7 super(”HelloInput”, true/*is input*/, false);
8 senders.add(textSender);
9 }

10
11 @Override protected void act() throws IOException, JMSException {
12 if (inputReader.ready()) {
13 String line = inputReader.readLine();
14 textSender.sendTextMessage(line, meta.getTime());
15 }
16 }
17 }

Figure 11.1: The HelloInput component sending text messages via the SEMAINE
API.

fective state from them; and a rendering component outputs an emoticon corre-
sponding to this text. Despite its simplicity, the example is instructive because it
displays the main elements of an emotion-oriented system.

The input component (Figure 11.1) simply reads one line of text at a time,
and sends it on. It has an input device (Figure 11.1, line 4) and a Sender writing
TEXT data to the Topic ‘semaine.data.hello.text’ (line 3). In its constructor,
the component registers itself as an input component (l. 7), and registers its sender
(l. 8). Its act() method, which is automatically called every 100 ms while the
system is running, checks for new input (l. 12), reads it (l. 13), and sends it to the
Topic (l. 14).

As a simplistic central processing component, the HelloAnalyser (Figure 11.2)
makes emotional judgements about the input. It registers a Receiver (l. 7) for the
Topic that HelloInput writes to, and sets up (l. 3) and registers (l. 8) an XMLSender
producing data of type EmotionML. Whenever a message is received, the method
react() is called (l. 11). It receives (l. 13) and analyses (l. 14-17) the input

11.1. Hello world 163

Valence
- 0 +

Ar
ou

sa
l + 8-(8-| 8-)

0 :-(:-| :-)
- *-(*-| *-)

Table 11.1: Ad hoc emoticons used to represent positions in the arousal-valence
plane.

text, and computes values for the emotion dimensions arousal and valence from
the text. Finally, it creates an EmotionML document (l. 18) and sends it (l. 19).

As the SEMAINE API does not currently provide built-in support for stan-
dalone EmotionML documents, the component uses a generic XMLSender (l. 3)
and uses the XMLTool to build up the EmotionML document (l. 23-30).

The output of the Hello system should be an emoticon representing an area in
the arousal-valence plane as shown in Table 11.1. The EmoticonOutput compo-
nent (Figure 11.3) registers an XMLReceiver (l. 5) to the Topic that the HelloAnal-
yser sends to. Whenever a message is received, the react() method is called (l.
8), which analyses the XML document in terms of EmotionML markup (l. 10-
12), and extracts the arousal and valence values (l. 14-15). The emotion display
is rendered as a function of these values (l. 17-19).

In order to build a system from the components, a configuration file is cre-
ated (Figure 11.4). It includes the SystemManager component as well as the three
newly created components. Furthermore, it requests a visible system manager GUI
providing a message flow graph.

The system is started in the same way as all Java-based SEMAINE
API systems: java -cp ’lib/*’ eu.semaine.system.ComponentRunner
config/example-hello.config. Figure 11.5 shows a screenshot of the result-
ing message flow graph. As the communication passes via the middleware Ac-
tiveMQ, the system would behave in the exact same way if the four components
were started as separate processes, on different machines, or if some of them were
written in C++ rather than Java.

164 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

1 public class HelloAnalyser extends Component {
2
3 private XMLSender emotionSender =

new XMLSender(”semaine.data.hello.emotion”, ”EmotionML”, getName());
4
5 public HelloAnalyser() throws JMSException {
6 super(”HelloAnalyser”);
7 receivers.add(new Receiver(”semaine.data.hello.text”));
8 senders.add(emotionSender);
9 }

10
11 @Override protected void react(SEMAINEMessage m) throws JMSException {
12 float arousalValue = 0.5f, valenceValue = 0.5f;
13 String input = m.getText();
14 if (input.contains(”very”)) arousalValue = 1;
15 else if (input.contains(”a␣bit”)) arousalValue = 0;
16 if (input.contains(”happy”)) valenceValue = 1;
17 else if (input.contains(”sad”)) valenceValue = 0;
18 Document emotionML = createEmotionML(arousalValue, valenceValue);
19 emotionSender.sendXML(emotionML, meta.getTime());
20 }
21
22 private Document createEmotionML(float arousalValue, float valenceValue) {
23 Document emotionML = XMLTool.newDocument(EmotionML.ROOT_TAGNAME,

EmotionML.namespaceURI);
24 Element emotion = XMLTool.appendChildElement(

emotionML.getDocumentElement(), EmotionML.E_EMOTION);
25 emotion.setAttribute(EmotionML.A_DIMENSION_VOCABULARY,

EmotionML.VOC_FSRE_DIMENSION_DEFINITION);
26 Element arousal = XMLTool.appendChildElement(emotion,

EmotionML.E_DIMENSION);
27 arousal.setAttribute(EmotionML.A_NAME,

EmotionML.VOC_FSRE_DIMENSION_AROUSAL);
28 arousal.setAttribute(EmotionML.A_VALUE, String.valueOf(arousalValue));
29 Element valence = XMLTool.appendChildElement(emotion,

EmotionML.E_DIMENSION);
30 valence.setAttribute(EmotionML.A_NAME,

EmotionML.VOC_FSRE_DIMENSION_VALENCE);
31 valence.setAttribute(EmotionML.A_VALUE, String.valueOf(valenceValue));
32 return emotionML;
33 }
34 }

Figure 11.2: The HelloAnalyser component. It receives and analyses the text mes-
sages from HelloInput, and generates and sends an EmotionML document contain-
ing the analysis results.

11.1. Hello world 165

1 public class EmoticonOutput extends Component {
2
3 public EmoticonOutput() throws JMSException {
4 super(”EmoticonOutput”, false, true /*is output*/);
5 receivers.add(new XMLReceiver(”semaine.data.hello.emotion”));
6 }
7
8 @Override protected void react(SEMAINEMessage m)

throws MessageFormatException {
9 SEMAINEXMLMessage xm = (SEMAINEXMLMessage) m;

10 Element emotion = (Element) xm.getDocument().getElementsByTagNameNS(
EmotionML.namespaceURI, EmotionML.E_EMOTION).item(0);

11 String vocabularyURI = emotion.getAttribute(
EmotionML.A_DIMENSION_VOCABULARY);

12 if (!vocabularyURI.equals(EmotionML.VOC_FSRE_DIMENSION_DEFINITION))
return;

13 List<Element> dimensions = XMLTool.getChildrenByLocalNameNS(emotion,
EmotionML.E_DIMENSION, EmotionML.namespaceURI);

14 float a = 0.5f, v = 0.5f; // neutral values
15 boolean haveSomething = false;
16 for (Element dim : dimensions) {
17 String name = dim.getAttribute(EmotionML.A_NAME);
18 float value = Float.parseFloat(dim.getAttribute(EmotionML.A_VALUE));
19 if (name.equals(EmotionML.VOC_FSRE_DIMENSION_AROUSAL)) {
20 a = value;
21 haveSomething = true;
22 } else if (name.equals(EmotionML.VOC_FSRE_DIMENSION_VALENCE)) {
23 v = value;
24 haveSomething = true;
25 }
26 }
27 if (!haveSomething) return;
28 String eyes = a > 0.66 ? ”8” /*active*/ :

a < 0.33 ? ”*” /*passive*/ :
”:” /*neutral*/;

29 String mouth = v > 0.66 ? ”)” /*positive*/ :
v < 0.33 ? ”(” /*negative*/ :

”|” /*neutral*/;
30 System.out.println(eyes+”-”+mouth);
31 }
32 }

Figure 11.3: The EmoticonOutput component. It receives EmotionML markup
and displays an emoticon according to Table 11.1.

166 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

semaine.components = \
|eu.semaine.components.meta.SystemManager| \
|eu.semaine.examples.hello.HelloInput| \
|eu.semaine.examples.hello.HelloAnalyser| \
|eu.semaine.examples.hello.EmoticonOutput|

semaine.systemmanager.gui = true

Figure 11.4: The configuration file example-hello.config defining the Hello
application.

Figure 11.5: Message flow graph of the Hello system

11.2. Emotion mirror 167

1 public class EmotionExtractor extends Component {
2 private XMLSender emotionSender =

new XMLSender(”semaine.data.hello.emotion”, ”EmotionML”, getName());
3
4 public EmotionExtractor() throws JMSException {
5 super(”EmotionExtractor”);
6 receivers.add(

new EmmaReceiver(”semaine.data.state.user.emma.emotion.voice”));
7 senders.add(emotionSender);
8 }
9

10 @Override protected void react(SEMAINEMessage m) throws JMSException {
11 SEMAINEEmmaMessage emmaMessage = (SEMAINEEmmaMessage) m;
12 Element interpretation = emmaMessage.getTopLevelInterpretation();
13 List<Element> emotionElements =

emmaMessage.getEmotionElements(interpretation);
14 if (emotionElements.size() > 0) {
15 Element emotion = emotionElements.get(0);
16 Document emotionML = XMLTool.newDocument(EmotionML.ROOT_ELEMENT,

EmotionML.namespaceURI);
17 emotionML.adoptNode(emotion);
18 emotionML.getDocumentElement().appendChild(emotion);
19 emotionSender.sendXML(emotionML, meta.getTime());
20 }
21 }
22 }

Figure 11.6: The EmotionExtractor component takes EmotionML markup from
an EMMA message and forwards it.

11.2 Emotion mirror
The Emotion mirror is a variant of the Hello system. Instead of analysing text
and deducing emotions from keywords, it uses the openSMILE speech feature ex-
traction and emotion detection (see Chapter 7) for interpreting the user’s emotion.
The output is rendered using the same EmoticonOutput component from the Hello
system in Section 11.1.

Only one new component is needed to build this system. EmotionExtractor
(Figure 11.6) has an emotion Sender (l. 2 and l. 7) just like the HelloAnalyser
had, but uses an EMMA Receiver (l. 6) to read from the topic that the Emotion
detection component from the SEMAINE system (see Chapter 7) publishes to, as

168 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

Figure 11.7: Message flow graph of the Emotion mirror system.

documented in Schröder et al. (2010b). Upon reception of an EMMA message, the
method react() is called (l. 10). As the only receiver registered by the component
is an EMMA receiver, the message can be directly cast into an EMMA message
(l. 11) which allows for comfortable access to the document structure to extract
emotion markup (l. 12-13). Where emotion markup is present, it is inserted into a
standalone EmotionML document (l. 16-18) and sent to the output Topic (l. 19).

The config file contains only the components SystemManager, EmotionExtrac-
tor and EmoticonOutput. As the SMILE component is written in C++, it needs to
be started as a separate process as documented in the SEMAINE wiki documen-
tation at http://semaine.opendfki.de. The resulting message flow graph is
shown in Figure 11.7.

http://semaine.opendfki.de

11.3. A game driven by emotional speech: The swimmer’s game 169

Figure 11.8: Swimmer’s game user interface.

11.3 A game driven by emotional speech: The swim-
mer’s game

The third example system is a simple game application in which the user must use
emotional speech to win the game. The game scenario is as follows. A swimmer
is being pulled backwards by the stream towards a waterfall (Figure 11.8). The
user can help the swimmer to move forward towards the river bank by cheering
him up through high-arousal speech. Low arousal, on the other hand, discourages
the swimmer and drives him more quickly to the waterfall.

The system requires the openSMILE components as in the Emotion mirror
system; a component computing the swimmer’s position as time passes, and con-
sidering the user’s input; and a rendering component for the user interface. Fur-
thermore, we will illustrate the use of TTS output in the SEMAINE API by imple-
menting a commentator providing input to the speech synthesis component of the
SEMAINE system (Chapter 7).

The PositionComputer (Figure 11.9) combines a react() and an act()
method. Messages are received via an EMMA receiver and lead to a change in
the internal parameter position (l. 22). The act() method implements the back-
ward drift (l. 29) and sends regular position updates (l. 30) as a plain-text message.

170 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

1 public class PositionComputer extends Component {
2 private Sender positionSender =

new Sender(”semaine.data.swimmer.position”, ”TEXT”, getName());
3 private float position = 50;
4
5 public PositionComputer() throws JMSException {
6 super(”PositionComputer”);
7 receivers.add(

new EmmaReceiver(”semaine.data.state.user.emma.emotion.voice”));
8 senders.add(positionSender);
9 }

10
11 @Override protected void react(SEMAINEMessage m)

throws MessageFormatException {
12 SEMAINEEmmaMessage emmaMessage = (SEMAINEEmmaMessage) m;
13 Element interpretation = emmaMessage.getTopLevelInterpretation();
14 if (interpretation == null) return;
14 List<Element> emotionElements =

emmaMessage.getEmotionElements(interpretation);
15
16 for (Element emotion : emotionElements) {
17 List<Element> dimensions = XMLTool.getChildrenByLocalNameNS(

emotion, EmotionML.E_DIMENSION, EmotionML.namespaceURI);
18 for (Element dim : dimensions) {
19 if (dim.getAttribute(EmotionML.A_NAME).equals(

EmotionML.VOC_FSRE_DIMENSION_AROUSAL)) {
20 float arousalValue = Float.parseFloat(

dim.getAttribute(EmotionML.A_VALUE));
21 // Arousal influences the swimmer’s position:
22 position += 10*(arousalValue-0.4f);
23 break;
24 }
25 }
26 }
27 }
28
29 @Override protected void act() throws JMSException {
30 // The river slowly pulls back the swimmer:
31 position -= 0.1;
32 positionSender.sendTextMessage(String.valueOf(position),

meta.getTime());
33 }
34 }

Figure 11.9: The PositionComputer component.

11.3. A game driven by emotional speech: The swimmer’s game 171

1 public class SwimmerDisplay extends Component {
2
3 public SwimmerDisplay() throws JMSException {
4 super(”SwimmerDisplay”, false, true/*is output*/);
5 receivers.add(new Receiver(”semaine.data.swimmer.position”));
6 setupGUI();
7 }
8
9 @Override protected void react(SEMAINEMessage m) throws JMSException {

10 float percent = Float.parseFloat(m.getText());
11 updateSwimmerPosition(percent);
12 String message = percent <= 0 ? ”You␣lost!” :

percent >= 100 ? ”You␣won!!!” : null;
13 if (message != null) {

...
}

}
...

}

Figure 11.10: The SwimmerDisplay component (GUI code not shown).

The SwimmerDisplay (Figure 11.10) implements the user interface shown in
Figure 11.8. Its messaging part consist of a simple text-based Receiver (l. 5) and
an interpretation of the text messages as single float values (l. 10).

Due to the separation of position computer and swimmer display, it is now very
simple to add a Commentator component (Figure 11.11) that generates comments
using synthetic speech, as a function of the current position of the swimmer. It
subscribes to the same Topic as the SwimmerDisplay (l. 7), and sends BML out-
put (l. 2) to the Topic serving as input to the speech synthesis component of the
SEMAINE system (Schröder et al., 2010b). Speech output is produced when the
game starts (l. 18-20) and when the position meets certain criteria (l. 13-14).
Generation of speech output consists in the creation of a simple BML document
with a <speech> tag enclosing the text to be spoken (l. 25-28), and sending that
document (l. 29).

The complete system consists of the Java components SystemManager, Po-
sitionComputer, SwimmerDisplay, Commentator, SpeechBMLRealiser and Se-
maineAudioPlayer, as well as the external C++ component openSMILE. The re-
sulting message flow graph is shown in Figure 11.12.

172 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

1 public class Commentator extends Component {
2 private BMLSender bmlSender =

new BMLSender(”semaine.data.synthesis.plan”, getName());
3 private boolean started = false;
4
5 public Commentator() throws JMSException {
6 super(”Commentator”);
7 receivers.add(new Receiver(”semaine.data.swimmer.position”));
8 senders.add(bmlSender);
9 }

10
11 @Override protected void react(SEMAINEMessage m) throws JMSException {
12 float percent = Float.valueOf(m.getText());
13 if (percent < 30 /*danger*/) say(”Your␣swimmer␣needs␣help!”);
14 else if (percent > 70 /*nearly there*/) say(”Just␣a␣little␣more.”);
15 }
16
17 @Override protected void act() throws JMSException {
18 if (!started) {
19 started = true;
20 say(”The␣swimmer␣needs␣your␣support␣to␣reach␣the␣river␣bank.␣” +

”Cheer␣him␣up!”);
21 }
22 }
23
24 private void say(String text) throws JMSException {
25 Document bml = XMLTool.newDocument(BML.ROOT_TAGNAME, BML.namespaceURI);
26 Element speech = XMLTool.appendChildElement(

bml.getDocumentElement(), BML.E_SPEECH);
27 speech.setAttribute(”language”, ”en-US”);
28 speech.setTextContent(text);
29 bmlSender.sendXML(bml, meta.getTime());
30 }
31 }

Figure 11.11: The Commentator component, producing TTS requests.

11.3. A game driven by emotional speech: The swimmer’s game 173

Figure 11.12: Message flow graph of the swimmer’s game system.

174 Chapter 11. Re-use: Building new emotion-oriented systems with the SEMAINE API

11.4 Conclusion
This chapter has illustrated the claim that it is easy to build new emotion-oriented
systems based on the SEMAINE API. Three examples have been presented that
show how to build a new system from scratch consisting exclusively of new com-
ponents; to re-use components in new contexts; and to combine standard and cus-
tom representation formats as appropriate. These examples should allow the in-
terested reader to get started with using the SEMAINE API to build their own
emotion-oriented systems.

175

Chapter 12

Summary and Outlook

The present thesis has described a Component Integration Framework for an Em-
bodied Conversational Agent (ECA) that supports the provision of capabilities for
natural interaction and emotionally competent behaviour.

The thesis has started with an introduction and motivation, setting the scene
for the reasons why research in emotional competence for interactive systems is
required. Notably, we have pointed out the relevance of emotional and social in-
telligence for machines, due to an apparent human tendency to treat complex inter-
active entities as social entities. In this context we have also motivated the interest
in standards, as a means for promoting re-use and interoperability of technology,
which makes cumulative research easier.

We have reviewed the state of the art in ECA research with a special empha-
sis on natural interaction and emotion-related capabilities. We reviewed different
types of ECA systems before focusing on one-to-one human-machine interaction
scenarios since these are most relevant for the current thesis. We discussed the
capabilities of current systems to express and perceive emotions, as well as exist-
ing work on responsiveness in interaction, and showed the limitations of current
systems as well as open research questions.

Zooming in on the technology enabling these capabilities, we reviewed a num-
ber of relevant component integration frameworks for interactive ECAs and related
technology. We identified a number of relevant criteria, including issues of design
choice such as the types of representation used or the existence of a system man-
ager component, but also practical issues such as the de facto availability, active

176 Chapter 12. Summary and Outlook

maintenance, support for operating systems and programming languages etc. We
formulated requirements for the component integration framework to be used for
building the SEMAINE system, and concluded that none of the existing compo-
nent integration frameworks satisfied all requirements.

We then reviewed a broad range of communication middlewares which could
potentially be used for the communication layer in a new component integration
framework. Immediate candidates for use in the current context were messaging,
remote-invocation and blackboard middlewares. We also briefly reviewed web
services, including Service-Oriented Architecture and RESTful HTTP, as well as
specialised middlewares for linguistics and multimedia.

As the center piece of software infrastructure developed in this the thesis, we
have described the SEMAINE API, the component integration framework we de-
veloped for the SEMAINE project. On the basis of a set of criteria for choosing
a middleware, we decided to use the message-oriented middleware ActiveMQ as
the basis for component integration. We described the framework’s architecture,
which complements the immediate communication between components with a
meta-communication layer through which a central system manager maintains
contact with each component. This allows for a number of relevant features. For
example, the system manager can become aware of defaulting components and
request other components to wait until the system is ready again. The system
manager’s GUI can display a message-flow graph in which the components and
their interconnections are shown. The system manager also provides a synchro-
nised system time to all components. Through a centralised logging mechanism,
it is possible to observe the components as well as the messages flowing between
them from the system GUI. We have described the SEMAINE API’s support for
the simple creation of components and for sending and receiving messages in one
of the supported representation languages, as feature vectors, or as generic XML
or binary data. We have pointed out that the SEMAINE API exists for Java and
C++, providing the same interfaces in both languages.

As a key instance of a full-scale system built on top of the SEMAINE API, we
have presented the SEMAINE system, implementing a Sensitive Artificial Lis-
tener capable of interacting in real time with a user with multimodal emotion de-
tection and generation. We have presented the simpler “pipeline” architecture of
the SEMAINE-2.0 system, which basically connects the analysis, action planning

177

and generation components into a long pipeline. As an extension to this, we pre-
sented the “prepare-and-trigger” architecture which was added in SEMAINE-3.0,
and explained how this approach, based on the concept of Competitive Queuing
from cognitive neuroscience, allows us to prepare potential future utterances ahead
of time so as to have them immediately ready when they are indeed selected.

Regarding the communication between system components enabled and sup-
ported by the SEMAINE API, we have first presented an overview of relevant rep-
resentation languages. We have described how, in particular, EMMA is used for
representing results of the analysis of user behaviour; how EmotionML is used for
representing emotions detected from the user; how the domain-specific language
SemaineML is used for representing non-standard information; how SSML is used
for representing speech synthesis input; how FML, or its preliminary approxima-
tion FML-APML, represents elements of the meaning of multimodal utterances
to be generated by the system; and how the actual multimodal behaviour is rep-
resented as BML. We have furthermore described the mechanism provided in the
SEMAINE API for representing callback messages, and presented a novel mech-
anism for defining a customisable set of state information and its representation in
XML messages for communicating state between components.

Given the central role that a representation of emotions plays for an emotion-
ally competent system, we have described in detail how the Emotion Markup Lan-
guage has been specified at the World Wide Web consortium (W3C). After an out-
line of the process itself, which has started five years ago and is still ongoing, we
have reviewed previous and related work. We then reported on the use cases and
requirements identified in the Emotion Incubator group, and on the prioritisation
of requirements carried out in the Emotion Markup Language Incubator group at
the W3C. We have presented the syntax of EmotionML as it was defined in the
W3C’s Multimodal Interaction working group. We have related the language to
scientific descriptions of emotion and presented a selection of vocabularies for
representing emotions in terms of categories, dimensions, appraisals and action
tendencies. We have discussed the problem of Schema-validating a language such
as EmotionML which allows for custom vocabularies, and presented an alternative
solution, which would have allowed for Schema-validation of custom vocabularies
but which was rejected in the standardisation process because it was not consistent
with usual practice at the W3C with respect to XML namespaces. We concluded

178 Chapter 12. Summary and Outlook

the chapter on EmotionML with a short review of open issues which will require
more work in future extensions of EmotionML.

We assessed the SEMAINE API as a component integration framework from
two perspectives. First, we measured the performance of two critical aspects. The
speed of message routing in the underlying middleware ActiveMQ was shown
to be 10-50 times faster than the alternative solution Psyclone, depending on the
message size. Furthermore, we investigated the time-to-animation, i.e. the time
between the decision to execute a certain action and its start, as a measure of the
real-time performance of the system. We found that the most important determi-
nant of this time is the use of the prepare-and-trigger branch. The dramatic im-
provement achieved by using this architectural choice encourages system builders
to make extensive use of this type of architectural choice. However, the execu-
tion speed of individual components and the use of a distributed system were also
found to be important determinants of time-to-animation: faster components and
sufficient processing resources both help to improve the system’s reaction times.

As a second type of assessment of the SEMAINE API, we investigated the
ease with which it is possible to use the framework to build new emotion-oriented
systems. We illustrated the process using three demo systems: a “hello world”
system, combining dummy input, analysis and output components of 15-30 lines
of code each, using EmotionML for representing the emotion “analysed” from the
data; an “emotion mirror” system, combining parts of the SEMAINE system and
the “hello” system into an emotional mimicry device using a single 20-line compo-
nent; and a game driven by emotional speech, which reuses emotion detection and
speech synthesis components from the SEMAINE system to build a simple game.
Again, the source code of each new component is short enough to fit onto a single
page each. We concluded that the reuse of the SEMAINE API for novel purposes
is possible with very limited effort, so that the framework can indeed serve its
purpose of enabling reuse and cumulative research in the area of emotion-oriented
technology.

While we believe that the SEMAINE API is a worthwhile contribution to
the research landscape as it stands, there are multiple areas where improvements
would be beneficial.

179

One area for future improvement is the automatic verification whether com-
ponents respect the agreed interfaces. For XML-based interfaces as used in the
current framework, a good practice solution for this task is to perform namespace-
aware Schema validation of the messages passed between components. Current
practice in the SEMAINE API is to use a Topic as an information “hub” through
which only information of a single kind should be communicated. In order to ver-
ify this, the framework could define a Schema that all messages passing via that
Topic must obey. Despite the emerging standard nature of the representations used
in the SEMAINE API, for most of the formats a Schema does not yet exist, so that
this method requires substantial specification efforts before it can be realised.

While automatic verification of syntactically correct messages is useful, it is
only partly able to detect misbehaving components. Additional mechanisms for
automated testing would ease the development and, notably, the debugging pro-
cess substantially. A mechanism would be very useful which allowed for the au-
tomated “integration” testing of individual components and of sub-systems: do
the components and sub-systems react to well-defined stimulus conditions in the
expected way? Such integration tests could be formulated once and be automat-
ically run from then on, for example every night. As programming progresses,
any regressions of previously working functionality would be automatically de-
tected and could be fixed without requiring long hours of debugging of errors in
conditions which can sometimes be difficult to reproduce manually.

A third area for future improvements is a stronger separation of the framework
from the underlying middleware. If the framework could be used with different
middlewares in addition to ActiveMQ, this would likely promote its reuse in dif-
ferent environments. For example, the Aliz-E project uses the middleware Urbi
for component interaction; if Urbi could be used as a replacement for ActiveMQ,
then reusing the SEMAINE API in Aliz-E would have been an option.

A final area for improvement concerns the approach to state information that is
currently implemented in the SEMAINE API. The current mechanism of enumer-
ating and circulating all relevant elements of state information works for simple,
minimalistic domain models as in SEMAINE; for more complex, ontology-based
models, which might involve reasoning components, this approach does not seem
realistic. Instead, the framework would have to be extended to provide a request-

180 Chapter 12. Summary and Outlook

response mechanism through which components could request relevant aspects of
the system’s information state from a dedicated reasoning component or similar.

Due to its open source nature, it is possible to extend the SEMAINE API in
these or other respects if and when suitable resources become available.

181

Appendix A

Protocol for the Player in SEMAINE

Any player component in SEMAINE must implement the following protocol so
that it supports ahead-of-time preparation of possible utterances. The player must
keep a collection of ”Animations” which can be played by a ”playCommand”.

This protocol is currently implemented by two players: The audio-visual Win-
dows native PlayerOgre using the Greta agent, and the speech-only player in Java
class eu.semaine.components.mary.QueuingAudioPlayer.

A.1 Data flow
Low-level player data is sent to the player via the Topics

semaine.data.synthesis.lowlevel.*

currently

semaine.data.synthesis.lowlevel.audio
semaine.data.synthesis.lowlevel.video.FAP
semaine.data.synthesis.lowlevel.video.BAP

Incoming messages have the following properties:

• a message type specific to the payload format (currently: BytesMessage for
audio, TextMessage for FAP and BAP).

182 Chapter A. Protocol for the Player in SEMAINE

• a data type (obtained by message.getDatatype()) identifying the type of mes-
sage (current values are ”AUDIO”, ”FAP” and ”BAP”).

• a content ID and a content creation time (obtained by mes-
sage.getContentID() and message.getContentCreationTime()) which
are used to assemble an Animation, to match data and command messages,
and to identify the content item in callback and log messages.

The idea is that a unit of player data (an ”Animation”) is assembled in the
player from the individual data items that are coming in (currently, AUDIO, FAP
and BAP). Certain data types are optional (currently: AUDIO). A message can
either contain the complete data of the given type (currently the case for AUDIO)
or it can contain a chunk of data (currently the case for FAP and BAP). A chunk
contains information about its position in the Animation; it can be dynamically
added even if the Animation is already playing.

A.2 Command messages
There are two types of command messages: messages with data types dataInfo
and playCommand.

• Data info commands: For a given content ID, define the data types that must
be present in the Animation: HASAUDIO, HASFAP and HASBAP. Each
can be 0 for ”not needed” or 1 for ”needed”.

• Player commands: For a given content ID, define the playback conditions.
This includes the following aspects:

– STARTAT: when to start the playback of the Animation (in millisec-
onds from the moment when the Animation becomes ready);

– PRIORITY: the priority of the Animation in case of competing Ani-
mations;

– LIFETIME: the lifetime of the Animation, counting from the moment
when the animation becomes ready. When the lifetime is exceeded and
the animation has not started playing, it will be marked as ”dead” and
removed.

A.2. Command messages 183

Commands are sent to topic
semaine.data.synthesis.lowlevel.command

and have the data type dataInfo for data info commands and playCommand for
player start trigger commands.

For every content ID, a playCommand is required in order to play that anima-
tion. Without a matching playCommand, an animation will never be played.

A command has the following format:
• its content ID is identical to the content ID of the Animation for which it

defines playback conditions;

• message format is TextMessage; the text consists of space-separated key-
value pairs, one pair per line, where the keys are strings and the values are
floating point numbers.

The following features are used:
• for playCommand:

– STARTAT (0 means start at the moment when all required parts are
present, a positive number means milliseconds after that condition is
met)

– LIFETIME (in milliseconds from the moment the animation is trig-
gered; -1 means it will never expire)

– PRIORITY (a value between 0 and 1, where 0 is the lowest and 1 the
highest possible priority)

• for dataInfo:

– HASAUDIO (a binary feature, 0 means the Animation does not have
audio, 1 means the Animation has audio data)

– HASFAP (a binary feature, 0 means the Animation does not have FAP
data, 1 means the Animation has FAP data)

– HASBAP (a binary feature, 0 means the Animation does not have BAP
data, 1 means the Animation has BAP data)

Every player command must contain all features of its respective type.

184 Chapter A. Protocol for the Player in SEMAINE

A.3 Callback messages
Event-based callback messages are sent when certain conditions are met for a given
Animation. The messages go to Topic

semaine.callback.output.Animation

and have the following format:
<callback xmlns=”http://www.semaine-project.eu/semaineml”>

<event id=”CONTENT_ID” time=”META_TIME” type=”EVENT_TYPE”/>
</callback>

where content ID and meta time are like before, and type is one of the following:
• ready means the Animation has received all required data, so it is ready for

playing back. This event is triggered independently of the question whether
a command has been received or not.

• deleted means the Animation was removed before it started playing, e.g.
because it has exceeded its lifetime in the output queue.

• start means the Animation has started playing.

• stopped means the Animation was stopped while playing but before it was
finished, e.g. because a request to change character was received.

• end means the Animation has finished playing.

A.4 Error conditions
The content ID must be unique for the lifetime of a system. This leads to the
following error conditions.

It is an error condition...
• if a data chunk is received for an Animation that has already been discarded

(because it finished playing, or exceeded its lifetime in the queue);

• if data is received for a data type that does not form chunks but data of that
type has already been received for the given content ID;

A.4. Error conditions 185

• if a playCommand is received for a content ID that has been started already,
or that is already discarded;

An error condition should be reported as a WARN log message, and otherwise
ignored.

It is not an error condition...

• if a second playCommand is received after an animation has become ready
but before it started playing. In this case, the new priority etc. overwrites
the previous values.

186 Chapter A. Protocol for the Player in SEMAINE

187

Bibliography

Acosta, J. C. (2009). Using Emotion to Gain Rapport in a Spoken Dialog System.
PhD thesis, University of Texas at El Paso.

Albrecht, I., Schröder, M., Haber, J., and Seidel, H. (2005). Mixed feelings: ex-
pression of non-basic emotions in a muscle-based talking head. Virtual Reality,
8(4):201–212. Available from: http://portal.acm.org/citation.cfm?id=
1086350.1086352.

Allen, J., Ferguson, G., and Stent, A. (2001a). An architecture for more real-
istic conversational systems. In Proc. Intelligent User Interfaces, pages 1–8,
Santa Fe, USA. Available from: http://portal.acm.org/citation.cfm?
id=359822.

Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., and Stent,
A. (2001b). Toward conversational human-computer interaction. AI magazine,
22(4):27–37.

Allwood, J., Nivre, J., and Ahlsén, E. (1992). On the semantics and pragmatics of
linguistic feedback. Journal of Semantics, 9(1):1–26. Available from: http:
//jos.oxfordjournals.org/cgi/content/abstract/9/1/1.

AMQP Working Group (2010). AMQP 1-0 revision 0. Technical report. Available
from: http://www.amqp.org/.

André, E., Concepcion, K., Mani, I., and Guilder, L. (2005). Autobriefer: A sys-
tem for authoring narrated briefings. In Stock, O. and Zancanaro, M., editors,
Multimodal intelligent information presentation, page 143–158.

André, E. and Pelachaud, C. (2010). Interacting with embodied conversational
agents. In Chen, F. and Jokinen, K., editors, Speech technology. Springer, New
York. Available from: http://dx.doi.org/10.1007/978-0-387-73819-2_8.

André, E., Rist, T., and Muller, J. (1999). Employing AI methods to con-
trol the behavior of animated interface agents. Applied Artificial Intelligence,
13(4):415–448.

http://portal.acm.org/citation.cfm?id=1086350.1086352
http://portal.acm.org/citation.cfm?id=1086350.1086352
http://portal.acm.org/citation.cfm?id=359822
http://portal.acm.org/citation.cfm?id=359822
http://jos.oxfordjournals.org/cgi/content/abstract/9/1/1
http://jos.oxfordjournals.org/cgi/content/abstract/9/1/1
http://www.amqp.org/
http://dx.doi.org/10.1007/978-0-387-73819-2_8

188 BIBLIOGRAPHY

André, E., Rist, T., van Mulken, S., Klesen, M., and Baldes, S. (2000). The au-
tomated design of believable dialogues for animated presentation teams. In
Cassell, J., Prevost, S., Sullivan, J., and Churchill, E., editors, Embodied con-
versational agents, page 220–255. MIT Press.

Apache Software Foundation (2008). Apache ActiveMQ. Available from: http:
//activemq.apache.org/.

Apache Software Foundation (2009). The apache Xerces project. Available from:
http://xerces.apache.org/.

Apache Software Foundation (2010). Apache UIMA. Available from: http:
//incubator.apache.org/uima/.

Banavar, G., Chandra, T., Strom, R., and Sturman, D. (1999). A case for mes-
sage oriented middleware. In Distributed Computing, pages 846–863. Springer.
Available from: http://dx.doi.org/10.1007/3-540-48169-9_1.

Banse, R. and Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression.
Journal of Personality and Social Psychology, 70(3):614–636.

Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J.,
Simmons, A., and Williams, S. C. R. (1999). Social intelligence in the nor-
mal and autistic brain: an fMRI study. European Journal of Neuroscience,
11(6):1891–1898.

Bates, J. (1994). The role of emotion in believable agents. Communications of the
ACM, 37:122–125. Available from: http://www.cs.cmu.edu/afs/cs.cmu.
edu/project/oz/web/papers/ba-and-emotion.ps.

Batliner, A., Steidl, S., Schuller, B., Seppi, D., Laskowski, K., Vogt, T., Devillers,
L., Vidrascu, L., Amir, N., and Kessous, L. (2006). Combining efforts for im-
proving automatic classification of emotional user states. In Proc. First Interna-
tional Language Technologies Conference, IS-LTC 2006, Ljubljana, Slovenia.

Batliner, A., Steidl, S., Schuller, B., Seppi, D., Vogt, T., Wagner, J., Devillers, L.,
Vidrascu, L., Aharonson, V., Kessous, L., et al. (2011). Whodunnit - searching
for the most important feature types signalling emotion-related user states in
speech. Computer Speech & Language, 25(1):4–28.

Becket, D. and McBride, B. (2004). RDF/XML syntax specification (Revised).
W3C Recommendation, World Wide Web Consortium. Available from: http:
//www.w3.org/TR/rdf-syntax-grammar/.

http://activemq.apache.org/
http://activemq.apache.org/
http://xerces.apache.org/
http://incubator.apache.org/uima/
http://incubator.apache.org/uima/
http://dx.doi.org/10.1007/3-540-48169-9_1
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/papers/ba-and-emotion.ps
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/papers/ba-and-emotion.ps
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

BIBLIOGRAPHY 189

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J., and
Siméon, J. (2007). XML path language (XPath) 2.0. W3C Recommendation,
World Wide Web Consortium. Available from: http://www.w3.org/TR/2007/
REC-xpath20-20070123/.

Bernstein, P. A. (1996). Middleware: a model for distributed system services.
Commun. ACM, 39(2):86–98. Available from: http://portal.acm.org/
citation.cfm?id=230809.

Bevacqua, E., Mancini, M., Niewiadomski, R., and Pelachaud, C. (2007). An
expressive ECA showing complex emotions. In Proceedings of the AISB Annual
Convention, page 208–216, Newcastle, UK.

Bevacqua, E., Mancini, M., and Pelachaud, C. (2008). A listening agent exhibiting
variable behaviour. In Proc. Intelligent Virtual Agents, pages 262–269. Tokyo,
Japan. Available from: http://dx.doi.org/10.1007/978-3-540-85483-8_
27.

Biocca, F., Burgoon, J., Harms, C., and Stoner, M. (2001). Criteria and scope con-
ditions for a theory and measure of social presence. In Presence 2001, Philadel-
phia.

Birdwhistell, R. L. (1970). Kinesics and context. University of Pennsylvania press,
Philadelphia, USA.

Bray, T., Hollander, D., Layman, A., Tobin, R., and Thompson, H. S. (2009).
Namespaces in XML 1.0 (Third edition). W3C Recommendation, World
Wide Web Consortium. Available from: http://www.w3.org/TR/2009/
REC-xml-names-20091208/.

Bray, T., Paoli, J., and Sperberg-McQueen, C. (1998). Extensible markup language
(XML) 1.0. W3C Recommendation, World Wide Web Consortium. Available
from: http://www.w3.org/TR/1998/REC-xml-19980210/.

Brunet, P. M., McKeown, G., Cowie, R., Donnan, H., and Douglas-Cowie, E.
(2009). Social signal processing: What are the relevant variables? and in what
ways do they relate? In Proceedings of the IEEE International Workshop on
Social Signal Processing, Amsterdam, The Netherlands.

Bullock, D. (2004). Adaptive neural models of queuing and timing in fluent
action. Trends in Cognitive Sciences, 8(9):426–433. Available from: http:
//www.keck.ucsf.edu/~houde/sensorimotor_jc/DBullock04a.pdf.

http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://portal.acm.org/citation.cfm?id=230809
http://portal.acm.org/citation.cfm?id=230809
http://dx.doi.org/10.1007/978-3-540-85483-8_27
http://dx.doi.org/10.1007/978-3-540-85483-8_27
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/1998/REC-xml-19980210/
http://www.keck.ucsf.edu/~houde/sensorimotor_jc/DBullock04a.pdf
http://www.keck.ucsf.edu/~houde/sensorimotor_jc/DBullock04a.pdf

190 BIBLIOGRAPHY

Bullock, D. and Rhodes, B. J. (2003). Competitive queuing for planning and serial
performance. In The Handbook of Brain Theory and Neural Networks, pages
241–244. MIT Press, second edition.

Burkhardt, F. and Schröder, M. (2008). Emotion markup language: Require-
ments with priorities. W3C Incubator Group Report, World Wide Web Con-
sortium. Available from: http://www.w3.org/2005/Incubator/emotion/
XGR-requirements-20080513/.

Burkhardt, F. and Sendlmeier, W. F. (2000). Verification of acoustical correlates
of emotional speech using formant synthesis. In Proceedings of the ISCA Work-
shop on Speech and Emotion, pages 151–156, Northern Ireland.

Burkhardt, F., van Ballegooy, M., Englert, R., and Huber, R. (2005). An emotion-
aware voice portal. In Proc. Electronic Speech Signal Processing ESSP, page
123–131, Prague, Czech Republic.

Burnett, D. C., Walker, M. R., and Hunt, A. (2004). Speech synthesis markup
language (SSML) version 1.0. W3C Recommendation, World Wide Web Con-
sortium. Available from: http://www.w3.org/TR/speech-synthesis/.

Cassell, J., Bickmore, T., Campbell, L., Vilhjálmsson, H., and Yan, H. (2000). Hu-
man conversation as a system framework: designing embodied conversational
agents. In Embodied conversational agents, pages 29–63. MIT Press. Available
from: http://portal.acm.org/citation.cfm?id=371555.

Cassell, J., Bickmore, T. W., Billinghurst, M., Campbell, L., Chang, K., Vilh-
jalmsson, H. H., and Yan, H. (1999). Embodiment in conversational interfaces:
Rea. CHI, pages 520–527.

Cassell, J., Nakano, Y. I., Bickmore, T. W., Sidner, C. L., and Rich, C. (2001). Non-
verbal cues for discourse structure. In Proc. ACL, page 114–123, Stroudsburg,
PA, USA. Available from: http://dx.doi.org/10.3115/1073012.1073028.

Castellano, G., Bresin, R., Camurri, A., and Volpe, G. (2007). Expressive con-
trol of music and visual media by full-body movement. In Proceedings of the
7th international conference on New interfaces for musical expression, pages
390–391, New York. Available from: http://portal.acm.org/citation.
cfm?id=1279740.1279829.

Chi, D., Costa, M., Zhao, L., and Badler, N. (2000). The EMOTE model for effort
and shape. In Proc. Computer graphics and interactive techniques, SIGGRAPH
’00, page 173–182, New York, NY, USA. ACM Press/Addison-Wesley Publish-
ing Co. Available from: http://dx.doi.org/10.1145/344779.352172.

http://www.w3.org/2005/Incubator/emotion/XGR-requirements-20080513/
http://www.w3.org/2005/Incubator/emotion/XGR-requirements-20080513/
http://www.w3.org/TR/speech-synthesis/
http://portal.acm.org/citation.cfm?id=371555
http://dx.doi.org/10.3115/1073012.1073028
http://portal.acm.org/citation.cfm?id=1279740.1279829
http://portal.acm.org/citation.cfm?id=1279740.1279829
http://dx.doi.org/10.1145/344779.352172

BIBLIOGRAPHY 191

Chinnici, R., Moreau, J., Ryman, A., and Weerawarana, S. (2007). Web services
description language (WSDL) version 2.0. W3C Recommendation, World Wide
Web Consortium. Available from: http://www.w3.org/TR/wsdl20/.

Clavel, C., Vasilescu, I., Devillers, L., Richard, G., and Ehrette, T. (2008). Fear-
type emotion recognition for future audio-based surveillance systems. Speech
Communication, 50(6):487–503. Available from: http://portal.acm.org/
citation.cfm?id=1377280.

CMLabs (2007). Psyclone. http://www.mindmakers.org/projects/Psyclone. Avail-
able from: http://www.mindmakers.org/projects/Psyclone.

Cornelius, R. R. (2000). Theoretical approaches to emotion. In Proceedings of the
ISCA Workshop on Speech and Emotion, pages 3–10, Northern Ireland.

Cowie, R. (2010). Describing the forms of emotional colouring that
pervade everyday life. In Goldie, P., editor, The Oxford Hand-
book of Philosophy of Emotion, pages 63–94. Oxford University Press.
doi:10.1093/oxfordhb/9780199235018.003.0004.

Cowie, R. and Cornelius, R. R. (2003). Describing the emotional states that are
expressed in speech. Speech Communication, 40(1-2):5–32.

Cowie, R., Douglas-Cowie, E., Appolloni, B., Taylor, J., Romano, A., and Fel-
lenz, W. (1999). What a neural net needs to know about emotion words.
In Mastorakis, N., editor, Computational Intelligence and Applications, pages
109–114. World Scientific & Engineering Society Press.

Cowie, R., Sussman, N., and Ben-Ze’ev, A. (2010). Emotion: Concepts and def-
initions. In Petta, P., Pelachaud, C., and Cowie, R., editors, Emotion-Oriented
Systems – The Humaine Handbook, pages 9–30. Springer.

Damasio, A. R. (1994). Descartes’ Error: Emotion, Reason, and the Human
Brain. Grosset/Putnam, New York.

Dautenhahn, K. (1999). Robots as social actors: Aurora and the case of autism.
In Proc. CT99, The Third International Cognitive Technology Conference, page
359–374, San Francisco.

de Carolis, B., Pelachaud, C., Poggi, I., and Steedman, M. (2004). APML, a
markup language for believable behavior generation. In Prendinger, H. and
Ishizuka, M., editors, Life-Like Characters, pages 65–85. Springer, New York.

http://www.w3.org/TR/wsdl20/
http://portal.acm.org/citation.cfm?id=1377280
http://portal.acm.org/citation.cfm?id=1377280
http://www.mindmakers.org/projects/Psyclone

192 BIBLIOGRAPHY

Dibeklioglu, H., Kosunen, I., Hortas, M. O., Salah, A. A., and Zuzánek, P. (2010).
An Affect-Responsive interactive photo frame. In Proc. eNTERFACE’10, Am-
sterdam, The Netherlands.

Dimakis, N., Soldatos, J. K., Polymenakos, L., Fleury, P., Curín, J., and Klein-
dienst, J. H. (2008). Integrated development of Context-Aware applications
in smart spaces. IEEE Pervasive Computing, 7(4):71–79. Available from:
http://portal.acm.org/citation.cfm?id=1477245.

Douglas-Cowie, E., Cowie, R., Sneddon, I., Cox, C., Lowry, O., McRorie, M.,
Martin, J., Devillers, L., Abrilian, S., Batliner, A., Amir, N., and Karpouzis,
K. (2007). The HUMAINE database: Addressing the collection and annota-
tion of naturalistic and induced emotional data. In Proc. Affective Computing
and Intelligent Interaction, pages 488–500, Lisbon, Portugal. Available from:
http://dx.doi.org/10.1007/978-3-540-74889-2_43.

Dunbar, R. I. M. (2003). The social brain: Mind, language, and society in evo-
lutionary perspective. Annual Review of Anthropology, 32:163–181. Available
from: http://www.jstor.org/stable/25064825.

Eagle, N. and Pentland, A. (2006). Reality mining: sensing complex social sys-
tems. Personal and Ubiquitous Computing, 10(4):255–268. Available from:
http://dx.doi.org/10.1007/s00779-005-0046-3.

Edlund, J. and Heldner, M. (2006). /nailon/-Software for online analysis of
prosody. In Proc. ICSLP, Pittsburgh, PA, USA.

Edlund, J., Heldner, M., and Gustafson, J. (2005). Utterance segmentation and
turn-taking in spoken dialogue systems. In Fisseni, B., Schmitz, H., Schröder,
B., and Wagner, P., editors, Sprachtechnologie, mobile Kommunikation und lin-
guistische Ressourcen, pages 576–587. Peter Lang.

Ekman, P. (1972). Universals and cultural differences in facial expres-
sions of emotion. In Cole, J., editor, Nebraska Symposium on Motiva-
tion, volume 19, pages 207–282. University of Nebraska Press. Avail-
able from: http://www.paulekman.com/wp-content/uploads/2009/02/
Universals-And-Cultural-Differences-In-Facial-Expressions-Of.
pdf.

Ekman, P. (2003). The Face Revealed. Weidenfeld & Nicolson, London.
Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design.

Prentice Hall PTR. Available from: http://portal.acm.org/citation.cfm?
id=1088876.

http://portal.acm.org/citation.cfm?id=1477245
http://dx.doi.org/10.1007/978-3-540-74889-2_43
http://www.jstor.org/stable/25064825
http://dx.doi.org/10.1007/s00779-005-0046-3
http://www.paulekman.com/wp-content/uploads/2009/02/Universals-And-Cultural-Differences-In-Facial-Expressions-Of.pdf
http://www.paulekman.com/wp-content/uploads/2009/02/Universals-And-Cultural-Differences-In-Facial-Expressions-Of.pdf
http://www.paulekman.com/wp-content/uploads/2009/02/Universals-And-Cultural-Differences-In-Facial-Expressions-Of.pdf
http://portal.acm.org/citation.cfm?id=1088876
http://portal.acm.org/citation.cfm?id=1088876

BIBLIOGRAPHY 193

Evans, J. (2008). Dual-processing accounts of reasoning, judgment, and social
cognition. Annual Review of Psychology, 59:255–278. Available from: http:
//www.ncbi.nlm.nih.gov/pubmed/18154502.

Eyben, F., Wöllmer, M., Graves, A., Schuller, B., Douglas-Cowie, E., and
Cowie, R. (2009). On-line emotion recognition in a 3-D activation-valence-
time continuum using acoustic and linguistic cues. Journal on Multimodal
User Interfaces, 3(1-2):7–19. Available from: http://dx.doi.org/10.1007/
s12193-009-0032-6.

Ferrucci, D., Lally, A., Verspoor, K., and Nyberg, E. (2009). Unstructured infor-
mation management architecture (UIMA) version 1.0. OASIS standard, Orga-
nization for the Advancement of Structured Information Standards. Available
from: http://docs.oasis-open.org/uima/v1.0/os/uima-spec-os.html.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and
Berners-Lee, T. (1999). Hypertext transfer protocol – HTTP/1.1. IETF request
for comment. Available from: http://tools.ietf.org/html/rfc2616.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine. Available
from: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Fontaine, J. R., Scherer, K. R., Roesch, E. B., and Ellsworth, P. C. (2007).
The world of emotions is not Two-Dimensional. Psychological Science,
18(12):1050–1057. Available from: doi:10.1111/j.1467-9280.2007.
02024.x.

Frijda, N. H. (1986). The Emotions. Cambridge University Press, Cambridge,
UK.

Gebhard, P. (2005). ALMA - a layered model of affect. In Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-05), Utrecht.

Gebhard, P., Kipp, M., Klesen, M., and Rist, T. (2003). Authoring scenes for
adaptive, interactive performances. In Proc. AAMAS, page 725–732, New York,
NY, USA.

Gebhard, P., Schröder, M., Charfuelan, M., Endres, C., Kipp, M., Pammi, S.,
Rumpler, M., and Türk, O. (2008). IDEAS4Games: building expressive vir-
tual characters for computer games. In Proc. IVA, volume LNCS 5208, pages
426–440, Tokyo, Japan. Springer. Available from: http://dx.doi.org/10.
1007/978-3-540-85483-8_43.

http://www.ncbi.nlm.nih.gov/pubmed/18154502
http://www.ncbi.nlm.nih.gov/pubmed/18154502
http://dx.doi.org/10.1007/s12193-009-0032-6
http://dx.doi.org/10.1007/s12193-009-0032-6
http://docs.oasis-open.org/uima/v1.0/os/uima-spec-os.html
http://tools.ietf.org/html/rfc2616
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
doi:10.1111/j.1467-9280.2007.02024.x
doi:10.1111/j.1467-9280.2007.02024.x
http://dx.doi.org/10.1007/978-3-540-85483-8_43
http://dx.doi.org/10.1007/978-3-540-85483-8_43

194 BIBLIOGRAPHY

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. S.
(1994). PVM: Parallel Virtual Machine: a users’ guide and tutorial for network
parallel computing. MIT Press.

GigaSpaces (2009). GigaSpaces community contribution. Available from: http:
//www.gigaspaces.com/communitycontribution.

Goddeau, D., Brill, E., Glass, J. R., Pao, C., Phillips, M., Polifroni, J., Seneff, S.,
and Zue, V. W. (1994). Galaxy: A human-language interface to on-line travel
information. In Proc. ICSLP, Yokohama, Japan.

Gratch, J. and Marsella, S. (2004). A domain-independent framework for model-
ing emotion. Cognitive Systems Research, 5(4):269–306.

Gratch, J., Wang, N., Gerten, J., Fast, E., and Duffy, R. (2007). Creat-
ing rapport with virtual agents. In Proc. Intelligent Virtual Agents, pages
125–138, Paris, France. Available from: http://dx.doi.org/10.1007/
978-3-540-74997-4_12.

Gross, J. J. (2001). Emotion regulation in adulthood: Timing is ev-
erything. Current Directions in Psychological Science, 10(6):214–219.
Available from: http://www.blackwell-synergy.com/doi/abs/10.1111/
1467-8721.00152.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H., Karmarkar, A.,
and Lafon, Y. (2007). SOAP version 1.2 part 1: Messaging framework (Sec-
ond edition). W3C Recommendation, World Wide Web Consortium. Available
from: http://www.w3.org/TR/soap12-part1/.

Gummadi, K. P., Saroiu, S., and Gribble, S. D. (2002). King: estimating latency
between arbitrary internet end hosts. In Proc. 2nd ACM SIGCOMM Workshop
on Internet measurement, IMW ’02, page 5–18, New York, NY, USA.

Gunes, H. and Pantic, M. (2010a). Automatic, dimensional and continuous emo-
tion recognition. International Journal of Synthetic Emotion, 1(1):68–99.

Gunes, H. and Pantic, M. (2010b). Dimensional emotion prediction from spon-
taneous head gestures for interaction with sensitive artificial listeners. In Proc.
Intelligent Virtual Agents, page 371–377, Philadelphia, USA.

Gustafson, J., Lindberg, N., and Lundeberg, M. (1999). The August spoken dia-
logue system. In Proc. Eurospeech, Budapest, Hungary.

http://www.gigaspaces.com/communitycontribution
http://www.gigaspaces.com/communitycontribution
http://dx.doi.org/10.1007/978-3-540-74997-4_12
http://dx.doi.org/10.1007/978-3-540-74997-4_12
http://www.blackwell-synergy.com/doi/abs/10.1111/1467-8721.00152
http://www.blackwell-synergy.com/doi/abs/10.1111/1467-8721.00152
http://www.w3.org/TR/soap12-part1/

BIBLIOGRAPHY 195

Gustavsson, C., Beard, S., Strindlund, L., Huynh, Q., Wiknertz, E., Marriot, A.,
and Stallo, J. (2001). VHML specification working draft v0.3. Available from:
http://www.vhml.org/downloads/VHML/vhml.pdf.

Harding, C. (2006). Definition of SOA. Available from: http://opengroup.
org/projects/soa/doc.tpl?gdid=10632.

Hartmann, B., Mancini, M., and Pelachaud, C. (2002). Formational parameters
and adaptive prototype instantiation for MPEG-4 compliant gesture synthesis.
In Proc. Computer Animation, Geneva, Switzerland. Available from: http:
//doi.ieeecomputersociety.org/10.1109/CA.2002.1017516.

Hartmann, B., Mancini, M., and Pelachaud, C. (2006). Implementing expressive
gesture synthesis for embodied conversational agents. In Gibet, S., Courty, N.,
and Kamp, J., editors, Gesture in Human-Computer Interaction and Simulation,
number 3881 in LNCS, pages 188–199. Springer. Available from: http://dx.
doi.org/10.1007/11678816_22.

Hatfield, E., Cacioppo, J. T., and Rapson, R. L. (1994). Emotional contagion.
Cambridge University Press.

Hawes, N., Wyatt, J. L., Sloman, A., Sridharan, M., Dearden, R., Jacobsson, H.,
and Kruijff, G. (2009). Architecture and representations. In Christensen, H. I.,
Sloman, A., Kruijff, G., and Wyatt, J., editors, Cognitive Systems, pages 53–95.
published online at http://www.cognitivesystems.org/cosybook/.

Heckmann, D. (2006). Ubiquitous User Modeling. PhD thesis, Universität des
Saarlandes, Saarbrücken, Germany.

Henning, M. (2006). The rise and fall of CORBA. ACM Queue: Component
Technologies, 4(5):28–34. Available from: http://doi.acm.org/10.1145/
1142031.1142044.

Henning, M. (2009). Choosing middleware: Why performance and scalability do
(and do not) matter. White paper, ZeroC. Available from: http://www.zeroc.
com/articles/IcePerformanceWhitePaper.pdf.

Herzog, G., Ndiaye, A., Merten, S., Kirchmann, H., Becker, T., and Poller, P.
(2004). Large-Scale software integration for spoken language and multimodal
dialog systems. Natural Language Engineering, 10(3-4):283–305. Available
from: http://dx.doi.org/10.1017/S1351324904003444.

http://www.vhml.org/downloads/VHML/vhml.pdf
http://opengroup.org/projects/soa/doc.tpl?gdid=10632
http://opengroup.org/projects/soa/doc.tpl?gdid=10632
http://doi.ieeecomputersociety.org/10.1109/CA.2002.1017516
http://doi.ieeecomputersociety.org/10.1109/CA.2002.1017516
http://dx.doi.org/10.1007/11678816_22
http://dx.doi.org/10.1007/11678816_22
http://doi.acm.org/10.1145/1142031.1142044
http://doi.acm.org/10.1145/1142031.1142044
http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
http://dx.doi.org/10.1017/S1351324904003444

196 BIBLIOGRAPHY

Heylen, D., Bevacqua, E., ter Maat, M., Pelachaud, C., and de Sevin, E. (2009).
Updated demonstrator of the dialogue manager. Project Deliverable D4a, SE-
MAINE. Available from: http://semaine.sourceforge.net/SEMAINE-2.0/
D4a%20Updated%20demo%20of%20the%20Dialogue%20Manager.pdf.

Heylen, D., Kopp, S., Marsella, S., Pelachaud, C., and Vilhjalmsson, H. (2008).
Why conversational agents do what they do? functional representations for gen-
erating conversational agent behavior. In Proc. First Functional Markup Lan-
guage Workshop, Estoril, Portugal.

Heylen, D. and ter Maat, M. (2010). Final demonstrator of the di-
alogue manager. Project Deliverable D4b, SEMAINE. Available
from: http://semaine.sourceforge.net/SEMAINE-3.0/D4b%20Final%
20dialogue%20manager.pdf.

Hirstein, W. and Ramachandran, V. S. (1997). Capgras syndrome: a novel
probe for understanding the neural representation of the identity and famil-
iarity of persons. Proceedings of the Royal Society B: Biological Sciences,
264(1380):437–444.

Huang, H. H., Nishida, T., Cerekovic, A., Pandzic, I. S., and Nakano, Y. (2008).
The design of a generic framework for integrating ECA components. In Proc.
AAMAS, page 128–135, Estoril, Portugal.

Hyniewska, S., Niewiadomski, R., Mancini, M., and Pelachaud, C. (2010). Ex-
pression of affects in embodied conversational agents. In Scherer, K. R.,
Bänziger, T., and Roesch, E. B., editors, A blueprint for Affective Computing.
Oxford University Press.

Höök, K., Holm, J., Tullgren, K., Sjölinder, M., Karlgren, J., and Persson, P.
(1999). Spatial or narrative: A study of the Agneta & Frida system. In Proc.
Workshop on Affect in Interactions: Towards a New Generation of Interfaces,
Siena, Italy.

Inanoglu, Z. and Caneel, R. (2005). Emotive alert: HMM-based emotion detection
in voicemail messages. In Proc. Intelligent User Interfaces, San Diego, CA,
USA.

Ioannou, S. V., Raouzaiou, A. T., Tzouvaras, V. A., Mailis, T. P., Karpouzis,
K. C., and Kollias, S. D. (2005). Emotion recognition through facial expression
analysis based on a neurofuzzy network. Neural Networks, 18:423–435.

Isbister, K., Nakanishi, H., Ishida, T., and Nass, C. (2000). Helper agent: designing
an assistant for human-human interaction in a virtual meeting space. In Proc.

http://semaine.sourceforge.net/SEMAINE-2.0/D4a%20Updated%20demo%20of%20the%20Dialogue%20Manager.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D4a%20Updated%20demo%20of%20the%20Dialogue%20Manager.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D4b%20Final%20dialogue%20manager.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D4b%20Final%20dialogue%20manager.pdf

BIBLIOGRAPHY 197

SIGCHI conference on Human factors in computing systems, CHI ’00, page
57–64, New York, NY, USA. ACM. ACM ID: 332407.

ISO (1998). ISO general purpose metric screw threads – general plan. ISO
Standard ISO 261, International Standards Organisation. Available from:
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_
detail_ics.htm?csnumber=4165.

ISO (2006). Information technology – open document format for office appli-
cations (OpenDocument) v1.0. ISO Standard ISO/IEC 26300:2006, Interna-
tional Standards Organisation. Available from: http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485.

Johnston, M., Baggia, P., Burnett, D. C., Carter, J., Dahl, D. A., McCobb, G.,
and Raggett, D. (2009). EMMA: Extensible MultiModal Annotation markup
language. W3C Recommendation, World Wide Web Consortium. Available
from: http://www.w3.org/TR/emma/.

Jonsdottir, G., Thórisson, K., and Nivel, E. (2008). Learning smooth, human-
like turntaking in realtime dialogue. In Proc. Intelligent Virtual Agents, Tokyo,
Japan. Available from: http://dx.doi.org/10.1007/978-3-540-85483-8_
17.

Jordan, D. and Evdemon, J. (2007). Web services business process execution lan-
guage. OASIS standard, Organization for the Advancement of Structured Infor-
mation Standards. Available from: http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html.

Jurafsky, D., Martin, J. H., and Kehler, A. (2000). Speech and language process-
ing: An introduction to natural language processing, computational linguistics,
and speech recognition. MIT Press.

Kempe, B., Pfleger, N., and Löckelt, M. (2005). Generating verbal and nonverbal
utterances for virtual characters. In Virtual Storytelling, pages 73–76. Springer.
Available from: http://dx.doi.org/10.1007/11590361_8.

Kipp, M. (2001). Anvil - a generic annotation tool for multimodal dialogue. In
Proc. Eurospeech, pages 1367–1370, Aalborg, Denmark.

Kipp, M., Heloir, A., Schröder, M., and Gebhard, P. (2010). Realizing multimodal
behavior. In Proc. Intelligent Virtual Agents, page 57–63, Philadelphia, USA.

Kipp, M., Neff, M., Kipp, K., and Albrecht, I. (2007). Towards natural gesture
synthesis: Evaluating gesture units in a data-driven approach to gesture synthe-
sis. In Proc. Intelligent Virtual Agents, page 15–28, Paris, France.

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=4165
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=4165
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.w3.org/TR/emma/
http://dx.doi.org/10.1007/978-3-540-85483-8_17
http://dx.doi.org/10.1007/978-3-540-85483-8_17
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/10.1007/11590361_8

198 BIBLIOGRAPHY

Kobsa, A. (2001). Generic user modeling systems. User modeling and user-
adapted interaction, 11(1):49–63.

Kopp, S., Allwood, J., Grammer, K., Ahlsen, E., and Stocksmeier, T. (2008). Mod-
eling embodied feedback with virtual humans. In Wachsmuth, I. and Knoblich,
G., editors, Modeling Communication with Robots and Virtual Humans, number
4930 in LNAI, page 18–37. Springer.

Kopp, S., Jung, B., Lessmann, N., and Wachsmuth, I. (2003). Max - a multimodal
assistant in virtual reality construction. Künstliche Intelligenz, 2003(4):11–17.

Kopp, S., Krenn, B., Marsella, S., Marshall, A., Pelachaud, C., Pirker, H., Thóris-
son, K., and Vilhjálmsson, H. (2006). Towards a common framework for
multimodal generation: The behavior markup language. In Proc. Intelligent
Virtual Agents, pages 205–217, Marina del Rey, CA, USA. Available from:
http://dx.doi.org/10.1007/11821830_17.

Kruijff, G. J., Lison, P., Benjamin, T., Jacobsson, H., and Hawes, N. (2007). Incre-
mental, multi-level processing for comprehending situated dialogue in human-
robot interaction. In Proc. Language and Robots, page 55–64.

Krämer, N., Hoffmann, L., and Kopp, S. (2010). Know your users! empirical
results for tailoring an agent’s nonverbal behavior to different user groups. In
Proc. Intelligent Virtual Agents, page 468–474, Philadelphia, USA.

Lawson, J. L., Al-Akkad, A., Vanderdonckt, J., and Macq, B. (2009). An open
source workbench for prototyping multimodal interactions based on off-the-
shelf heterogeneous components. In Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing systems, EICS ’09, page
245–254, New York, NY, USA.

Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., and
Byrne, S. (2004). Document object model (DOM) level 3 core specification.
W3C Recommendation, World Wide Web Consortium. Available from: http:
//www.w3.org/TR/DOM-Level-3-Core/.

Lemon, O. and Pietquin, O. (2007). Machine learning for spoken dialogue sys-
tems. In Proc. of Interspeech.

Lockman, J. J. (2000). A Perception-Action perspective on tool use development.
Child Development, 71(1):137–144. Available from: http://dx.doi.org/10.
1111/1467-8624.00127.

http://dx.doi.org/10.1007/11821830_17
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Core/
http://dx.doi.org/10.1111/1467-8624.00127
http://dx.doi.org/10.1111/1467-8624.00127

BIBLIOGRAPHY 199

Lohse, M. (2007). Network Integrated Multimedia Middleware, Services, and
Applications. VDM Verlag.

Lohse, M., Winter, F., Repplinger, M., and Slusallek, P. (2008). Network-
integrated multimedia middleware (NMM). In Proceeding of the 16th ACM
international conference on Multimedia, pages 1081–1084, Vancouver, British
Columbia, Canada. Available from: http://portal.acm.org/citation.
cfm?id=1459359.1459576.

Luxand, I. (2010). Luxand - detect human faces and recognize facial features with
luxand FaceSDK. http://www.luxand.com/facesdk/. Available from: http:
//www.luxand.com/facesdk/.

Maes, P. (1994). Agents that reduce work and information overload. Commun.
ACM, 37(7):30–40. Available from: http://portal.acm.org/citation.
cfm?id=176792.

Mancini, M. and Pelachaud, C. (2008). The FML-APML language. In Proc. Work-
shop on Functional Markup Language at The Seventh International Conference
on Autonomous Agents and Multiagent Systems (AAMAS’08), Estoril, Portugal.

Martin, D. L., Cheyer, A. J., and Moran, D. B. (1999). The open agent architec-
ture: A framework for building distributed software systems. Applied Artificial
Intelligence, 13(1):91–128.

McCrae, R. R. and John, O. P. (1992). An introduction to the five-factor model
and its applications. Journal of Personality, 60:175–215.

Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for
describing and measuring individual differences in temperament. Current
Psychology, 14(4):261–292. Available from: http://dx.doi.org/10.1007/
BF02686918.

Mehrabian, A. and Ferris, S. R. (1967). Inference of attitudes from nonverbal com-
munication in two channels. Journal of Consulting Psychology, 31(3):248–252.
Available from: http://dx.doi.org/10.1037/h0024648.

Mick, D. G. and Fournier, S. (1998). Paradoxes of technology: Consumer cog-
nizance, emotions, and coping strategies. Journal of Consumer Research,
25(2):123–143. Available from: http://dx.doi.org/10.1086/209531.

MIDI Manufacturers Association (1982). The complete MIDI 1.0 detailed specifi-
cation. Technical report. Available from: http://www.midi.org/techspecs/
midispec.php.

http://portal.acm.org/citation.cfm?id=1459359.1459576
http://portal.acm.org/citation.cfm?id=1459359.1459576
http://www.luxand.com/facesdk/
http://www.luxand.com/facesdk/
http://portal.acm.org/citation.cfm?id=176792
http://portal.acm.org/citation.cfm?id=176792
http://dx.doi.org/10.1007/BF02686918
http://dx.doi.org/10.1007/BF02686918
http://dx.doi.org/10.1037/h0024648
http://dx.doi.org/10.1086/209531
http://www.midi.org/techspecs/midispec.php
http://www.midi.org/techspecs/midispec.php

200 BIBLIOGRAPHY

Mindmakers (2008). Behavior markup language (BML) wiki. Available from:
http://wiki.mindmakers.org/projects:BML:main.

Morency, L., de Kok, I., and Gratch, J. (2010). A probabilistic multimodal ap-
proach for predicting listener backchannels. Journal of Autonomous Agents
and Multi-Agent Systems, 20(1):70–84. Available from: http://dx.doi.org/
10.1007/s10458-009-9092-y.

Mystic Game Development (2010). EMotion FX. Available from: http://www.
mysticgd.com/.

Nakano, Y. I., Reinstein, G., Stocky, T., and Cassell, J. (2003). Towards a model
of face-to-face grounding. In Proc. ACL, page 553–561, Stroudsburg, PA, USA.
Available from: http://dx.doi.org/10.3115/1075096.1075166.

Nass, C. and Moon, Y. (2000). Machines and mindlessness: Social responses to
computers. Journal of Social Issues, 56(1):81–103. Available from: http:
//dx.doi.org/10.1111/0022-4537.00153.

Niewiadomski, R., Bevacqua, E., Mancini, M., and Pelachaud, C. (2009). Greta:
an interactive expressive ECA system. In Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2, page
1399–1400.

NIST (2008). NIST data flow system II. Available from: http://www.nist.gov/
smartspace/sf_presentation.html.

Noma, T., Zhao, L., and Badler, N. I. (2002). Design of a virtual human presenter.
IEEE Computer Graphics and Applications, 20(4):79–85.

Ortony, A., Clore, G. L., and Collins, A. (1988). The Cognitive Structure of Emo-
tion. Cambridge University Press, Cambridge, UK.

Pantic, M., Eyben, F., Gunes, H., Heylen, D., Schuller, B., and Wöllmer, M.
(2009a). Human conversational signals analyser. Project Deliverable D3a, SE-
MAINE. Available from: http://semaine.sourceforge.net/SEMAINE-2.0/
D3a%20Human%20conversational%20signals%20analyser.pdf.

Pantic, M., Eyben, F., Gunes, H., Schröder, M., Schuller, B., Valstar, M., and
Wöllmer, M. (2010). User-profiled human behaviour interpreter. Project De-
liverable D3c, SEMAINE. Available from: http://semaine.sourceforge.
net/SEMAINE-3.0/D3c%20Human%20behaviour%20interpreter.pdf.

http://wiki.mindmakers.org/projects:BML:main
http://dx.doi.org/10.1007/s10458-009-9092-y
http://dx.doi.org/10.1007/s10458-009-9092-y
http://www.mysticgd.com/
http://www.mysticgd.com/
http://dx.doi.org/10.3115/1075096.1075166
http://dx.doi.org/10.1111/0022-4537.00153
http://dx.doi.org/10.1111/0022-4537.00153
http://www.nist.gov/smartspace/sf_presentation.html
http://www.nist.gov/smartspace/sf_presentation.html
http://semaine.sourceforge.net/SEMAINE-2.0/D3a%20Human%20conversational%20signals%20analyser.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D3a%20Human%20conversational%20signals%20analyser.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D3c%20Human%20behaviour%20interpreter.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D3c%20Human%20behaviour%20interpreter.pdf

BIBLIOGRAPHY 201

Pantic, M., Eyben, F., Gunes, H., Schuller, B., and Wöllmer, M. (2009b).
Human affect analyser. Project Deliverable D3b, SEMAINE. Avail-
able from: http://semaine.sourceforge.net/SEMAINE-2.0/D3b%20Human%
20affect%20analyser.pdf.

Pantic, M. and Rothkrantz, L. J. M. (2000). Automatic analysis of facial expres-
sions: The state of the art. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(12):1424–1445.

Pardo, D., Mencia, B. L., Trapote, A. H., and Hernandez, L. (2010). Non-verbal
communication strategies to improve robustness in dialogue systems: a compar-
ative study. Journal on Multimodal User Interfaces, 3(4):285–297. Available
from: http://www.springerlink.com/content/k58267064t133350/.

Pelachaud, C., Bevacqua, E., McRorie, M., Pammi, S., Schröder, M., Sneddon,
I., and de Sevin, E. (2009). SAL multimodal generation component with cus-
tomised SAL characters and visual mimicking behaviour. Project Deliver-
able D5a, SEMAINE. Available from: http://semaine.sourceforge.net/
SEMAINE-2.0/D5a%20SAL%20multimodal%20generation%20component.pdf.

Pelachaud, C., Bevacqua, E., Pammi, S., Schröder, M., and de Sevin, E.
(2010). SAL multimodal generation component optimised for real-
time behaviour. Project Deliverable D5b, SEMAINE. Available from:
http://semaine.sourceforge.net/SEMAINE-3.0/D5b%20Multimodal%
20generation%20component.pdf.

Pelachaud, C., Carofiglio, V., De Carolis, B., de Rosis, F., and Poggi, I. (2002).
Embodied contextual agent in information delivering application. In Proc. AA-
MAS, page 758–765, New York, NY, USA.

Peter, C. and Herbon, A. (2006). Emotion representation and physiology assign-
ments in digital systems. Interact. Comput., 18(2):139–170. Available from:
http://portal.acm.org/citation.cfm?id=1220955.1221009.

Peters, C. (2005). Direction of attention perception for conversation initiation in
virtual environments. In Proc. Intelligent Virtual Agents, page 215–228.

Poh, M. Z., Swenson, N. C., and Picard, R. W. (2010). A wearable sensor for un-
obtrusive, Long-Term assessment of electrodermal activity. IEEE Transactions
on Biomedical Engineering, 57(5):1243–1252.

Porzel, R. and Baudis, M. (2004). The tao of CHI: towards effective human-
computer interaction. In Proc. HLT/NAACL, Boston, MA, USA.

http://semaine.sourceforge.net/SEMAINE-2.0/D3b%20Human%20affect%20analyser.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D3b%20Human%20affect%20analyser.pdf
http://www.springerlink.com/content/k58267064t133350/
http://semaine.sourceforge.net/SEMAINE-2.0/D5a%20SAL%20multimodal%20generation%20component.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D5a%20SAL%20multimodal%20generation%20component.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D5b%20Multimodal%20generation%20component.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D5b%20Multimodal%20generation%20component.pdf
http://portal.acm.org/citation.cfm?id=1220955.1221009

202 BIBLIOGRAPHY

Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of
mind? Behavioral and Brain sciences, 1(4):515–526.

Puckette, M. (2009). Pure data. Available from: http://puredata.info/.
Raggett, D., Hors, A. L., and Jacobs, I. (1999). HTML 4.01 specification. W3C

Recommendation, World Wide Web Consortium. Available from: http://www.
w3.org/TR/html401/.

Raouzaiou, A., Spyrou, E., Karpouzis, K., and Kollias, S. (2006). An interme-
diate expressions’ generator system in the MPEG-4 framework. In Atzori, L.,
Giusto, D., Leonardi, R., and Pereira, F., editors, Visual Content Processing and
Representation, number 3893 in LNCS, page 129–136. Springer.

Raux, A. (2008). Flexible Turn-Taking for Spoken Dialog Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA.

Reeves, B. and Nass, C. (1996). The media equation: how people treat computers,
television, and new media like real people and places. Cambridge University
Press New York, NY, USA.

Rehm, M., André, E., and Nischt, M. (2005). Let’s come together—social navi-
gation behaviors of virtual and real humans. Intelligent Technologies for Inter-
active Entertainment, page 124–133.

Reithinger, N., Gebhard, P., Löckelt, M., Ndiaye, A., Pfleger, N., and Klesen, M.
(2006). VirtualHuman: dialogic and affective interaction with virtual characters.
In Proc. International Conference on Multimodal interfaces, ICMI ’06, page
51–58, New York, NY, USA.

Rich, E. (1979). User modeling via stereotypes. Cognitive Science,
3(4):329–354. Available from: http://www.sciencedirect.com/science/
article/B6W48-4FWF9GC-9/2/f924f793eb153d455893e8d39982ef45.

Richardson, L. and Ruby, S. (2007). RESTFul Web Services. O’Reilly.
Sacks, H., Schegloff, E. A., and Jefferson, G. (1974). A simplest systematics for

the organization of turn-taking for conversation. Language, 50(4):696–735.
Salovey, P. and Mayer, J. D. (1990). Emotional intelligence. Imagination, cogni-

tion and personality, 9(3):185–212.
Scherer, K. R. (1984). On the nature and function of emotion: A component

process approach. In Scherer, K. R. and Ekman, P., editors, Approaches to
emotion, pages 293–317. Erlbaum, Hillsdale, NJ.

http://puredata.info/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://www.sciencedirect.com/science/article/B6W48-4FWF9GC-9/2/f924f793eb153d455893e8d39982ef45
http://www.sciencedirect.com/science/article/B6W48-4FWF9GC-9/2/f924f793eb153d455893e8d39982ef45

BIBLIOGRAPHY 203

Scherer, K. R. (1999). Appraisal theory. In Dalgleish, T. and Power, M. J., editors,
Handbook of Cognition & Emotion, pages 637–663. John Wiley, New York.

Scherer, K. R. (2000). Psychological models of emotion. In Borod, J. C., editor,
The Neuropsychology of Emotion, pages 137—162. Oxford University Press,
New York.

Scherer, K. R. (2005). What are emotions? and how can they be measured?
Social Science Information, 44(4):695–729. Available from: doi:10.1177/
0539018405058216.

Schröder, M. (2008). Approaches to emotional expressivity in synthetic speech.
In Izdebski, K., editor, The Emotion in the Human Voice, volume 3. Plural, San
Diego, CA.

Schröder, M. (2009a). Expressive speech synthesis: Past, present, and possible
futures. In Tao, J. and Tan, T., editors, Affective Information Processing, pages
111–126. Springer, London. Available from: http://dx.doi.org/10.1007/
978-1-84800-306-4_7.

Schröder, M. (2009b). First full-scale SAL system. Project Deliverable D1c, SE-
MAINE. Available from: http://semaine.sourceforge.net/SEMAINE-2.0/
D1c%20First%20full-scale%20SAL%20system.pdf.

Schröder, M., Baggia, P., Burkhardt, F., Martin, J., Pelachaud, C., Peter, C.,
Schuller, B., Wilson, I., and Zovato, E. (2008a). Elements of an Emo-
tionML 1.0. W3C Final Incubator Group Report, World Wide Web Con-
sortium. Available from: http://www.w3.org/2005/Incubator/emotion/
XGR-emotionml-20081120/.

Schröder, M., Baggia, P., Burkhardt, F., Oltramari, A., Pelachaud, C., Peter, C.,
and Zovato, E. (2010a). Emotion markup language (EmotionML) 1.0. W3C
Working Draft, World Wide Web Consortium. Available from: http://www.
w3.org/TR/2010/WD-emotionml-20100729/.

Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., and Zovato, E.
(2009a). Emotion markup language (EmotionML) 1.0. W3C Working Draft,
World Wide Web Consortium. Available from: http://www.w3.org/TR/2010/
WD-emotionml-20100729/.

Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., and Zovato, E.
(2011a). Emotion markup language (EmotionML) 1.0. W3C Last Call Working
Draft, World Wide Web Consortium. Available from: http://www.w3.org/TR/
2011/WD-emotionml-20110407/.

doi:10.1177/0539018405058216
doi:10.1177/0539018405058216
http://dx.doi.org/10.1007/978-1-84800-306-4_7
http://dx.doi.org/10.1007/978-1-84800-306-4_7
http://semaine.sourceforge.net/SEMAINE-2.0/D1c%20First%20full-scale%20SAL%20system.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D1c%20First%20full-scale%20SAL%20system.pdf
http://www.w3.org/2005/Incubator/emotion/XGR-emotionml-20081120/
http://www.w3.org/2005/Incubator/emotion/XGR-emotionml-20081120/
http://www.w3.org/TR/2010/WD-emotionml-20100729/
http://www.w3.org/TR/2010/WD-emotionml-20100729/
http://www.w3.org/TR/2010/WD-emotionml-20100729/
http://www.w3.org/TR/2010/WD-emotionml-20100729/
http://www.w3.org/TR/2011/WD-emotionml-20110407/
http://www.w3.org/TR/2011/WD-emotionml-20110407/

204 BIBLIOGRAPHY

Schröder, M., Bevacqua, E., Eyben, F., Gunes, H., ter Maat, M., Pammi, S.,
de Sevin, E., Valstar, M., and Wöllmer, M. (2010b). Final SAL system.
Project Deliverable D1d, SEMAINE. Available from: http://semaine.
sourceforge.net/SEMAINE-3.0/D1d%20Final%20SAL%20system.pdf.

Schröder, M., Devillers, L., Karpouzis, K., Martin, J., Pelachaud, C., Peter, C.,
Pirker, H., Schuller, B., Tao, J., and Wilson, I. (2007a). What should a generic
emotion markup language be able to represent? In Proc. 2nd International Con-
ference on Affective Computing and Intelligent Interaction (ACII’2007), Lisbon,
Portugal.

Schröder, M., Pammi, S., and Türk, O. (2009b). Multilingual MARY TTS partic-
ipation in the blizzard challenge 2009. In Blizzard Challenge 2009, Edinburgh,
UK.

Schröder, M., Pelachaud, C., Ashimura, K., Baggia, P., Burkhardt, F., Oltramari,
A., Peter, C., and Zovato, E. (2011b). Vocabularies for EmotionML. W3C
working draft, World Wide Web Consortium. Available from: http://www.
w3.org/TR/2011/WD-emotion-voc-20110407/.

Schröder, M., Pirker, H., and Lamolle, M. (2006). First suggestions for an emotion
annotation and representation language. In Proceedings of LREC’06 Workshop
on Corpora for Research on Emotion and Affect, pages 88–92, Genoa, Italy.

Schröder, M., Pirker, H., Lamolle, M., Burkhardt, F., Peter, C., and Zovato, E.
(2011c). Representing emotions and related states in technological systems. In
Petta, P., Cowie, R., and Pelachaud, C., editors, Emotion-Oriented Systems –
The Humaine Handbook, pages 367–386. Springer.

Schröder, M., Wilson, I., Jarrold, W., Evans, D., Pelachaud, C., Zovato, E., and
Karpouzis, K. (2008b). What is most important for an emotion markup lan-
guage? In Proc. Third Workshop Emotion and Computing, KI 2008, Kaisers-
lautern, Germany.

Schröder, M., Zovato, E., Pirker, H., Peter, C., and Burkhardt, F. (2007b).
W3C Emotion Incubator Group Final Report. W3C Incubator Group Report,
World Wide Web Consortium. Available from: http://www.w3.org/2005/
Incubator/emotion/XGR-emotion-20070710.

Schuller, B., Eyben, F., Gunes, H., Pantic, M., Schröder, M., Valstar, M., and
Wöllmer, M. (2010). Final face and voice feature extraction component
with incremental, (near) real-time processing. Project Deliverable D2b, SE-
MAINE. Available from: http://semaine.sourceforge.net/SEMAINE-3.
0/D2b%20Final%20feature%20extraction.pdf.

http://semaine.sourceforge.net/SEMAINE-3.0/D1d%20Final%20SAL%20system.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D1d%20Final%20SAL%20system.pdf
http://www.w3.org/TR/2011/WD-emotion-voc-20110407/
http://www.w3.org/TR/2011/WD-emotion-voc-20110407/
http://www.w3.org/2005/Incubator/emotion/XGR-emotion-20070710
http://www.w3.org/2005/Incubator/emotion/XGR-emotion-20070710
http://semaine.sourceforge.net/SEMAINE-3.0/D2b%20Final%20feature%20extraction.pdf
http://semaine.sourceforge.net/SEMAINE-3.0/D2b%20Final%20feature%20extraction.pdf

BIBLIOGRAPHY 205

Schuller, B., Eyben, F., Gunes, H., Pantic, M., Valstar, M., and Wöllmer,
M. (2009). Improved face and voice feature extraction with speaker adap-
tation and learning. Project Deliverable D2a, SEMAINE. Available
from: http://semaine.sourceforge.net/SEMAINE-2.0/D2a%20Improved%
20face%20and%20voice%20feature%20extraction.pdf.

Schuller, B., Seppi, D., Batliner, A., Maier, A., and Steidl, S. (2007). To-
wards more reality in the recognition of emotional speech. In Proc. Interna-
tional Conference on Acoustics, Speech and Signal Processing, volume 4, pages
IV–941–IV–944.

Schütz, T. (2008). Concept and design of the integration framework.
Theseus Ordo deliverable report D11.1.1.b, empolis GmbH. Avail-
able from: http://www.eclipse.org/smila/docs/ORDO_D.11.1.1.b_
ConceptIntegrationFramework_V1.0.pdf.

Shaver, P., Schwartz, J., Kirson, D., and O’Connor, C. (1987). Emotion knowl-
edge: Further exploration of a prototype approach. Journal of Personality and
Social Psychology, 52:1061–1086.

Sidner, C. L., Lee, C., Kidd, C. D., Lesh, N., and Rich, C. (2005). Explorations in
engagement for humans and robots. Artificial Intelligence, 166(1-2):140–164.

Sonntag, D., Reithinger, N., Herzog, G., and Becker, T. (2010). A discourse and
dialogue infrastructure for industrial dissemination. In Lee, G., Mariani, J.,
Minker, W., and Nakamura, S., editors, Spoken Dialogue Systems for Ambient
Environments, number 6392 in LNCS, page 132–143. Springer. Available from:
http://dx.doi.org/10.1007/978-3-642-16202-2_12.

Stocky, T. and Cassell, J. (2002). Shared reality: spatial intelligence in intuitive
user interfaces. In Proceedings of the 7th international conference on Intelligent
user interfaces, IUI ’02, page 224–225, New York, NY, USA.

Sun Microsystems (2005). JavaSpaces service specification. Avail-
able from: http://java.sun.com/products/jini/2.1/doc/specs/html/
js-spec.html.

ter Maat, M. and Heylen, D. (2009). Turn management or impression man-
agement? In Proc. Intelligent Virtual Agents, pages 467–473, Amster-
dam, The Netherlands. Available from: http://dx.doi.org/10.1007/
978-3-642-04380-2_51.

http://semaine.sourceforge.net/SEMAINE-2.0/D2a%20Improved%20face%20and%20voice%20feature%20extraction.pdf
http://semaine.sourceforge.net/SEMAINE-2.0/D2a%20Improved%20face%20and%20voice%20feature%20extraction.pdf
http://www.eclipse.org/smila/docs/ORDO_D.11.1.1.b_ConceptIntegrationFramework_V1.0.pdf
http://www.eclipse.org/smila/docs/ORDO_D.11.1.1.b_ConceptIntegrationFramework_V1.0.pdf
http://dx.doi.org/10.1007/978-3-642-16202-2_12
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://dx.doi.org/10.1007/978-3-642-04380-2_51
http://dx.doi.org/10.1007/978-3-642-04380-2_51

206 BIBLIOGRAPHY

The OSGi Alliance (2009). OSGi service platform core specification. Technical
Report Release 4, Version 4.2, OSGi Alliance. Available from: http://www.
osgi.org/download/r4v42/r4.core.pdf.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2004). XML
schema part 1: Structures second edition. W3C Recommendation, World
Wide Web Consortium. Available from: http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028/.

Thórisson, K. (1997). Gandalf: An embodied humanoid capable of Real-Time
multimodal dialogue with people. In Proc. First SCM International Conference
on Autonomous Agents, pages 536–537, Marina del Rey, CA, USA. Available
from: http://xenia.media.mit.edu/%7Ekris/papers/ACM_AA97.html.

Thórisson, K. R. (2002). Natural Turn-Taking needs no manual: Computational
theory and model, from perception to action. In Granström, B., House, D., and
Karlsson, I., editors, Multimodality in Language and Speech Systems, pages
173–207. Kluwer Academic Publishers, Dordrecht.

Thórisson, K. R., Benko, H., Abramov, D., Arnold, A., Maskey, S., and
Vaseekaran, A. (2004). Constructionist design methodology for interactive in-
telligences. AI Magazine, 25(4):77–90.

Traum, D. and Rickel, J. (2002). Embodied agents for multi-party dialogue
in immersive virtual worlds. In Proc. AAMAS, pages 766–773, Bologna,
Italy. ACM. Available from: http://portal.acm.org/citation.cfm?id=
544922&dl=GUIDE,.

Troncy, R., Mannens, E., Pfeiffer, S., and van Deursen, D. (2010). Media frag-
ments URI 1.0. W3C Last Call Working Draft, World Wide Web Consortium.
Available from: http://www.w3.org/TR/1998/REC-xml-19980210/.

Tsapatsoulis, N., Raouzaiou, A., Kollias, S., Cowie, R., and Douglas-Cowie, E.
(2002). Emotion recognition and synthesis based on MPEG-4 FAPs. In Pandzic,
I. S. and Forchheimer, R., editors, MPEG-4 Facial Animation - The standard,
implementations, applications. John Wiley & Sons, Hillsdale, NJ, USA.

Turing, A. M. (1950). Computing machinery and intelligence. Mind,
59(236):433–460.

van Deemter, K., Krenn, B., Piwek, P., Klesen, M., Schröder, M., and Baumann,
S. (2008). Fully generated scripted dialogue for embodied agents. Artificial
Intelligence, 172(10):1219–1244.

http://www.osgi.org/download/r4v42/r4.core.pdf
http://www.osgi.org/download/r4v42/r4.core.pdf
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://xenia.media.mit.edu/%7Ekris/papers/ACM_AA97.html
http://portal.acm.org/citation.cfm?id=544922&dl=GUIDE,
http://portal.acm.org/citation.cfm?id=544922&dl=GUIDE,
http://www.w3.org/TR/1998/REC-xml-19980210/

BIBLIOGRAPHY 207

von der Pütten, A., Krämer, N. C., and Gratch, J. (2009). Who’s there? can a
virtual agent really elicit social presence? In Proc. 12th Annual International
Workshop on Presence, Los Angeles, CA, USA.

Wahlster, W. (2000). Verbmobil: foundations of speech-to-speech translation.
Springer.

Wahlster, W. (2003). Smartkom: Symmetric multimodality in an adaptive and
reusable dialogue shell. In Proc. Human Computer Interaction Status Confer-
ence, volume 3, page 47–62.

Wahlster, W. (2006). SmartKom: Foundations of Multimodal Dialogue Systems.
Springer.

Walker, M. A., Litman, D. J., Kamm, C. A., and Abella, A. (1997). PAR-
ADISE: a framework for evaluating spoken dialogue agents. In Proc. EACL,
pages 271–280, Madrid, Spain. Available from: http://portal.acm.org/
citation.cfm?id=979652&dl=.

Wallers, A., Edlund, J., and Skantze, G. (2006). The effect of prosodic features on
the interpretation of synthesised backchannels. In Proc. Perception and Inter-
active Technologies, page 183–187, Kloster Irsee, Germany.

Ward, N. and Tsukahara, W. (2000). Prosodic features which cue back-channel
responses in english and japanese. Journal of Pragmatics, 32(8):1177–1207.
Available from: http://dx.doi.org/10.1016/S0378-2166(99)00109-5.

Wechsler, D. (1958). The measurement and appraisal of adult intelligence.
Williams & Wilkins, Baltimore, MD, USA.

Wright, M. (2002). The open sound control 1.0 specification. Technical report,
The Center For New Music and Audio Technology (CNMAT), UC Berkeley.
Available from: http://opensoundcontrol.org/spec-1_0.

Yngve, V. H. (1970). On getting a word in edgewise. In Chicago Linguistic Society.
Papers from the 6th regional meeting, volume 6, pages 567–577.

Zeng, Z., Pantic, M., Roisman, G. I., and Huang, T. S. (2007). A survey of
affect recognition methods: audio, visual and spontaneous expressions. In
Proc. Multimodal Interfaces, pages 126–133, Nagoya, Japan. Available from:
http://portal.acm.org/citation.cfm?id=1322192.1322216.

Zue, V. W. and Glass, J. R. (2002). Conversational interfaces: Advances and
challenges. Proceedings of the IEEE, 88(8):1166–1180.

http://portal.acm.org/citation.cfm?id=979652&dl=
http://portal.acm.org/citation.cfm?id=979652&dl=
http://dx.doi.org/10.1016/S0378-2166(99)00109-5
http://opensoundcontrol.org/spec-1_0
http://portal.acm.org/citation.cfm?id=1322192.1322216

	Introduction
	The SEMAINE project
	Contribution of the present thesis
	Thematic delimitation of the present thesis
	Publications
	Collaborations
	Outline

	Motivation
	Emotional machine intelligence
	Social and emotional intelligence
	Machines as social entities

	The potential benefits of standards for research on emotion-oriented systems

	I Background
	Embodied Conversational Agent systems: elements of natural interaction and emotional competence
	Types of Embodied Conversational Agent systems
	TV-style presenter systems
	Presentation teams
	One-to-one human-ECA interaction
	Multiparty conversations

	Expressive behaviour
	Perceiving emotions
	Responsiveness
	Conclusion

	Component integration frameworks for multimodal interactive systems
	Requirements for a component integration framework in SEMAINE
	Existing component integration frameworks
	Mirage
	GECA
	VHMsg
	MULTIPLATFORM
	CHILix
	CAST
	Others
	Summary

	Conclusion

	Middleware
	Message-oriented middlewares
	Remote invocation middlewares
	Blackboard architectures
	Web services
	Service-Oriented Architecture
	RESTful HTTP

	Linguistic middlewares
	Multimedia middlewares
	Network-integrated multimedia middleware
	Open Sound Control

	How to choose a middleware
	Conclusion

	II Infrastructure
	The SEMAINE API
	Choice of a middleware for a naturally interacting and emotionally competent ECA
	Requirements for the ECA middleware
	Selection of a middleware software

	Component Integration Framework
	System integration
	Topics
	Components
	API support for relevant representation types
	Supported platforms
	Status

	Conclusion

	System architecture of the SEMAINE system
	Conceptual framework
	SEMAINE-2.0: A pipeline architecture
	Feature extraction
	Understanding human behaviour
	Dialogue management
	Generating SAL behaviour

	SEMAINE-3.0: Introducing the prepare-and-trigger architecture
	Overview of changes in SEMAINE-3.0
	Motivation for the prepare-and-trigger architecture: Competitive Queuing
	Information flow for output generation in the pipeline architecture
	Information flow for output generation in the prepare-and-trigger architecture

	Conclusion

	III Communication
	Representation formats
	Representation formats supported in the SEMAINE API
	Feature vectors
	EMMA
	EmotionML
	SemaineML
	SSML
	FML
	BML
	Player data

	Callback messages
	A mechanism for defining state information
	Conclusion

	Emotion Markup Language
	The process of defining a standard Emotion Markup Language
	Previous work
	Use cases
	Requirements
	Emotion Core
	Meta-information about emotion annotation
	Links to the ``rest of the world''
	Global metadata
	Ontologies of emotion

	Syntax
	Design principles: self-contained emotion annotation
	Representations of emotion
	Mechanism for referring to an emotion vocabulary
	Meta-information
	References to the ``rest of the world''
	Time
	Representing continuous values and dynamic changes

	Scientific descriptions of emotion
	Vocabularies for EmotionML
	Validating EmotionML
	Schema and processor validation in EmotionML
	An alternative solution based on XML namespaces

	Issues for future work
	Conclusion

	IV Assessment
	Performance
	Middleware
	Architecture
	Conclusion

	Re-use: Building new emotion-oriented systems with the SEMAINE API
	Hello world
	Emotion mirror
	A game driven by emotional speech: The swimmer's game
	Conclusion

	Summary and Outlook
	Protocol for the Player in SEMAINE
	Data flow
	Command messages
	Callback messages
	Error conditions

