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Abstract

We study the connections between discrete 1-D schemes for non-
linear diffusion and shift-invariant Haar wavelet shrinkage. We show
that one step of a (stabilised) explicit discretisation of nonlinear diffu-
sion can be expressed in terms of wavelet shrinkage on a single spatial
level. This equivalence allows a fruitful exchange of ideas between the
two fields. In this paper we derive new wavelet shrinkage functions
from existing diffusivity functions, and identify some previously used
shrinkage functions as corresponding to well known diffusivities. We
demonstrate experimentally that some of the diffusion-inspired shrink-
age functions are among the best for translation-invariant multiscale
wavelet denoising. Moreover, by transferring stability notions from
diffusion filtering to wavelet shrinkage, we derive conditions on the
shrinkage function that ensure that shift invariant single-level Haar
wavelet shrinkage is maximum-minimum stable, monotonicity preserv-
ing, and variation diminishing.

AMS 2000 Subject Classification: 68T45, 68U10, 35K55, 65T60, 65N04
Key words: image denoising, wavelet shrinkage, diffusion filtering, finite dif-
ferences, stability
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1 Introduction

We consider a classical task of signal denoising: create an estimate u of an
original signal z from its noisy measurement f , where

f = z + n,

and n denotes an additive noise function. Various methods have been pro-
posed to remove the noise from z without sacrificing important structures
such as edges, including rank-order filtering, mathematical morphology, adap-
tive smoothing, stochastic methods, wavelet techniques, partial differential
equations (PDEs) and variational methods. Although these classes of meth-
ods serve the same purpose, relatively few publications examine their similar-
ities and differences, in order to transfer results from one of these classes to
the others, or to design hybrid methods that combine the advantages of dif-
ferent classes. The present paper is a contribution in this direction, where we
concentrate on two of these methods, namely nonlinear diffusion techniques
and wavelet shrinkage.

Nonlinear diffusion creates a family of restored signals u(t) by starting from
the noisy signal f , and evolving it locally according to a process described
by a nonlinear partial differential equation. This process is controlled by a
diffusivity function g of the signal gradient. Typically, g(s) is a nonnega-
tive, nonincreasing function of the gradient magnitude, approaching zero as
s→ ∞. This setting leads to the effect that smoothing of u proceeds faster in
homogeneous regions (where the gradient is small, possibly caused by noise),
and discontinuities (large gradient, hopefully corresponding to important fea-
tures of the underlying signal) tend to be preserved. Depending on the choice
of the diffusivity function g, a single nonlinear diffusion equation may cover
a variety of nonlinear filters, including the original nonlinear diffusion of Per-
ona and Malik [36] and its regularised variants [10, 44], total variation (TV)
diffusion [2], balanced forward-backward (BFB) diffusion [28] and a number
of others. When applied to discrete data f = (fi)

N−1
i=0 , the nonlinear diffusion

filter creates a series of smoothed signals uk := u(kτ) iteratively, starting
from the noisy signal, u0 = f .

Wavelet transforms express the signal in terms of wavelet coefficients, de-
scribing the signal variation at different scales. If the wavelet basis is chosen
properly, a signal will be generally described by only a few significant wavelet
coefficients, while moderate white Gaussian noise pollutes all the wavelet co-
efficients by a small amount. Signal denoising by wavelet shrinkage [15, 16]
starts from this assumption, and creates a smoothed version of the processed
signal by the following three-step procedure:
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1. Analysis: transform the noisy data f to the wavelet coefficients dj
i ,

representing the signal at various scales j and positions i.

2. Shrinkage: apply a shrinkage function Sθ to the wavelet coefficients dj
i ,

thus reducing the relative importance of small coefficients.

3. Synthesis: reconstruct a denoised version u of f from the shrunken
wavelet coefficients.

The shrinkage parameter θ is chosen with respect to the amount of noise
in the input signal. In general, the denoised solution u is obtained from f
using a single step of this multiscale procedure, i.e. the method is applied
noniteratively. The specific choice of the wavelets and the shrinkage functions
allows a large variability of wavelet shrinkage methods.

In the present paper, we show equivalence between a single iteration of a 1-D
explicit scheme for nonlinear diffusion on one side, and translation-invariant
wavelet shrinkage with a single level of Haar wavelet decomposition on the
other. This equivalence is obtained by constructing an appropriate shrink-
age function Sθ to an existing diffusivity g, and vice versa. Such a relation
does not only allow us to prove some diffusion-inspired stability properties
for wavelet shrinkage, it also enable us to generalise a variation-diminishing
result known from explicit linear diffusion schemes [22] to the nonlinear set-
ting.
Having asserted the equivalence between wavelet shrinkage and nonlinear dif-
fusion for this special situation, it remains to be seen whether this connection
brings any advantages in more general settings. We demonstrate numerically
that the shrinkage functions derived from diffusivities are able to provide
some of the best results when used for classical (i.e. multi-level, one step)
translation-invariant wavelet shrinkage.

This paper is organised as follows. Section 2 sketches nonlinear diffusion fil-
tering and develops its explicit discretisation in 1-D, while Section 3 provides
a brief introduction to translation-invariant Haar wavelet shrinkage. The con-
nections between these two types of methods are exploited in Section 4: We
establish conditions on diffusivities and shrinkage functions under which the
two methods (restricted to one step / one scale) are equivalent. Section 5
describes how this relation can be used for transferring stability results be-
tween both paradigms. In Section 6 some novel, diffusion-inspired shrinkage
functions are tested experimentally, and compared to previously used ones.
The paper is concluded with a summary in Section 7.

Related work. Analysing the relations between regularisation methods and
continuous wavelet shrinkage of functions, Chambolle et al. [7] showed that
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one may interpret wavelet shrinkage of functions as regularisation processes in
suitable Besov spaces. In the case of Haar wavelets, Cohen et al. [11] showed
that this approximates total variation regularisation. Later on, Chambolle
and Lucier [8] considered iterated translation-invariant wavelet shrinkage and
interpreted it as a nonlinear scale-space that differs from other scale-spaces
by the fact that it is not given in terms of PDEs.
Regarding the relations between wavelet shrinkage denoising of discrete sig-
nals and nonlinear diffusion, not much research has been done so far. A
recent paper by Coifman and Sowa [14] proposes TV diminishing flows that
act along the direction of Haar wavelets. Bao and Krim [3] addressed the
problem of texture loss in diffusion scale-spaces by incorporating ideas from
wavelet analysis. Recent work in which the authors are involved [5, 40, 41]
investigates conditions under which equivalence between wavelet shrinkage
of discrete signals, space-discrete TV diffusion or regularisation, and SIDEs
(stabilised inverse diffusion equations) holds true.
Some recently proposed hybrid methods are based on combining wavelet
shrinkage and TV regularisation methods [1, 37]. Durand and Froment [17]
proposed to address the problem of pseudo-Gibbs artifacts in wavelet denois-
ing by replacing the thresholded wavelet coefficients by coefficients that min-
imise the total variation. Their method is also close in spirit to approaches by
Chan and Zhou [9] who postprocessed images obtained from wavelet shrink-
age by a TV-like regularisation technique. Coifman and Sowa [13] used func-
tional minimisation with wavelet constraints for postprocessing signals that
have been degraded by wavelet thresholding or quantisation. Candes and
Guo [6] also presented related work, in which they combined ridgelets and
curvelets with TV minimisation strategies. Recently, Malgouyres [30, 31] pro-
posed a hybrid method that uses both wavelet packets and TV approaches.
His experiments showed that it may restore textured regions without intro-
ducing visible ringing artifacts.
This discussion shows that the previous papers typically focus on TV-based
denoising techniques on the PDE side. Moreover, most of them present a
continuous analysis rather than a discrete one. Our paper differs from previ-
ous work in this field by the fact that we do not restrict ourselves to a single
diffusivity or shrinkage function, but introduce and analyse a general connec-
tion between a discrete diffusion scheme and Haar wavelet shrinkage. To this
end, we investigate a large number of diffusivities and shrinkage functions.
A shorter, preliminary version of the present paper has been published in
the proceedings of the Scale-Space 2003 Conference [34]. The current version
is extended by a new section on stability issues and it analyses two new
diffusivity functions.
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2 Nonlinear Diffusion

2.1 Basic Concept

The basic idea behind nonlinear diffusion filtering [36] is to obtain a family
u(x, t) of filtered versions of the signal f(x) as the solution of a suitable
diffusion process

ut = (g(|ux|) ux)x (1)

with f as initial condition:

u(x, 0) = f(x).

Here subscripts denote partial derivatives, and the diffusion time t is a sim-
plification parameter: larger values correspond to stronger filtering.
The diffusivity g(|ux|) is a nonnegative function that controls the amount
of diffusion. In most cases, it is a decreasing function in |ux|. This ensures
that strong edges are less blurred by the diffusion filter than noise and low-
contrast details. Depending on the choice of the diffusivity function, equation
(1) covers a variety of filters. Here are some of the previously employed
diffusivity functions:

A. Linear diffusivity [25]: g(|x|) = 1,

B. Charbonnier diffusivity [10]: g(|x|) =
1

√

1 + |x|2
λ2

,

C. Perona–Malik diffusivity [36]: g(|x|) =
1

1 + |x|2
λ2

,

D. Weickert diffusivity [44]: g(|x|) =

{

1 |x| = 0,

1 − exp
(

−3.31488
(|x|/λ)8

)

|x| > 0,

E. Tukey diffusivity [4]: g(|x|) =

{

(

1 − (x/λ)2
)2 |x| ≤ λ,

0 |x| > λ,

F. TV diffusivity [2]: g(|x|) =
1

|x| ,

G. BFB diffusivity [28]: g(|x|) =
1

|x|2 ,

H. FAB diffusivity [21, 39]: g(|x|) = 2 exp(−|x|2/λ2
1) − exp(−|x|2/λ2

2),

λ1 < λ2.

Note that the diffusivities A–E are bounded from above by 1, while the diffu-
sivities F and G are unbounded. In order to avoid theoretical and numerical
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difficulties, it is common to replace the latter ones by regularisations that
make them bounded: e.g. one may use g(|x|) = 1/

√

ε2 + |x|2 instead of the
TV diffusivity. The forward-and-backward (FAB) diffusivity H differs from
the other diffusivities by the fact that it may even attain negative values.
First diffusivities of such a type have been proposed by Gilboa et al. [20].
Well-posedness results are available for the diffusivities A, B and F, since
they result from convex potentials. For the diffusivities C, D and G, which
can be related to nonconvex potentials, some well-posedness questions are
open in the continuous setting [29, 27], while already a space-discretisation
creates well-posed processes [45]. In case of the Tukey diffusivity E, well-
posedness results are more difficult to establish, since it may degenerate to
0. The FAB diffusivity H goes one step further by allowing even negative
values. However, at extrema the FAB diffusivity is in the forward diffusion
region which is responsible for a certain degree of stability.

2.2 Explicit Discretisation Scheme

When applied to discrete signals, the partial differential equation (1) has to
be discretised. In this paper, we focus on explicit finite difference schemes.
Substituting the spatial partial derivatives in (1) by finite differences (with
the assumption of unit distance between neighboring pixels), and employing
explicit discretisation in time, an explicit 1-D scheme for nonlinear diffusion
can be written in the form

uk+1
i − uk

i

τ
= g(|uk

i+1 − uk
i |) (uk

i+1 − uk
i ) − g(|uk

i − uk
i−1|) (uk

i − uk
i−1),

where τ is the time step size and the upper index k denotes the approximate
solution at time kτ . Separating the unknown uk+1

i on one side, we obtain

uk+1
i = uk

i − τ g(|uk
i − uk

i+1|) (uk
i − uk

i+1) + τ g(|uk
i−1 − uk

i |) (uk
i−1 − uk

i ). (2)

The initial condition reads u0
i = fi for all i.

3 Wavelet Shrinkage

3.1 Basic Concept

The discrete wavelet transform represents a one-dimensional signal f in terms
of shifted versions of a dilated lowpass scaling function ϕ, and shifted and
dilated versions of a bandpass wavelet function ψ. In case of orthonormal
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wavelets, this gives

f =
∑

i∈Z

〈f, ϕn
i 〉ϕn

i +
n
∑

j=−∞

∑

i∈Z

〈f, ψj
i 〉ψj

i , (3)

where ψj
i (s) := 2−j/2ψ(2−js− i) and where 〈·, ·〉 denotes the inner product in

L2(R). If the measurement f is corrupted by moderate white Gaussian noise,
then this noise is contained to a small amount in all wavelet coefficients
〈f, ψj

i 〉, while the original signal is in general determined by a few significant
wavelet coefficients [32]. Therefore, wavelet shrinkage attempts to eliminate
noise from the wavelet coefficients by the following three-step procedure:

1. Analysis: transform the noisy data f to the wavelet coefficients dj
i =

〈f, ψj
i 〉 and scaling function coefficients cni = 〈f, ϕn

i 〉 according to (3).

2. Shrinkage: apply a shrinkage function Sθ with a threshold parameter θ
to the wavelet coefficients, i.e., Sθ(d

j
i ) = Sθ(〈f, ψj

i 〉).

3. Synthesis: reconstruct the denoised version u of f from the shrunken
wavelet coefficients:

u :=
∑

i∈Z

〈f, ϕn
i 〉ϕn

i +

n
∑

j=−∞

∑

i∈Z

Sθ(〈f, ψj
i 〉)ψj

i .

In this paper we restrict our attention to Haar wavelets, well suited for piece-
wise constant signals with discontinuities. The Haar wavelet and scaling func-
tions are given respectively by

ψ(x) = 1[0, 1
2
) − 1[ 1

2
,1), (4)

φ(x) = 1[0,1) (5)

where 1[a,b) denotes the characteristic function, equal to 1 on [a, b) and zero
everywhere else. Using the so-called two-scale relation of the wavelet and its
scaling function, the coefficients cji and dj

i at higher level j can be computed
from the coefficients cj−1

i at lower level j − 1 and conversely:

cji =
cj−1
2i + cj−1

2i+1√
2

, dj
i =

cj−1
2i − cj−1

2i+1√
2

, (6)

and

cj−1
2i =

cji + dj
i√

2
, cj−1

2i+1 =
cji − dj

i√
2

. (7)
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This results in a fast algorithm for the analysis step and synthesis step. Var-
ious shrinkage functions leading to qualitatively different denoised functions
u have been considered in literature, e.g.,

A. Linear shrinkage: S(x) = λx (λ ∈ [0, 1]),

B. Soft shrinkage [15]: Sθ(x) =

{

0 |x| ≤ θ,

x− θ sgn(x) |x| > θ,

C. Garrote shrinkage [18]: Sθ(x) =

{

0 |x| ≤ θ,

x− θ2

x
|x| > θ,

D. Firm shrinkage [19]: Sθ1,θ2
(x) =











0 |x| ≤ θ1,

sgn(x) θ2(|x|−θ1)
θ2−θ1

θ1 < |x| ≤ θ2,

x θ2 < |x|,

E. Hard shrinkage [32]: Sθ(x) =

{

0 |x| ≤ θ,

x |x| > θ.

3.2 Discrete Translation-Invariant Scheme

In practice one deals with discrete signals f = (fi)
N−1
i=0 , where, for simplicity,

N is a power of 2. Then Haar wavelet shrinkage starts by setting c0i = fi and
proceeds by analysis (6), shrinkage, and synthesis (7). Let us just consider
a single wavelet decomposition level, i.e., we set n = 1. Then, using the
convention that ci = c1i and di = d1

i , we can drop the superscripts j = 0
and j = 1. By (6) and (7), Haar wavelet shrinkage on one level produces the
signal u+ = (u+

i )N−1
i=0 with coefficients

u+
2i =

ci + Sθ(di)√
2

=
f2i + f2i+1

2
+

1√
2
Sθ

(

f2i − f2i+1√
2

)

, (8)

u+
2i+1 =

ci − Sθ(di)√
2

=
f2i + f2i+1

2
− 1√

2
Sθ

(

f2i − f2i+1√
2

)

. (9)

Note that the single Haar wavelet shrinkage step (8)–(9) decouples the input
signal into successive pixel pairs: the pixel at position 2i − 1 has no direct
connection to its neighbour at position 2i, and the procedure is not invari-
ant to translation of the input signal. To overcome this problem, Coifman
and Donoho [12] introduced the so-called cycle spinning: The input signal
is shifted, denoised using wavelet shrinkage, shifted back, and the results of
all such shifts are averaged. This procedure is equivalent to thresholding of
nondecimated wavelet coefficients which can be implemented efficiently us-
ing the algorithme à trous [23]. For our single decomposition level, we need
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only one additional shift to acquire translation invariance. The shifted Haar
wavelet shrinkage yields the signal u− = (u−i )N−1

i=0 with coefficients

u−2i−1 =
f2i−1 + f2i

2
+

1√
2
Sθ

(

f2i−1 − f2i√
2

)

,

u−2i =
f2i−1 + f2i

2
− 1√

2
Sθ

(

f2i−1 − f2i√
2

)

.

Averaging the shifted results, one cycle of shift-invariant Haar wavelet shrink-
age can be summarised into

ui =
u−i + u+

i

2

=
fi−1 + 2fi + fi+1

4
+

1

2
√

2
Sθ

(

fi − fi+1√
2

)

− 1

2
√

2
Sθ

(

fi−1 − fi√
2

)

. (10)

4 Correspondence of Diffusivities

and Shrinkage Functions

4.1 Basic Considerations

In order to derive the relation between the explicit diffusion scheme and
translation-invariant Haar wavelet shrinkage, we rewrite the first iteration
step in (2) using the initial condition u0

i = fi and the simplified notation
u1

i = ui as

ui =
fi−1 + 2fi + fi+1

4
+
fi − fi+1

4
− fi−1 − fi

4
− τ g(|fi − fi+1|) (fi − fi+1) + τ g(|fi−1 − fi|) (fi−1 − fi)

=
fi−1 + 2fi + fi+1

4

+ (fi − fi+1)

(

1

4
− τ g(|fi − fi+1|)

)

− (fi−1 − fi)

(

1

4
− τ g(|fi−1 − fi|)

)

. (11)

This coincides with (10) if and only if

1

2
√

2
Sθ

(

x√
2

)

= x

(

1

4
− τ g(|x|)

)

(12)
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Equation (12) is of central importance in our paper: It relates the shrinkage
function Sθ of wavelet denoising to the diffusivity g of nonlinear diffusion.
Provided that relation (12) holds true, a single step of wavelet shrinkage is
equivalent to a single step of explicitly discretised nonlinear diffusion. The
following two formulas are derived from (12) and can be used to obtain a
shrinkage function Sθ from a diffusivity g, or vice versa.

Sθ(x) = x
(

1 − 4τg(|
√

2x|)
)

, (13)

g(|x|) =
1

4τ
−

√
2

4τx
Sθ

(

x√
2

)

. (14)

These equations will be essential for the next two subsections.

4.2 From Diffusivities to Shrinkage Functions

Let us first investigate equation (13) in detail. The examples from Section 3.1
show that typical shrinkage functions from the literature are odd functions
(i.e. Sθ(−x) = −Sθ(x)) that satisfy

0 ≤ Sθ(x) ≤ x for x > 0. (15)

In Section 5 we will see that these conditions are responsible for ensuring
certain stability properties of the shrinkage process. We can now specify the
time step size τ in (13) such that these two conditions are always satisfied
for bounded nonnegative diffusivities. In Section 2.1 we have seen that the
diffusivities A–E are nonnegative and bounded from above by 1. In order to
ensure that the corresponding shrinkage functions satisfy (15), the time step
size has to fulfil τ ≤ 0.25. Let us now investigate the shrinkage functions that
correspond to the diffusivities A–E.

We observe that the linear diffusivity corresponds to the linear shrinkage
function

S(x) = (1 − 4τ)x.

Nonlinear shrinkage functions such as soft, garrote, firm and hard shrinkage
satisfy S ′(0) = 0, since their goal is to set small wavelet coefficients to zero. In
order to derive shrinkage functions that correspond to the bounded nonlinear
diffusivities B–E and satisfy S ′(0) = 0 as well, we fix τ := 0.25. Then we
obtain the following novel shrinkage functions:

• The Charbonnier diffusivity corresponds to the shrinkage function

Sλ(x) = x

(

1 −
√

λ2

λ2 + 2x2

)

.

10



• The Perona–Malik diffusivity leads to

Sλ(x) =
2x3

2x2 + λ2
.

• The Weickert diffusivity gives

Sλ(x) =

{

0 x = 0,

x exp
(

−0.20718 λ8

x8

)

x 6= 0.

• The Tukey diffusivity leads to the shrinkage function

Sλ(x) =

{

4x3

λ2 − 4x5

λ4 |x| ≤ λ/
√

2,

x |x| > λ/
√

2.

Since the FAB diffusivity may attain negative values, it is not surprising that
its corresponding shrinkage function

Sλ1,λ2
(x) = x

(

1 − 2 exp(−2|x|2/λ2
1) + exp(−2|x|2/λ2

2)
)

with λ1 < λ2 may violate the condition (15).
Figures 1 and 2 illustrate these bounded diffusivities and their shrinkage
functions.
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Figure 1: Diffusivity functions (left), corresponding shrinkage functions
(right).
A. Linear diffusion. B. Charbonnier diffusivity. C. Perona-Malik diffusivity.
D. Weickert diffusivity. The functions are plotted for τ = 0.1 (linear diffu-
sion), and τ = 0.25, λ = 1 (all others).
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E. Tukey diffusivity F. Forward-and-backward (FAB) diffusivity. The func-
tions are plotted for λ/

√
2 = θ = 1 (Tukey) and λ1 = 1, λ2 = 2 (FAB).
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4.3 From Shrinkage Functions to Diffusivities

Having derived shrinkage functions from nonlinear diffusivities, let us now
derive diffusivities from frequently used shrinkage functions. To this end, all
we have to do is to plug in the specific shrinkage function into (14).
In the case of soft shrinkage, this gives the diffusivity

g(|x|) =

{

1
4τ

|x| ≤ θ
√

2,
√

2θ
4τ |x| |x| > θ

√
2.

If we select the time step size τ such that θ = 2
√

2τ , we obtain a stabilised
TV diffusivity (see also [40, 41] for an alternative derivation):

g(|x|) =

{

1
4τ

|x| ≤ 4τ,
1
|x| |x| > 4τ.

In the same way one can show that garrote shrinkage leads to a stabilised
BFB diffusivity for θ =

√
2τ :

g(|x|) =

{

1
4τ

|x| ≤ 2
√
τ ,

1
|x|2 |x| > 2

√
τ .

Firm shrinkage yields a diffusivity that degenerates to 0 for sufficiently large
gradients:

g(|x|) =











1
4τ

|x| ≤
√

2θ1,

θ1

4τ(θ2−θ1)

(√
2θ2

|x| − 1
) √

2θ1 < |x| ≤
√

2θ2,

0 |x| >
√

2θ2.

This degeneracy resembles the behaviour of the Tukey diffusivity from Sec-
tion 2.1. Another diffusivity that degenerates to 0 can be derived from hard
shrinkage:

g(|x|) =

{

1
4τ

|x| ≤
√

2θ,

0 |x| >
√

2θ.

All diffusivities in this subsection are depicted in Figure 3.
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Figure 3: Diffusivity functions (left), corresponding shrinkage functions
(right).
G. TV flow and soft shrinkage. H. Balanced forward-backward (BFB) diffu-
sivity and garrote shrinkage. I. Firm shrinkage. J. Hard shrinkage.
The functions are plotted for τ = 0.25 (which corresponds to θ = τ2

√
2 for

soft shrinkage, and to θ =
√

2τ for garrote; the other use θ = θ1 = 1, θ2 = 2).
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5 Stability Analysis of Wavelet Shrinkage

In this section we exploit the connections between wavelet shrinkage and
diffusion filtering in order to establish three stability properties for wavelet
shrinkage: maximum–minimum stability, monotonicity preservation, and sign
stability.

5.1 Maximum–Minimum Stability

Maximum–minimum stability of a discrete diffusion process states that the
filtered signal at time step k+1 stays within the range of the data at step k.
For a single step output u computed from the input signal f this maximum–
minimum principle gives

min
j
fj ≤ ui ≤ max

j
fj (i = 0, ..., N − 1). (16)

Maximum–minimum principles are essential in scale-space theory since they
guarantee causality of the continuous evolution [24]: Level lines can be traced
back in scale. The following proposition states conditions under which wavelet
shrinkage is maximum–minimum stable.

Proposition 1 (Maximum–Minimum Stability).
The shift invariant single level Haar wavelet shrinkage (10) with an odd
shrinkage function Sθ satisfies the discrete maximum–minimum principle
(16) if

−x ≤ Sθ(x) ≤ x for all x ≥ 0. (17)

If this condition does not hold, it is possible to construct counterexamples
that violate the discrete maximum–minimum principle.

The proof for this result can be found in the appendix.
We observe that odd shrinkage functions satisfying (15) are maximum–minimum
stable. By exploiting the relation (13), let us now re-interpret the stability
condition (17) in terms of stability for nonlinear diffusion filtering. From

x(1 − 4τg(
√

2x)) = Sθ(x) ≤ x ∀ x > 0

one immediately obtains

τg(x) ≥ 0 ∀ x > 0. (18)

In the same way, the condition

−x ≤ Sθ(x) = x(1 − 4τg(
√

2x)) ∀ x > 0
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can be simplified to

τg(x) ≤ 1

2
∀ x > 0. (19)

Since the explicit scheme may be rewritten as

ui = τg(|fi+1−fi|) fi+1 + τg(|fi−fi−1|) fi−1

+
(

1 − τg(|fi+1−fi|) − τg(|fi−fi−1|)
)

fi (20)

it becomes clear that (18) and (19) guarantee that the weights in front of
fi+1, fi and fi−1 are nonnegative. Since these weights sum up to 1, we have a
convex combination that ensures stability in terms of a discrete maximum–
minimum principle:

min(fi−1, fi, fi+1) ≤ ui ≤ max(fi−1, fi, fi+1).

This can be regarded as an alternative to the proof in the appendix which is
performed within the wavelet setting.

5.2 Preservation of Monotonicity

Maximum–minimum stability guarantees that the filtered signal does not
leave the range of the original signal, but it does not give any statements
on the behaviour within these bounds. One stability notion that takes into
account such a behaviour is monotonicity preservation.
Assume that the input signal f = (f0, f1, ..., fN−1)

> is monotonically in-
creasing (or decreasing), then a filter is called monotonicity preserving, if
the processed signal u = (u0, u1, ..., uN−1)

> is monotonically increasing (or
decreasing) as well.

From this definition it follows that monotonicity preserving filters cannot
create oscillations for monotonic signals. The subsequent proposition shows
that monotonicity preservation of wavelet shrinkage can be established under
the same conditions as maximum–minimum stability.

Proposition 2 (Preservation of Monotonicity).
The shift invariant single level Haar wavelet shrinkage (10) with an odd
shrinkage function Sθ is monotonicity preserving if

−x ≤ Sθ(x) ≤ x for all x ≥ 0. (21)

The proof of this proposition is a direct consequence of the connection be-
tween Haar wavelet shrinkage and explicit diffusion filtering: In the previous
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subsection we have seen that single level Haar wavelet shrinkage satisfying
condition (21) can be expressed as the explicit diffusion filter (20) with

0 ≤ τg(x) ≤ 1

2
∀ x > 0.

For such a diffusion scheme, monotonicity preservation has already been es-
tablished in [45].

5.3 Sign Stability

The preceding discussion shows that the condition (17), which ensures maxi-
mum–minimum stability as well as positivity preservation, is less restrictive
than the typical design property (15) for shrinkage functions. This gives
rise to the conjecture that (15) may imply additional stability properties.
Therefore, let us consider the notion of sign stability next.
A filter transforming an initial signal f = (f0, f1, ..., fN−1)

> into a processed
signal u = (u0, u1, ..., uN−1)

> is called sign stable or variation diminishing in
the sense of Schoenberg [38], if the number of sign changes in the components
of u does not exceed the number of sign changes in f . In this definition, zeros
are not taken into account.
It should be noted that sign stability is a stronger stability requirement
than it may seem at first glance: Since wavelet shrinkage is invariant under
shifts of the average grey value, sign stability also implies that the number of
level crossings does not increase for any level. In particular, by choosing the
smallest and largest value of the initial signal as reference levels, sign stability
always ensures maximum–minimum stability. Moreover, it also guarantees
that a monotone input signal does not create an oscillatory filter output.
Sign stability results for wavelet shrinkage are established in the following
proposition, which is proved in the appendix.

Proposition 3 (Sign Stability).
The shift invariant Haar wavelet shrinkage (10) with an odd shrinkage func-
tion Sθ is sign stable if

0 ≤ Sθ(x) ≤ x for all x ≥ 0. (22)

By means of our equivalence results, sign stability directly carries over to the
explicit discretisation on nonlinear diffusion filters. This extends Glashoff’s
and Kreth’s results [22] for finite difference schemes for linear diffusion to the
nonlinear setting. It also gives rise to the conjecture that such a variation
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diminishing property does not only hold in the discrete framework, but carries
over to the continuous PDE formulation as well. To the best of our knowledge,
continuous sign stability results are only available in the linear case so far
[42].

It is instructive to analyse the sign stability condition (22) in detail. Using

Sθ(x) = x(1 − 4τg(
√

2x)),

the condition 0 ≤ Sθ(x) for all x > 0 can be simplified to

τg(x) ≤ 1

4
∀ x > 0.

This result explains why soft, garrote, firm and hard shrinkage correspond
to diffusivities that have been cut off at 1

4τ
: It is a direct consequence from

the fact that wavelet shrinkage is sign stable.

6 Denoising Experiment

To test the applicability of the newly derived shrinkage functions from Section
4.2, we perform experiments with signal-denoising using the shift-invariant
multiscale Haar wavelet transform from Section 3. The input signal blocks,
one of the standard signals in wavelet denoising, mimics a scan line through a
2-D image depicting an object with several edges [16]. The signal is shown in
Fig. 4. The same figure then shows examples of the results of multiscale Haar
wavelet denoising when combined with several shrinkage functions introduced
in previous sections.
Table 1 and Fig. 5 present additional experimental results obtained with the
blocks data. Here we performed a series of experiments with several levels of
additive zero-mean Gaussian noise in the input signal. The noise varies be-
tween SNR=1 and SNR=32, where the signal-to-noise ratio (SNR) is defined
by

SNR = 20 log10

|z − z|2
|n|2

,

with z standing for the ideal signal with mean z̄, and n representing noise.
The noise is generated five times for each input SNR level and the resulting
output SNR was averaged. Then we used multiscale wavelet denoising with
various shrinkage functions, and searched for the optimal parameters that
maximise the signal-to-noise ratio in the filtered signal.
Table 1 summarises the average optimal SNR after filtering obtained with
different shrinkage functions; Fig. 5 presents the same information graphi-
cally, together with the standard deviation of the results. We observe that for
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SNRin 1 2 4 8 16 32
Shrinkage method
Linear 3.6 4.2 5.5 8.7 16.1 32.0
Charbonnier 8.7 9.6 11.2 14.8 22.4 38.4
Soft (TV) 10.1 10.9 12.6 16.2 24.0 39.9
Perona-Malik 9.9 10.8 12.8 16.8 25.8 44.5
FAB 10.5 11.3 12.8 15.7 23.6 45.1
Tukey 11.6 12.6 14.7 18.9 28.0 45.8
Garrote (BFB) 11.9 12.9 15.0 19.3 28.5 46.0
Firm 12.8 13.8 15.9 20.2 29.0 46.1
Weickert 12.9 13.9 16.0 20.2 29.1 46.1
Hard 12.9 13.9 15.9 20.2 29.1 46.1

Table 1: Numerical results (measured by mean signal-to-noise ratio in the
filtered signal) of wavelet denoising for the blocks data of length 1024. Each
column represents a given level of noise in the input image; each row contains
the results for one shrinkage function.

all noise levels, the best signal-to-noise ratio is obtained by those shrinkage
functions which put small wavelet coefficients to zero and keep larger coef-
ficients almost unaffected. The functions with these properties include hard
shrinkage, firm shrinkage and – to some extent – the garrote shrinkage on
the wavelet side. Of the diffusion origin, the experimentally best shrinkage
functions correspond to the Weickert diffusivity, followed by the stabilised
BFB diffusivity (which is equivalent to garrote shrinkage), the Tukey, the
FAB and the Perona-Malik diffusivity. Interestingly, these are diffusivities
with nonmonotone flux functions that allow even contrast enhancement.
The second group of shrinkage functions decreases even large wavelet co-
efficients by a constant (or almost constant) value; the functions with this
behaviour include soft shrinkage, TV flow corresponding to it, and Char-
bonnier diffusivity. It seems that this strategy is less successful numerically.
These diffusivities lead to monotonically increasing flux functions and well-
posed diffusion filters.
As a group of its own, the denoising performance of linear diffusion (or its
shrinkage function) is far worse than that of the nonlinear methods.
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Figure 4: Example of multiscale translation-invariant Haar wavelet denois-
ing. Normal noise of SNR=8 was added to the ideal signal, and different
shrinkage functions have been applied. The noisy signal is represented by
dots, reconstructed signal by solid line.
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Figure 5: Comparing the optimal denoising performance of shift-invariant
multiscale wavelet shrinkage with various shrinkage functions. SNR of the
filtered signal is plotted against SNR of the input; the higher the graph, the
better the result. The input signal was blocks, length 1024.
Top left: garrote shrinkage (BFB diffusivity), soft shrinkage (TV flow) and
linear diffusion. Top right: garrote (BFB), hard and firm shrinkages. Bot-
tom left: garrote (BFB), Perona-Malik and Weickert functions. Bottom
right: best from either world, hard shrinkage and Weickert diffusivity give
comparable results.
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7 Conclusions

We have analysed correspondences between explicit one-dimensional schemes
for nonlinear diffusion and discrete translation-invariant Haar wavelet shrink-
age. We have shown that if we restrict the methods to one discrete step and
a single spatial level, the two approaches can be made equivalent, if suitable
diffusivities or shrinkage functions are chosen.
This connection between nonlinear diffusion and wavelet shrinkage opens the
gate for a fruitful exchange of ideas between the two worlds. In this paper,
we derived new wavelet shrinkage functions from frequently used nonlinear
diffusivities. Vice versa, we showed that soft and garrote shrinkage may be
regarded as stabilised TV or BFB diffusion, respectively. We experienced that
some novel shrinkage functions inspired from rapidly decreasing diffusivities
are competitive with the best previously known shrinkage methods when
applied to signal denoising with multiscale wavelet procedures.
The connection between Haar wavelet shrinkage and explicit schemes for non-
linear diffusion filtering has also enabled us to establish three stability results
for single scale wavelet shrinkage: maximum-minimum stability, monotonic-
ity preservation, and sign stability. The proofs of these stability properties
illustrate that we have a nice transfer of ideas in both directions: While
maximum–minimum stability can be proved without difficulties in both the
wavelet and the diffusion framework, monotonicity preservation of wavelet
shrinkage has been derived from findings for diffusion filtering, while sign
stability of nonlinear diffusion filtering followed from sign stability of wavelet
shrinkage.
The results in this paper can be extended in several directions. One can
study iterated multi-scale wavelet shrinkage as a hybrid method combining
the efficiency of multi-scale wavelet shrinkage with the quality of iterated
diffusion filtering [35]. This hybrid method may be also explained as nonlinear
diffusion applied to the Laplacian pyramid of the signal [40, 41]. While the
present paper focuses on the 1-D case, first 2-D results are reported in [33],
where explicit schemes for nonlinear diffusion filtering are used to construct
coupled shrinkage rules with improved rotation invariance. In our ongoing
work we consider other wavelet bases and analyse the multiscale setting in
more detail.
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Appendix

A.1 Proof of Proposition 1
(Maximum–Minimum Stability)

1. Let the shrinkage function Sθ satisfy (17). To prove the maximum-
minimum principle, we show for all i = 0, . . . , N − 1 that (17) implies

min{fi−1, fi, fi+1} ≤ ui ≤ max{fi−1, fi, fi+1}. (23)

If fi−1 ≤ fi ≤ fi+1, then we obtain by (17) and since Sθ is odd that

fi − fi+1√
2

≤ Sθ

(

fi − fi+1√
2

)

≤ fi+1 − fi√
2

,

fi−1 − fi√
2

≤ Sθ

(

fi−1 − fi√
2

)

≤ fi − fi−1√
2

and consequently by (10) that

min{fi−1, fi} ≤ fi−1 + fi

2
≤ ui ≤

fi + fi+1

2
≤ max{fi, fi+1}.

Similarly it follows in case fi−1 ≥ fi ≥ fi+1 that

min{fi, fi+1} ≤ fi + fi+1

2
≤ ui ≤

fi−1 + fi

2
≤ max{fi−1, fi},

in case fi−1 ≤ fi and fi ≥ fi+1 that

min{fi−1, fi+1} ≤ fi−1 + fi+1

2
≤ ui ≤ fi,
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and in case fi−1 ≥ fi and fi ≤ fi+1 that

fi ≤ ui ≤
fi−1 + fi+1

2
≤ max{fi−1, fi+1}.

This completes the proof of (23).

2. Conversely, let the shift invariant Haar wavelet shrinkage (10) satisfy a
discrete maximum-minimum principle. Assume that there exists x̃ ≥ 0
where (17) is violated in such a way that Sθ(x̃) > x̃.

In order to construct a counterexample, we consider an input signal
f which is zero except for fi =

√
2x̃ such that max

i=0,...,N−1
fi = fi and

min
i=0,...,N−1

fi = 0. Then we have by (10) that

ui =
fi

2
+

1

2
√

2
Sθ(x̃) −

1

2
√

2
Sθ(−x̃) > fi

which contradicts the maximum principle.
Now assume that there exists x̃ ≥ 0 such that (17) is violated by
Sθ(x̃) < −x̃. Then we show for the same input sequence that ui < 0
which contradicts the minimum principle. This completes the proof. �

A.2 Proof of Proposition 3 (Sign Stability)

By (10) the values ui are the averages of u+
i and u−i . We start by considering

u+
i . By (8), (9) and (22), we obtain for f2i ≥ f2i+1 that

f2i + f2i+1

2
≤ u+

2i ≤ f2i,

f2i+1 ≤ u+
2i+1 ≤ f2i + f2i+1

2
.

Similarly we can handle the case f2i ≤ f2i+1. Hence we obtain u+
2i, u

+
2i+1 by

moving the pixels f2i, f2i+1 the same distance into the direction of the mean
value (f2i + f2i+1)/2 without passing this value. In other words, for arbitrary
fixed f there exist a2i, b2i with 1/2 ≤ a2i ≤ 1 and b2i = 1 − a2i such that

(

u+
2i

u+
2i+1

)

=

(

a2i b2i

b2i a2i

)(

f2i

f2i+1

)

(i = 0, ..., N/2 − 1).

Similarly we can handle u−i , where we group f2i−1 and f2i together:

(

u−2i−1

u−2i

)

=

(

a2i−1 b2i−1

b2i−1 a2i−1

)(

f2i−1

f2i

)

(i = 1, ..., N/2 − 1),
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with 1/2 ≤ a2i−1 ≤ 1 and b2i−1 = 1 − a2i−1.
Since N = 2n is even, we have two unaffected boundary values in this case:

u−0 = f0,

u−N−1 = fN−1.

Now ui = (u+
i + u−i )/2 implies that

u = Qf

where Q = Q(f) is the symmetric tridiagonal matrix

1

2























c0 b0

b0 c1 b1
. . .

. . .
. . .

. . .
. . .

. . .

bN−3 cN−2 bN−2

bN−2 cN−1























,

with

ci := ai−1 + ai (i = 0, ..., N − 1),

a−1 := 1,

aN−1 := 1.

Obviously we have ci ≥ 1 and 0 ≤ bi ≤ 1/2 for i = 0,...,N − 1. Thus,
from Gershgorin’s theorem [43] it immediately follows that Q is positive
semidefinite. Interestingly, this also implies that Q is totally positive, i.e.
all its minors are nonnegative: Theorem 3.2 in [26] states that a symmetric
tridiagonal matrix is totally positive, if it is positive semidefinite and if all
subdiagonal elements bi are nonnegative. It is shown in a classical paper by
Schoenberg [38] that if Q is totally positive, then the corresponding linear
transform is sign stable. Thus, u = Qf cannot have more sign changes than
f and we are done. �
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