
Toward a Complexity Theory for

Randomized Search Heuristics:

Black-Box Models

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Carola Winzen

Saarbrücken
2011

2

Tag des Kolloquiums:
16. Dezember 2011

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Prof. Dr. Holger Hermanns

Universität des Saarlandes, Saarbrücken, Deutschland

Prüfungsausschuss:
Prof. Dr. Raimund Seidel (Vorsitzender des Prüfungsausschusses)

Universität des Saarlandes, Saarbrücken, Deutschland
Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Max-Planck-Institut für Informatik, Saarbrücken, Deutschland
Prof. Dr. Markus Bläser

Universität des Saarlandes, Saarbrücken, Deutschland
Prof. Dr. Xin Yao

University of Birmingham, Birmingham, U.K.
Dr. Konstantinos Panagiotou (Akademischer Beisitzer)

Max-Planck-Institut für Informatik, Saarbrücken, Deutschland

Berichterstatter:
Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Max-Planck-Institut für Informatik, Saarbrücken, Deutschland
Prof. Dr. Markus Bläser

Universität des Saarlandes, Saarbrücken, Deutschland
Prof. Dr. Xin Yao

University of Birmingham, Birmingham, U.K.

3

Abstract

Randomized search heuristics are a broadly used class of general-purpose algorithms.
Analyzing them via classical methods of theoretical computer science is a growing
field. While several strong runtime bounds exist, a powerful complexity theory for
such algorithms is yet to be developed.

We contribute to this goal in several aspects. In a first step, we analyze existing
black-box complexity models. Our results indicate that these models are not restric-
tive enough. This remains true if we restrict the memory of the algorithms under
consideration.

These results motivate us to enrich the existing notions of black-box complexity by
the additional restriction that not actual objective values, but only the relative quality
of the previously evaluated solutions may be taken into account by the algorithms.
Many heuristics belong to this class of algorithms. We show that our ranking-based
model gives more realistic complexity estimates for some problems, while for others
the low complexities of the previous models still hold.

Surprisingly, our results have an interesting game-theoretic aspect as well. We show
that analyzing the black-box complexity of the OneMaxn function class—a class often
regarded to analyze how heuristics progress in easy parts of the search space—is the
same as analyzing optimal winning strategies for the generalized Mastermind game
with 2 colors and length-n codewords. This connection was seemingly overlooked so
far in the search heuristics community.

Zusammenfassung

Randomisierte Suchheuristiken sind vielseitig einsetzbare Algorithmen, die aufgrund
ihrer hohen Flexibilität nicht nur im industriellen Kontext weit verbreitet sind. Trotz
zahlreicher erfolgreicher Anwendungsbeispiele steckt die Laufzeitanalyse solcher Heu-
ristiken noch in ihren Kinderschuhen. Insbesondere fehlt es uns an einem guten Ver-
ständnis, in welchen Situationen problemunabhängige Heuristiken in kurzer Laufzeit
gute Lösungen liefern können. Eine Komplexitätstheorie ähnlich wie es sie in der klas-
sischen Algorithmik gibt, wäre wünschenswert.

Mit dieser Arbeit tragen wir zur Entwicklung einer solchen Komplexitätstheorie
für Suchheuristiken bei. Wir zeigen anhand verschiedener Beispiele, dass existierende
Modelle die Schwierigkeit eines Problems nicht immer zufriedenstellend erfassen. Wir
schlagen daher ein weiteres Modell vor. In unserem Ranking-Based Black-Box Model
lernen die Algorithmen keine exakten Funktionswerte, sondern bloß die Rangordnung
der bislang angefragten Suchpunkte. Dieses Modell gibt für manche Probleme eine
bessere Einschätzung der Schwierigkeit. Wir zeigen jedoch auch, dass auch im neuen
Modell Probleme existieren, deren Komplexität als zu gering einzuschätzen ist.

Unsere Ergebnisse haben auch einen spieltheoretischen Aspekt. Optimale Gewinn-
strategien für den Rater im Mastermindspiel (auch SuperHirn) mit n Positionen ent-
sprechen genau optimalen Algorithmen zur Maximierung von OneMaxn-Funktionen.
Dieser Zusammenhang wurde scheinbar bislang übersehen.
Diese Arbeit ist in englischer Sprache verfasst.

4

Acknowledgments

It is a great honor to work in such a lively, inspiring, and outstanding place as the
Algorithms and Complexity group at the Max-Planck-Institut für Informatik. I am
very grateful to Kurt Mehlhorn for admitting me to this great research environment.

I am greatly indebted to Benjamin Doerr, who advised most of the work contained
in this thesis.

During my PhD research, I had the great pleasure of working with many people,
among others my co-authors Benjamin Doerr, Michael Gnewuch, Thomas Jansen,
Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Johannes Lengler, Dirk Sudholt,
Markus Wagner, Magnus Wahlström, and Christine Zarges. I would like to thank all
of them. I also had many interesting discussions with Konstantinos Panagiotou. He
taught me many useful facts about randomized algorithms.

My work is supported by a Google Europe Fellowship in Randomized Algorithms,
which I gratefully acknowledge. I also received financial support from the ACM spe-
cial interest group SIGEVO for attending GECCO 2010 and from the Alfréd Rényi
Institute of Mathematics for attending the conference in honors of Endre Szemerédi’s
seventieth birthday. Both conferences had a significant impact on my PhD studies.

I also thank my employer, McKinsey&Company, Inc. The educational leave offered
by the Fellow program of the German office allowed me to pursue my PhD after two
very insightful and inspiring years as a business consultant.

Parts of Section 6 have been done during the Dagstuhl seminar 10361 “Theory of
Evolutionary Algorithms”. I would like to thank the organizers for inviting me in a
very early stage of my PhD studies.

I would also like to express my gratitude to several anonymous reviewers. Their
comments significantly helped to improve the presentation of the results presented in
the papers underlying this dissertation.

I am most grateful to my father for his steady support.

5

Contents

1. Introduction 7
1.1. New Results for the Basic Black-Box Models 10
1.2. Alternative Black-Box Models . 12
1.3. Black-Box Complexities of Combinatorial Problems 13
1.4. Further Contributions . 14

2. Preliminaries 15
2.1. Basic Notation . 15
2.2. Some Common Randomized Search Heuristics 16
2.3. Standard Test Function Classes . 19
2.4. Useful Tools . 22

3. Two Basic Black-Box Models 27
3.1. The Unrestricted Black-Box Model . 27
3.2. The Unbiased Black-Box Model . 29

I New Results for the Basic Black-Box Models 31

4. Faster Black-Box Algorithms Through Higher Arity Operators 33
4.1. Introduction . 33
4.2. The Unbiased Black-Box Complexities of OneMaxn 35
4.3. The Complexity of LeadingOnes . 39
4.4. Conclusion and Future Work . 42

5. Breaking the O(n log n) Barrier of LeadingOnes 43
5.1. Introduction . 43
5.2. On LeadingOnes∗n in the Unrestricted Model 44
5.3. The Unbiased Black-Box Complexity of LeadingOnes∗n 50
5.4. LeadingOnes∗n in the Ranking-Based Models 50
5.5. Conclusions . 51

6. Too Fast Unary Unbiased Black-Box Algorithms 53
6.1. Jump Functions . 54
6.2. Partition . 56
6.3. Conclusions . 65

6

II Alternative Black-Box Models 67

7. Memory-Restricted Black-Box Models 69
7.1. The Mastermind Game . 69
7.2. The Memory-Restricted Black-Box Model 71
7.3. The Mastermind Game with Memory of Size Two 72
7.4. Memory of Size One: Proof of Theorem 7.1 78
7.5. Conclusions . 93

8. Ranking-Based Black-Box Models 95
8.1. The Ranking-Based Black-Box Model 96
8.2. The Ranking-Based Black-Box Complexity of OneMax 98
8.3. The Different Black-Box Complexities of BinaryValue 116
8.4. Ranking-Based Black-Box Complexity of LeadingOnes 122
8.5. Conclusions . 122

III Black-Box Complexities of Combinatorial Problems 125

9. The Minimum Spanning Tree Problem 127
9.1. Introduction and Problem Definition 127
9.2. Upper Bounds for the MST Problem 129
9.3. Lower Bounds for the MST problem 136

10.The Single-Source Shortest Paths Problem 139
10.1. Introduction . 139
10.2. SSSP with a Multi-Criteria Fitness Function 141
10.3. SSSP with a Single-Criterion Fitness Function 144
10.4. Conclusions for Sections 9 and 10 . 157

Bibliography 159

A. Further Contributions 165
A.1. Theory of Randomized Search Heuristics 165
A.2. Estimating Geometric Discrepancies 166
A.3. Randomized Rumor Spreading . 167

B. Curriculum Vitae 169

7

1
Introduction

Randomized search heuristics are general purpose algorithms for optimization prob-
lems. They include bio-inspired approaches such as evolutionary algorithms and ant
colony optimization, but also classical approaches like random search or randomized
hill-climbers.

In practice, randomized search heuristics often are surprisingly successful (and thus
extensively used). They have the additional advantage that not too much understand-
ing of the optimization problem at hand is needed, and that once implemented, they
can easily be re-used for similar problems.

One of the difficulties in using such heuristics is that it is very hard to predict
which problems are easy for a suitable heuristic and which are generally intractable
for randomized search heuristics. In contrast to a large body of empirical work on this
problem, there has been much less theoretical work.

This work mostly lead to results for particular problems and particular heuristics.
Droste, Jansen, and Wegener [DJW02] determined the runtime of the (1 + 1) evolu-
tionary algorithm (EA) for several important test function classes. Another example
is the work by Neumann and Wegener [NW07], which shows that the (1 + 1) EA finds
a minimum spanning tree using O(m2 logm) function evaluations in connected graphs
having m edges and polynomially bounded edge weights.

Still, for a broader understanding of what are easy and difficult problems, a com-
plexity theory similar to what exists in classical algorithmics would be highly desirable
also for randomized search heuristics. The seminal paper by Droste, Jansen, and We-
gener [DJW06], introducing the so-called unrestricted black-box model, appears to be
the first attempt to start such a complexity theory in the randomized search heuristics
community.

The paradigm that randomized search heuristics should ideally be problem-
independent implies that the only way such a heuristic can obtain problem-specific
information is by evaluating a solution candidate. This evaluation is done by an or-
acle that returns the objective value, but reveals no further information about the

8 Introduction

objective function. An algorithm that has no access to the objective function (and
thus has no access to the optimization problem to be solved) other than by querying
objective values from such an oracle, is called a black-box algorithm.

For a class of functions F , Droste et al. define the unrestricted black-box complex-
ity of F to be the minimum (taken over all black-box algorithms) expected number of
function evaluations needed to optimize every function f ∈ F (minimum worst-case
runtime). This number, naturally, is a lower bound on the runtime of any random-
ized search heuristic for the class F , including evolutionary algorithms, ant colony
approaches, simulated annealing, et cetera.

Unrestricted black-box complexity is also studied under the notion of (randomized)
query complexity. Many results for a variety of problems exist. Out of the many
examples let us mention the problem of finding a local minimum of an unknown
pseudo-Boolean function f : {0, 1}n → R. This problem has been studied intensively
in the computer science literature, for deterministic algorithms (deterministic black-
box complexity; confer, e.g., the work by Llewellyn, Tovey, and Trick [LTT89]) and
for randomized algorithms, for example by Aldous [Ald83], Aaronson [Aar04], and
by Zhang [Zha06]. Zhang gives a tight Θ(2n/2

√
n) bound for the randomized query

complexity of finding a local minimum.
Originally motivated by the coin-weighing problem, a much earlier work study-

ing the unrestricted black-box complexity of the generalized OneMax function class
(definition follows) is the one by Erdős and Rényi [ER63], cf. Sections 2.3 and 7.
This OneMax function class is also strongly related to the well-known Mastermind
game, a game that has gained much attention from the computer science and math-
ematics community. For example, Chvátal [Chv83] studies a generalized version of
this game with k colors and n positions. That is, the secret code is a length-n string
z ∈ {0, 1, . . . , k−1}n. Chvátal shows that for any constant number k of colors the code-
breaker has a strategy revealing the secret code using only Θ(n/ log n) guesses. In our
notation this result is equivalent to saying that the unrestricted black-box complexity
of the generalized OneMax function class is Θ(n/ log n). The connection between
unrestricted black-box complexity and randomized query complexity was seemingly
overlooked so far in the randomized search heuristics community. Note, however, that
the main focus of the latter works typically is not in understanding the performance
of randomized search heuristics.

Unfortunately, it turned out that regarding all black-box algorithms leads to some-
times unexpectedly small complexities, which are obtained by not very sensible algo-
rithms. As a trivial example, note that the unrestricted black-box complexity of any
class of functions F = {f} consisting of a single objective function, is one. This is
certified by the black-box algorithm that simply queries the optimum of f as first
action.

This and further examples suggest that a restriction of the class of algorithms
regarded might lead to more meaningful results. A major step in this direction is
the work by Lehre and Witt [LW10a] (see also [LW10b]). They introduce a so-called
unbiased black-box model, which, among other restrictions to the class of algorithms
regarded, requires that all search points queried by the algorithm must be obtained
from previous or random search points by so-called unbiased variation operators (see
Section 3.2 for the full details). When only unary operators are allowed, this leads to

9

a lower bound of Ω(n log n) for the complexity of any single-element class F = {f}
with f having a unique global optimum. This is, indeed, the typical runtime of simple
search heuristics like randomized hill-climbers on simple function classes like monotone
functions.

To allow comparisons between the unrestricted black-box model and the unbiased
black-box model, it is often of interest to study the unrestricted black-box complexity
of a class F of functions that contains generalized versions of the original test function.
This is a standard approach in black-box optimization. As an example, let us consider
the function Om : R → R, x 7→

∑n
i=1 xi which counts the number of ones in a bit

string (Om abbreviates OneMax). As pointed out above, this function clearly has an
unrestricted black-box complexity of 1. However, since the string (1 . . . 1) is the unique
global optimum of Om, the result by Lehre and Witt implies a Ω(n log n) lower bound
for the unary unbiased black-box complexity of Om. This bound is tight. Indeed,
a matching upper bound is provided by many search heuristics, e.g., Random Local
Search or the (1+1) evolutionary algorithm (cf. Section 2.2 for the definitions). Due
to a coupon collector effect they need, on average, Θ(n log n) function evaluations to
optimize Om.

As a moment of thought reveals, the Θ(n log n) bound remains correct if we do not
ask for the complexity of the single function Om but if we consider the whole class
OneMaxn of generalized Om functions: For all z ∈ {0, 1}n let

Omz : {0, 1}n → [0..n], x 7→ |{i ∈ [n] | xi = zi}| .

That is, Omz(x) counts the number of bit positions in which x and z coincide. Let
OneMaxn := {Omz | z ∈ {0, 1}n} be the collection of all such OneMax-type func-
tions.

Then the unary black-box complexity of OneMaxn remains Θ(n log n). However,
the unrestricted black-box complexity of OneMaxn increases to Θ(n/ log n) when
augmenting F = {Om} to F = OneMaxn.

As we did in this example, in the following, we shall always consider not one
single objective function but instead we consider classes of generalized functions with
isomorphic fitness landscapes.

We are now ready to give an overview over the main contributions of our work. This
thesis has three parts. In the first part we study the unrestricted and the unbiased
black-box models and we present several new results, cf. Section 1.1. The results
indicate that even the unbiased model is still not restrictive enough, in the sense that
it allows for black-box complexities that are much smaller than one would expect.
We study two alternative black-box notions in the second part, a memory-restricted
version of the unrestricted model and ranking-based versions of both the unrestricted
as well as the unbiased black-box models. Section 1.2 provides an overview of the
main results achieved in Part II. We conclude this thesis in Part III with a study of
black-box complexities for combinatorial problems.

Table 1.1 summarizes the black-box models and the problems studied in this thesis.

10 Introduction

Model Basic Memory-Restricted Ranking-Based
Problem Sec. Problem Sec. Problem Sec.

unrestricted

OneMaxn 8
LeadingOnes∗n 5 OneMaxn 7 BinaryValue∗n 8
MST 9 Mastermind 7 LeadingOnes∗n 8
SSSP 10 MST 9

SSSP 10

unbiased

OneMaxn 4 OneMaxn 8
LeadingOnes∗n 4,5 BinaryValue∗n 8
Jumpn,k 6 LeadingOnes∗n 8
Partition 6 MST 9
MST 9 SSSP 10
SSSP 10

Table 1.1. Black-box models and problems studied in this thesis. Abbreviations:
Sec. = Section, MST = minimum spanning tree problem, SSSP = single-source
shortest paths problem

1.1. New Results for the Basic Black-Box Models

As mentioned above, we shall first argue that the unbiased model of Lehre and Witt
is still not restrictive enough. To this end, we provide several examples for which the
unbiased black-box complexities are much smaller than what problem-independent
search heuristics suggest.

In what follows, we give a rough overview over the three sections covered in this
first part of the thesis.

Section 4: Faster Black-Box Algorithms Through Higher Arity Operators

Lehre and Witt [LW10a] analyze the unbiased black-box model for the unary case
where algorithms may use only mutation-type operators, i.e., may only use the infor-
mation from at most one previously queried search point to generate a new sample.

In Section 4 we extend their work by analyzing the unbiased black-box model for
arities greater than ones. A variation operator is said to be of arity k if it creates new
search points by recombining up to k previously queried search points. An algorithm
invoking only variation operators of arity at most k is called a k-ary algorithm. We
analyze the higher arity black-box complexities of the two standard function classes
OneMaxn and LeadingOnes∗n (definition follows).

We show that, surprisingly, by allowing binary (i.e., crossover-type) variation op-
erators, the unbiased black-box complexity of OneMaxn drops from Θ(n log n) to
O(n).

1.1. New Results for the Basic Black-Box Models 11

We shall also prove that the black-box complexity drops further if we increase the
arity of the variation operators. More precisely, we show that for every k ≤ n, the
unbiased k-ary black-box complexity of OneMaxn can be bounded byO(n/ log k). For
k = nΩ(1) this statement is asymptotically optimal since already for the unrestricted
black-box complexity a lower bound of Ω(n/ log n) has been shown by Erdős and
Rényi [ER63] and independently by Chvátal [Chv83] and again later also by Droste et
al. [DJW06].

The other class of test functions that we shall consider in Section 6 is
LeadingOnes∗n. This class contains the generalizations of the standard Leadin-
gOnes function Lo : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1}, which
counts the longest prefix of ones in a bit string. We consider the closure of Lo under
all permutations σ ∈ Sn and under all exchanges of the bit values 0 and 1. To be
more precise, we define for any bit string z ∈ {0, 1}n and any permutation σ of [n] the
function

Loz,σ : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : zσ(j) = xσ(j)} .

We let LeadingOnes∗n be the set {Loz,σ | z ∈ {0, 1}n, σ ∈ Sn} of all such functions.
Each of these functions has a fitness landscape that is isomorphic to the one induced
by Lo.

We show that the Θ(n2) unary unbiased black-box complexity of LeadingOnes∗n
proven in [LW10a] drops to O(n log n) in the binary unbiased black-box model.

The results presented in this section are the first results for unbiased black-box
models of arity larger than one.

Indication of source. The content of Section 4 has been previously published in the
Proceedings of FOGA ’11 (cf. [DJK+11]).

Section 5: Breaking the O(n log n) Barrier of LeadingOnes

Building on the results of the Section 4 we show that the unrestricted black-box
complexity of LeadingOnes∗n is O(n log n/ log logn). This shows that the natural
looking O(n log n) bound proven in Section 4 is not tight in the unrestricted model.

Moreover, we show that the black-box optimization algorithm leading to this bound
can be implemented in a way that only 3-ary unbiased variation operators are used.
Hence our bound implies that the unbiased black-box complexity of LeadingOnes∗n
is O(n log n/ log log n) for all arities larger than two.

The upper bound remains valid if we do not allow the algorithm to exploit knowl-
edge of the exact function values but only their rankings. That is, we show that
even the 3-ary unbiased ranking-based black-box complexity is O(n log n/ log log n).
This disproves a conjecture by Droste, Jansen, Tinnefeld, and Wegener made in the
conference version [DJTW03] of [DJW06].

Indication of source. The results presented in Section 5 have been accepted for
presentation at the conference Artificial Evolution ’11 (cf. [DW11a]).

12 Introduction

Section 6: Too Fast Unary Unbiased Black-Box Algorithms

The results presented in the previous two sections indicate that the unbiased black-box
complexities remain artificially small for several test functions once we increase the
arity of the variation operators to values larger than one. In this section we show that
the same effect occurs already in the unary unbiased model, where only mutation-
type variation operators are allowed. More precisely, for both the classical Jumpn,k
test function class and for a subclass of the well-known Partition problem we give
mutation-only unbiased black-box algorithms with an expected optimization time of
O(n log n) function evaluations. Since the first problem usually needs Θ(nk) function
evaluations to be optimized by standard heuristics and the second is even NP -hard,
these black-box complexities do not seem to indicate the true difficulty of the two
problems for randomized search heuristics.

Indication of source. Parts of the content of Section 6 have been previously published
in the Proceedings of GECCO ’11 (cf. [DKW11]).

1.2. Alternative Black-Box Models

In the second part we analyze two alternative black-box notions.

Section 7: Memory-Restricted Black-Box Models

The first alternative model, thememory-restricted black-box model, restricts the mem-
ory of the algorithm to some fixed size µ ∈ N. Given such a memory of size µ, the
algorithm can store up to µ search points and their corresponding objective values.
Based only on this information, it decides on its next sample. After receiving that
sample’s objective value, based only on the content of the memory, the current sample,
and its objective value, it decides which µ out of the µ+1 samples and objective values
to keep in the memory. Note that our memory restriction means that the algorithm
truly has no other memory, in particular, no iteration or program counters. So, for-
mally, a black-box algorithm with memory of size µ consists of a guessing strategy,
which can be fully described by a mapping from µ-sets of samples and objective values
to search points x ∈ {0, 1}n, and a forgetting strategy, which maps (µ + 1)-sets of
samples and objective values to µ-subsets thereof.

The memory-restriction is natural in the sense that many heuristics, e.g., evolu-
tionary algorithms, only store a bounded size population of search points. Simple
hill-climbers or the Metropolis algorithm even store only one single search point.

The memory-restricted black-box model was suggested by Droste, Jansen, and
Wegener. They conjecture in [DJW06, Section 6] that a memory restriction of size
one leads to a black-box complexity of order Θ(n log n) for the OneMaxn function
class. However, as we shall prove in Section 7, this is not correct. In fact, we show
that the black-box complexity of OneMaxn even with the memory restricted to one
is Θ(n/ log n), disproving the conjecture of Droste, Jansen, and Wegener.

1.3. Black-Box Complexities of Combinatorial Problems 13

Indication of source. The content of Chapter 7 is currently under submission. Minor
parts of it are available as technical report [DW11b].

Section 8: Ranking-Based Black-Box Models

In Section 8 we enrich the existing black-box complexity notions by the restriction that
not actual objective values, but only the relative quality of the previously evaluated
solutions may be taken into account by the algorithm. In other words, throughout the
optimization, the algorithm knows for any two already queried search points x and y
no more than whether f(x) < f(y), f(x) = f(y), or f(x) > f(y). In particular, it
does not know the true values of f(x) and f(y). Still, this ranking-based black-box
model captures many commonly used randomized search heuristics.

We show that our proposed model removes some drawbacks of the previous models.
For example, for the class of generalized binary-value functions BinaryValue∗n (cf.
Section 2.3 for the definition), the ranking-based black-box complexity is of order Θ(n)
instead of only O(log n) without the ranking restriction. That is, we see that for this
function class, the ranking-based black-box complexity seems to give us a more useful
complexity measure than the previous approaches.

However, we shall also analyze the ranking-based black-box complexity of the
OneMaxn function class for which all previous black-box models showed a complexity
of Θ(n/ log n). The proofs of these results heavily exploit the fact that in these models,
the oracle returns the precise fitness value. In spite of this, we still find a black-box al-
gorithm in our ranking-based model that solves the problem with Θ(n/ log n) queries.
This might be an indicator that for some problem classes the ranking-based model
still allows too powerful algorithms.

Indication of source. Parts of the content of Chapter 8 have been previously pub-
lished in the Proceedings of CSR ’11 (cf. [DW11c]). A journal version is currently in
preparation.

1.3. Black-Box Complexities of Combinatorial Problems

In the third part of this thesis, we shall leave the world of the artificial test functions
OneMax, BinaryValue, and LeadingOnes, and we analyze the different black-
box complexities of two combinatorial problems, the minimum spanning tree problem
(Section 9) and the single-source shortest paths problem (Section 10).

Besides giving interesting bounds for their black-box complexities, our work reveals
that the choice of how to model the optimization problem is non-trivial here. This
in particular comes true for the shortest paths problem where the search space does
not consist of bit strings, and where a reasonable definition of unbiasedness has to be
agreed on.

Indication of source. Parts of the content of Section 9 and Section 10 have been
previously published in the Proceedings of GECCO ’11 (cf. [DKLW11]). A journal
version is currently in preparation.

14 Introduction

1.4. Further Contributions

This thesis summarizes my contribution to the development of a complexity theory
for randomized search heuristics. However, during my PhD research, I have not only
worked with black-box models, but I achieved also other results which are summarized
in Appendix A.

In addition to three different results in the field of evolutionary computation (cf.
references [DJS+10], [DJW10b], and [DJW10a]), these contributions include

• [GWW11]: a new search heuristic for the NP-hard problem [GSW09] of com-
puting the star discrepancy of a given point set [GWW11], and

• [Win11]: the definition and analysis of a direction-reversing quasi-random rumor
spreading protocol, which—given the same dose of randomness—outperforms the
recent hybrid protocol by Doerr and Fouz [DF11].

Journal versions are under submission for all five results mentioned. Note, however,
that these topics and the results are not further discussed in this thesis.

15

2
Preliminaries

We give an overview of the most intensively studied general-purpose search heuristics
(Section 2.2) and we introduce some terminology frequently used in the randomized
search heuristics community.

Furthermore, we define several standard test function classes in Section 2.3. Typ-
ically, these function classes are generalizations of toy problems which are used to
gather some basic knowledge on how randomized search heuristics proceed on very
elementary fitness landscapes.

We conclude this part in Section 2.4 with some standard tools that will be used
later in this thesis.

2.1. Basic Notation

Throughout this work, we use the following notations. We denote the positive integers
by N and the positive reals by R+. For any k ∈ N, we abbreviate [k] := {1, . . . , k}.
Analogously, we define [0..k] := [k]∪{0}. For k, ` ∈ N we write [k±`] := [k−`, k+`]∩Z.
For x = x1 · · ·xn ∈ {0, 1}n we denote by x̄ the bitwise complement of x (i.e., for all
i ∈ [n] we have x̄i = 1− xi).

If x, y ∈ {0, 1}n, we obtain the bit string x ⊕ y by setting, for each j ∈ [n],
(x ⊕ y)i := 1 if xi 6= yi and (x ⊕ y)i := 0 if xi = yi. That is, ⊕ denotes the bitwise
exclusive-or.

By enk we denote the k-th unit vector (0, . . . , 0, 1, 0, . . . , 0) of length n. For a set
I ⊆ [n] we abbreviate enI :=

∑
i∈I e

n
i = ⊕i∈Ieni .

We shall sometimes use the shorthand |x|1 for the number of ones in the bit string
x, i.e., |x|1 :=

∑n
i=1 xi. If f is a function and S a set, we write f(S) := {f(s) | s ∈ S}

and we denote by 2S the power set of S, i.e., the set of all subsets of S. We write idS
for the identity function of S, that is, we set idS(s) := s for all s ∈ S.

For n ∈ N, by Sn we denote the set of all permutations of [n]. For σ ∈ Sn
and x ∈ {0, 1}n we abbreviate σ(x) := xσ(1) . . . xσ(n). Lastly, with loga we denote the

16 Preliminaries

logarithm to base a, and with log we denote the natural logarithm to base e := exp(1).
If not otherwise indicated, all asymptotic notation (Landau symbols, big-Oh no-

tation) will be with respect to n, which in almost all sections denotes the dimension
of the search space {0, 1}n.

2.2. Some Common Randomized Search Heuristics

In this section we present some of the most prominent randomized search heuristics.
Throughout this thesis we shall refer to these algorithms, for example, to illustrate the
differences between different black-box models. The reader only interested in black-
box complexity may skip this section without loss. However, we shall also introduce in
this section some standard terms frequently used in the randomized search heuristics
community—like population, offspring, mutation, selection, fitness et cetera. In the
subsequent sections we will assume that the reader is familiar with these notions.

All algorithms in this section are presented for maximizing pseudo-Boolean func-
tions f : {0, 1}n → R. The minimization versions are equivalent. Note also that for
most algorithms the generalization to finite search spaces other than the hypercube
{0, 1}n is straightforward. As we are mainly interested in pseudo-Boolean functions,
we omit the details. The main focus of this thesis is not a thorough discussion of
particular randomized search heuristics but rather the development of a complexity
theory for reasonably large classes of such algorithms. Therefore, we shall only provide
the basic definitions here. Where more details are needed, they will be provided in
the subsequent sections. A good survey for both classical and recent results on the
algorithms presented in this sections is the book edited by Auger and Doerr [AD11]
and, for results on combinatorial optimization problems, the book by Neumann and
Witt [NW10].

Note that we do not specify a stopping criterion for any of the algorithms listed
below, that is, all algorithms run forever. This is justified by the fact that we typically
take as performance measure the expected number of function evaluations needed until
an optimal search point is queried for the first time. This is the standard performance
measure in the randomized search heuristics community, because in typical applica-
tions, evaluating the fitness of a search point is much more costly than the generation
of a new search point.

2.2.1. Randomized Local Search

Randomized Local Search (RLS) is the most basic randomized search heuristic. It is
a simple hill-climber. In the mutation step, it creates from the current best solution
x a new search point (“offspring”) y by flipping exactly one bit in x. It accepts the
candidate solution y as new search point if and only if f(y) ≥ f(x), i.e., if and only if
the objective value (“fitness”) of y is at least as large as the fitness of x. This is called
the selection step of the algorithm (line 5).

2.2. Some Common Randomized Search Heuristics 17

Algorithm 1: Randomized Local Search for maximizing f : {0, 1}n → R.
Initialization: Sample x ∈ {0, 1}n uniformly at random and query f(x);1

Optimization: for t = 1, 2, 3, . . . do2

Choose j ∈ [n] uniformly at random;3

Set y ← x⊕ enj and query f(y) ; //mutation step4

if f(y) ≥ f(x) then x← y ; //selection step5

2.2.2. Elitist Evolutionary Algorithms

The (1 + 1) evolutionary algorithm ((1 + 1) EA, Algorithm 2) creates new search
points by independently flipping each bit in the current best search point with a fixed
mutation probability 1/n. That is, on average, exactly one bit is being flipped in
the mutation step. However, in contrast to the RLS algorithm, it is possible for the
(1+1) EA to move from one search point to another one at Hamming distance strictly
larger than one. In fact, for any x, y ∈ {0, 1}n, the probability to move from x to y in
one single iteration is strictly positive.

As does the RLS algorithm, the (1 + 1) EA accepts a candidate solution y if and
only if f(y) ≥ f(x). This selection scheme is often referred to as elitist selection. It is
indicated by the “+” in the name (1 + 1) EA.

Algorithm 2: The (1+1) EA for maximizing f : {0, 1}n → R.
Initialization: Sample x ∈ {0, 1}n uniformly at random and query f(x);1

Optimization: for t = 1, 2, 3, . . . do2

Sample y ∈ {0, 1}n by flipping each bit in x with probability 1/n and query3

f(y) ; //mutation step
if f(y) ≥ f(x) then x← y ; //selection step4

The (1 + 1) EA can easily be generalized to a population-based algorithm which—
instead of keeping only the single best individual—stores up to µ of the best search
points queried so far. Further, there is no need to restrict ourselves to generating
only one offspring per iteration. This yields the scheme of Algorithm 3, the (µ +
λ) evolutionary algorithm.

Most theoretical work focuses on (µ+1) EAs and (1+λ) EAs and only few results
on the (µ+ λ) EA for µ > 1 and λ > 1 exist.

18 Preliminaries

Algorithm 3: The (µ+ λ) EA for maximizing f : {0, 1}n → R.

Initialization: Sample x(1), . . . x(µ) ∈ {0, 1}n uniformly at random and query1

f(x(1)), . . . , f(x(µ));
Set P ← {x(1), . . . x(µ)} ; //initialization of the population2

Optimization: for t = 1, 2, 3, . . . do3

for i = 1, . . . , λ do4

Choose x(i) ∈ P uniformly at random ; //selection of the parent5

Sample y(i) ∈ {0, 1}n by flipping each bit in x(i) with probability 1/n6

and query f(y(i)) ; //mutation
From P ∪ {y(1), . . . , y(λ)} select the µ search points x(t,1), . . . , x(t,µ) with7

largest fitness values (ties broken arbitrarily) ; //selection step
for j = 1, . . . , µ do x(j) ← x(t,j);8

Update P ← {x(1), . . . , x(µ)};9

2.2.3. Non-Elitist Algorithms

In this section we present two well-known heuristics that do not select according to
an elitist selection rule. The first one, Algorithm 4 is Simulated Annealing, a gen-
eralization of the Metropolis algorithm. In Simulated Annealing, the offspring y is
always accepted if it is as least as good as its parent (that is, if f(y) ≥ f(x) holds) but
in contrast to the elitist selection schemes, the offspring is accepted with a positive
probability if its fitness is worse than its parent’s one. This probability depends on
the absolute distance f(x)−f(y). To prevent the algorithm from simply taking a ran-
dom walk over the fitness landscape, the probability to accept a candidate solution,
depending on f(x) − f(y), is lowered during the run of the algorithm. This is done
via some cooling parameter 0 < α < 1 and a constant temperature T .

Algorithm 4: Simulated Annealing for maximizing f : {0, 1}n → R.
Input: Temperature T ∈ R>0, cooling parameter 0 < α < 1;1

Initialization: Sample x ∈ {0, 1}n uniformly at random and query f(x);2

Optimization: for t = 1, 2, 3, . . . do3

Choose j ∈ [n] uniformly at random;4

Set y ← x⊕ enj and query f(y) ; //mutation step5

With probability pt := min{1, exp(f(y)−f(x)
αtT)} set x← y ; //selection step6

Threshold Accepting (Algorithm 5) is a randomized local search algorithm based
on a similar idea as Simulated Annealing. In Threshold Accepting, the selection step
is derandomized.

2.3. Standard Test Function Classes 19

Algorithm 5: Threshold Accepting for maximizing f : {0, 1}n → R.
Input: Threshold sequence (T (t))t∈N ∈ RN

<0;1

Initialization: Sample x ∈ {0, 1}n uniformly at random and query f(x);2

Optimization: for t = 1, 2, 3, . . . do3

Choose j ∈ [n] uniformly at random;4

Set y ← x⊕ enj and query f(y) ; //mutation step5

if f(y)− f(x) ≥ T (t) then x← y ; //selection step6

2.3. Standard Test Function Classes

Let us now introduce some function classes which shall be considered several times in
this thesis. All of them are standard test function classes which are often regarded to
understand how a particular search heuristic progresses on different fitness landscapes.

Note that in most classical runtime results for randomized search heuristics, the
behavior of one particular algorithm for one particular function is analyzed. For ex-
ample, the first theoretical work on the (1+1) EA [Müh92] studies the runtime of this
algorithm on the so-called OneMax function Om, which simply counts the number
of 1-bits, Om(x) =

∑n
i=1 xi. Here in this thesis, however, we are interested in the

difficulty (“complexity”) of this function for a whole class of algorithms. Though we
have not yet formally defined what we mean by the complexity of a function class, it
is easily seen that considering one single objective function is not very useful in this
context. The complexity of such a single-element function class F = {f} is always
one. This is verified by the algorithm which queries as first action a search point
x ∈ arg max f . For the Om function, the algorithm asking for the bit string (1 . . . 1)
in the first step does exactly this: it optimizes the function in just one step. Thus, we
need to consider in the context of black-box complexity some generalizations of the
standard test functions. This is what we present in the following.

2.3.1. OneMax

As mentioned above, a classical easy test function in the theory of randomized search
heuristics is the function Om. The natural generalization of this particular function
to a non-trivial class of functions is as follows.

Definition 2.1 (OneMax function class). Let n ∈ N. For z ∈ {0, 1}n let

Omz : {0, 1}n → [0..n], x 7→ Omz(x) = |{i ∈ [n] | xi = zi}| .

The string z = arg max Omz is called the target string of Omz. Let

OneMaxn := {Omz | z ∈ {0, 1}n}

be the set of all generalized OneMax functions.

For all z, x ∈ {0, 1}n the objective value Omz(x) = Omx(z) is just the number of
bit positions in which x and z coincide.

20 Preliminaries

The OneMaxn function class has been studied in several context. For exam-
ple, Erdős and Rényi [ER63] studied it in the context of coin-weighing problems, cf.
Section 4 for more details.

The class OneMaxn gained a lot of attention after Meirowitz invented in the
seventies the Mastermind game (confer, e.g., the works by Knuth [Knu77] and Chvá-
tal [Chv83]). Mastermind is a board game for two players. The goal of the first player
is to find a secret color combination made up by the second player. He does so by
guessing color combinations and receiving information on how close this guess is to
the secret code. The first player’s goal is to use as few questions as possible. As we
shall see in section 7, this game is closely related to optimizing OneMaxn.

2.3.2. BinaryValue

Another intensively studied linear function is the binary-value function Bv(x) :=∑n
i=1 2i−1xi. That is, Bv assigns to each bit string the value of the binary number it

represents. As 2i >
∑i

j=1 2j−1, the bit value of some bit i+ 1 dominates the effect of
all bits 1, . . . , i on the function value.

As before, we generalize this single function to a function class BinaryValuen,
which is the ⊕-invariant closure of the standard Bv function. We also consider the ⊕-
and permutation-invariant function class BinaryValue∗n.

In the following we denote by δ the Kronecker symbol, i.e., for any two numbers
k, ` ∈ N0 we have δ(k, `) = 1 if k = ` and we have δ(k, `) = 0 otherwise.

Definition 2.2 (BinaryValue function classes). Let n ∈ N. For z ∈ {0, 1}n and
σ ∈ Sn, we define the function

Bvz,σ : {0, 1}n → N0, x 7→ Bv(σ(x⊕ z̄)) =
n∑
i=1

2i−1δ(xσ(i), zσ(i)) .

We set Bvz := Bvz,id[n]
. We further define the classes

BinaryValuen := {Bvz | z ∈ {0, 1}n}

and
BinaryValue∗n := {Bvz,σ | z ∈ {0, 1}n, σ ∈ Sn} .

If f ∈ BinaryValuen (f ∈ BinaryValue∗n), there exist exactly one z ∈ {0, 1}n
(exactly one z ∈ {0, 1}n and exactly one σ ∈ Sn) such that f = Bvz (f = Bvz,σ). Since
z = arg max Bvz (z = arg max Bvz,σ), we call z the target string of f . Similarly, we
call σ the target permutation of Bvz,σ.

2.3.3. LeadingOnes

For every bit string x, the leading-ones function Lo assigns to each bit string x the
length of the longest prefix of ones, Lo(x) := max{i ∈ [0..n] | ∀j ∈ [i] : xj = 1}. Again
we define two generalized classes of this particular function.

2.3. Standard Test Function Classes 21

Definition 2.3 (LeadingOnes function classes). Let n ∈ N. For any z ∈ {0, 1}n let

Loz : {0, 1}n → N, x 7→ max{i ∈ [0..n] | ∀j ∈ [i] : xj = zj} ,

the length of the maximal joint prefix of x and z. Let LeadingOnesn be the collection
of all such functions, i.e.,

LeadingOnesn := {Loz | z ∈ {0, 1}n} .

For z ∈ {0, 1}n and σ ∈ Sn we set

Loz,σ : {0, 1}n → N, x 7→ max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)} ,

the maximal joint prefix of x and z with respect to σ. The set LeadingOnes∗n contains
all such functions, i.e.,

LeadingOnes∗n := {Loz,σ | z ∈ {0, 1}n, σ ∈ Sn} .

The function Lo = Lo(1...1) is well-studied. It was introduced in [Rud97] to dis-
prove a previous conjecture by Mühlenbein [Müh92] that any unimodal function can
be optimized by the (1 + 1) evolutionary algorithm (Algorithm 2) in O(n log n) it-
erations. Rudolph [Rud97] proves only an upper bound of O(n2) for the expected
optimization time of the (1 + 1) EA on Lo and concludes from experimental studies
a lower bound of Ω(n2)—a bound which was rigorously proven in 2002 by Droste,
Jansen, and Wegener [DJW02]. This Θ(n2) expected optimization time of the simple
(1 + 1) EA seems optimal among the commonly studied evolutionary algorithms.

2.3.4. Generalized Strictly Monotone Functions

Lastly, let us introduce the class of generalized monotone functions. Following the
standard notation, we write x < y if for all i ∈ [n] we have xi ≤ yi and if there exists
at least one i ∈ [n] such that xi < yi. A function f : {0, 1}n → R is said to be strictly
monotone if for all x, y ∈ {0, 1}n the relation x < y implies f(x) < f(y).

We extend this notation as follows.

Definition 2.4. For all z ∈ {0, 1}n we call f : {0, 1}n → R strictly monotone with
respect to z if the function fz : {0, 1}n → R, x 7→ f(x⊕ z̄) is strictly monotone.

As is easy to verify, if f is monotone with respect to z, then arg max f = z. For
two bit strings x, y ∈ {0, 1}n the event ∀i ∈ [n] : xi = zi ⇒ yi = zi implies f(x) ≤ f(z)
and if, in addition, there exists a i ∈ [n] such that xi 6= zi = yi, then f(x) < f(y)
must hold.

Definition 2.5 (Generalized monotone functions). Let n ∈ N and let F be a class of
real-valued functions defined on {0, 1}n. We call F a class of generalized strictly
monotone functions if for all f ∈ F there exists a z ∈ {0, 1}n such that f is strictly
monotone with respect to z.

When we talk about “the” class of strictly monotone functions, we refer to the
class

Monotonen :=
{f : {0, 1}n → R | ∃z ∈ {0, 1}n : f strictly monotone with respect to z} .

22 Preliminaries

2.4. Useful Tools

In this section we present both tools that are useful for analyzing randomized algo-
rithms as well as tools that we shall apply to derive lower bounds on the black-box
complexities of several function classes.

This section is meant as a useful reference for later parts of this thesis. For most
of the statements we do not present a proof. Note, however, that these techniques
are standard tools and inequalities that can be easily found in most textbooks on
(randomized) algorithms. We shall give at least one reference for any of the tools
present here.

2.4.1. Linearity of Expectations

A very elementary property of the function which assigns every random variable its
expected value is the fact that this is a linear function (cf. [AD11, Section 1] for an
introduction to basic probability theory).

Lemma 2.6 (Linearity of expectations). Let k ∈ N and let X1, . . . , Xk be random
variables taking values in R. Let α1, . . . , αk ∈ R. Then

E
[k∑
i=1

αiXi

]
=

k∑
i=1

αi E[Xi] .

2.4.2. A Few Elementary Bounds

The following bounds can be found, e.g., in [AD11].

Lemma 2.7 (Union bound). Let k ∈ N and let A1, . . . , Ak be events in some proba-
bility space. Then

Pr
[k⋃
i=1

Ai
]
≤

k∑
i=1

Pr[Ai] .

Lemma 2.8 (Approximating the inverse of Euler’s number). For all n ∈ N and for
all x ∈ R, (

1− 1
n

)n
≤ 1
e
≤
(

1− 1
n

)n−1

and

1 + x ≤ ex .

Lemma 2.9 (Bernoulli’s inequality). For all n ∈ N and for all x ∈ R≥−1,(
1 + x

)n ≥ 1 + xn .

2.4. Useful Tools 23

2.4.3. Factorials and Central Binomial Coefficient

The following estimate on factorials is a direct consequence of Stirling’s formula. The
version presented below is due to Robbins [Rob55].

Lemma 2.10 (Bounding factorials). For all n ∈ N,

√
2πnn+1/2e−ne1/(12n+1) ≤ n! ≤

√
2πnn+1/2e−ne1/(12n) .

From this we easily get the following estimate for the central binomial coefficient.

Lemma 2.11 (Central binomial coefficient). For all n ∈ N,

4n√
2πn

≤
(

2n
n

)
≤ 4n√

πn
.

Proof. Let n ∈ N. By Lemma 2.10 we have that n! =
√

2πn(n/e)n exp(λn) with
1

12n+1 ≤ λn ≤
1

12n . Thus,(
2n
n

)
=

(2n)!
(n!)2

≥
√

4πn(2n/e)2n exp(1
24n+1)

(2πn)(n/e)2n exp(1
6n)

≥ (
√
πn)−14n exp(− 1

6n) ≥ (
√

2πn)−14n ,

where the last inequality follows from the fact that exp(− 1
6n) ≥ exp(−1

6) > 0.8 >

(
√

2)−1.
And since e1/24ne−2/(12n+1) ≤ 1 we also have(

2n
n

)
=

(2n)!
(n!)2

≤
√

4πn(2n/e)2n exp(1
24n)

(2πn)(n/e)2n exp(2
12n+1)

≤ 4n√
πn

.

2.4.4. Chernoff’s Bounds

Throughout the thesis we shall apply several versions of Chernoff’s bound. The fol-
lowing can be found, for example, in [DP09].

Lemma 2.12 (Chernoff’s bounds). Let X =
∑n

i=1Xi be the sum of n independently
distributed random variables Xi, where each variable Xi takes values in [0, 1]. Then
the following statements hold.

∀t > 0 : Pr[X > E[X] + t] ≤ exp(−2t2/n) and (2.1)

Pr[X < E[X]− t] ≤ exp(−2t2/n) .

∀ε > 0 : Pr
[
X < (1− ε) E[X]

]
≤ exp

(
− ε2 E[X]/2

)
and (2.2)

Pr
[
X > (1 + ε) E[X]

]
≤ exp

(
− ε2 E[X]/3

)
.

∀t > 2eE[X] : Pr[X > t] ≤ 2−t . (2.3)

24 Preliminaries

2.4.5. Coupon Collector

Another useful concept is the coupon collector’s problem which we present in this
section. It shall find several applications in this thesis. The following bounds can
again be found, e.g., in [AD11] or, likewise, in [MR95].

In the coupon collector’s problem there are n different types of coupons. In each
round, one of the n coupons is chosen independently and uniformly at random. That
is, for any i ∈ [n] and in any round t, the probability that the i-th coupon is chosen
in the t-th round is 1/n. We are interested in the expected number of rounds needed
until each coupon has been chosen at least once.

Lemma 2.13 (Coupon collector). Let n ∈ N and let H(n) :=
∑n

i=1 1/i be the n-th
harmonic number. On average, it takes nH(n) rounds until each coupon has been
chosen at least once. Since log n < H(n) < 1+ log n for all n, it takes (1−o(1))n log n
rounds on average until each coupon has been chosen at least once.

For any constant β > 1, the probability that more than βn log n rounds are needed
until each coupon has appeared at least once can be bounded from above by n−(β−1).

2.4.6. Upper Bounds for Black-Box Complexities via Algorithms with
Constant Success Probability

Rather than bounding the expected runtime of an algorithm, it is sometimes easier to
show that it solves the problem at hand with good probability in some number s of
iterations. For example, if we are only interested in asymptotic runtimes, the following
lemma allows us to use such statements for upper bounds.

Lemma 2.14. Suppose for an optimization problem P there exists a (randomized)
algorithm A that, with constant success probability, optimizes P in s iterations. Then
there exists a (randomized) algorithm B that optimizes P in an expected number of
O(s) iterations.

Proof. Let c be an upper bound for the failure probability of algorithm A after s
iterations. We call the s iterations of A a run of A. If Xi denotes the indicator
variable for the event that the i-th independent run of A is successful (i.e., computes an
optimum), then Pr[Xi = 1] ≥ 1− c. Clearly, Y := min{k ∈ N |Xk = 1} is a geometric
random variable with success probability at least 1− c. Hence, E[Y] ≤ (1− c)−1, i.e.,
the expected number of independent runs of A until success is at most (1−c)−1. Thus,
we can optimize P in an expected number of at most (1− c)−1s iterations. Since c is
at least constant, the claim follows.

Since here in this thesis we are mainly concerned with black-box complexities, we
reformulate Lemma 2.14 to the following statement.

Corollary 2.15. Suppose for an optimization problem P there exists a black-box algo-
rithm A that, with constant success probability, optimizes P in s iterations. Then the
black-box complexity of P is at most O(s).

2.4. Useful Tools 25

2.4.7. Yao’s Minimax Principle

For deriving lower bounds, the minimax principle by Yao [Yao77] has proven to be
very helpful. The following presentation is taken from the book by Motwani and
Raghavan [MR95].

Theorem 2.16 (Yao’s minimax principle). Let Π be a problem with a finite set I of
input instances (of a fixed size) permitting a finite set A of deterministic algorithms.
Let p be a probability distribution over I and q be a probability distribution over A.
Then,

min
A∈A

E[T (Ip, A)] ≤ max
I∈I

E[T (I, Aq)] ,

where Ip denotes a random input chosen from I according to p, Aq a random algorithm
chosen from A according to q, and T (I, A) denotes the running time of algorithm A
on input I.

2.4.8. A Drift Theorem

Furthermore, we will use the following drift theorem in our proofs. It is useful for both
proving upper and lower runtime bounds.

Theorem 2.17 (Additive Drift [HY04]). Let (Xt)t≥0 be random variables describing
a Markov process over a finite state space S ⊆ R. Let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt = 0. If there exists a value c > 0
such that

E[Xt −Xt+1|T > t] ≤ c,

then
E[T |X0] ≥ X0

c
.

If there exists a value d > 0 such that

E[Xt −Xt+1|T > t] ≥ d,

then
E[T |X0] ≤ X0

d
.

26 Preliminaries

27

3
Two Basic Black-Box Models

We introduce the unrestricted black-box model by Droste, Jansen, and We-
gener [DJW06] and the unbiased black-box model by Lehre and Witt [LW10a].

The latter one has been defined only for optimization problems where the search
space is the n-dimensional hypercube {0, 1}n. Most of the work presented in this thesis
fits this framework. Therefore, we present here the black-box models for optimization
problems that can be modeled via functions {0, 1}n → L where L is an arbitrary set.
Typically we have L = R but as we shall see in Section 10 this must not always be the
case. In Fact, in Section 10.2 we analyze the black-box complexity of a multi-criteria
fitness function.

Concerning more general search spaces let us mention that the generalization of
the unrestricted black-box model to arbitrary search spaces is straightforward. For
the unbiased black-box model this is not the case. We shall present and discuss
three different generalization of the unbiased model for the single-source shortest paths
problem in Section 10, cf. Definitions 10.7, 10.8, and 10.9.

Note, however, that many problems can be modeled as pseudo-Boolean functions.
For example, we shall see in Section 6 that the class of pseudo-Boolean functions also
includes the Partition problem and in Section 9 we shall see how to model minimum
spanning tree problems as pseudo-Boolean functions.

3.1. The Unrestricted Black-Box Model

Complexity theory aims at determining the difficulty of computational problems. In
theoretical computer science, the fruitful interplay between complexity theory, typ-
ically proving that a certain effort is necessary to solve a problem, and theory of
algorithms, giving an algorithmic solution for a problem and thus showing that it
can be solved with a certain computational effort, was a driving force to develop the
field. Usually, the complexity of a problem is measured by the performance of the

28 Two Basic Black-Box Models

best algorithm out of some class of algorithms (e.g., all those algorithms which can be
implemented on a Turing machine [GJ90], [Hro01]).

With this thesis we aim at continuing the development of a complexity theory for
randomized search heuristics. What distinguishes randomized search heuristics from
classical algorithms is that they are problem-independent. As such, the only way they
obtain information about the problem to be solved is by learning the objective value of
possible solutions (“search points”). To ensure this problem-independence, one usually
assumes that the objective function is given by an oracle, or, equivalently, as a black-
box. Using this oracle, the algorithm may query the objective value (“fitness”) of all
possible solutions, but any such query does only return this search point’s objective
value and no other information about the objective function.

Naturally, we do allow that the algorithms use random decisions. From the black-
box concept, it follows that the only type of action the algorithm may perform is,
based on the objective values learned so far, deciding on a probability distribution
over {0, 1}n, sampling a search point x ∈ {0, 1}n according to this distribution, and
querying its objective value from the oracle. This leads to the scheme of Algorithm 6,
which we call an unrestricted black-box algorithm.

Algorithm 6: Scheme of an unrestricted black-box algorithm
Initialization: Sample x(0) according to some probability distribution p(0) over1

{0, 1}n and query f(x(0));
Optimization: for t = 1, 2, 3, . . . do2

Depending on
(
(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))

)
choose a probability3

distribution p(t) over {0, 1}n and sample x(t) according to p(t);
Query f(x(t));4

Note again that Algorithm 6 runs forever. As argued in Section 2.2 this is justified
by the fact that as performance measure of a black-box algorithm we take the number
of queries to the oracle performed by the algorithm until it first queries an optimal
solution. This is the standard performance measure for randomized search heuristics
because in typical applications of such heuristics, evaluating the fitness of the search
points is more costly than the generation of new ones. Since we are mainly talking
about randomized algorithms, we regard the expected number of queries.

Formally, for an unrestricted algorithm A and a function f : {0, 1}n → R, let
T (A, f) ∈ R ∪ {∞} be the expected number of fitness evaluations until A queries for
the first time some x ∈ arg max f . We call T (A, f) the runtime of A for f or, likewise,
the optimization time of A for f .

We can now follow the usual approach in complexity theory. For a class F of func-
tions {0, 1}n → R, the A-black-box complexity of F is T (A,F) := supf∈F T (A, f),
the worst-case runtime of A on F . Let A be a class of black-box algorithms for func-
tions F . Then the A-black-box complexity of F is T (A,F) := infA∈A T (A,F), the
minimum (“best”) complexity among all A ∈ A for F . If A is the class of all black-box
algorithms, we also call T (A,F) the unrestricted black-box complexity of F . This is
the black-box complexity as introduced by Droste, Jansen, and Wegener [DJW06].

3.2. The Unbiased Black-Box Model 29

3.2. The Unbiased Black-Box Model

As mentioned in the introduction, the unrestricted black-box complexity is a lower
bound for the efficiency of randomized search heuristics optimizing F . Unfortunately,
often this lower bound is not very useful. That is, the unrestricted black-box model
often gives unrealistically small complexity values—unrealistically as compared with
runtimes exhibited by standard randomized search heuristics. For example, Droste,
Jansen, and Wegener [DJW06] observe that the NP -complete MaxClique problem
on graphs of n vertices has an unrestricted black-box complexity of only O(n2). This
is certified by the algorithm that uses the first

(
n
2

)
queries to learn for each edge

individually whether or not it is present in the graph, computes from this information
an optimal solution offline, and queries this optimal solution in the (

(
n
2

)
+ 1)st query.

Furthermore, it is easily seen that for any function class F = {f} consisting of one
single function, the unrestricted black-box complexity of F is 1—the algorithm that
simply queries an optimal solution of f as first action shows this bound.

This might be a reason why the quest for a complexity theory for randomized search
heuristics seemed to have come to an early end (apart from the again unrealistically low
O(n/ log n) bound for the OneMaxn function class due to Anil and Wiegand [AW09]).

Black-box complexity was revived by Lehre and Witt in their best-paper awarded
GECCO 2010 paper [LW10a]. To overcome the drawbacks of the previous unrestricted
black-box model, they restrict the class of admitted black-box optimization algorithms
in a natural way, still admitting a large class of classically used algorithms. In their
unbiased black-box complexity model, they require that all solution candidates must
be obtained by variation operators. In addition, these variation operators must be
unbiased, that is, they must treat the bit positions and the bit entries 0 and 1 in an
unbiased way. This model, in addition to excluding some highly artificial algorithms,
also admits a notion of arity. A k-ary unbiased black-box algorithm is one that employs
only such variation operators that take up to k arguments. This allows, for example,
to talk about mutation-only algorithms (arity one).

For several function classes, the unbiased model leads to more realistic complexities.
Still it captures most of the commonly studied search heuristics, such as many (µ+λ)
and (µ, λ) evolutionary algorithms, Simulated Annealing, the Metropolis algorithm,
and Randomized Local Search. In the following, we give a formal definition of the
unbiased black-box model.

Definition 3.1 (k-ary unbiased variation operator). Let k ∈ N. A k-ary unbiased
distribution (D(. | y(1), . . . , y(k)))y(1),...,y(k)∈{0,1}n is a family of probability distribu-
tions over {0, 1}n such that for all inputs y(1), . . . , y(k) ∈ {0, 1}n the following two
conditions hold.

(i) ∀x, z ∈ {0, 1}n : D(x | y(1), . . . , y(k)) = D(x⊕ z | y(1) ⊕ z, . . . , y(k) ⊕ z) ,
(ii)∀x ∈ {0, 1}n ∀σ ∈ Sn : D(x | y(1), . . . , y(k)) = D(σ(x) | σ(y(1)), . . . , σ(y(k))) .

We refer to the first condition as ⊕-invariance and we refer to the second as per-
mutation invariance. A variation operator creating an offspring by sampling from
a k-ary unbiased distribution is called a k-ary unbiased variation operator.

30 Two Basic Black-Box Models

Note that the combination of ⊕- and permutation invariance can be characterized
as invariance under Hamming-automorphisms: D(· | x1, . . . , xk) is unbiased if and only
if, for all α : {0, 1}n → {0, 1}n preserving the Hamming distance and all bit strings
y ∈ {0, 1}n we have D(y | x1, . . . , xk) = D(α(y) | α(x1), . . . , α(xk)).

Note also that the only 0-ary unbiased distribution over {0, 1}n is the uniform one.
1-ary operators, also called unary operators, are sometimes referred to as mutation

operators, in particular in the field of evolutionary computation. In fact, the standard
bitwise mutation operator (as used, e.g., by evolutionary algorithms, cf. Section 2.2)
is a unary unbiased variation operator.

2-ary operators, also called binary operators, are often referred to as crossover
operators. The uniform crossover operator is an unbiased binary one. Given two
search points x and y, the uniform crossover operator creates an offspring z from x and
y by choosing independently for each index i ∈ [n] the entry zi ∈ {xi, yi} uniformly at
random. However, the standard one-point crossover operator—which, given two search
points x, y ∈ {0, 1}n picks uniformly at random an index k ∈ [n] and creates from x
and y the two offsprings x′ := x1 . . . xkyk+1 . . . yn and y′ := y1 . . . ykxk+1 . . . xn—is not
permutation-invariant, and therefore not an unbiased operator.

If we allow arbitrary arities, we call the corresponding black-box model the ∗-ary
unbiased black-box model.

k-ary unbiased black-box algorithms can now be described via the scheme of Al-
gorithm 7. The k-ary unbiased black-box complexity of some class of functions F is
the complexity of F with respect to all k-ary unbiased black-box algorithms.

Algorithm 7: Scheme of a k-ary unbiased black-box algorithm
Initialization: Sample x(0) ∈ {0, 1}n uniformly at random and query f(x(0));1

Optimization: for t = 1, 2, 3, . . . do2

Depending on
(
f(x(0)), . . . , f(x(t−1))

)
choose k indices i1, . . . , ik ∈ [0..t− 1]3

and a k-ary unbiased distribution (D(. | y(1), . . . , y(k)))y(1),...,y(k)∈{0,1}n ;
Sample x(t) according to D(. | x(i1), . . . , x(ik)) and query f(x(t));4

It is important to note, that in line 3 of Algorithm 7, x(i1), . . . , x(ik) do not nec-
essarily have to be the k immediately previously queried search points. That is, the
algorithm is allowed to choose from all previously sampled search points.

Note further that for all k ≤ `, each k-ary unbiased black-box algorithm is con-
tained in the `-ary unbiased black-box model. This is due to the fact that we do not
require the indices to be pairwise distinct.

Lehre and Witt [LW10a, Theorem 6] proved, among other results, that all functions
with a single global optimum have a unary unbiased black-box complexity of Ω(n log n).
For several standard test problems this bound is met by different unary randomized
search heuristics, such as the (1 + 1) EA or by Randomized Local Search. Recall that,
as pointed out above, the unrestricted black-box complexity of any such function is
one.

31

Part I

New Results for the Basic
Black-Box Models

33

4
Faster Black-Box Algorithms Through

Higher Arity Operators

We extend the work of Lehre and Witt [LW10a] on the unbiased black-box model
by considering higher arity variation operators. In particular, we show that already
for binary operators the black-box complexity of LeadingOnes∗n drops from Θ(n2)
for unary operators to O(n log n). For OneMaxn, the Θ(n log n) unary black-box
complexity drops to O(n) in the binary case. For k-ary operators, 2 ≤ k ≤ n, the
OneMaxn-complexity further decreases to O(n/ log k).

These are the first bounds for the k-ary unbiased black-box model with k greater
than one.

The results presented in this section are based on the conference publica-
tion [DJK+11]. They are joint work with Benjamin Doerr (MPI Saarbrücken), Daniel
Johannsen (MPI Saarbrücken, now Tel Aviv University), Timo Kötzing (MPI Saar-
brücken), Per Kristian Lehre (Technical University of Denmark), and Markus Wagner
(MPI Saarbrücken, now University of Adelaide).

4.1. Introduction

We presented in Section 3.2 the unbiased black-box model by Lehre and Witt [LW10a].
Recall that in the unbiased model, intuitively, the unbiasedness condition implies that
the variation operator is symmetric with respect to the bit values and bit positions.
Or, to be more precise, it must be invariant under Hamming-automorphisms.

Among other problem instances, Lehre and Witt analyze the unbiased black-box
complexity of the two function classes OneMaxn and LeadingOnes∗n. They show
that the unary unbiased black-box complexity of OneMaxn is Ω(n log n) and they
show that the unary unbiased black-box complexity of LeadingOnesn is Ω(n2). These
bounds match the runtimes of many common search heuristics, e.g., they match the
runtime of the (1 + 1) EA and the one of Randomized Local Search.

34 Faster Black-Box Algorithms Through Higher Arity Operators

In their work, Lehre and Witt give no results on the black-box complexity of
higher arity models. Recall that a variation operator is said to be of arity k if it
creates new search points by recombining up to k previously queried search points (cf.
Section 3.2). We are interested in higher arity black-box models because they include
commonly used search heuristics, which are not covered by the unary unbiased model.
Among such heuristics are evolutionary algorithms that employ uniform crossover,
particle swarm optimization [KE01], ant colony optimization [DS04], and estimation
of distribution algorithms [LL02].

Although search heuristics that employ higher arity operators are poorly under-
stood from a theoretical point of view, there are some results proving that situations
exist where higher arity is helpful. For example, Doerr, Klein, and Happ [DHK08]
show that a concatenation operator reduces the runtime on the all-pairs shortest paths
problem. Before their work, previous runtime analyses of higher arity variation op-
erators had mostly considered the crossover operator, showing that it can be helpful
on some constructed pseudo-Boolean functions [JW02, SW04, DNHW03], on energy-
minimization of Ising-models [FW05, Sud05], and on some specific instances of the
vertex cover problem [OHY08] to name a few examples. A very recent result is the
paper by Kötzing, Sudholt, and Theile [KST11]. They analyze the runtime of genetic
algorithms on the Jump function in dependence of the interplay between mutation and
crossover operators. There are also some runtime analyses concerning variation oper-
ators of arity higher than two, in particular ant colony optimization [NW09, Gut07],
and estimation of distribution algorithms [CLTY09, CTCY10]. However, in spite of
these results for particular crossover and higher arity operators for particular problems,
a general understanding as of when crossover helps is yet to be developed.

In this section we show that for two standard function classes the binary unbiased
black-box complexity greatly differs from the unary one. This is another indication
that crossover indeed can help. Although most algorithms presented in this thesis are
far from being “natural” bio-inspired search heuristics, we are in good hope that the
results presented here will help to design better search heuristics.

In Section 4.2 we analyze the higher arity black-box complexities of OneMaxn
and in Section 4.3 we analyze the binary black-box complexity of LeadingOnes∗n.
In particular, we show that, surprisingly, the unbiased black-box complexity drops
from Θ(n2) in the unary case to O(n log n) for LeadingOnes∗n and from Θ(n log n)
to an at most linear complexity for OneMaxn. As the bounds for unbiased unary
black-box complexities immediately carry over to all higher arity unbiased black-box
complexities, we see that increasing the arity of the variation operators provably helps
to decrease the complexity. We are optimistic that the ideas developed to prove the
bounds can be further exploited to achieve reduced black-box complexities also for
other function classes.

We also prove that increasing the arity further does again help. In particular, we
show that for every k ≤ n, the unbiased k-ary black-box complexity of OneMaxn
can be bounded by O(n/ log k). This bound is optimal for k = nΩ(1), because the
unbiased black-box complexity can always be bounded below by the unrestricted black-
box complexity, which is known to be Ω(n/ log n) for OneMaxn. This follows easily
from an information theoretic argument, cf. [ER63], [Chv83], or [DJW06] for a more
detailed description.

4.2. The Unbiased Black-Box Complexities of OneMaxn 35

Model Arity OneMaxn LeadingOnes∗n
unbiased 1 Ω(n log n) [LW10a] Ω(n2) [LW10a]

O(n log n) O(n2) [Rud97]
unbiased 2 ≤ k ≤ n O(n/ log k) (here) O(n log n) (here)
unbiased 3 ≤ k O(n log n/ log log n) Section 5
unrestricted n/a Θ(n/ log n) [ER63] Ω(n) [DJW06]

Table 4.1. Black-Box Complexity of OneMaxn and LeadingOnes∗n. Note that
upper bounds for the unbiased unary black-box complexity immediately carry over
to higher arities. Similarly, lower bounds for the unrestricted black-box model also
hold for the unbiased model.

For LeadingOnes∗n we currently have no matching lower bound. In fact, the
best known lower bound is a linear one by Droste, Jansen, and Wegener [DJW06].
This linear bound already holds for the much smaller subclass LeadingOnesn of
LeadingOnes∗n. Note that it is tempting to believe that the upper bound O(n log n)
for LeadingOnes∗n is tight. However, as we shall prove in Section 5, this is not
correct. In fact, we show that already the 3-ary unbiased black-box complexity of
LeadingOnes∗n is O(n log n/ log logn). Note that this result does not improve the one
presented in this section as it only holds for arities greater than or equal to 3, whereas
here in this section we consider binary variation operators. We do currently not know
whether the binary and the 3-ary unbiased black-box complexities of LeadingOnes∗n
truly differ.

Table 4.1 summarizes the results obtained in this section, and it provides a compar-
ison with known results on black-box complexity of OneMaxn and LeadingOnes∗n.

4.2. The Unbiased Black-Box Complexities of OneMaxn

We show that the ∗-ary unbiased black-box complexity of OneMaxn is Θ(n/ log n)
and that the leading constant hidden in the big-Oh-notation is two.

We shall also argue that we gain a factor of log n already when switching from unary
to binary variation operators and that we gain the other log n factor by allowing arities
k ∈ nΩ(1).

For the unrestricted black-box model, we have a tight asymptotic bound
of Θ(n/ log n) by Erdős and Rényi [ER63]. They also prove that the leading con-
stant is at least two. A matching upper bound of (1 + o(1))2n/ log2 n was given by
Chvátal [Chv83] in his studies on the Mastermind problem (cf. Section 7).

As mentioned in the introduction, these results seem to have been overlooked in
the randomized search heuristics community. For this reason, the lower bound of
Ω(n/ log n) was rediscovered by Droste, Jansen, and Wegener in [DJW06] and an
upper bound of (1 + o(1))2n/ log2 n was given by Anil and Wiegand in [AW09].

Theorem 4.1 (Unrestricted black-box complexity of OneMaxn [ER63]). The un-
restricted black-box complexity of OneMaxn is Θ(n/ log n). Moreover, the leading

36 Faster Black-Box Algorithms Through Higher Arity Operators

constant is at least 2.

Clearly, the lower bound from Theorem 4.1 directly carries over to the unbiased
black-box model. This is due to the fact that all unbiased black-box algorithms are
also unrestricted ones.

Corollary 4.2. The unbiased ∗-ary black-box complexity of OneMaxn is Ω(n/ log n)
with a leading constant ≥ 2.

The main results of this section are the following.

Theorem 4.3 (Unbiased ∗-ary black-box complexity of OneMaxn). The unbiased
∗-ary black-box complexity of OneMaxn is at most (1 + o(1)) 2n

log2 n
.

Theorem 4.4 (Unbiased ∗-ary black-box complexity of OneMaxn). For every k ∈ [n]
with k ≥ 2, the unbiased k-ary black-box complexity of OneMaxn is at most linear
in n. Moreover, for 2 ≤ k ≤ n, it is at most O(n/ log k).

Both the results of Theorem 4.3 and Theorem 4.4 will be generalized in Section 8,
where we study ranking-based versions of the unrestricted and the unbiased black-
box models. As we shall see there, Theorem 4.4 remains correct even if we allow the
algorithm to access only the ranking of the search points queried so far and not their
precise function values.

We present here the main underlying ideas and we give a proof for Theorem 4.3,
sparing only a few technical details that will be carried out in detail in Section 8. For
the proof of Theorem 4.4, we refer the reader to Section 8.2.

Our proof for Theorem 4.3 is based on the same algorithmic approach as the
one implicit in the work of Erdős and Rényi [ER63]. The same method has also
been applied by Chvátal [Chv83] and by Anil and Wiegand [AW09], respectively.
It is as follows. Assume that we want to optimize a function Omz ∈ OneMaxn,
where z, of course, is unknown. The rough description of the algorithm certifying
Theorem 4.3, Algorithm 8, is fairly easy. It first samples t ∈ O(n/ log n) search points
x1, . . . , xt from {0, 1}n mutually independent and uniformly at random and it queries
their function values Omz(x1), . . . ,Omz(xt). We show that, with high probability,
there exists only one search point y ∈ {0, 1}n such that the potential fitness values
Omy(x1), . . . ,Omy(xt) coincide with the answers Omz(x1), . . . ,Omz(xt) obtained from
the oracle. If there exists only one such y, then clearly y = z must hold. We need
to show that based only on Omz(x1), . . . ,Omz(xt) we can sample z from an unbiased
distribution of arity at most n.

To this end we define a t-ary variation operator chooseConsistent(·, . . . , ·) as
follows. For all search points x1, . . . , xt ∈ {0, 1}n let

F (x1, . . . , xt) := {y ∈ {0, 1}n | ∀i ∈ [t] : Omy(xi) = Omz(xi)}

be the set of bit strings y that are consistent with the observed function values
Omz(x1), . . . ,Omz(xt).

The operator chooseConsistent is now based on the distribution D(· |

4.2. The Unbiased Black-Box Complexities of OneMaxn 37

Algorithm 8: Optimizing OneMaxn with unbiased variation operators.

Initialization t←
⌈(

1 + 4 log2 log2 n
log2 n

)
2n

log2 n

⌉
;1

repeat2

for i, . . . , t do3

Choose xi from {0, 1}n uniformly at random and query Omz(xi);4

y ← chooseConsistent(x1, . . . , xt);5

Query Omz(y);6

until Omz(y) = n ;7

x1, . . . , xt)x1,...,xt∈{0,1}n , which, given some x1, . . . , xt, assigns to each y the probability

D(y | x1, . . . , xt) :=

|F (x1, . . . , xt)|−1 if y ∈ F (x1, . . . , xt) ,
0 if F (x1, . . . , xt) 6= ∅ and y /∈ F (x1, . . . , xt) ,
2−n otherwise.

Proving that this is indeed an unbiased distribution is not difficult, cf. Section 8
for the details.

An upper bound of (1 + o(1))2n/ log2 n for the expected runtime of Algorithm 8
follows directly from the following theorem which implies that the number of repeti-
tions of steps 4 to 6 follows a geometric distribution with success probability 1− o(1).
This proves Theorem 4.3.

Lemma 4.5. Let n be sufficiently large (i. e., let n ≥ N0 for some fixed constant N0 ∈
N). Let z ∈ {0, 1}n and let X be a set of t ≥

(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n
samples chosen

from {0, 1}n uniformly at random and mutually independent. Then the probability
that there exists an element y ∈ {0, 1}n such that y 6= z and Omy(x) = Omz(x) for
all x ∈ X is bounded from above by 2−t/2.

The previous lemma is a refinement of Theorem 1 in [AW09], and its proof follows
the proof of Theorem 1 in [AW09], clarifying some inconsistencies1 in that proof.
Note that Lemma 4.5 has been proven implicitly also by Chvátal [Chv83]. To derive
Lemma 4.5 we need to bound the following combinatorial quantity (compare Lemma 1
in [AW09]).

Proposition 4.6. For sufficiently large n, for

t ≥
(

1 +
4 log2 log2 n

log2 n

)
2n

log2 n
,

and for even d ∈ {2, . . . , n}, it holds that(
n

d

)((
d
d/2

)
2−d
)t
≤ 2−3t/4. (4.1)

1For example, in the proof of Lemma 1 in [AW09] the following claim is made. Let d(n) be
a monotone increasing sequence that tends to infinity. Then for sufficient large n the sequence
hd(n) = (πd(n)

8
)1/(2 log2 n) is bounded away from 1 by a constant b > 1. Clearly, this is not the case.

For example, for d(n) = log2 n, the sequence hlog2(n) converges to 1.

38 Faster Black-Box Algorithms Through Higher Arity Operators

Proof. By Lemma 2.11 (bound on the central binomial coefficient using Stirling’s for-
mula) we have

(
d
d/2

)
≤
(
πd
2

)−1/2
2d. Therefore,(

n

d

)((
d
d/2

)
2−d
)t
≤
(
n

d

)(
πd

2

)−t/2
. (4.2)

We distinguish two cases. First, we consider the case 2 ≤ d < n/ log3
2 n. By Stirling’s

formula, it holds that
(
n
d

)
≤
(
en
d

)d. Thus, we get from (4.2) that(
n

d

)((
d
d/2

)
2−d
)t
≤
(en
d

)d(πd
2

)−t/2
= 2(2d

t
log2(end)−log2(πd2)) t2 .

(4.3)

We bound d by its minimal value 2 and maximal value n/ log3
2 n, and t by 2n/ log2 n

to obtain
2d
t

log2

(en
d

)
− log2

(πd
2
)
≤ 1

log2
2 n

log2

(en
2
)
− log2(π).

Since the first term on the right hand side converges to 0 and since log2 π > 3/2, the
exponent in (4.3) can be bounded from above by -3t/4, if n is sufficiently large. Thus,
we obtain inequality (4.1) for 2 ≤ d < n/ log3

2 n.
Next, we consider the case n/ log3

2 n ≤ d ≤ n. By the binomial formula, it holds
that

(
n
d

)
≤ 2n. Plugging this into inequality (4.2), we obtain(

n

d

)((
d
d/2

)
2−d
)t
≤ 2n

(
πd

2

)−t/2
= 2(2n

t
−log2

πd
2) t2 . (4.4)

We have πd/2 ≥ n/ log3
2 n and, by definition, t ≥

(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n
. Hence,

2n
t
− log2

πd

2
≤ log2 n

1 + 4 log2 log2 n
log2 n

− log2

(n

log3
2 n

=
log2 n

1 + 4 log2 log2 n
log2 n

− log2 n+ 3 log2 log2 n

=
3 log2 log2 n+ 4 log2 log2 n

log2 n
(− log2 n+ 3 log2 log2 n)

1 + 4 log2 log2 n
log2 n

= − log2 n− 12 log2 log2 n

log2 n+ 4 log2 log2 n
log2 log2 n.

Again, for sufficiently large n the right hand side becomes smaller than −3/2. Plugging
this into equation (4.4), we obtain inequality (4.1) for n/ log3

2 n ≤ d ≤ n.

With the previous proposition at hand, we finally prove Lemma 4.5.

Proof of Lemma 4.5. Let n be sufficiently large, let z ∈ {0, 1}n, and let X be a set
of t ≥

(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n
samples chosen from {0, 1}n uniformly at random and

mutually independent.

4.3. The Complexity of LeadingOnes 39

For d ∈ [n], let Ad := {y ∈ {0, 1}n | n − Omz(y) = d} be the set of all points
with Hamming distance d from z. Let d ∈ [n] and y ∈ Ad. We say the point y is
consistent with x if Omy(x) = Omz(x) holds. Intuitively, this means that Omy is a
possible target function, given the fitness of x. It is easy to see that y is consistent
with x if and only if x and y (and therefore x and z) differ in exactly half of the d bits
that differ between y and z. Therefore, y is never consistent with x if d is odd and the
probability that y is consistent with x is

(
d
d/2

)
2−d if d is even.

Let p be the probability that there exists a point y ∈ {0, 1}n \ {z} such that y is
consistent with all x ∈ X. Then,

p = Pr
(⋃
y∈{0,1}n\{z}

⋂
x∈X

“y is consistent with x”
)
.

Thus, by the union bound, we have

p ≤
∑

y∈{0,1}n\{z}

Pr
(⋂
x∈X

“y is consistent with x”
)
.

Since, for a fixed y, the events “y is consistent with x” are mutually independent for
all x ∈ X, it holds that

p ≤
n∑
d=1

∑
y∈Ad

∏
x∈X

Pr(“y is consistent with x”).

We substitute the probability that a fixed y ∈ {0, 1}n is consistent with a randomly
chosen x ∈ {0, 1}n as given above. Using |Ad| =

(
n
d

)
, we obtain

p ≤
∑

d∈{1,...,n} : d even

(
n

d

)((
d
d/2

)
2−d
)t

Finally, we apply Proposition 4.6 and have p ≤ n2−3t/4 which concludes the proof
since n ≤ 2t/4 for sufficiently large n (as t in Ω(n/ log n)).

4.3. The Complexity of LeadingOnes

In this section, we show that allowing k-ary variation operators, for k > 1, greatly
reduces the black-box complexity of the LeadingOnes∗n functions class, namely from
Θ(n2) (proven in [LW10a]) down to O(n log n).

Theorem 4.7. The unbiased binary black-box complexity of LeadingOnes∗n is
O(n log n).

The key ingredient of the black-box algorithm which yields the upper bound is an
emulation of a binary search which determines the unique bit that increases the fitness
and does flip this bit. Surprisingly, this can be done already with binary operators.
The main idea is to keep two individuals x and y such that for all bit positions i ∈ [n]
in which x and y agree, the corresponding bit value xi equals the one of the optimal
solution.

40 Faster Black-Box Algorithms Through Higher Arity Operators

We will use the two unbiased binary variation operators
randomWhereDifferent(·, ·) and switchIfDistanceOne(·, ·). The operator
randomWhereDifferent(y, y′) generates a search point w out of y and y′ such
that wi = yi, if yi = y′i, and wi ∈ {0, 1} is chosen uniformly at random for all
other bit positions. The operator switchIfDistanceOne(y, y′) returns y′ if y and
y′ differ in exactly one bit, and it returns y otherwise. It is easy to see that both
randomWhereDifferent(·, ·) and switchIfDistanceOne(·, ·) are unbiased variation
operators: For randomWhereDifferent(·, ·) this follows essentially from the fact that
for all v, w, y, y′ ∈ {0, 1}n and for all σ ∈ Sn we have wi = yi = y′i if and only if
(w⊕ v)i = (y ⊕ v)i = (y′ ⊕ v)i and if and only if σ(x)σ−1(i) = σ(y)σ−1(i) = σ(y′)σ−1(i).
Therefore the probability distribution D(· | y, y′) that assigns to each x the probability

D(x | y, y′) =

{
2n−|{i∈[n]|yi=y′i}| if ∀i ∈ [n] : yi = y′i ⇒ xi = yi ,

0 otherwise

is an unbiased distribution. The unbiasedness of the variation operator
switchIfDistanceOne(·, ·) can be seen as follows. For all x, y, y′ let

D′(x | y, y′) =

1 if x = y′ and ∃i ∈ [n] : (yi = y′i) ∧ (∀j 6= i : yj 6= y′j) ,

1 if x = y and
(
∀i ∈ [n] : yi 6= y′i or

∃i1 6= i2 ∈ [n] : (yi1 = y′i1) ∧ (yi2 = y′i2)
)
,

0 otherwise.

Then it is easy to verify that D′(x | y, y′) = D′(σ(x ⊕ v) | σ(y ⊕ v), σ(y′ ⊕ v)) for all
v ∈ {0, 1}n and all σ ∈ Sn.

Further we apply the unary variation operator complement(·), which, given some
x ∈ {0, 1}n returns x̄, the bitwise complement of x. This is clearly an unbiased
operator as x⊕ w = x̄⊕ w for all x,w ∈ {0, 1}n and σ(x) = σ(x̄) for all σ ∈ Sn.

We call a pair (x, y) of search points critical for a function f , if the following two
conditions are satisfied. (i) f(x) ≥ f(y). (ii) There are exactly f(y) bit positions
i ∈ [n] such that xi = yi. The following is a simple observation.

Lemma 4.8. Let f ∈ LeadingOnes∗n. If (x, y) is a critical pair for f , then either
f(x) = n = f(y) or f(x) > f(y).

For f ∈ LeadingOnes∗n f(x) > f(y), then the unique bit position k such that
flipping the k-th bit in x reduces its fitness to f(y)—or equivalently, the unique bit
position such that flipping this bit in y increases y’s fitness—shall be called the critical
bit position. We also call f(y) the value of the pair (x, y).

If f = Loσ,z, then (x, y) is a critical pair for f if x and y coincide on the bit positions
σ(1), . . . , σ(f(y)) and they disagree on all other bit positions. Also, the critical bit
position is σ(f(y) + 1), and the only way to improve the fitness of y is to flip this
particular bit position while keeping the positions σ(1), . . . , σ(f(y)) unchanged. The
central part of Algorithm 9, which is contained in lines 3 to 9, manages to transform
a critical pair of value v < n into one of value v+ 1 in O(log n) time. This is analyzed
in the following lemma.

4.3. The Complexity of LeadingOnes 41

Algorithm 9: Optimizing LeadingOnes∗n with unbiased binary variation op-
erators.
Initialization Choose x uniformly at random and query f(x);1

Set y ← complement(x) and query f(y);2

repeat3

if f(y) > f(x) then (x, y)← (y, x);4

y′ ← x;5

repeat6

Set y′′ ← randomWhereDifferent(y, y′) and query f(y′′);7

if f(y′′) > f(y) then y′ ← y′′;8

Set y ← switchIfDistanceOne(y, y′) and query f(y);9

until f(y) = f(y′) ;10

until f(x) = f(y) ;11

Lemma 4.9. Assume that the execution of Algorithm 9 is before line 4, and that the
current value of (x, y) is a critical pair of value v < n. Then after an expected number
of O(log n) iterations, the loop in lines 5-9 is left and (x, y) or (y, x) is a critical pair
of value v + 1.

Proof. Let k be the critical bit position of the pair (x, y). Let y′ = x be a copy of x.
Let J := {i ∈ [n] | yi 6= y′i}. Our aim is to flip all bits of y′ with index in J \ {k}.

We define y′′ by flipping each bit of y′ with index in J with probability 1/2.
Equivalently, we can say that y′′i equals y′i for all i such that y′i = yi, and is random
for all other i (thus, we obtain such y′′ by applying randomWhereDifferent(y, y′)).

With probability exactly 1/2, the critical bit was not flipped (“success”), and con-
sequently, f(y′′) > f(y). In this case (due to independence), each other bit with index
in J has a chance of 1/2 of being flipped. So with constant probability at least 1/2,
{i ∈ [n] | yi 6= y′′i } \ {k} is at most half the size of J \ {k}. In this success case, we
take y′′ as new value for y′.

In consequence, the cardinality of J \{k} does never increase, and with probability
at least 1/4, it decreases by at least 50%. Consequently, after an expected number of
O(log n) iterations, we have |J | = 1, namely J = {k}. We check this via an application
of switchIfDistanceOne.

We are now ready to prove the main result of this section.

Proof Theorem 4.7. We regard the following invariant: (x, y) or (y, x) is a critical pair.
This is clearly satisfied after execution of line 1. From Lemma 4.9, we see that a single
execution of the outer loop does not dissatisfy our invariant. Hence by Lemma 4.8, our
algorithm is correct (provided it terminates). The algorithm does indeed terminate,
namely in O(n log n) time, because, again by Lemma 4.9, each iteration of the outer
loop increases the value of the critical pair by one.

42 Faster Black-Box Algorithms Through Higher Arity Operators

4.4. Conclusion and Future Work

We continue the study of the unbiased black-box model introduced in [LW10a]. For the
first time we analyzed black-box models of arities larger than one. Our results show
that already two-ary operators can allow significantly faster algorithms than unary
ones.

The problem OneMaxn cannot be solved in shorter time than Ω(n log n) with
unary variation operators [LW10a]. However, the runtime can be reduced to O(n)
with binary operators. The runtime can be decreased even further with higher arities
than two. For k-ary variation operators, 2 ≤ k ≤ n, the runtime can be reduced to
O(n/ log k), which for k = nΩ(1) matches the lower bound in the unrestricted black-box
model.

A similar positive effect of higher arity variation operators can be observed for the
function class LeadingOnes∗n. While this function class cannot be optimized faster
than Ω(n2) with unary variation operators [LW10a], we show that the runtime can be
reduced to O(n log n) with binary variation operators.

Despite the restrictions imposed by the unbiasedness conditions, our analysis
demonstrates that black-box algorithms can employ new and more efficient search
heuristics with higher arity variation operators. In particular, binary variation opera-
tors allow a memory mechanism that can be used to implement binary search on the
positions in the bit string. The algorithm can thereby focus on parts of the bit string
that has not investigated previously.

An important open problem arising from this work is to provide lower bounds in
the unbiased black-box model for higher arities than one. Due to the greatly enlarged
computational power of black-box algorithms using higher arity operators, proving
lower bounds in this model seems significantly harder than in the unary model. Cur-
rently all known lower bounds for unbiased models of arities larger than one are lower
bounds that hold even in the much stronger unrestricted black-box model.

43

5
Breaking the O(n log n) Barrier of

LeadingOnes

We show that the unrestricted black-box complexity of LeadingOnes∗n is
O(n log n/ log log n). This shows that the natural looking O(n log n) bound proven
in Section 4 is not tight. The black-box optimization algorithm leading to this bound
can be implemented in a way that only 3-ary unbiased variation operators are used.
The bound also remains valid if we impose the additional restriction that the black-box
algorithm does not have access to the objective values but only to their relative order
(ranking-based black-box complexity, cf. Section 8).

Our results disproves a previous conjecture by Droste, Jansen, Tinnefeld, and
Wegener made in the conference version [DJTW03] of [DJW06]. They conjec-
tured that the ranking-based black-box complexity of LeadingOnes∗n is Θ(n log n),
cf. [DJTW03, Section 7].

The results presented in this section are based on the conference publica-
tion [DW11a]. They are joint work with Benjamin Doerr.

5.1. Introduction

We continue our study of how difficult it is to optimize an unknown function Loz,σ ∈
LeadingOnes∗n. In the previous section we have shown that already in the binary
unbiased black-box model, assuming knowledge on σ(1), . . . , σ(`), one can perform a
binary search to determine σ(` + 1) and its corresponding bit value. Since this has
to be done at most n times, an upper bound of O(n log n) for the binary unbiased
black-box complexity of LeadingOnes∗n follows.

In this section we show that both in the unrestricted black-box model (Section 5.2)
and in the unbiased black-box model for arities at least three (Section 5.3), one can
do better. More precisely, we show that the corresponding black-box complexities
are O(n log n/ log logn). That is, for each of these models, there exists a black-box

44 Breaking the O(n log n) Barrier of LeadingOnes

algorithm which needs, on average, only O(n log n/ log log n) queries to optimize any
function in LeadingOnes∗n. This breaks the previous O(n log n) barrier. This result
also shows why previous attempts to prove an Ω(n log n) lower bound must fail.

Unfortunately, also the ranking-based model (cf. Section 8) does not help to over-
come this unnatural low black-box complexity. We shall comment in Section 5.4 that
the 3-ary unbiased ranking-based black-box complexity of LeadingOnes∗n, too, is
O(n log n/ log log n).

As for the memory-restricted model (cf. Section 7) we note without proof that a
memory of size O(

√
log n) suffices to achieve the same bound.

5.2. On LeadingOnes∗n in the Unrestricted Model

The main contribution of this section is the following statement.

Theorem 5.1. The unrestricted black-box complexity of LeadingOnes∗n is
O(n log n/ log log n).

The proof of Theorem 5.1 is technical. For this reason, we split it into several
lemmata. The main proof can be found at the end of this section. We remark already
here that the algorithm certifying Theorem 5.1 will make use of unbiased variation
operators only. Hence, it also proves that the ∗-ary unbiased black-box complexity of
LeadingOnes∗n is O(n log n/ log logn). This will be improved in Section 5.3.

The main idea of both the ∗-ary and the 3-ary algorithm is the following. Given
a bit string x of fitness Loz,σ(x) = `, we iteratively first learn k := d

√
log2 ne bit

positions σ(` + 1), . . . , σ(` + k) and their corresponding bit values, which we fix for
all further iterations of the algorithm. Learning such a block of size k will require
O(k3/ log k2) queries. Since we have to optimize dn/ke such blocks, an overall expected
number of O(nk2/ log k2) = O(n log n/ log logn) queries are needed to determine the
target string z. In fact, by this approach, we also determine the target permutation
σ. Note that this is not necessarily needed for optimizing Loz,σ. That is, in principle,
it could be possible to determine z without learning σ.

Conventions: For any two strings x, y ∈ {0, 1}n let B(x, y) := {i ∈ [n] | xi = yi},
the set of positions in which x and y coincide.

For r ∈ R≥0, let dre := min{n ∈ N0 | n ≥ r} and brc := max{n ∈ N0 | n ≤ r}.
To ease reading we sometime omit the d·e signs. That is, whenever in this section we
write r where an integer is required, we implicitly mean dre.

For all following statements let us fix a positive integer n, a bit string z ∈ {0, 1}n
and a permutation σ ∈ Sn.

Let us now present a refined definition of critical pairs that we introduced in
Section 4.3.

Definition 5.2 (Encoding pairs). Let ` ∈ [0..n] and let y ∈ {0, 1}n with Loz,σ(y) = `.
If x ∈ {0, 1}n satisfies Loz,σ(x) ≥ Loz,σ(y) and ` = |{i ∈ [n] | xi = yi}| , we call (x, y)
an `-encoding pair for Loz,σ.

If (x, y) is an `-encoding pair for Loz,σ, the bit positions B(x, y) are called the
`-encoding bit positions of Loz,σ and the bit positions j ∈ [n]\B(x, y) are called

5.2. On LeadingOnes∗n in the Unrestricted Model 45

non-encoding.

If (x, y) is an `-encoding pair for Loz,σ we clearly either have have Loz,σ(x) > `
or Loz,σ(x) = Loz,σ(y) = n. For each non-optimal y ∈ {0, 1}n we call the unique bit
position which needs to be flipped in y in order to increase the objective value of y
the `-critical bit position of Loz,σ. Clearly, the `-critical bit position of Loz,σ equals
σ(`+ 1), but since σ is unknown to the algorithm we shall make use of this knowledge
only in the analysis, and not in the definition of our algorithms. In the same spirit,
we call the k bit positions σ(`+ 1), . . . , σ(`+ k) the k `-critical bit positions of Loz,σ.

Lemma 5.3. Let ` ∈ [0..n − 1] and let (x, y) ∈ {0, 1}n × {0, 1}n be an `-encoding
pair for Loz,σ. Furthermore, let k ∈ [n − Loz,σ(y)] and let y′ ∈ {0, 1}n with ` ≤
Loz,σ(y′) < `+ k.

If we create y′′ from y′ by flipping each non-encoding bit position j ∈ [n]\B(x, y)
with probability 1/k, then

Pr[Loz,σ(y′′) > Loz,σ(y′)] ≥ (ek)−1 .

Proof. First note that due to Loz,σ(y′) ≥ Loz,σ(y), we clearly have y′j = xj for all
`-encoding bit positions j ∈ B(x, y). Since we do not allow these bit positions B(x, y)
to be changed, we necessarily also have Loz,σ(y′′) ≥ `.

Let c ∈ [0..
√

log2 n] such that Loz,σ(y′) = ` + c. Then Loz,σ(y′′) > Loz,σ(y′) if
and only if both

(i) none of the c bit positions σ(Loz,σ(y) + 1), . . . , σ(Loz,σ(y) + c) is flipped, and

(ii) the `+ c-critical bit position σ(`+ c+ 1) is flipped.

This yields

Pr[Loz,σ(y′′) > Loz,σ(y′)] = (1− 1
k)c 1

k ≥ (1− 1
k)k−1 1

k ≥ (ek)−1 ,

where we make use of the well-known fact that for all positive integers k it holds that
(1− 1

k)k−1 ≥ e−1 (cf. Lemma 2.8).

Lemma 5.3 motivates us to formulate Algorithm 10 which can be seen as a variant
of the standard (1+1) EA, in which we fix some bit positions and where we apply a non-
standard mutation probability. The variation operator random(y′, x, y, 1/k) samples
a bit string y′′ from y′ by flipping each non-encoding bit position j ∈ [n]\B(x, y)
with probability 1/k. This is easily seen to be an unbiased variation operator of arity
three (compare the proof of the unbiasedness of operator randomWhereDifferent in
Section 4.3).

The following statement follows easily from Lemma 5.3 and the linearity of expec-
tation (cf. Lemma 2.6).

Corollary 5.4. Let (x, y), `, and k be as in Lemma 5.3. Then the (x, y)-encoded
(1 + 1) EA with mutation probability 1/k, after an expected number of O(k2) queries,
outputs a bit string y′ ∈ {0, 1}n with Loz,σ(y′) ≥ `+ k.

46 Breaking the O(n log n) Barrier of LeadingOnes

Algorithm 10: The (x, y)-encoded (1+1) evolutionary algorithm with mutation
probability 1/k.
Input: `-encoding pair (x, y) ∈ {0, 1}n × {0, 1}n.1

y′ ← y;2

while Loz,σ(y′) < Loz,σ(y) + k do3

Set y′′ ← random(y′, x, y, 1/k) and query Loz,σ(y′′);4

if Loz,σ(y′′) > Loz,σ(y′) then y′ ← y′′;5

Output y′;6

A second key argument in the proof of Theorem 5.1 is the following. Given an `-
encoding pair (x, y) and a bit string y′ with Loz,σ(y′) ≥ `+

√
log2 n, we are able to learn

the
√

log2 n `-critical bit positions σ(`+1), . . . , σ(`+
√

log2 n) in an expected number
of O(log3/2 n/ log log n) queries. This will be formalized in the following statements.

Lemma 5.5. Let ` ∈ [0..n− d
√

log2 ne] and let (x, y) be an `-encoding pair for Loz,σ.
Furthermore, let y′ be a bit string with Loz,σ(y′) ≥ `+

√
log2 n.

For each i ∈ [8e log3/2
2 n/ log2 log2 n] let yi be sampled from y′ by independently

flipping each non-encoding bit position j ∈ [n]\B(x, y) with probability 1/
√

log2 n.
For each c ∈ [

√
log2 n] let

Xc := {yi | i ∈ [8e log3/2
2 n/ log2 log2 n] and Loz,σ(yi) = `+ c− 1} ,

the set of all samples yi with Loz,σ(yi) = `+ c− 1.
Then

Pr
[
∀c ∈ [

√
log2 n] : |Xc| ≥ 4 log2 n/ log2 log2 n

]
≥ 1− o(1) .

Proof. For readability purposes, let us abbreviate k :=
√

log2 n.
First, let us consider the size |Xc| for some fixed c ∈ [k]. By the same arguments

as used in the proof of Lemma 5.3 we have for any i ∈ [8e log3/2
2 n/ log2 log2 n] that

Pr[Loz,σ(yi) = `+ c− 1] = (1− 1
k)c−1 1

k ≥ (1− 1
k)k−1 1

k ≥
1
ek .

Thus, E[|Xc|] ≥ 8 log2 n/ log2 log2 n by the linearity of expectation.
If we set Yi,c = 1 if Loz,σ(yi) = ` + c − 1 and Yi,c = 0 otherwise, we have

|Xc| :=
∑8e log

3/2
2 n/ log2 log2 n

i=1 Yi,c. In particular, |Xc| is the sum of independent random
variables. We can thus apply Chernoff’s bounds (cf. Lemma 2.12 , (2.2)) to bound
the deviation of |Xc| from its expectation and obtain

Pr
[
|Xc| < 1

2 E[|Xc|]
]
≤ exp

(
− 1

8 E[|Xc|]
)
≤ exp

(
− log2 n/ log2 log2 n

)
≤ 1/ log2 n ,

where the last inequality follows from log2 n/ log2 log2 n > log log2 n for large enough
n. By a simple union bound (cf. Lemma 2.7) we conclude

Pr
[
∀c ∈ [

√
log2 n] : |Xc| ≥ 4 log2 n/ log2 log2 n

]
≥ 1− 1/

√
log2 n = 1− o(1) .

5.2. On LeadingOnes∗n in the Unrestricted Model 47

These sets Xc are large enough to identify σ(`+ c).

Lemma 5.6. Let `, (x, y), and y′ be as in Lemma 5.5 and let t := 4 log2 n/ log2 log2 n.
For any c ∈ [

√
log2 n] let Xc be a set of at least t bit strings y1(c), . . . , y|Xc|(c) with

fitness Loz,σ(yi(c)) = `+ c− 1, which are sampled from y′ by independently flipping
each non-encoding bit position j ∈ [n]\B(x, y) with probability 1/

√
log2 n.

Then we have, with probability at least 1 − o(1), that for all c ∈ [
√

log2 n] there
exists only one non-encoding j := j`+c ∈ [n]\B(x, y) with y′j = 1 − yij(c) for all
i ∈ [|Xc|]. Clearly, j = σ(`+ c).

Proof. Let us first consider some fix value c ∈ [
√

log2 n]. For any i ∈ [|Xc|] we have, by
definition, that Loz,σ(yi(c)) = `+c−1. Thus, it must hold that yiσ(`+c)(c) = 1−y′σ(`+c)

and yiσ(j)(c) = y′σ(j) for all j < `+ c. Let

I`+c := [n]\(B(x, y) ∪ {σ(`+ 1), . . . , σ(`+ c)})
= [n]\{σ(1), . . . , σ(`+ c)} .

Since all bit flips are mutually independent, we have for any i ∈ [|Xc|] and any
fixed j ∈ I`+c that the entry yij(c) in the j-th bit position equals 1 − y′j with prob-
ability 1/

√
log2 n. Note that this remains true despite the fact that we condition on

Loz,σ(yi) = `+ c− 1.
Thus, for any j ∈ I`+c we have

Pr[∀i ∈ [|Xc|] : yij(c) = 1− y′j] ≤ (1/
√

log2 n)|Xc|

≤ (1/
√

log2 n)4 log2 n/ log2 log2 n

= 2−2 log2 n = 1/n2 .

By the union bound, the probability that there exists a j ∈ I`+c with yij(c) = 1 − y′j
for all i ∈ [|Xc|] is bounded from above by 1/n.

And by again applying a union bound we find that

Pr[∃c ∈ [
√

log2 n]∃j ∈ I`+c∀i ∈ [|Xc|] : yij(c) = 1− y′j] ≤
√

log2 n/n = o(1) .

Combining Lemma 5.5 with Lemma 5.6 we immediately gain the following.

Corollary 5.7. Let `, (x, y), y′, and yi, i = 1, . . . , 8e log3/2
2 n/ log2 log2 n, be as in

Lemma 5.5.
With probability at least 1 − o(1) we have that for all c ∈ [

√
log2 n] there

exists only one non-encoding j := j`+c ∈ [n]\B(x, y) with y′j = 1 − yij for all

i ∈ [8e log3/2
2 n/ log2 log2 n] with Loz,σ(yi) = `+ c− 1. Clearly, j = σ(`+ c).

We are now ready to prove Theorem 5.1. As mentioned above, the proof also
shows that the statement remains correct if we consider the unbiased black-box model
of arbitrary arity (∗-ary unbiased black-box model).

48 Breaking the O(n log n) Barrier of LeadingOnes

Proof of Theorem 5.1. We need to show that there exists an algorithm which max-
imizes any (a priori unknown) function Loz,σ ∈ LeadingOnes∗n using, on average,
O(n log n/ log log n) queries.

To ease reading, let us fix some function f = Loz,σ ∈ LeadingOnes∗n to be
maximized by the algorithm.

First, let us give a rough idea of our algorithm, Algorithm 11. A detailed analysis
can be found below.

The main idea is the following. We maximize f block-wise, where each block has a
length of

√
log2 n bits. Due to the influence of the permutation σ on f , these bit po-

sitions are a priori unknown. Assume for the moment that we have an `-encoding
pair (x, y), where ` ∈ [0..n − d

√
log2 n e]. In the beginning we have ` = 0 and

y = x ⊕ (1, . . . , 1), the bitwise complement of x. To find an (` +
√

log2 n)-encoding
pair, we first create a string y′ with objective value f(y′) ≥ ` +

√
log2 n. By Corol-

lary 5.4, this requires on average O(log n) queries. Next, we need to identify the√
log2 n f(y)-critical bit positions σ(`+ 1), . . . , σ(`+

√
log2 n). To this end, we sam-

ple enough bit strings such that we can unambiguously identify these bit positions. As
we shall see, this requires on average O(log3/2 n/ log log n) queries. After identifying
the critical bits, we update (x, y) to a (` +

√
log2 n)-encoding pair. Since we need

to optimize n/
√

log2 n such blocks of size
√

log2 n, the overall expected optimization
time is O(n log n/ log logn).

Let us now present a more detailed analysis. We start by querying two comple-
mentary bit strings x, y. By swapping x with y in case f(y) ≥ f(x), we ensure that
f(x) > f(y) = 0. This gives us a 0-encoding pair.

Let an `-encoding pair (x, y), for some fixed value ` ∈ [0..n−d
√

log2 n e], be given.
We show how from this we find an (`+

√
log2 n)-encoding pair in an expected number

of O(log3/2 n/ log log n) queries.
As mentioned above, we first find a bit string y′ with objective value f(y′) ≥

`+
√

log2 n. We do this by running Algorithm 10, the (x, y)-encoded (1 + 1) EA with
mutation probability 1/

√
log2 n until we obtain such a bit string y′. By Corollary 5.4

this takes, on average, O(log n) queries.
Next we want to identify the

√
log2 n `-critical bit positions σ(` + 1), . . . , σ(` +√

log2 n). To this end, we query in the i-th iteration of the second phase, a bit string
yi which has been created from y′ by flipping each non-encoding bit y′j , j ∈ [n]\B(x, y)
independently with probability 1/

√
log2 n. If f(yi) = `+ c−1 for some c ∈ [

√
log2 n],

we update X`+c ← X`+c∪{yi}, the set of all queries with objective value `+c−1, and
we compute J`+c := {j ∈ [n]\B(x, y) | ∀w ∈ X`+c : wj = 1− y′j}, the set of candidates
for σ(`+ c). We do so until we find |J`+c| = 1 for all c ∈ [

√
log2 n]. By Corollary 5.7

this takes, on average, at most 8e log3/2
2 n/ log2 log2 n queries.

Thus, all we need to do in the third step is to update (x, y) to an (` +
√

log2 n)-
encoding pair by exploiting the information gathered in the second phase. For any
c ∈ [

√
log2 n] let us denote the element in J`+c by j`+c. We go through the positions

σ(`+ 1), . . . , σ(`+
√

log2 n) one after the other and either we update y ← y⊕ enj`+c (if
f(y) < f(x)), and we update x ← x ⊕ enj`+c otherwise. It is easy to verify that after√

log2 n such steps we have f(x) ≥ `+
√

log2 n and f(y) ≥ `+
√

log2 n. It remains to
swap (x, y)← (y, x) in case f(y) > f(x) in order to obtain an (`+

√
log2 n)-encoding

5.2. On LeadingOnes∗n in the Unrestricted Model 49

Algorithm 11: A ∗-ary unbiased black-box algorithm for maximizing f ∈
LeadingOnes∗n. Recall that we have defined J`+c := {j ∈ [n]\B(x, y) | ∀w ∈
X`+c : wj = 1− y′j}.

Initialization:1

for i = 1, . . . , n do Xi ← ∅;2

Sample x ∈ {0, 1}n uniformly at random and query f(x);3

Set y ← x⊕ (1, . . . , 1) and query f(y);4

if f(y) ≥ f(x) then (x, y)← (y, x);5

Optimization:6

while |B(x, y)| ≤
⌊

n

d
√

log2 n e

⌋
d
√

log2 n e do7

Set `← |B(x, y)|;8

Apply Algorithm 10 with input (x, y) and mutation probability9

1/
√

log2 n until it outputs a bit string y′ with f(y′) ≥ `+
√

log2 n;
Initialize i← 1;10

while ∃c ∈ [
√

log2 n] : |J`+c| > 1 do11

Sample yi ← random(y′, x, y, 1/
√

log2 n) and query f(yi);12

if f(yi) ∈ [`, . . . , `+
√

log2 n− 1] then13

Update Xf(yi)+1 ← Xf(yi)+1 ∪ {yi};14

Update Jf(yi);15

i← i+ 1;16

for c = 1, . . . ,
√

log2 n do update(x, y, y′, X`+c);17

if f(y) > f(x) then (x, y)← (y, x);18

Apply Algorithm 10 with input (x, y) and mutation probability 1/
√

log2 n19

until it queries for the first time a string y′ with f(y′) = n;

pair (x, y).
This shows how, given a `-encoding pair (x, y), we find an (`+

√
log2 n)-encoding

pair in O(log n) +O(log3/2 n/ log log n) +O(
√

log n) = O(log3/2 n/ log logn) queries.
By definition of Algorithm 11, all bit positions in B(x, y) remain untouched in all

further iterations of the algorithm. Thus, in total, we need to optimize b n

d
√

log2 n e
c

blocks of size d
√

log2 n e until we have a (b n

d
√

log2 n e
cd
√

log2 n e)-encoding pair (x, y).

For each block, the expected number of queries needed to fix the corresponding bit
positions is O(log3/2 n/ log logn). By linearity of expectation this yields a total ex-
pected optimization time of O(n/

√
log n)O(log3/2 n/ log logn) = O(n log n/ log log n)

for optimizing the first k := b n

d
√

log2 n e
cd
√

log2 n e bit positions σ(1), . . . , σ(k).

The remaining n − k ≤ b
√

log2 nc bit positions can be found by Algorithm 10 in
an expected number of O(log n) queries (Corollary 5.4). This does not change the
asymptotic number of queries needed to identify z.

Putting everything together, we have shown that Algorithm 11 optimizes any func-
tion Loz,σ ∈ LeadingOnes∗n in an expected number of O(n log n/ log logn) queries.
It is not difficult to verify that all variation operators are unbiased.

50 Breaking the O(n log n) Barrier of LeadingOnes

Algorithm 12: Subroutine update(x, y, y′, X`+c)

Input: An `-encoding pair (x, y), a bit string y′ with f(y′) ≥ `+
√

log2 n, and,1

a set X`+c of samples w with f(w) = `+ c− 1 such that
|J`+c| = |{j ∈ [n]\B(x, y) | ∀w ∈ Xc : wj = 1− y′j}| = 1;
if f(y) ≤ f(x) then2

Set y ← y ⊕ enJ (`+c) and query f(y);3

else4

Set x← x⊕ enJ (`+c) and query f(x);5

5.3. The Unbiased Black-Box Complexity of LeadingOnes∗n

Next we show how a slight modification of Algorithm 11 yields a 3-ary unbiased black-
box algorithm with the same asymptotic expected optimization time.

Theorem 5.8. The 3-ary unbiased black-box complexity of LeadingOnes∗n is
O(n log n/ log log n).

Proof. Key for this result is the fact that, instead of storing for any c ∈ [
√

log2 n] the
whole query history X`+c, we need to store only one additional bit string x`+c to keep
all the information needed to determine σ(`+ c).

Algorithm 13 gives the full algorithm. Here, the bit string update2(w, y′, x`+c)
is defined via

(
update2(w, y′, x`+c)

)
i

= wi if i ∈ [n]\B(y′, x`+c) and(
update2(w, y′, x`+c)

)
i

= 1− wi for i ∈ B(y′, x`+c).
Note that, throughout the run of the algorithm, the pair (y′, x`+c), or more pre-

cisely, the set B(y′, x`+c) encodes which bit positions j are still possible to equal
σ(` + c). Expressing the latter in the notation used in the proof of Theorem 5.1, we
have in any iteration of the first while-loop that for all i ∈ [n] it holds y′i = x`+ci

if and only if i ∈ J`+c. This can be seen as follows. In the beginning, we only
know that σ(` + c) 6= B(x, y). Thus, we initialize x`+ci ← 1 − y′i if i ∈ B(x, y) and
x`+ci ← y′i for i ∈ [n]\B(x, y). In each iteration of the second while-loop, we update
x`+ci ← 1 − y′i if σ(` + c) = i can no longer hold, i.e., if we have sampled a bit string
w with f(w) = `+ c− 1 and wi = y′i.

5.4. LeadingOnes∗n in the Ranking-Based Models

In Section 8 we shall introduce two ranking-based versions of the black-box complex-
ity notion: the unbiased ranking-based and the unrestricted ranking-based black-box
complexity. Instead of querying the absolute fitness values f(x), in the ranking-based
model, the algorithms may only query the ranking of y among all previously queried
search points, cf. Section 8 for the motivation and formal definitions. We briefly
remark the following.

5.5. Conclusions 51

Algorithm 13: A 3-ary unbiased black-box algorithm for maximizing f ∈
LeadingOnes∗n.
Initialization:1

Sample x ∈ {0, 1}n uniformly at random and query f(x);2

Set y ← x⊕ (1, . . . , 1) and query f(y);3

if f(y) ≥ f(x) then (x, y)← (y, x);4

Optimization:5

while |B(x, y)| ≤
⌊

n

d
√

log2 n e

⌋
d
√

log2 n e do6

`← |B(x, y)|;7

Apply Algorithm 10 with input (x, y) and mutation probability8

1/
√

log2 n until it outputs a bit string y′ with f(y′) ≥ `+
√

log2 n;
for c = 1, . . . ,

√
log2 n do9

for i = 1, . . . , n do10

if i ∈ B(x, y) then x`+ci ← 1− y′i else x
`+c
i ← y′i;11

while ∃c ∈ [
√

log2 n] : |B(x`+c, y′)| > 1 do12

Sample w ← random(y′, x, y, 1/
√

log2 n) and query f(w);13

if ∃c ∈ [
√

log2 n] : f(w) = `+ c− 1 then14

for i = 1, . . . , n do if x`+ci = y′i = wi then x`+ci ← 1− y′i;15

for c = 1, . . . ,
√

log2 n do16

if f(y) ≤ f(x) then update2(y, y′, x`+c) else update2(x, y′, x`+c);17

if f(y) > f(x) then (x, y)← (y, x);18

Apply Algorithm 10 with input (x, y) and mutation probability 1/
√

log2 n19

until it queries for the first time a string y′ with f(y′) = n;

Theorem 5.9. The 3-ary unbiased ranking-based black-box complexity of
LeadingOnes∗n is O(n log n/ log logn).

This theorem immediately implies that the unrestricted ranking-based black-box
complexity of LeadingOnes∗n is O(n log n/ log log n) as well.

Theorem 5.9 can be proven by combining the Algorithm 13 presented in the proof of
Theorem 5.8 with a sampling strategy as used in Lemma 5.5. Although the latter is not
optimal, it suffices to show that after sampling O(log3/2 n/ log logn) such samples, we
can identify the ranks of f(`+1), . . . , f(`+

√
log2 n), with probability at least 1−o(1).

We do the sampling right after line 8 of Algorithm 13. After having identified the ranks
of f(`+ 1), . . . , f(`+

√
log2 n), we can continue as in Algorithm 13.

5.5. Conclusions

We have shown that there exists a 3-ary unbiased ranking-based black-box algorithm,
which optimizes any function Loz,σ ∈ LeadingOnes∗n in an expected number of
O(n log n/ log log n) queries. This establishes a new upper bound on the unrestricted
and the 3-ary unbiased black-box complexity of LeadingOnes∗n.

52 Breaking the O(n log n) Barrier of LeadingOnes

Our result raises several questions for future research. The obvious one is to close
the gap between the current best lower bound of Ω(n) (cf. [DJW06, Theorem 6] and
Theorem 8.16 in Section 8) and our upper bound of O(n log n/ log log n). Currently,
we cannot even prove an ω(n) lower bound. Secondly, it would also be interesting
to know whether the gap between the 2-ary and the 3-ary unbiased black-box model
is an artifact of our analysis or whether 3- and higher arity operators are truly more
powerful than binary ones.

53

6
Too Fast Unary Unbiased Black-Box

Algorithms

The results presented in the previous two sections indicate that the unbiased black-box
model by Lehre and Witt does not seem to reflect the tractability of a problem class
once we increase the arities of the variation operators to be called by the black-box
algorithms to some value strictly larger than one. However, we have not yet seen an
example with a strong mismatch between the unary unbiased black-box complexity
of a problem class and the complexity that one would expect from previous runtime
analyses. The aim of this section is to provide two such examples for which the unary
unbiased black-box complexities seem artificially small.

For the Jumpn,k function class, typically needing Ω(nk) function evaluations to be
optimized via a randomized search heuristic, we present a unary unbiased black-box
algorithm that maximizes every such function using only O(n log n) function evalua-
tions.

Similarly, for an NP -hard subclass of the well-known Partition problem, we show
that it can be solved by a unary unbiased black-box algorithm needing only O(n log n)
oracle queries.

These results indicate that, in addition to the progress made in [LW10a], more effort
is needed to define a complexity model that gives realistic complexity statements for
a broader class of problems.

The results presented in this section are based on the conference publica-
tion [DKW11]. They are joint work with Benjamin Doerr and Timo Kötzing.

54 Too Fast Unary Unbiased Black-Box Algorithms

6.1. Jump Functions

In this section we analyze the unbiased black-box complexity of the so-called jump
functions: for all k < n/2, let Jumpn,k denote the fitness function defined by

Jumpn,k : {0, 1}n → [0..n], x 7→

n, if |x|1 = n ,

|x|1, if k < |x|1 < n− k ,
0, otherwise.

The functions Jumpn,k are a slight variant of similar jump-type functions that
were introduced by Droste, Jansen, and Wegener [DJW02] in one of the first papers
that rigorously analyzes the runtime of the (1+1) EA on several function classes. The
definition given above can be found in [LW10a]. Lehre and Witt argue that such
situations, in which the algorithm needs to “jump” a Hamming distance of k ≥ 2 for
an improvement, can be frequently observed in combinatorial optimization problems.
This was observed, for example, in the work by Neumann and Wegener [NW07] on
the Minimum Spanning Tree (MST) problem (cf. Section 9). The Jumpn,k functions
are interesting in that they provide examples for which the (1+1) EA needs to jump
a Hamming distance of k + 1. This requires, on average, Θ(nk+1) queries. Lehre and
Witt call this a “hierarchy of difficult problems”. A similar term was used in [DJW02].
However, here in this work we show that for every constant k, the unbiased black-box
complexity of Jumpn,k is surprisingly low. Already for the unary unbiased black-box
model it is of order O(n log n). This shows that the hierarchy of the Jumpn,k does
not carry over to the unary unbiased black-box model. Of course, this does not rule
out the fact that such a hierarchy exists and in fact we strongly believe that for any
k ∈ [n] such function classes of complexity Θ(nk) exist.

Key to our analysis is the following lemma. It shows that one can compute, with
high probability, the Hamming-weight of any search point x (i.e., the number of ones
in x, or, equivalently, the OneMax-value OneMax(x) = |x|1) with few black-box
calls to Jumpn,k. With this, we can orient ourselves on the large plateau surrounding
the optimum and thus revert to the problem of optimizing OneMax.

We collect these computations in a subroutine, to be called by the black-box algo-
rithm certifying our claim that for optimizing any Jumpn,k functionO(n log n) function
evaluations suffice. This is Theorem 6.2.

Lemma 6.1. For all constants k and c, there is a unary unbiased subroutine s using
c + 1 queries to Jumpn,k such that, for all bit strings x, s(x) = OneMax(x) with
probability 1−O(n−c).

Proof. We use a unary unbiased variation operator flipk, which samples uniformly
a k-neighbor (a bit string which differs in exactly k positions) of the argument. This
is unbiased as can be easily verified using the fact that for all x, y, z ∈ {0, 1}n the
Hamming distance |(z⊕y)⊕ (x⊕y)|1 of z⊕y and x⊕y equals the Hamming distance
|z ⊕ x|1 of z and x and that for all σ ∈ Sn the Hamming distance of σ(x) and σ(z)
equals the one of x and z.

Next we give the subroutine s, which uses Jumpn,k to approximate OneMax as
desired, see Algorithm 14. Intuitively, the subroutine samples c bit strings in the k-

6.1. Jump Functions 55

Algorithm 14: Simulation of OneMax using the jump function.
subroutine s(x) is1

if Jumpn,k(x) 6= 0 then Output Jumpn,k(x);2

M ← {Jumpn,k(flipk(x)) | i ∈ [c]};3

if max(M) < n/2 then m← max(M)− k;4

else m← min(M \ {0}) + k;5

Output m;6

neighborhood of x. If |x|1 ≥ n− k then it is likely that at least once only one-entries
of x have been flipped. This yields a Jumpn,k-value of |x|1−k. As no sample will have
a lower Jumpn,k-value, adding k to the minimum non-0 fitness of one of the sampled
bit strings gives the desired output. The case of x with |x|1 ≤ k is analogous.

Clearly, the subroutine is correct with certainty on all x with k < |x|1 < n − k.
The other two cases are symmetric, so let x with |x|1 ≥ n−k be given. Obviously, the
output of the subroutine is correct if and only if at least one of the c samples flips only
one-entries in x. We denote the probability of this event with p. We start by bounding
the probability that a single sample flips only ones. Since we assume |x|1 ≥ n− k this
probability p1 can be bounded as follows.

p1 ≥
(
n− k
n

)
·
(
n− k − 1
n− 1

)
· · ·
(
n− k − (k − 1)
n− (k − 1)

)
=

k−1∏
i=0

(
1− k

n− i

)

≥
(

1− k

n− k

)k
≥
(

1− k2

n− k

)
,

where in the last step we use Bernoulli’s inequality (cf. Lemma 2.9). Thus, we have

p = 1− (1− p1)c ≥ 1−
(

k2

n− k

)c
.

Now we can use the subroutine from Lemma 6.1 to turn results on the unbiased
black-box complexity for OneMax into results on Jumpn,k for constant k.

Theorem 6.2. For constant k, the unbiased black-box complexity of Jumpn,k is

• O(n log n), for unary variation operators.

• O(n/ logm), for m-ary variation operators with 2 ≤ m ≤ n.

• O(n/ log n), for ∗-ary variation operators.

Proof. Note that the above black-box complexities claimed for Jumpn,k are shown for
OneMax in [LW10a] for the unary case and for arities larger than one we have shown
them in Section 4, Theorem 4.4. We use Lemma 6.1 with c = 4 and run the unbiased
black-box algorithms of the appropriate arity for OneMax; all sampled bit strings
are evaluated using the subroutine s. Thus, this algorithm samples as if working on

56 Too Fast Unary Unbiased Black-Box Algorithms

OneMax and finds the all-ones bit string after the desired number of iterations. Note
that, for up to n log n uses of s, we expect no more than n log nO(n−4) ≤ O(n−2)
incorrect evaluations of s. Therefore, there is a small chance of failing, and the claim
follows from Corollary 2.15.

Note that the subroutine from Lemma 6.1 requires to know the parameter k; how-
ever, this subroutine can be modified to work without that knowledge as follows. The
first time that the subroutine samples a search point with fitness 0 it will determine k;
after knowing k, it will work as before (and before sampling a search point of fitness
0, it does not need to know). The parameter k is determined by sampling sufficiently
many i-neighbors of the search point with fitness 0, starting with i = 1 and stopping
when a search point with fitness 6= 0 is found. This search point will have maximum
fitness among all non-optimal search points, equal to n− k− 1. From this fitness and
n, the subroutine can infer k.

There may be cases when one of the algorithms implicit in the proof of Theorem 6.2
never samples a search point with fitness 0 and does not have to determine k. In this
case, such an algorithm will optimize the target function without completely learning
it. However, in a second phase after finding the optimum, an algorithm could determine
k with a binary search, as k equals the largest distance from the optimum at which
all and any search point has fitness 0. This phase requires O(log n) queries.

6.2. Partition

One objection concerning the unrestricted black-box model is the fact that there are
NP -hard problems, which have a polynomial black-box complexity. As an example
let us consider the well-known Clique problem. Although it is known to be NP -
hard, Droste et al. [DJW06] show that its optimization version MaxClique has an
unrestricted black-box complexity of at most

(
n
2

)
+ 1 = Θ(n2). That is, even the

optimization problem can be solved by an unrestricted black-box algorithm using only
Θ(n2) queries.

In this section we prove that in the unbiased black-box model, too, there are NP -
hard problems that have a polynomial black-box complexity. Even more, we show
that this is already true for the unary unbiased black-box model.

To this end we consider an NP -hard subclass of the Partition problem. Whereas
the decision version of the Partition problem asks the question “Given a multiset I
of positive integers (“weights”), is it possible to split the set into two disjoint subsets
I = I0∪̇ I1 such that

∑
w∈I0 w =

∑
w∈I1 w ?”, the optimization version asks for a

partition (I0, I1) of I such that the difference |
∑

w∈I0 w −
∑

w∈I1 w| is minimized.
It is known that Partition permits heuristics which solve many instances of the

problem in a polynomial number of fitness evaluations. For example, Frenk and Kan
[FK86] showed that the greedy approach converges to optimality almost surely for
reasonably chosen random instances. Furthermore, greedy approaches are known to
deliver in a polynomial number of queries solutions of good approximation quality. For
example, Witt [Wit05] has shown that both Randomized Local Search (Algorithm 1)
and the (1+1) EA (Algorithm 2) need at most O(n2) iterations until they reach for the
first time a solution of approximation quality 4/3. For analyzing approximation ratios,

6.2. Partition 57

clearly, one has to resort to a different objective function. The 4/3-approximation
result by Witt holds for the objective “minimize max{

∑
w∈I0 w,

∑
w∈I1 w}”, where the

minimum ranges over all partitions (I0, I1) of I.
The decision version of Partition has been shown to be NP -complete, cf. [Kar72,

GJ90]. It is actually one of the most famous NP -complete problems. Thus, assuming
P 6= NP , the decision problem does not allow a polynomial-time algorithm. Note
that P 6= NP would also imply that the optimization problem cannot be solved in
polynomial time.

It is easily seen that Partition remains NP -hard if we restrict the problem to
instances with all weights distinct.

Lemma 6.3. Partition remains NP -complete when restricted to instances I with
v 6= w for all v, w ∈ I.

In the following we give a short reasoning for Lemma 6.3. Although it is probably
well known, we were unable to find a formal proof in the computer science literature.

Proof. Let I be an instance of the general problem class Partition (i.e., I may
contain multiples of the same integer). Let n := |I| We create from I a new instance
I ′ of size n by the procedure described below. I ′ will have pairwise different weights
only and we will prove that an optimal partition for I ′ immediately yields an optimal
partition for the original input I.

To construct I ′, we first (arbitrarily) enumerate the values in I by ϕ, i.e., ϕ : I →
[n] is a bijection. We then set c := n3 and we let I ′ := {cw + ϕ(w) |w ∈ I} ∪ [n]. By
construction, all integers in I ′ do have different weights.

Let (I ′0, I ′1) be an optimal partition for I ′. We set I0 := {(w−ϕ(w))/c |w ∈ I ′0\[n]}
and I1 := {(w − ϕ(w))/c |w ∈ I ′1\[n]}. We use contraposition to show that (I0, I1)
is an optimal solution for I. More precisely, we show that any partition of I which
is better than (I0, I1) gives rise to a partition of I ′ which is better than (I ′0, I ′1),
contradicting the choice of (I ′0, I ′1). Thus, if (I ′0, I ′1) is optimal, so is (I0, I1).

To prove the claim, assume that there exists a solution (O0, O1) for I with
|
∑

w∈O0
w −

∑
w∈O1

w| < |
∑

w∈I0 w −
∑

w∈I1 w|. We set O′0 := {c · w + ϕ(w) |w ∈
O0} ∪ {ϕ(w) |w ∈ O1} and O′1 := {c · w + ϕ(w) |w ∈ O1} ∪ {ϕ(w) |w ∈ O0}. Note
that c

(∑
w∈O0

w −
∑

w∈O1
w
)

=
∑

w∈O′0
w −

∑
w∈O′1

w.
We assume without loss of generality that

∑
w∈I0 w −

∑
w∈I1 w > 0. Then∑

w∈I′0
w −

∑
w∈I′1

w > 0 since c
(∑

w∈I0 w −
∑

w∈I1 w
)

> 0,
∑

w∈I0 ϕ(w) −∑
w∈I1 ϕ(w) +

∑
w∈I′0∩[n]w−

∑
w∈I′1∩[n]w >

∑
w∈I0 ϕ(w)−

∑
w∈I1 ϕ(w)−

∑
i∈[n] i >

−(n2 + n) > −c (by definition of c and assuming n ≥ 2) and, thus,

∑
w∈I′0

w −
∑
w∈I′1

w = c

∑
w∈I0

w −
∑
w∈I1

w

+
∑
w∈I0

ϕ(w)−
∑
w∈I1

ϕ(w)

+
∑

w∈I′0∩[n]

w −
∑

w∈I′1∩[n]

w > c− c = 0 .

58 Too Fast Unary Unbiased Black-Box Algorithms

Similarly we obtain

|
∑
w∈I′0

w −
∑
w∈I′1

w| > c
(∑
w∈I0

w −
∑
w∈I1

w
)
− c = c

(∑
w∈I0

w −
∑
w∈I1

w − 1
)

≥ c
∣∣ ∑
w∈O0

w −
∑
w∈O1

w
∣∣ =

∣∣ ∑
w∈O′0

w −
∑
w∈O′1

w
∣∣ ,

contradicting the optimality of (I ′0, I ′1) for I ′ (which implies |
∑

w∈I′0
w−

∑
w∈I′1

w| ≤
|
∑

w∈O′0
w −

∑
w∈O′1

w|).

In the following, let Partitionn, 6= be the subclass of Partition instances with
n pairwise different weights. That is, for all I ∈ Partitionn,6= we have |I| = n and
for all w ∈ I\{v} we have v 6= w. There is no one best way of how to consider
Partitionn, 6= as an optimization problem. In the following we present two different
fitness function and show that for both problems a polynomial unary unbiased black-
box complexity can be achieved. In Section 6.2.1 we consider a signed fitness function,
which allows to learn from the fitness values which bin is the heavier one. We show that
the unary unbiased black-box complexity of Partitionn, 6= under this fitness function
is O(n log n).

In Section 6.2.2 we then consider an unsigned fitness function. A priori we do have
less information than in the situation of Section 6.2.1. However, we are still able to
prove the same asymptotic bound. This second fitness function is probably the more
natural one but note that the key arguments for our upper bound are essentially the
same.

6.2.1. The Signed Fitness Function

As mentioned above, we consider in this section a signed fitness function for
Partitionn, 6=. Given an instance I of Partitionn,6=, we set FI := {(I0, I1) ∈
2I × 2I | I0∪̇ I1 = I}, the set of all feasible solutions of I. We define the (signed)
fitness function to measures the quality of the queried solutions via

f∗I : F → Z, (I0, I1) 7→
∑
w∈I0

w −
∑
w∈I1

w .

Note that we aim at minimizing |f∗I |.
Since unbiased black-box complexity typically requires the search space {0, 1}n,

let us fix some enumeration σ : I → [n] of the elements of I. To ease reading,
let σ be the ordering of the elements in I, i.e., σ(v) < σ(w) for all v, w ∈ I with
v < w. For any x ∈ {0, 1}n let I0(x) := {w ∈ I |xσ(w) = 0} and, accordingly,
I1(x) := {w ∈ I |xσ(w) = 1}. Note that {0, 1}n → FI , x 7→ (I0(x), I1(x)) is a
bijection between {0, 1}n and the original search space FI . Therefore, we let

fI : {0, 1}n → Z, x 7→
∑

i∈[n],xi=0

σ−1(i)−
∑

i∈[n],xi=1

σ−1(i) .

Theorem 6.4. The unary unbiased black-box complexity of Partitionn,6= modeled
via the signed fitness functions fI is O(n log n).

6.2. Partition 59

Algorithm 15: A unary unbiased black-box algorithm for Partitionn, 6= with
the signed fitness function
Initialization:1

Sample x(0) ← uniform() and query f(x(0));2

Initialize t← 0 and , I ′0, I ′1,W0 = ∅;3

Learning the integers:4

while |Wt| < n do5

t← t+ 1;6

Sample x(t) ← RLS(x(0)) and query f(x(t));7

Update Wt ←Wt−1 ∪ {|f(x(0))− f(x(t))|/2};8

if f(x(0)) > f(x(s)) then9

I ′0 ← I ′0 ∪ {|f(x(0))− f(x(s))|/2};10

else I ′1 ← I ′1 ∪ {|f(x(0))− f(x(s))|/2};11

Optimization:12

Offline compute an optimal solution (O0,O1) and set13

M← {w ∈ O0 |w /∈ I ′0} ∪ {w ∈ O1 |w /∈ I ′1}, the set of integers that need to be
moved;
Set z ← x(0);14

while |M| > 0 do15

Sample y ← RLS(z) and query f(y);16

if w := |f(y)− f(z)|/2 ∈M then17

z ← y andM←M\{w};18

In the proof of Theorem 6.4 we will apply only two variation operators, namely
uniform(), which samples a bit string x ∈ {0, 1}n uniformly at random and RLS(·)
(randomized local search), which, given some x ∈ {0, 1}n, creates from x a new bit
string y ∈ {0, 1}n by flipping exactly one bit in x, the bit position being chosen
uniformly at random. Note that RLS(·) equals flip1(·) as defined in Section 6.1. We
have already seen that these two variation operators are unbiased. In fact, uniform()
is the only 0-ary unbiased variation operator and RLS(·) is a unary unbiased variation
operator.

Proof Theorem 6.4. We need to show that there exists an algorithm which, for any
instance I of Partitionn, 6=, needs an expected number of O(n log n) iterations to
compute a partition (O0,O1) ∈ 2I×2I such that |

∑
w∈O0

w−
∑

w∈O1
w| is minimized.

We shall show that Algorithm 15 satisfies this. As mentioned above, it only employs
two different variation operators, uniform() and RLS(·), both unbiased and of arity at
most 1.

Let us fix some instance I of Partitionn, 6=. Abbreviate f := fI .
Let us now comment on the different steps of the algorithm.
After an expected number of (1 + o(1))n log n iterations, we have learned the

weights of the problem instance as follows. First note that in the t-th iteration of the
algorithm, the weight of the flipped bit is |f(x(0)) − f(x(t))|/2. Therefore, let Wt :=

60 Too Fast Unary Unbiased Black-Box Algorithms

{|f(x(0))− f(x(s))|/2 | s ∈ [t]}. By a coupon collector argument (cf. Section 2.4.5) the
expected number of queries until we have flipped each bit position of x(0) at least once
is (1 + o(1))n log n. Thus, we can expect that we need t∗ = (1 + o(1))n log n queries
until Wt∗ = I. That is, we can assume to have learned all n different weights in I in
(1 + o(1))n log n queries.

Knowing the problem instance I we can compute an optimal partition (O0,O1)
for I offline, i.e., we do not need to query any further search points for this step. The
computation can be done, e.g., by applying the brute force algorithm which compares
all 2n possible solutions. All we need to do now is to create a representation of (O0,O1)
via unbiased variation operators of arity at most 1.

To this end let us define I ′0(x(0)) := {|f(x(0)) − f(x(s))|/2 | s ∈ [t∗], f(x(0)) >
f(x(s))} and, accordingly, I ′1(x(0)) := {|f(x(0)) − f(x(s))|/2 | s ∈ [t∗], f(x(0)) <
f(x(s))}. It is easily verified that x(0) is a binary representation of the partition
(I ′0(x(0)), I ′1(x(0))).

To create (O0,O1) we setM := {w ∈ O0 |w /∈ I ′0(x(0))}∪{w ∈ O1 |w /∈ I ′1(x(0))},
the set of all weights that, in order to generate the optimal solution (O0,O1), need to
be moved from one of the sets I ′0(x(0)), I ′1(x(0)) to the other one.

In the optimization phase we do the following. In each iteration we create a
new solution y from the current solution z by flipping exactly one bit of z. If w :=
|f(y)− f(z)|/2 ∈M, we update z ← y andM←M\{w}.

As discussed above we can expect that after (1 + o(1))n log n such one bit flips we
have flipped each bit position i ∈ [n] at least once. That is, after an expected number
of (1 + o(1))n log n queries, we haveM = ∅ and that we created (O0,O1).

Putting everything together, we see that, despite using only unary unbiased varia-
tion operators, we can optimize any instance I of the Partitionn, 6= problem modeled
via the signed fitness function in an expected number of 2(1+o(1))n log n = O(n log n)
queries.

6.2.2. The Unsigned Fitness Function

One might dislike the fact that in the proof of Theorem 6.4 we neither minimize nor
maximize fI itself but only its absolute value |fI |. However, we can achieve the same
asymptotic optimization complexity as in the statement of Theorem 6.4 if we only allow
the latter, unsigned fitness function. Although the algorithm itself does not become
more difficult to define, proving its correctness is more technical. The difficulty for
the analysis stems from the fact that, given two bit strings x and y which differ in
only one bit position, we cannot unambiguously learn from the corresponding fitness
values |fI(x)| and |fI(y)| the weight of the flipped bit, cf. Remark 6.6. This results
in a more complex procedure to learn all the weights.

Theorem 6.5. The unary unbiased black-box complexity Partitionn, 6= with respect
to |fI | is O(n log n).

For a clearer presentation of the proof, we defer some technical elements used in
the proof of Theorem 6.5 to Remark 6.6 and to the Lemmata 6.7 and 6.8, which will
be presented after the proof of the main Theorem.

6.2. Partition 61

Algorithm 16: Unary unbiased black-box algorithm for Partitionn, 6= with the
unsigned fitness function
Initialization:1

Sample x(1,0) ← uniform() and query f(x(1,0));2

Shifting all weights to one bin:3

for t = 1 to 2n log n do4

Sample x(1,t) ← RLS(x(1,0)) and query f(x(1,t));5

Let ` ∈ arg max0≤t≤2nlogn f(x(1,t))6

x← x(1,`);7

for t = 2n log n+ 1 to 4n log n do8

Sample y ← RLS(x) and query f(y);9

if f(y) > f(x) then x← y;10

Learning the instance I:11

for t = 1 to 2n log n do12

Sample x(2,t) ← RLS(x) and query f(x(2,t));13

Optimization:14

Compute an optimal solution (O0,O1) such that wmax ∈ O1 offline and set15

M←O1.
for t = 1 to 2n log n do16

Sample x(3,t) ← RLS(x) and query f(x(3,t));17

if f(x) > 2wmax and f(x(3,t)) < f(x) then18

compute w :=
(
f(x)− f(x(3,t))

)
/2;19

if w 6= wmax and w ∈M then20

x← x(3,t);M←M\{w};21

for t = 1 to n log n do22

Sample x(4,t) ← RLS(x) and query f(x(4,t));23

Proof Theorem 6.5. By Corollary 2.15 it suffices to show that there exists an algorithm
that, for any instance I of Partitionn,6=, with high probability (w.h.p.), needs only
O(n log n) fitness queries until it queries an optimal search point.

Let us fix an instance I of Partitionn, 6=. We abbreviate f := |fI |, where fI is
defined as in Section 6.2.1.

For readability purposes let us introduce the following notation. Note, however,
that these values are a priori not identifiable for the algorithm. First note that,
using the notation from Section 6.2.1, each x ∈ {0, 1}n corresponds to a solution
(I0(x), I1(x)) ∈ FI . We set S0(x) :=

∑
w∈I0(x)w and S1(x) :=

∑
w∈I1(x)w, the

corresponding sum of the weights and let Imax(x) be the set of weights belonging
to the bin of larger weight, that is Imax := I0 if S0(x) ≥ S1(x) and Imax(x) = I1

otherwise. We call Imax the “heavier” bin and we call the other one the “lighter” bin.
Lastly, let wmax = max I be the maximum weight of instance I.
The general approach of Algorithm 16 is the following. First, we produce a string

62 Too Fast Unary Unbiased Black-Box Algorithms

which represents a solution where all weights are in the same class of the partition,
i.e., at the end of this phase we have Imax(x) = I. With high probability this can
be achieved with 4n log n queries. Next, we perform 2n log n RLS steps (i.e., random
one bit flips). Through this we learn all n different weights in I w.h.p. After that, we
compute an optimal solution offline. A representation of this solution can be generated
in another 3n log n iterations w.h.p.

If in any iteration of Algorithm 16 we have constructed a solution s with f(s) = 0
we are obviously done and do not need to run the algorithm any further. Therefore, we
assume in the following that for all search points s but the last one we have f(s) 6= 0.

Algorithm 16 employs only two different variation operators, uniform() and RLS(·).
We have argued that these operators are unbiased. Clearly, they are of arity at most 1.
It remains to show that w.h.p. Algorithm 16 queries an optimal solution after at most
O(n log n) queries. We show correctness for the three phases. The high probability
statement follows from a simple union bound over the failure probabilities.

Shifting all weights to one bin. It follows from the coupon collector argument
(cf. Section 2.4.5) that, with probability at least 1− n−1, there exists for each i ∈ [n]
at least one ti ≤ 2n log n such that x(1,0) and x(1,ti) differ exactly in the i-th bit. Using
this information, Lemma 6.7 yields that for each string x(1,`) ∈ {x(1,t) | t ∈ [0..2n log n]}
with the largest fitness f(x(1,`)) = max{f(x(1,t)) | t ∈ [0..2n log n]} it holds that wmax ∈
Imax(x(1,`)). Let us fix one such ` and set x := x(1,`).

Lemma 6.7 and Lemma 6.8 verify the following. If y is created from x by flipping
the i-th bit of x, then f(y) > f(x) if and only if the i-th heaviest weight is not in the
heavier bin, i.e., σ(i) /∈ Imax(x).

In the second part of the first phase we aim at creating a string x′ with Imax(x′) =
I. We do that by querying y = RLS(x) and updating x← y if and only if f(y) > f(x).
From the statement of the previous paragraph this is the case only if the bit flip has
moved the corresponding weight from the lighter to the heavier bin. Again from the
coupon collector argument it follows that after an additional 2n log n iterations we
have Imax(x) = I, with probability at least 1− n−1.

Hence, after a total number of 4n log n+ 1 iterations, we have created a bit string
x with Imax(x) = I, with probability at least 1− 2n−1.

Learning instance I. For the correctness of the second phase observe that
either we have wmax ≥

∑
w∈I w/2 in which case one of the strings x(2,t), t ∈ [2n log n]

is optimal (i.e., {wmax} = Imax(x(2,t)) for some t ∈ [2n log n]) with probability at least
1 − n−1. This is again the coupon collector argument. Note that we are done in
this case. Otherwise we have that for any t ≤ 2n log n it holds that f(x(2,t)) < f(x)
(since we are always shifting exactly one weight from the bin containing all weights
to the empty one) and that the corresponding weight which has been flipped from
one bin to the other is of size (f(x)− f(x(2,t)))/2. In this case we have, again by the
coupon collector argument that I ′ := {(f(x) − f(x(2,t)))/2 | t ∈ [2n log n]} equals I,
with probability at least 1− n−1.

Optimization phase. Knowing instance I, we can now compute an optimal
solution (O0,O1) for I offline, e.g., by the brute force algorithm. Note that for each
y ∈ {0, 1}n and its bitwise complement ȳ it holds that f(ȳ) = f(y). Thus, we can
assume without loss of generality that (O0,O1) is chosen such that wmax ∈ O1.

For creating the bit string which corresponds to (O0,O1), we initializeM := O1.

6.2. Partition 63

Throughout this phase M denotes the set of all weights that, in order to create the
string corresponding to (O0,O1), still need to be “moved” from one bin to the other.
The key idea here is that we required wmax ∈M and that we do not accept the weight
wmax to be flipped too early. This is important for the following reason.

Recall from Remark 6.6 that if y is created from x by flipping the i-th bit in x and
if f(y) < f(x) then the corresponding weight σ−1(i) ∈ {((f(x) − f(y))/2), (f(x) +
f(y))/2}. But, as long as f(x) > 2wmax we have (f(x) + f(y))/2 > wmax (unless
f(y) = 0 in which case we are done). That is, as long as f(x) > 2wmax it holds in the
situation above that σ−1(i) = (f(x)− f(y))/2.

It is easy to verify that as soon as f(x) ≤ 2wmax we haveM = {wmax}. It again
is the coupon collector argument which ensures with probability at least 1− n−1 that
after 2n log n iterations of the third phase we are in this situation. Thus, all we need to
do now is to put wmax from bin Imax(x) to the other one, i.e., we need to flip σ(wmax).
As for each iteration the probability to flip this position is 1/n, we can bound the
probability that we have flipped it after an additional n log n iterations from below
by 1 − (1 − 1/n)n logn ≥ 1 − 1/n. Here we have used that for all r ∈ R we have
1 + r ≤ exp(r), cf. Lemma 2.8.

Let us now prove the statements omitted in the proof of Theorem 6.5. We use the
same notation as above.

Remark 6.6. Let I be an instance of Partitionn,6= equipped with the ordering σI
and fitness function f = |fI |. If y has been created from x by flipping the i-th bit
of x and 0 6= f(y) 6= f(x) 6= 0, we cannot uniquely identify the corresponding weight
wi = σ−1(i). More precisely, if we do not have further knowledge on the size of the
weights, there are the two possibilities

wi ∈

{
{1

2

(
f(y)− f(x)

)
, 1

2

(
f(y) + f(x)

)
}, if f(y) > f(x),

{1
2

(
f(x)− f(y)

)
, 1

2

(
f(y) + f(x)

)
}, if f(y) < f(x).

Proof. The first statement follows from the second. But for a simple example consider
the following situation. Let I := {1, 2, 3, 4, 6}, σI the ordering of I and x := (10001),
i.e., weights 1 and 6 are in one bin and the other weights are in the second bin. Then
f(x) = |7−9| = 2. Now both bit strings y := (00001) and z := (10101) have Hamming
distance 1 from x and both have fitness f(y) = |6 − 10| = 4 = f(z). Hence, knowing
x, knowing that |x − z|1 = 1, and knowing the fitness values f(x) and f(z) does not
suffice to compute the bit in which x and z differ.

For the second statement we distinguish whether f(y) > f(x) or f(x) > f(y).
Case 1, f(y) > f(x). If Imax(y)∩Imax(x) 6= {wi} then wi /∈ Imax(x) for otherwise

f(y) = f(x)− 2wi < f(x). Thus, wi /∈ Imax(x) and f(y) = f(x) + 2wi.
In case Imax(y) ∩ Imax(x) = {wi} then wi ∈ Imax(x) and f(y) = 2wi − f(x).

Furthermore, since f(y) > f(x), this yields wi > f(x).
Case 2, f(y) < f(x). In this case we must have wi ∈ Imax(x) for otherwise

f(y) = f(x) + 2wi > f(x).
If Imax(y) ⊆ Imax(x) then f(y) = f(x)−2wi and if Imax(y)∩Imax(x) = {wi} then

wi > f(x)/2 and f(y) = 2wi − f(x). Since f(y) < f(x) we also have wi < f(x).
This enumerates all possible combinations and the claim follows.

64 Too Fast Unary Unbiased Black-Box Algorithms

Lemma 6.7. Let I be an instance of Partitionn, 6=, let σ = σI be its ordering, and
let f = |fI |.

Furthermore, let x(0) ∈ {0, 1}n and for each i ∈ [n] let x(i) be created from x(0) by
flipping the i-th bit.

If we choose ` ∈ [0..n] such that f(x(`)) = max{f(x(t)) | t ∈ [0..n]}, then wmax ∈
Imax(x(`)).

Proof. We assume that wmax /∈ Imax(x(`)) to show the contrapositive. If ` = 0,
we can flip the bit corresponding to wmax (by our assumption on σ this is the n-th
bit) in x(0) to get f(x(n)) = f(x(0)) + 2wmax > f(x(0)). Similarly, if ` = n then
f(x(0)) = f(x(n)) + 2wmax. All other values of ` imply wmax /∈ Imax(x(0)) and thus,
f(x(n))−f(x(0)) = 2wmax. But since the weights are pairwise different, σ−1(`) < wmax

and thus f(x(`))− f(x(0)) < 2wmax.

The previous lemma has shown that the largest weight wmax is in the larger of the
two bins of x(`). The following lemma shows that if we have iteratively increased the
value of x(`) through 1-bit flips, we only have shifted weights from the smaller bin to
the larger one.

Lemma 6.8. Let I be an instance of Partitionn,6=, let σ := σI be the ordering of I,
and f := |fI |.

(i) If x ∈ {0, 1}n with f(x) ≥ wmax, then for all i ∈ [n] we have f(x⊕ ei) > f(x)
if and only if wi := σ−1(i) /∈ Imax(x`).

(ii) For x(0), . . . , x(n) and ` as in Lemma 6.7 we have f(x(`)) ≥ wmax.

Proof. (i). Let x ∈ {0, 1}n with f(x) ≥ wmax and let i ∈ [n]. Clearly, if wi /∈ Imax(x)
then f(x ⊕ ei) = f(x) + 2wi > f(x). On the other hand, if wi ∈ Imax(x) then either
f(x⊕ei) = f(x)−2wi < f(x) or f(x⊕ei) = 2wi−f(x) ≤ 2wi−wmax ≤ wmax ≤ f(x).

(ii). If wmax /∈ Imax(x(0)), then ` = n since for all i ∈ [n] we have

f(x(n)) = f(x(0)) + 2wmax ≥ f(x(0)) + 2wi ≥ f(x(i)) .

The above calculation immediately yields f(x(`)) > wmax.
Therefore, we may thus assume that wmax ∈ Imax(x(0)). To show the contrapos-

itive, let us also assume that f(x(`)) < wmax. Then f(x(0)) ≤ f(x(`)) < wmax and
thus f(x(n)) = 2wmax− f(x(0)) > wmax > f(x(`)), contradicting the choice of `. Thus,
f(x(`)) ≥ wmax.

It is not difficult to see that already with 3-ary variation operations it is possible to
access every bit position in a linear number of iterations. Hence, a small modification of
Algorithm 15 solves Partitionn, 6= and even all instances Partitionn of the original
Partition problem of size n1 in a linear number of queries, using only unbiased
variation operators of arity at most three.

Remark 6.9. The 3-ary unbiased black-box complexity of Partitionn is at most linear
in n.

1That is, Partitionn is the collection of instances I of the Partition problem with |I| = n.

6.3. Conclusions 65

In the unrestricted model we can learn the weights by querying first the all-zeros
bit string and then the n different unit vectors eni = (0 . . . 010 . . . 0), i ∈ [n].

Remark 6.10. The unrestricted black-box complexity of Partitionn is at most n+2.

6.3. Conclusions

We have shown that already the unary unbiased black-box model contains algorithms,
which solve NP -hard problems in a polynomial number of queries. Furthermore, we
could also prove that the unary unbiased black-box complexity of the Jumpn,k function
is of order O(n log n), a bound which is not achieved by standard search heuristics.

These results indicate that the unbiased black-box model, while clearly closer to
the truth than the unrestricted one, still does not give a full picture of how difficult
a problem is to be solved via randomized search heuristics. It seems that further
restrictions to the power of the algorithms are needed to obtain meaningful results.
We shall present two such approaches in the two following sections, Section 7 and
Section 8. In the latter one we introduce a black-box model where the algorithm
can only compare the quality of solutions, but has no access to the absolute value of
a search point’s fitness. We do not know yet whether the black-box complexity of
Partitionn in this new model is still polynomial in n and, in fact, we conjecture that
it is not.

66 Too Fast Unary Unbiased Black-Box Algorithms

67

Part II

Alternative Black-Box Models

69

7
Memory-Restricted Black-Box Models

In the first part of this thesis we have studied the unrestricted and the unbiased black-
box models and we have shown that for several test functions the respective black-box
complexities do not resemble the typical behavior of randomized search heuristics. We
therefore concluded that further restrictions to the models are needed to obtain more
sensible bounds.

One such approach was suggested by Droste, Jansen, and Wegener in their seminal
paper on black-box complexity [DJW06]. Instead of allowing the algorithm to access
the full query history, they suggest to restrict the memory of the algorithms under
consideration. Droste et al. conjecture [DJW06, Section 6] that restricting the memory
of the algorithms to a capacity, that can store at most one previously queried search
point and its corresponding fitness, increases the black-box complexity of OneMaxn
from Θ(n/ log n) in the unrestricted case to Ω(n log n).

Here in this section we disprove this conjecture. In fact, the black-box complexity
of OneMaxn remains Θ(n/ log n) even if the memory is restricted to one. Moreover,
we show that optimizing OneMaxn in a very natural way relates to a generalization of
the classical board game Mastermind with n holes and a constant number k of colors.

The results presented in this section are currently under submission. For k = 2
colors, Lemma 7.4 can also be found in the preprint [DW11b]. All results are joint
work with Benjamin Doerr.

7.1. The Mastermind Game

The original Mastermind game is a board game for two players. It was invented
in the seventies by Meirowitz. It has pegs of six different colors. The goal of the
codebreaker, for brevity called Paul here, is to find a color combination made up by
codemaker (called Carole in the following). He does so by guessing color combinations
and receiving information on how close this guess is to Carole’s secret code. Paul’s
aim is to use as few guesses as possible.

70 Memory-Restricted Black-Box Models

For a more precise description, let us call the colors 1 to 6. Carole’s secret code
is a length-4 string of colors, that is, a z ∈ [6]4. In each iteration, Paul guesses a
string x ∈ [6]4 and Carole replies with a pair (eq(z, x), π(z, x)) of numbers. The first
number, eq(z, x), usually indicated via black answer-pegs, is the number of positions
in which Paul’s and Carole’s string coincide. The other number, π(z, x), which is
usually indicated by white answer-pegs, is the number of additional pegs having the
right color, but being in the wrong position. Formally eq(z, x) := |{i ∈ [4] | zi = xi}|
and π(z, x) := maxρ∈S4 |{i ∈ [4] | zi = xρ(i)}| − eq(z, x). Paul “wins” the game if he
guesses Carole’s string, that is, if Carole’s answer is (4, 0).

We study a generalized version of the Mastermind game with k colors and n posi-
tions, that is, Carole’s secret code is a length-n string z ∈ [k]n. We are interested in
strategies for Paul that guarantee him to find the secret code with few questions. We
thus adopt a worst-case view with respect to Carole’s secret code. This is equivalent to
assuming that Carole may change her hidden string at any time as long as it remains
consistent with all previous answers (devil’s strategy).

Previous Results. Mathematics and computer science literature produces a
plethora of results on the Mastermind problem. For the original game with 6 col-
ors and 4 positions, Knuth [Knu77] showed that Paul needs at most four queries until
being able to identify Carole’s string (which he may query in the fifth iteration to win
the game).

For the generalized game denote by d(n, k) the minimum number of guesses that
enable Paul to win the game for every secret code z ∈ [k]n. Chvátal [Chv83] proves
that for k < n1−ε, ε > 0 an arbitrarily small constant, we have d(n, k) = O(n log k

logn−log k).

More precisely, he shows that for any ε > 0 and n sufficiently large, (2 + ε)n(1+2 log2 k)
log2 n−log2 k

guesses chosen from [k]n independently and uniformly at random, with high probabil-
ity, suffice to distinguish between all possible codes (that is, each secret code leads to
a different sequence of answers). Therefore, the secret code can be determined after
that many guesses. This remains true if Carole replies only with black answer-pegs,
that is, if for any of Paul’s guesses x she reveals to him only eq(z, x), the number of
bits in which her and Paul’s string coincide.

For larger values of k, the following is known. For n ≤ k ≤ n2, Chvátal proves
d(n, k) ≤ 2n log2 k + 4n and for k = ω(n2 log n) he shows (k − 1)/n ≤ d(n, k) ≤
dk/ne + d(n, n2). These results have subsequently been improved. Chen, Cunha,
and Homer [CCH96] show that d(n, k) ≤ 2ndlog2 ne + 2n + dk/ne + 2 for k ≥ n.
Goodrich [Goo09] proves d(n, k) ≤ ndlog2 ke+ d(2− 1/k)ne+ k for arbitrary k.

Concerning the computational complexity, Stuckman and Zhang [SZ06] show that
it is NP -hard to decide whether a given sequence (x(i), (eq(i), π(i)))ti=1 of queries x(i)

and answers (eq(i), π(i)) of black and white pegs has a secret code leading to these
answers, i.e., whether there exists a string z ∈ [k]n such that eq(z, x(i)) = eq(i) and
π(z, x(i)) = π(i) for all i ∈ [t]. Goodrich [Goo09] proves that this is already NP -hard
if we only ask for consistence with the black answer-peg replies eq(i).

The Connection Between Mastermind and Black-Box Complexity. Con-
sider the Mastermind problem with n holes and k = 2 colors. Abbreviate Carole’s
secret code by z and assume that she only replies with black answer-pegs eq(z, x).
By definition, eq(z, x) is exactly the function Omz(·) evaluated in x. Therefore, any

7.2. The Memory-Restricted Black-Box Model 71

optimal guessing strategy for Paul corresponds to an optimal unrestricted black-box
algorithm for the OneMaxn problem and vice versa.

We have mentioned already in the previous sections that, motivated by a coin-
weighing problem, Erdős and Rényi [ER63] studied this problem already in 1963.
They showed a sharp Θ(n/ log n) bound for the unrestricted black-box complexity of
OneMaxn and, thereby, for any of Paul’s optimal winning strategies.

Our results. Motivated by the conjecture of Droste, Jansen, and We-
gener [DJW06, Section 6] on the memory-restricted black-box complexity of
OneMaxn, we study optimal memory-restricted winning strategies for Paul. Since
this original motivation asks for the case of two colors only, we restrict ourselves to
the number k of colors being constant, though the methods presented below can also
be used to analyze larger numbers of colors.

The memory-restriction can be briefly described as follows. Given a memory of size
m ∈ N, Paul can store up to m guesses and Carole’s corresponding replies. Based only
on this information, Paul decides on his next guess. After receiving Carole’s reply,
based only on the content of the memory, the current guess, and the current answer,
he decides which m out of the m+1 strings and answers he keeps in the memory. Note
that our memory restriction means that Paul truly has no other memory, in particular,
no iteration counters, no experience that certain colors are not used, and so one. So
formally Paul’s strategy consists of a guessing strategy, which can be fully described
by a mapping from m-sets of guesses and answers to strings x ∈ [k]n, and a forgetting
strategy, which maps (m+ 1)-sets of guesses and answers to m-subsets thereof.

Clearly, a memory-restriction makes Paul’s life not easier. The O(n/ log n) strate-
gies for the 2-color game by Erdős and Rényi [ER63] and by Anil and Wiegand [AW09]
as well as the generalized k-color game winning strategy by Chvátal [Chv83] do use
the full history of guesses and answers and thus only work with a memory of size
Θ(n/ log n). Surprisingly, this amount of memory is not necessary. In fact, one single
memory cell suffices.

Theorem 7.1. Let k ∈ N. For all n ∈ N, Paul has a size-one memory strategy winning
the Mastermind game with k colors and n positions in O(n/ log n) guesses. This
remains true if we allow Carole to play a devil’s strategy and if Carole only reveals
the number of fully correct pegs eq(x, z) (“black answer-peg version of Mastermind”).

By Theorem 4.1 the bound in Theorem 7.1 is asymptotically tight. Already without
memory restrictions Ω(n/ log n) queries are needed to determine the secret code.

The proof of Theorem 7.1 is quite technical. For a clearer presentation of the ideas,
we first consider the size-two memory-restricted model, cf. Section 7.3. The proof of
Theorem 7.1 is given in Section 7.4. Before going into the proofs, we give a short
introduction to the memory-restricted black-box models.

7.2. The Memory-Restricted Black-Box Model

As mentioned above, Droste, Jansen, and Wegener [DJW06] conjectured a lower bound
of Ω(n log n) for the black-box complexity of OneMaxn when the memory of the black-
box algorithms is restricted to fit only one search point and its fitness value. Forbidding

72 Memory-Restricted Black-Box Models

the algorithm to exploit the whole history of search points evaluated so far is originally
motivated by the fact that many heuristics, e.g., evolutionary algorithms, only store
a bounded size population of search points. Simple hill-climbers or the Metropolis
algorithm even store only one single search point. Therefore, we agree with Droste et
al. that this is a very natural restriction.

Algorithm 17 is the scheme of a black-box algorithm with bounded memory of
size µ. The µ-memory-restricted black-box complexity of a function class F is
minA∈Amaxf∈F T (A, f), the minimal worst-case runtime (i.e., expected number of
function evaluations) of any such black-box algorithm A with bounded memory of size
µ.

It is important to note that a black-box algorithm with bounded memory is
not allowed to access any other information than the one stored in the µ pairs
(x(1), f(x(1))), . . . , (x(µ), f(x(µ))) which are currently in the memory and, in the se-
lection step, also the information provided by (x(µ+1), f(x(µ+1))). In particular, the
algorithm does not have access to an iteration counter.

Algorithm 17: Scheme of a black-box algorithm with memory of size µ for
optimizing a function f : S → R
Initialization: M← ∅;1

for t = 1, 2, . . . do2

Depending (only) onM choose a probability distribution p over S and3

sample x(µ+1) according to p ; //variation step
Query f(x(µ+1));4

SelectM⊆M∪ {(x(µ+1), f(x(µ+1)))} of size |M| ≤ µ; //selection step5

Recall that the memory-restricted black-box complexity of OneMaxn and optimal
strategies for Mastermind with two colors, black answer-pegs only, and a correspond-
ing memory restriction are equivalent questions. Consequently, our result can be
rephrased to saying that the 1-memory-restricted black-box complexity of OneMaxn
is Θ(n/ log n). This disproves the previous conjecture of Droste, Jansen, and Wegener.

From the view-point of building a useful complexity theory for randomized search
heuristics, Theorem 7.1 indicates that a memory restriction does not help to remove
the drawbacks of the existing black-box models. For this reasons we decided to settle
for this result on the memory-restricted black-box complexity of OneMaxn. That is,
here in this thesis, we do not study unbiased versions of the memory-restricted black-
box model and we do not study memory-restricted black-box complexities of other
function classes.

7.3. The Mastermind Game with Memory of Size Two

We show that with a memory of size two Paul can win the n holes, k colors black
answer-peg only version of the Mastermind game using only O(n/ log n) guesses. Al-
ready this proof contains many ingredients needed to prove Theorem 7.1, e.g., the use
of the random guessing strategy with limited memory, the block-wise determination
of the secret code, and the simulation of iteration counters in the memory.

7.3. The Mastermind Game with Memory of Size Two 73

Let k ≥ 2 be the number of colors used. In particular for k = 2, it will be
convenient to label the colors from 0 to k − 1. Let us denote the set of colors by
C := [0..k − 1] := {0, 1, . . . , k − 1}. We assume that k is constant and that the
number n of positions in the string is large, that is, all asymptotic notation is with
respect to n.

Theorem 7.2. Paul has a size-two memory strategy winning the black answer-peg only
Mastermind game with k colors and n positions in O(n/ log n) guesses. This remains
true if we allow Carole to play a devil’s strategy.

As many previous works on Mastermind and OneMaxn, the proof of Theorem 7.2
heavily relies on random guessing. For the case of k = 2 colors, already Erdős and
Rényi [ER63] showed that there is a t ∈ Θ(n/ log n) such that t guesses x(1), . . . , x(t)

chosen from {0, 1}n independently and uniformly at random, together with Carole’s
black answer-peg replies, uniquely define the hidden code. This was generalized by
Chvátal [Chv83] to the following result.

Theorem 7.3 (from [Chv83]). Let ε > 0, let n > n(ε) be sufficiently large and
let k < n1−ε. Let x(1), . . . , x(t) be t ≥ (2 + ε)n(1+2 log2 k)

log2 n−log2 k
samples chosen from Cn

independently and uniformly at random. Then for all z ∈ Cn, the set

Sconsistent := {y ∈ Cn | ∀i ∈ [t] : eq(y, x(i)) = eq(z, x(i))}

satisfies E[|Sconsistent|] ≤ 1 + 1/n.

Since the strategy implicit in Theorem 7.3 needs a memory of size Θ(n/ log n), we
cannot apply it directly in our setting. We can, however, adapt it to work on smaller
portions (“blocks”) of the secret code, and this with much less memory.

Let y ∈ Cn and let B ⊆ [n] be a block (i.e., an interval) of size s := d
√
ne. As we

shall see, by t ∈ O(s/ log s) times guessing a string obtained from y by replacing the
colors in B by randomly chosen ones (and guessing k additional reference strings), we
can determine z|B, the part of the secret code z in block B.

We can do so with a memory of size two only. We store the string obtained
from y by altering it on B (sampling string) in one cell. Note that we do not need
to remember y, as we only need to ensure that our guesses agree in the positions
[n] \ B. We use the other memory cell for storing the random substrings of length
s, which we substituted into y at B, and for storing Carole’s corresponding replies.
Note that each such answer can be encoded in binary using `n ∈ O(log n) entries of
the string. Hence the t guesses and answers can be memorized using a total number
of t(s+ `n) = O(n/ log n) positions. Therefore, all relevant information can be stored
in one string of length n, the storage string, in the following typically denoted by x.

This approach allows us to determine any length-s block B of Carole’s secret code
z using t = O(s/ log s) guesses. Since we need to determine dn/se such length-s blocks,
we can determine the secret code z with tdn/se = O(n/ log n) guesses, as desired.

In Algorithm 18 (notation used will be introduced below) we make this strategy
more precise by giving it in pseudo-code. Note, however, that this algorithm does not
fully satisfy the size-two memory restriction. The reason is that the queries do not
only depend on the current state of the memory, but also on iteration counters and,

74 Memory-Restricted Black-Box Models

Algorithm 18: An almost size-two memory-restricted algorithm winning the k-
color black answer-peg only Mastermind game in O(n/ log n) guesses. Remark:
x denotes the unique string inM with xn = 1 and y denotes the unique string
inM with yn = 0.
Initialization: y ← [0 . . . 0];1

Query eq(z, y) and updateM← {(y, eq(z, y))};2

for i = 1 to d(n− 1)/se do3

x← [0 . . . 0|1]; //initialization of x4

Query eq(z, x) and updateM by adding (i = 1) or replacing (i > 1)5

(x, eq(z, x)) inM;
for q = 0 to t+ k − 1 do6

if q < k then y ← substitute(y,Bi, [q . . . q]) ; //reference string7

else y ← substitute(y,Bi, r) where r ∈ C|Bi| u.a.r.; //random guess8

Query eq(z, y) and updateM by replacing (y, eq(z, y));9

x← [x1 . . . xp1(x)|BLOCKi(y)|binary`n(eq(z, y))|1|0 . . . 0|1] ; //add y’s info10

to x
Query eq(z, x) and updateM by replacing (x, eq(z, x));11

while ∆i(y) < |Bi| do12

y ← substitute(y,Bi, w), where w ∈ Sconsistent
i u.a.r.;13

Query eq(z, y) and updateM by replacing (y, eq(z, y));14

while eq(z, y) < n do y ← substitute(y, {n}, c), where c ∈ C u.a.r., and query15

eq(z, y);

for example, in lines 9 and 11, on a program counter. Further below, in Algorithm 19,
we shall remove this shortcoming with a few additional technicalities, which we are
happy to spare for the moment.

Before we argue for the correctness of Algorithm 18, let us fix the notation.
For any string x ∈ Cn we also write x = [x1 . . . xn]. To ease reading, we al-
low ourselves to indicate different structural components of x by vertical bars, e.g.,
x = [x1 . . . xp|xp+1 . . . xn]. For i ∈ [d(n−1)/se] let Bi := {(i−1)s+1, . . . , is}∩ [n−1],
the positions of the i-th block. Set

BLOCKi(x) := x|Bi := [x(i−1)s+1 . . . xmin{is,n−1}] ,

the i-th block of x. For any string r ∈ C|Bi| we define

substitute(x,Bi, r) := [x1 . . . x(i−1)s|r|xmin{is,n−1}+1 . . . xn] ,

the string with the i-th block substituted by r. Similarly, let substitute(y, {n}, c) :=
[y1 . . . yn−1|c]. Note that we do not assign the n-th position to any of the blocks. We
do so because in Algorithms 18 and 19 we shall use that position to indicate which one
of the two strings in the memory M is the storage string (the unique string x ∈ M
with xn = 1) and which one is the sampling string (the unique string y ∈ M with
yn = 0).

7.3. The Mastermind Game with Memory of Size Two 75

Let p1(x) := max{i ∈ [n − 1] | xi = 1}, the largest position i < n of x with
entry “1”. As mentioned above, we encode Carole’s answers eq(z, y) ∈ [0..n] in binary,
using `n := dlog2 ne+ 1 positions, and we denote this binary encoding of length `n by
binary`n(eq(z, y)). By ∆i(y) we denote the contribution of the i-th block to the value
eq(z, y). That is, ∆i(y) is the number of positions in the i-th block in which Paul’s
guess y and Carole’s secret code z coincide. Formally, ∆i(y) := eq(z|Bi , y|Bi). We shall
see below how ∆i(y) can be computed from eq(z, y) and eq(z, xi), i = 0, 1, . . . , k − 1,
where the xi are suitably chosen reference strings.

Lastly, let Sconsistent
i be the set of strings w of length |Bi| such

that substitute(z,Bi, w) is consistent with all of Carole’s replies, i.e.,
eq(substitute(z,Bi, w), y) = eq(z, y) for all search points y queried so far (a for-
mal definition will be given below). We shall see below that both ∆i(y) and Sconsistent

i

can be computed solely from the content of the memory cells (lines 12–14).
We now argue for the correctness of Algorithm 18. First we show that, when Algo-

rithm 18 leaves the random guessing phase in lines 6–11, based only on the information
given in the memory, we can restore the full history of guesses for the i-th block. To
this end, first note that for any guess y done in line 9, we used s + `n + 1 positions
in x for storing its information (line 10; we add the additional “1” at the end to ease
determining via p1(x) the positions in x which have not yet been used for storing
information). In lines 6–11 we first asked and stored k non-random guesses

xc = substitute(y,Bi, [c . . . c])

and we stored these reference strings together with Carole’s replies

eq(z, xc) =
`n∑
h=1

2h−1xc(s+`n+1)−h ,

c ∈ [0..k − 1] . For j ∈ [t], the j-th random sample is

r(j) = [x(k+j−1)(s+`n+1)+1 . . . x(k+j−1)(s+`n+1)+|Bi|]

and the corresponding query was

y(j) = substitute(y,Bi, r(j)) .

We have stored Carole’s reply to this guess in binary, and we can infer

eq(z, y(j)) =
`n∑
h=1

2h−1x(k+j)(s+`n+1)−h .

This shows how to regain the full guessing history.
Next we show how to compute the contributions ∆i(y(j)) of the entries in the i-th

block. To this end, note that the constant substrings [c . . . c] in the reference strings
xc in total contribute exactly |Bi| to the sum eq(z, x0) + . . .+ eq(z, xk). Formally,

k−1∑
c=0

eq([z(i−1)s+1 . . . zmin{is,n−1}], [c . . . c]) = |Bi| .

76 Memory-Restricted Black-Box Models

Since all other positions of the sampling string y are not changed during the phase, in
which we determine the i-th block, we infer that

∆i(y(j)) = eq(z, y(j))− (eq(z, x0) + . . .+ eq(z, xk)− |Bi|)/k .

Consequently, in lines 12–14, the algorithm can compute ∆i(y(j)) for all j ∈ [t]. From
this it can infer

Sconsistent
i : = {z̃ ∈ C|Bi| | ∀j ∈ [t] : eq(z̃, BLOCKi(y(j))) = ∆i(y(j))}

= {z̃ ∈ C|Bi| | ∀j ∈ [t] : eq(z̃, r(j)) = eq(BLOCKi(z), r(j))}

the set of possible code segments in Bi. By Theorem 7.3, the expected size of Sconsistent
i

is bounded from above by 1+1/|Bi|. Thus, in lines 12–14 we need an expected number
of 1 + 1/|Bi| samples w chosen from Sconsistent

i uniformly at random until we find a
y = substitute(y,Bi, w) with ∆i(y) = s (which implies that the i-th block of y
coincides with Carole’s secret code). This shows how we determine the entries of the
i-th block in an expected total number of t = O(s/ log s) guesses.

When Algorithm 18 executes line 15, all but the last entry of y coincide with
Carole’s secret code. Hence trying random colors in the n-th position finds the hidden
code z with an additional expected number of k = Θ(1) guesses.

To turn Algorithm 18 into a truly size-two memory-restricted one, we use the
first `n entries of x to store in binary the index of the block currently being under
consideration. This is iteration counter i in Algorithm 18. At the same time we move
the storage space for the guesses and answers by `n positions to the right. Formally,
we define

i(x) :=
`n−1∑
h=0

2hx`n−h .

The inner for-loop of Algorithm 18 needs no additional memory to be simulated,
because we can infer from p1(x) how many guesses q(x) have been queried already:
since storing each guess requires s + `n + 1 positions and since the first `n positions
are used for indicating the number of already determined entries, we have

q(x) :=
p1(x)− `n
s+ `n + 1

.

Lastly, we need to replace the sequential queries in lines 9 and 11 of Algorithm 18
(as this exploits information stored in the program counter). Fortunately, again we can
deduce from the memory the status of the algorithm. We define a function Part(y, x),
which equals 1 if the information of y has been added to the storage string x already
and which equals 0 otherwise. That is, we set

Part(y, x) =

1, if

∑`n
i=1 2i−1xp1(x)−i = eq(z, y) and

BLOCKi(x)(y) = [xp1(x)−`n−|Bi(x)| . . . xp1(x)−`n−1] ,

0, otherwise .

7.3. The Mastermind Game with Memory of Size Two 77

Algorithm 19: A size-two memory-restricted algorithm winning the k-color
black answer-peg only Mastermind game in O(n/ log n) guesses. Remark: x
denotes the unique string inM with xn = 1 and y denotes the unique string in
M with yn = 0.
Initialization: LetM← ∅ ; // clear memory1

if M = ∅ then2

y ← [0...0] ; //first reference string3

Query eq(z, y) and updateM← {(y, eq(z, y))};4

else if |M| = 1 then5

x← [0...0|1] ; //initialization of storage string6

Query eq(z, x) and updateM←M∪ {(x, eq(z, x))};7

else if i(x) < d(n− 1)/se then8

if x = [0 . . . 0|1] or ∆i(x)(y) = |Bi(x)| then9

x← [binary`n(i(x) + 1)|BLOCKi(x)+1(y)|binary`n(eq(z, y))|1|0 . . . 0|1] ;10

//clear storage string and add first reference string
Query eq(z, x) and updateM by replacing (x, eq(z, x));11

else if Part(y, x) = 1 and q(x) < t+ k then12

if q(x) < k then y ← substitute(y,Bi(x), [q(x) . . . q(x)]) ; //reference13

string
else y ← substitute(y,Bi(x), r) where r ∈ C|Bi(x)| u.a.r.; //random14

guess
Query eq(z, y) and updateM by replacing (y, eq(z, y));15

else if Part(y, x) = 0 and ∆i(x)(y) < |Bi(x)| then16

x← [x1 . . . xp1(x)|BLOCKi(x)(y)|binary`n(eq(z, y))|1|0 . . . 0|1]; //add y’s17

info to x
Query eq(z, x) and updateM by replacing (x, eq(z, x));18

else if Part(y, x) = 1 and q(x) = t+ k then19

y ← substitute(y,Bi(x), w) where w ∈ Sconsistent
i(x) chosen u.a.r.;20

Query eq(z, y);21

if ∆i(x)(y) = |Bi(x)| then UpdateM by replacing (y, eq(z, y));22

else if i(x) = d(n− 1)/se then23

y ← substitute(y, {n}, c) where c ∈ C\{yn} u.a.r.;24

Query eq(z, y) ;25

Go to line 2;26

Note that Part(y, x) = 1 indicates that the information of y has been stored in x also
in the case that our current random sample equals the previous one. However, this
does not cause any problems as in this case the current guess does not give any new
information. The use of Part(·, ·) modifies the algorithm to sample t random guesses
without immediate repetition. Note that the probability to sample the same string
r ∈ C|Bi(x)| twice in a row is at most 1/2 (if the last block consists only of one position
and k = 2) and is typically much smaller. Hence, occurrences of this event have no

78 Memory-Restricted Black-Box Models

influence on the asymptotic number of guesses needed to win the game.
With these modifications, Algorithm 18 becomes the truly size-two memory-

restricted Algorithm 19.

7.4. Memory of Size One: Proof of Theorem 7.1

Compared to the situation in Section 7.3, Paul faces two additional challenges in
the size-one memory-restricted setting. The obvious one is that he has less memory
available, in particular, after a large part of the code has been determined and needs
to be stored. The more subtle one is that he cannot any longer query a search point
and then store whatever is worth storing in the second memory cell. With one memory
cell, all he can do is to guess a new string and keep or forget it.

7.4.1. Linear Query Time Strategies

Before we prove Theorem 7.1, let us discuss a linear query time winning strategy, i.e.,
a strategy that allows Paul to find Carole’s secret code in a linear expected number of
guesses, using one memory cell only. This linear query time strategy will be used in
the proof of Theorem 7.1 to determine the last Θ(n/ log n) entries of the secret code
and it will be used to determine the first Θ(log n) entries, which shall be used for
storing reference information.

The basic idea of the linear query time strategy is to test each position one by
one, from left to right. Since we have just one memory cell, we need to indicate in
this one string which entries have been determined already. We do so by keeping all
not yet determined entries at one identical value different from the one of the entry
determined last. To this end, let us for all x ∈ Cn define

tn(x) := min{i ∈ [n] | ∀j ∈ {i, . . . , n} : xj = xi} ,

the tail number of x. The following lemma describes the linear query time strategy.

Lemma 7.4. Let x ∈ Cn. Furthermore, let us denote Carole’s secret code by z ∈ Cn.
Let us assume that the first tn(x)− 1 entries of z have been determined (i.e., Carole
can no longer change the entries of [z1 . . . ztn(x)−1]). Further assume that xi = zi for
all i < tn(x) and thatM = {(x, eq(z, x))} is the current content of the memory cell.

There is a size-one memory-restricted guessing procedure LinAlg that—even if
Carole plays a devil’s strategy—after an expected constant number of successive calls
modifies the memory such that the string y now in the memory satisfies yi = zi for all
i ≤ tn(x) and tn(y) = tn(x) + 1. Every call of LinAlg requires only one guess.

Interestingly, for the definition of LinAlg, we need to distinguish between the cases
of k = 2 and k ≥ 3 colors.

The case of k = 2 colors C = {0, 1}

In this section we prove that for k = 2 colors C = {0, 1}, LinAlg is a procedure that
requires, in expectation, three calls to modify the memory content by replacing the

7.4. Memory of Size One: Proof of Theorem 7.1 79

current string x that is assumed to satisfy the conditions of Lemma 7.4, by a string y
with tn(y) = tn(x) + 1 and yi = zi for all i ≤ tn(x).

Recall that for all i ∈ [n] we defined eni to be the i-th unit vector of length n.

Algorithm 20: Routine LinAlg for k = 2 colors
Assumption: The string x ∈ {0, 1}n in the memory satisfies tn(x) < n and1

xi = zi for all i < tn(x);
Sample y ∈ {x⊕ entn(x), x⊕

∑n
i=tn(x)+1 e

n
i } uniformly at random;2

Query eq(z, y);3

if y = x⊕ entn(x) then4

if eq(z, y) > eq(z, x) thenM← {(y, eq(z, y))};5

else6

if eq(z, x) + eq(z, y) = n+ tn(x) thenM← {(y, eq(z, y))};7

Proposition 7.5. For k = 2 colors, Algorithm 20 satisfies the conditions of Lemma 7.4.
In expectation, three calls to routine LinAlg suffice.

Proof. Let x ∈ {0, 1}n be a bit string with tn(x) < n and xi = zi for all i < tn(x).
Algorithm 20 samples with probability 1/2 the string y = x ⊕ entn(x), and with

probability 1/2 it samples y = x ⊕
∑n

i=tn(x)+1 e
n
i . That is, either it flips only the

tn(x)-th bit of x or it flips all “tail bits” but the tail numbered one.
If y = x⊕ entn(x), clearly we have ztn(x) = ytn(x) if and only if eq(z, y) > eq(z, x).
Therefore, let us assume that Algorithm 20 samples y = x ⊕

∑n
i=tn(x)+1 e

n
i . We

show that ztn(x) = ytn(x)(= xtn(x)) holds if and only if eq(z, x) + eq(z, y) = n+ tn(x).
By definition we have yi = xi = zi for all i < tn(x). Thus, the first tn(x)− 1 bits of x
and y contribute 2(tn(x)− 1) to the sum eq(z, x) + eq(z, y); formally,

eq([z1 . . . ztn(x)−1], [x1 . . . xtn(x)−1])+eq([z1 . . . ztn(x)−1], [y1 . . . ytn(x)−1]) = 2(tn(x)−1) .

On the other hand, for all i > tn(x) either have zi = xi or zi = 1− xi = yi. Thus, the
last last n− tn(x) bits of x and y contribute exactly n− tn(x) to the sum eq(z, x) +
eq(z, y); formally,

eq([ztn(x)+1 . . . zn], [xtn(x)+1 . . . xn]) + eq([ztn(x)+1 . . . zn], [ytn(x)+1 . . . yn]) = n− tn(x) .

By definition we also have ytn(x) = xtn(x) and, thus,

eq(z, x) + eq(z, y) = eq([z1 . . . ztn(x)−1], [x1 . . . xtn(x)−1]) + eq(ztn(x), xtn(x))

+ eq([ztn(x)+1 . . . zn], [xtn(x)+1 . . . xn])

+ eq([z1 . . . ztn(x)−1], [y1 . . . ytn(x)−1]) + eq(ztn(x), xtn(x))

+ eq([ztn(x)+1 . . . zn], [ytn(x)+1 . . . yn])

= 2(tn(x)− 1) + n− tn(x) + 2 eq(ztn(x), xtn(x))

= n+ tn(x) + 2 eq(ztn(x), xtn(x))− 2

80 Memory-Restricted Black-Box Models

This shows that eq(z, x) + eq(z, y) = n+ tn(x) if and only if eq(ztn(x), xtn(x)) = 1, i.e.,
if and only if ztn(x) = xtn(x)(= ytn(x)).

It is immediate that for a secret code z taken from {0, 1}n uniformly at random,
the probability to obtain, in one call of LinAlg, a string y with tn(y) = tn(x) + 1 and
yi = zi for all i < tn(y) is 1/2. This shows that, if Carole does not play a devil’s
strategy and if her string is taken from {0, 1}n uniformly at random, we need, on
average, two successive calls to procedure LinAlg until we obtain a string y as desired.

Proposition 7.5 follows from the easy observation that it takes, on average, three
iterations until both y = x ⊕ entn(x), and y = x ⊕

∑n
i=tn(x)+1 e

n
i have been sampled.

That is, even if Carole plays a devil’s strategy, three calls of Algorithm 20 force her to
accept one entry ztn(x) ∈ {0, 1}.

The case of k ≥ 3 colors C = [0..k − 1]

The main argument of Proposition 7.5, namely that
∑k−1

c=0 eq(z, [c . . . c]) = n, seems
hard to extend to more than two colors with no additional memory. However, having
more than two colors can be exploited in a different way as it gives more than one way
to mark the tail [xtn(x) . . . xn] of a search point x.

Proposition 7.6. For k ≥ 3 colors, Algorithm 21 satisfies the claims of Lemma 7.4.

Algorithm 21: Routine LinAlg for k ≥ 3 colors
Assumption: The string x ∈ Cn in the memory satisfies tn(x) < n and xi = zi1

for all i < tn(x);
With probability (k − 1)/k sample2

y ∈ {[x1 . . . xtn(x)−1|j|xtn(x)+1 . . . xn] | j ∈ C\{xtn(x)}} uniformly at random
and with probability 1/k sample
y ∈ {[x1 . . . xtn(x)−1|j . . . j] | j ∈ C\{xtn(x)−1}} uniformly at random;
Query eq(z, y);3

if y = [x1 . . . xtn(x)−1|j|xtn(x)+1 . . . xn], j 6= xtn(x) then4

if eq(z, y) > eq(z, x) thenM← {(y, eq(z, y))} ; //ztn(x) = j5

else6

M← {(y, eq(z, y))};7

Proof. Let x ∈ Cn with tn(x) < n and xi = zi for all i < tn(x). If y =
[x1 . . . xtn(x)−1|j|xtn(x)+1 . . . xn], then clearly we have eq(z, y) > eq(z, x) if and only
if ytn(x) = j = ztn(x). Therefore, all we need to show is that, using the strategy of
Algorithm 21, it takes a constant number of guesses until for each j ∈ C there ex-
ists an ij ∈ C\{j} such that we have queried both x = [z1 . . . ztn(x)−1|ij . . . ij] and
y = [z1 . . . ztn(x)−1|j|ij . . . ij] in two subsequent guesses. This follows essentially from
the fact that k is constant.

More precisely—regardless of the current search point x—for any bitstring y =
[z1 . . . ztn(x)−1|j|ij . . . ij] the probability to sample y in the second of two subsequent

7.4. Memory of Size One: Proof of Theorem 7.1 81

calls to Algorithm 21 is constant. Therefore, the expected number of calls to Algo-
rithm 21 until y is sampled is constant. The claim follows by the linearity of expecta-
tion.

7.4.2. Proof of Theorem 7.1

Building on LinAlg and the block-wise random guessing strategy introduced in Sec-
tion 7.3, we can now present Paul’s winning strategy for the single memory cell setting
which proves Theorem 7.1.

Proof of Theorem 7.1. The structure of this proof is as follows. First we sketch the
main ideas and give a high-level pseudo-code for the size-one memory-restricted strat-
egy winning the black answer-peg only Mastermind game with k colors in O(n/ log n)
guesses. After fixing some notation, we then present more details for the different
phases, in particular for the random guessing phase, which is the most critical part of
this proof. We present here the details of Paul’s strategy for the case of k = 2 colors.
The generalization to k ≥ 3 colors is pretty much straightforward. Some remarks on
the differences between the case of k = 2 and k ≥ 3 colors are given at the end of this
proof.

Let us begin with a rough overview of Paul’s strategy. He determines the first
n−Θ(n/ log n) positions using random guessing, where he manages to store the random
substrings and Carole’s answers in the yet undetermined part of his one string in the
memory. As in the proof of Theorem 7.2, he does so by iteratively determining blocks
of length s := d

√
ne. This is the first phase of the algorithm. Then, using the linear

query time strategy from Lemma 7.4, he determines the missing Θ(n/ log n) entries in
O(n/ log n) guesses (phase 2).

To distinguish between the sampling and the linear query time phase, Paul uses
the last two entries suffix(x) := [xn−1xn] of his string x. He has suffix(x) = [01],
when he is in the random guessing phase, and he uses suffix(x) = [cc] for some c ∈ C
to indicate that he applies calls to LinAlg. Once Paul has determined all but the
last two entries (visible from tn(x) = n− 1), he simply needs to sample uniformly at
random from the set of all k2 − 1 remaining possible strings. This clearly determines
z in a constant expected number of additional queries (phase 3). Therefore, the total
expected number of guesses can be bounded by

number of blocks de-
termined in phase 1︷ ︸︸ ︷

n− 2
s

(1−Θ(log−1 n))

queries needed to de-
termine any such block︷ ︸︸ ︷

O(
s

log s
) +

queries needed
in phase 2︷ ︸︸ ︷
O(

n

log n
) +

queries needed
in phase 3︷︸︸︷

O(1) = O(
n

log n
) .

A non-trivial part is the random guessing phase. As in the proof of Theorem 7.2,
after guessing t+k strings, we want to be able to regain the full guessing history. If we
simply stored the random substring and Carole’s reply in some unused part of x, then
this changed memory would influence Carole’s next answer and we would be unable
to deduce the necessary information on the next guess from it. We solve this difficulty
as follows. We store Carole’s latest reply (i.e., value eq(z, x) currently in the memory)
and we sample new (random) substrings for the current block at the same time. Here
we store the value eq(z, x) in a part of x for which we know the entries of Carole’s

82 Memory-Restricted Black-Box Models

hidden code. By this, we can separate in Carole’s next answer the influence of the just
stored information from the one of the random guess. The precise description of this
Sampling strategy will be presented below.

To gain the storage space for which we know the hidden code, we need to add
another phase, phase 0, in which we apply O(log n) calls to the LinAlg procedure
(cf. Lemma 7.4) until we have determined the first

` := `n + 1 = dlog2 ne+ 2

positions of z. Here, `n = dlog2 ne + 1 denotes again the number of bits needed to
encode in binary any value v ∈ [0..n]. This additional phase 0 does not change the
overall asymptotic number of queries Paul needs to win the game.

The pseudo-code for this size-one memory-restricted strategy is given in Algo-
rithm 22. Similar to the notation in the proof of Theorem 7.2, we denote for any
h ∈ [0..n] its binary encoding of length `n by binary`n(h) and for h ∈ [0..s] we denote
its binary encoding of length `s := dlog2 se+ 1 by binary`s(h). The current block of
interest i(x) is encoded in positions {n− `s − 1, . . . , n− 2}, i.e., we have

i(x) :=
`s−1∑
h=0

2hxn−2−h ,

Bi(x) := {`+ (i(x)− 1)s+ 1, . . . , `+ i(x)s} ,

and, consequently,

BLOCKi(x)(x) := [x`+(i(x)−1)s+1 . . . x`+i(x)s] .

The total number of blocks which we determine via random guessing is

b := bn−2
s (1− K

log2 n
)c

for some suitable large constant K. The number of random guesses for each block is

t := d(2 + ε) s(1+2 log2 k)
log2 s−log2 k

e ,

where ε > 0 is an arbitrarily small constant. Lastly, the actual number of already
sampled guesses for block Bi(x) is denoted by q(x). As in the proof of Theorem 7.2,
q(x) can be computed via

p1(x) := max{i ∈ [n− `s − 3] | xi = 1} ,

the largest position i < n − 2 − `s with entry xi = 1. The exact definition of q(x)
will be given in the description of the OptimizeBlock routine which, after t random
samples have been sampled via the Sampling routine, determines BLOCKi(x)(z), stores
it in Bi(x) and increases the block counter i(x) by one.

Let us now present a more detailed description of Algorithm 22.
As in the proof of Theorem 7.2 let us assume that Carole has chosen a fix code

z ∈ Cn which she does not change during the game, i.e., to any of Paul’s guesses x she

7.4. Memory of Size One: Proof of Theorem 7.1 83

Algorithm 22: A size-one memory-restricted algorithm winning the k-color
black answer-peg only Mastermind game in O(n/ log n) guesses.
Initialization: LetM← ∅;1

if M = ∅ then2

x← [c . . . c] for some c ∈ C chosen u.a.r.;3

Query eq(z, x) and updateM← {(x, eq(z, x))};4

if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) ≤ ` then5

LinAlg ; //find the first ` entries [z1 . . . z`]6

else if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) = `+ 1 then7

x← [0 . . . 0︸ ︷︷ ︸
`

| 0 . . . 0︸ ︷︷ ︸
bs

|x1 . . . x`| 0 . . . 0︸ ︷︷ ︸
n−(2`+bs+`s+2)

|binary`s(1)|01]; //copy prefix
8

(which coincides with the hidden code)
Query eq(z, x) and updateM by replacing (x, eq(z, x));9

else if suffix(x) = [01] ∧ i(x) ≤ b ∧ q(x) < t+ k then10

Apply Sampling;11

else if suffix(x) = [01] ∧ i(x) ≤ b ∧ q(x) = t+ k then12

Apply OptimizeBlock;13

else if suffix(x) = [01] ∧ i(x) = b+ 1 then14

x← [x`+bs+s+1 . . . x2`+bs+s+1|x`+1 . . . x`+bs|c . . . c] with c ∈ C\{x`+bs} u.a.r.;15

Query eq(z, x) and updateM by replacing (x, eq(z, x)); //prepares x for16

LinAlg
else if ∃c ∈ C : suffix(x) = [cc] ∧ `+ bs < tn(x) ≤ n− 2 then17

LinAlg;18

else if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) = n− 1 then19

Sample y ∈ {[x1 . . . xn−2|p] | p ∈ C2}\{x} uniformly at random;20

Query eq(z, y);21

if eq(z, y) = n thenM← {(y, eq(z, y))} ; //secret code found22

Go to line 2;23

replies eq(z, x). By adopting a worst-case view below, we implicitly still allow Carole
to change z as long as the new choice is consistent with all previous replies.

If in any iteration we find an x with eq(z, x) = n, we have x = z and we are done.
Thus, in what follows we always assume eq(z, x) < n.

Initialization of Algorithm 22, lines 1–4. For initialization, Paul picks a
c ∈ C uniformly at random and guesses the “all-c’s string” of length n, x = [c . . . c].
He updates the memory M ← {(x, eq(z, x))} accordingly. This memory satisfies all
conditions of line 1 of routine LinAlg (Algorithms 20 and 21) with tn(x) = 1.

Phase 0 of Algorithm 22, lines 5–6. To this string, Paul applies successive
calls to the routine LinAlg. By Lemma 7.4 he finds a string y ∈ Cn with yi = zi for all
i ≤ `, and tn(y) = ` + 1 in an expected number of O(`) guesses. These bits shall be
used in phase 1 of Algorithm 22 to indicate the status of the Sampling routine (first
position) and for storing Carole’s latest reply eq(z, x) ∈ [0..n] (positions {2, . . . , `}).

84 Memory-Restricted Black-Box Models

We shall describe this in more detail below.
Intermediate step, lines 7–9. After Paul has determined the first ` entries, he

needs to prepare the string for the random guessing phase, which is the main part of
Algorithm 22. Since we want to use the first ` entries to store reference values, we need
to make a copy of the prefix (which, by construction, coincides with Carole’s hidden
code). To this end, we query in line 7 the string

y = [0 . . . 0︸ ︷︷ ︸
`+bs entries

|x1 . . . x`| 0 . . . 0︸ ︷︷ ︸
n−(2`+bs+`s+2) entries

| binary`s(1)︸ ︷︷ ︸
`s entries

|01] ,

where x is the string that is currently in the memory, i.e., the string we obtained
through phase 01 and bs = n−Θ(n/ log n) is the number of positions Paul determines
via random guessing. As mentioned in the overview, the last two entries suffix(x) =
[xn−1xn] = [01] indicate that we are entering the second phase. Throughout the game
we have

suffix(x) =

{
[01], if we are in the second phase of the algorithm ,

[cc], for some c ∈ C, otherwise.

In positions {n − `s − 1, . . . , n − 2} we initialize i(x) = 1 to indicate that, in what
follows, we aim at determining the first block, B1, of the secret code z.

After guessing y and updating the memory by replacing the current one with
{(y, eq(z, y))}, Paul enters the first phase. The overall expected number of queries
needed until this point is O(`) = O(log n).

First phase of Algorithm 22, lines 10–13. The first phase is the main phase
of Algorithm 22. In this phase, Paul determines all but n − Θ(n/ log n) entries by
iteratively determining blocks of length s via random guessing. In total, he determines
b such blocks in this phase. The description of the routines Sampling (in which k
reference strings and t random samples are queried for the i(x)-th block Bi(x)) and
OptimizeBlock (in which we use the reference strings and the random guesses to
determine BLOCKi(x)(z), the i(x)-th block of the secret code z) is quite technical. We
present the details after the description of the remaining phases.

Second phase of Algorithm 22, lines 14–18. In the second phase of Algo-
rithm 22 we again apply successive calls to routine LinAlg to determine all but the
last two remaining entries. To this end, we first need to prepare the string. This
is done in lines 14–16 of Algorithm 22 (intermediate step). The string x queried in
line 16 satisfies xi = zi for all 1 ≤ i ≤ ` + bs. And, by definition, it also satisfies
xtn(x)−1 6= xtn(x) with tn(x) = `+ bs+ 1.

From Lemma 7.4 we infer that via routine LinAlg we find a string x with tn(x) =
n− 1 and xi = zi for all 1 ≤ i ≤ n− 2 in an expected number of O(n− 2− (`+ bs)) =
O(n/ log n) queries. These are lines 17 and 18 of Algorithm 22.

Third phase of Algorithm 22, lines 19–22. Comparable to the last step of
Algorithm 19, all we need to do in the last phase of Algorithm 22 is to determine
the last two entries. This is done by sampling y uniformly at random from the set
of possible target strings {[x1 . . . xn−2|p] | p ∈ {0, 1}2}\{x} and we find y = z after a

1That is, we have ∀i ≤ ` : xi = zi and ∃c ∈ C\{x`}∀i ≥ ` + 1 : xi = c.

7.4. Memory of Size One: Proof of Theorem 7.1 85

constant expected number of queries. This phase is recognized by the algorithm by the
fact that tn(x) = n−1. Note that we have tn(x) ≤ n−2 in the LinAlg phases—phases
0 and 2—and that we have tn(x) = n in phase 1.

In the remainder of this proof we present the details of the first phase of Algo-
rithm 22, the random sampling routine Sampling and the OptimizeBlock routine. As
mentioned above, this description requires some technicalities. Therefore, we split it
into the following parts:

Part I In the first part, we present the general structure of the guesses made
in the sampling phase. Here, we shall also show that the n positions are indeed
sufficient to store, for any of the b blocks of length s, all necessary information
about the samples.

Part II The second part, which is brief, provides further notation used in the
pseudo-code of Algorithm 23.

Part III The main part is the third one. Here we show how the contributions
∆i(x)(r) ∈ [0..s] of the random samples r ∈ Cs can be computed. This also shows
that indeed after sampling the t random guesses for block Bi(x), it is possible to
regain the full query history using only the information that has been stored in
the memory. This is clearly the most technical part of this proof.

Part IV We conclude the description of phase 1 in the fourth part, where we
explain how the memory is being updated, once the entries z|Bi(x) = BLOCKi(x)(z)
of the secret code z in the i(x)-th block have been determined.

Part I. The general structure of a query x in the first phase is the following.

x = [x1︸︷︷︸
(1)

| binary`n(eq(z, y))︸ ︷︷ ︸
(2)

| opt(B1)| . . . |opt(Bi(x))︸ ︷︷ ︸
(3)

| r︸︷︷︸
(4)

| 0 . . . 0︸ ︷︷ ︸
(5)

| z1 . . . z`︸ ︷︷ ︸
(6)

|

binary`n(eq(z, x0))|binary`n(eq(z, x1))|1︸ ︷︷ ︸
(7)

|

binary`n(eq(z, ref(1)))|r(1)|∆i(x)(r
(1))|1| . . . |︸ ︷︷ ︸

(8)

binary`n(eq(z, ref(t′)))|r(t′)|∆i(x)(r
t′)|1︸ ︷︷ ︸

(8) continued

|0 . . . 0| binary`s(i(x))︸ ︷︷ ︸
(9)

| 01︸︷︷︸
(10)

] , (7.1)

where we use

(1) the first entry x1 ∈ {0, 1} to indicate whether this string contains new and not
yet stored information (x1 = 1) or whether we are just doing a storage operation
(x1 = 0), through which we add to x all necessary information from the previous
guess. An explanation of these operation will be given below;

(2) `n entries for encoding the value eq(z, y) ∈ [0..n] of the string y that is currently
stored in the memory cell (eq(z, y) serves as reference value),

86 Memory-Restricted Black-Box Models

(3) (i(x)− 1)s entries for the already determined blocks B1, . . . , Bi(x)−1,

(4) s entries for the current block Bi(x) of interest. If we are sampling new informa-
tion (i.e., if x1 = 1), then the substring r is a string taken from Cs uniformly at
random and r is the all-zeros string of length s otherwise;

(5) (b− i(x))s zeros for the yet untouched blocks Bb′ with i(x) < b′ ≤ b,

(6) ` entries for storing the length-` prefix that coincides with Carole’s hidden code
(this we obtained trough phase 0),

(7) 2`n + 1 entries for storing the values eq(z, x0) and eq(z, x1) of the two reference
strings x0 and x1 (explanation follows),

(8) t′(`n + s + `s + 1), t′ ≤ t, entries for storing, for each random sample, (i) the
value eq(z, ref) for a reference string ref (in binary, requires `n positions), (ii)
the random sample r ∈ Cs itself, (iii) its contribution ∆i(x)(r) ∈ [0..s] to Carole’s
reply (in binary, requires `s positions), and (iv) one additional “1” (to ease the
computation of the number of guesses q(x) via p1(x); details follow),

(9) `s entries for encoding in binary i(x), the index of the block, which we are
currently trying to determine, and

(10) the last two entries, suffix(x), for indicating the current phase of the algorithm.

Clearly, one critical part is the limited storage capacity. For this reason, let us show
next that we have enough positions to store all the information needed to compute
Sconsistent
i(x) , the set of all strings consistent with Carole’s replies for the random guesses

in the i(x)-th block Bi(x).
For determining the i(x)-th block BLOCKi(x)(z) of z, we sample t = Θ(s/ log s)

random guesses. In addition, equivalently to the proof of Theorem 7.2, we need again
two reference strings x0 and x1 (reference (7) in equation (7.1)). These two reference
strings will be needed to infer the contributions ∆i(x)(r) of the random samples r ∈ Cs
in the i(x)-th block.

From the structure of the guesses presented in equation (7.1) above, we infer that
the total storage requirement can be bounded from above by

1 + `n+bs+ `+ 2`n + 1 + t(`n + s+ `s + 1) + `s + 2

= bs+ ts+ o(n/ log n) ≤ n
(

1− K

log2 n

)
+ Θ(n/ log n) + o(n/ log n) < n

for sufficiently large, but constant K and sufficiently large n. This shows that, for
sufficiently large n, Paul indeed can store all information needed to compute Sconsistent

i(x)
in one single string of length n.

Part II. The pseudo-code of routine Sampling is Algorithm 23. For all b′ < i(x)
we set

opt(Bb′) := [x`+(b′−1)s+1 . . . x`+b′s] ,

7.4. Memory of Size One: Proof of Theorem 7.1 87

the entries of x in the b′-th block. The notation “opt” is justified by the fact that we
shall have opt(Bb′) = BLOCKb′(z) for all b′ < i(x). Furthermore, let

AddReferenceStringInfo(x) := [0 . . . 0︸ ︷︷ ︸
(1),(2)

| opt(B1)| . . . |opt(Bi(x)−1)︸ ︷︷ ︸
(3)

| 0 . . . 0︸ ︷︷ ︸
(4)

|

x`+i(x)s+1 . . . x2`+bs︸ ︷︷ ︸
(5),(6)

|x2 . . . x`|binary`n(eq(z, x))|1︸ ︷︷ ︸
(7)

|x2`+bs+2`n+2 . . . xn︸ ︷︷ ︸
(∗)

] ,

where the references in the expression above are the same as the ones used in equa-
tion (7.1) and where (∗) is simply a copy of the last entries of x. That is, the
AddReferenceStringInfo(x) operation adds to x the values eq(z, x0) and eq(z, x1)
to the memory and each of these values is stored in binary notation of length `n.
Lastly, we denote by Add(eq(z, x)) the operation

Add(eq(z, x)) := [0 . . . 0︸ ︷︷ ︸
(1),(2)

| opt(B1)| . . . |opt(Bi(x)−1)︸ ︷︷ ︸
(3)

| 0 . . . 0︸ ︷︷ ︸
(4)

|x`+i(x)s+1 . . . xp1(x)︸ ︷︷ ︸
(5),(6),(7),(8)

|

x2 . . . x`|BLOCKi(x)(x)|binary`s(∆i(x)(BLOCKi(x)(x)))|1︸ ︷︷ ︸
(†)

|

xp1(x)+`n+s+`s+2 . . . xn︸ ︷︷ ︸
(∗)

] , (7.2)

which adds (in substring (†)) to the memory

• a copy of the value eq(z, ref) of a reference string ref (which was previously
stored in positions {2, . . . , `}),

• the random sample BLOCKi(x)(x) of the last guess,

• the contribution ∆i(x)(BLOCKi(x)(x)) of the random sample BLOCKi(x)(x) to
eq(z, x), and

• the one additional “1” that shall ease the computation of q(x), the number of
already queried samples.

All other but the first ` entries (which are set to zero) are copied from x. The references
in equation (7.2) are the same as in equation (7.1).

Part III. Let us now show in detail how to infer the contributions ∆i(x)(r) of the
random guesses. For clarity, we show how to do this for the first block, i.e., for the
positions {` + 1 . . . ` + s}. The procedure is similar for all other blocks and we shall
comment on this case at the end of this part.

First note that after the intermediate step in lines 7 to 9 of Algorithm 22, the
algorithm enters the routine Sampling withM = {(x0, eq(z, x0))}, where

x0 = [0 . . . 0︸ ︷︷ ︸
`+bs entries

|z1 . . . z`| 0 . . . 0︸ ︷︷ ︸
n−(2`+bs+`s+2) entries

| binary`s(1)︸ ︷︷ ︸
`s entries

|01] ,

88 Memory-Restricted Black-Box Models

Algorithm 23: The Sampling routine for k = 2 colors.
Assumption: MemoryM = {(x, eq(z, x))} satisfies eq(z, x) < n,1

suffix(x) = [01], i(x) ≤ b, and q(x) < t+ 2;
if q(x) = 0 ∧ x1 = 0 then2

x← [1|binary`n(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|1 . . . 1|x`+i(x)s+1 . . . xn];3

Query eq(z, x) and updateM by replacing (x, eq(z, x));4

else if q(x) = 0 ∧ x1 = 1 then5

x← AddReferenceStringInfo(x) ;6

Query eq(z, x) and updateM by replacing (x, eq(z, x));7

else if 2 ≤ q(x) < t+ 2 ∧ x1 = 0 then8

x← [1|binary`n(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|r|x`+i(x)s+1 . . . xn] for9

r ∈ Cs chosen u.a.r.;
Query eq(z, x) and updateM by replacing (x, eq(z, x));10

else if 2 ≤ q(x) < t+ 2 ∧ x1 = 1 then11

x← Add(eq(z, x));12

Query eq(z, x) and updateM by replacing (x, eq(z, x));13

and it queries in the first sampling iteration (lines 2–4 of Algorithm 23)

x1 = [1|binary`n(eq(z, x0))︸ ︷︷ ︸
1+`n=` entries

| 1 . . . 1︸ ︷︷ ︸
s entries

| 0 . . . 0︸ ︷︷ ︸
(b−1)s entries

|z1 . . . z`|

0 . . . 0︸ ︷︷ ︸
n−(2`+bs+`s+2) entries

|binary`s(1)|01]

with the all-ones substring in the first block. We can compute the contribution f̃(x1)
of the first ` entries [1|binary`n(eq(z, x0))] to the value eq(z, x1) via

f̃(x1) := eq([z1 . . . z`], [1|binary`n(eq(z, x0))]) = eq([x1
`+bs+1 . . . x

1
2`+bs], [x

1
1 . . . x

1
`]) ,

and, by the same reasoning, the contribution of the first ` entries in x0 to eq(z, x0) via
f̃(x0) = eq([x0

`+bs+1 . . . x
0
2`+bs], [0 . . . 0]). Let us, for a moment, assume that we now

hadM = {(x1, eq(z, x1))} and that we had sampled another string

y = [z1 . . . z`| r︸︷︷︸
s entries

| 0 . . . 0︸ ︷︷ ︸
(b−1)s entries

|z1 . . . z`| 0 . . . 0︸ ︷︷ ︸
n−(2`+bs+`s+2) entries

|binary`s(1)|01]

for some random substring r ∈ Cs. Then we could compute the contribution of the
random entries r in the first block B1 of y via

∆̃1(r) = eq(z, y)− eq(z, x0) + eq(z, x1) + (`− f̃(x0)) + (`− f̃(x1))− s
2

.

Key to this equality is the fact that the first ` entries of y contribute ` to Carole’s
response eq(z, y) to guess y, whereas the first ` entries of x0 and x1 contribute f̃(x0)+
f̃(x1) to the sum eq(z, x0) + eq(z, x1) and the fact that the entries in the first block,

7.4. Memory of Size One: Proof of Theorem 7.1 89

[0 . . . 0] and [1 . . . 1], respectively, contribute in total s toward eq(z, x0)+eq(z, x1). All
other entries xi, yi, i > ` + s contribute either 2 or 0 to the sum eq(z, x0) + eq(z, x1)
and every entry contributes 2 if and only if it contributes 1 to the value eq(z, y).

Note however, that we would now have to choose now which of the strings to keep
in the memory and we would eventually loose the information eq(z, x1). Therefore, in
lines 6 and 7 in Algorithm 23, we first query the reference string

x2 = AddReferenceStringInfo(x1)
= [0 . . . 0︸ ︷︷ ︸

` entries

| 0 . . . 0︸ ︷︷ ︸
s entries

| 0 . . . 0︸ ︷︷ ︸
(b−1)s

|z1 . . . z`| binary`n(eq(z, x0))|binary`n(eq(z, x1))|1︸ ︷︷ ︸
2`n+1 entries

|

0 . . . 0︸ ︷︷ ︸
n− (2`+ bs+ 2`n +
1 + `s + 2) entries

|binary`s(1)|01] .

This query is needed only to store the values eq(z, x0) and eq(z, x1) of both refer-
ence strings. Since adding the substring [binary`n(eq(z, x0))|binary`n(eq(z, x1))|1]
to the memory string again changes the number of positions in which the guess
and Carole’s hidden string coincide, we need to store this information in the next
query as well. More precisely, we have that x0 and x2 differ in exactly the sub-
string [binary`n(eq(z, x0))|binary`n(eq(z, x1))|1] (i.e., they differ in positions {bs +
2`+ 1, . . . , bs+ 2`+ 2`n+ 1}), and the contribution of this substring (compared to the
all-zeros substring which it replaces) is eq(z, x2)− eq(z, x0).

Furthermore, we need to indicate that we are sampling a new random substring.
This is the first position in the string. Instead of querying y as above, Algorithm 23
queries (lines 9 and 10 of Algorithm 23) as first random sample for the first block a
string

x3 = [1|binary`n(eq(z, x2))|r(1)|0 . . . 0|z1 . . . z`|binary`n(eq(z, x0))|
binary`n(eq(z, x1))|1|0 . . . 0|binary`s(1)|01] ,

where the substring r(1) ∈ Cs in B1 is taken uniformly at random. The number of zeros
in the first all-zeros substring is again (b− 1)s and in the second all-zeros substring it
is n− (2`+ bs+ 2`n + 1 + `s + 2). Now, in the same fashion as above, we can compute
the contribution ∆1(r(1)) = eq([z`+1 . . . z`+s]) of the substring r(1) ∈ Cs via

∆1(r(1)) = eq(z, x3)−
(eq(z, x0) + eq(z, x1) + (`− f̃(x1)) + (`− f̃(x0))− s

2
+ (eq(z, x2)− eq(z, x0))− (`− f̃(x3))

)
. (7.3)

All information needed for this computation is contained in the string x3 itself.
In the next guess we store both the reference value eq(z, x2) (positions {2, . . . , ` of

x3) as well as the contribution ∆1(r(1)). Of course, we also need to store the random
guess r(1) = BLOCK1(x3) itself. Thus, we query (lines 12 and 13 in Algorithm 23) in

90 Memory-Restricted Black-Box Models

the next iteration of Algorithm 22

x4 = [0 . . . 0︸ ︷︷ ︸
`

| 0 . . . 0︸ ︷︷ ︸
s

| 0 . . . 0︸ ︷︷ ︸
(b−1)s

|z1 . . . z`|binary`n(eq(z, x0))|binary`n(eq(z, x1))|1|

binary`n(eq(z, x2))︸ ︷︷ ︸
=[x3

2...x
3
`]

| BLOCK1(x3)︸ ︷︷ ︸
=r(1)

| binary`s(∆1(r(1)))︸ ︷︷ ︸
see equation (7.3)

|1|0 . . . 0|binary`s(1)|01] .

Note that since ∆1(r(1)) ∈ [0..s], we can encode this value using `s positions only.
Continuing like this we are able to compute, in any iteration of the first phase, the

contributions ∆i(x)(r) of the random substrings r ∈ Cs.
As in the proof of Theorem 7.2 we need to be able to compute how many random

guesses have queried already for the current block of interest. As indicated above,
this can be derived from p1(x) as follows. For any random guess r ∈ Cs we need
`n + s + `s + 1 entries for storing all information that will be needed later to regain
the full guessing history. Furthermore, we need 2`n + 1 entries for storing the values
eq(z, x0) and eq(z, x1) of the two reference strings x0 and x1, and we store information
only in positions i > 2` + bs. Hence, the number of guesses that have been queried
already for block Bi(x) can be computed as

q(x) =

0, if p1(x) ≤ 2`+ bs and x1 = 0 ,
1, if p1(x) ≤ 2`+ bs and x1 = 1 ,
2 + p1(x)−(2`+bs+2`n+1)

`n+s+`s+1 , otherwise.

Algorithm 24: The OptimizeBlock routine
Assumption: MemoryM = {(x, eq(z, x))} satisfies eq(z, x) < n,1

suffix(x) = [01], i(x) ≤ b, and q(x) = t+ 2;
if x1 = 0 then2

y ← [1 . . . 1|opt(B1)| . . . |opt(Bi(x)−1)|w|x`+i(x)s+1 . . . xn] for w ∈ Sconsistent
i(x)3

chosen u.a.r.;
Query eq(z, y);4

if ∆i(x)(BLOCKi(x)(y)) = s thenM← {(y, eq(z, y))} ; //w = BLOCKi(x)(z)5

else6

x← Update(x);7

Query eq(z, x) and updateM by replacing (x, eq(z, x)); //string prepared8

for determining the next block

After querying t random guesses (i.e., after querying a total number of t+k guesses)
for the first block, we regain the full guessing history from the string x then stored in
the memory as follows. The i-th random sample r(i) ∈ Cs which we guessed for the
first block is

r(i) := [x2`+bs+2`n+1+(i−1)(`n+s+`s+1)+`n+1 . . . x2`+bs+2`n+1+(i−1)(`n+s+`s+1)+`n+s] ,

7.4. Memory of Size One: Proof of Theorem 7.1 91

and the corresponding query was

y(i) := [1|x2`+bs+2`n+1+(i−1)(`n+s+`s+1)+1 . . . x2`+bs+2`n+1+(i−1)(`n+s+`s+1)+`n |

r(i)|x`+s+1 . . . x2`+bs+2`n+1+(i−1)(`n+s+`s+1)|0 . . . 0|xn−`s−1 . . . xn] .

We have stored in binary the contribution ∆1(r(i)) of r(1) to the overall function value
eq(z, y(i)) in positions

{2`+ bs+ 2`n + 1 + (i− 1)(`n + s+ `s + 1) + `n + s+ 1 . . .
2`+ bs+ 2`n + 1 + (i− 1)(`n + s+ `s + 1) + `n + s+ `s}

and thus we have

∆1(r(i)) =
`s−1∑
i=0

2ix2`+bs+2`n+1+(i−1)(`n+s+`s+1)+`n+s+`s−i .

By Theorem 7.3, the expected size of

Sconsistent
1 = {w ∈ {0, 1}s | ∀i ≤ t : eq(w, r(i)) = ∆1(r(i))}

is bounded from above by 1+1/s. That is, we can now identify BLOCK1(z) in a constant
number of guesses. These are lines 3 – 5 of routine OptimizeBlock (Algorithm 24).

As mentioned above, determining the other blocks 2, . . . , b is similar. In these
iterations, the (i(x) − 1)s entries in positions {` + 1, . . . , ` + (i(x) − 1)s} are already
optimized, that is, they coincide with Carole’s hidden string z. Thus, they are not
changed in any further iteration of Algorithm 24.

Part IV. Once BLOCKi(x)(z) = [z`+(i(x)−1)s+1 . . . z`+i(x)s] has been determined, we
need to update the memory such that we can start determining the entries of the next
block. These are lines 7 and 8 in Algorithm 24. Here we abbreviate

Update(x) := [0 . . . 0︸ ︷︷ ︸
(a)

| opt(B1)| . . . |opt(Bi(x))︸ ︷︷ ︸
(b)

| 0 . . . 0︸ ︷︷ ︸
(c)

|x`+bs+1 . . . x2`+bs︸ ︷︷ ︸
(d)

|

0 . . . 0︸ ︷︷ ︸
(e)

| binary`s(i(x) + 1)︸ ︷︷ ︸
(f)

| 01︸︷︷︸
(g)

] ,

where

(a) the first ` entries are set to zero,

(b) we now have i(x) already determined blocks,

(c) the new block of interest, block i(x) + 1, as well as all blocks b′ > i(x) + 1 are
(still) set to zero,

(d) we keep the copy of the prefix [z1 . . . z`] in positions {`+ bs+ 1, . . . , 2`+ bs},

(e) all information that we have used in the previous query to determine block Bi(x)

is removed (and set to zero),

92 Memory-Restricted Black-Box Models

(f) the index for the current block of interest is increased by one, and

(g) the last two entries still indicate the second phase.

The case of k ≥ 3 colors. For the general case, the main strategy as given by
Algorithm 22 remains the same. What needs to be changed is the Sampling routine,
where instead of sampling only two reference strings x0 and x1, we need to sample k
reference strings x0, x1, . . . , xk−1 with BLOCKi(x)(xc) = [c . . . c] for all c ∈ [0..k − 1].

Algorithm 25: The Sampling routine for k ≥ 3 colors.
Assumption: MemoryM = {(x, eq(z, x))} satisfies eq(z, x) < n,1

suffix(x) = [01], i(x) ≤ b, and q(x) < t+ k;
if q(x) = 0 ∧ x1 = 0 then2

x← [1|binary`n(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|1 . . . 1|x`+i(x)s+1 . . . xn];3

Query eq(z, x) and updateM by replacing (x, eq(z, x));4

else if q(x) = 0 ∧ x1 = 1 then5

x← AddReferenceStringInfo(x) ;6

Query eq(z, x) and updateM by replacing (x, eq(z, x));7

else if 2 ≤ q(x) < k ∧ x1 = 0 then8

x←9

[1|binary`n(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|q(x) . . . q(x)|x`+i(x)s+1 . . . xn];
Query eq(z, x) and updateM by replacing (x, eq(z, x));10

else if 2 ≤ q(x) < k ∧ x1 = 1 then11

x← AddReferenceStringInfo2(x) ;12

Query eq(z, x) and updateM by replacing (x, eq(z, x));13

else if k ≤ q(x) < t+ k ∧ x1 = 0 then14

x← [1|binary`n(eq(z, x))|opt(B1)| . . . |opt(Bi(x)−1)|r|x`+i(x)s+1 . . . xn] for15

r ∈ Cs chosen u.a.r.;
Query eq(z, x) and updateM by replacing (x, eq(z, x));16

else if k ≤ q(x) < t+ k ∧ x1 = 1 then17

x← Add(eq(z, x));18

Query eq(z, x) and updateM by replacing (x, eq(z, x));19

Algorithm 25 shows the generalized sampling routine. Here we define

AddReferenceStringInfo2(x) :=
[0 . . . 0︸ ︷︷ ︸
(1),(2)

| opt(B1)| . . . |opt(Bi(x)−1)︸ ︷︷ ︸
(3)

| 0 . . . 0︸ ︷︷ ︸
(4)

|x`+i(x)s+1 . . . xp1(x)︸ ︷︷ ︸
(5),(6),(7),(7′)

|

x2 . . . x`|binary`n(eq(z, x))|1︸ ︷︷ ︸
(†)

|xp1(x)+`n+s+`s+2 . . . xn︸ ︷︷ ︸
(∗)

] ,

where

(1)–(7) are the same references as in equation (7.1),

7.5. Conclusions 93

(7’) are the additional positions needed for storing the values eq(z, xj) of the already
queried reference strings x2, . . . , xq(x)−1 (each requiring 2`n + 1 positions),

(†) we add the information of the q(x)-th reference string xq(x) to the memory (again
requiring 2`n + 1 positions), and

(∗) is simply a copy of the last entries of the previous guess.

The substring [x2 . . . x`] is needed again to infer the contribution of the positions in
which we added the information of the previous reference string xq(x)−1. The reasoning
is the same as in the case of k = 2 colors.

Since we added more reference string information, we have to adjust the definition
of q(x) accordingly. We need 2`n + 1 additional bits for each reference string xj ,
2 ≤ j ≤ k, and we use `n + s + `s + 1 entries for storing the information of each
random guess. Hence,

q(x) :=

0, if p1(x) ≤ 2`+ bs and x1 = 0 ,
1, if p1(x) ≤ 2`+ bs and x1 = 1 ,
j, if p1(x) = 2`+ bs+ 2`n + 1 + (j − 2)(2`n + 1) and 2 ≤ j < k ,

k + p1(x)−(2`+bs+(k−1)(2`n+1))
`n+s+`s+1 , otherwise.

It is easily verified that all statements made in the above proof for k = 2 colors
remain correct if we consider the general case of k ≥ 3 colors. Only the computation
of the contributions ∆i(x)(BLOCKi(x)(x)), equation (7.3), becomes a bit more tedious.
However, all calculations are straightforward.

7.5. Conclusions

We have shown that determining the black-box complexity of OneMaxn is closely
related to identifying optimal winning strategies for the black answer-peg only version
of the Mastermind game with k = 2 colors. We have analyzed the n holes, k color Mas-
termind game with the additional restriction that only one guess and its corresponding
answer can be memorized by the codebreaker. We showed that this does not change
the asymptotic runtime of an optimal winning strategy. That is, we have shown that—
even with a memory restricted to one—the codebreaker has a winning strategy that
requires only Θ(n/ log n) guesses. This implies a size-one memory-restricted black-box
complexity of OneMaxn of order Θ(n/ log n).

In terms of developing a useful complexity theory for randomized search heuristics,
our result indicates that adding a memory-restriction does not dissolve the problem of
too low black-box complexities. We note without proof that the methods developed in
this section (i.e., imitating iteration and program counters, storing useful information
in nonrelevant parts of the search points etc.) can as well be applied to an unbiased
memory-restricted black-box setting, provided large enough arity. Similarly, they can
be applied to other problem classes as well. Hence we conclude that other restrictions
to the black-box model are needed to obtain more useful complexity bounds. We
present one such approach in the next section.

94 Memory-Restricted Black-Box Models

95

8
Ranking-Based Black-Box Models

In this section we propose an alternative black-box model. It builds on the paradigm
that many randomized search heuristics—such as many evolutionary algorithms, hill
climbers like Randomized Local Search, and ant colony optimization—do not exploit
knowledge of absolute fitness values. Instead they use the objective values only to
compare search points, cf. Section 2.2. To understand the influence of this behavior
we introduce a new black-box model in which allow the black-box algorithms to exploit
only the relative ranking of the search points queried so far. In other words, throughout
the optimization process the black-box algorithm knows for any two already queried
search points x and y only whether f(x) < f(y), f(x) = f(y), or f(x) > f(y) holds.

We show that our new ranking-based black-box model gives more realistic complex-
ity estimates for some problems. For example, the class of all binary-value functions,
BinaryValue∗n, has a black-box complexity of O(log n) in the unrestricted and in
the unbiased black-box model, but has a ranking-based black-box complexity of Θ(n).
Here, the lower bound is clearly the more interesting one. It holds already for the
much smaller subclass BinaryValuen of BinaryValue∗n. That is, even if we know
the order of the bit weights, we cannot expect to optimize a worst-case BinaryValue
instance using less than Ω(n) queries. The upper bound is easily verified by a simple
hill-climber, that, in arbitrary order, changes a single bit value of the current solution
and accepts the new solution if it is better than the previous one. In summary, we see
that for this function class, the ranking-based black-box complexity seems to give us
a more natural complexity measure than the previous approaches.

On the other hand, we also present a ranking-based black-box algorithm that
solves any OneMaxn function with Θ(n/ log n) queries. This indicates that for some
problems the ranking-based model still allows too powerful algorithms.

The ranking-based black-box model has been studied implicitly in the confer-
ence version [DJTW03] of [DJW06]. In a proof studying a generalized class of the
LeadingOnesn functions, Droste et al. prove that the ranking-based black-box
complexity of LeadingOnesn is between n/2 − o(n) and n + 1. Likewise, in the

96 Ranking-Based Black-Box Models

journal version [DJW06] they prove that the ranking-based black-box complexity of
BinaryValuen is Ω(n/ log n). As mentioned above, here in this section, we improve
the second bound to Ω(n) in Section 8.3 and, by similar arguments, we show that the
ranking-based black-box complexity of LeadingOnesn is at least n− 1.

The results presented in this section are based on the conference publica-
tion [DW11c]. They are joint work with Benjamin Doerr.

8.1. The Ranking-Based Black-Box Model

It has been commented by Nikolaus Hansen (INRIA Saclay, France; personal commu-
nication) that many standard randomized search heuristics do not take advantage of
knowing the exact objective values. Rather, they create new search points based on
how the objective values of the previously queried search points compare. That is,
after having queried t fitness values f(x(0)), . . . , f(x(t−1)), they rank the correspond-
ing search points x(0), . . . , x(t−1) according to their relative fitness. The selection of
input individuals x(i1), . . . , x(ik) for the next variation operator is based solely on this
ranking.

We define the ranking induced by f as follows.

Definition 8.1 (Ranking induced by f). Let S be a set, let f : S → R be a function,
and let C be a finite subset of S. The ranking ρC of C induced by f assigns to each
element c ∈ C the number of elements in C with a smaller f -value plus 1, formally,
ρC(c) := 1 + |{c′ ∈ C | f(c′) < f(c)}|.

Note that two elements with the same f -value are assigned the same rank.
As discussed above, when selecting a parent population for generating new search

points, many randomized search heuristics do only use the ranking of the search points
queried so far. In this work we are interested in how this fact influences the complexity
of standard test function classes. Therefore, we regard here the restricted class of
black-box algorithms that use no other information than this ranking. This yields the
following black-box models.

The unrestricted ranking-based black-box complexity of some class of functions is
the complexity with respect to all algorithms following the scheme of Algorithm 26.

Algorithm 26: Scheme of an unrestricted ranking-based black-box algorithm
Initialization: Sample x(0) according to some probability distribution p(0) over1

{0, 1}n and query f(x(0));
Optimization: for t = 1, 2, 3, . . . do2

Depending on the ranking of {x(0), . . . , x(t−1)} induced by f , choose a3

probability distribution p(t) over {0, 1}n and sample x(t) according to p(t);
Query the ranking of {x(0), . . . , x(t)} induced by f ;4

Similarly, the k-ary unbiased ranking-based black-box complexity of some class
of functions is the complexity with respect to all algorithms following the scheme of
Algorithm 27.

8.1. The Ranking-Based Black-Box Model 97

Algorithm 27: Scheme of a k-ary unbiased ranking-based black-box algorithm
Initialization: Sample x(0) ∈ {0, 1}n uniformly at random and query f(x(0));1

Optimization: for t = 1, 2, 3, . . . do2

Depending on the ranking of {x(0) . . . , x(t−1)} induced by f , choose k3

indices i1, . . . , ik ∈ [0..t− 1] and a k-ary unbiased distribution
(D(. | y(1), . . . , y(k)))y(1),...,y(k)∈{0,1}n ;
Sample x(t) according to D(. | x(i1), . . . , x(ik)) and query the ranking of4

{x(0), . . . , x(t)} induced by f ;

Both ranking-based black-box models capture many common search heuristics such
as evolutionary algorithms using elitist selection, ant colony optimization, and Ran-
domized Local Search. They do not include algorithms like Simulated Annealing,
Threshold Accepting, or evolutionary algorithms using fitness proportional selection.

To distinguish the unrestricted and the unbiased black-box model from their
ranking-based counterparts, we shall sometimes refer to them as the basic unrestricted
black-box model and the basic unbiased black-box model, respectively.

When working with the ranking-based models, the fact that the rank of a search
point x varies with the number of already queried search points may be distracting.
However, the ranking-based models can be equivalently modeled via a monotone per-
turbation of the fitness values. By this we mean that instead of ranking all previously
queried search points, the oracle may as well reply to any query x(t) with some value
g(f(x(t))), where f is the secret function to be optimized and g : R → R is a strictly
monotone function that depends on all search points x(1), . . . , x(t) queried so far.

To make this model more precise, let us first recall that a function is said to be
strictly monotone if for all α < β we have g(α) < g(β). We show how the oracle can
construct such a strictly monotone function “on the fly”, preserving the ranking of the
search points. Let A be a black-box algorithm. When algorithm A queries a search
point x(0) for initialization, the oracle responds to A with “(g ◦ f)(x(0)) = 0”. That
is, it sets g(f(x(0))) := 0. For any iteration t, if algorithm A queries x(t), the oracle
returns to A the value

g(f(x(t))) =

g(f(x(i))), if ρ(x(t)) = ρ(x(i)) for some i ∈ [0..t− 1] ,
max{g(f(x(i))) | i ∈ [0..t− 1]}+ 2n, if ρ(x(t)) = 1 ,
min{g(f(x(i))) | i ∈ [0..t− 1]} − 2n, if ρ(x(t)) = t+ 1 ,(
g(f(x(h)))− |g(f(x(i)))|

)
/2, if ρ(x(h)) = max{ρ(x(`)) | ρ(x(`)) < ρ(x(t))}

and ρ(x(i)) = min{ρ(x(`)) | ρ(x(`)) > ρ(x(t))} ,

where we abbreviate ρ := ρ{x(i)|i∈[0..t]}, the ranking of {x(i) | i ∈ [0..t]} induced by
f . It is easily verified that indeed we have g(f(x(i))) > g(f(x(j))) if and only if
f(x(i)) > f(x(j)), i.e., g can be extended to a strictly monotone function R→ R.

The information revealed by the (g ◦f)-values and the information revealed by the
ranking of the search points is the same. Therefore, the two models are equivalent.

98 Ranking-Based Black-Box Models

We sometimes refer to the model with a (g ◦f)-oracle as the (unrestricted or unbiased,
respectively) monotone black-box model. In particular for proving upper bounds this
model is more convenient to work with.

Convention. In what follows, we shall always denote by g the monotone pertur-
bation. That is, g is the function, which is used for representing the ranking of the
already queried search points.

8.2. The Ranking-Based Black-Box Complexity of OneMax

In Section 4 we have shown that the n-ary unbiased black-box complexity of OneMaxn
is O(n/ log n). Furthermore, we claimed without proof that for 2 ≤ k < n, the k-ary
unbiased black-box complexity of OneMaxn is O(n/ log k). The following theorem
shows that we can achieve the same bound in the (much weaker) unbiased ranking-
based model. In addition, the unary unbiased black-box complexity of Θ(n log n)
carries over to the unary unbiased ranking-based black-box model as well.

Theorem 8.2. The unary unbiased ranking-based black-box complexity of OneMaxn
is Θ(n log n). For 2 ≤ k ≤ n, the k-ary unbiased ranking-based black-box complexity
of OneMaxn is O(n/ log k).

Recall that this statement is asymptotically tight for k = nΩ(1) by Theorem 4.1.

Corollary 8.3. The ∗-ary unbiased ranking-based black-box complexity of OneMaxn
is Θ(n/ log n).

In the spirit of Section 7 let us relate our statement to the Mastermind game.
Assume that we played the black answer-peg only version of the Mastermind game
with the additional rule that Carole, the codemaker, does not reply with the exact
number of black answer-pegs but instead she ranks Paul’s, i.e., the codebreaker’s,
guesses. Carole’s ranking is the one induced by the black-answer pegs (which, like
the Omz function, indicate in how many positions Carole’s secret code and Paul’s
guesses coincide). Theorem 8.2 shows that—as in the non-ranking-based version of
the Mastermind game—Paul still has an optimal winning strategy using Θ(n/ log n)
guesses only. This generalizes previous results on the Mastermind game to a ranking-
only version.

To ease reading, we split the proof of Theorem 8.2 into three parts. The first part,
Section 8.2.1, is the easiest. It deals with constant values of k. We show that any class
of generalized strictly monotone functions can be optimized by a binary unbiased
ranking-based algorithm in O(n) queries. OneMaxn is such a class of generalized
strictly monotone functions. For the unary setting, Theorem 8.2 follows from the two
facts that (i) already the basic unbiased unary black-box complexity of OneMaxn is
Ω(n log n) and (ii) that Randomized Local Search is a unary unbiased ranking-based
algorithm which optimizes OneMaxn in O(n log n) queries.

The second case is the most interesting one. We show that for k = n there exists an
unbiased ranking-based algorithm which optimizes every function Omz ∈ OneMaxn
using only O(n/ log n) queries. As in all previous results, the main strategy is again
random sampling. As we have seen in Sections 4 and 7, after O(n/ log n) samples

8.2. The Ranking-Based Black-Box Complexity of OneMax 99

chosen from {0, 1}n independently and uniformly at random, with high probability,
it is possible to uniquely identify the target string z. However, we need to be more
careful here as, other than in all previous works, we do not have exact knowledge of
the fitness values.

Lastly, we show how to deal with the case of arbitrary k = ω(1), k < n. We prove
that, for any such k, we can independently optimize substrings (“blocks”) of size k
in O(k/ log k) iterations, using only k-ary unbiased variation operators. We optimize
these blocks sequentially. Since there are Θ(n/k) such blocks of length k, the desired
O(n/ log k) bound follows. These are Sections 8.2.3 and 8.2.4.

8.2.1. Proof of Theorem 8.2 for Constant Values k

As mentioned above, for k = 1 the lower bound in Theorem 8.2 follows from [LW10a,
Theorem 6], which states that the unary unbiased black-box complexity of any class
of functions {0, 1}n → R having a single global optimum is Ω(n log n). Clearly,
OneMaxn is such a class. Since the k-ary unbiased black-box complexity of any
class F of functions is a lower bound for the k-ary unbiased ranking-based black-box
complexity of F , this also shows that the unary unbiased ranking-based black-box
complexity of OneMaxn is Ω(n log n).

The upper bound is certified by a simple hill-climber, Randomized Local Search
(cf. Algorithm 1). It is easily verified that the variation operator implicit in the
mutation step is a unary unbiased one, cf. Lemma 6.1. The selection depends only
on the ranking of the current search point x and its neighbor y. Hence, Randomized
Local Search is a unary unbiased ranking-based black-box algorithm. By the coupon
collector’s problem (cf. Section 2.4.5) the expected runtime of RLS on any OneMaxn
function is O(n log n). This concludes our comments on the unary unbiased ranking-
based black-box complexity of OneMaxn.

For k ≥ 2 we prove a more general statement, Lemma 8.4, which shows that all
classes of generalized strictly monotone functions have a binary unbiased ranking-
based black-box complexity that is at most linear in n. Since any Omz function is
strictly monotone with respect to z, this shows that for any k ≥ 2, the k-ary unbiased
black-box complexity of OneMaxn is O(n).

Lemma 8.4. Let k ≥ 2 and let F be a class of generalized strictly monotone functions.
The k-ary unbiased ranking-based black-box complexity of F is at most 4n− 5.

For proving Lemma 8.4 we show that two bit strings x, y ∈ {0, 1}n suffice for en-
coding which bits have been optimized already. Exploiting this, only binary operators
are needed to test for each bit individually whether it should be set to zero or to one.

Proof of Lemma 8.4. Note that it suffices to prove the statement for k = 2. We claim
that Algorithm 28 certifies Lemma 8.4.

First we note that the selection/update step (lines 7,8,11) depends only on the
rankings of the search points. Therefore, Algorithm 28 is a ranking-based one.

Apart from the uniform sampling variation operator, the algorithm certifying
Lemma 8.4 (Algorithm 28) makes use of the following variation operators.

100 Ranking-Based Black-Box Models

Algorithm 28: A binary unbiased ranking-based black-box algorithm for opti-
mizing generalized strictly monotone functions f ∈ F .
Initialization: Sample x ∈ {0, 1}n uniformly at random and query g(f(x));1

Set y ← complement(x) and query g(f(y));2

Optimization: for t = 1, 2, 3, . . . do3

Sample w ← flipOneWhereDifferent(x, y) and query g(f(w));4

if g(f(w)) > g(f(x)) then5

Set w′ ← dist1(x,w) and query g(f(w′));6

if g(f(w′)) = g(f(x)) then Update x← w ; //x and w differ in 1 bit7

else if g(f(w)) > g(f(y)) then Update y ← w ; //y and w differ in 1 bit8

else if g(f(w)) > g(f(y)) then9

Set w′ ← dist1(y, w) and query g(f(w′));10

if g(f(w′)) = g(f(y)) then Update y ← w ; //y and w differ in 1 bit11

• complement(·) is a unary variation operator which, given some x ∈ {0, 1}n,
returns complement(x) := x̄, the bitwise complement of x.

• flipOneWhereDifferent(·, ·) is a binary variation operator which, given some
x, y ∈ {0, 1}n, first chooses uniformly at random a bit position j ∈ {i ∈ [n] |
xi 6= yi}. With probability 1/2, it returns x ⊕ enj and with probability 1/2 it
returns y ⊕ enj . That is, with equal probability flipOneWhereDifferent(x, y)
either flips exactly one bit in x, in which x and y differ, or it flips one such bit
in y.

• dist1(·, ·) is a binary operator which, given some x,w ∈ {0, 1}n returns
dist1(x,w) = x if the Hamming distance |x ⊕ w|1 of x and w equals 1 and
it returns w otherwise.

It is easily verified that complement(·) is an unbiased unary variation operator,
cf. Section 4.3. By a similar reasoning and obeying the fact that the position to be
flipped is chosen uniformly, one can easily show that flipOneWhereDifferent(·, ·)
is unbiased as well. Lastly, we also have σ(dist1(x,w)) = dist1(σ(x), σ(w)) and
dist1(x ⊕ y, w ⊕ y) = dist1(x,w) ⊕ y for all x, y, w ∈ {0, 1}n and all σ ∈ Sn. This
shows that dist1(·, ·) is also unbiased.

For proving that Algorithm 28 indeed certifies Lemma 8.4, let us fix a function
f ∈ F and let us assume that f is strictly monotone with respect to some fixed
z ∈ {0, 1}n.

We show that throughout the run of Algorithm 28 the following invariant holds:
for all i ∈ [n] we have xi = yi only if xi = zi. After initialization we have xi 6= yi for all
i ∈ [n]. Hence, by construction, the invariant is satisfied. Once we accept a bit flip of
position i ∈ [n], we necessarily have xi = yi. Hence, the bit will not be flipped in any
further iteration of the algorithm. Furthermore, for any two bit strings x,w ∈ {0, 1}n
with Hamming distance |x ⊕ w|1 = 1 we have f(w) > f(x) (and, by construction,
g(f(w)) > g(f(x))) if and only if wi = zi where i ∈ [n] is the one position in which x
and w differ. This shows that the invariant is always satisfied.

8.2. The Ranking-Based Black-Box Complexity of OneMax 101

Next we show that Algorithm 28 terminates and that the expected runtime is at
most 4n − 5. First we bound from above the number of queries needed to reduce
the Hamming distance of x and y from n to two. To this end, let x, y ∈ {0, 1}n with
|x−y|1 > 2. Then, for w = flipOneWhereDifferent(x, y) either we have |x⊕w|1 = 1
or |y⊕w|1 = 1. Both events are equally likely and exactly one of them yields an update
of x or y, respectively. Therefore, the probability of an update equals 1/2. If we update
any one of the two strings, the Hamming distance of x and y decreases by 1. This
implies an expected number of 2(n−2) iterations for decreasing the Hamming distance
of x and y from n to 2. Any such iteration requires at most two queries, the one for
g(f(w)) and the one for g(f(w′)). Therefore, on average, we need at most 4(n − 2)
queries to reduce the Hamming distance from x and y from n to 2.

Once the Hamming distance of x and y is reduced to two, either we have z ∈ {x, y}
or we have that both |x ⊕ z|1 = 1 and |y ⊕ z|1 = 1. By the random initialization of
x and the fact that we replace x and y only by bit strings of Hamming distance
one, all bits xi for which xi 6= yi satisfy Pr[xi = 1] = Pr[xi = 0] = 1/2 and, like-
wise, Pr[yi = 1] = Pr[yi = 0] = 1/2. Therefore, the event z ∈ {x, y} occurs with
probability 1/2. In this case we are done, because both g(f(x)) as well as g(f(y))
have been queried already. Therefore, let us assume that z /∈ {x, y}. Let again
w = flipOneWhereDifferent(x, y). Then both |x ⊕ w|1 = 1 and |y ⊕ w|1 = 1 must
hold. Since only two such strings with Hamming distance one from both x and y ex-
ist, we have Pr[w = z] = 1/2. Furthermore, g(f(w)) > g(f(x)) or g(f(w)) > g(f(y))
holds only if w = z. That is, if w 6= z, then neither x nor y will be updated. Therefore,
once |x⊕ y|1 = 2, it takes, on average, 1/2 · 0 + 1/2 · 2 = 1 query until Algorithm 28
queries z = arg max f for the first time.

Together with the two queries needed for initialization (lines 1 and 2 of Algo-
rithm 28), the runtime of our algorithm can be bounded from above by 2+4(n−2)+1 =
4n− 5 .

8.2.2. Proof of Theorem 8.2 for k = n

We need to show that there exists a ranking-based black-box algorithm which employs
only unbiased variation operators of arity at most n and which optimizes any function
Omz ∈ OneMaxn in O(n/ log n) iterations.

To ease reading of the following description, let us already fix here some (unknown)
function Omz ∈ OneMaxn. In order to optimize Omz, the algorithm has to query
the target string z ∈ {0, 1}n.

We work with the monotone model, i.e., whenever the algorithm queries from the
oracle a search point x, it receives from it the value g

(
Omz(x)

)
.

The rough description of the algorithm certifying Theorem 8.2 for k = n is fairly
easy. It first samples s ∈ O(n/ log n) search points x1, . . . , xs from {0, 1}n mutually
independent and uniformly at random. We show that, with high probability, knowing
only the (g ◦ Omz)-values {g

(
Omz(xi)

)
| i ∈ [s]} suffices to create the target string

z using only two additional (unbiased) iterations. These last two queries, however,
require some technical effort. This is the main part of this section.

In what follows, let κ ≥ 2 be a constant, let β := e−4κ2
(2
√
π)−1, and let α be a

constant that is at least 8
(

1− 2e−2κ2
)−1

. Furthermore, let s := αn/ log n and let

102 Ranking-Based Black-Box Models

x1, . . . , xs be sampled from {0, 1}n independently and uniformly at random.
We divide the proof of Theorem 8.2 for the case k = n into three steps. We feel that

the intermediate steps are interesting on their own. Each of the following statements
holds with exponentially small probability of failure. In particular, they hold with
probability at least 1− o(n−λ) for all constant values of λ.

• First we show that for each ` ∈ [n2 ± κ
√
n] there is at least one bit string xi

such that Omz(xi) = `. Furthermore, the set of all samples with Omz-value in
[n2 ± κ

√
n] has size at least s

2(1− 2e−2κ2
).

• In the second part we show how to identify g(n2) and how this knowledge suffices
to identify the interval g([n2 ± κ

√
n]). This allows us to calculate Omz(x) for

all x with Omz(x) ∈ [n2 ± κ
√
n]. That is, for such x we are able to undo the

monotone perturbation caused by g.

• Lastly, we show that there does not exist any y ∈ {0, 1}n\{z} with Omy(x) =
Omz(x) for all such samples x ∈ {x1, . . . , xs} with Omz(x) ∈ [n2 ± κ

√
n]. Thus,

we can unambiguously determine z.

Part 1: Flooding the interval [n2 ± κ
√
n]

In the next two lemmata we show that, with probability at least 1−3κ
√
n exp(−αβ

√
n

8 logn),
for all ` ∈ [n2 ± κ

√
n] there exists at least one i ∈ [s] such that Omz(xi) = `.

Lemma 8.5. Let ` ∈ [n2±κ
√
n] and let x be sampled from {0, 1}n uniformly at random.

For large enough n we have that Pr[Omz(x) = `] ≥ βn−1/2.

Proof. Clearly, Pr[Omz(x) = `] =
(
n
`

)
2−n. Thus, we have to prove that, for large

enough n,
(
n
`

)
≥ β2nn−1/2. Let γ ∈ [−κ,+κ] such that ` = n

2 + γ
√
n.

By definition we have(
n
`

)
= n!

`!(n−`)! = n!
(n/2+γ

√
n)!(n/2−γ

√
n)!
.

By Lemma 2.10 we can bound

n! ≥
√

2πnn+1/2e−ne1/(12n+1) ≥
√

2πnn+1/2e−n ,(n
2

+ γ
√
n
)

! ≤
√

2π
(n

2
+ γ
√
n
)n+1

2 +γ
√
n
e−(

n
2 +γ

√
n)e1/(12(

n
2 +γ

√
n)) , and(n

2
− γ
√
n
)

! ≤
√

2π
(n

2
− γ
√
n
)n+1

2 −γ
√
n
e−(

n
2−γ

√
n)e1/(12(

n
2−γ

√
n)) .

We rewrite

(n
2

+ γ
√
n
)n+1

2 +γ
√
n

=
(n

2

)n+1
2 +γ

√
n
(

1 +
2γ√
n

)γ√n
︸ ︷︷ ︸

(∗)

(
1 +

2γ√
n

)n+1
2

,

8.2. The Ranking-Based Black-Box Complexity of OneMax 103

where term (∗) equals
(

(1 + 2γ√
n

)
√
n

2γ

)2γ2

. This term converges to e2γ2 . For all n, term

(∗) can be bounded from above by e2γ2 .
Similarly we rewrite

(n
2
− γ
√
n
)n+1

2 −γ
√
n

=
(n

2

)n+1
2 −γ

√
n
(

1− 2γ√
n

)−γ√n
︸ ︷︷ ︸

(∗∗)

(
1− 2γ√

n

)n+1
2

,

where term (∗∗) equals

((
1− 2γ√

n

)√n
2γ

)−2γ2

. This term also converges to e2γ2 . By

Lemma 2.8, for any n, expression (∗∗) can be bounded from below by e2γ2 . However,
by convergence, there exists a n0 ∈ N such that for all n ≥ n0 we have

(
1− 2γ√

n

)−γ√n ≤
2e2γ2

.
Finally, let us note that,

(
1 +

2γ√
n

)n+1
2
(

1− 2γ√
n

)n+1
2

=
(

1− 4γ2

n

)n+1
2

< 1

and, for large enough n,

e1/(12(
n
2 +γ

√
n))e1/(12(

n
2−γ

√
n)) = e1/(3n−12γ2) ≤

√
2 .

Altogether we obtain for large enough n that(
n

`

)
≥ 2n+1

√
2π
√
n2e4γ2

√
2
≥ 2n

2
√
πne4κ2 = β

2n√
n
.

By applying a Chernoff bound (Lemma 2.12) to the result of Lemma 8.5, we
immediately obtain the following.

Corollary 8.6. Pr
[
∀` ∈ [n2 ± κ

√
n] ∃i ∈ [s] : Omz(xi) = `

]
≥ 1− 3κ

√
n exp(−αβ

√
n

8 logn) .

Proof. Throughout this proof assume that n is sufficiently large.
Let ` ∈ [n2 ± κ

√
n]. For all i ∈ [s] let X`

i be the indicator variable of the event
Omz(xi) = `. Let X` :=

∑s
i=1X

`
i . By Lemma 8.5 we have E[X`] ≥ sβn−1/2 =

αβn1/2 log−1 n. By applying a Chernoff bound (cf. Lemma 2.12, (2.2)) we derive

Pr[X` < αβ
2 n

1/2 log−1 n] ≤ Pr[X` < 1
2 E[X`]] ≤ exp(−1

8 E[X`])

≤ exp(−αβ
8 n

1/2 log−1 n) .

The statement follows from a simple union bound argument. The probability of
not sampling at least one of the values in [n2 ± κ

√
n] can be bounded from above by

(2κ
√
n+ 1) exp(−αβ

8 n
1/2 log−1 n).

104 Ranking-Based Black-Box Models

We conclude the first part by the following elementary lemma, which again is not
best possible, but good enough for our purposes. It shows that almost one half of the
s samples x1, . . . , xs lie in the interval [n2 ± κ

√
n].

Lemma 8.7. (i) If x is drawn from {0, 1}n uniformly at random, then Pr[Omz(x) ∈
[n2 ± κ

√
n]] ≥ 1− 2e−2κ2 .

(ii) Let S be the number |{i ∈ [s] | Omz(xi) ∈ [n2 ± κ
√
n]}| of samples with

OMz-value in [n2 ± κ
√
n]. With probability at least 1 − exp(− (1−2e−2κ2

)αn
8 logn) we have

S ≥ s
2(1− 2e−2κ2

).

Proof. Let x be drawn from {0, 1}n uniformly at random. Then, by Chernoff’s bound
(cf. (2.1) in Lemma 2.12),

Pr[Omz(x) ∈ [n2 ± κ
√
n]] = 1− Pr[|Omz(x)− E[Omz(x)]| > κ

√
n] ≥ 1− 2e−2κ2

.

This shows (i). Furthermore, we expect at least (1−2e−2κ2
)s samples to have an Omz-

value in [n2 ± κ
√
n]. By again applying a Chernoff bound (cf. (2.1) in Lemma 2.12),

we bound

Pr[S ≤ 1
2(1− 2e−2κ2

)s] ≤ Pr[S ≤ 1
2 E[S]] ≤ exp(−1

8 E[S]) = exp(−1
8(1− 2e−2κ2

)s) .

Part 2: Identification of g(n2) and of g
(
[n2 ± κ

√
n]
)

From the previous part we know that after drawing s = αn/ log n samples indepen-
dently and uniformly at random, we can assume that for each value ` ∈ [n2 ± κ

√
n]

there exists at least one i ∈ [s] such that Omz(xi) = `. Furthermore, we have bounded
the number of samples that fall into the interval [n2±κ

√
n]. As we shall see in the third

part of this section, if we could identify these samples with Omz-value in [n2 ± κ
√
n],

then, with high probability, we could determine the target string z. In this part we
show that on top of the s samples x1, . . . , xs we need only one additional query to
determine g(n2). Once we have identified the value g(n2), from Part 1 we infer that we
also learned g(`) for all ` ∈ [n2 ± κ

√
n].

We first explain how to identify g(n2). We do this by exploiting the strong mono-
tonicity of g. To be more precise, we make use of the fact that g preserves the
median of a set of objective values. Here in our context we define the median of
a finite multiset S to be the smallest value m ∈ S such that the number of ele-
ments in S which are smaller or equal to m is at least half the size of S. Formally,
m = min{m′ ∈ S | |{s ∈ S | s ≤ m′} ≥ |S|/2}. For our context we set

m′ := min {` ∈ [0..n] | |{i ∈ [s] | Omz(xi) ≤ `}| ≥ n/2} .

For all statements that follow, we assume that n is large enough.

Lemma 8.8. The probability that m′ ∈ [n2 ±
√
n] is at least 1− 2 exp(−2αβ2n/ log n).

8.2. The Ranking-Based Black-Box Complexity of OneMax 105

Proof. We bound the probability that more than s/2 samples have an Omz-value that
is less than n

2 −
√
n and we bound the probability that more s/2 samples have an

Omz-value that is larger than n
2 +
√
n.

Let x ∈ {0, 1}n be sampled uniformly at random. By symmetry, for all γ it holds
that

Pr[Omz(x) = n
2 + γ] = Pr[Omz(x) = n

2 − γ] . (8.1)

Furthermore, by Lemma 8.5 we have

Pr
[
Omz(x) /∈ [n2 ±

√
n]
]

= 1−

n
2 +
√
n∑

i=
n
2−
√
n

Pr[Omz(x) = i] ≤ 1− (2
√
n+ 1)βn−1/2

≤ 1− 2β . (8.2)

Equations (8.1) and (8.2) imply Pr[Omz(x) < n
2 −
√
n] ≤ 1

2 − β. By the linearity
of expectation we can thus bound the expected number X of samples with Omz-value
less than n

2 −
√
n by s(1

2 − β).
From the Chernoff bound (2.1) in Lemma 2.12 we derive

Pr
[
X ≥ s

2] ≤ Pr
[
X ≥ E[X] + sβ] ≤ exp

(
− 2s2β2/s

)
= exp(−2αβ2n/ log n)

By symmetry, the same reasoning proves Pr
[
Y ≥ s

2] ≤ exp(−2αβ2n/ log n) for
the number Y of samples with Omz-value larger than n

2 +
√
n. The statement follows

from a union bound over the two events X ≥ s
2 and Y ≥ s

2 .

With Lemma 8.8 at hand, the identification of g(n2) and g
(
[n2 ± κ

√
n]
)
is easy.

Lemma 8.9. If we know the (g ◦ Omz)-values of x1, . . . , xs, we can apply a unary
unbiased variation operator to one of these samples in order to create one addi-
tional search point x′ such that after querying g(Omz(x′)) we can identify g(dn2 e)
and g

(
[dn2 e ± κ

√
n]
)
, with probability at least 1− c

√
n exp(−αβ

√
n

8 logn) for some constant
value c.

Proof. Let m be the median of the multiset {g(Omz(x1)), . . . , g(Omz(xs))}. Since
g is a strictly monotone function, we have m = g(m′). Lemma 8.8 yields m ∈
g
(
[dn2 e ±

√
n]
)
, with probability at least 1− 2 exp(−2αβ2n/ log n).

According to Lemma 8.5, there exists a sample xi ∈ {x1, . . . , xs} such that
g(Omz(xi)) = m, again with probability at least 1 − 3κ

√
n exp(−αβ

√
n

8 logn). We show
how sampling the bitwise complement xi of xi reveals g(n2).

Before we prove this claim let us first note that xi can be obtained from xi by the
unary unbiased variation operator complement(·) that we introduced in the proof of
Lemma 8.4.

For even values of n, our algorithm to identify g(n2) is Algorithm 29. Here we denote
by median(g(Omz(y)), g(Omz(xi))|g(Omz(x1)), . . . , g(Omz(xs))) the median of the
sampled (g ◦Omz)-values in [g (Omz(xi)) , g (Omz(y))] (if g (Omz(xi)) < g (Omz(y)))
or in [g (Omz(y)) , g (Omz(xi))] (otherwise), respectively, where each sampled value is
counted with multiplicity one only.

106 Ranking-Based Black-Box Models

Algorithm 29: Identifying g(n2) for even values of n.

Sample i ∈ {j ∈ [s] | g(Omz(xj)) = m} uniformly at random;1

Set y ← complement(x) and query g(Omz(y));2

if g(Omz(y)) = g(Omz(xi)) then mg ← m;3

else mg ← median(g(Omz(y)), g(Omz(xi))|g(Omz(x1)), . . . , g(Omz(xs)));4

Output mg5

To show the correctness of Algorithm 29, let us first assume that g(Omz(y)) =
g(Omz(xi)) holds. Since g is a strictly monotone function, this implies Omz(y) =
Omz(xi). But then m′ = Omz(xi) = n

2 must hold by the symmetry property that we
mentioned already in equation (8.1) in the proof of Lemma 8.8.

Therefore, we may assume without loss of generality that g (Omz(xi)) 6=
g (Omz(y)). As mentioned above, by Lemma 8.8, with probability at least 1 −
2 exp(−2αβ2n/ log n) we have Omz(xi) = g−1(m) ∈ [n2 ±

√
n]. So is g(Omz(y))

by the symmetry of the Omz function (equation (8.1)). The symmetry also implies
n
2 = (Omz(xi) + Omz(y))/2.

Assume Omz(xi) < Omz(y). Then n
2 is exactly the median of the integer values

in [Omz(xi),Omz(y)]. But since we have—by Corollary 8.6—with probability at least
1− 3κ

√
n exp(−αβ

√
n

8 logn)

[Omz(xi),Omz(y)] ⊆ {Omz(x1), . . . ,Omz(xs)} ,

the median of the integer values in [Omz(xi),Omz(y)] equals the median of the integer
values {Omz(x1), . . . ,Omz(xs)} ∩ [Omz(xi),Omz(y)].

Since g is a strictly monotone function we also have, with the same probability,

g ([Omz(xi),Omz(y)]) ⊆ {g (Omz(x1)) , . . . (Omz(xs))} .

Therefore, the median of the sampled values

{g(Omz(x1)), . . . , g(Omz(xs))} ∩ [g(Omz(xi)), g(Omz(y))]

equals g(n2), if we count each sampled value with multiplicity one.
By Corollary 8.6, once we have identified g(n2) we also know g

(
[n2 ± κ

√
n]
)
, with

high probability.
For odd values of n a similar reasoning shows that Algorithm 30 computes g(dn2 e):

Either we have Omz(xi) ∈ {n2 − 1, n2 + 1} (lines 3–8) in which case the two values
g(Omz(y)) and g(Omz(xi)) must be two consecutive values in {g(Omz(xj)) | j ∈ [s]}1
or we identify as above g(dn2 e) as the median integer value of [Omz(xi),Omz(y)] (if
Omz(xi) < Omz(y)) or [Omz(y),Omz(xi)] (if Omz(y) < Omz(xi)), respectively.

1That is, {g(Omz(x1)), . . . , g(Omz(xs))}∩[Omz(xi),Omz(y)] = {Omz(xi),Omz(y)} (if Omz(xi) <
Omz(y)) or {g(Omz(x1)), . . . , g(Omz(xs))} ∩ [Omz(y),Omz(xi)] = {Omz(y),Omz(xi)} (if Omz(y) <
Omz(xi)), respectively.

8.2. The Ranking-Based Black-Box Complexity of OneMax 107

Algorithm 30: Identifying g(dn2 e) for odd values of n.

Sample i ∈ {j ∈ [s] | g(Omz(xj)) = m} uniformly at random;1

Set y ← complement(x) and query g(Omz(y));2

if g(Omz(y)) < g(Omz(xi)) then3

if ∀j ∈ [s] : (g(Omz(xj)) ≤ g(Omz(y))) ∨ (g(Omz(xj)) ≥ g(Omz(xi))) then4

mg ← m;5

else if g(Omz(y)) > g(Omz(xi)) then6

if ∀j ∈ [s] : (g(Omz(xj)) ≥ g(Omz(y))) ∨ (g(Omz(xj)) ≤ g(Omz(xi))) then7

mg ← g(Omz(y));8

else mg ← median(g(Omz(y)), g(Omz(xi))|g(Omz(x1)), . . . , g(Omz(xs)));9

Output mg10

Part 3: Calculation of z

In this section, we prove that the s random samples and the one additional sample
needed to identify g(dn2 e) suffice to determine the target string z. We do so by showing
that the probability that there exists a bit string y 6= z with Omy(xi) = Omz(xi) for
all i ∈ [s] with Omz(xi) ∈ [n2 ± κ

√
n] is very small.

Lemma 8.10. Let S := {i ∈ [s] | Omz(xi) ∈ [n2 ± κ
√
n]}, the set of all samples with

Omz-value close to n
2 . Let F := {y | ∀i ∈ S : Omz(xi) = Omy(xi)} , the set of all y

that are consistent with the Omz-values for all xi with i ∈ S.
Then, with probability at least 1− exp(− (1−2e−2κ2

)αn
8 logn), we have E [|F |] ≤ 1 + 2−t/4

for t := s
2(1− 2e−2κ2

).

In particular we have that, with probability at least 1 − c exp(− (1−2e−2κ2
)αn

8 logn) for
some constant c, there does not exist a string y ∈ {0, 1}n\{z} such that Omz(xi) =
Omy(xi) for all i ∈ S.

Proof. First note that, by Lemma 8.7, we can assume that |S| ≥ s
2(1 − 2e−2κ2

) = t,

with probability at least 1− exp(− (1−2e−2κ2
)αn

8 logn).
Let y ∈ {0, 1}n\{z} and let h := |y ⊕ z|1, the Hamming distance of y and z. We

bound the probability that for all i ∈ S we have Omy(xi) = Omz(xi).
If we consider one particular sample x chosen from {0, 1}n uniformly at random,

we have

Pr
[
Omy(x) = Omz(x) | Omz(x) ∈ [n2 ± κ

√
n]
]
≤

Pr
[
Omy(x) = Omz(x)

]
Pr
[
Omz(x) ∈ [n2 ± κ

√
n]
] .

By Lemma 8.7 the probability Pr
[
Omz(x) ∈ [n2 ± κ

√
n]
]
that the Omz-value of x lies

in the interval [n2 ± κ
√
n] can be bounded from below by 1− 2e−2κ2 .

Furthermore, Omy(x) = Omz(x) holds if and only if x coincides with z in exactly
half of the h bits in which z and y differ. Thus, Pr[Omy(x) = Omz(x)] =

(
h
h/2

)
2−h if

108 Ranking-Based Black-Box Models

h is even and Pr[Omy(x) = Omz(x)] = 0 for odd values of h. In particular,

Pr
[
Omy(x) = Omz(x) | x ∈ S

]
≤

(
h
h/2

)
2−h

1− 2e−2κ2 ,

for all even values h and Pr
[
Omy(x) = Omz(x) | x ∈ S

]
= 0 for odd values h.

Assume h to be even. As the samples x1, . . . , xs are drawn independently, the
probability that Omy(xi) = Omz(xi) for all i ∈ S can be bounded as follows.

Pr
[∧
i∈S

(
Omy(xi) = Omz(xi)

)]
=
∏
i∈S

Pr
[
Omy(xi) = Omz(xi)

]
≤

((
h
h/2

)
2−h

1− 2e−2κ2

)t
.

As there are
(
n
h

)
different bit strings y with Hamming distance |y ⊕ z|1 = h from

z, we bound the expected number of bit strings y 6= z with Omy(xi) = Omz(xi) for
all i ∈ S from above by

∑
h∈[n];h even

(
n

h

)((
h
h/2

)
2−h

1− 2e−2κ2

)t
=
(

1− 2e−2κ2
)−t ∑
h∈[n];h even

(
n

h

)((
h
h/2

)
2−h

)t
.

We have proven in Proposition 4.6 that for sufficiently large n and t̃ ≥ 2
(
1 +

4 log2 log2 n
log2 n

)
n

log2 n
, it holds that

∑
h∈[n];h even

(
n

h

)((
h
h/2

)
2−h

)t̃
≤ (n/2) · 2−3t̃/4 .

In our case the condition α ≥ 8
(
1 − 2e−2κ2)−1

> 4
(
1 − 2e−2κ2)−1(1 + 4 log2 log2 n

log2 n

)
ensures that t satisfies this condition. Furthermore, we have for large enough n that
n
2 ≤ 2t/4 and lastly, the requirement κ ≥ 2 implies that 2e−2κ2

<< 0.15. Hence,(
1 − 2e−2κ2)−1 ≤ 0.85−1 ≤ 1.18 ≤ 21/4 and finally,

(
1 − 2e−2κ2)−t ≤ 2t/4. We thus

conclude that, with probability at least 1− exp(− (1−2e−2κ2
)αn

8 logn),

E[|{y 6= z | ∀x ∈ S : Omy(x) = Omz(x)}|] ≤ 2−t/4 .

We are now ready to prove Theorem 8.2 for the special case of arity k = n. To
this end, we fix the values of κ := 2 and α := 9 =

⌈
8
(
1− 2e−2κ2)−1

⌉
.

Proof of Theorem 8.2 for k = n. We need to show that there exists a ranking-based
unbiased algorithm which optimizes any function Omz ∈ OneMaxn in an expected
number of O(n/ log n) queries.

We claim that Algorithm 31 certifies Theorem 8.2 for k = n and even values
n. For odd values, the part in which we identify g(dn2 e) (lines 5–8 of Algorithm 31)
needs to be replaced by lines 1–9 of Algorithm 30. We show that the probability that
Algorithm 31 queries z after O(n/ log n) iterations is 1−o(n−λ) for all constant values

8.2. The Ranking-Based Black-Box Complexity of OneMax 109

Algorithm 31: An n-ary unbiased ranking-based black-box algorithm optimiz-
ing OneMaxn in O(n/ log n) queries.
Initialization:1

for i = 1, . . . , s do2

Sample xi ∈ {0, 1}n uniformly at random and query g(Omz(xi));3

Identification of g(n2):4

Sample i ∈ {j ∈ [s] | g(Omz(xj)) = m} uniformly at random;5

Set y ← complement(xi) and query g(Omz(y));6

if g(Omz(y)) = g(Omz(xi)) then mg ← m;7

else mg ← median(g(Omz(y)), g(Omz(xi))|g(Omz(x1)), . . . , g(Omz(xs)));8

Compute S ← {i ∈ [s] | Omz(xi) ∈ [n2 ± 2
√
n]};9

Compute F ← {y ∈ {0, 1}n | ∀i ∈ S : Omz(xi) = Omy(xi)};10

Sample x ∈ F uniformly at random and query g(Omz(x));11

λ. By Corollary 2.15 this implies the desired bound for the n-ary black-box complexity
of OneMaxn.

First we show that the algorithm employs only unbiased variation operators of
arity at most n. We have already argued that sampling uniformly at random from
{0, 1}n is a 0-ary unbiased variation operator and that complement(·) is a unary
unbiased one. Therefore, we need to show that the operator “sample x ∈ F uniformly
at random” is unbiased and of arity at most n. The latter follows from the fact that
the size of S is at most s = O(n/ log n). The unbiasedness of the variation operator
follows essentially from the fact that we sample from F uniformly. More precisely,
let us define the following family of |S|-ary distributions over {0, 1}n. Abbreviate
F (w1, . . . , w|S|) := {y ∈ {0, 1}n | ∀i ∈ [|S|] : Omz(wi) = Omy(wi)} and set

D(x|w1, . . . , w|S|) :=
|F (w1, . . . , w|S|)|−1, if F (w1, . . . , w|S|) 6= ∅ and x ∈ F (w1, . . . , w|S|) ,
0, if F (w1, . . . , w|S|) 6= ∅ and x /∈ F (w1, . . . , w|S|) ,
2−n, otherwise.

It is now easy to verify that D(· | w1, . . . , w|S|)w1,...,w|S|∈{0,1}n is a family of unbiased
distributions: Let y ∈ F (w1, . . . , w|S|) and v ∈ {0, 1}n. For all j ∈ [|S|] clearly
we have Omy⊕v(wj ⊕ v) = Omy(wj) and, consequently, we have y ⊕ v ∈ F (w1 ⊕
v, . . . , w|S| ⊕ v). Similarly we conclude that for all permutations σ of [n] we have
σ(y) ∈ F (σ(w1), . . . , σ(w|S|)). The same reasoning also proves that F (w1, . . . , w|S|) =
∅ if and only if F (σ(w1 ⊕ v), . . . , σ(w|S| ⊕ v)) = ∅.

Each run of Algorithm 31 requires αn/ log n+ 2 = O(n/ log n) queries. The total
probability of failure is at most the sum of the probabilities that

• the median of the Omz(xi)-values is not in [n2 ±
√
n],

• the probability that there exists a value ` ∈ [n2 ± 2
√
n] with Omz(xj) 6= ` for all

j ∈ [s],

110 Ranking-Based Black-Box Models

• the probability that the size of S = {i ∈ [s] | Omz(xi) ∈ [n2 ± 2
√
n]} is less than

s
2(1− 2e−8), and

• the probability that in line 11 we do not sample z.

Each of these probabilities is at most o(n−λ) for any constant value λ ∈ R. By a
simple union bound we infer that the probability that the target string z is sampled
in one run of Algorithm 31 is at least 1− o(n−λ). This concludes the proof.

8.2.3. Proof of Theorem 8.2 for k = Ω(log3 n) ∩ [n]

The proof for the case k = Ω(log3 n) uses a simple idea (which we first exploited
in [DJK+11], the paper underlying Section 4 and which we also used for proving
Theorem 7.1 in Section 7): Given some arity k, log3(n) ≤ k < n, we subdivide the
whole bit string into blocks of length k. We show that these blocks can be optimized
one after the other, each in O(k/ log k) steps. As there are dn/ke such blocks, the
desired O(n/ log k) runtime bound follows.

Proof of Theorem 8.2 for k = Ω(log3 n). To ease reading we assume that k is even.
For odd values of k, in the following proof all occurrences of k/2 must be replaced
by dk/2e. Further we skip the “with probability at least...”-statements. Instead, we
bound the total failure probability at the end of this proof. Since k is large, a simple
union bound will show that we can assume all statements to hold with high enough
probability.

Fix α := 9 =
⌈
8
(
1− 2e−8

)−1⌉ and s := αk/ log k. For a better presentation of the
ideas let us fix the unknown target function Omz ∈ OneMaxn.

By Corollary 2.15 it suffices to show that, with high probability, Algorithm 32
queries the target string z. Each run of Algorithm 32 requires O(n/ log k) queries.

The notation used in Algorithm 32 is as follows.
For x, y ∈ {0, 1}n by O(x, y) we denote the set {i ∈ [n] | xi = yi} of all indices in

which x and y coincide. As we shall see below, throughout the run of Algorithm 32,
the set O(x, y) equals the set of positions for which we know that xi = zi must hold.
We call these positions optimized.

The variation operator flipKWhereDifferent(·, ·) is a binary operator that given
two strings x, y ∈ {0, 1}n picks uniformly at random k′ := min{k, n − |O(x, y)|}
different elements i1, . . . , ik′ from the set of positions [n]\O(x, y) in which x and y
disagree. It outputs the string x ⊕ eni1 ⊕ . . . ⊕ enik′ . That is, it flips k′ positions
in x in which x and y differ. This is easily verified to be an unbiased operator.
As in the proof of the unbiasedness of the operator “sample x ∈ F uniformly at
random” in Section 8.2.2 this follows essentially from the fact that (i) the k′ positions
are sampled uniformly at random from [n]\O(x, y), that (ii) for all w ∈ {0, 1}n the
equation O(x ⊕ w, y ⊕ w) = O(x, y) holds, and that (iii) for all σ ∈ Sn we have
O(σ(x), σ(y)) = σ(O(x, y)).

Let j ∈ [dn/ke]. The strings x and x(j,1) are used to encode which substring
(“block”) is to be optimized in the j-th phase. Namely, throughout the j-th phase all
entries in positions

I(j) := O(x, x(j,1)) = {i ∈ [n] | xi = x
(j,1)
i }

8.2. The Ranking-Based Black-Box Complexity of OneMax 111

Algorithm 32: A k-ary unbiased ranking-based black-box algorithm for k =
Ω(log3 n) optimizing OneMaxn in O(n/ log k) queries.
Initialization:1

Sample x ∈ {0, 1}n uniformly at random and query g(Omz(x));2

Set y ← complement(x) and query g(Omz(y));3

for j = 1, . . . , dn/ke do4

Sample x(j,1) ← flipKWhereDifferent(x, y) and query g(Omz(x(j,1)));5

for i = 2, . . . , s do6

Sample x(j,i) from {v ∈ {0, 1}n | ∀` ∈ I(j) : v` = x`} uniformly at7

random and query g
(
Omz(x(j,i))

)
;

Identify g(k2 + c(j)) ; //c(j) is the contribution of bits in I(j) to the8

Omz-values
Compute S(j) ; //set of samples with (g ◦Omz)-value in [k2 ± 2

√
k + c(j)]9

Compute F (j) ; //set of all feasible bit strings10

Sample z(j) ∈ F (j) uniformly at random and query g(Omz(z(j)));11

Update y ← Update(y, x, x(j,1), z(j)) and query g(Omz(y));12

Update x← z(j);13

remain untouched. We only allow the entries in positions

R(j) := [n]\I(j)

to be flipped. We call I(j) the set of irrelevant indices and we call R(j) = [n]\I(j)

the set of relevant indices. Unless we are in the very last phase j = dn/ke we have
|I(j)| = n− k and |R(j)| = k.

Similarly one easily verifies that the operator “Sample x(j,i) from {v ∈ {0, 1}n |
∀` ∈ I(j) : v` = x`} uniformly at random” employed in line 7 of Algorithm 32 is an
unbiased one. The underlying distribution can be specified as

D(c | a, b) :=

{
2−|a⊕b|1 , if xi = ai for all i ∈ [n] with ai = bi ,

0, otherwise

for all a, b, c ∈ {0, 1}n.
Since we do not touch the entries in positions I(j), all search points sampled in

the j-th phase (lines 5–13) have an Omz-value of at least c(j) := |{i ∈ I(j) | xi = zi}|.
Our algorithm, of course, does not know the value of c(j). Nevertheless we are able to
infer g(k2 + c(j)). This can be done as follows. Let x(j,i) be one of the search points
x(j,2), . . . , x(j,s) sampled in line 7 such that g(Omz(x(j,i))) equals the median of the
multiset {g(Omz(x(j,1))), . . . , g(Omz(x(j,s)))} of the sampled (g ◦Omz)-values.

Let x̃(j,i) be the bit string which, on the relevant k bits, is the bitwise complement
of x(j,i). Formally, x̃(j,i)

` := 1 − x(j,i)
` for all ` ∈ R(j) and x̃

(j,i)
` := x

(j,i)
` = x` for all

` ∈ I(j). Clearly, x̃(j,i) can be obtained from x(j,i), x, and x(j,1) from the 3-ary unbiased

112 Ranking-Based Black-Box Models

variation operator that, given a, b, c, d ∈ {0, 1}n satisfies

D(d | a, b, c) =

{
1, if ∀` ∈ [n] : (b` 6= c` ⇒ d` = 1− a`) ∧ (b` = c` ⇒ d` = a`) ,
0, otherwise.

To identify g(k2 +c(j)), in line 8 we query g
(
Omz(x̃(j,i))

)
. Clearly, g

(
Omz(x̃(j,i))

)
=

g
(
k
2 + c(j)

)
if and only if g

(
Omz(x̃(j,i))

)
= g

(
Omz(x(j,i))

)
. In case g

(
Omz(x̃(j,i))

)
6=

g
(
Omz(x(j,i))

)
we know by Lemma 8.9 that g

(
k
2 +c(j)

)
is the median of the sampled val-

ues between
[
g
(
Omz(x̃(j,i))

)
, g
(
Omz(x(j,i))

)]
or
[
g
(
Omz(x̃(j,i))

)
, g
(
Omz(x(j,i))

)]
, re-

spectively, where each sampled (g ◦Omz)-value is counted with multiplicity one.
Note that once we have determined g(k2 + c(j)), we can compute the sets

S(j) := {i ∈ [s] | Omz(x(j,i)) ∈ [k2 ± 2
√
k + c(j)]} and

F (j) := {v ∈ {0, 1}n |
(
∀` ∈ I(j) : v` = x`

)
∧
(
∀i ∈ S(j) : Omz(x(j,i)) = Omv(x(j,i))

)
} .

This is due to Lemma 8.6 where we have shown that for all ` ∈ [k2 ± 2
√
k] there exists

at least one i such that Omz(x(j,i)) = `+ c(j).
We call F (j) the set of all feasible bit strings for the j-th block. In line 11 we

sample from this set uniformly at random. Note that for identification of F (j) we need
at most all samples in S(j) plus the two strings x and x(j,1) which encode the current
block we are optimizing. This is, the arity of the corresponding variation operator
“sample x ∈ F (j) uniformly at random” is at most |S| + 2 ≤ 9k/ log k + 2. Since we
assume that k = Ω(log3 n), this expression can be bounded by k for large enough n.

For the same reason we can assume that |F (j)| = 1. This is due to Lemma 8.10
where we have shown that |F (j)| = 1 with probability at least 1 − 2−

s
2 (1−2e−8). Note

that under this assumption in line 11 we actually do not sample randomly but we
deterministically sample the search point z(j) which coincides with z on all relevant
bits R(j) and it coincides with x on all other bits I(j).

In the last step of the j-th phase we need to update x and y. Recall that by O(x, y)
we indicate which bits have been optimized already. So we need to update O(x, y)
by adding to it R(j). This can be done in the following way. First we update y by
replacing it with

Update(y, x, x(j,1), z(j)) :=

{
z

(j)
` , if ` ∈ R(j) ,

y`, otherwise.

Formally, Update(·, ·, ·, ·) is a 4-ary variation operator that, given some a, b, c, d ∈
{0, 1}n returns a vector with (Update(a, b, c, d))i = ai for all i with bi = ci and
(Update(a, b, c, d))i = di for all i with bi 6= ci. Clearly, Update(σ(a⊕w), σ(b⊕w), σ(c⊕
w), σ(d⊕w)) = σ(Update(a, b, c, d)⊕w) for all bit strings w ∈ {0, 1}n and all permu-
tations σ ∈ Sn. Therefore, Update(·, ·, ·, ·) is an unbiased variation operator.

In line 13 we finally update x by replacing it with z(j), i.e., we set x← z(j). This
concludes the j-th phase. Summarizing all the above, we have reduced the Hamming
distance from x to y by k′. We also have yi = xi = z

(j)
i for all i ∈ R(j) and, as we

shall see below, with high probability, this translates to xi = zi for all i ∈ R(j).

8.2. The Ranking-Based Black-Box Complexity of OneMax 113

The total number of search points queried in the j-th phase is s+ 3 = O(k/ log k).
Hence, the total number of queries made by the algorithm is dn/ke(s + 3) + 2 =
O(n/ log k).

To conclude the proof let us bound the total probability of failure. For each block
j the total probability of failure is at most the sum of the probabilities that

• the median of the Omz(xi)-values is not in [k2 ±
√
k + c(j)],

• the probability that there exists a value ` ∈ [k2 ±2
√
k+c(j)] with Omz(x(j,i)) 6= `

for all i ∈ [s],

• the probability that the size of S = {i ∈ [s] | Omz(xi) ∈ [k2 ± 2
√
k+ c(j)]} is less

than s
2(1− 2e−8), and

• the probability that in line 11 we do not sample z.

Each of these probabilities is at most O(
√
k exp(−

√
k/ log k)). By the union bound

the total failure probability is at most O(n/k)O(
√
k exp(−

√
k/ log k)), which due to

the fact that k = Ω(log3 n), is o(1), as desired.

8.2.4. Proof of Theorem 8.2 for k = O(log3 n)

In the last part of the proof for Theorem 8.2, we consider here in this section the
case k = O(log3 n). Again we do a block-wise optimization of the target function.
However, for such small values of k, the union bound does not suffice for a high
probability statement. Instead, we need to identify ways to ensure that each block-
wise optimization yields the desired equality z(j)

i = zi for all i ∈ R(j), in the notation
of the previous section. This can be done by optimizing the first length-k block
using the linear query time strategy implicit in Lemma 8.4. We use this block as a
reference block. By flipping all bits in the reference block and flipping all bits in the
block currently under investigation, we can probe whether or not all bits in this block
coincide with the corresponding entries of the target string.

Proof of Theorem 8.2 for k = O(log3 n). As we have seen in Section 8.2.1, for constant
values of k, Theorem 8.2 is a special case of Lemma 8.4. Therefore, we can assume in
the following that k = k(n) grows with n. Further we assume that k is even. For odd
values of k, in the following proof all occurrences of k/2 must be replaced by dk/2e.

Fix α := 9 =
⌈
8
(
1− 2e−8

)−1⌉ and s := αk/ log k. For a better presentation of the
ideas let us fix the unknown target function Omz ∈ OneMaxn.

First we show that Algorithm 33 creates in k + 2 queries two search points x′ and
y′ of Hamming distance n − k with the additional property that for all i ∈ [n] with
x′i = y′i we know x′i = zi with certainty.

To this end, let us first fix the notation. flip1WhereDifferent(·, ·) is the operator
introduced in Algorithm 32. It flips exactly one bit value of the first argument. The
position is chosen uniformly at random from the set of positions in which the first and
the second argument disagree.

Update2(·, ·, ·) is a variation operator, that creates from y′, x′, w ∈ {0, 1}n the string
Update2(y′, x′, w) with (Update2(y′, x′, w))i = y′i if x

′
i = wi and (Update2(y′, x′, w))i =

x′i if x
′
i 6= wi. This is easily verified to be an unbiased variation operator.

114 Ranking-Based Black-Box Models

Algorithm 33: A binary unbiased ranking-based black-box algorithm for opti-
mizing the first block of length k.
Initialization: Sample x′ ∈ {0, 1}n uniformly at random and query1

g(Omz(x′));
Set y′ ← complement(x′) and query g(Omz(y′));2

Optimization: for t = 1, . . . , k do3

Sample w ← flip1WhereDifferent(x′, y′) and query g(Omz(w));4

if g(Omz(w)) > g(Omz(x′)) then Update x′ ← w;5

else Update y′ ← Update2(y′, x′, w);6

In line 5 of Algorithm 33 either we have g(Omz(w)) > g(Omz(x′))—in which case
the position i in which x′ and w differ satisfies x′i 6= zi = wi = y′i. In this case,
updating x′ clearly reduces the Hamming distance of x′ and y′ by one. It preserves
the invariant that x′i = zi for all positions i ∈ [n] with x′i = y′i. If, alternatively,
g(Omz(w)) < g(Omz(x′)) holds, then x′i = zi 6= wi = y′i and we update y′ by replacing
its i-th bit with x′i. This also reduces the Hamming distance of x′ and y′ by one, again
preserving the invariant x′i = y′i ⇒ x′i = zi.

Therefore, after termination of Algorithm 33 we have two bit strings x′, y′ of Ham-
ming distance |x′ ⊕ y′|1 = k that satisfy (x′i = y′i) ⇒ (x′i = zi). In what follows, we
call the bit positions O(x′, y′) = {i ∈ [n] | x′i = y′i} the “reference block”. Next we
show how this block allows us to verify that another block of length k is optimized
(i.e., that the entries of this block coincide with the entries of the target string z).

The basic idea is simple: first we create from x′ and y′ two strings x and y such
that O(x, y) = O(x′, y′) but xi 6= x′i for all i ∈ O(x′, y′). Certainly we have xi 6= zi for
all such i ∈ O(x′, y′). Starting from x and y, we run the same block-wise optimization
routine as in Subsection 8.2.3 where the blocks are chosen from [n]\O(x′, y′). If we
want to test that k specific bits of some candidate string z(j) coincide with the entries
of z, all we need to do is to flip in z(j) all k bits of interest as well as all bits in block
O(x′, y′). Flipping the bits in block O(x′, y′) increases the Omz-value by k since for
all i ∈ O(x′, y′), by construction, z(j)

i = xi 6= zi. Therefore, the Omz-values of the
candidate solution z(j) and its offspring z̃(j) coincide if and only if z(j) and z coincide
in the k bits of interest.

The notation in Algorithm 34 is the same as the one used in Algorithm 32. In
addition, we make use of the following operators.

The string initialize1(x′, y′) is defined via

(initialize1(x′, y′))i :=

{
1− x′i, if i ∈ O(x′, y′) ,
x′i, if i /∈ O(x′, y′) .

Similarly, we set

(initialize2(x′, y′))i :=

{
1− x′i, if i ∈ O(x′, y′) ,
y′i, if i /∈ O(x′, y′) .

8.2. The Ranking-Based Black-Box Complexity of OneMax 115

Algorithm 34: A k-ary unbiased ranking-based black-box algorithm for k =
O(log3 n) ∩ ω(1) optimizing OneMaxn in O(n/ log k) queries.
Input: Two bit strings x′ and y′ with O(x′, y′) = k and x′i = zi for all1

i ∈ O(x′, y′);
Initialization:2

Set x← initialize1(x′, y′) and query g(Omz(x));3

Set x← initialize2(x′, y′) and query g(Omz(y));4

for j = 1, . . . , d(n− k)/ke do5

repeat6

Sample x(j,1) ← flipKWhereDifferent(x, y) and query g(Omz(x(j,1)));7

for i = 2, . . . , s do8

Sample x(j,i) from {v ∈ {0, 1}n | ∀` ∈ I(j) : v` = x`} uniformly at9

random and query g
(
Omz(x(j,i))

)
;

Identify g(k2 + c(j)) ; //c(j) is the contribution of bits in I(j) to the10

Omz-values
Compute S(j) ; //set of samples with (g ◦Omz)-value in [k2 ± 2

√
k + c(j)]11

Compute F (j) ; //set of all feasible bit strings12

Sample z(j) ∈ F (j) uniformly at random and query g(Omz(z(j)));13

Set z̃(j) ← test(z(j), x′, y′, x, x(j,1)) and query g(Omz(z̃(j)));14

until g(Omz(z(j))) = g(Omz(z̃(j))) ;15

Update y ← Update(y, x, x(j,1), z(j)) and query g(Omz(y));16

Update x← z(j);17

Set w ← finish(x, x′, y′) and query g(Omz(w));18

The string initialize1(x′, y′) is obtained through sampling from the distribution
D(w | x′, y′) = 1 if wi = 1 − x′i if and only if i ∈ O(x′, y′). This is an unbiased dis-
tribution. Hence, both initialize1(·, ·) and, by similar reasoning, initialize2(·, ·)
are unbiased variation operators.

In line 14 we query test(z(j), x′, y′, x, x(j,1)) which is defined via

(test(z(j), x′, y′, x, x(j,1)))i :=

{
1− z(j)

i , if i ∈ O(x′, y′) or xi 6= x
(j,1)
i ,

z
(j)
i , otherwise.

Again this is easily verified to be sampled from an unbiased (5-ary) distribution.
Lastly, we define finish(x, x′) via

(finish(x, x′, y′))i :=

{
1− xi, if i ∈ O(x′, y′) ,
xi, if i /∈ O(x′, y′) .

After having optimized all bits in [n]\O(x′, y′), this operator finally replaces in x the
entries in O(x′, y′) by their complement. Therefore, finish(x, x′, y′) equals the target
string z.

Note that Algorithm 34 queries z in line 18 with certainty. Hence, we only need to
argue that the expected number of queries of Algorithm 34 is O(n/ log k). We optimize

116 Ranking-Based Black-Box Models

d(n−k)/ke blocks of length k. Call each execution of lines 7–14 for optimizing a block
B a run for B. As argued in Section 8.2.3, for any such block B, the probability that
in line 14 of Algorithm 34 we have g(Omz(z(j))) = g(Omz(z̃(j))) already after the
first run for B is at least 1 − o(k−λ) for all constant values λ. In particular, it is at
least constant. This shows that at most a constant number of runs are expected for
optimizing any block, compare Lemma 2.14 for a formal proof of this claim. Each run
requires s + 2 = O(k/ log k) queries. This shows that we need an expected number
of O(k/ log k) queries to optimize any length-k block. Since there are d(n − k)/ke of
them, the statement follows by the linearity of expectations, Lemma 2.6.

8.3. The Different Black-Box Complexities of BinaryValue

In the previous section, we have seen that the additional ranking restriction did not
increase the black-box complexity of the OneMaxn functions class. In this section,
we show an example where the two kinds of complexities greatly differ. Surprisingly,
another simple class of classical test functions does the job, namely the class of gen-
eralized binary-value functions.

We show that the unbiased black-box complexity of the larger class BinaryValue∗n
is O(log n), cf. Theorem 8.11, whereas the unrestricted ranking-based black-box com-
plexity of the smaller class BinaryValuen is Ω(n), cf. Theorem 8.12.

Let us begin with the upper bound for the unbiased black-box complexity.

Theorem 8.11. The ∗-ary unbiased black-box complexity of BinaryValue∗n (and
thus, the one of BinaryValuen) is at most dlog2 ne+ 2.

For every z ∈ {0, 1}n and σ ∈ Sn the function Bvz,σ has 2n different function
values. That is, the function Bvz,σ : {0, 1}n → [0..2n − 1] is one-to-one. This is
in strong contrast to the functions Omz ∈ OneMaxn which obtain values in [0..n]
only and are thus far from being one-to-one functions. Therefore, from each query
to a BinaryValue function we obtain much more information about the underlying
target string than we would gain from any OneMax function. In particular, for each
query x and for each i ∈ [n] we can derive from Bvz,σ(x) whether or not xσ(i) = zσ(i).
Hence, all we need to do is to identify σ. This can be done by binary search.

Proof of Theorem 8.11. We show that Algorithm 35 is an unbiased black-box algo-
rithm which optimizes every Bvz,σ ∈ BinaryValue∗n using at most dlog2 ne + 2
queries.

Algorithm 35: An unbiased black-box algorithm optimizing BinaryValuen
in dlog2 ne+ 2 queries.

Sample x(1) ∈ {0, 1}n uniformly at random and query Bvz,σ(x(1));1

for k = 2, . . . , dlog2 ne+ 1 do2

Sample x(k) ← flipHalf(x(1), . . . , x(k−1)) and query Bvz,σ(x(k));3

Set x(dlog2 ne+2) ← consistent(x(1), . . . , x(dlog2 ne+1)) and query4

Bvz,σ(x(dlog2 ne+2));

8.3. The Different Black-Box Complexities of BinaryValue 117

To describe the variation operators used in Algorithm 35, let k ∈ N and let
y(1), . . . , y(k+1) ∈ {0, 1}n. Set

F (1)(y(1), y(2)) := {j ∈ [n] | y(1)
j 6= y

(2)
j } and

F (0)(y(1), y(2)) := [n]\F (1)(y(1), y(2)) .

That is, F (1)(y(1), y(2)) contains exactly those bit positions in which y(1) and y(2)

disagree and F (0)(y(1), y(2)) is the set of positions in which y(1) and y(2) coincide.
Let 1 ≤ ` < k. For each (i1, . . . , i`) ∈ {0, 1}` we set

F (i1,...,i`,1)(y(1), . . . , y(`+2)) := {j ∈ F (i1,...,i`)(y(1), . . . , y(`+1)) | y(`+1)
j 6= y

(`+2)
j } and

F (i1,...,i`,0)(y(1), . . . , y(`+2)) := F (i1,...,i`)(y(1), . . . , y(`+1))\F (i1,...,i`,1)(y(1), . . . , y(`+2)) .

This way we iteratively define F (i1,...,ik)(y(1), . . . , y(k+1)) for all (i1, . . . , ik) ∈ {0, 1}k.
For any such vector (i1, . . . , ik) ∈ {0, 1}k the set F (i1,...,ik)(y(1), . . . , y(k+1)) con-
tains exactly the subset of positions from F (i1,...,ik−1)(y(1), . . . , y(k)) in which y(k)

and y(k+1) agree (ik = 0) and for ik = 1 it contains the subset of positions in
F (i1,...,ik−1)(y(1), . . . , y(k)) in which y(k) and y(k+1) disagree.

Let

Z(y(1), . . . , y(`)) :=
{
y`+1 ∈ {0, 1}n | ∀(i1, . . . , i`−1) ∈ {0, 1}`−1 :

|F (i1,...,i`−1,1)(y(1), . . . , y(`+1))| = b|F (i1,...,i`−1)(y(1), . . . , y(`))|/2c
}
.

That is, Z(y(1), . . . , y(`)) is the set of bit strings y(`+1), which, for ev-
ery (i1, . . . , i`−1) partitions the set F (i1,...,i`−1)(y(1), . . . , y(`−1)) into two subsets
F (i1,...,i`−1,1)(y(1), . . . , y(`+1)) and F (i1,...,i`−1,0)(y(1), . . . , y(`+1)) of (almost) equal size.

For all ` ∈ N, the variation operator flipHalf(·, . . . , ·) samples from the `-ary dis-
tribution (D(·|·, . . . , ·))y(1),...,y(`)∈{0,1}n , which for given y(1), . . . , y(`) ∈ {0, 1}n assigns
to each y ∈ {0, 1}n the probability

D(y | y(1), . . . , y(`)) :=

{
|Z(y(1), . . . , y(`))|−1, if y ∈ Z(y(1), . . . , y(`)) ,
0, otherwise.

This is an unbiased distribution: For all y, w, y(1), . . . , y(`) ∈ {0, 1}n and all
(i1, . . . , i`−1) ∈ {0, 1}`−1 we have

F (i1,...,i`−1)(y(1), . . . , y(`)) = F (i1,...,i`−1)(y(1) ⊕ w, . . . , y(`) ⊕ w) .

From this we easily obtain that y ∈ Z(y(1), . . . , y(`)) if and only if y ⊕ w ∈ Z(y(1) ⊕
w, . . . , y(`) ⊕ w). In addition, for all θ ∈ Sn we have

F (i1,...,i`−1)(θ(y(1)), . . . , θ(y(`))) = θ(F (i1,...,i`−1)(y(1), . . . , y(`))) ,

and thus, y ∈ Z(y(1), . . . , y(`)) holds if and only if θ(y) ∈ Z(θ(y(1)), . . . , θ(y(`))). From
this and the fact that each bit string in Z(y(1), . . . , y(`)) is assigned the same probability
we infer that flipHalf is an unbiased variation operator. This is true for all `.

118 Ranking-Based Black-Box Models

For the description of the second variation operator we abbreviate t := dlog2 ne+
1 and we assume that Bvz,σ ∈ BinaryValue∗n is the (unknown) function to be
optimized.

For all y(1), . . . , y(t) ∈ {0, 1}n let

Fconsistent(y(1), . . . , y(t)) :=

{z′ ∈ {0, 1}n | ∃σ′ ∈ Sn∀i ∈ [t] : Bvz′,σ′(y(i)) = Bvz,σ(y(i))} ,

the set of all bit strings that are consistent with the queries y(1), . . . , y(t). This is the
set of all possible target strings. As we shall see below, in line 4 of Algorithm 35 we
have |Fconsistent(x(1), . . . , x(t))| = 1.

Abbreviate Fconsistent(y(1), . . . , y(t)) = Fconsistent. For y ∈ {0, 1}n set

D′(y | y(1), . . . , y(t)) :=

|Fconsistent|−1, if y ∈ Fconsistent ,

0, if Fconsistent 6= ∅ and y /∈ Fconsistent ,

2−n, otherwise.

This is the distribution from which the variation operator consistent(y(1), . . . , y(t))
samples. It is an unbiased t-ary distribution as can be easily verified using the fact
that y ∈ Fconsistent(y(1), . . . , y(t)) if and only if y⊕w ∈ Fconsistent(y(1)⊕w, . . . , y(t)⊕w)
and if and only if θ(y) ∈ Fconsistent (θ(y(1)), . . . , θ(y(t))

)
for every θ ∈ Sn.

In what follows we argue that in line 4 of Algorithm 35 there exists exactly one
string z′ ∈ Fconsistent(x(1), . . . , x(t)). In this case, clearly, z′ = z must hold.

Let us first show that from x(1), . . . , x(t) we can infer the underlying target permu-
tation σ. We do so by proving that (a) for any 2 ≤ k ≤ t and for all j ∈ [n] we can
determine the index (i1, . . . , ik−1) ∈ {0, 1}k−1 with σ(j) ∈ F (i1,...,ik−1)(x(1), . . . , x(k)).
This suffices to determine σ because, by construction, for all vectors (i1, . . . , it−1) ∈
{0, 1}t−1, we have |F (i1,...,it−1)(x(1), . . . , x(t))| ≤ 1.

The key argument proving statement (a) is the injectivity of Bvz,σ, which, for
any index j ∈ [n] and for every search point x ∈ {0, 1}n, reveals whether or not
xσ(j) = zσ(j). Let us fix an index j ∈ [n]. Clearly, σ(j) ∈ F (1)(x(1), x(2)) if and only if

• x(1)
σ(j) = zσ(j) and x(2)

σ(j) 6= zσ(j), or

• x(1)
σ(j) 6= zσ(j) and x(2)

σ(j) = zσ(j).

Similarly, if σ(j) ∈ F (i1,...,ik−1)(x(1), . . . , x(k)) is known, then σ(j) ∈
F (i1,...,ik−1,1)(x(1), . . . , x(k+1)) if and only if

• x(k)
σ(j) = zσ(j) and x(k+1)

σ(j) 6= zσ(j), or

• x(k)
σ(j) 6= zσ(j) and x(k+1)

σ(j) = zσ(j).

Hence, in line 4 of Algorithm 35 we know σ. Let z′ ∈ Fconsistent(x(1), . . . , x(t)).
By definition, there exists a permutation σ′ ∈ Sn such that for all i ∈ [t] we have

8.3. The Different Black-Box Complexities of BinaryValue 119

Bvz′,σ′(x(i)) = Bvz,σ(x(i)). Let j ∈ [n]. As we have shown above, we can iden-
tify the vector (i1, . . . , it−1) such that σ(j) ∈ F (i1,...,it−1)(x(1), . . . , x(t)). By construc-
tion, also σ′(j) ∈ F (i1,...,it−1)(x(1), . . . , x(t)) must hold. This shows σ′ = σ. Hence,
Bvz′,σ′(x(1)) = Bvz′,σ(x(1)) = Bvz,σ(x(1)). But as this requires z′ = z, we conclude
that indeed |Fconsistent(x(1), . . . , x(t))| = 1.

Putting everything together we have shown that from the first t = dlog2 ne + 1
samples we can infer both the target permutation σ as well as the target string z. This
can be sampled from an unbiased distribution in the (dlog2 ne+ 2)nd query.

Let us now prove that already the unrestricted ranking-based black-box com-
plexity of BinaryValuen is asymptotically different from the basic unbiased one
of BinaryValue∗n.

Theorem 8.12. The unrestricted ranking-based black-box complexity of
BinaryValuen and BinaryValue∗n is larger than n− 1.

As discussed in the introduction, Droste, Jansen, and Wegener [DJW06] implicitly
showed a lower bound of Ω(n/ log n) for the unrestricted ranking-based black-box com-
plexity of BinaryValuen. Our lower bound of n−1 is almost tight. An upper bounds
of n + 1 for the unrestricted ranking-based black-box complexity of BinaryValue∗n
can be shown exactly in the same way as in [DJW06, Theorem 5]. Intuitively, the
algorithm which starts with a random initial search point and then, from left to right,
flips in each iteration exactly one bit shows this bound. This is a deterministic version
of Algorithm 28, which itself is similar to Algorithm 33.

For the unbiased black-box complexities of BinaryValuen and BinaryValue∗n,
the situation is as follows. Both the basic as well as the ranking-based unary unbiased
black-box complexity of BinaryValuen are of order Θ(n log n). The lower bound
follows from the already mentioned theorem in [LW10a, Theorem 6], which implies
that any function with a single global optimum has an unary unbiased black-box
complexity of Ω(n log n). The upper bound follows from the fact that, for example,
Randomized Local Search (Algorithm 1) solves any instance Bvz,σ ∈ BinaryValue∗n
in an expected number of O(n log n) queries. The latter follows from the coupon-
collector’s problem.

For higher arities k ≥ 2, Theorem 8.12 and Lemma 8.4 from Section 8.2.1 imme-
diately yield the following.

Corollary 8.13. For all k ≥ 2, the k-ary unbiased ranking-based black-box complexity
of BinaryValuen and BinaryValue∗n is larger than n− 1 and it is at most 4n− 5.

To derive the lower bound, Theorem 8.12, we employ Yao’s minimax principle,
cf. Theorem 2.16. We show that in the ranking-based black-box model any deter-
ministic algorithm needs an expected number of more than n − 1 iterations to opti-
mize Bvz, if Bvz is taken from BinaryValuen uniformly at random. Theorem 2.16
then implies that for any randomized algorithm A there exist at least one instance
Bvz ∈ BinaryValuen such that it takes, in expectation, at least n− 1 iterations for
algorithm A to optimize Bvz. This implies Theorem 8.12.

The crucial observation is that when optimizing Bvz with a ranking-based algo-

120 Ranking-Based Black-Box Models

rithms, then from t samples we can learn at most t− 1 bits of the hidden bit string z.
This is easy to see for two samples x, y. If Bvz(x) > Bvz(y), we see that xk = zk 6= yk,
where k := max{j ∈ [n] | xj 6= yj}, but we cannot infer any information about x` for
` 6= k. Similarly, if we have t samples x(1), . . . , x(t) and their corresponding Bvz-values,
we cannot infer

(
t
2

)
bits of information as one might guess, but at most t− 1 bits. As

we shall see, this is an immediate consequence of the following combinatorial lemma.

Lemma 8.14. Let t ∈ [n] and let x(1), . . . , x(t) be t pairwise different bit strings. For
every pair (i, j) ∈ [t]2 we set `i,j := max{k ∈ [n] | x(i)

k 6= x
(j)
k }, the largest bit position

in which x(i) and x(j) differ. Then |{`i,j | i, j ∈ [t]}| ≤ t− 1.

Proof. Let z ∈ {0, 1}n. By renaming the bit strings where required, we may assume
Bvz(x(1)) > . . . > Bvz(x(t)).

We prove the statement by induction on t. For t = 1 and t = 2 there is nothing
to show. Therefore, we may assume that we have proven |{`i,j | i, j ∈ [k]}| ≤ k− 1 for
some k ≥ 2. Now, if `h,k+1 ∈ {`i,j | i, j ∈ [k]} for all h ∈ [k], then clearly we have
|{`i,j | i, j ∈ [k + 1]}| ≤ k − 1. Thus, we may assume without loss of generality that
there exists a h ∈ [k] with `h,k+1 /∈ {`i,j | i, j ∈ [k]}.

Since Bvz(x(h)) > Bvz(x(k+1)), the definition of Bvz implies that z`h,k+1
=

x
(h)
`h,k+1

6= x
(k+1)
`h,k+1

.
Now, let j ∈ [k]. We show that either `j,k+1 = `h,k+1 or `j,k+1 = `j,h.
Let us first consider the case j ≤ h. Since Bvz(x(j)) > Bvz(x(h)) it holds by the

definition of Bvz that z`j,h = x
(j)
`j,h
6= x

(h)
`j,h

. Now, either `j,h ≥ `h,k+1 or `j,h < `h,k+1.

In the first case x(k+1)
`j,h

= x
(h)
`j,h
6= x

(j)
`j,h

, i.e., `j,k+1 ≥ `j,h. On the other hand, by

definition of the `i,i′ ’s, for all ` > `j,h we have x(j)
` = x

(h)
` . For the same reason, due

to the fact ` > `j,h ≥ `h,k+1, we also have for all such ` that x(h)
` = x

(k+1)
` . From this

we infer `j,k+1 ≤ `j,h. This shows `j,k+1 = `j,h.
Equivalently, if `j,h < `h,k+1, then x

(j)
`h,k+1

= x
(h)
`h,k+1

6= x
(k+1)
`h,k+1

. Thus, `j,k+1 ≥

`h,k+1. On the other hand we have for all ` > `h,k+1 > `j,h that x(k+1)
` = x

(h)
` = x

(j)
` .

This shows `j,k+1 ≤ `h,k+1 and we conclude `j,k+1 = `h,k+1.
The reasoning for j > h is the same.

We are now ready to prove Theorem 8.12.

Proof of Theorem 8.12. Since the search space {0, 1}n is finite, the set A of all deter-
ministic algorithms on BinaryValuen is finite, if we restrict our attention to those
algorithms which stop querying search points after the n-th iteration.

As mentioned above, we equip BinaryValuen with the uniform distribution. Let
Bvz ∈ BinaryValuen be drawn uniformly at random and let A ∈ A be a (deter-
ministic) algorithm. In the following, we show that prior to the t-th iteration, the
set of still possible target strings has size at least 2n−t+1 and that all of these target
strings have the same probability to be the desired target string (A). Consequently,
the probability to query the correct bit string in the t-th iteration, given that the al-
gorithm has not found it in a previous iteration, is at most 2−n+t−1. This shows that

8.3. The Different Black-Box Complexities of BinaryValue 121

the expected number of iterations E[T (Bvz, A)] until algorithm A queries the target
string z can be bounded from below by

n∑
i=1

i · Pr[A queries z in the i-th iteration] ≥
n∑
i=1

i · 2−n+i−1 =
n∑
i=1

(n− i+ 1) 2−i

= (n+ 1)
n∑
i=1

2−i −
n∑
i=1

i 2−i . (8.3)

A simple, but nonetheless very helpful observation shows
n∑
i=1

i 2−i =
n∑
i=1

2−i +
n∑
i=1

(i− 1) 2−i = (1− 2−n) + 2−1
n∑
i=1

(i− 1) 2−(i−1)

= (1− 2−n) + 2−1
n−1∑
i=1

i 2−i ,

yielding
∑n

i=1 i 2−i = 2(1− 2−n)− n2−n = 2− (n+ 2)2−n .
Plugging this into (8.3), we obtain

E[T (Bvz, A)] ≥ (n+ 1)(1− 2−n)− (2− (n+ 2)2−n) > n− 1 .

This proves minA∈A E[T (Bvz, A)] > n − 1 for Bvz taken from BinaryValuen
uniformly at random. Yao’s minimax principle implies that for any distribution
q over the set of deterministic algorithms we have maxz∈{0,1}n E[T (Bvz, Ãq)] ≥
minA∈A E[T (Bvz, A)] > n − 1. That is, the ranking-based black-box complexity of
BinaryValuen is larger than n− 1.

It remains to prove (A). Let t ≤ n and let x(1), . . . , x(t) be the search points which
have been queried by the algorithm in the first t iterations. All the algorithm has
learned about x(1), . . . , x(t) is the ranking of these bit strings induced by Bvz, i.e.,
it knows for all i, j ∈ [t] whether Bvz

(
x(i)
)
> Bvz

(
x(j)
)
, or Bvz

(
x(i)
)
< Bvz

(
x(j)
)
,

or Bvz
(
x(i)
)

= Bvz
(
x(j)
)
. Note that Bvz

(
x(i)
)

= Bvz
(
x(j)
)
implies x(i) = x(j).

Thus, this case can be disregarded as one cannot learn any additional information by
querying the same bit string twice.

As in Lemma 8.14 we set `i,j := max{k ∈ [n] | x(i)
k 6= x

(j)
k } for all i, j ∈ [t] and we

set L := {`i,j | i, j ∈ [t]}.
Let ` ∈ L and let i, j ∈ [t] such that max{k ∈ [n] | x(i)

k 6= x
(j)
k } = `. We can fix

z` = x
(i)
` if Bvz

(
x(i)
)
> Bvz

(
x(j)
)
, and we fix z` = x

(j)
` if Bvz

(
x(i)
)
< Bvz

(
x(j)
)
.

That is, we can fix |L| bits of z.
Statement (A) follows from observing that for every bit string z′ with z′` = z` for

all ` ∈ L the function Bvz′ yields exactly the same ranking as Bvz. Hence, all such
z′ are possible target strings. Since there is no way to differentiate between them, all
of them are equally likely to be the desired target string.

Furthermore, it holds by Lemma 8.14 that |L| ≤ t−1. This shows that, at the end
of the t-th iteration, there are at least 2n−(t−1) possible target strings. By definition
of L, the algorithm has queried at most one of them. Consequently, prior to executing
the (t + 1)-st iteration, there are at most 2n−(t−1) − 1 > 2n−t bit strings which are
equally likely to be the desired target string. This proves (A).

122 Ranking-Based Black-Box Models

Note that already a much simpler proof, also applying Yao’s minimax principle,
shows the following general lower bound.

Theorem 8.15. Let F be a class of functions such that each f ∈ F has a unique
global optimum and such that for all z ∈ {0, 1}n there exists a function fz ∈ F with
z = arg max fz. Then the unrestricted ranking-based black-box complexity of F is
Ω(n/ log n).

8.4. Ranking-Based Black-Box Complexity of LeadingOnes

The proof ideas of the lower bound in the previous section can also be applied to
LeadingOnes∗n. Theorem 8.16 closes a gap left open in [DJTW03].

As discussed in the last paragraph of the introduction, Droste et al. in the con-
ference version [DJTW03] of paper [DJW06] implicitly show that the ranking-based
black-box complexity of LeadingOnesn is at least n

2 −o(n) and at most n+ 1. Using
the same methods as for BinaryValuen, we improve the lower bound to n− 1.

Theorem 8.16. The ranking-based black-box complexity of LeadingOnesn (and
thus, the ranking-based black-box complexity of LeadingOnes∗n) is strictly larger
than n− 1.

Crucial for the proof is again the combinatorial statement of Lemma 8.14, from
which we conclude that after t queries we cannot have learned more than t− 1 bits of
the hidden bit string z.

Let us conclude with two upper bounds for the ranking-based black-box complexity
of LeadingOnes∗n.

Remark 8.17. The binary unbiased ranking-based black-box complexity of
LeadingOnes∗n is O(n log n). For all k ≥ 3 the k-ary unbiased ranking-based black-
box complexity of LeadingOnes∗n is O(n log n/ log logn).

The first statement of Remark 8.17 follows easily from the proof of Theorem 4.7,
the second one is Theorem 5.9.

8.5. Conclusions

Motivated by the fact that (i) previous complexity models for randomized search
heuristics give unrealistic low complexities and (ii) that many randomized search
heuristics only compare objective values, but not regard their absolute values, we
added such a restriction to the two existing black-box models. While this does not
change the black-box complexity of the OneMaxn function class (this remains rela-
tively low at Θ(n/ log n)), we do gain an advantage for the BinaryValuen function
class. Here the complexity is O(log n) without the ranking restriction, but Θ(n) in
the ranking-based model. We obtain some more results improving previous work by
different authors, summarized in Tables 8.1 and 8.2. These results indicate that the
ranking-based black-box complexity might be a promising measure for the hardness of
problems for randomized search heuristics.

8.5. Conclusions 123

Model Arity OneMaxn BinaryValuen
unrestr. n/a Θ(n/ log n) [ER63] Ω(n/ log n) [DJW06]
unbiased 1 Θ(n log n) [LW10a] Θ(n log n) [LW10a]

2 ≤ k ≤ n O(n/ log k) [DJK+11] O(n) [DJK+11]
∗ O(log n) Thm. 8.11

unbiased 1 Θ(n log n) [LW10a] Θ(n log n) [LW10a]
ranking-b. 2 ≤ k ≤ n O(n/ log k) Thm. 8.2 Θ(n) Thm. 8.12

∗ Θ(n) Thm. 8.12

Table 8.1. Black-Box Complexities of OneMaxn and BinaryValuen. Re-
marks: The upper bounds for BinaryValuen also hold for BinaryValue∗n.
Abbreviations: unrestr. = unrestricted, ranking-b. = ranking-based

Model Arity LeadingOnesn LeadingOnes∗n
unrestr. n/a Θ(n) [DJW06] O(n log n/ log log n) Thm. 5.1
unbiased 1 Θ(n2) [LW10a] Θ(n2) [LW10a]

2 O(n log n) Thm. 4.7 O(n log n) Thm. 4.7
3 ≤ k ≤ n O(n logn

log logn) Thm. 5.8 O(n logn
log logn) Thm. 5.8

unbiased 1 Θ(n2) [LW10a] Θ(n2) [LW10a]
ranking-b. 2 O(n log n) Thm. 4.7 O(n log n) Thm. 4.7

3 ≤ k ≤ n O(n logn
log logn) Thm. 5.9 O(n logn

log logn) Thm. 5.9
∗ > n− 1 Thm. 8.16 > n− 1 Thm. 8.16

Table 8.2. Black-Box Complexities of LeadingOnesn and LeadingOnes∗n.
Abbreviations: unrestr. = unrestricted, ranking-b. = ranking-based

124 Ranking-Based Black-Box Models

125

Part III

Black-Box Complexities of
Combinatorial Problems

127

9
The Minimum Spanning Tree Problem

In the previous sections we have analyzed the black-box complexities of several artificial
test functions. In this and the next section, we move a step forward and give a
detailed analysis for the two combinatorial problems of finding a minimum spanning
tree (MST) and finding single-source shortest paths. We begin with the MST problem.
The MST problem can be modeled in a very natural way via (multi-criteria) pseudo-
Boolean functions. This has the advantage that we can work in the unbiased model as
defined by Lehre and Witt [LW10a] and we do not need to argue how their notion of
unbiasedness translates to search spaces that are different from the hypercube {0, 1}n.
This will be done Section 10, where we need to adjust the unbiasedness notion to more
general search spaces S.

It is interesting to see how the tools developed in the previous sections can be
applied to combinatorial problems as well. We provide several bounds for the MST
problem in the different black-box models.

The results presented in this section are based on the conference publica-
tion [DKLW11]. They are joint work with Benjamin Doerr, Timo Kötzing, and Jo-
hannes Lengler (ETH Zürich).

9.1. Introduction and Problem Definition

When moving from classical test functions to combinatorial problems, a number of
additional modeling issues have to be regarded. As mentioned above, we start our
analysis with the minimum spanning tree (MST) problem, because here it is generally
agreed on that a bit string representation is most natural. That is, we first enumerate
the edges E by 1, . . . ,m and then interpret a bit string x ∈ {0, 1}m as the set of edges,
whose corresponding bit is set to one. This way we can encode every possible subset
of E. Each subset E′ of E is assigned the objective value (c(E′), w(E′)), where c(E′)
is the number of connected components induced by E′ and w(E′) is the sum of the
edge weights

∑
e∈E′ w(e). This model allows to use the definition of unbiasedness as

128 The Minimum Spanning Tree Problem

in [LW10a]. When talking about ranking-based black-box complexity, the two-criteria
fitness (number of connected components, total weight) needs attention, but we feel
that the only reasonable model is to treat the two criteria separately. That is, we
assume comparability in both criteria.

Previous Results. In one of the earliest theoretical works on evolutionary al-
gorithms for combinatorial optimization problems, Neumann and Wegener [NW04,
NW07] analyze the optimization time of the (1+1) EA for the MST problem. They
prove that thisalgorithm needs, on average, O(m2 log(nwmax)) function evaluation to
find one. Here n is the number of vertices, m the number of edges and wmax is the max-
imum of the positive and integral edge weights. It is a major open problem whether
the dependence on the maximum edge weight is necessary.

The same bound is proven for a Randomized Local Search (RLS) variant doing
one-bit and two-bit flips each with probability 1/2. This can be easily improved to
O(m2 log n) by noting that the optimization behavior remains exactly the same if we
replace the existing edge weights by the numbers from 1 to m (keeping the relative
order of the edge weights unchanged) [RS09].

Our Results. A summary of our results can be found in Table 9.1.

(rb) unrestricted ∗-ary unbiased unary unbiased

upper bound 2m+ 1 O(m) O(mn logn)†

lower bound (1− o(1))n Ω(n) Ω(m logn)

rb unary unbiased (rb) binary unbiased (rb) 3-ary unbiased

upper bound O(mn logn) O(m logn) O(m)

lower bound Ω(m logn) Ω(m/ logn) Ω(m/ logn)

Table 9.1. Upper and lower bounds for the black-box complexity of MST in the
different models. Abbreviations: rb = ranking-based.
† O(mn log(m/n)) if all edge weights are distinct.

In a nutshell, the results show that, on the one hand, simple algorithms based on
unary operators, such as evolutionary algorithms and RLS can get runtimes very close
to the theoretically optimal; on the other hand, they show how operators of higher
arity can further improve on the runtime. In particular we show that the basic and
the ranking-based unbiased black-box complexities are asymptotically different for the
unary case and for arities greater than or equal to three. This is the first result showing
that the complexity of a combinatorial problem depends on the arity of the black-box
model.

The results also indicate that the ranking-based black-box complexities may be
larger than their non-ranking-based counterparts if we rule out multiple edge weights.
However, both for the MST problem as well as the single-source shortest paths prob-
lem, which we analyze in Section 10, the differences are rather small. This stems from
the nature of the two problems: for both problems the best known algorithms builds
a solution in a sequential manner, each time testing to add the least costly edge.

Nevertheless we expect the ranking-based notion to make a decisive difference for
other combinatorial problems, e.g., the partition problem (cf. Section 6), which we

9.2. Upper Bounds for the MST Problem 129

leave for future research.
Conventions. For this thesis, a graph G is a triple (V,E,w), where V is a set of

vertices, E a set of edges (an edge is a set of two vertices) and w : E → R a function
assigning to each edge e ∈ E a positive real number w(e), called the weight of e.

Precise Problem Definition.

Definition 9.1 (MST). The Minimum Spanning Tree (MST) problem consists of a
connected graph G = (V,E,w) on n := |V | vertices and m := |E| weighted edges. The
objective is to find an edge set E′ ⊆ E of minimal weight that connects all vertices.

We encode this problem in binary representation as follows. First, we enumerate
the edges in E in arbitrary order ν : E → [m]. For every bit string x ∈ {0, 1}m we
then interpret x as the subset of edges Ex := {ν−1(i) ∈ E |xi = 1}. In the following,
we assume that the enumeration of the edges is not known to the algorithm. So the
algorithm only knows the numbers n and m, but neither knows the geometry of the
graph nor which bit corresponds to which edge. However, it may assume that the
graph is connected since otherwise no minimum spanning tree for this graph exists.

For E′ ⊆ E let c(E′) be the number of connected components induced by E′,
and let w(E′) =

∑
e∈E′ w(e) be the total weight of E′. The book [NW10] argues

that the objective function f(E′) = (c(E′), w(E′)) is “appropriate in the black-box
scenario”. Thus, in our model, if an algorithm queries some x ∈ {0, 1}m, it receives
f(Ex) = (c(Ex), w(Ex)) as answer. In what follows, we shall also use the notation
f(x) = (c(x), w(x)) instead of (c(Ex), w(Ex)).

In the ranking-based models, the objective value consists of a ranking of both
components. That is, the oracle reveals two rankings of the search points where one
ranking is induced by the number of connected components, and the second ranking
is induced by the total edge weights.

9.2. Upper Bounds for the MST Problem

We obtain the following upper bounds by modifying Kruskal’s algorithm to fit the
black-box setting at hand.

Theorem 9.2 (Upper bounds for MST). The (ranking-based) unrestricted black-
box complexity of the MST problem is at most 2m + 1. The unary unbi-
ased black-box complexity is O(mn log(m/n)) if there are no duplicate weights and
O(mn log n) if there are. The ranking-based unary unbiased black-box complex-
ity is O(mn log n).The (ranking-based) binary unbiased black box-complexity is
O(m log n). The (ranking-based) 3-ary unbiased black-box complexity is O(m).

In the following, we give the proofs of Theorem 9.2. In Section 9.2.1 we consider
the unrestricted black-box model and in Section 9.2.2 the unbiased one for the different
arities.

Finally, in Section 9.3 we give lower bounds for the black-box complexity of MST
in both the unrestricted and the unbiased black-box models.

130 The Minimum Spanning Tree Problem

9.2.1. The Unrestricted Setting

We start with the statement in the unrestricted setting, which is very simple.

Proof of the 2m+ 1 upper bound. Query the empty graph (0, . . . , 0) as a reference
point, then query all edges emi , i ∈ [m], where we recall that by emi we denote the
i-th unit vector (0, . . . , 0, 1, 0, . . . , 0) of length m. Then test all edges in increasing
order of their weights (ties broken arbitrarily). Accept an edge if it does not form
a cycle (note that this can be checked trough the first component of the bi-objective
objective function). This shows how to run Kruskal’s algorithm after an initial number
of m+ 1 reference queries.

9.2.2. The Unbiased Settings

The unbiased model is more involved. For all three arities, the basic principle of the
algorithm is the same as for the unrestricted algorithm, basically following Kruskal’s
algorithm for the MST construction. In the first step, we create the empty graph.
This serves as a reference point for all further iterations.

In the second step, we learn the weights of the edges (in the unbiased model) and
we learn the ranking/order of the edge weights in the ranking-based model. For both
models we need to learn the multiplicities of the edge weights as well.

Finally, in the third step we test the inclusion of the edges in increasing order of
their weights. For the success of Kruskal’s algorithm it does not matter in which order
we test edges of the same weight.

In the following, we prove upper bounds for the expected number of queries needed
to complete each step. For readability purposes, we split the proof into 4 parts, one
for each model.

Let us remark already here that in the proof we apply only few variation operators,
namely uniform() which samples a bit string x ∈ {0, 1}m uniformly at random, RLS(·)
(random local search) which, given some x ∈ {0, 1}m, creates from x a new bit string
y ∈ {0, 1}m by flipping exactly one bit in x, the bit position being chosen uniformly at
random. We also use the operator complement(·), which assigns to every x ∈ {0, 1}m
its bitwise complement x̄. Lastly, we use the operator RLSk(·, ·). Given some bit stings
x, y ∈ {0, 1}m, RLSk(x, y) outputs a bit string z that has been created from x by
flipping exactly k bits of x, chosen uniformly at random from the set of positions in
which x and y differ. If x and y differ in less than k bits, it outputs x.

For the former three variation operators we have shown in previous sections that
they are unbiased. For the latter one, this can be easily verified by the fact that it
is unbiased if the Hamming distance of x and y is at least k (this has been shown
in Section 8.2) and by the fact that returning one of the two arguments is also an
unbiased operation.

The Unary Unbiased Model

The bound of O(mn logm) for multiple edge weights will follow from the bound
for the ranking-based unary unbiased model, so we give here only the proof for the
O(mn log(m/n)) bound.

9.2. Upper Bounds for the MST Problem 131

Proof of the O(mn log(m/n)) bound.

First step. As required by the unbiased black-box model, we first draw a search
point x ∈ {0, 1}m uniformly at random. We construct the empty graph by creating
y ← RLS(x) and accepting x← y if and only if w(y) < w(x). We do so until w(x) = 0.
By the standard coupon collector argument, this takes an expected O(m logm) queries.
In the following, we denote the empty graph by x0.

Second step. In order to learn the weights, we again employ the operator RLS(·)
iteratively to x0 until we have added all edges. More precisely, we generate a sequence
of search points xk as follows. In the k-th iteration of the second step we create
z ← RLS(xk−1) and query the objective value f(z) = (c(z), w(z)) of z. If w(z) is
larger than w(xk−1), we set xk ← z. Otherwise, we discard z and keep on sampling
from xk−1. Then the difference of the objective values of xk and xk−1 is exactly the
weight of the edge added in the k-th iteration, so we learn all edge weights. By the
same coupon collector argument as before, this takes an expected O(m logm) queries.
Let w1 ≤ . . . ≤ wm be the ordering of the edge weights.

Third step. We return to the search point x0, and show how to construct an
MST for the underlying graph. For any k ≤ n − 1 we call the queries needed to add
the k-th edge to the MST the k-th phase. We start by applying RLS(·) to x0 until we
have found an edge of minimal weight w1. We call the latter sample y1.

Assume now that we have already added i edges of the MST. Let yi be this search
point and let us assume that we have tested the inclusion of the ti “cheapest” edges to
find the i-th one. To test the inclusion of the (ti+1)st edge, we query z(i,t) ← RLS(yi).
If w(z(i,t)) < w(yi), we discard z(i,t). Otherwise, it holds that the weight of the flipped
edge equals w(z(i,t))− w(yi). By the first value c(z(i,t)) we learn whether we can add
this edge without creating a cycle (if and only if c(z(i,t)) < c(yi)).

We do so until we have flipped the (ti + 1)st heaviest edge . This requires an
expected number of m queries. If we cannot add this edge to the current solution
without creating a cycle, we check whether we have already created in one of the
z(i,t)s the string which includes the (ti + 2)nd heaviest edge. If so, we check whether
or not to add it to the current solution. If we have not created it already, we continue
drawing z(i,t) ← RLS(yi) until we have found the edge with the lowest weight that can
be included to our current solution yi. We call the new solution yi+1 and continue
with the (i+ 2)nd phase until we have added a total number of n− 1 edges to x0.

To determine an upper bound for the number of queries needed, let ki := ti − ti−1

be the number of edges for which we have tested the inclusion in the i-th phase
(including the lastly included one). By a coupon collector argument the expected
number of queries needed in the i-th phase is m/ki · ki log ki = m log ki. This follows
from the fact that we need to sample all ki edges (“coupons”) but the chance of getting
one of them equals only m/ki, for each query. Note that this argument works only in
the case when all edge weights are distinct. Otherwise, we would need to sample more
often to be sure that we have seen all edges of the given weight.

This shows that the third phase of the algorithm takes no more than

132 The Minimum Spanning Tree Problem

O(m
∑n−1

i=1 log ki) queries. Since
∑n−1

i=1 ki ≤ m we conclude that

n−1∑
i=1

log ki = log
(n−1∏
i=1

ki
)
≤ log

(
(m/n)n

)
= n log(m/n) ,

and thus, O(m
∑n−1

i=1 log ki) = O(mn log(m/n)). Hence, the unary unbiased black-box
complexity of MST is

O(m logm) +O(m logm) +O(mn log(m/n)) = O(mn log(m/n)) .

The Ranking-Based Unary Unbiased Model

Let us now consider the ranking-based setting. The proof of the O(mn log n) bound
given below carries over to the basic (i.e., the non-ranking-based) unary unbiased
setting with duplicate weights.

In the following, we speak of weights, even if we are in the ranking-based black-box
model. Note however, that we do not need to know the exact value of the weight but
only its rank.

Proof of the O(mn log n) bound.
First step. The first step is exactly the same as in the unary unbiased model. Note

that, thanks to the information given by the ranking, we are still able to determine if
w(y) < w(x) holds.

Second step. For this model, we can skip the second step.
Third step. The difference for the ranking-based unbiased model compared to

the unbiased one is quite obvious. Since we cannot query for the objective value
(c(x), w(x)) but only the relative ranks of c(x) and w(x), we do not know which bits
we have flipped in either one of the iterations. Thus, for the inclusion of the (i+ 1)st
edge, we perform O(m logm) queries z(i,t) ← RLS(yi) to find, with high probability,
the edge with the smallest weight that can be included into the current solution yi.
The high probability statement is again the basic coupon collector’s argument. Note
that we can check the ranking of the weights via the second component of the objective
function and the feasibility of adding it to the current solution via the first component.
If and only if the rank of c(z(i,t)) is strictly less than the one of c(yi), we can include
the corresponding edge. Since we need to include n− 1 edges into the MST, we need
an expected O(nm logm) queries until all edges of the MST have been added.

The Ranking-Based Binary Unbiased Model

Compared to the unary case, in the binary unbiased black-box model we can gain
information about the Hamming distance of two search points. This allows more
powerful algorithms.

Proof of the O(m log n) bound.
First step. As required by the unbiased black-box model, we first draw a search

point x ∈ {0, 1}m uniformly at random.

9.2. Upper Bounds for the MST Problem 133

We can create the empty graph in an expected number of 2m queries as follows.
Set y ← complement(x). We then set z ← RLS1(x, y) with probability 1/2 and
z ← RLS1(y, x) with probability 1/2. We update x ← z (in the first case) and y ← z
(in the second case) if and only if w(z) < w(x) or w(z) < w(y), respectively.

With probability 1/2, this operation decreases the Hamming distance of x and y
by 1 and thus, the expected number of calls to RLS1(·, ·) is 2m; just note that initially
x and y had a Hamming distance of m (compare Lemma 8.4 from Section 8.2.1 for a
rigorous proof of this claim). Note that choosing RLS1(x, y) with probability 1/2 and
RLS1(y, x) with probability 1/2 is still an unbiased operation. As before, let x0 denote
the empty graph.

Second step. As we shall see in the following, the binary model allows us to learn
all m edge weights with multiplicities in O(m logm) queries. The key idea is again
to sample O(m logm) times from x0 a bit string z ← RLS(x0) that differs from x0

in exactly one bit. By the coupon collector’s argument, with high probability, these
samples suffice to have flipped each bit at least once. The main difference to the unary
model is the fact that the binary model allows us to store which edge weights have
been “learned” already.

To learn the first weight, we query z ← RLS(x0). Since x0 is the empty graph, we
have that the weight of the edge corresponding to the flipped position is w(z). Now
we initialize y ← z. Throughout the run of the algorithm we shall have yi = x0

i if and
only if the weight of the i-th edge ν−1(i) is not yet known. This is certainly true after
initialization of y.

Assume now that we have learned already k ≥ 1 edge weights, i.e., x0 and y differ
in exactly k bits. We again query a bit string z ← RLS(x0) that differs from x0 in
exactly one bit. Note that this is a new weight if and only if the Hamming distance
of z to y is k + 1. As mentioned above, we can test the Hamming distance using a
binary unbiased operator.

More precisely, for all ` ∈ N, let dist`(·, ·) be the operator which, given a
pair (x′, y′) ∈ {0, 1}m × {0, 1}m of bit strings, returns x′ if the Hamming distance∑m

i=1 |x′i − y′i| equals ` and returns a 1-Hamming neighbor of x′ otherwise. It is
straightforward to verify that this operator dist`(·, ·) is a binary unbiased one and
from it we learn in one single query whether the two search points at hand are at
Hamming distance ` from each other. The latter is true since all edge weights are
positive, and hence for all 1-Hamming neighbors z′ of x′ we have w(z′) 6= w(x′).

To test whether the Hamming distance of z to y is k + 1, we query distk+1(y, z).
If w(distk+1(y, z)) 6= w(y) we discard the current search point z (we have learned
the weight of the edge in Ez already). Otherwise, i.e., if w(distk+1(y, z)) = w(y), we
need to update y. This can be done in O(logm) queries as follows.

For simplicity, assume for the moment that k + 1 is even. Furthermore, let us
denote by i the bit position in which z and x0 differ. For updating y we need to create
in O(logm) queries a search point y′ which equals y in all bits but the i-th one. To
this end, we create a new search point z′ from y and z by flipping exactly half of the
bits in which y and z differ. More precisely, let z′ ← RLS(k+1)/2(y, z). By computing
the Hamming distance between z′ and x0, we can decide whether z′i = zi. Indeed the
Hamming distance of z′ and x0 equals k − (k + 1)/2 = (k − 1)/2 if z′i 6= zi and it
equals k − ((k + 1)/2 − 1) + 1 = (k + 3)/2 otherwise. We update z ← z′ if z′i = zi,

134 The Minimum Spanning Tree Problem

i.e., if w(dist(k+3)/2(z′, x0)) = w(z′) and we do nothing otherwise. Then we proceed
by flipping again half of the bits in which z and y differ, updating z whenever z′i = zi
in the new sample z′.

If k + 1 is odd, we flip b(k + 1)/2c bits in which y and z differ and, by a similar
reasoning as above, we replace z with z′ if the Hamming distance of x0 and z′ equals
k − (b(k + 1)/2c − 1) + 1 and we discard z′ otherwise.

Repeating like this, we have in each step a probability of 1/2 to reduce the Ham-
ming distance between y and z by half and we find z = y′ after O(logm) queries.

Since we need to learn m weights in total, we need to do O(m logm) 1-bit flips
RLS(x0) and form weights in total we need to run the update procedure for y, requiring
O(logm) queries each. Therefore, we can learn all weights with multiplicities in time
O(m logm).

After having learned the different weights, we can fix some enumeration σ of the
the edges eσ(1), . . . , eσ(m) such that their weights are ordered w1 = w(eσ(1)) ≤ . . . ≤
wm = w(eσ(m)). Note that for every i, we have already sampled a search point yσ(i)

with Eyσ(i) = {eσ(i)}. In what follows, we say that yσ(i) contains only the edge eσ(i).
Third step. As in the unary model, we successively add edges to our current

solution. This time, we call the queries needed to test the inclusion of the i-th heaviest
edge eσ(i), given that we have tested already the inclusion of edge eσ(i−1), the i-th
phase.

We show that such a phase requires at most O(log n) queries. The key idea is
essentially the same as the one in the second phase. Let x be the current search point
and let k := |{Ex}|, the number of edges already included in the current solution.
Note that we know k as we are starting with the empty graph and we are adding
edges one by one. The Hamming distance from x to the search point yσ(i) is k + 1
as the search points differ in the k edges included in x as well as in the bit position
ν(eσ(i)).

Now set z ← RLSb(k+1)/2c(x, yσ(i)) and query its objective value (c(z), w(z)). As
above, by computing the Hamming distance between z and x0, we may decide whether
eσ(i) ∈ Ez or not. Namely, the Hamming distance of x0 and x is k and, thus, the
distance of x0 and z equals k−b(k+ 1)/2c if and only if eσ(i) /∈ Ez and the distance of
x0 and z equals k− (b(k+ 1)/2c− 1) + 1 = k−b(k+ 1)/2c+ 2 otherwise. If eσ(i) /∈ Ez
we discard z and try again. Otherwise, we replace yσ(i) with z and again flip half of
the bits in which z and x differ, updating z whenever eσ(i) is contained in the new
sample. Formally, we query z′ ← distk−b(k+1)/2c+2(x0, z) and we replace yσ(i) with z
if and only if w(z′) = w(z).

Repeating like this, we have in each step a probability of 1/2 to reduce the Ham-
ming distance between z and x by half. Meanwhile, by comparing with x0 we ensure
that eσ(i) is always contained in Ez. Therefore, when the Hamming distance of x and
z decreases to 1, the search point z differs from x only by the edge eσ(i), as desired.
Once given these two search points we decide whether or not to include the i-th heav-
iest edge eσ(i). As argued above, we include edge eσ(i) if and only if by its inclusion
we do not form a cycle, i.e., we include eσ(i) if and only if c(z) < c(x). Clearly we
have k < n − 1 and thus, we need O(log n) queries on average for the i-th phase. In
the worst-case we need to check the inclusion of each of the m edges. Hence, the third

9.2. Upper Bounds for the MST Problem 135

step requires an expected number of O(m log n) queries.

The Ranking-Based 3-Ary Unbiased Model

In the 3-ary model, we have even more flexibility. The main advantage is that we can
create any particular 1-bit flip in a linear number of queries (linear in the length of
the bit string). Using this, we can optimize the MST problem in a linear number of
queries. Again, we use the word “weight” but are aware that we are not given the
exact fitness values but only the ranks of the search points.

Proof of the O(m) bound.
First step. The bound for the binary model holds for the 3-ary one as well, and

thus, O(m) is an upper bound for the first step in the 3-ary model, too. Let us again
denote the empty graph by x0.

Second step. We show how to learn the weights of the edges in O(m) queries. To
encode which edges have been looked at already, we initialize y ← complement(x0),
the bitwise complement of x0. Throughout the run of the algorithm it will hold that
the edges we have looked at correspond to the bit positions in which x and y coincide.

We learn the first edge weight by querying z ← RLS1(x0, y). We update y ←
Update(y, z, x0), where Update(·, ·, ·) is the 3-ary variation operator that can be de-
scribed as follows. Given a, b, c ∈ {0, 1}m, the operator Update(a, b, c) returns c for
those positions where a and b coincide and it returns a otherwise. Formally, for all
i ∈ [m] we have Update(a, b, c)i := ci if ai = bi and we have Update(a, b, c)i := ai
if ai 6= bi. Let us briefly remark that the operator Update(·, ·, ·) is unbiased. This
is easily verified using the fact that for all a, b, d ∈ {0, 1}m we have ai = bi if
and only if (a ⊕ d)i = (b ⊕ d)i and for all σ ∈ Sm we have ai = bi if and only if
σ(a)σ−1(i) = σ(b)σ−1(i).

After having updated y ← Update(y, z, x0) we proceed by querying z ← RLS1(x0, y)
and updating y ← Update(y, z, x0) until we find x0 = y. It is easily verified that this
occurs after m such iterations as the Hamming distance of y and x0 decreases by 1 in
each iteration.

Furthermore, we have created all possible 1-bit flips, after only m such iterations
(i.e., after 2m queries as each step requires two queries). Let us again fix an ordering
of the edges eσ(1), . . . , eσ(m) such that w1 = w(eσ(1)) ≤ . . . ≤ wm = w(eσ(m)). For
every i ∈ [m] let zσ(i) ∈ {0, 1}m be the query corresponding to eσ(i). That is zσ(i) was
obtained from x0 by flipping exactly one bit in which x0 and w(zσ(i)) = wi, the i-th
lightest edge weight.

Third step. We now check the inclusion of the edges to the current solution
in increasing order of their weights. Since eσ(1) can be included without any further
consideration, we may assume that we have already tested the inclusion of the i edges
eσ(1), . . . , eσ(i) with the lowest weights. Let x be our current solution. To test the
inclusion of edge eσ(i+1) into the current solution, we query z ← test(x, x0, zσ(i+1)),
where test(·, ·, ·) is again an unbiased 3-ary variation operator that can be described
as follows. For any a, b, c ∈ {0, 1}m the operator test(a, b, c) outputs a string that has
entries equal to a in all positions for which b and c coincide and entries equal to 1− a
otherwise. This is again unbiased by the same reasons as given above.

136 The Minimum Spanning Tree Problem

Note that in our case, we clearly have that the strings x and z differ in exactly one
bit position (because x0 and zσ(i+1) do). We update x← z if the edge eσ(i+1) can be
included into the current solution (if and only if c(z) < c(x)). We then continue with
testing the inclusion of edge eσ(i+2).

As this third phase requires at most m queries, the ranking-based unbiased 3-ary
black-box complexity of MST can be bounded by O(m).

9.3. Lower Bounds for the MST problem

Theorem 9.3. The unrestricted black-box complexity of MST for complete graphs is
at least (1− o(1))n.

Proof. We apply Yao’s minimax principle, Theorem 2.16. To this end, we show that
there exists a probability distribution over the input set of all weighted complete graphs
such that every deterministic algorithm needs at least (1− o(1))n queries to compute
a MST. More precisely, we consider the distribution p over the set of all inputs where
we sample uniformly at random a spanning tree, and give weight 1 to all of its edges.
All other edges receive weight 2. We call edges of weight 1 “cheap”, and we call all
other edges “expensive”.

Let us now consider a fixed deterministic algorithm A. We assume that the algo-
rithm already knows which bit in the vector corresponds to which edge in the graph.
This assumption makes life only easier for the algorithm. Then for each query the
algorithm knows in advance how many connected component its query has. So the
first component of the objective function does not contain any new information for
the algorithm. If the algorithm makes a query consisting of k edges, then the total
weight of all these edges is contained in the interval [2k−n+ 1, 2k]. This is due to the
fact that any query contains at most n − 1 cheap edges. Therefore, each query gives
at most log2(n) bits of information.

Obviously, the algorithm A needs to learn the set of all cheap edges. It is well
known that the number of spanning trees on n vertices is nn−2 (this is the so-called
Cayley’s formula). Therefore A needs to learn (n− 2) log2(n) many bits, so it has in
the worst case a runtime of T := n − 2. Moreover, for every 0 ≤ t ≤ T , after T − t
many queries the probability to find the correct solution is at most n−t. Therefore,
the probability that A needs at least T steps is bounded from below by

Pr[T (Ip, A) ≥ T] ≥ 1−
T−1∑
t=1

n−t ≥ 1− n−1

1− n−1
= 1− o(1).

Note that the hidden constant in o(1) does not depend on the algorithm A. By
Markov’s inequality, the expected runtime is at least

E[T (Ip, A)] ≥ T · Pr[T (Ip, A) ≥ T]
≥ T · (1− o(1))
= (1− o(1))n.

Since this holds for all deterministic algorithms A, Yao’s minimax principle implies
the statement.

9.3. Lower Bounds for the MST problem 137

In order to prove a lower bound in the unbiased setting, we compare MST with
the OneMax-problem. Since our search space is {0, 1}m, we slightly deviate from
the previous notation and we write Omm for the function that assigns each vector
x ∈ {0, 1}m the objective value Omm(x) :=

∑m
i=1 xi, the number of 1-bits in x.

Theorem 9.4. The k-ary unbiased black-box complexity of MST for m edges is at
least as large as the k-ary unbiased black-box complexity of Omm.

Proof. For a given m, consider a path P on m + 1 vertices, all m edges having unit
weight. For the associated MST fitness function f we have, for all bit strings x ∈
{0, 1}m,

f(x) = (Omm(x),m+ 1−Omm(x)).

In particular, any algorithm optimizing f can be used to optimize Omm with the exact
same number of queries.

As mentioned several times already, OneMaxm has a unary unbiased complexity
of Θ(m logm) = Θ(m log n) [LW10a, Theorem 6] and already Erdős and Rényi [ER63]
showed that the unrestricted black-box complexity of OneMaxm is Θ(m/ logm).
Since the unbiased black-box complexity is bounded from below by the unrestricted
black-box complexity for all problems, these two results imply the following.

Corollary 9.5. The unary unbiased black-box complexity of MST is in Ω(m log n); for
all other arities, the unbiased black-box complexity of MST is in Ω(m/ log n).

138 The Minimum Spanning Tree Problem

139

10
The Single-Source Shortest Paths

Problem

In this section we analyze the black-box complexity of the single-source shortest paths
problem (SSSP). We present bounds for this problem in several black-box models.

Our work reveals that the choice of how to model the optimization problem is non-
trivial here. This in particular comes true for the SSSP problem as this problem is
typically not modeled via bit strings. Therefore, a reasonable definition of unbiasedness
has to be agreed on. As we shall see, transforming the definition from Lehre and
Witt [LW10a] in a straightforward way leads to not very useful results. Taking the
problem semantics into account, we find a reasonable definition for unbiasedness and
prove meaningful black-box complexities.

As in the previous section, the results presented here are based on the conference
publication [DKLW11]. They are joint work with Benjamin Doerr, Timo Kötzing, and
Johannes Lengler.

10.1. Introduction

Even before the results of Neumann and Wegener for the minimum spanning tree
problems, in another one of the earliest theoretical works on evolutionary algorithms
for combinatorial optimization problems, Scharnow, Tinnefeld, and Wegener [STW02,
STW04] analyze how a (1+1) EA-type algorithm solves the SSSP problem. In what
follows, we briefly sketch how Scharnow et al. modeled the SSSP problem.

Since in the SSSP problem a shortest path between the source and any other ver-
tex is sought for, a bit string representation for solution candidates seems not very
natural. Therefore, most works resort to trees or slightly more general structures as
representations. To ease the comparison with most existing works on the SSSP prob-
lem, in this work we shall only work with the vertex-based representation employed
in [STW04], which, roughly speaking, for each vertex stores its predecessor on the

140 The Single-Source Shortest Paths Problem

path from the source to it. We note that superior runtimes were recently proven for
an edge-based approach [DJ10].

The Multi-Criteria Fitness Function. In addition, also the choice of the fitness
function is subtle. In [STW04], a multi-criteria fitness was suggested. For each vertex,
the objective function returns the distance from the source in the current solution
(infinity, if the vertex is not connected to the source). An offspring is only accepted if,
in each of these n− 1 criteria, it is not worse than the parent. For the natural (1+1)
EA building on this framework, they prove an expected optimization time of O(n3).
Doerr, Happ, and Klein improved this to a bound of O(n2 max{`, log(n)}), where ` is
the smallest height of a shortest paths tree [DHK07].

When analyzing the black-box complexity of this formulation of the SSSP prob-
lem, we first note that both unbiased and ranking-based complexities make little sense.
Since the multi-objective fitness explicitly distinguishes the vertices, treating vertices
equally here (as done by unbiased operators) or making individual distances incompa-
rable (as done by component-wise ranking) is ill-natured.

Hence, for the multi-criteria fitness, we shall only regard the unrestricted black-box
complexity. Interestingly, this problem is also among the few combinatorial problems
for which black-box complexity results exist. Droste, Jansen, (Tinnefeld,) and We-
gener [DJTW03, DJW06] showed that the unrestricted black-box complexity of the
SSSP in the multi-criteria formulation is at least n/2 and at most 2n − 3. We first
improve these bounds to exactly n − 1 for both the upper and the lower bound.1

Surprisingly, if we may assume that the input graph is a complete graph, we obtain
a black-box complexity of at most n/2 + O(1), see Table 10.2 in Section 10.2. That
is, the SSSP problem becomes easier (in the black-box complexity sense) if we trans-
form an arbitrary instance to one on a complete graph (but adding expensive dummy
edges).

The Single-Criterion Fitness Function. The natural single-criterion formula-
tion of the SSSP problem takes as objective the sum of the distances of all vertices
to the source. This approach was dismissed in [STW04] for the reason that then all
solutions with at least one vertex not connected to the source form a huge plateau of
equal fitness.

In [BBD+09], it was observed that this artificial problem dissolves if each uncon-
nected vertex only contributes a large value (e.g., larger than the sum of all edge
weights) to the objective value. This is the common way to implement the infinity
value in most algorithms. In this setting, also the single-criterion EA is efficient and
finds the optimum, on average, in O(n3 log(nwmax)) iterations [BBD+09].

For the single-criterion version of the SSSP problem, there is no reason not to
regard unbiased black-box complexities. However, we shall see that finding a good
notion for unbiasedness is a crucial point here. We discuss three different notions of
unbiasedness. Whereas all three notions a priori seem to capture different aspects of
what unbiasedness in the SSSP problem could mean, we show that two of these models
are too powerful. In fact, already the unary version of both the structure preserving
unbiased model, in which, intuitively speaking, all graphs with the same structure but
different node labels are equally likely to be chosen (cf. Definition 10.7) as well as the

1Note that the upper bound in [DJW06] still holds in a more restricted setting, cf. Section 10.2.

10.2. SSSP with a Multi-Criteria Fitness Function 141

unrestricted rb unrestricted rb unary redirecting binary redir. unb.

upper bound n(n− 1)/2 (n− 1)2 O(n3) O(n2 logn)

Table 10.1. Upper bounds for the black-box complexity of SSSP with single-
criteria fitness function in the different models. A lower bound of Ω(n2) for the
redirecting unbiased black-box complexity is shown in Theorem 10.15. Abbrevia-
tions: rb = ranking-based, redir. unb.= redirecting unbiased.

generalized unbiased model as proposed by Rowe and Vose [RV11] yield almost the
same black-box complexities as the unrestricted black-box model. As we shall prove in
Sections 10.3.2 and 10.3.5, these three black-box complexity notions differ by at most
one query. Hence, we feel that neither the structure preserving nor the generalized
unbiased model sufficiently capture what “unbiasedness” in the SSSP problem should
mean. We find this surprising as both model seem to be a very natural extension of
the unbiasedness notion of Lehre and Witt [LW10a].

We suggest a third model, the redirecting unbiased black-box model in which,
intuitively, a node may choose to change its predecessor in the shortest paths tree,
but if it decides to do so, then all possible predecessors must be equally likely to be
chosen. We show that this model indeed yields more meaningful black-box complexi-
ties. Table 10.1 gives a brief summary of our main findings. More results are given in
Section 10.2.

Precise Problem Definition.

Definition 10.1 (SSSP). The Single-Source Shortest Paths (SSSP) problem con-
sists of a connected graph G = (V,E,w) on n := |V | vertices and m := |E| edges.
There is a distinguished source vertex s ∈ V . The objective is to find, for all vertices
v ∈ V \{s}, a path pv in G from s to v such that the total weight of pv,

∑
e∈pv w(e),

is minimal among all paths from s to v.

It is well-known that the set of all edges that are used on a shortest path from
s to some vertex v forms a tree. Thus, implicitly, SSSP is the problem of finding a
minimum cost tree rooted in s.

Conventions. In what follows, we always assume all input graphs to be connected.
Without loss of generality we assume that the nodes are labeled by 1, . . . , n and that
s = 1 is the source for which we need to compute the shortest paths tree.

10.2. SSSP with a Multi-Criteria Fitness Function

The paper [DJW06] argues for a multi-criteria objective function, where any algorithm
may query arbitrary trees on [n] and the objective value of any such tree is an n − 1
tuple of the distances of the n− 1 non-source vertices to the source s = 1 (if an edge
is traversed which does not exist in the input graph, the entry of the tuple is ∞).

From [DJW06] we know that the unrestricted black-box complexity of this problem
is lower bounded by n/2 and upper bounded by 2n− 3.2

2Note that the upper bound given in [DJW06] was shown to hold in the 2-memory-restricted

142 The Single-Source Shortest Paths Problem

In this section, we first improve both the lower and the upper bound from [DJW06]
matching them at n− 1 exactly. Then we restrict the problem instances to complete
graphs, which will avoid objective values of ∞ for the different objectives; for this
setting, there are more efficient algorithms available than in the setting allowing in-
complete graphs.

The following table summarizes our results for these settings.

arbitrary connected graph complete graph

upper n− 1 b(n+ 1)/2c+ 1

lower n− 1 n/4

Table 10.2. Upper and lower bounds for the unrestricted black-box complexity of
the SSSP problem with multi-criteria objective function.

Theorem 10.2. The unrestricted black-box complexity of SSSP with arbitrary input
graphs is n− 1.

Proof. We start with the upper bound. We simulate Dijkstra’s algorithm by first
connecting all vertices to the source, then all but one vertices to the vertex of lowest
distance to the source, then all but the two of lowest distance to the vertex of second
lowest distance and so on, fixing one vertex with each query. This will cost an overall
of n− 1 queries.

For the lower bound consider the set S of all graphs on {1, . . . , n} which contain
exactly one path as edges (all of weight 1), one of the endpoints being the source s = 1,
and no other edges. We apply Yao’s minimax principle, Theorem 2.16. To this end,
let a deterministic algorithm A be given; we show that A uses in expectation n − 1
queries on a graph drawn uniformly at random from S. We do this by showing that,
in expectation, each query will give at most one new non-∞ entry in the tuple. To
this we shall apply the additive drift theorem for lower bounds, Theorem 2.17.

We can assume without loss of generality that, during the run of algorithm A, the
number of finite entries in the objective value does never decrease. Suppose that, after
some queries, A has determined n− 1− k finite entries in the objective value, so for k
vertices A has still not discovered a path to the source. Let T be the next query of A.
Let U be the set of all vertices that A connects, in T , with a vertex with finite distance
to the source. For all v ∈ U , let t(v) be the number of vertices that A connects to the
source via v. The expected number of new non-∞ entries in the objective value of T
is at most ∑

v∈U

1 + t(v)
k

, (10.1)

as 1/k is the probability that a given v ∈ U is the next vertex in the path after the

setting. That is it holds in the restricted setting where the algorithm may only store up to two
previous data points (cf. Section 7). Our algorithm for improving this bound (given in the proof of
Theorem 10.2) does not work in this restricted setting. However, our algorithm also does not require
the full storage granted by the unrestricted setting, but merely needs to store a linear number of
pointers at any given time.

10.2. SSSP with a Multi-Criteria Fitness Function 143

known vertices, and once we get that vertex right, we gain at most 1 + t(v) new non-
∞ entries. As we have a total of k vertices left to connect with the source, we have∑

v∈U t(v) = k − |U |. We have that (10.1) equals |U |/k + (k − |U |)/k = 1. Now the
additive drift theorem, Theorem 2.17, gives the desired bound.

Surprisingly, if we may assume that the input graph is complete, we obtain a lower
complexity. Note that this includes the case where the complete graph is obtained
from an arbitrary one by adding dummy edges with artificially high weight. This
shows, again, that even small changes in modeling the combinatorial problem can lead
to substantial changes in the black-box complexity.

Theorem 10.3. The unrestricted black-box complexity of SSSP with complete input
graphs is bounded from above by b(n+ 1)/2c+ 1 and bounded from below by n/4.

Proof. We start with showing the upper bound. Essentially we prove that it is
possible to learn the problem instance quickly.

We show that the complete graph Kn on n vertices may be written as the union
of b(n + 1)/2c spanning trees. If n is even then it is well known that Kn may be
decomposed into n/2 edge-disjoint spanning trees [KK09]. If n is odd, then we choose
a node v and all edges adjacent to v, thereby getting a spanning tree. The remaining
edges form a Kn−1. Since n − 1 is even we may decompose the remaining edges into
(n− 1)/2 spanning trees of Kn − {v}, which we complete to spanning trees of Kn in
an arbitrary way. Hence we have written Kn as the union of (n+ 1)/2 spanning trees.

Now we describe our strategy. We choose a cover of b(n + 1)/2c spanning trees
as above. For each spanning tree T , we make a query to the oracle which contains
exactly the vertices in T . After the query, we know for each vertex v its distance
from the source s. Since T is a spanning tree, all distances are finite and all nodes
can be reached via a unique path from s. Therefore, we can compute all the weights
of edges in T . Since the spanning trees cover all edges, we know all edge weights
after b(n+ 1)/2c queries. By our unrestricted computational power, we compute the
minimal spanning tree and query for it.

As for the lower bound, we apply again Yao’s minimax principle, Theorem 2.16.
We sample instances by having each vertex i ≥ 2 choose uniformly at random a
j ∈ {1, . . . , i − 1} and then giving 1 as the weight to the edge between i and j, and
weight n to all other edges. We call edges of weight 1 “cheap”, and all other edges
“expensive”. By construction, the desired shortest paths tree consists precisely of the
the cheap edges (and for each i, the chosen j is the predecessor on that shortest paths
tree).

Optimizing an instance as described above only becomes easier if we allow querying
arbitrary sets of n − 1 edges instead of trees, and it becomes even easier if we allow
the algorithm to perform these queries in a sequential manner, i.e., instead of querying
a full tree, we allow the algorithm to query the n − 1 edges of the tree one by one.
For any such edge-query we assume the oracle to reveal the weight of that edge to the
algorithm. Furthermore, we assume that the algorithm is done once it has queried
each cheap edge at least once. Let a deterministic algorithm A be given. For each
i ≤ n, A has to find a needle-in-the-haystack of size i − 1. Note that the different
haystacks are completely independent; hence, the haystack associated with vertex i

144 The Single-Source Shortest Paths Problem

requires an expected number of i/2 (edge) queries [DJW06, Theorem 1]. Due to our
simplifying assumptions, it is of no importance in which order the algorithm uses its
queries for the different haystacks. We can assume that all haystacks will be queried
in order of increasing i, each until the cheap edge for vertex i has been found. Thus,
we get an overall expected number of

n∑
i=2

i

2
=
n(n+ 1)

4
− 1

2
.

edge queries; hence, A will need an expected number ≥ n/4 tree queries.

10.3. SSSP with a Single-Criterion Fitness Function

We have seen in the previous section that SSSP with a multi-criteria objective function
has complexity Θ(n). We feel that this is not satisfactory as already the size of the
input is in Ω(m), wherem is the number of edges. The reason for this discrepancy is the
large amount of information that the objective function contains. In order to obtain a
more realistic black-box model, we study a more restrictive objective function. For this
alternative model, it is possible to define notions of unbiased black-box complexity.

In this section we consider the following model for the SSSP problem. A rep-
resentation of a candidate solution will be a vector (ρ(2), . . . , ρ(n)) ∈ [n]n−1 to be
interpreted as follows. The predecessor of node i is ρ(i). Note that we do not require
that ρ(i) 6= i, nor do we require that the candidate solution forms a tree; randomized
search heuristics without repair mechanisms might generate such solutions. In order
to reflect the meaning of the components, the indices of such an x will run from 2 to
n, i.e., x = (x2, . . . , xn).

Since we do not want the objective function to give vertex-specific information, we
use, for a given graph G, the single-criterion objective function fG(ρ(2), . . . , ρ(n)) :=∑n

i=2 di where di is the distance of the i-th node to the source. If an edge—including
loops—is traversed which does not exist in the input graph, we set di := C where C
is some very large value (e.g., we could choose C := nwmax). Let us mention already
here that both in the unrestricted and in the structure preserving model the value C
can be learned by the algorithm in a constant number of queries, e.g., by querying the
objective value of search point (2, . . . , 2) in the unrestricted model and dividing it by
n−1 and, similarly, querying a search point with “all nodes to one non-source node” in
the structure preserving unbiased model. In the redirecting unbiased model we learn
the value of C by iteratively querying a search point x ∈ [n]n−1 uniformly at random.
The probability to obtain in one query a search point where all nodes do not point to
the source is (1 − 1/n)n−1 ≥ 1/e. Hence, the probability that after a linear number
n of queries no such search point has been sampled is at most (1 − 1/e)n = o(1).
Since neither the constant overhead in the unrestricted and the structure preserving
unbiased model nor the linear overhead in the redirecting unbiased model changes the
asymptotic bounds given below, we assume that the value C is known to the algorithm.

10.3. SSSP with a Single-Criterion Fitness Function 145

10.3.1. The Unrestricted Black-Box Complexity

Theorem 10.4. The unrestricted black-box complexity of the SSSP problem with the
single-criterion objective function is at most

∑n−1
i=1 i = n(n − 1)/2 and the ranking-

based unrestricted one is at most (n− 1)2.

Proof of Theorem 10.4. Let G = (V,E,w) be the input graph. We show that adding
the i-th node to the shortest paths tree costs at most n− i queries in the unrestricted
model and at most n − 1 queries in the ranking-based unrestricted model. Basically,
we are imitating Dijkstra’s algorithm. We say that a node is unconnected if in the
current solution there does not exist a path from that node to the source and we say
it is connected otherwise. Recall that the indices run from 2 to n, so (2, 3, . . . , n)
encodes the graph where every node except the source points to itself and is thus not
connected to the source.

In the first n− 1 iterations query the strings (1, 3, 4, . . . , n), (2, 1, 4, 5, . . . , n), . . . ,
(2, . . . , n−1, 1), each of which connects exactly one node to the source and lets all other
nodes point to themselves. Then each of these strings has n − 2 unconnected nodes,
which contribute equal to the fitness function. In the non-ranking-based model, we
learn the costs of the edges adjacent to the source. In the ranking-based model, we still
learn their ranking. In particular, in both models we learn which node v1 ∈ {2, . . . , n}
can be connected to the source at the lowest cost.

Now assume that k < n− 1 nodes v1, . . . , vk ∈ {2, . . . , n} have been added to the
shortest paths tree already.

In the non-ranking-based model, we proceed as follows. Test all n− k− 1 possibil-
ities to connect exactly one unconnected node to vk and let every other unconnected
node point to itself. We learn the costs of all edges between unconnected nodes and
vk. Furthermore, we compute for each j < k the lowest cost for connecting an uncon-
nected node to the source via vj . Note that for j < k we have gathered the required
information in previous steps. The cheapest such connection is added to the current
solution, and we denote this node by vk+1. Thus, we have constructed the shortest
paths tree in

∑n−1
i=1 i = n(n− 1)/2 queries.

In the ranking-based model we perform the following n−1 queries in the k-th step.
In each query, we connect the node v1, . . . , vk as learned before. For the unconnected
nodes, we query the following combinations.

• For each unconnected node v make the following query. Connect v to vk, and
let all other unconnected nodes point to themselves.

• For each j ∈ [k − 1], take the unconnected node with minimal edge cost to vj .
Connect this node to vj , and connect all other unconnected node to themselves.

Note for the second type that we know the unconnected node with minimal edge cost
to vj because we have learned the ranking of all edges adjacent to vj in an earlier step.

Since all queries have exactly n−k−2 unconnected nodes, the contribution of these
nodes to the cost function is equal for all queries. Thus we learn which unconnected
node produces minimal cost when attached to v1, . . . , vk. We call this node vk+1.
Moreover, we learn the ranking of all edges from unconnected nodes to vk, which we
need in the forthcoming steps.

146 The Single-Source Shortest Paths Problem

Together, the algorithm adds an additional vertex to the current solution using
n− 1 queries. Since we have to add n− 1 vertices in total, the claim follows.

10.3.2. Unbiased Black-Box Models for SSSP

In this section we would like to study SSSP in black-box models that require some
unbiasedness, as we did for the MST problem. However, the Hamming-unbiased model
of Lehre and Witt in [LW10a] only applies to pseudo-Boolean functions, cf. Section 3.2.
As we are dealing with a different representation here, our first step is to find an
appropriate notion of unbiasedness for our setting.

To this end, let us first formulate the unbiased model by Lehre and Witt in a more
abstract way.

Definition 10.5. Let k ∈ N. Let S be a set (the search space), and let G be a set of
bijections on S that forms a group, i.e., that is closed under composition and under
inversion. We call G the set of invariances.

A k-ary, G-unbiased distribution is a family of probability distributions(
D(· | y1, . . . , yk)

)
y1,...,yk∈S over S such that for all inputs y1, . . . , yk ∈ S the con-

dition
∀x ∈ S ∀g ∈ G : D(x | y1, . . . , yk) = D(g(x) | g(y1), . . . , g(yk))

holds.
An operator sampling from a k-ary, G-unbiased distribution is called a k-ary, G-

unbiased variation operator.
If no confusion can arise, we use the term unbiased instead of G-unbiased

A k-ary, G-unbiased black-box algorithm can now be described via the scheme of
Algorithm 36. The k-ary, G-unbiased black-box complexity of some class of functions
F defined on S is the complexity of F with respect to all k-ary, G-unbiased black-box
algorithms.

Algorithm 36: Scheme of a k-ary, G-Unbiased Black-Box Algorithm
Initialization: Sample x(0) ∈ S from a 0-ary G-unbiased distribution and1

query f(x(0));
Optimization: for t = 1, 2, 3, . . . do2

Depending on
(
f(x(0)), . . . , f(x(t−1))

)
choose k indices i1, . . . , ik ∈ [0..t− 1],3

and a k-ary, G-unbiased distribution (D(. | y(1), . . . , y(k)))y(1),...,y(k)∈{0,1}n ;
Sample x(t) according to D(· | x(i1), . . . , x(ik)) and query f(x(t));4

To make very precise the connection between this generalized model and the origi-
nal model by Lehre andWitt, recall that they formulated their model for the hypercube
{0, 1}n as search space, where the set G of invariances is the set of all bijections of the
search space that preserve Hamming distances. Note that every such bijection may be
written in the form g(x) = σ(x⊕ z), where z ∈ {0, 1}n is an XOR shift in direction z
and σ ∈ Sn is a permutation of the bit positions. We call operators that are unbiased

10.3. SSSP with a Single-Criterion Fitness Function 147

with respect to this set of invariances Hamming-unbiased operators, and similarly for
unbiased black-box algorithms and unbiased black-box complexity.

Here in this work we discuss three possible sets of invariances, giving rise to
structure preserving unbiased black-box complexity, redirecting unbiased black-box
complexity, and generalized unbiased black-box complexity, respectively. The former
two unbiased notions were introduced in the original paper underlying this section,
cf. [DKLW11], and the latter one was introduced by Rowe and Vose in a more general
framework for unbiasedness notions [RV11]. We find that the structure preserving
and the generalized unbiased complexity are too powerful to give anything new com-
pared to the unrestricted black-box model, whereas the redirecting model seems more
promising.

Before we turn to the specific sets of invariances, we develop some general theory
on G-unbiased distribution, for any set of invariances G. Assume we have a k-tuple
~z = (z1, . . . , zk) of search points, and we would like to sample the next search point
according to a probability distribution D~z over the search space. We may do so if and
only if there is a k-ary G-unbiased distribution (D(· | ~y))~y such that D(· |~z) = D~z. An
obvious necessary condition is

For all g ∈ G such that g(zi) = zi for all i ∈ [k], and
for all x ∈ [n]n−1 it holds that D~z(x) = D~z(g(x)).

(10.2)

The following proposition shows that this condition is also sufficient.

Proposition 10.6. Let G be a set of invariances, i.e., a set of permutations of the search
space S = [n]n−1 that form a group. Let k ∈ N, and ~z = (z1, . . . , zk) ∈ Sk be a k-tuple
of search points. Let

G0 := {g ∈ G | g(zi) = zi for all i ∈ [k]}

be the set of all invariances that leave z1, . . . , zk fixed.
Then for any probability distribution D~z on [n]n−1, the following two statements

are equivalent.

(i) The probability distribution D~z extends to a k-ary G-unbiased distribution
(D(· | ~y))~y∈Sk on S with D~z = D(· |~z).

(ii) For every g ∈ G0 and for all x ∈ S it holds that D~z(x) = D~z(g(x)).

Proof. The implication (i) =⇒ (ii) follows directly from Definition 10.5.
So assume that D~z satisfies (ii). We explicitly define the unbiased distribution as

follows. For all ~y ∈ Sk there are two possibilities.

1. Either there exists a g ∈ G such that g(yi) = zi for all i ∈ [k]. In this case, we
define D(x | ~y) := D~z(g(x)) for all x ∈ S.

2. Or there does not exist such a g. In this case, we let D(· | ~y) be the uniform
distribution over the search space.

Condition (ii) implies that the distributions D(· | ~y) are well-defined. It is straightfor-
ward to check that they form a k-ary structure preserving unbiased distribution that
extends D~z.

148 The Single-Source Shortest Paths Problem

Although the formulation of the proposition looks rather technical, it is a key
ingredient for determining how powerful unbiased operators are. Statement (i) is the
statement we are interested in: It says that a given probability distribution over the
search space may be used to determine the next search point. On the other hand,
statement (ii) gives us a criterion that can be checked using only the distribution
D~z, without reference to the whole family of distributions associated to an unbiased
operator.

Now we are ready to introduce the three sets of invariances. The three notions will
be defined first, followed by a discussion on the main differences between them.

In the first unbiasedness condition, we want the algorithm to be unbiased with
respect to relabeling of the nodes. Intuitively, all subgraphs with the same structure
but different labels are equally likely to be chosen.

Definition 10.7 (Structure preserving unbiasedness). Let k ∈ N. A k-ary structure
preserving unbiased distribution is a k-ary SP -unbiased distribution over [n]n−1

with set of invariances
SP = {σ̂ | σ ∈ Sn, σ(1) = 1},

where for all x = (x2, . . . , xn) ∈ [n]n−1, σ̂(x) :=
(
σ(xσ−1(2)), . . . , σ(xσ−1(n))

)
.

Alternatively, as search points are just mappings from the vertex set into itself, we
might require that all possible images of each vertex are to be treated symmetrically.
The idea is that an unbiased probability distribution would then be unbiased with
respect to redirecting the pointers to predecessors of the vertices. Formally, we require
the following.

Definition 10.8 (Redirecting unbiasedness). Let k ∈ N. A k-ary redirecting un-
biased distribution is a k-ary RD-unbiased distribution over [n]n−1 with set of
invariances

RD = {~s | ~s = (σ2, . . . , σn) ∈ Sn−1
n },

where for all x = (x2, . . . , xn) ∈ [n]n−1, ~s(x) :=
(
σ2(x2), . . . , σn(xn)

)
.

At the same time when we developed the structure preserving and the redirecting
black-box models, Rowe and Vose [RV11] independently extended the notion of un-
biasedness from the hypercube to arbitrary search spaces. More precisely, Rowe and
Vose define the following.

Definition 10.9 (Generalized unbiased distributions [RV11]). Let F be a class of
functions from search space S to some set Y . We say that a bijection α : S → S
preserves F if for all f ∈ F it holds that f ◦α ∈ F . Let Π(F) be the class of all such
F-preserving bijections α.

A k-ary generalized unbiased distribution (for F) is a k-ary Π(F)-unbiased
distribution.

Note that for the previous definition that it is argued in [RV11] that Π(F) in-
deed forms a group so Definition 10.9 satisfies our definition of unbiasedness given in
Definition 10.5.

10.3. SSSP with a Single-Criterion Fitness Function 149

As for the hypercube, we call an operator sampling from a k-ary structure pre-
serving (redirecting, generalized) unbiased distribution a k-ary structure preserving
(redirecting, generalized) unbiased variation operator. Similarly, we define a k-ary
structure preserving (redirecting, generalized) unbiased algorithm to be a k-ary SP -
unbiased (RD-unbiased, Π(F)-unbiased) algorithm.

Now we determine the distributions D~z satisfying condition (ii) in Proposition 10.6
for the structure preserving model and for the redirecting model, respectively. As the
analysis of the generalized model is more involved, we postpone it to Section 10.3.5.

Let us first consider the unary case k = 1 and ~z = (z). For the structure preserving
model, we need to find all source-preserving permutations that leave z unchanged.
These are in one-to-one correspondence with the source-preserving automorphisms
of the graph induced by z, i.e., with source-preserving bijections of the vertex set
that map neighbors to neighbors. If A denotes the group of these automorphisms,
then condition (ii) in Proposition 10.6 is that D~z must be invariant under A, i.e., for
all α ∈ A and all x ∈ [n]n−1 we require D~z(x) = D~z(α(x)). For higher arities k, for
~z = (z1, . . . , zk), we get a group Ai of source-preserving automorphisms for each search
point zi. In this case, condition (ii) in Proposition 10.6 is that D~z must be invariant
under the intersection A =

⋂
i∈[k]Ai of all these groups.

For the redirecting model, we again treat the unary case first. We need to determine
all tuples s ∈ Sn−1

n such that ~s(z) = z. Consider any component zi of z. Then we
can choose σi to be any permutation of [n] with σi(zi) = zi. In particular, for all
s, t ∈ [n] \ {zi} there is such a permutation mapping s to t. Therefore, a distribution
D~z over the search space can be extended to a unary redirecting unbiased distribution
if and only if the following condition is satisfied. “If x, y ∈ [n]n−1 are vectors such
that for every i ∈ [2, . . . , n] the equations xi = zi and yi = zi are either both true or
are both false, then D~z(x) = D~z(y)”. So for each vertex, we may choose whether we
redirect it or not, but we cannot control where it is redirected to. This is an important
to note difference to the Hamming-unbiasedness where we may not ask for something
like “change the j-th entry of the current search point”.

For higher arities k, for ~z = (z1, . . . , zk), a distribution D~z over the search space
can be extended to a k-ary redirecting unbiased distribution if and only if the following
condition is satisfied. “If x, y ∈ [n]n−1 are vectors such that for every i ∈ [2, . . . , n]
with xi 6= yi it holds that xi, yi ∈ [n] \ {z1

i , . . . , z
k
i }, then D~z(x) = D~z(y)”. So for each

vertex, we may choose to direct it to any target that occurs in the points z1, . . . , zk, or
we may choose to direct it to some new destination, but in the latter case we cannot
control the exact target.

We see that for a probability distribution over the search space, being redirecting
unbiased is a rather strong condition.

10.3.3. The Structure Preserving Unbiased Black-Box Model

As we shall prove now, being structure preserving unbiased is a very weak condition,
the reason for this being the fact that many graphs have few automorphisms. In fact,
we obtain the following theorem.

Theorem 10.10. Let F be a class of real-valued functions on [n]n−1. The unary

150 The Single-Source Shortest Paths Problem

structure preserving unbiased black-box complexity of F is at most 1 + UBBC(F),
where UBBC(F) denotes the unrestricted black-box complexity of F .

Furthermore, the same holds for the associated ranking-based complexities.

Proof. We may use the following unary structure preserving unbiased algorithm. With
the first query, sample a path p starting in the source, i.e., sample from the distribution
that has equal positive probability on all search points that represent such a path, and
that has probability 0 elsewhere. This is a 0-ary (and hence, also unary) structure
preserving unbiased operator. Since p has no source preserving automorphism, every
probability distribution Dp over the search space can be extended to a unary structure
preserving unbiased distribution.

Therefore, we have now the full power of the unrestricted model and may imitate
any (ranking-based) unrestricted black-box algorithm.

Corollary 10.11. The ranking-based unary structure preserving unbiased black-box
complexity of the SSSP problem with the single-criterion objective function is O(n2).

10.3.4. The Redirecting Unbiased Black-Box Model

It has been argued in [BBD+09] that the Randomized Local Search variant which
in each iteration redirects exactly one vertex chosen uniformly at random, solves the
single-source shortest paths problem with the single-criterion fitness function in O(n3)
iterations.

Theorem 10.12 (from [BBD+09]). The Randomized Local Search algorithm for SSSP
with the single-criterion fitness function has runtime O(n3).

Since this algorithm is contained in the ranking-based redirecting unbiased black-
box model, we immediately gain an upper bound of O(n3).

Corollary 10.13. The ranking-based unary redirecting unbiased black-box complexity
of SSSP is O(n3).

If we are allowed to access the fitness values themselves instead of their ranking,
it is possible to learn the problem instance in fewer steps. Once we know the problem
instance, we may compute the optimal solution without cost, because we are only
charged for queries. Afterwards, we only have to construct the solution by a sequence
of queries. For complete input graphs and binary distributions, all this is possible in
time O(n2 log n).

Theorem 10.14. The binary redirecting unbiased black-box complexity of SSSP for
complete graphs is O(n2 log n).

Proof. We divide the algorithm into three phases. In the first two phases we learn the
weights of the problem instance and in the third phase we construct the solution.
Phase 1: Similar to the previous algorithms, we first construct a search point where no
vertex is connected to the source, i.e., no vertex is in the same connected component
as the source. Again we call such vertices “unconnected” vertices, and we call all other
vertices “connected”.

10.3. SSSP with a Single-Criterion Fitness Function 151

As briefly discussed at the beginning of this section, we may obtain such a search
point by iteratively sampling search points uniformly at random from [n]n−1. The
probability to sample a search point with no non-source vertex connected to the source
in one query is (

1− 1
n

)n−1

≥ 1
e
.

If we sample n times, then the probability that no such search point occurs is expo-
nentially small in n. Hence, we may assume that we find the global maximum. From
the global maximum we derive the punishment value C that is charged for every un-
connected vertex by dividing the global maximum by n− 1. Since C ≥ nwmax holds,
we are able to decide for each search point how many vertices are connected to the
source.

We sample again uniformly at random from the search space and look for search
points xi where exactly one vertex i is connected. In order to find such a search point,
i must direct to the source, and every other vertex must direct to one of the vertices
[n] \ {1, i}. The probability for this to happen is

1
n

(
1− 2

n

)n−2

=
1
n

(
1− 2

n

)(n2−1)2

≥ 1
e2n

= Ω(1/n) .

Since these events are disjoint for all i ∈ {2, . . . , n}, the probability to sample a search
point xi for some i ∈ {2, . . . , n} is constant. By a coupon collector argument, we need
Θ(n log n) many samples until we have seen all xi.

In order to determine the vertex i from the search point xi, we apply the unary
redirecting-unbiased operator Oj , which redirects vertex j and leaves the rest un-
changed, to the search point xi, for all j ∈ {2, . . . , n}. For i = j the result is a search
point with all vertices unconnected, whereas all other operators give at least one con-
nected vertex. Therefore, we can determine the index i in linear time. We do this
procedure for all search points xi, requiring O(n2 log n) queries in total.

Thus, in the first phase we have constructed the empty graph, and for each i ∈
{2, . . . , n} we have constructed a search point xi in which only node i is connected to
the source. In total we have queried

Θ(n) + Θ(n log n) + Θ(n2 log n) = Θ(n2 log n)

search points.
From the empty graph we have learned C and we can compute the

weight of the edge {1, i} by subtracting (n − 2)C from the weight of xi, i.e.,
w({1, i}) = w(xi)− (n− 2)C.

Phase 2: To each search point xi, we apply the unary unbiased operator which keeps
vertex i unchanged and redirects all other vertices. We look for search points xi,j

where i points to the source, j points to i, and all other vertices are not connected
to the source. By a similar calculation as above, we find out that the probability to
find a specific xi,j is in Θ(1/n), and that for fixed i we need to sample Θ(n log n)
many times from xi to have sampled, with high probability, all search points xi,j with
j ∈ {2, . . . , n}. This is again the standard coupon collector’s argument.

152 The Single-Source Shortest Paths Problem

We repeat the process for all i, and store all the points xi,j in a set Xi. In fact,
since we cannot distinguish whether two samples connect the same two points to the
source, Xi is a multiset with an expected number of Θ(n log n) many elements. By
the union bound, with probability at least 1/2 every multiset Xi contains every search
point xi,j , for all i, j ∈ {2, . . . , n} with i 6= j. We will assume henceforth that we have
indeed found all these search points. We can increase the probability of success by
repeating the whole algorithm several times, cf. Lemma 2.14.

Note, finally, that from a sample xi,j we can compute the weight of the edge {i, j},
without knowing the vertex j it belongs to. In total, phase 2 needs time O(n2 log n).

Phase 3a: We construct the SSSP tree iteratively. Beforehand, we construct some
auxiliary search points. For any i ∈ {2, . . . , n}, consider the binary operator that on
input (x, y) returns a search point z with zi = xi and zj = yj for all j 6= i. This
operator is easily seen to be unbiased in the redirecting sense. Applying this operator
to the pair (xi, y) redirects the vertex i in y to the source. By recursive application
we can generate a search point y0 with all vertices pointing to the source, in time
O(n). Fix an index i. We redirect i in y0 and check whether we obtain a search
point yi with fewer connected vertices. This happens if and only if i is redirected to
itself, since all other vertices are connected. In expectation, O(n) redirections of the
vertex i are necessary until it points to itself. In this way, for every i ∈ {2, . . . , n} we
generate a search point yi with i pointing to itself. Using these search points, we may
henceforth redirect any vertex of a given search point to itself by a binary unbiased
operator. In particular, we can generate a search point where all vertices point to
themselves, in linear time. Altogether, phase 3a takes total time O(n2).

Phase 3b: We construct the SSSP tree by imitating Dijkstra’s algorithm. We start
with the search point u0 where all vertices point to themselves.

Throughout this phase we maintain a search point ut where all vertices in the
connected component of the source point to the correct target (i.e., to the same target
as in the SSSP tree), and all other vertices point to themselves. In each step, we
will know which vertices are connected to the source in ut. Finally, we maintain a
(multi-)set X ⊆ {xi | i ∈ {2, . . . , n}} ∪X2 ∪ . . .∪Xn of search points representing the
edges that may be used to extend yt. We start with X := {xi | i ∈ {2, . . . , n}}.

In each step, we choose the search point x ∈ X that represents the cheapest
edge. Assume that the edge connects it to jt, with it known to the algorithm. If
x is of the form xi, then it is simply the source. We apply the binary operator to
(ut, x) that redirects node jt to node it in ut. Formally, this is a binary operator
(D(· | v, w))v,w∈[n]n−1 that, given a pair (v, w) of search points, redirects in v to it all
nodes j which in w point to it. All nodes not directing to it are not redirected in v. Let
us briefly show that this operator is indeed an unbiased one. By Proposition 10.6 we
need to verify that for all v, w ∈ [n]n−1 and for all ~s = (σ2, . . . , σn) ∈ Sn−1

n satisfying
σi(vi) = vi and σi(wi) = wi for all i ∈ {2, . . . , n} we have

∀x ∈ [n]n−1 : D(x | v, w) = D(~s(x) | v, w) ,

where we recall that, by definition, D(~s(x) | v, w) = D ((σ2(x2), . . . , σn(xn)) | v, w).
To this end, let x ∈ [n]n−1 be given. Clearly, D(x | v, w) = 1 if and only if xk = it for

10.3. SSSP with a Single-Criterion Fitness Function 153

all k ∈ {2, . . . , n} with wk = it and xk = vk for all other k. Assume D(x | v, w) = 1.
We show that x is a fixpoint of ~s. If wk = it, by assumption, we have σk(it) =
σk(wk) = wk = it. Therefore, σk(xk) = σk(it) = it = xk for all such k. Similarly we
have σk(vk) = vk for all k and therefore, σk(xk) = σk(vk) = vk = xk for all k with
wk 6= it. Hence, x is indeed a fixpoint of ~s. Since all σi are bijective, similarly we
conclude that D(~s(x) | v, w) = 0 if and only if D(x | v, w) = 0.

Note that in our case we shall always have exactly one node only that points to
it. Therefore, for the pair (ut, x), this operator redirects only the vertex jt to it (in
ut). We denote the new search point ũt+1. If the number of connected components
satisfies c(ũt+1) ≥ c(ut) (i.e., the number of nodes which are connected to the source
remains unchanged or decreases), we conclude that jt was already connected in ut.
In this case, we remove x from X, reject ũt+1, and continue with ut. On the other
hand, if the number of connected components decreases (i.e., the number of vertices
connected to the source increases), then we know that jt was not connected so far,
and that jt directs to it in the shortest paths tree. In this case, we accept ũt+1 as new
search point by updating ut+1 := ũt+1. Since all unconnected vertices in ut point to
themselves, the same is true for ut+1.

If we move to ut+1, we need to determine the index jt of the vertex we have just
added. If x is of the form xi, then we already know the index. If x is of the form
xi,j , we need to find out jt = j. We do this by applying the operators Oj to x, for
j ∈ {2, . . . , n} \ {it} until the number of connected vertices drops to 1. This happens
only if j = jt, so we can determine jt in this way. It may be that the operator Ojt
also does not decrease the number of connected vertices because it redirects jt to the
source. But this is an unlikely event, and we only need to apply each operator Oj an
expected constant number of times until the number of connected vertices drops to 1.
So we need expected time O(n) to find the index jt. Once we know the index jt, we
add Xjt to the multiset X.

We are finished when all vertices are connected. The runtime of this phase com-
poses as follows. Whenever we choose an edge x ∈ X, we use one sample in order to
determine whether the edge connects an unconnected vertex. If this is not the case,
then we remove x from X. Since each multiset Xi is added at most once to X, and
has expected size Θ(n log n) the total number of search points ever added to X is
in Θ(n2 log n). On the other hand, if x connects an unconnected vertex, then we use
up to linear time to determine the index of the vertex that we have added. However,
we add only n−1 unconnected vertices, so the total time for this operation is in O(n2).
Together, we need time O(n2 log n) for the third phase.

Theorem 10.15. The ∗-ary redirecting unbiased black-box complexity of SSSP is
Ω(n2).

Proof. Consider the path on [n], connecting adjacent integers with edges of unit weight.
Let A be a redirecting unbiased algorithm optimizing this path. Let Xt be the random
variable of the maximal number of vertices properly connected to the source among
the first t search points sampled by A. Let T be the random variable denoting the
minimal t such that Xt = n. We argue with drift. We sketch the main arguments.
The formal proof is similar to the ones in Theorem 10.2 and 10.3.

154 The Single-Source Shortest Paths Problem

Suppose that, at some point t, A has sampled at most n/2 search points with
k < n properly connected vertices, and none with more than k properly connected
vertices. Then, in the next sample, the probability of sampling a search point with
more than k properly connected vertices is at most 2/n. This is due to the fact that in
the redirecting unbiased model we can only decide whether or not to redirect a vertex,
but we may not choose where it is being redirected to. Here we assumed that we have
sampled at most n/2 search points with k < n properly connected vertices. Thus, we
can exclude at most n/2 vertices as target vertices for the redirection. That is, if we
decide to redirect a node, all other ≥ n/2 vertices must be equally likely to be chosen
and hence the probability to direct a vertex to the correct one is ≤ 2/n.

This shows that, after sampling the first search point with k vertices properly
connected (and no previous search point had more), the expected number of additional
samples until a search point with strictly more than k properly connected vertices
is sampled is Ω(n). Furthermore, when finally such a search point is sampled, the
expected number of properly connected vertices in this new search point is k+O(1) (as
one more vertex is connected successfully, but any further properly connected vertices
must be properly connected by accident, with a probability of 1/n per additional
vertex, compare with the proof of Theorem 10.2 for a similar argument).

Thus, using the additive drift theorem (see Theorem 2.17), we get a total runtime
of Ω(n2).

10.3.5. The Generalized Unbiased Black-Box Model

In this section, we will study the generalized unbiased black-box model by Rowe and
Vose [RV11]. Unfortunately, their description defines the set of invariances in an
indirect way, see Definition 10.9. Most of this section will be devoted to explicitly
determining this set of invariances. Once this is done, we will see that their notion
is almost the same for the single-criterion SSSP problem as the structure preserving
model we have introduced in Definition 10.7. In particular, we will see that the com-
plexity of the single-criterion SSSP increases by at most 1 compared to the unrestricted
black-box complexity.

Theorem 10.16. For a search point x, let E(x) be the set of edges of the connected
component of the source according to the graph encoded by x.

For any permutation α of [n]n−1 the following two statements are equivalent.

(i) α ∈ Π(SSSP).

(ii) There is a σ̂ ∈ SP such that for all x ∈ [n]n−1we have E(α(x)) = E(σ̂(x)).

Proof. Let α ∈ Π(SSSP). We fix a specific SSSP instance P which is a complete
graph such that the n − 1 edges that are incident with the source have weights at
least 2 and each two are at least 1 apart, and all other edges have weight less than 1.
Furthermore, we choose all weights to be Q-linearly independent positive real numbers
(i.e., no nontrivial linear combination with rational coefficient vanishes).

We let f be the fitness function associated with P . Let f ′ = f ◦ α. We know that
f ′ corresponds to some SSSP instance P ′ (as α ∈ Π(SSSP)).

10.3. SSSP with a Single-Criterion Fitness Function 155

Recall that, for any SSSP problem, there is a large value C such that a search
point is charged C for every vertex that is not connected to the source, and this C
exceeds the cost of any legal path from a vertex to the source. We fix that value C
for P , and similarly the value C ′ for P ′.

Claim 1: We have C = C ′.
Proof of Claim 1. The maximum of f on the search space is (n − 1)C, and it

is attained when no vertex is connected to the source. Since α is a bijection, the
maximum of f ′ = f◦α is the same as that of f , and also (n−1)C ′; thus, C ′ = C. (of
Claim 1)

Let S be the set of all search points x such that E(x) contains exactly one edge.

Claim 2: α restricted to S is a permutation of S.
Proof of Claim 2. Since the value C is at least n times larger than the maximum

weight, we can, for every search point x, derive the number of connected vertices in x
from its fitness. Since the value f ′(x) = f(α(x)) is at the same time the fitness of x
with respect to P ′ and the fitness of α(x) with respect to P , the number of connected
vertices coincides for x and α(x). (of Claim 2)

For all i with 2 ≤ i ≤ n, we let S(i) be the set of search points x such that E(x)
contains only the edge between 1 and i.

Claim 3: There is a permutation σ on [n] such that, for all i, α(S(i)) = S(σ(i)).
Proof of Claim 3. For all i ∈ {2, . . . , n}, fix a search point x(i) ∈ S(i). Using

Claim 2, for all i, E(α(x(i))) contains exactly one edge; let σ(i) be such that E(α(x(i)))
contains only the edge between 1 and σ(i). Furthermore, let σ(1) = 1. We show that
σ is a permutation of [n] with the claimed property.

For each i, we obviously have that all elements from S(i) have the same value under
f (namely the weight of the edge connecting i with 1 in P plus n − 2 times C); we
denote this value f(S(i)). Analogously, they have the same value under f ′, which we
denote f ′(S(i)). Because of the different weight of these edges in P we have, for i 6= j,
f(S(i)) 6= f(S(j)); similarly we get f ′(S(i)) 6= f ′(S(j)), as f ′ attains the same values as
f (just for possibly different arguments).

Let i, j ∈ [n] be such that σ(i) = σ(j). Thus, f(α(x(i))) = f(α(x(j))). Using the
definition of f ′ we get equivalently f ′(x(i)) = f ′(x(j)). This shows that x(i) and x(j),
for some k, are both elements of S(k); in particular, i = k = j. This shows that σ is
in fact a permutation on [n].

Let y ∈ S(i). We show α(y) ∈ S(σ(i)). We have

f(α(y)) = f ′(y) = f ′(x(i)) = f(α(x(i))).

Thus, α(y) and α(x(i)) have the same connected vertex, namely σ(i). Hence, α(y) ∈
Sσ((i)). This suffices to show the claim. (of Claim 3)

Let σ be as given by Claim 3.

Claim 4: For all i with 2 ≤ i ≤ n we have w′(1, i) = w(1, σ(i)).

156 The Single-Source Shortest Paths Problem

Proof of Claim 4. Let i be such that 2 ≤ i ≤ n. Fix x ∈ S(i). Using Claim 3, we
have (n− 2)C + w′(1, i) = f ′(x) = f(α(x)) = (n− 2)C + w(1, σ(i)).

(of Claim 4)

Now we extend Claim 4 to arbitrary edges.

Claim 5: For all i, j ≤ n we have w′(i, j) = w(σ(i), σ(j)).
Proof of Claim 5. For all i ∈ {2 . . . n} let Mi = {x | (n− 3)C + 2w(1, i) < f(x) <

(n− 3)C + 2w(1, i) + 1}. By choice of our instance P and by the definition of C, the
elements of Mi correspond to the search points that contain the edge {1, i} and some
other edge incident with i.

Consider, for all i ≤ n, M ′i = {x | (n − 3)C + 2w(1, i) < f ′(x) < (n − 3)C +
2w(1, i) + 1}. As the edges incident with 1 in P ′ have the same weights as the edges
incident with 1 in P , we have that M ′i contains all search points with two connected
vertices containing the edge {1, σ−1(i)} and another edge incident with σ−1(i) (as
only the edge {1, σ−1(i)} can contribute w(1, i), by Claim 4). As f and f ′ have the
same range, the elements of Mi have the same f -fitnesses as the elements of M ′i have
f ′-fitnesses. Thus, the P -weights on the edges adjacent to i are the same as the
P ′-weights adjacent to σ−1(i).

Let us now consider two vertices i, j ≤ n. We have just seen that the P ′-weight
w′(i, j), which is adjacent to both i and j is also a P -weight adjacent to both σ(i) and
σ(j). But as all weights are different, w′(i, j) = w(σ(i), σ(j)) must necessarily hold,
as desired. (of Claim 5)

We are now ready to prove the original statement of this theorem.

Claim 6: For all x, E(α(x)) = E(σ̂(x)).
Proof of Claim 6. Recall that for all search points x, E(x) is the set of edges in

the component (as defined by x) of the source. Note that, as all edge weights both in
P and P ′ are Q-linearly independent (and we know which edges have which weight,
using Claim 5), we can derive the edges used in a solution from the fitness of the
search point. In other words, there are functions D and D′ such that, for each x,
D(f(x)) = E(x) = D′(f ′(x)). For a set of edges M , we write σ(M) = {{σ(i), σ(j)} |
{i, j} ∈M}.

Let a search point x be given. We have

E(α(x)) = D(f(α(x)))
= {{i, j} | w(i, j) is part of the f -weight of α(x)}
= {{σ(i), σ(j)} | w(σ(i), σ(j)) is part of the f -weight of α(x)}
= {{σ(i), σ(j)} | w′(i, j) is part of the f ′-weight of x}
= σ(D′(f ′(x)))
= σ(E(x))
= E(σ̂(x)). (of Claim 6)

This shows one implication. The converse is straightforward.

Proposition 10.6 enables us to decide whether a given probability distribution
over the search space extends to a generalized unbiased distribution, similar to the

10.4. Conclusions for Sections 9 and 10 157

discussion for structure preserving and the redirecting model after Definitions 10.7
and 10.8. If ~z = (z1, . . . , zk) ∈ Sk is a k-tuple of search points, and D~z is a probability
distribution over the search space, the following two statements are equivalent.

(i) The probability distribution D~z extends to a k-ary generalized unbiased distri-
bution (D(· | ~y))~y∈Sk on S.

(ii) For every permutation σ of the search space with the property that E(σ(zi)) =
E(zi) for all i ∈ [k], and for all x ∈ S it holds that D~z(x) = D~z(σ(x)).

This characterization shows that the generalized unbiased black-box complexity
still gives the algorithms much power, similar to the structure preserving one. In
particular, if the graphs corresponding to the search points zi are connected, then a
probability distribution D~z extends to a generalized unbiased distribution if and only if
it extends to a structure preserving unbiased one. Consequently, we get the following.

Corollary 10.17. The ranking-based unary generalized unbiased black-box complexity
of the SSSP problem with the single-criterion objective function is between O(n2).

Proof. The proof is exactly as the proof of Theorem 10.10. All the operators used
there are in fact also generalized unbiased by Theorem 10.16.

10.4. Conclusions for Sections 9 and 10

We have analyzed the black-box complexities of the two combinatorial problems of
finding a minimum spanning tree and finding single-source shortest paths trees.

In the MST problem, we could apply many of the techniques developed in previous
parts of this thesis. We have shown that access to variation operators of arity greater
than one provably helps to decrease runtimes. This raises the question whether there
exist “natural” bio-inspired algorithms, which outperform standard mutation-based
search heuristics, by using higher arity variation operators. We believe that our work
indicates ways to design such algorithms.

For the SSSP problem, the main challenge is in finding reasonable ways to gener-
alize the unbiased black-box model by Lehre and Witt to more general search spaces
than the hypercube {0, 1}n. We have analyzed three different approaches. Two seem-
ingly natural models proved not very useful. In fact, both the generalized unbiased
black-box model by Rowe and Vose as well as the structure preserving model intro-
duced here in this work turned out to be almost the same as the unrestricted model.
These results indicate that much care has to be taken in order to get a reasonable un-
biasedness definition for the problem at hand. For the SSSP problem, the redirecting
unbiased black-box model seems most promising.

For both the MST and the SSSP problem, the differences between the ranking-
based model and their basic counterparts are negligible. This is due to the nature of
the two problems. It would certainly be interesting to investigate other combinatorial
problems in the different black-box settings.

158 The Single-Source Shortest Paths Problem

159

Bibliography

[Aar04] Scott Aaronson. Lower bounds for local search by quantum arguments. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC’04), pages 465–474. ACM, 2004.

[AD11] Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics.
World Scientific, 2011.

[Ald83] David Aldous. Minimization algorithms and random walk on the d-cube. Annals
of Probability, 11:403–413, 1983.

[AW09] Gautham Anil and R. Paul Wiegand. Black-box search by elimination of fitness
functions. In Proceedings of the 10th ACM Workshop on Foundations of Genetic
Algorithms (FOGA’09), pages 67–78. ACM, 2009.

[BBD+09] Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich,
Piyush P. Kurur, and Frank Neumann. Computing single source shortest paths
using single-objective fitness functions. In Proceedings of the 10th ACM Work-
shop on Foundations of Genetic Algorithms (FOGA’09), pages 59–66, 2009.

[CCH96] Zhixiang Chen, Carlos Cunha, and Steven Homer. Finding a hidden code by
asking questions. In Proceedings of the 2nd Annual International Conference on
Computing and Combinatorics (COCOON’96), pages 50–55. Springer, 1996.

[Chv83] Vasek Chvátal. Mastermind. Combinatorica, 3:325–329, 1983.

[CLTY09] Tianshi Chen, Per Kristian Lehre, Ke Tang, and Xin Yao. When is an estimation
of distribution algorithm better than an evolutionary algorithm? In Proceedings
of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pages 1470–
1477. IEEE, 2009.

[CTCY10] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. Analysis of computa-
tional time of simple estimation of distribution algorithms. IEEE Transactions
on Evolutionary Computation, 14(1):1–22, Feb. 2010.

[DF11] Benjamin Doerr and Mahmoud Fouz. Asymptotically optimal randomized rumor
spreading. In Proceedings of the 38th International Colloquium on Automata,
Languages and Programming (ICALP’11), pages 502–513, 2011.

[DHK07] Benjamin Doerr, Edda Happ, and Christian Klein. A tight analysis of the (1+1)-
EA for the single source shortest path problem. In Proceedings of the 2007 IEEE
Congress on Evolutionary Computation (CEC’07), pages 1890–1895. IEEE, 2007.

[DHK08] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be
useful in evolutionary computation. In Proceedings of the 10th Annual Genetic
and Evolutionary Computation Conference (GECCO’08), pages 539–546. ACM,
2008.

160 Bibliography

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based representation beats vertex-
based representation in shortest path problems. In Proceedings of the 12th Annual
Genetic and Evolutionary Computation Conference (GECCO’10), pages 758–766.
ACM, 2010.

[DJK+11] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus
Wagner, and Carola Winzen. Faster black-box algorithms through higher arity
operators. In Proceedings of the 11th ACM Workshop on Foundations of Genetic
Algorithms (FOGA’11), pages 163–172. ACM, 2011.

[DJS+10] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine
Zarges. Optimizing monotone functions can be difficult. In Proceedings of the 11th
International Conference on Parallel Problem Solving from Nature (PPSN’10),
Part I, LNCS 6238, pages 42–51. Springer, 2010.

[DJTW03] Stefan Droste, Thomas Jansen, Karsten Tinnefeld, and Ingo Wegener. A new
framework for the valuation of algorithms for black-box optimization. In Pro-
ceedings of the 7th Workshop on Foundations of Genetic Algorithms (FOGA’03),
pages 253–270. Morgan Kaufmann, 2003.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower bounds for
randomized search heuristics in black-box optimization. Theory of Computing
Systems, 39:525–544, 2006.

[DJW10a] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Drift analysis and lin-
ear functions revisited. In Proceedings of 2010 IEEE Congress on Evolutionary
Computation (CEC’10), pages 1967–1974. IEEE, 2010.

[DJW10b] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift anal-
ysis. In Proceedings of the 12th Annual Genetic and Evolutionary Computation
Conference (GECCO’10), pages 1449–1456, 2010.

[DKLW11] Benjamin Doerr, Timo Kötzing, Johannes Lengler, and Carola Winzen. Black-
box complexities of combinatorial problems. In Proceedings of the 13th Annual
Genetic and Evolutionary Computation Conference (GECCO’11), pages 981–988.
ACM, 2011.

[DKW11] Benjamin Doerr, Timo Kötzing, and Carola Winzen. Too fast unbiased black-
box algorithms. In Proceedings of the 13th Annual Genetic and Evolutionary
Computation Conference (GECCO’11), pages 2043–2050. ACM, 2011.

[DNHW03] Martin Dietzfelbinger, Bart Naudts, Clarissa Van Hoyweghen, and Ingo Wegener.
The analysis of a recombinative hill-climber on H-IFF. IEEE Transactions on
Evolutionary Computation, 7(5):417–423, Oct. 2003.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for
the Analysis of Randomised Algorithms. Cambridge University Press, 2009.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, 2004.

[DW11a] Benjamin Doerr and Carola Winzen. Breaking the O(n log n) barrier of Leading-
Ones. In Artificial Evolution (EA’11), 2011. Accepted for presentation.

[DW11b] Benjamin Doerr and Carola Winzen. Memory-restricted black-box complexity.
ECCC TR11-092, 2011.

Bibliography 161

[DW11c] Benjamin Doerr and Carola Winzen. Towards a complexity theory of randomized
search heuristics: Ranking-based black-box complexity. In Proceedings the 6th
International Computer Science Symposium in Russia (CSR’11), pages 15–28.
Springer, 2011.

[ER63] Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar
Tud. Akad. Mat. Kutató Int. Közl., 8:229–243, 1963.

[FK86] Johannes B. G. Frenk and Alexander H. G. Rinnooy Kan. The rate of convergence
to optimality of the LPT rule. Discrete Applied Mathematics, 14:187–197, 1986.

[FW05] Simon Fischer and Ingo Wegener. The one-dimensional Ising model: Mutation
versus recombination. Theoretical Computer Science, 344(2-3):208–225, 2005.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[Goo09] Michael T. Goodrich. On the algorithmic complexity of the mastermind game
with black-peg results. Information Processing Letters, 109:675–678, 2009.

[GSW09] Michael Gnewuch, Anand Srivastav, and Carola Winzen. Finding optimal vol-
ume subintervals with k points and calculating the star discrepancy are NP-hard
problems. Journal of Complexity, 25:115–127, 2009.

[Gut07] Walter J. Gutjahr. Mathematical runtime analysis of ACO algorithms: Survey
on an emerging issue. Swarm Intelligence, 1:59–79, 2007.

[GWW11] Michael Gnewuch, Magnus Wahlström, and Carola Winzen. A randomized algo-
rithm based on threshold accepting to approximate the star discrepancy. CoRR,
abs/1103.2102, 2011.

[Hro01] Juraj Hromkovič. Algorithmics for Hard Problems: Introduction to Combina-
torial Optimization, Randomization, Approximation, and Heuristics. Springer,
2001.

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating computation time
of evolutionary algorithms. Natural Computing, 3:21–35, 2004.

[JW02] Thomas Jansen and Ingo Wegener. The analysis of evolutionary algorithms - a
proof that crossover really can help. Algorithmica, 34:47–66, 2002.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings
of a Symposium on the Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[KE01] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann,
2001.

[KK09] Petr Kovár and Michael Kubesa. Factorizations of complete graphs into spanning
trees with all possible maximum degrees. In Proceedings of the 20th International
Workshop on Combinatorial Algorithms (IWOCA’09), pages 334–344. Springer,
2009.

[Knu77] Donald E. Knuth. The computer as a master mind. Journal of Recreational
Mathematics, 9:1–5, 1977.

[KST11] Timo Kötzing, Dirk Sudholt, and Madeleine Theile. How crossover helps in
pseudo-Boolean optimization. In Proceedings of the 13th Annual Genetic and
Evolutionary Computation Conference (GECCO’11), pages 989–996, 2011.

162 Bibliography

[LL02] Pedro Larrañaga and José A. Lozano. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002.

[LTT89] Donna Crystal Llewellyn, Craig Tovey, and Michael Trick. Local optimization on
graphs. Discrete Applied Mathematics, 23:157–178, 1989. Erratum: 46:93–94,
1993.

[LW10a] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. In
Proceedings of the 12th Annual Genetic and Evolutionary Computation Confer-
ence (GECCO’10), pages 1441–1448. ACM, 2010.

[LW10b] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation.
Electronic Colloquium on Computational Complexity (ECCC), page 16, 2010.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimb-
ing. In Proceedings of the 2nd International Conference on Parallel Problem
Solving from Nature (PPSN’92), pages 15–26. Elsevier, 1992.

[NW04] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary al-
gorithms, and the minimum spanning tree problem. In Proceedings of the 6th
Annual Genetic and Evolutionary Computation Conference (GECCO’04), pages
713–724. Springer, 2004.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer Science,
378:32–40, 2007.

[NW09] Frank Neumann and Carsten Witt. Runtime analysis of a simple ant colony
optimization algorithm. Algorithmica, 54:243–255, 2009.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial
Optimization – Algorithms and Their Computational Complexity. Springer, 2010.

[OHY08] Pietro S. Oliveto, Jun He, and Xin Yao. Analysis of population-based evolutionary
algorithms for the vertex cover problem. In Proceedings of IEEE World Congress
on Computational Intelligence (WCCI 2008), Hong Kong, June 1-6, 2008, pages
1563–1570, 2008.

[Rob55] Herbert Robbins. A remark on Stirling’s formula. The American Mathematical
Monthly, 62:26–29, 1955.

[RS09] Joachim Reichel and Martin Skutella. On the size of weights in randomized search
heuristics. In Proceedings of the 10th ACM Workshop on Foundations of Genetic
Algorithms (FOGA’09), pages 21–28. ACM, 2009.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Kovac,
1997.

[RV11] Jonathan Rowe and Michael Vose. Unbiased black box search algorithms. In Pro-
ceedings of the 13th Annual Genetic and Evolutionary Computation Conference
(GECCO’11), pages 2035–2042. ACM, 2011.

[STW02] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. Fitness landscapes based
on sorting and shortest path problems. In Proceedings of the 7th International
Conference on Parallel Problem Solving from Nature (PPSN’02), pages 54–63.
Springer, 2002.

Bibliography 163

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The analysis of evolution-
ary algorithms on sorting and shortest paths problems. Journal of Mathematical
Modelling and Algorithms, pages 349–366, 2004.

[Sud05] Dirk Sudholt. Crossover is provably essential for the Ising model on trees. In Pro-
ceedings of the 7th Annual Genetic and Evolutionary Computation Conference
(GECCO’05), pages 1161–1167, 2005.

[SW04] Tobias Storch and Ingo Wegener. Real royal road functions for constant popula-
tion size. Theoretical Computer Science, 320(1):123–134, 2004.

[SZ06] Jeff Stuckman and Guo-Qiang Zhang. Mastermind is NP-complete. INFOCOMP
Journal of Computer Science, 5:25–28, 2006.

[Win11] Carola Winzen. Direction-reversing quasi-random rumor spreading with restarts.
CoRR, abs/1103.2429, 2011.

[Wit05] Carsten Witt. Worst-case and average-case approximations by simple randomized
search heuristics. In Proceedings of the 22nd Annual Symposium on Theoretical
Aspects of Computer Science (STACS’05), pages 44–56. Springer, 2005.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure
of complexity. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS’77), pages 222–227, 1977.

[Zha06] Shengyu Zhang. New upper and lower bounds for randomized and quantum
local search. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC’06), pages 634–643. ACM, 2006.

164 Bibliography

165

A
Further Contributions

A.1. Theory of Randomized Search Heuristics

Multiplicative Drift Analysis

In this work we introduce multiplicative drift analysis as a suitable way to analyze the
runtime of randomized search heuristics such as evolutionary algorithms.

We give a multiplicative version of the classical drift theorem. This allows easier
analyses in those settings where the optimization progress is roughly proportional to
the current distance to the optimum.

To display the strength of this tool, we regard the classical problem of how the
(1+1) evolutionary algorithm optimizes an arbitrary linear pseudo-Boolean function.
Here, we first give a relatively simple proof for the fact that any linear function is
optimized in expected number of O(n log n) function evaluations, where n is the length
of the bit string. Afterwards, we show that in fact any such function is optimized in
expected time at most (1 + o(1))1.39en log n, again using multiplicative drift analysis.
We also prove a corresponding lower bound of (1− o(1))en log n which actually holds
for all functions with a unique global optimum.

We further demonstrate how our drift theorem immediately gives natural proofs
(with better constants) for the best known runtime bounds for the (1+1) EA on
combinatorial problems like finding minimum spanning trees, shortest paths, or Euler
tours in graphs.

In: Proceedings of Gecco ’10 (cf. [DJW10b]). Invited and submitted to a special
issue of Algorithmica.

166 Further Contributions

Non-Existence of Linear Universal Drift Functions

Drift analysis is a powerful tool to prove upper and lower bounds on the runtime
of randomized search heuristics. Its most famous application is a simple proof for
the classical problem how the (1+1) evolutionary algorithm optimizes linear pseudo-
Boolean functions. A relatively simple potential function allows to track the progress
of the EA optimizing any linear function.

In this work, we show that such beautiful proofs cease to exist if the mutation
probability is slightly larger than the standard value of 1/n. In fact, we show that no
universal liner drift function exists once we increase the mutation probability to c/n
for some small constant c > 1.

In: Proceedings of Gecco ’10 and CEC ’10 (cf. [DJW10b, DJW10a]). A journal
version is currently under submission.

Mutation Rate Matters Even When Optimizing Monotone Functions

Extending previous analyses on function classes like linear functions, we analyze how
the (1+1) evolutionary algorithm optimizes pseudo-Boolean functions that are strictly
monotone. These functions have the property that whenever only 0-bits are changed
to 1, then the objective value strictly increases. Contrary to what one would expect,
not all of these functions are easy to optimize. The choice of the constant c in the
mutation probability p(n) = c/n can make a decisive difference.

We show that if c < 1, then the (1+1) EA finds the optimum of every such
function in Θ(n log n) iterations. For c = 1, we can still prove an upper bound of
O(n3/2). However, for c ≥ 16, we present a strictly monotone function such that the
(1+1) EA with overwhelming probability needs 2Ω(n) iterations to find the optimum.
This is the first time that we observe that a constant factor change of the mutation
probability changes the run-time by more than constant factors.

In: Proceedings of PPSN ’10 (cf. [DJS+10]). A journal version is currently under
submission.

A.2. Estimating Geometric Discrepancies

A New Randomized Algorithm to Approximate the Star Discrepancy
Based on Threshold Accepting

We present a new algorithm for estimating the star discrepancy of arbitrary point sets.
Similar to the algorithm for discrepancy approximation of Winker and Fang [SIAM
J. Numer. Anal. 34 (1997), 2028–2042] it is based on the optimization algorithm
Threshold Accepting. Our improvements include, amongst others, a non-uniform
sampling strategy, which is more suited for higher-dimensional inputs and which
additionally takes into account the topological characteristics of given point sets,
and rounding steps, which transform axis-parallel boxes, on which the discrepancy is
to be tested, into critical test boxes. These critical test boxes provably yield higher

A.3. Randomized Rumor Spreading 167

discrepancy values, and contain the box that exhibits the maximum value of the
local discrepancy. We provide comprehensive experiments to test the new algorithm.
Our randomized algorithm computes the exact discrepancy frequently in all cases
where this can be checked (i.e., where the exact discrepancy of the point set can be
computed in feasible time). Most importantly, in higher dimension the new method
behaves clearly better than all previously known methods.

This result will be presented at the Monte Carlo and Quasi-Monte-Carlo Methods
in Scientific Computing conference (MCQMC 2012). A technical report is available
on arXiv [GWW11]. A journal version is currently under submission.

A.3. Randomized Rumor Spreading

Direction-Reversing Quasi-Random Rumor Spreading with Restarts

In a recent work, Doerr and Fouz [DF11] present a new quasi-random PUSH algo-
rithm for the rumor spreading problem (also known as gossip spreading or message
propagation problem). Their hybrid protocol outperforms all known PUSH protocols.

In this work, we add to the hybrid protocol a direction-reversing element. We
show that this direction-reversing quasi-random rumor spreading protocol with random
restarts yields a constant factor improvement over the hybrid model, if we allow the
same dose of randomness.

Put differently, our protocol achieves the same broadcasting time as the hybrid
model by employing only roughly half the number of random choices.

This result is available on arXiv [Win11]. A journal version is currently under
submission.

168 Further Contributions

169

B
Curriculum Vitae

Personal Details

Name : Carola Winzen

Date of birth : March 5, 1984

Address : Ohmstr. 17, 66123 Saarbrücken, Germany

Professional Experience

Since Jan 2010 : Max-Planck-Institut für Informatik, Saarbrücken
Department 1: Algorithms and Complexity

Dec 2007 to Nov 2009 : Business Consultant at McKinsey&Company, Inc.
Focus on network optimization strategies in logistics

July to Oct 2006 : Internship with Deutsche Lufthansa AG
Department for Network Planning Data and Systems

Oct 2004 to Feb 2007 : Teaching Assistant at the Department of Mathematics,
Kiel

Education

Since Jan 2010 : PhD student, Universität des Saarlandes, Saarbrücken

August 2007 : Diploma in mathematics. Final grade: sehr gut
Christian-Albrechts-Universität zu Kiel

Oct 2005 : Intermediate diploma/Vordiplom in mathematics

Feb 2005 : Intermediate diploma/Vordiplom in economics

170 Curriculum Vitae

June 2003 : Abitur at the Heinrich-Suso-Gymnasium, Konstanz
Final grade: 1.0

2000 to 2001 : 1-year school exchange program in Tobatí, Paraguay

Awards and Scholarships

July 2010 : Best Paper Award at GECCO 2010

Since Jan 2010 : Google Europe Fellowship in Randomized Algorithms

March 2007 : Admission to the smART program for excellent interns
Deutschen Lufthansa AG

2006 to 2007 : Scholarship from e-fellows.net

May 2005 : Award from the Association of Friends and Alumni of the
Department of Mathematics Kiel

Nov 2004 to Aug 2007 : Klaus-Murmann Fellowship Program
Stiftung der Deutschen Wirtschaft

July 2003 : Karl-von-Frisch-Award, Verband Deutscher Biologen

Academic Activities

Program committee : GECCO 2011 (Genetic Algorithms track)

Reviews for confer-
ences

: RANDOM 2011, STACS 2011 & 2012, FOGA 2011, CEC
2011, PPSN 2010

Reviews for journals : Theory of Computing Systems, Information Processing
Letters

Student advisor : Vijay Ingalalli (Master student, “Estimating Geometric
Star Discrepancies via Evolutionary Algorithms”)

Teaching (Universität
des Saarlandes)

: Randomized Algorithms (TA), Reading Groups in Algo-
rithms (with Kurt Mehlhorn)

Talks : GECCO 2011, CSR 2011, Chinese Academy of Sciences
2011, SPP Treffen “Algorithm Engineering” 2011, ThRaSH
2010 & 2011, Dagstuhl seminar 10361, KolKom 2010, CEC
2010, DTU Copenhagen 2010, Universität zu Kiel 2010,
Mittagsseminar MPI 2010 & 2011

Extracurricular Engagement at the University

since 2010 : PhD representative, Algorithms and Complexity group

2005 to 2007 : Spokesman of the Group of scholarship holders in Kiel

2005 to 2007 : Organizer of the “MINToring”-Project in Kiel

2004 to 2007 : Member of various bodies of Kiel University

171

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland
in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen
Grades vorgelegt.

Saarbrücken, 23. September 2011

Carola Winzen

	Introduction
	New Results for the Basic Black-Box Models
	Alternative Black-Box Models
	Black-Box Complexities of Combinatorial Problems
	Further Contributions

	Preliminaries
	Basic Notation
	Some Common Randomized Search Heuristics
	Randomized Local Search
	Elitist Evolutionary Algorithms
	Non-Elitist Algorithms

	Standard Test Function Classes
	OneMax
	BinaryValue
	LeadingOnes
	Generalized Strictly Monotone Functions

	Useful Tools
	Linearity of Expectations
	A Few Elementary Bounds
	Factorials and Central Binomial Coefficient
	Chernoff's Bounds
	Coupon Collector
	Upper Bounds for Black-Box Complexities via Algorithms with Constant Success Probability
	Yao's Minimax Principle
	A Drift Theorem

	Two Basic Black-Box Models
	The Unrestricted Black-Box Model
	The Unbiased Black-Box Model

	I New Results for the Basic Black-Box Models
	Faster Black-Box Algorithms Through Higher Arity Operators
	Introduction
	The Unbiased Black-Box Complexities of OneMax
	The Complexity of LeadingOnes
	Conclusion and Future Work

	Breaking the O(n log n) Barrier of LeadingOnes
	Introduction
	On LeadingOnes in the Unrestricted Model
	The Unbiased Black-Box Complexity of LeadingOnes
	LeadingOnes in the Ranking-Based Models
	Conclusions

	Too Fast Unary Unbiased Black-Box Algorithms
	Jump Functions
	Partition
	Conclusions

	II Alternative Black-Box Models
	Memory-Restricted Black-Box Models
	The Mastermind Game
	The Memory-Restricted Black-Box Model
	The Mastermind Game with Memory of Size Two
	Memory of Size One: Proof of Theorem 7.1
	Conclusions

	Ranking-Based Black-Box Models
	The Ranking-Based Black-Box Model
	The Ranking-Based Black-Box Complexity of OneMax
	The Different Black-Box Complexities of BinaryValue
	Ranking-Based Black-Box Complexity of LeadingOnes
	Conclusions

	III Black-Box Complexities of Combinatorial Problems
	The Minimum Spanning Tree Problem
	Introduction and Problem Definition
	Upper Bounds for the MST Problem
	Lower Bounds for the MST problem

	The Single-Source Shortest Paths Problem
	Introduction
	SSSP with a Multi-Criteria Fitness Function
	SSSP with a Single-Criterion Fitness Function
	Conclusions for Sections 9 and 10

	Bibliography
	Further Contributions
	Theory of Randomized Search Heuristics
	Estimating Geometric Discrepancies
	Randomized Rumor Spreading

	Curriculum Vitae

