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Abstract

Dorst/van den Boomgaard and Maragos introduced the slope trans-
form as the morphological equivalent of the Fourier transform. Tt
formed the basis of a morphological system theory that bears an al-
most logarithmic relation to linear system theory. This surprising log-
arithmic connection, however, has not been understood so far.

Our article provides an explanation by revealing that morphology
in essence is linear system theory in specific algebras. While linear sys-
tem theory uses the standard plus-prod algebra, morphological system
theory is based on the max-plus algebra and the min-plus algebra. We
identify the nonlinear operations of erosion and dilation as linear con-
volutions in the latter algebras. For the subsequent theoretical analy-
sis, it is advantageous to focus on two concepts from convex analysis:
We consider the conjugacy operation and the multivariate Laplace
transform instead of the closely related slope and Fourier transforms.
While the Laplace transform maps convolution into multiplication, the
conjugacy operation turns erosion into addition. This logarithmic con-
nection triggers us to consider the logarithmic Laplace transform. The
logarithmic Laplace transform in the plus-prod algebra corresponds to
the conjugacy operation in the max-plus algebra. Its conjugate is given
by the so-called Cramer transform. Originating from the theory of
large deviations in stochastics, the Cramer transform maps Gaussians
to quadratic functions and relates standard convolution to erosion.
This fundamental transform constitutes the direct link between lin-
ear and morphological system theory. Many numerical examples are
presented that illustrate the convexifying and smoothing properties of
the Cramer transform.

AMS 2000 Subject Classification: 93A10 08A05 26B25 44A15
Key Words: linear system theory, morphology, convex analysis, max-plus
algebra, min-plus algebra, slope transform, Cramer transform.
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1 Introduction

Linear system theory is a successful and well established field in signal and
image processing [8, 15, 16, 30]. In the n-dimensional case, shift invariant
linear filters can be described as convolutions of some signal f : R" — IR
with a kernel function b : R" — IR:

(F =)= [ o= v)blo)dy.

Let (-, -) denote the Euclidean scalar product. By means of the Fourier trans-
form
f = FU) = [ e e ao
Rn
and its backtransformation
Fal(e) = [ glu) e du

one may conveniently compute a convolution in the spatial domain via a
simple product in the Fourier domain:

Flf xb] = F[f] - Flb].
In this context, Gaussians
1 (u,z)

K () == ——— e 57

e
(2mo2)™/?

play an important role as convolution kernels: They are the only separa-
ble and rotationally invariant function that preserve their shape under the
Fourier transform. Convolutions of a signal f with the family {K, | ¢ > 0} of
Gaussians create the Gaussian scale-space [21, 38, 40], a multiscale represen-
tation that is useful in pattern recognition, image processing and computer
vision [12, 22, 25, 36]. Figure 1(a) shows an example.
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Mathematical morphology is an interesting nonlinear alternative to linear
systems theory [17, 28, 33, 34, 35]. It has been applied successfully to a
large number of fields including cell biology, computer-aided quality control,
mineralogy, remote sensing and medical imaging. Morphology is based on
two fundamental processes: dilation and erosion. In the case of nonflat mor-
phology, the dilation resp. erosion of some function f : IR" — IR with a
structuring function b : R" — IR can be defined as follows (see e.g. [26, 37]):

(f@b)(z) = sup{f(y) +b(z—y)|yeR"},
(foeb)(x) = inf {f(y) —bly—=)|ycR"}.

Dorst and van den Boomgaard [10] and Maragos [26] developed indepen-
dently and simultaneously a morphological system theory that closely re-
sembles linear system theory. Following [10], one may generalise the dilation
to the tangential dilation via

(f&b)(@) = stat (f(y) +b(x ~ v))

where stat f(y) := {f(2)| Vf(z) = 0} denotes the stationary values of f.
y

Then the morphological equivalent to the Fourier transform is given by the
slope transform

S[f](u) := St;it(f(.’]?) — (u, ),

a transformation that is closely related to the conjugacy operation in convex
analysis [19]. Its backtransformation is given by

S glx) = stat(g(u) + (u, ).

The slope transform allows to replace the tangential dilation by simple ad-
dition in the slope domain:

S[f &bl = S[f] + Sh].

Paraboloids (2, 7)

x,x

b(z,t) = — 1 (t>0)

are those structuring functions in morphological system theory that play a
role comparable to Gaussians in linear system theory [37]: They are the only
rotationally invariant and separable structuring functions that maintain their
shape under the slope transformation. The corresponding dilation and ero-
sion scale-spaces are depicted in Figure 1(b) and (c). For a detailed analysis



Figure 1: Linear and morphological scale-spaces. Top: Mona Lisa painting by
Leonardo da Vinci, 256 x 256 pixels. (a) Left Column: Gaussian scale-space,
top to bottom: o = 0, 5, 10, 15. (b) Middle Column: Dilation scale-space
with quadratic structuring function, ¢ = 0, 0.25, 1, 4. (c) Right Column:
Erosion scale-space with quadratic structuring function, ¢ = 0, 0.25, 1, 4.



Table 1: Linear System Theory vs. Morphological System Theory

Linear theory Morphological theory
Canonical transform Flf](u) S[f](u)
”Convolution” theorem Ff xb] = F[f] - F[b] S[féb = S[f]+ S
Canonical kernel W e 5 — (ﬂ’f)

of their scale-space properties, we refer to Jackway and Deriche [24]. Morpho-
logical scale-spaces with paraboloids as structuring functions are useful for
computing Euclidean distance transformations [37], for image enhancement
[32] and for multiscale segmentation [23].

The connections mentioned above are displayed in Table 1.

This table suggests that there an almost logarithmic connection between
linear and morphological system theory. The structural similarities between
linear and morphological processes have triggered Florack et al. [13, 14] and
Welk [39] to construct parameterised processes that incorporate Gaussian
scale-space and both types of morphological scale-spaces as limiting cases.
Heijmans and van den Boomgaard [18, 19] have investigated unifying alge-
braic definitions of scale-space concepts that include a number of linear and
morphological approaches (cf. also [2]).

However, in spite of these very interesting contributions, the reason for the
almost logarithmic connection between linear and morphological systems has
not been discovered so far. To address this problem is the topic of the present

paper.

We provide an explanation for the structural analogies between linear and
morphological systems by revealing that morphology in essence is linear sys-
tem theory in a specific algebra. While classical linear system theory uses
the standard plus-prod algebra, the morphological system theory is based on
the max-plus algebra and the min-plus algebra. This allows us to identify
the nonlinear operations of erosion and dilation as linear convolutions *, and
x4 induced by these algebras. In this sense, morphology may be regarded as
linear system theory in disguise.

These algebraic structures have already numerous interesting applications
in other fields [4]: so-called discrete event dynamic systems (DEDS) can be
modeled as linear systems with respect to these algebras. Discrete event
dynamic systems in this algebraic formulation are used to find shortest paths
in networks or to solve scheduling and communication problems in abstract
project management, for instance. They are also employed to analyse queuing
systems, traffic flow and the performance of special array processors. To the
best of our knowledge, however, no attempt has been made so far to tackle



problems from image analysis with this special algebraic approach.

Our paper is organised as follows. In Section 2 we introduce the max-plus
and min-plus algebras that will play a fundamental role for the analysis
of morphological systems. In Section 3 we show that dilation and erosion
are convolutions in these algebras. Important concepts from convex analy-
sis, in particular the conjugacy operation, are explained in Section 4. The
re-interpretation of the conjugacy operation, viewed as a morphological op-
eration, leads us to its counterpart in linear systems theory: the logarithmic
Laplace transform which is introduced in Section 5. It provides an explana-
tion for the logarithmic connection between linear and morphological sys-
tems. Another logarithmic connection is established in Section 6, where we
investigate a continuous transition between convolution and morphological
operations. Section 7 is devoted to the Cramer transform as the conjugate
of the logarithmic Laplace transform. It constitutes a homeomorphism be-
tween linear and morphological systems. We discuss its basic properties and
present a number of examples. Finally we conclude our paper with a summary
in Section 8.

A preliminary version of the present paper has been presented in [7].

2 The Max-Plus and Min-Plus Algebras

The theory of discrete event dynamic systems (DEDS) is to a great extend
based on two algebraic structures: the max-plus algebra IR,,,, and, isomor-
phic to it, the min-plus algebra RR,,;, [4]. Mathematical models of these
systems are in general nonlinear if considered in the standard ubiquitous
plus-prod algebra (IR, +, -). However, reformulating such models in terms of
these new algebras transforms them into linear models. This idea of ”lineari-
sation” we are going to carry over to morphology. Formally the new algebras
emerge from the standard plus-prod algebra first by an extension of the real
line with either the element —oco or +00, second by replacing the addition by
a max- or min-operation, and the multiplication by addition. This is captured
in Table 2:

It should be noted that the max-plus and min-plus algebras are no algebras
in the classical sense since they lack an inverse with respect to the max-
or min-operations. For a rather exhaustive amount of details, the reader
is referred to [4] and the literature cited there. The importance of these
algebraic structures for our purpose will become clear in the next section,
where we consider convolution operations based on these algebras.



Table 2: The Definition of the Max-Plus and the Min-Plus Algebra

set addition multiplication
plus-prod algebra IR R + X
max-plus algebra R, | RU{—o00} max
min-plus algebra IR, R U {+o0} min

3 Morphology as Linear System Theory in
Another Algebra

The goal of the current section is to represent the basic morphological oper-
ations dilation and erosion as convolutions with respect to max-plus and the
min-plus algebras. To do so, we first have to clarify the algebraic background
of convolutions.

Roughly speaking, convolving two scalar-valued functions is averaging one
with the translated version of the other. More precisely, the usual convolution
x 1s determined by

(fxg)(z)= - flx—y)-9(y) dy,

for all x € IR"™. With its use of multiplication and integration, it is based on
the the standard algebra (IR, +, x). We give a new meaning to the term ”av-
eraging” by equipping the range of the functions with the algebraic structure
introduced above, that is, we consider functions

f:R" — Ry or [:R"— R,.

Now the transition, indicated by =, from the standard algebra to the other
algebras

(R,+,%x) = (RU{+oc},min,+) or (IRU{—oc}, max,+)

amounts to the replacement of integration (=summation) by taking the in-
fimum or the supremum, and the replacement of multiplication by addition.
This gives rise to two analogs to the convolution x*:

(f*ag)(x) = sup (flz—y)+9))=sup (f(y)+g@—-y)),

(Fre9)(@) = imf (flz-y)+9(y)= mf (f)+9g(z—y)).



Hence the morphological operations of dilation & and erosion & as given in
[10] or [27] appear as convolutions w.r.t. these algebras:

(fog)(z) = Selgn(f(y) +9(@—y) = f*ag(@), (1)
Y
(feg) (z) = yiEI}an(f (y) —gly —2)) = f *.g(x), (2)
with g(z) := —g(—=x) . This also explains the chosen notations *, and *4. It

should be noted that the operation *, is not only known in morphology: It
coincides exactly with the so-called inf-convolution or epigraphic addition in
convex analysis [20, 31].

For our further considerations it is worthwhile to pursue an excursion into
convex analysis. This shall be done next.

4 Tools from Convex Analysis

In this section we will introduce two useful transformations: the conjugacy
operation from convex analysis and the multivariate Laplace transform. They
may serve as alternatives to the slope transform and the Fourier transform.
Let Conv IR™ be the set of extended functions f : R" — IR U {+oc} which
are closed convex, that is, convex, finite in at least one point and lower
semicontinuous. Lower semicontinuous functions are precisely those that can
be approximated from below by a sequence of continuous functions. This
function class is still to large for our purpose, the proper definition of the
conjugacy operation. We say that f has an affine minorant if and only if
f > () —cfor some (t,c) € R" x IR, where (-,-) denotes the standard
scalar product in IR"™. Then the convolution f %, g of two convex functions f,
g that have a common affine minorant is again convex.

The conjugacy operation (Legendre-Fenchel transform) associates with each
f with an affine minorant the function f* defined by

fH(x) = sup [(t,z) — f(£)].
teR™
Remarkably, f* € ConvIR" as soon as f is affinely minorised, regardless of
its convexity or closedness [20]. In morphology this transform is a variant of
the slope transform [10, 26]. However, it offers the advantage that it gener-
ates (extended) real-valued functions, while the slope transform in general
produces set-valued functions as output.
In order to clarify the algebraic properties of the conjugacy operation we
mention the basic properties of the *.-convolution: The *.-convolution is an



associative, commutative, order-preserving binary operation. Defining for any

subset A € R"
. 0 x €A,
talz) = { +00  otherwise, (3)

the indicator function i) is recognised as the neutral element with respect
to this operation. This function corresponds to the structural element in
[10, 24].

The following proposition sheds some light on the invertibility and algebraic
properties of the conjugacy operation with respect to *..

Proposition 1. (Properties of the Conjugacy Operation I)
Let f,g € ConuIR™ . Then the following properties hold:

1. ConvlIR" is invariant under conjugation: f*e ConvIR"™ .
2. The conjugacy operation s its own inverse: (f)=+r.
3. It maps erosions into sums: (f*e9)* = f*+ g*.

For proofs of these assertions and more detailed results on the properties of
conjugation, the reader is referred to [20].

The fact that the conjugacy operation maps erosions into sums resembles
the well-known property of the Fourier transform which turns convolution
into multiplication. Since the Fourier transform also maps multiplication into
convolution it would be interesting to know whether the conjugacy opera-
tion transforms sums into erosions. To this end we have to introduce some
additional technical definitions first.

In general, semicontinuity is not preserved under *.-convolution, that is, f*.g
is not lower semicontinuous even if f and g are. However, if a very mild so-
called qualification condition is fulfilled, semicontinuity is guaranteed. For its
formulation we denote by the domain of f the set of argument values where
f is finite:

dom f:={z € R" : f(x) < +o0}.

Furthermore, we need the notion of relative interior of a set C' C IR"™. Without
going into details we characterise the relative interior ri C' as the interior of
C for the topology relative to the smallest affine manifold containing C'. The
aforementioned qualification condition requires that the relative interiors of
the domains of the two functions do intersect:

ri(dom f) Nri(domg) # 0.



Now we are in the position to make a statement on the behaviour of the
conjugacy operation with respect to standard addition.

Proposition 2. (Properties of the Conjugacy Operation IT)
Let f,g € ConvIR" and let f, g satisfy the qualification assumption

ri(dom f) Nri(domg) # 0.

Then the conjugacy operation maps sums into erosions:

(f+9) = [f"*9g"

The reader interested in the proof and in more details on this subject may
consult [6] or [20].

The preceding propositions state the expected analogy to the convolution
theorem of the Fourier transform. However, since the Fourier transform is
by definition complex-valued, it would be useful to consider a real-valued
transformation with similar properties. The multivariate Laplace transform
will serve our purpose. It is defined for any function f : R™ — [0, +00] by

n

Lif] : o Lif](x) == / @9 f)dy  with s € R™.

Note that the integral is always defined, but due to its exponential ker-
nel it might not be finite even for integrable functions. Nevertheless, the
x-convolution of functions is transformed into a multiplication of the Laplace
transforms:

/ e [ fly—2)g(z)dzdy = / / eV f(y — 2)e ™ g(2)d z dy
n R" n n
= / e f(t)dt / e g(2)dz.

This is the real-valued counterpart to the convolution theorem of the Fourier
transform.

5 Laplace Transform and Conjugation: The
Logarithmic Link

In this section we reveal the counterpart of the conjugacy operation in linear
systems theory, and we will see that the logarithm will make its natural
appearance.

10



We take the point of view that the conjugacy operation is a transform defined
in terms of the max-plus algebra. Then the transition (=) from the max-plus
algebra to the plus-prod algebra in the definition of the conjugacy operation
entails the transition

fr(@) = sup ({y,2) = f(y)) = log sup (e~/W)
yeR™ y€IR™

n

= log/ eI gy = log/ e e 1) dy =log Lle T](z).

In other words: The conjugate of f interpreted in the context of the mazx-
plus algebra corresponds to this logarithmic Laplace transform of e=1 in the
standard algebra. A logarithmic relation between the two transforms becomes
obvious: Essentially it traces back to a well-known property of the logarithm:

log(a - b) =log a+log b.

This gives the theoretical explanation for the logarithmic connection between
both system theories.

It should be remarked that what we encounter here is not precisely the pair-
ing Fourier transform — slope transform. Instead the more appropriate pair-
ing logarithmic Laplace — conjugacy operation emerges from this change of
underlying algebras.

When compared to Proposition 4, item 1, and Proposition 4, the following
proposition emphasises the correspondence between conjugation and loga-
rithmic Laplace transform.

Proposition 3. (Properties of the Logarithmic Laplace Transform)
For any functions f,g: R" — [0, +00] with f,g # 0 one has:

1. The logarithmic Laplace transform is always convex and lower semi-
continuous for non-negative functions:

log L[ f] € ConvIR™ .

2. Convolutions are mapped into sums:

log L[f * g] = log L[f] + log L[g] .

11



PROOF:

1. Suppose 0 < a < 1. Then by Hélder’s inequality with exponents p = i
and p' = L= we obtain:

Llfl(aws+ (1= aaz) = [ clems0oom ) dy

— / ) (efrrm) . (e<w2,y>)(1—a> fly) dy
< (L) (@)™ - (LI () "

Taking the logarithm proves the claimed convexity.
The lower-semicontinuity follows directly from Fatou’s lemma [5], since

lim z, =2 implies L[f](z) < liminf L[f](zy),

n—-+oo n—-+00

for non-negative f and the fact that the logarithm is increasing and
continuous.

2. Property 2 follows directly from the properties of the Laplace transform
and the logarithm. O

This result establishes a convexifying property of the logarithmic Laplace
transform together with its algebraic property of transforming convolution
into addition.

6 A Continuous Transition between Convo-
lution and Morphological Operations

In this section we show that there is a continuous transition from the standard
x-convolution of two positive functions f,g to their *.-convolution. With
reference to the Lebesgue norms

(f \f(x)\pdx)l/p for 1 <p < +o0,
Rn

sup{|f(z)|: x € R"}  for p=+o0,

1fllp =

we define a p-conwvolution for strictly positive functions f, g:

(f#pg)(x) = |If-g(z =), for 1<p<+o0.

12



On the one hand, for p =1 we regain the well-known convolution: x = %;.
On the other hand, we infer directly from the definitions of the operations

x4 that
(Fro)@) = Nf-g@—")l
P9 =)l
= exp [log[sgp(f(y)'g(x—y))]]
= exp((log f) *4 (log g)(z)).

In a similar fashion we obtain for not necessarily positive functions f, g:
log((e™ %, ¢)(2)) " log((e™ * ) (x))

as well as
log((e™/ #¢)(2)) 225 log [sup(e/® - ¢4V
y

_ loge—ilylf(f(y)w(m—y))

_(f *e g)(x) :

We observe that the logarithm makes again its natural appearance. This
transition may be regarded as an alternative to the results of Florack et al.
[14, 13] and Welk [39].

7 The Cramer Transform

In Section 5 we have established the importance of the logarithmic Laplace
transform. Thus, it is natural to investigate its conjugate as well. This leads
us to the so-called Cramer transform.

7.1 Definition and Basic Properties

The Cramer transform plays a key role in statistics, especially in the theory of
large deviations [9, 11]. From a functional point of view, it allows us to make
a connection between the usual convolution *, that appears in linear scale-
space theory, and the morphological operations @& and &. This connection
makes use of the convolutions %4 and *.. According to its appearance in
statistics we define the Cramer transform for nonnegative functions only:
For functions f : R"™ — [0, +00], the transform

C[f] = (log Lf])*

13



is called Cramer transform.

The Cramer transform is the combination of the logarithmic Laplace trans-
form with its morphological counterpart, the conjugacy operation. The rea-
son why this transform is of importance in morphology is illuminated by the
following proposition which is a direct consequence of the properties of the
Laplace transform and the conjugacy operation.

Proposition 4. (Convolution Theorem for the Cramer Transform)

If f and g are non-negative functions on IR", then

Clf * gl = C[f] % Clg].

In view of equations (1) and (2) this entails for nonnegative functions f, g # 0
the relations

—CI[f * gl = (-C[f]) ® (—Clg])
and
C[f *g] = Clf] o Clg].

First we observe that, according to Proposition 1, the Cramer transform maps
any nonnegative function into ConvIR" . Hence it follows from Theorem 1
(2) that the conjugate of the Cramer transform is the logarithmic Laplace
transform:

C*[f] = log L[f].

7.2 Examples of Cramer Transforms

In order to illustrate the behaviour of the Cramer transform let us present
some examples now.

1. Dirac Measures. Let §, denote the Dirac measure in a € IR". Then
Clda] = 1a
with 4, being defined in (3).

2. Bernoulli Distribution. The Cramer transform is not additive:

Cl(1 = p) Gy + poil(z) = z - log (g) +(1—g)-log G%;) i (@).

14



3. Gaufl distribution. The Gauf} distributions correlate to quadratic
functions with reciprocal “variance”: As mentioned in [1, 3] this means
for the one dimensional Gaussian with mean y and variance o2 that

1 m 1|p—ml?

o

This can be extended to the n-variate case of a Gaussian with diagonal
covariance matrix. We give a proof of both assertions by first calculating
the Laplace transform of a one-dimensional Gaussian with mean y =0
and variance o2 > 0:

1 </°O 2 ‘ 2 (—p)t
= e 22e P'dt +/ e 22e VP dt)
V2ro? \Jo 0

1 1 1

=3 e27’P’ (Exfe( ip\/ 202 ) + Erfe(— §pv 20?))
1,.92.2

prmd 620 p

where the complementary error function

Erfe(z) := 2 /+00 e dt
VT

is used according to formula 5.41 in [29].
For a Gaussian with mean p it follows immediately by a simple change
of variables that

& 1 (t—p)? 1.2 2
/ e 2? ePldt =ePle2 P |
—0o V2102

An n-variate Gaussian distribution with mean vector 4 € IR™ and diag-
onal covariance matrix D = diag(o?,...,02) has the separable density

1 -3 5 g
9(y) == e =T

(V2" - H o

15



Making use of the results above, Fubini’s theorem immediately gives

l(yz 1)2

/ gy) eV dy = / H ,—2702 o dy
l(yl 1)2

- 1 / a

27r02

— | | cPikii . o3PI0}
i=1

— lm)t3zp Dp

Hence we have

log Llg)(p) = {p. ) + 50" Dp.

Furthermore a straightforward calculation gives an optimal p = D=} (s—
p) in sup,cr{(s,p) — log L[g](p)} which results in

Qo i)' () = (p (o) + 307 Dp) (5
= S ls—m D (s~ p)

for x € IR™. This result is in complete accordance with the findings in
[37], where parabolic structuring functions have been identified as the
morphological equivalent to Gaussian convolution kernels.

. Piecewise Constant Functions. We continue this set of examples
with the numerical evaluation of Cramer transforms of positive, piece-
wise constant one-dimensional signals f sampled at equidistant points
over the interval [0, 1[. Defining the characteristic function 14 as

1 x €A,
La(z) = { 0  otherwise,

these signals are of the form

flo) =) il i
=1

Their logarithmic Laplace transforms read as

log L[ f](s) = log (% iai (65% - esi_Tl)> .

16



However, the corresponding conjugates, that means their Cramer trans-
forms, cannot be computed explicitly. Therefore we depict the graphs
of some signals together with their Cramer transforms in Figures 2 and
3 below.

5. Approximated Signals. We obtain numerically the Cramer trans-
form for the follwing functions: A truncated and renormalised Lorentz

distribution
3.306

"1476.91 (z—0.5)2"

f(z) = 1p,(2)
the triangular impulse
f(z) = 1pq(2) - (1 = 2:]z - 0.5]),
and a beta distribution
f(@) =1pq(z) - 56 2°(1 — z)°,

We use a piecewise constant approximation on 513 subintervals to cal-
culate the corresponding Cramer transforms depicted in Figure 3.

These results illustrate the strong smoothing and convexifying proper-
ties of the Cramer transform.

8 Conclusions

In this paper we have given an explanation for the almost logarithmic con-
nection between morphological systems and linear systems: The conjugacy
operation considered in the max-plus algebra corresponds to the logarithmic
Laplace transform in the standard algebra. In fact, morphological systems
become linear when viewed in appropriate algebras. We were able to identify
corresponding notions: convolution <+ erosion, logarithmic Laplace transform
+» conjugacy operation, and Gaussians <+ quadratic functions. The composi-
tion of the logarithmic Laplace transform and the conjugacy operation results
in the Cramer transform. This fundamental transform gives the direct link
between morphological and linear system theory.

The present article can be regarded as a step towards the unification of linear
and morphological scale-space theory on the basis of a general linear system
theory in an appropriate algebra. Taking full advantage of this connection
may allow to translate results directly from one area to the other. This may

17
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Figure 2: The smoothing property of the Cramer transform (CT). Top Row:
A Gaussian and its piecewise constant approximation on 33 subintervals (left)
and their CTs (right). 2nd Row: A random signal, piecewise constant on 33
subintervals (left) and its CT. 3rd Row: 0-1 signal on the interval [0,1] (left)
and its CT. 4th Row: 0-1 signal on the interval [0,1] with 100% additive
uniform noise (left) and its CT vs. the results of the 3rd row.
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Figure 3: The smoothing property of the Cramer transform (CT). Top Row:
A truncated Lorentzian distribution with polynomial decay together with
a Gaussian of the same height (left) and their CTs (right). 2nd Row: A
triangular shaped impulse and its CT. 3rd Row: A beta distribution and
its CT. 4rd Row: Another beta distribution and its CT.
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trigger a more fruitful interaction of both paradigms that have evolved in-
dependently to powerful image processing tools. Finally, a unification within
a more general algebraic framework may also help to identify novel image
processing approaches that are based on other algebras. These points will be
addressed in our future publications.
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