Universität des Saarlandes



# Fachrichtung 6.1 – Mathematik

Preprint Nr. 93

# Regularization of convex variational problems with applications to generalized Newtonian fluids

Michael Bildhauer and Martin Fuchs

Saarbrücken 2003

# Regularization of convex variational problems with applications to generalized Newtonian fluids

#### Michael Bildhauer

Saarland University Department of Mathematics P.O. Box 15 11 50 D-66041 Saarbrücken Germany bibi@math.uni-sb.de

#### Martin Fuchs

Saarland University Department of Mathematics P.O. Box 15 11 50 D-66041 Saarbrücken Germany fuchs@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

#### Abstract

We study variational problems with integrands of very general structure by introducing certain regularizations leading to particular minimizers. In a second part we apply the method to stationary generalized Newtonian fluids which gives the existence of solutions under weak hypotheses on the dissipative potential.

### 1 Introduction

Suppose we are given a convex energy density  $f: \mathbb{R}^{nN} \to [0, \infty)$  satisfying (with positive constants  $a, \tilde{a}, b, \tilde{b}$ ) the growth condition

$$aA(|X|) - b \le f(x) \le \tilde{a}|X|^q + \tilde{b} \quad \text{for all } X \in \mathbb{R}^{nN}$$

$$(1.1)$$

for some exponent q > 1 and some N-function  $A : [0, \infty) \to [0, \infty)$  having the  $\Delta_2$ -property. For example, we may choose  $A(t) = t \ln(1+t)$  or  $A(t) = t^p$  with  $p \leq q$ . We then like to consider the problem

$$J[w] = \int_{\Omega} f(\nabla w) \, \mathrm{d}x \to \min$$
 (1.2)

among all functions  $w: \Omega \to \mathbb{R}^N$  such that  $w = u_0$  on  $\partial\Omega$ . Here  $\Omega$  denotes a bounded Lipschitz domain in  $\mathbb{R}^n$ , and  $u_0$  is a function of class  $W^1_q(\Omega; \mathbb{R}^N)$ . To be more precise, we study (1.2) on the energy class

$$\mathcal{C} := \left\{ w \in W_A^1(\Omega; \mathbb{R}^N) : w - u_0 \in \overset{\circ}{W_A^1}(\Omega; \mathbb{R}^N), J[w] < \infty \right\},$$
(1.3)

where  $\overset{\circ}{W}^{1}_{A}(\Omega; \mathbb{R}^{N})$  is the Orlicz-Sobolev space generated by A (see, e.g. [Ad]). From (1.1) we deduce  $u_{0} \in \mathcal{C}$ , and the convexity of f implies that the problem (1.2) admits at least one solution.

If f is a strictly convex function, then the solution u is unique, and in order to study for example the regularity properties of u, the method of (global) regularization of problem (1.2) turned out to be a very powerful tool: for  $0 < \delta < 1$  let

$$f_{\delta}(X) := \delta(1 + |X|^2)^{\frac{q}{2}} + f(X), \quad X \in \mathbb{R}^{nN},$$

and replace (1.2) by

$$J_{\delta}[w] := \int_{\Omega} f_{\delta}(\nabla w) \, \mathrm{d}x \to \min \quad \text{in } \mathcal{C}' := u_0 + \overset{\circ}{W}_q^1(\Omega; \mathbb{R}^N) \,. \tag{1.4}$$

If  $u_{\delta}$  denotes the unique solution of (1.4), then  $\{u_{\delta}\}$  forms a minimizing sequence for the problem (1.2) and  $u_{\delta} \rightarrow u$  in  $W_1^1(\Omega; \mathbb{R}^N)$  as  $\delta \rightarrow 0$ . We refer, for instance, to the papers [Se], [MS], [BFM], [BF1] (and many others, more references are found in [FS] or [Bi]) in

AMS Subject Classification: 76M30, 49N

Keywords: variational problems, regularization, non-standard growth, generalized Newtonian fluids

which mainly the regularity of u is investigated via uniform estimates for the functions  $u_{\delta}$ . In the strictly convex case it is also possible to give local variants of the regularization technique leading to corresponding results for local minimizers u of the energy J.

If now f is merely assumed to be just a convex function, then of course problem (1.4) is still well-posed with unique solution  $u_{\delta}$ . Moreover, from (1.1) it follows that  $\sup_{0 < \delta < 1} \|u_{\delta}\|_{W^1_A} < \infty$ , hence there is a function  $\bar{u} \in W^1_A(\Omega; \mathbb{R}^N)$  having trace  $u_0$  and such that  $u_{\delta} \to \bar{u}$  in  $W^1_1(\Omega; \mathbb{R}^N)$  as  $\delta \to 0$  at least for a subsequence. Our first result is the observation that  $\bar{u}$  is a solution of (1.2) and – as in the case of strict convexity –  $\{u_{\delta}\}$  forms a minimizing sequence, precisely

Theorem 1.1. With the notation from above we have

- i)  $\{u_{\delta}\}$  is a minimizing sequence of problem (1.2).
- ii)  $J_{\delta}[u_{\delta}] \to \inf_{\mathcal{C}} J \text{ as } \delta \to 0.$
- iii) The weak limit  $\bar{u}$  belongs to the class C and is a solution of the problem (1.2).

Here  $f: \mathbb{R}^{nN} \to [0,\infty)$  is any convex function satisfying (1.1) and in addition

$$f(\lambda X) \le c(\lambda)f(X), \quad f(-X) \le cf(X)$$
 (1.5)

for all  $X \in \mathbb{R}^{nN}$  and  $\lambda \geq 1$  with some positive constants c and  $c(\lambda)$ .

Regularity of  $\bar{u}$  in turn can be used to obtain information on the behaviour of all solutions to the problem (1.2). We mention the following

**Corollary 1.1.** Suppose that the assumptions of Theorem 1.1 hold. Moreover, let f = g outside a ball in  $\mathbb{R}^{nN}$  for a strictly convex function  $g \leq f$ . Then, if  $\bar{u}$  is locally Lipschitz, the same is true for any solution u of (1.2) from the energy class C.

Next we turn our attention to a problem arising in the theory of generalized Newtonian fluids. To be precise, we are looking for a velocity field  $u: \Omega \to \mathbb{R}^n$  solving the following system of nonlinear partial differential equations

$$-\operatorname{div}\left\{T(\varepsilon(u))\right\} + u^{k}\frac{\partial u}{\partial x_{k}} + \nabla\pi = g \quad \text{in } \Omega, \qquad (1.6)$$
$$\operatorname{div} u = 0 \quad \text{in } \Omega, \\ u = 0 \quad \text{on } \partial\Omega$$

in a suitable weak sense. Here  $\pi$  is the a priori unknown pressure function and  $g: \Omega \to \mathbb{R}^n$ represents a system of volume forces which we assume to be of class  $L^{\infty}(\Omega; \mathbb{R}^n)$ . We further assume that the tensor T is the gradient of some convex potential  $f: \mathbb{S}^n \to [0, \infty)$  of class  $C^1$  which acts on the space  $\mathbb{S}^n$  of all symmetric  $(n \times n)$ -matrices. In (1.6) we take the sum w.r.t. repeated indices, and  $\varepsilon(u)$  denotes the symmetric gradient. In case  $f(\varepsilon) = |\varepsilon|^2$ (1.6) reduces to the Dirichlet-boundary value problem for the stationary Navier-Stokes system (see [Ga1], [Ga2] or [La]). So-called power-law models are investigated in [KMS]: they assume f to be of class  $C^2$  satisfying for some 1

$$\lambda(1+|\varepsilon|^2)^{\frac{p-2}{2}}|\sigma|^2 \le D^2 f(\varepsilon)(\sigma,\sigma) \le \Lambda(1+|\varepsilon|^2)^{\frac{p-2}{2}}|\sigma|^2 \quad \text{for all } \varepsilon, \, \sigma \in \mathbb{S}^n \tag{1.7}$$

with positive constants  $\lambda$ ,  $\Lambda$ . Note that (1.7) implies that f is of growth order p, moreover, the first inequality in (1.7) implies strict convexity of f. Then, if n = 2, Kaplický, Málek and Stará show that (1.6) admits a globally smooth solution in case p > 3/2, whereas for p > 6/5 the existence of a solution being smooth in the interior of  $\Omega$  is established.

In the recent paper [ABF] we replaced (1.7) by the anisotropic condition

$$\lambda(1+|\varepsilon|^2)^{\frac{p-2}{2}}|\sigma|^2 \le D^2 f(\varepsilon)(\sigma,\sigma) \le \Lambda(1+|\varepsilon|^2)^{\frac{q-2}{2}}|\sigma|^2 \quad \text{for all } \varepsilon, \, \sigma \in \mathbb{S}^n \tag{1.8}$$

with exponents  $1 , <math>q \ge 2$ . Then we proved: if q < p(1 + 2/n) together with

$$p > \begin{cases} \frac{6}{5}, & n = 2, \\ \frac{9}{5}, & n = 3, \end{cases}$$

then (1.6) admits a weak solution  $\bar{u}$  whose gradient is locally of class  $L^{p^*}$ , where

$$p^* = \begin{cases} 3p & \text{if } n = 3, \\ \text{any finite number } \text{if } n = 2. \end{cases}$$

Moreover, if q = 2, then in the two-dimensional case  $\bar{u}$  is smooth in the interior of  $\Omega$ , whereas for n = 3 partial regularity holds.

The results of [KMS] and [ABF] are obtained by regularizing problem (1.6) and by proving uniform regularity results for the corresponding solutions which causes a lot of work. We like to describe an easier way leading to the existence of a solution to (1.6) in the anisotropic case which works under less restrictive growth and smoothness assumptions on the potential f. The price we have to pay is that we need a stronger lower bound for the exponent p.

To be precise assume that

$$f \colon \mathbb{S}^n \to [0, \infty)$$
 is convex and of class  $C^1$  (1.9)

satisfying with exponents 1

$$a|\varepsilon|^p - b \le f(\varepsilon) < A|\varepsilon|^q + B \tag{1.10}$$

where a, b, A, B denote positive constants. We define  $f_{\delta}(\varepsilon)$ ,  $0 < \delta < 1$ , as before and let  $u_{\delta}$  denote a solution of

$$\int_{\Omega} Df_{\delta}(\varepsilon(u_{\delta})) : \varepsilon(\varphi) \, \mathrm{d}x - \int_{\Omega} u_{\delta} \otimes u_{\delta} : \varepsilon(\varphi) \, \mathrm{d}x = \int_{\Omega} g \cdot \varphi \, \mathrm{d}x \tag{1.6}{\delta}$$
  
for all  $\varphi \in C_{0}^{\infty}(\Omega; \mathbb{R}^{n})$ ,  $\operatorname{div} \varphi = 0$ 

in the space  $W_q^1(\Omega; \mathbb{R}^n) \cap \text{Ker}(\text{div})$ . Note that in general we cannot expect unique solvability of  $(1.6_{\delta})$ . From

$$\begin{array}{lll} J_{\delta}[w] &:=& \int_{\Omega} f_{\delta}(\varepsilon(w)) \, \mathrm{d}x - \int_{\Omega} u_{\delta} \otimes u_{\delta} : \varepsilon(w) \, \mathrm{d}x - \int_{\Omega} g \cdot w \, \mathrm{d}x \\ J_{\delta}[u_{\delta}] &\leq& J_{\delta}[0] &=& f_{\delta}(0) |\Omega| \end{array}$$

and (1.10) it follows by Korn's inequality that

$$\sup_{0<\delta<1} \|u_{\delta}\|_{W^1_p(\Omega;\mathbb{R}^n)} < \infty ,$$

where we also made use of the fact that

$$\int_{\Omega} u_{\delta} \otimes u_{\delta} : \varepsilon(u_{\delta}) \, \mathrm{d}x = 0 \, .$$

Thus we find a function  $\bar{u} \in \overset{\circ}{W}{}_{p}^{1}(\Omega; \mathbb{R}^{n}) \cap \operatorname{Ker}(\operatorname{div})$  such that  $u_{\delta} \to \bar{u}$  in  $W_{p}^{1}(\Omega; \mathbb{R}^{n})$  as  $\delta \to 0$  at least for a subsequence.

**Theorem 1.2.** Let (1.9), (1.10) and the first part of (1.5) hold. Suppose further that p > 3n/(n+2). Then, with the notation from above, the limit  $\bar{u}$  belongs to the energy class

$$\mathbb{K} := \left\{ u \in \overset{\circ}{W}{}_{p}^{1}(\Omega; \mathbb{R}^{n}) : \operatorname{div} u = 0, \int_{\Omega} f(\varepsilon(u)) \, \mathrm{d}x < \infty \right\}$$

and minimizes

$$J[w] = \int_{\Omega} f(\varepsilon(w)) \, \mathrm{d}x - \int_{\Omega} \bar{u} \otimes \bar{u} : \varepsilon(w) \, \mathrm{d}x - \int_{\Omega} g \cdot w \, \mathrm{d}x$$

within K. If we assume in addition that there is a positive constant  $c_0$  such that

$$|Df(X)| \le c_0 \{ f(X) + 1 \} \quad for \ all \ X \in \mathbb{S}^n$$
(1.11)

then  $\bar{u}$  is a weak solution of (1.6), i.e.

$$\int_{\Omega} Df(\varepsilon(u)) : \varepsilon(\varphi) \, \mathrm{d}x - \int_{\Omega} \bar{u} \otimes \bar{u} : \varepsilon(\varphi) \, \mathrm{d}x = \int_{\Omega} g \cdot \varphi \, \mathrm{d}x$$

for any  $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^n)$ , div  $\varphi = 0$ .

- **Remark 1.1.** i) Let us first remark that Theorem 1.2 gives the existence of a weak solution  $\bar{u}$  to problem (1.6) for the anisotropic case under much weaker conditions on the potential f than in [ABF]: f is just  $C^1$  and no growth condition on  $D^2 f$  is imposed. We do not even require strict convexity of f.
  - ii) The approach given here is much easierin comparison with [ABF], in particular we do not need involved a priori estimates in order to prove the above existence result. As a consequence, our arguments are not restricted to the particular models discussed in this short note. The solution also turns out to be a global minimizer of a variational problem in its natural energy class. On the other hand, the assumptions concerning the exponents p and q are slightly stronger compared to [ABF].
  - iii) It should be noted that the condition (1.11) is just used to get the Euler equation from the minimizing property of  $\bar{u}$ . If we assume that there is a positive constant  $c'_0$ such that

$$|Df(X)| \le c'_0 \{ Df(X) : X+1 \} \quad for \ all \ X \in \mathbb{S}^n,$$

then we have (1.11) by the convexity of f. If we assume that  $q \leq p+1$ , then we also have (1.11). In fact, the r.h.s. of (1.10) gives

$$|Df(X)| \le c \{ |X|^{q-1} + 1 \}$$

(compare [Da], p. 156, Lemma 2.2). This, together with the l.h.s. of (1.10) implies (1.11).

iv) In the recent paper [FMS], the isotropic situation is studied. Given a uniform ellipticity condition, the authors use a Lipschitz truncation method to handle even the case p > 2n/(n+2). Moreover, T is not assumed to be the gradient of some potential. It would be interesting to know, whether this method works in the non-uniformly elliptic situation.

### 2 Proofs of Theorem 1.1 and Corollary 1.1

For technical simplicity we assume that  $\Omega$  is star-shaped w.r.t. the origin, the general case follows from a covering argument (see [FS], Appendix A). Consider  $w \in \mathcal{C}$ , extend  $u_0$  to a function (denoted also by  $u_0$ ) in the space  $W_q^1(\Omega^*; \mathbb{R}^N)$ , where  $\Omega^*$  is a domain such that  $\Omega \in \Omega^*$ . Let  $w := u_0$  on  $\Omega^* - \Omega$ . For  $\rho > 1$  sufficiently close to 1 we let

$$w_{\rho}(x) := (w - u_0)(\rho x) \, .$$

Clearly spt  $w_{\rho}$  is compact in  $\Omega$  so that the mollification

$$w_{\rho}^{\gamma} := [w_{\rho}]^{\gamma}$$

is a function in the space  $C_0^{\infty}(\Omega; \mathbb{R}^N)$  provided  $\gamma < \gamma(\rho)$ . Here the symbol  $[\cdot]^{\gamma}$  denotes the mollification of a function with radius  $\gamma$ . Since  $u_{\delta}$  is the solution of (1.4), we get

$$J_{\delta}[u_{\delta}] \le J_{\delta}[u_0 + w_{\rho}^{\gamma}].$$

$$(2.1)$$

The l.h.s of (2.1) is bounded from below by  $J[u_{\delta}]$ , weak lower-semicontinuity of J implies

$$J[\bar{u}] \le \liminf_{\delta \to 0} J[u_{\delta}]$$

and since

$$\delta \int_{\Omega} \left( 1 + |\nabla(u_0 + w_{\rho}^{\gamma})|^2 \right)^{\frac{q}{2}} \mathrm{d}x \to 0 \quad \text{as} \ \delta \to 0 \,,$$

we deduce from (2.1)

$$J[\bar{u}] \le J[u_0 + w_{\rho}^{\gamma}] \tag{2.2}$$

being valid for all  $\rho > 1$  close to 1 and all  $0 < \gamma < \gamma(\rho)$ . Let us fix such a number  $\rho$ . We have a.e.

$$f(\nabla u_0 + \nabla w_{\rho}^{\gamma}) = f\left(\frac{1}{2}2\nabla u_0 + \frac{1}{2}2\nabla w_{\rho}^{\gamma}\right) \leq \frac{1}{2}f(2\nabla u_0) + \frac{1}{2}f(2\nabla w_{\rho}^{\gamma})$$
  
 
$$\leq c\left[f(\nabla u_0) + f(\nabla w_{\rho}^{\gamma})\right],$$

where we used the convexity of f as well as the condition (1.5). Jensen's inequality implies

$$f(\nabla w_{\rho}^{\gamma}) = f([\nabla w_{\rho}]^{\gamma}) \leq [f(\nabla w_{\rho})]^{\gamma},$$

thus

$$\tilde{f}_{\gamma}(x) := f(\nabla u_0(x) + \nabla w_{\rho}^{\gamma}(x)) \le c \left\{ f(\nabla u_0(x)) + \left[ f(\nabla w_{\rho}) \right]^{\gamma}(x) \right\} =: g_{\gamma}(x) .$$
(2.3)

Obviously it holds

$$\left. \begin{array}{ccc} \tilde{f}_{\gamma}(x) & \xrightarrow{\gamma \to 0} & f(\nabla u_0(x) + \nabla w_{\rho}(x)) \,, \\ g_{\gamma}(x) & \xrightarrow{\gamma \to 0} & g(x) := c \left\{ f(\nabla u_0(x)) + f(\nabla w_{\rho}(x)) \right\} \end{array} \right\}$$

$$(2.4)$$

for almost all  $x \in \Omega$ . We claim (w.l.o.g. assuming f(0) = 0)

$$g \in L^1(\Omega)$$
, i.e.  $f(\nabla w_\rho) \in L^1(\Omega)$  with compact support (2.5)

so that the general properties of  $[\cdot]^{\gamma}$  will imply

$$\left[ f(\nabla w_{\rho}) \right]^{\gamma} \xrightarrow{\gamma \to 0} f(\nabla w_{\rho}) \text{ in } L^{1}(\Omega) ,$$

$$g_{\gamma} \xrightarrow{\gamma \to 0} g \text{ in } L^{1}(\Omega) .$$

$$(2.6)$$

hence

Note that on account of (2.3), (2.4), (2.6) the variant of the dominated convergence theorem given in [EG], Theorem 4, p. 21, implies

$$\tilde{f}_{\gamma} \xrightarrow{\gamma \to 0} f(\nabla u_0 + \nabla w_{\rho}) \text{ in } L^1(\Omega).$$
(2.7)

We discuss (2.5): by definition we have for a.a.  $x \in \Omega$ 

$$\begin{split} f(\nabla w_{\rho})(x) &= f(\rho \nabla w(\rho x) - \rho \nabla u_{0}(\rho x)) = f\left(\frac{1}{2} 2\rho \nabla w(\rho x) + \frac{1}{2} (-2\rho) \nabla u_{0}(\rho x)\right) \\ &\leq \frac{1}{2} f(2\rho \nabla w(\rho x)) + \frac{1}{2} f(-2\rho \nabla u_{0}(\rho x)) \\ &\leq \frac{1}{2} c(2\rho) f(\nabla w(\rho x)) + \frac{1}{2} c(2\rho) f(-\nabla u_{0}(\rho x)) \\ &\leq \frac{1}{2} c(2\rho) \left(f(\nabla w(\rho x)) + cf(\nabla u_{0}(\rho x))\right), \end{split}$$

where we used the convexity of f together with the condition (1.5) (recall that  $u_0$  and w have been extended to a domain  $\Omega^*$  and  $\rho$  is such that  $\rho x \in \Omega^*$  for  $x \in \Omega$ ). Now we observe  $(f \ge 0)$ 

$$\int_{\Omega} f(\nabla w(\rho x)) \, \mathrm{d}x = \rho^{-n} \int_{\rho\Omega} f(\nabla w) \, \mathrm{d}x$$
$$= \rho^{-n} \left\{ \int_{\Omega} f(\nabla w) \, \mathrm{d}x + \int_{\rho\Omega - \Omega} f(\nabla u_0) \, \mathrm{d}x \right\} < \infty$$

since w should belong to the energy class C. This proves (2.5), and we deduce (2.7). Recalling (2.2) we obtain

$$J[\bar{u}] \le J[u_0 + w_\rho], \qquad (2.8)$$

and it remains to discuss the r.h.s. of (2.8) in the limit  $\rho \to 1$ . We have (on account of  $\nabla w_{\rho} \to \nabla w - \nabla u_0$  in  $L^1$ )

$$m_{\rho}(x) := f(\nabla u_0(x) + \nabla w_{\rho}(x)) \xrightarrow{\rho \to 1} m(x) := f(\nabla w(x))$$

a.e. (at least for a subsequence) and as before

$$0 \leq m_{\rho}(x) \leq \frac{1}{2}f(2\nabla u_{0}(x)) + \frac{1}{2}f(2\nabla w_{\rho}(x)),$$
  
$$f(2\nabla w_{\rho}(x)) = f(2\rho\nabla(w-u_{0})(\rho x)) \leq c(2\rho)f(\nabla(w-u_{0})(\rho x)),$$

so that

$$m_{\rho}(x) \leq M_{\rho}(x) := K \{ f(\nabla u_0(x)) + f(\nabla (w - u_0)(\rho x)) \}$$

Here K is a constant independent of  $\rho$  which follows from the fact that  $c(2\rho) \leq c(4)$  for  $\rho$  close to 1. Obviously

$$M_{\rho}(x) \xrightarrow{\rho \to 1} K\{f(\nabla u_0(x)) + f(\nabla (w - u_0)(x))\}$$
 a.e.

(note: as  $\rho \to 0$  we have  $\nabla(w - u_0)(\rho \cdot) \to \nabla w - \nabla u_0$  in  $L^1(\Omega; \mathbb{R}^{nN})$ , so that  $\nabla(w - u_0)(\rho x) \to \nabla w(x) - \nabla u_0(x)$  a.e. at least for a subsequence) and

$$\int_{\Omega} M_{\rho} \, \mathrm{d}x = K \left[ \int_{\Omega} f(\nabla u_0) \, \mathrm{d}x + \rho^{-n} \int_{\rho\Omega} f(\nabla(w - u_0)) \, \mathrm{d}x \right]$$
$$\xrightarrow{\rho \to 1} K \left[ \int_{\Omega} f(\nabla u_0) \, \mathrm{d}x + \int_{\Omega} f(\nabla(w - u_0)) \, \mathrm{d}x \right] < \infty \,,$$

the finiteness of  $\int_{\Omega} f(\nabla(w-u_0)) dx$  being a consequence of  $w \in \mathcal{C}$  and (1.5). The variant of Lebesgue's theorem on dominated convergence implies

$$\int_{\Omega} m_{\rho} \, \mathrm{d}x \xrightarrow{\rho \to 1} \int_{\Omega} m \, \mathrm{d}x \,,$$

together with (2.8) this yields

 $J[\bar{u}] \le J[w] \,. \tag{2.9}$ 

Now, (2.9) is exactly the statement that  $\bar{u}$  is a minimizer in the energy class C.

Finally, we establish ii) of Theorem 1.1, which will also imply i). From (2.9) we get

$$\alpha := \inf_{\mathcal{C}} J = J[\bar{u}] \le J[u_{\delta}] \le J_{\delta}[u_{\delta}],$$

hence

$$\alpha \leq \liminf_{\delta \to 0} J_{\delta}[u_{\delta}] \leq \limsup_{\delta \to 0} J_{\delta}[u_{\delta}] \stackrel{(2.1)}{\leq} \limsup_{\delta \to 0} J_{\delta}[u_{0} + w_{\rho}^{\gamma}] = J[u_{0} + w_{\rho}^{\gamma}]$$

being valid for all  $\rho \in (1, 1+\varepsilon)$  and all  $0 < \gamma < \gamma(\rho)$ . Recall that the calculations following (2.2) actually show that

$$\lim_{\rho \to 1} \left( \lim_{\gamma \to 0} J[u_0 + w_{\rho}^{\gamma}] \right) = J[w]$$

holds for any  $w \in C$ . If we therefore make the particular choice  $w = \bar{u}$ , pass to the limit  $\gamma \to 0$  and then to the limit  $\rho \to 1$  in the above inequality, we obtain the desired equation

$$\alpha = \liminf_{\delta \to 0} J_{\delta}[u_{\delta}] = \limsup_{\delta \to 0} J_{\delta}[u_{\delta}],$$

which completes the proof of Theorem 1.1.

Let us now assume that the hypotheses of Corollary 1.1 are valid. Hence there exists M > 0 such that f(X) = g(X) for all  $X \in \mathbb{R}^{nN}$ ,  $|X| \ge M$ . We fix  $\Omega' \Subset \Omega$  and a number  $K = K(\Omega')$  s.t.  $|\nabla \bar{u}| \le K$  on  $\Omega'$ . Suppose that some minimizer u satisfies  $|\nabla u| \ge l$  on a subset A of  $\Omega'$  with positive measure, where l := 2M + K. If we let  $w := \frac{1}{2}u + \frac{1}{2}\bar{u}$ , we obtain

$$\begin{split} \int_{\Omega} f(\nabla w) \, \mathrm{d}x &= \int_{\Omega - \Omega'} f(\nabla w) \, \mathrm{d}x + \int_{\Omega' - A} f(\nabla w) \, \mathrm{d}x + \int_{A} f(\nabla w) \, \mathrm{d}x \\ &\leq \frac{1}{2} \int_{\Omega - \Omega'} f(\nabla u) \, \mathrm{d}x + \frac{1}{2} \int_{\Omega - \Omega'} f(\nabla \bar{u}) \, \mathrm{d}x + \frac{1}{2} \int_{\Omega' - A} f(\nabla u) \, \mathrm{d}x \\ &\quad + \frac{1}{2} \int_{\Omega' - A} f(\nabla \bar{u}) \, \mathrm{d}x + \int_{A} f(\nabla w) \, \mathrm{d}x \,, \end{split}$$

where we used the convexity of f. On the set A we have

$$|
abla w| \geq rac{1}{2} |
abla u| - rac{1}{2} |
abla ar u| \geq rac{1}{2} l - rac{1}{2} K = M \,,$$

hence

$$\int_{A} f(\nabla w) \, \mathrm{d}x = \int_{A} g(\nabla w) \, \mathrm{d}x < \frac{1}{2} \int_{A} g(\nabla u) \, \mathrm{d}x + \frac{1}{2} \int_{A} g(\nabla \bar{u}) \, \mathrm{d}x$$

and we arrive at the contradiction (observe  $g \leq f$ )

$$\int_{\Omega} f(\nabla w) \, \mathrm{d}x < \frac{1}{2} \int_{\Omega} f(\nabla u) \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} f(\nabla \bar{u}) \, \mathrm{d}x = \inf_{\mathcal{C}} J$$

This proves  $|\nabla u| \leq l$  a.e. on  $\Omega'$ .

## 3 Proof of Theorem 1.2

The proof of Theorem 1.2 is a modification of the ideas given in the last section. Again we assume that  $\Omega$  is star-shaped w.r.t. the origin and we identify in the following a function w of Sobolev class  $\mathring{W}^1_p(\Omega; \mathbb{R}^n)$  with its extension  $\tilde{w}$  to  $\mathbb{R}^n$ ,

$$\tilde{w}(x) := \begin{cases} w(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n - \Omega. \end{cases}$$

Again, for any  $1 < \rho$ ,  $0 < \gamma$  and for any w as above we let

$$w_{\rho}^{\gamma} := \left[ w(\rho x) \right]^{\gamma}.$$

If  $1 < \rho$  is fixed and if  $0 < \gamma < \gamma(\rho)$  is sufficiently small, then  $w \in \overset{\circ}{W}{}^{1}_{p}(\Omega; \mathbb{R}^{n})$  implies that  $w_{\rho}^{\gamma}$  is compactly supported in  $\Omega$ . Moreover, note that div w = 0 gives div  $w_{\rho}^{\gamma} = 0$ . With these preliminaries a sequence  $\{u_{\delta}\}$  of solutions to the problem  $(1.6_{\delta})$  is fixed s.t.  $u_{\delta} \rightarrow : \bar{u}$ 

in  $W_p^1(\Omega; \mathbb{R}^n)$ . Lower semicontinuity w.r.t. weak  $W_p^1$ -convergence implies together with continuity of the convective part (recall p > 3n/(n+2))

$$J[\bar{u}] \leq \liminf_{\delta \to 0} \left\{ \int_{\Omega} f_{\delta}(\varepsilon(u_{\delta})) \, \mathrm{d}x - \int_{\Omega} u_{\delta} \otimes u_{\delta} : \varepsilon(u_{\delta}) \, \mathrm{d}x - \int_{\Omega} g \cdot u_{\delta} \, \mathrm{d}x \right\} = \liminf_{\delta \to 0} J_{\delta}[u_{\delta}] \, .$$

Now we consider an element w of the natural energy class  $\mathbb{K}$ . With the above notation,  $w_{\rho}^{\gamma}$  is admissible in  $J_{\delta}$  and the minimality of  $u_{\delta}$  implies passing to the limit  $\delta \to 0$ 

$$J[\bar{u}] \leq \int_{\Omega} f(\varepsilon(w_{\rho}^{\gamma})) \,\mathrm{d}x - \int_{\Omega} \bar{u} \otimes \bar{u} : \varepsilon(w_{\rho}^{\gamma}) \,\mathrm{d}x - \int_{\Omega} g \cdot w_{\rho}^{\gamma} \,\mathrm{d}x \,.$$

Here we used the fact that  $\limsup_{\delta \to 0} \delta \int_{\Omega} (1 + |\varepsilon(w_{\rho}^{\gamma})|^2)^{q/2} dx = 0$  since  $\rho$  and  $\gamma$  are fixed and since  $w_{\rho}^{\gamma}$  is by definition a smooth function. Since the convergence of the convective term as  $\gamma \to 0$  and as  $\rho \to 1$  is clear, it remains to show (at least for a subsequence)

$$\lim_{\rho \to 1} \lim_{\gamma \to 0} \int_{\Omega} f(\varepsilon(w_{\rho}^{\gamma})) \, \mathrm{d}x \le \int_{\Omega} f(\varepsilon(w)) \, \mathrm{d}x \, .$$

This however is proved with the same arguments as outlined in the last section (note that on account of  $u_0 = 0$  we just need the first part of (1.5)). Thus we have for any  $w \in \mathbb{K}$ 

$$J[\bar{u}] \leq \int_{\Omega} f(\varepsilon(w)) \, \mathrm{d}x - \int_{\Omega} \bar{u} \otimes \bar{u} : \varepsilon(w) \, \mathrm{d}x - \int_{\Omega} g \cdot w \, \mathrm{d}x$$

which is the *J*-minimality of  $\bar{u}$  in the class K. For  $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^n)$ , div  $\varphi = 0$ , we have

$$\begin{split} \int_{\Omega} f(\varepsilon(\bar{u}+\varphi)) \, \mathrm{d}x &= \int_{\Omega} f\left(2\Big[\frac{1}{2}\,\varepsilon(\bar{u}) + \frac{1}{2}\,\varepsilon(\varphi)\Big]\right) \, \mathrm{d}x &\leq c(2) \int_{\Omega} f\left(\frac{1}{2}\,\varepsilon(\bar{u}) + \frac{1}{2}\,\varepsilon(\varphi)\right) \, \mathrm{d}x \\ &\leq \frac{1}{2}\,c(2) \left[\int_{\Omega} f(\varepsilon(\bar{u})) \, \mathrm{d}x + \int_{\Omega} f(\varepsilon(\varphi)) \, \mathrm{d}x\right] < \infty \,, \end{split}$$

so that  $u + t\varphi \in \mathbb{K}$  for any  $\varphi$  as above and any real parameter t. Clearly we have

$$\frac{1}{t} \left\{ f(\varepsilon(\bar{u}) + t\varepsilon(\varphi)) - f(\varepsilon(\bar{u})) \right\} =: \Delta_t \xrightarrow{t \to 0} Df(\varepsilon(\bar{u})) : \varepsilon(\varphi) \quad \text{a.e.}$$
(3.1)

Now we make use of (1.11) to obtain

$$\int_{\Omega} |Df(\varepsilon(\bar{u}))| \, \mathrm{d}x \le c \int_{\Omega} \left( f(\varepsilon(\bar{u})) + 1 \right) \, \mathrm{d}x < \infty$$

hence we have integrability of the r.h.s. of (3.1). By (1.11) we also know that

$$\begin{aligned} \Delta_t | &= \left| \frac{1}{t} \int_0^t Df(\varepsilon(\bar{u}) + \lambda \varepsilon(\varphi)) : \varepsilon(\varphi) \, \mathrm{d}\lambda \right| \\ &\leq \int_0^1 |Df(\varepsilon(\bar{u}) + st\varepsilon(\varphi))| |\varepsilon(\varphi)| \, \mathrm{d}s \\ &\leq c_0 \int_0^1 \left[ f(\varepsilon(\bar{u}) + st\varepsilon(\varphi)) + 1 \right] |\varepsilon(\varphi)| \, \mathrm{d}s \end{aligned}$$

Observing that we have as above

$$f(\varepsilon(\bar{u}) + st\varepsilon(\varphi)) \le c \left[ f(\varepsilon(\bar{u})) + f(\varepsilon(\varphi)) \right],$$

the desired weak form of (1.6) follows from dominated convergence and from  $J[\bar{u}] \leq J[\bar{u} + t\varphi]$ .

### References

- [Ad] Adams, R.A., Sobolev spaces. Academic Press, New York-San Francisco-London, 1975.
- [ABF] Apushkinskaya, D., Bildhauer, M., Fuchs, M., Steady states of anisotropic generalized Newtonian fluids. Preprint 88 (2003), Saarland University.
- [Bi] Bildhauer, M., Convex variational problems: linear nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics Vol. 1818, Springer-Verlag, Berlin-Heidelberg-New York 2003.
- [BF1] Bildhauer, M., Fuchs, M., Variants of the Stokes problem: the case of anisotropic potentials. J. Math. Fluid Mech. 5 (2003).
- [BFM] Bildhauer, M., Fuchs, M., Mingione, G., A priori gradient bounds and local C<sup>1,α</sup>estimates for (double) obstacle problems under nonstandard growth conditions. Z. Anal. Anw. 20, no.4 (2001), 959–985.
- [Da] Dacorogna, B., Direct methods in the calculus of variations. Applied Mathematical Sciences 78, Springer, Berlin-Heidelberg-New York, 1989.
- [EG] Evans, L. C., Gariepy, R., Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton-Ann Arbor-London 1992.
- [FMS] Frehse J., Málek, J., Steinhauer, M., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. To appear in SIAM J. Math. Anal.
- [FS] Fuchs, M., Seregin, G., Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics 1749, Springer, Berlin-Heidelberg 2000.
- [Ga1] Galdi, G., An introduction to the mathematical theory of the Navier-Stokes equations, vol. 1. Springer Tracts in Natural Philosophy vol. 38, Springer, New York, 1994.
- [Ga2] Galdi, G., An introduction to the mathematical theory of the Navier-Stokes equations, vol. 2. Springer Tracts in Natural Philosophy vol. 39, Springer, New York, 1994.

- [KMS] Kaplický, P., Málek, J., Stará, J.,  $C^{1,\alpha}$ -solutions to a class of nonlinear fluids in two dimensions – stationary Dirichlet problem. Zap. Nauchn. Sem. St.-Petersburg Odtel. Math. Inst. Steklov (POMI) 259 (1999), 89–121.
- [La] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, Gordon and Breach, 1969.
- [MS] Mingione, G., Siepe, F., Full  $C^{1,\alpha}$  regularity for minimizers of integral functionals with  $L \log L$  growth. Z. Anal. Anw. 18 (1999), 1083–1100.
- [Se] Seregin, G., Twodimensional variational problems in plasticity theory. Izv. Russian Academy of Sciences 60 (1996), 175–210 (in Russian). English translation: Izvestiya Mathematics 60.1 (1996), 179–216.