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Abstract

Variational methods for optic flow computation have the reputa-

tion of producing good results at the expense of being too slow for real-

time applications. We show that real-time variational computation of

optic flow fields is possible when appropriate methods are combined

with modern numerical techniques. We consider the CLG method, a

recent variational technique that combines the quality of the dense

flow fields of the Horn and Schunck approach with the noise robust-

ness of the Lucas–Kanade method. For the linear system of equations

resulting from the discretised Euler–Lagrange equations, we present

different multigrid schemes in detail. We show that under realistic

accuracy requirements they are up to 247 times more efficient than

the widely used Gauß-Seidel algorithm. On a 3.06 GHz PC, we have

computed 40 dense flow fields of size 200 × 200 pixels within a single

second.

AMS 2000 Subject Classification: 68T45, 65N55, 49K20, 65K10, 35J60, 65N04
Key Words: computer vision, optic flow, differential techniques, variational
methods, multigrid methods, structure tensor, partial differential equations.
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1 Introduction

Variational methods belong to the well-established techniques for estimating
the displacement field (optic flow) in an image sequence. They perform well in
terms of different error measures [2, 12] and they make all model assumptions
explicit in a transparent way. Moreover, they yield dense flow fields, and it is
straightforward to derive continuous models that are rotationally invariant.
These properties make continuous variational models appealing for a number
of applications. For a survey of these techniques we refer to [26].
Variational methods, however, require the minimisation of a suitable en-
ergy functional. Often this is achieved by discretising the associated Euler–
Langrange equations and solving the resulting systems of equations in an
iterative way. Classical iterative methods such as Jacobi or Gauß–Seidel it-
erations are frequently applied [28]. In this case one observes that the con-
vergence is reasonably fast in the beginning, but after a while it deteriorates
significantly such that often several thousands of iterations are needed in or-
der to obtain the required accuracy. As a consequence, variational optic flow
methods are usually considered to be too slow when real-time performance
is needed.
The goal of the present paper is to show that it is possible to make variational
optic flow methods suitable for real-time applications by combining them
with state-of-the-art numerical techniques. We use the recently introduced
CLG method [8, 25], a variational technique that combines the advantages
of two classical optic flow algorithms: the variational Horn and Schunck ap-
proach [16], and the local least-square technique of Lucas and Kanade [17].
For the CLG method we derive fast numerical schemes based on so-called
multigrid strategies [5, 6, 15, 24, 27]. Such techniques belong to the fastest
numerical methods for solving linear systems of equations. We present our al-
gorithms in detail and show that an appropriate Full Multigrid scheme leads
to a speed-up of more than two orders of magnitude compared to widely
used iterative methods. As a consequence, it becomes possible to compute
40 optic flow frames per second on a standard PC, when image sequences of
size 200 × 200 pixels are used.
Our paper is organised as follows. In Section 2 we review the CLG model as
a representative for variational optic flow methods. Section 3 shows how this
problem can be discretised. Fast multigrid strategies for the CLG approach
are derived in Section 4. In Section 5 we compare this algorithm with the
widely used Gauß–Seidel and SOR schemes and show that it allows real-time
computation of optic flow. The paper is concluded with a summary in Section
6.
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Related work. It is quite common to use pyramid strategies for speeding
up variational optic flow methods; see e.g. [1, 18, 19]. They use the solution
at a coarse grid as initialisation on the next finer grid. Such techniques may
be regarded as the simplest multigrid strategy, namely cascading multigrid.
The mathematical literature on multigrid methods shows that one can expect
improved performance by using more advanced multigrid strategies. Such
techniques, however, are not used very frequently in the context of variational
optic flow computation. First proposals go back to Glazer [14], Terzopoulos
[23] and Enkelmann [10]. More recently, Ghosal and Vaněk [13] developed
an algebraic multigrid method for an anisotropic variational approach that
can be related to Nagel’s method [20]. Zini et al. [29] proposed a conjugate
gradient-based multigrid technique for an extension of the Horn and Schunck
functional, and Borzi et al. [4] investigated a full approximation scheme (FAS)
for a control formulation of a nonlinear optic flow problem. To the best of our
knowledge, our paper is the first work that reports real-time performance for
variational optic flow techniques on standard hardware. A preliminary shorter
version of the present paper has been presented at a conference [7].

2 Optic Flow Computation

with the CLG Approach

In [8, 25] we have introduced the so-called combined local-global (CLG) method
for optic flow computation. It combines the advantages of the global Horn
and Schunck approach [16] and the local Lucas–Kanade method [17]. In order
to describe the underlying idea behind the CLG method, let f(x, y, t) be an
image sequence, where (x, y) denotes the location within a rectangular image
domain Ω and t is the time. The CLG method computes the optic flow field
(u(x, y), v(x, y))> at some time t as the minimiser of the energy functional

E(u, v) =

∫

Ω

(

w>Jρ(∇3f) w + α(|∇u|2 + |∇v|2)
)

dx dy, (1)

where the vector field w(x, y) = (u(x, y), v(x, y), 1)> describes the displace-
ment, ∇u is the spatial gradient (ux, uy)

>, and ∇3f denotes the spatiotempo-
ral gradient (fx, fy, ft)

>. The matrix Jρ(∇3f) is the structure tensor [3, 11, 22]
given by Kρ ∗ (∇3f ∇3f

>), where ∗ denotes convolution, and Kρ is a Gaus-
sian with standard deviation ρ. The weight α > 0 serves as regularisation
parameter.
For ρ → 0 the CLG approach comes down to the Horn and Schunck method,
and for α → 0 it becomes the Lucas–Kanade algorithm. It combines the dense
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flow fields of Horn–Schunck with the high noise robustness of Lucas–Kanade.
For a detailed performance evaluation we refer to [8, 25].
In order to recover the optic flow field, the energy functional E(u, v) has to
be minimised. As is well-known from the calculus of variations [9], this can
be done by solving its Euler–Lagrange equations

α∆u − (J11(∇3f) u + J12(∇3f) v + J13(∇3f)) = 0, (2)

α∆v − (J12(∇3f) u + J22(∇3f) v + J23(∇3f)) = 0, (3)

where ∆ denotes the Laplacean, and reflecting boundary conditions are ap-
plied, i.e. the normal derivative vanishes at boundaries:

∂nu = 0, ∂nv = 0 on ∂Ω. (4)

3 Discretisation

Now we are in a position to investigate typical algorithms for solving the
Euler-Lagrange equations numerically. First we present a finite difference
discretisation, and then we discuss two algorithms for solving the resulting
linear systems of equations.

3.1 The Discrete Euler-Lagrange Equations

Let us now investigate a suitable discretisation for the CLG method (2)–(3).
To this end we consider the unknown functions u(x, y, t) and v(x, y, t) on a
rectangular pixel grid of cell size hx × hy, and we denote by ui the approxi-
mation to u at some pixel i with i = 1,...,N . Gaussian convolution is realised
by discrete convolution with a truncated and renormalised Gaussian, where
the truncation took place at 3 times the standard deviation. Symmetry and
separability have been exploited in order to speed up these discrete con-
volutions. Spatial derivatives of the image data f have been approximated
using central differences, while temporal derivatives are approximated with
a simple two-point stencil. Let us denote by Jnmi the component (n, m) of
the structure tensor Jρ(∇f) in some pixel i. Furthermore, let Nl(i) denote
the set of neighbours of pixel i in direction of axis l. Then a finite differ-
ence approximation to the Euler–Lagrange equations (2)–(3) with reflecting
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boundary conditions is given by

0 = α
2

∑

l=1

∑

j∈Nl(i)

uj − ui

h2
l

− (J11i ui + J12i vi + J13i) , (5)

0 = α
2

∑

l=1

∑

j∈Nl(i)

vj − vi

h2
l

− (J21i ui + J22i vi + J23i) (6)

for i = 1,...,N . This constitutes a linear system of equations for the 2N
unknowns (ui) and (vi).

3.2 The Gauß–Seidel Method

The preceding linear system of equations has a sparse system matrix. It may
be solved iteratively, e.g. by applying the Gauß–Seidel method [28]. Because
of its simplicity it is frequently used in literature. If the upper index k de-
notes the iteration step, the Gauß-Seidel method can be written as

uk+1
i =

2
∑

l=1

α
h2

l

(

∑

j∈N−

l
(i)

uk+1
j +

∑

j∈N+

l
(i)

uk
j

)

−
(

J12i v
k
i + J13i

)

2
∑

l=1

α
h2

l

|Nl(i)| + J11i

, (7)

vk+1
i =

2
∑

l=1

α
h2

l

(

∑

j∈N−

l
(i)

vk+1
j +

∑

j∈N+

l
(i)

vk
j

)

−
(

J21i u
k+1
i + J13i

)

2
∑

l=1

α
h2

l

|Nl(i)| + J22i

(8)

where N−
l (i) := {j ∈ Nl(i) | j < i} and N+

l (i) := {j ∈ Nl(i) | j > i}. By
|Nl(i)| we denote the number of neighbours of pixel i in direction of axis l
that belong to the image domain.

3.3 The Pointwise Coupled Gauß–Seidel Method

Although uk+1
i and vk+1

i are computed sequentially at each pixel, this form of
coupling between the two equations is rather weak. Particularly with regard
to the increasing influence of the coupled zeroth order terms for decreasing
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values of α, one may think of a simultaneous solving for both unknowns
instead. Such a proceeding yields the so called pointwise coupled Gauß-Seidel
solver, a block Gauß-Seidel variant, where all unknowns at a pixel are updated
synchroneously. If wk+1

i denotes the flow vector (uk+1
i , vk+1

i )> at pixel i, the
pointwise coupled Gauß-Seidel method can be written as

wk+1
i = M−1

i g
k+1/2
i (9)

with

Mi :=









2
∑

l=1

α
h2

l

|Nl(i)| + J11i J12i

J21i

2
∑

l=1

α
h2

l

|Nl(i)| + J22i









, (10)

and

g
k+1/2
i :=











2
∑

l=1

α
h2

l

(

∑

j∈N−

l
(i)

uk+1
j +

∑

j∈N+

l
(i)

uk
j

)

− J13i

2
∑

l=1

α
h2

l

(

∑

j∈N−

l
(i)

vk+1
j +

∑

j∈N+

l
(i)

vk
j

)

− J23i











. (11)

One step of the pointwise coupled Gauß–Seidel method is computationally
more expensive than the usual Gauß–Seidel method, since it requires to solve
a 2 × 2 linear system in each pixel. In Section 5, however, we will see that
this additional effort may pay off in certain situations.

4 An Efficient Multigrid Algorithm

4.1 Motivation

Common iterative solvers like the two presented Gauß–Seidel variants usu-
ally perform very well in removing the higher frequency parts of the error
within the first iterations. This behaviour is reflected in a good initial conver-
gence rate. Because of their smoothing properties regarding the error, these
solvers are referred to as smoothers. After some iterations, however, only low
frequency components of the error remain and the convergence slows down
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significantly. At this point smoothers suffer from their local design and cannot
attenuate efficiently low frequencies that have a sufficient large wave length
in the spatial domain.
Multigrid methods [5, 6, 15, 24, 27] overcome this problem by creating a so-
phisticated fine-to-coarse hierarchy of equation systems with excellent error
reduction properties. Low frequencies on the finest grid reappear as higher
frequencies on coarser grids, where they can be removed successfully. This
strategy allows multigrid methods to compute accurate results much faster
than non–hierarchical iterative solvers. Since we focus on the real-time com-
putation of optic flow, we have developed such multigrid algorithms for the
CLG approach.

4.2 Detailed Description of a 2-Grid Cycle

Let us now explain our strategy in detail. We reformulate the linear system
of equations given by (5)–(6) as

Ahxh = fh (12)

where the index h stands for the grid cell size hx×hy, xh is the concatenated
vector ((uh)>, (vh)>)>, fh is the right hand side given by 1

α
((Jh

13)
>, (Jh

23)
>)>

and Ah is a symmetric positive definite matrix. Let x̃h be the result computed
by the chosen Gauß–Seidel smoother after n1 iterations. Then the error of
the solution is given by

eh = xh − x̃h. (13)

Evidently, one is interested in finding eh in order to correct the approximated
solution x̃h. Since the error cannot be computed directly, we determine the
residual error given by

rh = fh − Ahx̃h (14)

instead. Since A is a linear operator, we have

Aheh = rh. (15)

Solving this system of equations would give us the desired correction eh. Since
high frequencies of the error have already been removed by our smoother , we
can solve this system at a coarser level. For the sake of clarity the notation
for the coarser grid is chosen correspondingly to the original equation on the
fine grid (12). Thus, the linear equation system (15) becomes

AHxH = fH (16)
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at the coarser level, where H is the index for the new cell size Hx ×Hy with
Hx ≥ hx and Hy ≥ hy. The right hand side fH is a downsampled version of
rh.

At this point we have to make four decisions:

(I) The cell size H on the coarser grid has to be chosen. In our implemen-
tation Hx ×Hy is computed as follows : Let Nh

x and Nh
y be the number

of cells on the fine grid in x and y direction. Then the new cell size is
given by

Hx := hx
Nh

x

NH
x

Hy := hy

Nh
y

NH
y

(17)

with NH
x = dNh

x /2e and NH
y = dNh

y /2e, where dze denotes the smallest
integer number m with m ≥ z. Thus the total number of cells at the
coarser grid is NH = NH

x NH
y .

(II) A restriction operator Rh→H has to be defined that allows the transfer
of vectors from the fine to the coarse grid. By its application to the
residual rh we obtain the right hand side of the equation system on the
coarser grid:

fH = Rh→Hrh. (18)

For simplicity, averaging over Hx × Hy is used for Rh→H (see Fig. 1).

(III) A coarser version of matrix Ah has to be created. All entries of Ah

belonging to the discretised Laplacean depend on the grid cell size of
the solution xh. In order to obtain the corresponding coarse grid entries,
a simple adapation of the grid size is sufficient:

2
∑

l=1

∑

j∈Nl(i)

uH
i − uH

j

H2
l

. (19)

Having their origin in the structure tensor Jh, all other entries of Ah are
independent of xh. Hence their coarse grid counterparts are obtained
by a componentwise restriction of Jh:

JH
nm = Rh→HJh

nm. (20)
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This allows the formulation of the coarse grid equation system

0 = α
2

∑

l=1

∑

j∈Nl(i)

uH
j − uH

i

H2
l

−
(

JH
11i u

H
i + JH

12i v
H
i + fH

1i

)

, (21)

0 = α
2

∑

l=1

∑

j∈Nl(i)

vH
j − vH

i

H2
l

−
(

JH
21i u

H
i + JH

22i v
H
i + fH

2i

)

(22)

for i = 1,...,NH , where ((uH)>, (vH)>)> = xH and ((fH
1 )>, (fH

2 )>)> =
fH . The corresponding ordinary and pointwise coupled Gauß-Seidel
iteration steps can be derived directly from this system.

(IV) After solving AHxH = fH on the coarse grid, a prolongation operator
P H→h has to be defined in order to transfer the solution xH back to
the fine grid:

eh = P H→hxH . (23)

We choose constant interpolation over hx×hy as prolongation operator
P H→h (see Fig. 1). In particular we have

Rh→H = c · (P H→h)> with c =
hxhy

HxHy

. (24)

The obtained correction eh can be used now for updating the approximated
solution of the original equation on the fine grid:

x̃h
new = x̃h + eh. (25)

Finally n2 iterations of the smoother are performed in order to remove high
error frequencies introduced by the prolongation of xH .

4.3 Strategies for Multigrid Cycles

The hierarchical application of the explained 2-grid cycle is called V–cycle.
Repeating two 2-grid cycles at each level yields the so called W–cycle, that
has better convergence properties at the expense of slightly increased compu-
tational costs (regarding 2D). In general, multiple of such cycles are required
to reach the desired accuracy. Examples for V and W–cycles are given in
Figure 2.
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RESTRICTION PROLONGATION

8 12 24 8 9 18 12

9 18 12 9 15 16 12

Figure 1: One-dimensional example for the restriction operator Rh→H and the
prolongation operator P H→h with h

H
= 3

4
. Numbers represent grey values.

Instead of transferring the residual equations between the levels one may
think of starting with a coarse version of the original equation system. In
this case coarse solutions serve as initial guesses for finer levels. This strategy
is referred to as cascading multigrid.
In combination with V or W–cycles the multigrid strategy with the best
performance is obtained: full multigrid. An example for such a full multigrid
approach with two W–cycles per level is shown in Figure 3. One should note
that the special choice of the restriction and prolongation operator allows a
full descent for all three strategies, independently of the problem size. Thus
better convergence rates are obtained and the number of required cycles is
reduced.

5 Results

We would like to emphasise that the goal of the present paper is to investigate
fast algorithms for variational methods. For a detailed evaluation of the CLG
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Figure 2: Example of V– and W–cycles for two, three and four levels. In the
case of two levels, V– and W–cycles are identical. Performing iterations on
the original equation is marked with large black dots, while iterations on
residual equations are marked with smaller ones. H ′′ > H ′ > H are cell sizes
on coarser levels.
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Figure 3: Example of a full multigrid implementation for four levels. Vertical
solid lines separate alternating blocks of the two basic strategies. Blocks be-
longing to the cascading multigrid strategy are marked with c. Starting from
a coarse scale the original problem is refined step by step. This is visualised
by the → symbol. Thereby the coarser solution serves as an initial approx-
imation for the refined problem. At each refinement level two W–cycles are
used as solvers (blocks marked with w).

method itself, we refer to [8, 25].
Our computations are performed with C implementations on a standard PC
with a 3.06 GHz Intel Pentium 4 CPU. In our first experiment we compare
the ordinary and the pointwise coupled Gauß–Seidel method as part of a
V-cycle strategy with one presmoothing and one postsmoothing iteration at
each level (n1 = n2 = 1). In order to analyse the convergence behaviour of
both numerical schemes with respect to parameter variations, test runs with
four different parameter settings have been performed. Each time, the flow
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field between frame 16 and frame 17 of the 512 × 512 marble sequence by Otte
and Nagel [21] was computed. The V-cycles were stopped when the relative
error erel := ‖en‖2/‖x‖2 was below 10−3, where en denotes the absolute error
after n V-cycles and x stands for the correct solution.

Table 1: Gauß-Seidel vs. pointwise coupled Gauß-Seidel

Parameter Coupled Gauß–Seidel Gauß–Seidel

α σ ρ V-cycles ν̄ V-cycles ν̄

1000 2.6 1.8 6 0.152787 6 0.153694

1 2.6 1.8 5 0.110732 30 0.711449

1000 2.6 0.0 6 0.153639 6 0.154601

1 2.6 0.0 23 0.634465 278 0.963437

In Table 1 the required number of V-cycles and the average error reduction
factor defined by ν̄ := n

√

‖en‖2/‖e0‖2 are listed. The superior performance
of the pointwise coupled Gauß–Seidel method for decreasing values of α is in
accordance with the theoretical considerations from Section 3. In this case,
one can also observe an acceleration of the convergence, if the integration
scale ρ is used in a moderate way. The reason for this behaviour is the
smoothing of the zeroth order term coefficients, which allows a much more
accurate coarse grid representation. Thus, the intergation scale is not only
useful to render the CLG approach more robust against noise, but also to
improve its convergence if multigrid schemes are used.
The computed flow field for the first parameter setting is presented in Figure
4. Since this setting is optimised for quality, its computation time of 0.15
seconds gives already a first impression of the usefulness of multigrid methods
for optic flow computation.
In a second experiment different multigrid strategies for the pointwise coupled
Gauß–Seidel solver are compared. For this purpose we performed test runs
on two different image sequences. Besides the marble sequence, the 200 ×
200 pixels office sequence by Galvin et al. [12] was used. Table 2 shows the
required cycle number n to reach the desired precision of erel < 10−3, the
average error reduction factor ν̄ and the run time for each implementation.
V/W-cycles are denoted by V/W(n1,n2), where n1 and n2 stand for the
number of pre– respectively postsmoothing iterations. In the case of Full
Multigrid strategies an additional number gives information on how many
V/W-cycles are used at each refinement level. The presented runtimes refer
to the computation of one single flow field of the corresponding sequence.
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Figure 4: (a) Left: Frame 16 of the marble sequence. (b) Center: Ground
truth flow field between frame 16 and 17. (b) Right: Computed flow field by
our multigrid CLG method (σ = 2.6, ρ = 1.8, and α = 1000).

Table 2: Comparison of different multigrid strategies

Marble Office

Strategy n ν̄ Time n ν̄ Time

V(1,1) 5 0.21946 0.32658 7 0.34182 0.05336

V(2,2) 4 0.11114 0.35697 5 0.20452 0.05561

W(1,1) 1 0.00085 0.16482 2 0.01829 0.03076

W(2,2) 1 0.00067 0.19148 2 0.00877 0.03854

FMG(1,V(2,2)) 1 0.00012 0.19947 1 0.00030 0.02436

FMG(2,V(1,1)) 1 0.00012 0.22993 1 0.00026 0.02828

FMG(1,W(2,2)) 1 0.00012 0.23130 1 0.00025 0.03124

FMG(2,W(1,1)) 1 0.00003 0.26929 1 0.00008 0.03788

While strategies based on V-cycles required several iterations to reach a rel-
ative error of 10−3, only one or two W-cycles sufficed to perform the same
task. This is reflected in significantly shorter run times. The implemented full
multigrid schemes converged fastest, but could not outperform the W-Cycles
in those cases, where one of them was already sufficient to reach the desired
accuracy.
Based on this evaluation we picked the full multigrid implementation with
one V(2,2)-cycle each level for our last experiment, where we compared it
to the ordinary Gauß–Seidel method and its popular Successive Overrelax-
ation (SOR) variant [28]. Accelerating the Gauß–Seidel method by a weighted
extrapolation of its results, the SOR method represents the class of more ad-
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vanced non-hierarchical solvers in this comparison.
Table 3 shows the performance of our algorithm, where the presented run-
times refer to all 19 flow fields for the office sequence. With more than 40
frames per second we are able to compute the optic flow for sequences with
200 × 200 pixels in real-time. We see that the chosen multigrid implementa-
tion is 247 times faster than the Gauß–Seidel method and almost one order
of magnitude more efficient than SOR. In terms of iterations, the difference
is even more drastical: While 6692 Gauß–Seidel iterations were required to
reach the desired accuracy, a single full multigrid cycle was sufficient.

Table 3: Performance Benchmark

Iterations/Frame Runtime [s] Frames/Second [s−1]

Gauß–Seidel 6692 115.862 0.164

SOR 152 3.870 4.910

FMG(1,V(2,2)) 1 0.470 40.463

Qualitative results for this test run are presented in Figure 5 where one of the
computed flow fields is shown. We observe that the CLG method matches
the ground truth very well. Thereby one should keep in mind that the full
multigrid computation of such a single flow field took only 24 milliseconds.

Figure 5: (a) Left: Frame 10 of the office sequence. (b) Center: Ground truth
flow field between frame 10 and 11. (b) Right: Computed flow field by our
full multigrid CLG method (σ = 0.72, ρ = 1.8, and α = 2700).
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6 Summary and Conclusions

Using the CLG method as a prototype for a noise robust variational tech-
nique, we have shown that it is possible to achieve real-time computation of
dense optic flow fields of size 200 × 200 on a standard PC. This has been
accomplished by using a full multigrid method for solving the linear systems
of equations that result from a discretisation of the Euler–Lagrange equa-
tions. We have shown that this gives us a speed-up by more than two orders
of magnitude compared to commonly used algorithms for variational optic
flow computation. In our future work we plan to investigate further accel-
eration possibilities by means of suitable parallelisations. Moreover, we will
investigate the use of multigrid strategies for nonlinear variational optic flow
methods.
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Horn/Schunck: Combining local and global optic flow methods. Techni-
cal Report 82, Dept. of Mathematics, Saarland University, Saarbrücken,
Germany, Apr. 2003.

[26] J. Weickert and C. Schnörr. A theoretical framework for convex regular-
izers in PDE-based computation of image motion. International Journal
of Computer Vision, 45(3):245–264, Dec. 2001.

17



[27] P. Wesseling. An Introduction to Multigrid Methods. Wiley, Chichester,
1992.

[28] D. M. Young. Iterative Solution of Large Linear Systems. Academic
Press, New York, 1971.

[29] G. Zini, A. Sarti, and C. Lamberti. Application of continuum theory
and multi-grid methods to motion evaluation from 3D echocardiogra-
phy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 44(2):297–308, Mar. 1997.

18


