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Abstract

We prove Ch®-regularity for the strong solution to a system modeling elec-
trorheological fluids in the stationary case which has been constructed by Ettwein
and Ettwein-Ruzicka in [E] and [ER].

In our short note we like to show that the strong solution to the system of partial differ-
ential equations for the velocity field of electrorheological fluids constructed by Ettwein
and Ruzicka (see Theorem 1.1 of [ER]) actually is of class C' for any a € (0,1).

To be more precise, let €2 denote a bounded Lipschitz domain in R? and consider the
problem of finding a velocity field v: Q — R? satisfying

—divS(D(v), E) + [Volv + Vg = F in Q, } (1)

divv=0 in Q, v=0 on 09Q.

An extensive discussion of the problem (1) including the physical point of view can be
found for instance in [R], here we just recall the basic terminology used in [ER]. First of all,
we note that the tensor valued function S: R x R® — R2:>, S = (Sy), Sy = Syj(e, H),

ym>

i, j =1, 2, defined in formula (3) of [ER] satisfies the growth and ellipticity conditions

.. p 2 )
95 (D, E)BasBy > c(1+|DP)"""|BP,
3€ag
S;;(D, E)D;; > ¢(1+ D) DR,

’ (2)

oS p(1B2)—2

D.E < C(1+|DP? "~ =
=D, )| < Cl+pP™
0S gy 2UED)—1 2
(D, B) < C(1+[DP)™ 7 (1+ (1 + [DP) |

where here and in the following the sum is taken w.r.t. repeated indices. The inequalities
(2)1 — (2)4 are required to hold for all B, D € R2X2 with vanishing trace and for all
E € R?. Moreover, p is a given material function with 1 < ps, < p(|E|?) < po for given
numbers p,, and po. In (1) E denotes the (smooth) electrical field, D(v) is the symmetric
gradient, ¢ stands for the a priori unknown pressure function and F'is a vector field of
class L*(2;R?). Finally, we denote by [Vuv]v the quantity (g—;;vj).

The following existence and regularity result has been established by Ettwein [E] and
by Ettwein and Ruzicka (see [ER], Theorem 1.1).

Theorem 1. Suppose that E € C*(Q;R?) together with F € L®(S;R?). Further assume
that 6/5 < ps < p(|E(x)?) < po < 00 with p € CYR). Then, if S satisfies (2), there
erists a stmng solution v to the problem (1), i.e. a solution v belonging to the space
ﬂO<s<1 2 €, loc(Q R ) N EP() N ‘/;700'
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Remark 2. i) Here W[, (...) is the standard Sobolev space or its local variant (see

[A]), the spaces Ey.y and V,, are defined in [KR] and [R].

ii) In [ER] the assumptions on F are less restrictive.

In the papers [BF] and [ABF] we discussed generalized Newtonian fluids with an
anisotropic dissipative potential and showed interior C1®-regularity of the velocity field
for stationary flows in two dimensions, whereas for 2 C R? interior partial C®-regularity
was established. In the two-dimensional case we used a technique due to Frehse and
Seregin (see [F'S]) which can be adjusted to prove

Theorem 3. Let the hypotheses of Theorem 1 hold and consider the solution v constructed
in Theorem 1. Then, if py = 2, v is of class C1*(;R?) for any 0 < a < 1.

Remark 4. It should be noted that recently Acerbi and Mingione (compare [AM]) proved
partial reqularity results for stationary electrorheological fluids in the three-dimensional
case.

Proof of Theorem 3.

From Theorem 1 and Sobolev’s embedding theorem we get

Vv e L (S R*>?)  forall 1 <7< oo (3)

loc

and
veC"(R?) forall 0<a<l1. (4)

Moreover, the weak form of (1) reads

/QS(D(U),E):D(gp)d:v+/Q[Vv]v-godx—/ﬂqﬁdivgpdx=/QF-godx (5)

for p € C°(Q;R?). Consider n € C(Q),0 < n < 1, and let Ay, denote the difference
quotient in direction eg, k = 1,2, for some real number h # 0, |h| sufficiently small. For
Q € R?*2 we then let o = A ,{n?A,(v — Qx)} and obtain from (5)

/Q AWS(D(), E) : DAy — Qa]) da
= /Q[VU]U -A_p(PAplv — Qx]) dz — /Qqﬁ div (A_p(?Apfv — Qz])) dz

—/QF Ay (0P Apfv — Qz]) dz
— LD, (6)

For the terms I; on the r.h.s. of (6) we observe

L — [Vov - 8k (n*0k[v — Qz]) d,

h—0 Q
-, = /QAhqﬁ div (nQAh[v - Qx]) m /Qakd) div (7725k [v— Qﬂ) dz
- / Op Vi - Olv — Q] da,
Q

I; — F -0 (n28k[v - Qx]) dz,
Q

h—0
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which is an immediate consequence of (3), (4) and the integrability properties of V2v, for
example, we may quote Vitali’s variant of dominated convergence (compare, e.g. [AFP],
p- 38). Note at this stage that we have to work with difference quotients just for the
reason that integrability of the quantity 8,S(D(v), E) : D(8kv)n? is not immediate but
will be a consequence of the following calculations. We write

ARS(D(v), E) : D(Apv)
= /0 Ld Sii(D(v)(z) + t[Dv(z + hey) — D(v)(z)], E(z) + t|[E(z + hey,) — E(x)])

hdt
1 N 19aq .
— / %( cey e )Daﬁ(Ah’U)D”(AhU)dt + / %( ey ) . AhE DZ](AhU)dt
0 86043 0 8E
= Ah + Bh

and observe Ay > 0 on account of (2);. Moreover

0Si;
A Y
h 8eaﬂ

(D(U), E) Daﬂ(akv)Dij(akv)
a.e. so that by Fatou’s Lemma

/HZ%(D(U),E)Daﬂ(akv)Dij(akv) dz Sliminf/AWde’
o gaﬂ h—0 Q

where the r.h.s. is uniformly bounded if so is fQ Byn? dz. From (2), and the integrability
properties of Vv and V?v we deduce

(95,-]-
B = oE

(D(’U), E) : 8kEDZJ(akU)

. 1
in L;,,

(©2) and a.e. Finally we observe that
/AhSij (D(v), E)OmQAh[v — Qz) dx m /8kSij (D(v), E)(?mQ(?k[v — Qr) dz
Q -V Ja

which follows from (2) and (3). Let us introduce the tensor ¢ = S(D(v), E). Then we
deduce from (6) and the subsequent discussion

/772(9k0 : D(Ogv)dx < —2/ nOk0i;0m0k[v — Q) dz + /[Vv]v - O (N 0k[v — Q1)) dz
0 0 0
—/QF - Ok (N*Oklv — Qa]) dz + 2/98kq577V77 - O[v — Qz]dz . (7)

Moreover, the integral on the 1.h.s. is well defined, i.e. dxo : D(Ov) € L},.(2). The last
term on the r.h.s. of (7) is handled with the help of the inequality

Vo[ < [Va| + |Volv]| + | F|

which follows from (1). In order to put (7) in an easier form we now fix a subdomain
Y €C Q and consider a disc By, (T) C €. We abbreviate 7,(T) = Bo,(Z) — B,(Z) and
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choose 7 in such a way that n = 1 on B,(T), sptn C B (T), |Vn| < 2/r. Moreover,
we observe v € L®°(Q);R?) and denote by the symbol ¢ a constant depending also on
dist(§2', 02) whose value may vary from line to line. Then the r.h.s. of (7) is bounded
from above by

{ [ AvelTalve=Qlde [ niTy|velvo—Qlds
To(z " (F

T (T)

+ / 72|V |V20| dz + / Fln| V|| Vo - Q| da
B2'r E) r(Z

T:(z)

+/ Pl V2| o} = o1 + ...+ I} (8)
By, (T)

Consider the functions

=

H= (% (D(v), E) Dyj(94v) Dag (3kv)>

and
Poo
4

h=(1+|D()P)
The calculations concerning the Lh.s. of (7) show H € L*(Q'), moreover, we have
Vh| < e(1+ [DW) ) VD))
hence (recall (2);)
VR < e(1+ D)) VD) < cH?,
therefore h € W, (€'). Finally, we note that clearly
hH > ¢|VD(v)]

is valid. In order to estimate I;, j = 1,...,5, we choose () = fT @) Vv dz and recall

the inequality |V2v| < ¢|VD(v)|, i.e. any second derivative of v is bounded in terms of
first derivatives of the symmetric gradient. With these observations we get (using the
Sobolev-Poincaré - inequality)

L < crl/ \Vo|?dz l/ |VU—Q|2d£U]
»(Z) T (z)

D=

1
2

/ \Vo|*dx / (V2| dz
7 () T (z)

IA
Q
ﬁI
L
D=

< crl/ \Vo|?dz / hH dx ,
(@) | Jn@

I, < ¢ / (Vo> dx
T JT.(z)

D=

1

[/ Vv — Q\de] < crlT“/ hH dz,
T () T, ()

4

1
2



for some (any) exponent 0 < o < 1 which follows from (3). We further have

I; < c/ n*|IVD()||Vv|dz
Ba, 5)

— c/B (_)772(1 + |D(U)|2)T|VD(’U)||VU|(1 + |D(v)|2)T dx

1

(2) 2-poo
2 ,0/ n2H2dw+c(p)/ VoP(1+ [D@)P) " da
Bs, (T) Bs, (T)

< p/ n°H? dz + c(p)r*”
B3, (T)

where p € (0,1) is fixed later and g € (0,1) is arbitrary. Again we made use of (3). Next
we observe the boundedness of F' and get

I, < E/ Vo —Qldz < c/ V2v|dz < ¢ hH dx ,
TJ1,.(z) T, (%) T, ()

(compare I3)

I; < c/ n’|V?v|dz < ,0/ n?H?dz + c(p)r?’ .
BzT(E) Bgr(f)

Putting together (7), (8) we deduce

1

r2a+/ \VU\de] / hH dz
T:(2) T (2)

-I-p/ n?H?dz + c(p)r?’. 9)
By, (%)

/ 0o : D(Oyw)dz < er™t
BQT(E)

In a next step we express Vo in terms of the function H on both sides of (9). The
definition of ¢ implies

6ka : D(Gkv) = H2 + %(D(U), E) . akED,J(akv)
(

H? — (14 [D@)P)? (1 +In(1 + |D(v))) [V D(v)|
H? = ¢(1+|D)?)"*|VD()],

VoOIVE

t denoting some exponent slightly larger than 1. From Young’s inequality we deduce

(1+1D@)P) VD) < c(+DE)P)T VDO + @)1+ D))
< eH?+c(e)(1+|DO)P)T

for any ¢ > 0, thus (f = 2t + 2 — puo)

Observing



we see that on the Lh.s. of (9) the quantity dyo : D(Oxv) can be replaced by H2. Next
observe that

0S5i; 0S;;
Vo> = 6ko:00 = ﬁ(D(U)aE)Daﬁ(akU)akUij‘i‘ aEJ (D(v), E) - O E 0x0;
= A+ B,
oS
Al £ {52 (DO),E) [VDW)|Vol
(2)3 p(E|>-2
< c(1+[DO)P) 7 [VD()||Vo|
p(E |2 p(E|%) -2
= ¢(1+|D()]*) |VD( (1 + D))+ Vo
p(E|?)
< c(s)(l-i— |D(v )\2) ; \VD(U)|2-|-<€|VU|2
(21
< c(e)H? +¢|Val?,
so that for e = 1/2 we get
|Vol|? < cH? + ¢|B]. (10)

Note that in the above calculation we made essential use of p < 2. For estimating B we
recall (2)4, hence

p(E[)-1
2

| Bl

IA

c(1 4 |[D(v)P) (1+In(1+|D)*))|Vo|
< c(1+[DW)?)?|IVo| < elVo? +ce)(1 + D)),

and (10) turns into

Vol < cH? 4 ¢(1+ |D(v)?)". (11)
Inserting (11) on the r.h.s. of (9), choosing p small enough and taking into account that
fT (14 |D(v)|?)*dz can be bounded by ¢r?®, we arrive at the starting inequality of the
Frehse Seregin lemma (see [FS], Lemma 4.1)

2
H?*dx <er'|r*+ H? dx] / hH dz + cr?. (12)
T’r(_) T(_)

B, (T)

To be more precise, it is easy to check that with (12) the estimate (A 3.6) of [F'S] now
takes the form

/ 2R / 2R
H?*dzx < c|y/log, — H?dz + r*y/log, —
B, () rJr,.(@ r

where R is some fixed radius and r < R together with Bogr(Z) C 2. If we choose 8 > «,
then clearly the latter inequality reduces to (A 3.6) of [FS], hence we have the statement
of [FS], Lemma 4.1, which means that for any ¢ > 1 there is a local constant such that

+crﬂ,

H*dx < K(q)|Inr| 9. (13)
B (z)



Combining (11) and (13) and observing again
/ (1+ |D(v)|2)tdx < cr??
B.(T)

for any exponent v < 1, we see
| 9oPds < K@|tar|,
B.(z)

and the version of the Dirichlet-Growth Theorem given in [F], p. 287, implies the conti-
nuity of o.

Now we are going to prove continuity of D(v). Let I'py: RZZ — RZZ, Dp(e) =
S(e, E(z)). From (2); it follows that I';) is one-to-one, the coercivity condition (2),
implies (see [D], Satz 2, p. 44) that S is onto. Moreover, I'(5) is an open mapplng (compar
[D], Satz 3, p. 52), thus a continuous inverse exists, and we obtain D(v)(z) = ( (x)).
It therefore remains to discuss that F(’wl) depends continuously on the parameter x € Q.

Alternatively, we may use the implicit-function-theorem (see, e.g. [D], Satz 2, p. 17):
let 2o € Q and ¢ = F(;t)(a(xo)). Let further

F(z,¢) = S(e. B()) — 0(2) = Ty (e) — ().

Then we have F(xg,&0) = 0, moreover, % (%9, €0) is an isomorphism. Thus there exists a
neighborhood U of z, in  and a continuous function g: U — R2xZ such that g(z) = &o
and F(z,g(z)) =0 on U. Therefore we have

o(z) = S(g(z), E(z))
and
o(z) = S(D(v)(z), E(x))
on U, hence g(z) = D(v)(x) by the injectivity of I';y. This proves the continuity of D(v)
and we may proceed as in [ABF], proof of Corollary 5.1, or as in [BF] to get v € CH*(Q; R?)
for any 0 < « < 1: to this purpose we observe that (1) implies after an integration by
parts

/Q % (D(v), E) Do (5) Dy; () dar

€ap

_ _/%(D(v)’E).akEDij((p)der/ak(vivj)ajcpidx+/F-akgoda: (14)
Q Q @

being valid for any ¢ € C°(Q;R?) s.t. divy = 0. Here we have set o = Jyv. By the
continuity of D(v), (14) can be seen as a linear elliptic system for the function v with
continuous coefficients A7, (z) = %(D(v)(x),E(w)). We fix a disc Bgr(zo) €  and
consider the solution vy € W, (Bgr(x¢); R?) to the problem

/ A () D (00) D () dz = 0
BR(ZEO)
for all ¢ € C°(Bgr(zo);R?), dive =0,

vo=7v on 0Bgr(zg), divyy=0.

Then the comparison arguments outlined after (5.3) in [ABF] give the claim. O
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