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Abstract

We study variational problems with integrands of very general structure by in-
troducing certain regularizations leading to particular minimizers. In a second part
we apply the method to stationary generalized Newtonian fluids which gives the
existence of solutions under weak hypotheses on the dissipative potential.

1 Introduction

Suppose we are given a convex energy density f: R™N — [0, 00) satisfying (with positive
constants a, a, b, b) the growth condition

aA(|X]) - b< f(z) <alX|9+b forall X € RV (1.1)

for some exponent ¢ > 1 and some N-function A : [0,00) — [0,00) having the Ao-
property. For example, we may choose A(t) = tIn(1 + t) or A(t) = t* with p < ¢q. We
then like to consider the problem

J[w] = /Qf(Vw) dz — min (1.2)

among all functions w: Q — RY such that w = ug on 0Q. Here Q denotes a bounded
Lipschitz domain in R", and u is a function of class qu (€; RY). To be more precise, we
study (1.2) on the energy class

C:={weWi(RY): w—u EVIC}Al(Q;RN), Jw] < o}, (1.3)

where W,/ (€; RY) is the Orlicz-Sobolev space generated by A (see, e.g. [Ad]). From (1.1)
we deduce uy € C, and the convexity of f implies that the problem (1.2) admits at least
one solution.

If f is a strictly convex function, then the solution w is unique, and in order to study for
example the regularity properties of u, the method of (global) regularization of problem
(1.2) turned out to be a very powerful tool: for 0 < 6 < 1 let

f5(X) = 6(1+ |XP)2 + f(X), XeR™N,

and replace (1.2) by
Js[w] := / fs(Vw)dz - min  in C' = up+ I/I?ql(Q;RN) : (1.4)
Q

If us denotes the unique solution of (1.4), then {us} forms a minimizing sequence for the
problem (1.2) and us — u in W} (;RY) as § — 0. We refer, for instance, to the papers
[Se], [MS], [BFM], [BF1] (and many others, more references are found in [FS] or [Bi]) in
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which mainly the regularity of u is investigated via uniform estimates for the functions
us. In the strictly convex case it is also possible to give local variants of the regularization
technique leading to corresponding results for local minimizers u of the energy J.

If now f is merely assumed to be just a convex function, then of course problem
(1.4) is still well-posed with unique solution us. Moreover, from (1.1) it follows that
SUPg<s<1 ||us]lwi < 00, hence there is a function @ € W;(Q; RY) having trace uo and such
that us — 4 in W'(Q;RY) as § — 0 at least for a subsequence. Our first result is the
observation that @ is a solution of (1.2) and — as in the case of strict convexity — {us}
forms a minimizing sequence, precisely

Theorem 1.1. With the notation from above we have
i) {us} is a minimizing sequence of problem (1.2).
ii) Jslus] — infe J as 6 — 0.
iii) The weak limit u belongs to the class C and is a solution of the problem (1.2).

Here f: R™N — [0,00) is any convez function satisfying (1.1) and in addition

fOX) <cWf(X),  f(=X) <cf(X) (1.5)
for all X € R"N and X\ > 1 with some positive constants ¢ and c(\).

Regularity of @ in turn can be used to obtain information on the behaviour of all
solutions to the problem (1.2). We mention the following

Corollary 1.1. Suppose that the assumptions of Theorem 1.1 hold. Moreover, let f = g
outside a ball in R™N for a strictly convex function g < f. Then, if i is locally Lipschitz,
the same is true for any solution u of (1.2) from the energy class C.

Next we turn our attention to a problem arising in the theory of generalized Newtonian
fluids. To be precise, we are looking for a velocity field u: 2 — R" solving the following
system of nonlinear partial differential equations

—div{T(e(u)} + uk% +Vr = g in Q, (1.6)

dive = 0 in Q,
u = 0 on 00

in a suitable weak sense. Here 7 is the a priori unknown pressure function and g: {2 — R”
represents a system of volume forces which we assume to be of class L>(£2; R*). We further
assume that the tensor T is the gradient of some convex potential f: S™ — [0, 00) of class
C' which acts on the space S™ of all symmetric (n x n)-matrices. In (1.6) we take the
sum w.r.t. repeated indices, and £(u) denotes the symmetric gradient. In case f(g) = |¢|?
(1.6) reduces to the Dirichlet-boundary value problem for the stationary Navier-Stokes
system (see [Gal], [Ga2| or [La]). So-called power-law models are investigated in [KMS]:
they assume f to be of class C? satisfying for some 1 < p < 0o

A1+ [e[2) T |of2 < D2f(e)(0,0) < AL + | |02 forall e,0€S™ (1.7



with positive constants A\, A. Note that (1.7) implies that f is of growth order p, moreover,
the first inequality in (1.7) implies strict convexity of f. Then, if n = 2, Kaplicky, Mélek
and Stard show that (1.6) admits a globally smooth solution in case p > 3/2, whereas for
p > 6/5 the existence of a solution being smooth in the interior of 2 is established.

In the recent paper [ABF| we replaced (1.7) by the anisotropic condition

M1+ [e2)" 2 |o]2 < D2f(e)(0,0) < A(1+|e|2) T |o|2 forall e, o € S™ (1.8)

with exponents 1 < p < ¢ < 00, ¢ > 2. Then we proved: if ¢ < p(1 +2/n) together with

then (1.6) admits a weak solution @& whose gradient is locally of class LP", where

« ) 3p if n=3,
p= any finite number if n = 2.

Moreover, if ¢ = 2, then in the two-dimensional case % is smooth in the interior of €2,
whereas for n = 3 partial regularity holds.

The results of [KMS] and [ABF] are obtained by regularizing problem (1.6) and by
proving uniform regularity results for the corresponding solutions which causes a lot of
work. We like to describe an easier way leading to the existence of a solution to (1.6) in the
anisotropic case which works under less restrictive growth and smoothness assumptions
on the potential f. The price we have to pay is that we need a stronger lower bound for
the exponent p.

To be precise assume that

f: S™— [0,00) is convex and of class C* (1.9)
satisfying with exponents 1 < p < g < 00
aleP —b< f(e) < Ale|?+ B (1.10)

where a, b, A, B denote positive constants. We define f5(¢), 0 < § < 1, as before and let
us denote a solution of

/Q D fs(e(us)) : e(¢) dz — / us ® s - () da = / gpds  (16y)

for all p € C°([,RY),  dive =0

in the space W/ (€; R") N Ker(div). Note that in general we cannot expect unique solv-
ability of (1.65). From

Js[w] = /f(; dm—/u(s®u5:5(w)dm—/ﬂg-wdx,
Jslus) < Js[0] = f5(0)[€



and (1.10) it follows by Korn’s inequality that
sup ||U5||Wpl(Q;Rn) <00,
0<d<1

where we also made use of the fact that

/U5®u5:e(u5)dx:0.
Q

Thus we find a function @ €W,'(Q;R") N Ker(div) such that us — @ in W, (% R") as
0 — 0 at least for a subsequence.

Theorem 1.2. Let (1.9), (1.10) and the first part of (1.5) hold. Suppose further that
p > 3n/(n+ 2). Then, with the notation from above, the limit @ belongs to the energy
class

K:{UEW (;R") : dlvu—O/f dx<oo}

/f dx—/u@u:e(w)dx—/ﬁg-wdx

within K. If we assume in addition that there is a positive constant cy such that
IDf(X)| <co{f(X)+1} forall X €S" (1.11)

then u is a weak solution of (1.6), i.e.

/Df )dx—/ﬂu@u:e(go)dx:/Qg-godx

for any ¢ € C°(R™), divp = 0.

Remark 1.1. i) Let us first remark that Theorem 1.2 gives the existence of a weak
solution u to problem (1.6) for the anisotropic case under much weaker conditions
on the potential f than in [ABF]: f is just C' and no growth condition on D?f is
mmposed. We do not even require strict convexity of f.

and minimaizes

ii) The approach given here is much easierin comparison with [ABF], in particular
we do not need involved a priori estimates in order to prove the above eristence
result. As a consequence, our arguments are not restricted to the particular models
discussed in this short note. The solution also turns out to be a global minimizer of a
variational problem in its natural energy class. On the other hand, the assumptions
concerning the exponents p and q are slightly stronger compared to [ABF].

iii) It should be noted that the condition (1.11) is just used to get the Euler equation
from the minimizing property of 4. If we assume that there is a positive constant c}
such that

Df(X)| < {Df(X): X +1} forall X €S",

then we have (1.11) by the convexity of f. If we assume that ¢ < p+ 1, then we
also have (1.11). In fact, the r.h.s. of (1.10) gives

DF)| < {IX | +1)

(compare [Daj, p. 156, Lemma 2.2). This, together with the l.h.s. of (1.10) implies
(1.11).



iv) In the recent paper [FMS], the isotropic situation is studied. Given a uniform ellip-
ticity condition, the authors use a Lipschitz truncation method to handle even the
case p > 2n/(n + 2). Moreover, T is not assumed to be the gradient of some poten-
tial. It would be interesting to know, whether this method works in the non-uniformly
elliptic situation.

2 Proofs of Theorem 1.1 and Corollary 1.1

For technical simplicity we assume that €2 is star-shaped w.r.t. the origin, the general case
follows from a covering argument (see [F'S], Appendix A). Consider w € C, extend ug to a
function (denoted also by uo) in the space W/ (Q*;RY), where Q* is a domain such that
Q€ Q. Let w:=ug on Q* — Q. For p > 1 sufficiently close to 1 we let

w,(x) = (w— o) (pa).
Clearly spt w, is compact in 2 so that the mollification

wz = [w,]”

is a function in the space C°(€;RY) provided v < 7(p). Here the symbol []” denotes
the mollification of a function with radius 7. Since us is the solution of (1.4), we get

J&[U(S] < J(s[uo + wg] . (2.1)
The Lh.s of (2.1) is bounded from below by J|us|, weak lower-semicontinuity of J implies
J[a] < liminf Jus],
d—0
and since
q
(5/ (1+|V(up+w))’)?dz -0 as 6§ —0,
Q

we deduce from (2.1)
J[a] < J[up + w)] (2.2)

being valid for all p > 1 close to 1 and all 0 < v < (p). Let us fix such a number p. We
have a.e.

1 1 1 1
f(Vug +Vw)) = f(§ 2Vug + 3 2Vw3) < §f(2Vu0) + §f(2VwZ)
< c[f(Vuo) + f(Vu))],
where we used the convexity of f as well as the condition (1.5). Jensen’s inequality implies
f(sz) = f([vaP) < [f(va)r,

thus

F(@) = f(Vuo(2) + V) (2)) < e{ f(Vuo()) + [f(Vw,)] (@)} =2 g5(2).  (2.3)



Obviously it holds

F(@) T2 f(Vuo() + Vu,(2)) . } 04
0,(@) B g(2) = c{f(Vuo(®) + f(Vu,(2))}
for almost all z € Q. We claim (w.l.o.g. assuming f(0) = 0)
ge L'(Q), ie f(Vw,) € L'(Q) with compact support (2.5)
so that the general properties of [-]7 will imply
[F(Vw,)]” =3 f(Vw,) in LYQ),
hence
9, 23 g in L'(Q). (2.6)

Note that on account of (2.3), (2.4), (2.6) the variant of the dominated convergence
theorem given in [EG|, Theorem 4, p. 21, implies

F 28 £(Vuo + Vw,) in L'(Q). (2.7)

We discuss (2.5): by definition we have for a.a. x € Q

(V@) = F(pVulpr) — pVuo(pr) = f(520Vu(pr) + 5 (~20)Vuo(pa))
< %f (2pVw(pz)) + %f (—=2pVuo(pz))
< 5el2p)F(Vu(pm)) + 5e(20) f(~ V(o))
< 5en) (F(Vulpn) + cf (Vuolpr)))

where we used the convexity of f together with the condition (1.5) (recall that uy and
w have been extended to a domain Q* and p is such that pxr € Q* for x € Q). Now we
observe (f > 0)

/Q [(Vw(pe)ds = p / J(Vw) da

= p"{/Qf(Vw)dac—i-/pQ_Qf(Vuo)dx} < oo

since w should belong to the energy class C. This proves (2.5), and we deduce (2.7).
Recalling (2.2) we obtain
Ju] < Jug + w,|, (2.8)

and it remains to discuss the r.h.s. of (2.8) in the limit p — 1. We have (on account of
Vw, = Vw — Vug in L')
p—1

my(x) := f(Vue(z) + Vw,(x)) — m(z) == f(Vw(z))
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a.e. (at least for a subsequence) and as before

0 < my(z) < ;
fRVw,(x)) = F2opV(w —uo)(pz)) < c(20)f(V(w = uo)(pz)),

ST 2V (@) + 312V, (@),

so that

my(x) < My(z) == K{f(Vuo(x)) + f(V(w — uo)(pz) }
Here K is a constant independent of p which follows from the fact that ¢(2p) < ¢(4) for
p close to 1. Obviously

M, (z) 225 K{f(Vuo()) + F(V(w —u)(z))} ae.

(note: as p — 0 we have V(w — ug)(p) = Vw — Vug in L'(Q;R™), so that V(w —
ug)(px) = Vw(z) — Vug(x) a.e. at least for a subsequence) and

/QMpdx = K/fVuodx—i-p /f w — ug))d ]

p—_)I)K/fVuodx-l-/f w — U) d$]<00

the finiteness of [, f(V(w — ug)) dz being a consequence of w € C and (1.5). The variant
of Lebesgue’s theorem on dominated convergence implies

-1
/mpdxp—>/mdx,
Q Q

J[a] < Jw). (2.9)

Now, (2.9) is exactly the statement that @ is a minimizer in the energy class C.
Finally, we establish ii) of Theorem 1.1, which will also imply i). From (2.9) we get

together with (2.8) this yields

= iICIfJ = J{u] < Jus] < Jslus) ,
hence

(2.1)
a< hm 1nf Js[us] < limsup Jsus] < limsup Jslug + w)] = J[up + w)]

6—0 6—0

being valid for all p € (1,1+¢) and all 0 < v < y(p). Recall that the calculations following
(2.2) actually show that

lim ( hm Jug + uﬂ]) = J]w]

p—1

holds for any w € C. If we therefore make the particular choice w = u, pass to the limit
v — 0 and then to the limit p — 1 in the above inequality, we obtain the desired equation

a = lim inf Js[us] = lim sup Js[us],
6—=0 §—0



which completes the proof of Theorem 1.1. O

Let us now assume that the hypotheses of Corollary 1.1 are valid. Hence there exists
M > 0 such that f(X) = g(X) for all X € R™, |[X| > M. We fix ' € Q and a number
K = K(2) s.t. [V < K on €. Suppose that some minimizer u satisfies |[Vu| > [ on a
subset A of €' with positive measure, where [ := 2M + K. If we let w := %u + %a, we
obtain

/Qf(Vw) dr = /Q_Q,f(Vw) d:E—f—/QI_Af(Vw) dx+/Af(Vw) dz

1 f(Vu)dz + % f(Vu)dx + % / f(Vu)dz

2 Ja—qo Q-q -A

IA

1 _
+3 /Q,_Af(Vu)da:JF/Af(Vw)dx,

where we used the convexity of f. On the set A we have
1 1 1 1

> — —=\Vu|>=l—-=-K=M

[Vw| > 2|Vu| 2|Vu| > 2[ 5 ,

hence

/Af(Vw)d:c:/Ag(Vw)dx< %/Ag(Vu)dx—l-%/Ag(Vﬂ)dx

and we arrive at the contradiction (observe g < f)

1 1
/Qf(Vw)dx<E/Qf(Vu)dx-i—E/Qf(Vﬂ)dx:irclfJ.

This proves |Vu| <[ a.e. on . O

3 Proof of Theorem 1.2

The proof of Theorem 1.2 is a modification of the ideas given in the last section. Again we
assume that (2 is star-shaped w.r.t. the origin and we identify in the following a function

w of Sobolev class W, (Q2; R") with its extension @ to R”,

v Jow(x) if zeq,
“’(m)"{ 0 if z€R" —Q.

Again, for any 1 < p, 0 < v and for any w as above we let
v
w) = [w(px)] .

If 1 < pis fixed and if 0 < v < 7(p) is sufficiently small, then w €W (Q2; R") implies that
w} is compactly supported in 2. Moreover, note that divw = 0 gives divw] = 0. With
these preliminaries a sequence {u;} of solutions to the problem (1.64) is fixed s.t. us —: @



in W, (€;R"). Lower semicontinuity w.r.t. weak W, -convergence implies together with
continuity of the convective part (recall p > 3n/(n + 2))

J[u] < lim inf{ / fs(e(us)) dz — / us @ ug @ £(us) de — / g- us dx} = lim inf Js[us] .
6—0 Q Q Q 0—0

Now we consider an element w of the natural energy class K. With the above notation,
w) is admissible in J; and the minimality of us implies passing to the limit 6 — 0

J[ﬂ]S/Qf(e(wg))dx—/gﬂébﬂ:s(w;’)dx—/ng-w;’dx.

Here we used the fact that limsups_,o 8 [, (1 + |e(w])[?)9/2 dz = 0 since p and + are fixed
and since w) is by definition a smooth function. Since the convergence of the convective
term as v — 0 and as p — 1 is clear, it remains to show (at least for a subsequence)

tim iy [ f(ewp))da < [ flew) da

This however is proved with the same arguments as outlined in the last section (note that
on account of ug = 0 we just need the first part of (1.5)). Thus we have for any w € K

Ju] < /f dx—/u@u:e(w)dx—/gg-wdz,

which is the J-minimality of @ in the class K. For ¢ € C§°(€; R"), div¢ = 0, we have

| rea+enas - /f(Q[%e() “0)])do < o) [ F(Ge@) +el0)) da
< 5| [ sewpas [ eioned <o

so that u + tp € K for any ¢ as above and any real parameter t. Clearly we have

—{f ) +te(p)) — fle(@)} =2 Ay Z3 Df(e(w) s e(p)  ace (3.1)

Now we make use of (1.11) to obtain

/ \Df(e(@))| dz < c/ (f(e(@) + 1) dz < oo,
Q
hence we have integrability of the r.h.s. of (3.1). By (1.11) we also know that

1 t

A = |- Df(()+/\6( ) e(p) dA

< / IDf(e(@) + ste ) [£(0)] ds
< o [ [1@ -+ stslo) + 1) o)l as.

0

9



Observing that we have as above

F(e(@) + ste(p)) < c| f(e(@) + fle(v))]

the desired weak form of (1.6) follows from dominated convergence and from J[a] <

J[u + ty). ]
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