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Abstract. The paper continues the author’s work in measure and integration,
which is an attempt at unified systematization. It establishes projective limit
theorems of the Prokhorov and Kolmogorov types in terms of inner premea-
sures. Then it specializes to obtain the (one-dimensional) Wiener measure
on the space of real-valued functions on the positive halfline as a probability
measure defined on an immense domain: In particular the subspace of con-
tinuous functions will be measurable of full measure - and not merely of full
outer measure, as the usual projective limit theorems permit to conclude.
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The present paper wants to continue the author’s chain of contributions to
measure and integration. This is an attempt at unified systematization, with the
particular aim to incorporate the topological theory into the abstract one. The
basic idea is to develop and to convert the classical extension method due to
Carathéodory into a few different procedures. These procedures are parallel to
each other, but diversified in two respects: On the one hand as to their basic
inner or outer character, and on the other hand as to their discrete, sequential or
nonsequential limit behaviour. Since 1996 there are the book [11] (cited as MI)
and a series of subsequent papers, and the recent survey article [15]. A number of
topics has been treated with unified results which extend and improve the former
ones in both of the conventional theories. A typical example is the formation of
products in MI chapter VII and [13].
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The present paper will be devoted to the formation of projective limits, like
the formation of products in the inner context. This is a topic of particular im-
portance, and in fact considered to be a crucial one. We quote a statement from
Dellacherie-Meyer [4] of 1978 pp.65/66.

If abstract measure theory ... is compared to the theory of Radon measures
..., it may seem that the latter is superior to the former on four counts.
These are, by order of decreasing importance,
— the existence of a good theorem on inverse (projective) limits of mea-
sures,
— the existence of some reasonable topologies ... on the space of mea-
sures,
— the possibility of passing to the limit along uncountable increasing
families of lsc (:=lower semicontinuous) functions,
— the removal of certain o finiteness restrictions.
The notion of a ... Radon measure has a counterpart in abstract theory:
the notion of inner regular measure with respect to a compact paving.
This notion seems to have some applications, but not of great importance.

A similar statement is in the Introduction of Schwartz [20]. We agree with the
order of the four topics above, and in particular with position one for the projective
limits. But otherwise it must be added that the statement is outdated with the
appearance of our systematization. There is an abundance of topics which support
this claim, and we think that the present article should be of particular emphasis.

In the sequel we shall obtain projective limit theorems in the spirit of our
systematization, of the Prokhorov type in section 4 and of the Kolmogorov type
in section 5. Before that we need to recall and to develop the infrastructure of our
enterprise in sections 1-3. The extent of these sections comes from their obvious
novelty compared with the usual procedures, but not at all from added complica-
tions. The two sections 4 and 5 contain the former respective results, but will be
much more comprehensive. Section 4 will illuminate the nature of the Prokhorov
condition (II) as an equivalent to inner regularity, but not at all related to down-
ward continuity. It seems that in projective limit theorems there is no source for
continuity other than compactness (or perfectness), much in contrast to the situ-
ation of product measures.

At last section 6 will reveal how comprehensive the projective limit versions in
sections 4 and 5 are: We specialize to obtain the (one-dimensional) Wiener measure
as the maximal inner 7 (:=nonsequential) extension of a simple and natural inner
7 premeasure of mass one on the space RI%>L of all real-valued functions on [0, co[.
Its domain is immense compared with the usual product ¢ algebra, the members
of which are of a certain countable type. In particular this domain contains the
subspace C([0, oo, R) of continuous functions as a member of full measure - while so
far this subspace was but a creature of outer measure one and inner measure zero.
This puts a final end to the possible (though somewhat bizarre) view that Wiener
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measure could equally well be considered as concentrated on the complement of
C([0, o[, R). In section 6 we do not work with the usual probabilistic notions
like stochastic processes and their modifications. To be sure, the proof of our
main theorem furnishes at the same time the usual theorem on the existence of
continuous modifications [1] 39.3, but this result turns up well before our new
weapon, that powerful inner 7 lift, comes into action.

The author thinks that the present results will have quite some influence on
the probabilistic concepts around stochastic processes. He also plans to devote
another paper to the familiar set-theoretical construction of projective limits, like
in Bourbaki [3] chapter III section 7, and to its implications in the present context.

1. Recollections and Complements on the Inner Extension Theories

We adopt the terms of MI and [15] but shall recall the most basic and less obvious
notions and facts. Let X be a nonvoid set. For S C X the complement will be
denoted S’. For a set function 6 : P(X) — [0,00] with (&) = 0 we recall the
Carathéodory class

CO)={AC X:0M)=0MnA)+6MnA) forall M C X}.
€(0) turns out to be an algebra, and 6|€() to be a content.

The extension theories come in three parallel versions marked e = xo7, where
* stands for finite, o for sequential or countable, and 7 for nonsequential or ar-
bitrary. For a nonvoid set system & in X we define G, and &°® to consist of the
intersections and unions of its nonvoid e subsystems. In the sequel let & be a
lattice of subsets in X with @ € &. We restrict ourselves to the inner situation.

The fundamental definitions are for an isotone set function ¢ : & — [0, 00]
with (&) = 0. We define an inner e extension of ¢ to be an extension « : A —
[0, 0] of ¢ which is a content on a ring, and such that moreover &, C 2 with

a|6, is downward e continuous (note that a|&, < o0), and

« is inner regular &,.
We define ¢ to be an inner e premeasure iff it admits inner e extensions. The
subsequent inner exrtension theorem characterizes those ¢ which are inner e pre-
measures, and then describes all inner e extensions of ¢. The theorem is in terms
of the inner o envelopes pe : P(X) — [0, 00] of ¢, defined to be

pe(A) = sup{A}relfmgo(M) : 9 C & nonvoid e with M |C A},

where 9 |C A means that 9 is downward directed with intersection contained
in A. We also need their satellites o2 : (X) — [0, 00] with B C X, defined to be

eB4) = sup{N'}relfmcp(M) : M C & nonvoid e with
M|C Aand M C BVM € Mm}.
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We recall that ¢e is inner regular G,. Moreover ¢ = ¢,|6 iff ¢ is downward
continuous, and @e(2) = 0 iff ¢ is downward e continuous at &.

Theorem 1.1 (Inner Extension Theorem). Assume that ¢ : & — [0, 00[ is isotone
with o(&) = 0. Then @ is an inner ® premeasure iff

 1s supermodular and downward e continuous ot &, and

©(B) £ p(A) + pB(B\ A) for all AC B in &.
In this case ® := po|€(ps) is an inner o extension of @, and a measure on a o
algebra when e = or. All inner e extensions of ¢ are restrictions of ®. Moreover
we have the localization principle which reads

for ACX:SNA€&(p,) forall S e G = A€ &(p,).

Thus we have & C &, C €(p,). It is plain that the members of &, are
the most basic measurable subsets. We also recall a special case of particular
importance: & is called e compact iff each nonvoid e subsystem 9t C & fulfils
M| @ = & € M It is obvious that in this case the above functions ¢ are all
downward e continuous at @.

The most natural example is that X is a Hausdorff topological space with
6 = Comp(X). For an isotone set function ¢ : & — [0, 00[ with ¢(&) = 0 then
the conditions e = xo7 in 1.1 are identical, and if fulfilled produce the same ¢,
and hence @ = pq|€(ps). In this case ¢ is called a Radon premeasure and ® the
mazximal Radon measure which comes from . The localization principle implies
that €(pe) D Bor(X).

So far the direct recollections of MI and [15]. We continue with a few simple
facts which we will be of constant use. As before let X be a nonvoid set and & be
a lattice of subsets in X with @ € &.

Remark 1.2. Let ¢ : G4 — [0, 00[ be isotone with ¢(&) = 0. If |6 is downward
e continuous at &, then 1 is downward e continuous at & as well.

Proof. Let 9t C &, be nonvoid e with 9t | &. Then from MI 6.6 = [15]
2.1.Inn) there exists 91 C & nonvoid e with M | @& such that each N € 9 contains
some M € 9. Thus each N € 9 fulfils A/}relfmt (M) < ¢(N), so that we obtain

< i < j =
0s inf o(M)s inf $(N)=0.0

Remark 1.3. Let ¢ : & — [0, 00 be isotone with ¢(@) = 0. i) If ¢ is an inner *
premeasure and downward e continuous at &, then ¢ is an inner  premeasure. In
view of MI 6.32 the converse need not be true, but there is a partial converse in
ii) below.

ii) Assume that & = &,. If  is downward e continuous, then ¢, = ¢,. Hence
if  is an inner e premeasure, then ¢ is an inner x premeasure.

Proof. i) Combine ¢, (A) < ¢B(A) for A C B € & with x and e in 1.1. ii) The
first assertion is MI 6.5.iv) = [15] 2.2.4.Inn). The second one then follows from e
and x in 1.1.

The subsequent remark has been announced without proof in [15] 3.8.Inn).
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Remark 1.4. The inner e premeasures ¢ : & — [0, 00 and the inner e premeasures
¢ : B¢ — [0,00[ are in one-to-one correspondence via ¢ = po|Se and ¢ = @|6.
Moreover then pe = o = Py

Proof. i) Let ¢ : & — [0, 00[ be an inner o premeasure and ¢ := pq|S,. Then
® = p.|€(p.) is an inner o extension of ¢, and hence an inner e extension of ¢.
Thus ¢ is an inner e premeasure. Next we have @, = ¢,, since this holds true on
G, and both sides are inner regular &,. At last ¢y = ¢, from 1.3.ii) above. ii) Let
¢ : Gy — [0,00[ be an inner e premeasure and ¢ := ¢|S. Then ® = ¢,|€(¢,) is an
inner o extension of ¢, and hence an inner e extension of ¢. Thus ¢ is an inner
premeasure, and 1.1 asserts that ve = ¢o 0n €(¢e). In particular pe|GSe = ¢. O

Next we recall the fundamental downward e continuity assertions MI 6.7 =
[15] 2.8.2.Inn) and MI 6.27 = [15] 3.6.i).

Remark 1.5. Let ¢ : & — [0, 00| be isotone with ¢(@) = 0 and supermodular. o)
s and @, are almost downward o continuous. 7) If ¢ is downward 7 continuous,
then ¢,|6T&, is almost downward 7 continuous.

The subsequent lemma comes from our treatment of direct images for inner
e premeasures in [12] section 3. It also extends [13] 2.10.

Lemma 1.6. Let ¢ : & — [0,00[ be an inner o premeasure. Assume that R is a
lattice in X with @ € B C TS, such that pe|R < 0o and that pe is inner regular
Re. Then I := @o|R is an inner o premeasure and fulfils ¥e = pa.

Proof. i) We have R, C 6T 6, and ¢ |Re < 00, and hence 1.5 asserts that
pe|MRe is downward e continuous. In particular ¢ is downward e continuous, and
hence MI 6.5.iii) = [15] 2.2.3.Inn) asserts that Je|Re is downward e continuous.
ii) From i) we have ¥, = ¥ = @, on R and hence ¥, = @, on R,. Thus J, = @,
on P(X), since both sides are inner regular R,. iii) Now pe|E€(ps) = Fe|E(,) is
a content on an algebra which fulfils B C R, C 6TE, C €(yp,), and hence an
extension of ¥; after i) it is an inner e extension of 9. Therefore ¥ is an inner o
premeasure. [

This terminates the plain part of the section. We continue to recall the old
results MI 6.15 and 6.17 on the Carathéodory class €(-), which were part of the
deeper foundations of the edifice built in MI chapter II (and resulted via transcrip-
tion from the respective outer results MI 4.20 and 4.22). We restrict ourselves to
the special case which will be needed in the sequel, that is to P = H = {2}.

Proposition 1.7. Assume that & : P(X) — [0,00] is isotone with £(2) = 0 and
supermodular. Let the nonvoid set system ¥ in X be upward directed such that
€| < oo and that £ is inner regular C ¥ (defined to consist of the subsets of the
members of T ).
1) IfACX fulfils §(T) SETNA)Y+ETNA) for allT € X, then A € €(E).
2) If the isotone set function n : P(X) — [0, 00] fulfils n|T = ¢|T and n S &,
then &|€(§) is an extension of n|€(n).
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The above proposition will be invoked several times in the sequel. At the
moment we note a consequence of part 2) which is an extension of MI 18.2.
Proposition 1.8. Let & and ¥ be lattices with @ in X, and assume that

¢ : 6 = [0,00[ is isotone with p(&) = 0 and supermodular, and
¥ : % — [0, 00[ is isotone with ¢ () = 0.
If & is upward enclosable T, then
Yo = e 0N Te => pa|€(ps) is an extension of 1e|E(ts);
and we have <= whenever ¢ is an inner ® premeasure.
Proof. =) Follows from 1.7.2) applied to & := ¢, and 7 := 1y and to ¥. It

suffices to note that @, = 10 0n ¥, implies that e = 1 on P(X). <) For T € T,
we have T € €(1hs) C €(p,) and po(T) = 1) (T'). O

Our final point is on the cut-off procedure for an inner e premeasure ¢ : & —
[0, oo presented in MI 9.21. We show that the procedure can be extended from the
E € &(p,) to arbitrary subsets E C X. We recall that in case ® = 7 the former
procedure led to the basic decomposition theorem MI 9.24 with 9.25 = [15] 4.11.

We define a content a : 2 — [0,00] on an algebra 2 in X to live on E C X
iff all A C E' fulfil A € 2 and «(A) = 0. This is more than required in the usual
notion of a thick subset E C X, for example in Fremlin [5] 132F, the definition of
which is that those A C E' which are in 2 have a(4) = 0.

Theorem 1.9. Let ¢ : & — [0,00[ be an inner o premeasure with ® = @q|C(ps)

and E C X. Define pF : & — [0,00[ to be pF(S) = po(S N E) for S € &. Then

©F is an inner o premeasure and fulfils

1) (¢F)e(A) = pe(ANE) for all AC X.

2) €(pa) C €((9")a).
3) ®F = (pF).|€((¢F)s) lives on E.

4) The following are equivalent. 4.0) ¢ = @P. 4.ii) pe(A) = Yo(A N E) for all
AC X. 4iil) E € €(p,) and ®(E') =0. 4.iv) ® lives on E.

Proof. We define © : PB(X) — [0,00] to be O(A) = po(ANE) for A C X.
Thus O is isotone with ©(&) =0 and 0|6, < co.

i) We claim that
O(AUB) +O(ANB) =O(A) + O(B) for A € ¢(p,) and B C X.
In fact, we have
O(AUB)+0O(ANB) =pe((AUB)NE)+ pes((ANB)NE)
= (<p.(Am ((AUB)NE)) + ¢s(A'N((AUB) mE))) + v ((ANB)NE)

= @(ANE)+ (pe(A' N (BNE)) +pu(AN (BN E)))
= po(ANE) + po( BNE)=0(A) + O(B).
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ii) ©|6, < oo is downward e continuous. In fact, let M C &, be nonvoid e
with M | D € &,. For M € 9t then i) furnishes
O(M)=0(DU(M\D))+6(DNn(M\D))=06(D)+6(M\ D)
S O(D) +po(M \ D) = O(D) + (pe(M) — ¢u(D)),
and hence the assertion.

iii) © is inner regular &,. To see this let A C X and ¢ < O(A) = po(ANE).
Then there exists S € G, such that S C ANE and ¢ < ¢4 (S). Thus on the one hand
S C A, and on the other hand S C E and hence ¢ < po(S) = po(S N E) = O(S5).

iv) We have & C &, C €(p,). The restriction ¢ := O|€(p,) is an extension
of ¥ which is isotone and modular by i), and hence a content on €(¢,). By ii)iii)
it is an inner o extension of . Thus ¢¥ is an inner e premeasure, and we have
€(pe) C €((¢F)s) and (pF)e =¥ = O on €(ip,). In particular (p¥)e = O on &,,
and hence (¢¥)s = © on B(X) since both sides are inner regular &, by iii). Thus
we have the proved the initial assertion and 1)2).

v) To see 3) let A C E'. For M C X then

E)e(MNA) + (9%)e(MNA) = pe(MNANE) + po(M NA NE)
=0+ pe(M N E) = (p¥)e(M),

so that A € €((¢¥),). Then ®F(A) = (¢¥)e(A) = pe(ANE) = 0.

vi) It remains to prove 4). We have 4.i) = & = ¥ = 4.iv) from 3). 4.iv) =
4.iii) is obvious. 4.ili) = 4.ii) because pe(A) = Yo (ANE)+ e (ANE") = 0o (ANE)
for all A C X. 4.ii) = 4.i) is obvious. O

We conclude with a pair of important properties of an inner e premeasure
¢ : 6 — [0, 00 which is such that ® = @e|€(ps) lives on E C X. We form the set
system T =6MNME:={SNE:S €} withTe=6.NME={SNE:S€6,}C
€(ps), and the set function ¢ = @e|% : T — [0, 00[. Then ¥ is a lattice with & € ¥
in both X and E, and 9 is defined on a set system ¥ which is in both X and E.
It is plain that at times these two réles must not be mixed up. Thus in the latter
roles ¥ and ¢ will be denoted ¥, and .. It follows that 1, : P(X) — [0, 00] and
(¥o)e : P(E) — [0, 00] are connected via (¢5)e = Ve|B(E).

Theorem 1.10. Let ¢ : & — [0,00[ be an inner o premeasure such that ® =
Pe|€(ps) lives on E C X, and let ®|E be the restriction of ® to €(pe)ME = {A €
€(we) : A C E}. In the above notations then

1) ¢ is an inner ® premeasure which fulfils oo = e and hence ® = 1)4|C(1),).
2) o is an inner o premeasure which fulfils ®|E = (1) e|€((¢s)s)-

Proof of 1). 1.0) We first show that for each nonvoid e and downward directed
N C T, there exists an M C S, of the same kind such that M = MNE = {MNE :
M € 9m}. In fact, for each N € M fix some F(N) € &, with N = F(N) N E, and

then form f(N) := RemnRDNF(R) € &,. Thus

FIMNE= NN FRNE= N R=N forNenMn
ReM,RON ReMN,RON
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Moreover A C B in M implies that f(A) C f(B). Thus M := {f(N) : N € N} C
S, is as required.

1) pe|Te = ®|Te < oo is downward e continuous. In fact, take M C T,
nonvoid e with 9%t | B € ¥, and then MM C &, nonvoid e as in 1.0), so that
M| A€ S, with ANE = B. The fact that ® lives on E implies that J\l]relf;n (N) =

Jinf @(M) = 8(4) = &(B).

1.ii) ® is inner regular ¥,. To see this let A € €(p,) and ¢ < ®(A). Then
there exists S € G, with S C A and ¢ < ®(S). Hence T := SNE € T, with T C A
and ¢ < ®(S) =B(SNE)=(T).

1.iii) We see from 1.i)ii) that ® is an inner e extension of ¢. Thus ¢ is an
inner e premeasure, and we have €(pe) C €(1he) and e = @e 0n €(p,). From
Ge, %o C €(pe) we obtain 1ps = e on P(X).

Proof of 2). 2.i) In view of 1) and (¢o)e = ©e|PB(E) the inner extension
theorem 1.1 shows that 1), is an inner e premeasure.

2.ii)) We have ®|E = p.|{A € €(p,) : A C E}. Now 1.9.4) asserts that
pe(M) = po(M N E) for all M C X. Hence for A C E we have A € €(p,) iff
Po(M) = po(M N A) + pe(M N A" for all M C E, which in view of M N A’ =
MNENA =Mn(E\ A) and of the above says that A € €((¢)o)s). Therefore
B|E = (¢)s|€((¥0)e)- O

2. The Transplantation Theorem

The present section is a continuation of MI section 18. We want to establish a
further transplantation theorem for inner * premeasures. The main intermediate
step is an extension theorem for finite contents, which is based on the well-known
extension method due to Lo§-Marczewski [18]. It is a close relative of Lipecki [17]
theorem 1 (and subsequent work of this author). The present proof will be in the
spirit of MI section 18.

We start to recall the basic result of Lo§-Marczewski [18] theorem 1 in the
version of MI 18.29. For 2 a ring in the nonvoid set X and £ C X we form

the lattice A[E] :={MU(NNE): M,N € 2} and
the ring A(E) :={(MNEYU(NNE)}: M,N € 2}.

Thus 2 C A[E] C A(E) and A(E) = R(A[E]), where R(-) denotes the generated
ring. Also note that 2(FE) is upward enclosable 2l.

Proposition 2.1. Let o : A — [0,00[ be a content with the x envelopes oy, a* :
P(X) — [0,00]. Define &,n: A(E) — [0, 00[ to be

£E8)=a (SNE)+a*(SNE"),
n(S) = a, (SN E') +a*(SNE).

Then & and n are contents and fulfil £ = a, and n = o* on Y[E], in particular
E=n=aon
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In the sequel we use the notation
PNQ:={PNQ:PcPand Q €Q} and PNE:={PNE:P e P}

for nonvoid B, 0 C P(X), and E C X as before. We fix in X a ring & and a
nonvoid set system 9 which is totally ordered under inclusion C. The extension
theorem in question reads as follows.

Theorem 2.2. Let o : 2 — [0,00[ be a content. Then there exists a unique content
B :REAMM) — [0,00[ such that B = a, on AN I, that is

BANM) =a,(ANM) forall A€ and M € M.

The uniqueness assertion is clear from the classical uniqueness theorem con-
tained in MI 3.1.x), since 20NN is stable under N. Thus to be shown is the existence
assertion. For its proof we can assume that X € 9t. Then 20 C MM C R(AMM),
and the desired content £ is an extension of «.

Proof of the existence assertion. We first assume that n := card(9) < oo. In
case n = 1 we have MM = {X} and A = AN P = R(A N M), so that § = « does
it. For the induction step 1 £ n = n + 1 assume that 9 = {Ey, Ey,--- , E,} with
Ey=XDE; D- D E,,and put = {Ey,---,E, 1}. We claim that

ACANN CRERANN) =B C B[E,] C B(E,) =RERANM).
To be shown is the last =. It rests upon the well-known formula
R(P)NME =R(PNE) for nonvoid P C P(X) and E C X,
which for £ C E,,_; implies that
BAOE=RAMMMNE=R(ANN)NE)
=RE®ANE)=RA)NE=2ANE.

Thus B(E,) = R(B[E,]) = R(B U (B M E,)) is the ring generated by B and
BNE, = AMNE,, and hence in fact the ring generated by (ANIU(ANE,,) = AMM.

By the induction hypothesis there exists a content 8 : R(2IMNMN) = B — [0, 00[
such that f = a, on AN N, in particular 8 = a on 2. Then by 2.1 there exists a
content £ : B(E,) = R(ATIM) — [0, oo[ such that £ = B, on B[E,], in particular
&= onB. To be shownis E =a, on AMNM = (AMN) U (AN E,).

To see this we note on the one hand that on AMNN C B in fact £ = f = a,. On
the other hand ANE,, C A[E,] C B[E,], so that on AMNE,, we have £ = S, and thus
have to prove that B, = a,, which amounts to x < a4, since § is an extension of
a and hence S 2 a,. Now in order to prove 8,(S) < a4(S) for an S € AN E,, we
look at the subsets B € 8 with B C S. We have B € BME,_, = ANE,_; C ANN,
and hence 8(B) = au(B) £ a.(9). It follows that 3.(S) £ a.(S) as claimed. This
finishes the induction step and hence the case of finite 9.

At last we assume that 91 is an infinite totally ordered set system in X with
X € M. For each finite P C M with X € P the above furnishes a unique content
By : RATP) — [0, 00[ such that By = a, on AMP. In case P C Q it is clear
that Sp = Ba|R(A M P). Now A MM and R(AM M) are the unions of the AP
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and the R(2A M P) for all finite P C M with X € P. It follows that the By for all
these 8 combine to furnish the required unique content 8 : R(A M M) — [0, 00[
such that 8 = a, on A9, O

After this we turn to the domain of transplantation theorems for inner x
premeasures. In the sequel we fix a pair of lattices & and ¥ with @ in X such that
& is upward enclosable €. We assume an inner * premeasure ¢ : € — [0, oo[ and
want to know whether and when it fulfils

(3) there exists an inner x premeasure ¢ : & — [0, 00[
such that ® = . |€(p,) is an extension of ¥ = 1), |€(1)y);
after 1.8 this is equivalent to ¢,|% = 9.

These ¢ can be viewed as the transplants of 1 onto &. In MI section 18 the
requirement that & be upward enclosable ¥ turned out to be an adequate one. We
recall the former main result MI 18.10.

Theorem 2.3. Let ¢ : ¥ — [0,00[ be an inner x premeasure. If 3 : & — [0, 00] is
isotone with 3(&) = 0 and supermodular such that 9,|% = 1, then there ezists an
inner x premeasure ¢ : & — [0, 00[ with ¢ 2 ¥ such that ¢, |T = 1.

In MI section 18 there were several important consequences, of which we
emphasize MI 18.18: If ¢ satisfies the Marczewski condition (¢4|6).|% = ¢, then
it fulfils (3). In fact, this is obvious from 2.3 applied to ¥ := 1 |&. A more involved
consequence of 2.3 is the new transplantation theorem which follows. We recall
from MI section 1 for nonvoid set systems I and D in X the transporter MTN :=
{ACX:ANM € Nfor all M € M}.

Theorem 2.4. Let ¢ : T — [0,00[ be an inner x premeasure. Then
Slrelg3 P (8") = 0= ¢ fulfils (3) when T C &TS, and
Slrelg5 ¥ (S") = 0 <=9 fulfils (3) when (X)) < 0o.

Proof. Let (I) denote the condition SlrelfG 1,(S") = 0, and (II) denote the
(1

condition inf 4, (V') = 0. It is obvious that (I) = (II) when ¥ C GTG,
VeTTS

because T C 6TEG is identical with & C TTE6.

We prove the first assertion, in that we deduce (II) = (3) from the above
2.2. In view of 2.3 it suffices to produce a set function ¥ : & — [0, 00[ which
is isotone with #(&) = 0 and supermodular and which fulfils 9,|% = . This
is done as follows. On the one hand let ¥ = 1), |€(¢),) and 2A := [T < oo], s0
that a := ¥|A = ¢,|A is a finite content on the ring A D . On the other hand
(IT) furnishes a sequence & = Vo C V4 C --- C V,, C --- in TG such that
¥« (V) 1 0, and thus the totally ordered set system 9t := {V,) : n =0,1,2,---}
with X € 9. Hence we obtain from 2.2 a content 3 : R(2( M 9%) — [0, oo[ which
fulfils B(ANV,)) = a.(ANV,)) = (ANV,) for all A € A and n 2 0. In particular
B is an extension of a and hence an extension of .
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After this we define ¥ = ,|&. Then ¢ : & — [0, 00[, because each S € & is
contained in some T' € ¥ where B(T') = ¥(T) < oc. It is clear that ¥ is isotone with
¥(D) = 0 and supermodular. At last we fix T € ¥ and prove that 4.(T) = ¥(T).

1) For S € & with S C T we have ¥(S) = B4(S) £ B(T) = ¢(T). Hence
I(T) £ o(T).

2) Wehave T €e ¥ C A CRERAMNM) and TNV, € RA M M), and hence
TNV, =T\ (TNV,)eREAMM) with

BT NVa) =B(T) =BT NVy) =9(T) = (T NV,) 14(T)
for n - c0. But T'NV,, € & since V,, € TG, and hence S(T'NV,) = B.(TNV,) =
HT NV,) £ 9,(T). It follows that 9, (T') 2 ¥(T). Thus we have proved 4, |F = ¢
and hence the first assertion.

The proof of the second assertion is much simpler. Let ¢ : & — [0, 0o[ be an
inner x premeasure such that @,|% = 1. 1) We have 1, = (04|%)x < ¢x. ii) For
each S € & thereis a T € T with S C T, so that ¢(S) < ¢, (T) = ¢(T) £ ¥ (X).
Hence i (X) < 94(X) < o0. From i)ii) we obtain for each € > 0 an S € & with
©(S) > pi(X) — e and hence with ¥, (S") < pu(S") = vx(X) — p(S) < €. Thus we
have proved (I). O

Remark 2.5. The first assertion in 2.4 need not be true without the assumption
that ¥ C 6T&. As an example let X be a compact Hausdorff topological space
with & = Comp(X) and ¥ = Bor(X), so that ¢ : ¥ — [0, 00[ can be an arbitrary
finite content. Then the assumption Slr€1£5 1,(S") = 0 is true for the trivial reason

that X € &, but (3) is not true unless ¢ is inner regular &, that means is a
Borel-Radon measure. There is a simple example for X = [0, 1] in [14] 1.4.

In conclusion we note that the idea of the new transplantation theorem 2.4
came from Fremlin [5] theorem 4160, which is kind of a Radon measure trans-
plantation result like Henry’s well-known theorem [5] 416M = MI 18.22. It reads
as follows: Let a : A — [0,00[ be a content on an algebra A in the Hausdorff
topological space X . Assume that

1) a is inner regular AN Cl(X), and

2) a(X) =sup{a*(K) : K € Comp(X)}.

Then o can be extended to an (of course finite) Radon measure. The result can be
reformulated so as to fall under the first assertion in 2.4 for & = Comp(X) and a
lattice ¥ C Cl(X) C 6T6G with @, X € ¥. But the proof in [5] is quite different
and an involved combination of abstract and topological pieces.

3. Direct and Inverse Images

The present section is another preparation for the final sections. We fix a map
H : X —» Y between nonvoid sets X and Y. We start with the basics on direct
and inverse images of contents and measures under H. Then we pass to the direct
and inverse images of inner premeasures. Part of the present section updates and
extends the earlier [12] sections 2 and 3.
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Our first remark presents a most useful computation rule, while the next one
introduces the system SatH C B(X) of the saturated subsets of X. The proofs are
routine.

Remark 3.1. H(ANH™*(B)) = H(A)NB for all A C X and B C Y. In particular
H(H-'(B)) = BN H(X).

Remark 3.2. Define SatH := H'(B(Y)) = {A Cc X : A = H Y (H(A)} C
PB(X). Then SatH is stable under arbitrary unions and intersections and under
complement formation. Moreover

H( N M)= n H(M) for all nonvoid M C SatH.
MeMm MeM

For an algebra 2 in X we define the direct image

HYA:= {BCY:H ' (B) €A} CP(Y),

which is an algebra in Y. It must not be confused with the set system H(2) :=
{H(A) : A € A}. Then for a content a : A — [0,00] on A we define the direct

— — — — —
image Ha : HA — [0,0] to be Ha(B) = a(H~1(B)) for B € H2. Thus Ha is a
—
content on H and lives on H(X) C Y. We note that

— — — —
HA=H®NSatH) and Ha = H(a|ANSatH).

Next for an algebra 98 in Y we define the inverse image

—
H®B := H '(8)={H (B): BB} CSatH C P(X),
which is an algebra in X. Then let § : B — [0,00] be a content on B which
—
lives on H(X) C Y. For A € H® and the B € B with A = H~!(B) we have
H(A) = HHYB)) = B n H( ) € B and B( (A)) = B(B). Thus we can
deﬁne the inverse image Hﬂ H‘B — [0, o0] to be Hﬂ( )= B(H(A)) = B( ) for
Ace H% and the B € B with A = H~!(B). Then Hﬂ is a content on H%
Both times the same holds true for o algebras and measures. The next asser-
tion compares the two kinds of images. The proof is routine.
Comparison 3.3. For each pair of contents
a:2 — [0,00] on an algebra A in X, and
B :9B — [0,00] on an algebra 9B in Y which lives on H(X) CY
we have the equivalences
a is an extension of H ﬂ = H « is an extension of f;

a/A N SatH is a restriction of H B = H o is a restriction of f.

The remainder of the section will be devoted to the direct and inverse images
of inner e premeasures. We start with a few preparations for pairs of isotone
set functions £ : P(X) — [0,00] and 5 : P(Y) — [0, 00] which are related via
n = &(H 1(-)). The first remark is for illustration and will not be needed below;
for the Choquet integral see MI section 11 and [15] section 5.
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Remark 3.4. For each pair of isotone set functions £ : P(X) — [0,00] and 7 :
PB(Y) — [0, 00] with £(&) = (@) = 0 the following are equivalent.

)U‘f(Hil('))
2) fhdn = f(ho H)d¢ for all h € [0,00]Y.

Proof. 1)=2) For 0 <t < co we have [ho H 2 t]={z € X : h(H(z)) 2 t} =
{z € X :H(z) € [h=t]} = H '([h 2 t]) and hence &([ho H 2 t]) =n([h 2 t]).
Thus the definition of the Choquet integral furmshes

f(ho H)d¢ = f E([ho H 2 t])dt = f n([h 2 t])dt = fhdn.
2)=>1)Let BCY and A = H Y(B) CX. Then h = xp implies that ho H = x4,
so that fhdn = (h o H)d¢ reads n(B) = £(A) = &(H(B)). O

Lemma 3.5. Let £ : P(X) — [0,00] be isotone and n = E(H71(-)), so that n :
PY) — [0,00] is isotone as well. 1) Let P be a nonvoid set system in X such
that & is inner regular B. Then n is inner regular H(P). 2) Let Q be a nonvoid
set system in'Y such that £|H 1(Q) is almost downward e continuous. Then 1|Q
s almost downward e continuous.

This lemma has a routine proof. Next we put our former result 1.7.1) on the
Carathéodory class €(-) into action.

Lemma 3.6. Let & : P(X) — [0,00] be isotone with £(&) = 0 and supermodular,
and put n = E(H1(+)), so thatn : P(Y) — [0, 0] is of the same kind. Assume that
the nonvoid set system ¥ C SatH in X is upward directed such that &|T < oo and

that £ is inner regular C €. Then ?IQI(E) = &(n) and hence I—{>(§|€(£)) = n|&(n).
Proof. i) For B C Y we have B € &(n)
< np(N)=n(NNB)+n(NNB') YNCY
& €(HN) = ((HIN) N HY(B) + §(H N N (H1(B)Y) YN CY
& EM)=¢MnHY(B) +¢6(Mn(H '(B)) VM € SatH.
In particular B € I_:;Q:(E), which means H~1(B) € €(£), implies that B € &€(n). ii)
Now assume ¥ C SatH as above. For B € €(n) we see from i) that
&T)=¢(TNH'(B) +&TnHT(B)) VT eX.
Thus 1.7.1) applied to ¢ furnishes H~'(B) € €(€) or B € HE(€). O
Lemma 3.7. Let ¢ : & — [0, 00[ be an inner o premeasure on a lattice S with @ € &
in X. Put = pe(H 1(-)) and assume that n|H (&) < co. Then FI@((p.) = &(n),
so that ® = pe|€(pe) fulfils I_}CI) = n|€(n).

Proof. 3.6 can be applied to & := p, and T := H 1(H(S)), because e (T) =
o (H Y(H(S))) = n(H(S)) < oo for T = H 1(H(S)) with S € &, and since ¢,
is inner regular &, C (C ). O
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Proposition 3.8. Let G in X and ¥ in Y be lattices with @ such that H(S) is
upward enclosable . Let ¢ : & — [0,00[ be an inner e premeasure with ® =
©ve|€(ps), and assume that 1 := pe(H1(-))|T < co. Then
—
1) H® is an extension of 1, |C(1)y).
2) Assume that (+~)H (%) C TS, and hence (<)H (%,) C GTS,.
—

Then v is downward e continuous, and H® is an extension of 1e|€(1)e) and an
extension of 1e|%e (but ¢ need not be an inner e premeasure).

3) Assume that moreover (=) H(S,) C %o. Then 1) is an inner & premeasure

with W = |€(tbs) which fulfils b = po(H-1(-)) and HS = .

Proof. We put n := po(H~1(+)), so that n : P(Y) — [0, c0] is isotone with
— —
n(2) = 0 and supermodular. We have 7|% = ¢ < 0o and n|H€(p,) = HY.

i) By assumption 7|H(6) < oo. Thus 3.7 asserts that HS = n|€(n).

ii) n and ¥ fulfil in 1.7 the assumptions for £ and ¥, because 3.5.1) implies
that 7 is inner regular H(S,) C (C ¥). Then 1, fulfils in 1.7.2) the assumptions
for n, because ¥y = 1) = n on T and hence ¥, < 1 on P(Y). Thus 1.7.2) asserts
that n|€(n) is an extension of ¢,|€(1),). From 1)ii) we obtain 1).

iii) From (<) and 1.5 we see that @e|H 1(%,) is almost downward e contin-
uous. Thus 3.5.2) asserts that 7|%, is almost downward e continuous and hence
downward e continuous. In particular ¢ = 75|¥ is downward e continuous, and
hence MI 6.5.iii) = [15] 2.2.3.Inn) asserts that 1)e|%e is downward e continuous. It
follows that 104 |%e = 7|Ts and hence e = (1Ve|Te)x = (N|Te)x-

—
iv) Now 1) applied to n|%, instead of n|T = 1 asserts that H® is an extension
—
of 1)e|€(1hs). Moreover H }(%,) C GTS, C €(ips) shows that T, C HE(ip,), and
—

iii) asserts that on ¥, we have ¢ =71 = H®. Thus we obtain 2).
v) Under the assumption (=) we see from 3.5.1) that n is inner regular
— —
Te. Thus 7|Te = 10e|Te implies that n = 1he. In particular H® = n|HE(p.) is
inner regular ¥, and hence an inner e extension of 1p. Therefore ¢ is an inner o

premeasure, and ¥ = 1,|€(1),) is an extension of H® and hence = H®. O

Example 3.9. Let X =Y =N, and H be the identity map of N. Let & consist of
the finite subsets of N, and ¥ consist of @ and of the {1,--- ,n} with n € N. Then
@ := card|® is an inner e premeasure ¢ : & — [0, co[ which is an obvious example
for the final assertion in 3.8.2).

The above proposition contains in 3) the main theorem on direct images of
inner e premeasures, which we reproduce in view of its importance.
Theorem 3.10. Let & in X and ¥ in Y be lattices with @ such that

(=) H(6,) C T, and
(<) HY(%,) C 6T6,.
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Let ¢ : & — [0,00[ be an inner o premeasure with ® = po|€(ps.), and assume
that ¥ := o (H71(:))|T < c0. Then v : T — [0, 00[ is an inner o premeasure with

T = a|€(tba) which fulfils Ye = po(H-1(-)) and H® = .

N
We call ¢ : T — [0,00[ the direct image of ¢ under H and write ¢ = Ho.

N
Note that 1 = Hp of course depends on the prescribed ¥, while ¢, and hence ¥
do not.

Ezample 3.11. The most natural example is that X and Y are Hausdorff topo-
logical spaces with & = Comp(X) and ¥ = Comp(Y’). Then ¢ and v are Radon
premeasures on X and Y. The assumptions (=)(«=) stand for the condition that
the map H be continuous. Of course & = G, and ¥ = %,, but the distinction in
(=)(«) will be relevant beyond the example.

In fact, we need a word on the conditions (=)(<) in 3.10. One could think
that in place of these conditions we should rather have required

(=) H(6) C % or the weaker H(6) C %,, and
(«+) H71(%) C 6TS or the weaker H~1(%F) C GT&,.

However, it is not clear how to succeed with (—)(+): It is well-known and has
been used before that H—1(%,) = (H (%))s, so that the weaker («) implies (<)
and hence is equivalent to (<). But the relation H(&,) C (H(&)),, which would
do the same for (—) and (=), does not hold true but under severe restrictions [12]
3.3. We present the most useful positive result on this relation, which is a fortified
version of [12] 3.4 and has the same proof.

Remark 3.12. Assume that the nonvoid set system & in X is e compact (each
nonvoid M C & fulfils & € M. = & € M,), and that H 1 ({b}) € ETS, for all
b e Y. Then

H( N M)= N _ H(M) forall 9 C & nonvoid e downward directed .
Mem Mem

Thus if & is stable under N then H(S,) C (H(S))s,.
We turn to the main theorem on inverse images of inner e premeasures.

Theorem 3.13. Assume that the lattices S in X and T in'Y with @ fulfil S, =
H=Y(%,). Let ¢ : T — [0,00[ be an inner e premeasure such that ¥ = 1h,|€ (1))
lives on H(X) CY. Then ¢ := 14(H(-))|S is an inner ® premeasure with ® =
©o|€(we) which fulfils

)
2) 0o(A) = 1o (H(A)) for A € SatH, equivalent to pe(H1(-)) = 1),.
3) Ho = ¥, equivalent to ®|(€(ps) N SatH) = oo by 3.3.
4) Yo = P, = (E‘I’)*
5) H(€(ps)) C €(¥s)
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-
We call ¢ : & — [0, 00[ the inverse image of 1 under H and write ¢ = H1.

-
Note that ¢ = H of course depends on the prescribed &, while ¢, and hence ®
do not. We see that there are simple relations between

—
& the maximal inner x extension of the inverse image ¢ = H1 of ¢, and

bl
HV the inverse image of the maximal inner * extension ¥ of v,
but that the two need not be equal.

Proof. 0) We see from 1.9.4) that ¢e(B) = 1e(BN H(X)) for all BC Y. We
invoke 1.10 in order to realize that the members of ¥ and hence the members of
%o can be assumed to be contained in H(X). In fact, we see from 1.10.1) that the
lattice ® := ¥ M H(X) has D, = T, M H(X), and that § := 1),|® is an inner
premeasure § : D — [0, 00[ which fulfils 4 = 9),. It follows that &, = H~}(D,)
and that ¢ = d(H(+))|&. Thus the theorem for ¢ : ¥ — [0, 00[ is identical with
that for § : ® — [0, 0o[, where the members of ® and of ®, are indeed C H(X).
The additional assumption thus achieved implies that H(S,) = H(H 1(%,)) =
Te MH(X) = %,. This will be important in part iii) below.

i) We define & : P(X) — [0,00] to be £(A) = o ((H(A'))') for A C X. We
claim that £(A) = 1 (H(A)) for A € SatH. In fact, for A= H~'(B) with BCY
we have A’ = H=1(B’) and hence H(A') = B'NH(X) or (H(A"))' = BU(H(X))',
so that (H(A")) N H(X)=BnNH(X)= H(H~Y(B)) = H(A), which proves the
present claim.

i) ¢ is inner regular G, = H~1(%,). In fact, let A C X and ¢ < £(A4) =
Ye((H(A'))'). Then there exists T € T, with T C (H(A'))" and ¢ < 9a(T).
From HHYT)NA") =TNH(A") = & after 3.1 we have H-H(T)NA' = &
or H Y(T) C A, and from i) we obtain £&(H 1(T)) = e (H(H 1(T))) = ¢e(T N
H(X)) = ¢a(T) > c.

iii) From i) we have {|6, < co. We claim that |G, is downward e continuous.
To see this fix MM C G, nonvoid e with M | A € S,. From the last assertion in 3.2
then H () | H(A). Now after 0) we can assume that H(S,) = .. Since 1,|%
is downward e continuous it follows from &, = H !(%,) C SatH and i) that

Jnf €M) = inf g (H(M)) = ga(H(4)) = £(4).

iv) We know that Hv is a content on the algebra I?(’:(w.) =H™'(¢(y.)) C

SatH in X. From the definition

HU(A) = W(H(A)) = o (H(A)) = £(4) for A € HE(),)
we see that H¥ = §|I<?I€(zb.). Now & C G, = H !(%,) C }_IC(zp.). Thus A is an

bl
HWV is an inner e extension of . Thus ¢ is an inner & premeasure, and we have

— —
pe = HU = £ on HE&(¢,) and in particular on &,. Once more from ii) it follows
that pe = £ on P(X). Thus we have proved 1)2).

v) Assertion 3) follows from 2) combined with 3.7.
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vi) It is obvious that ¢, = ®,. Thus to be shown in 4) is &, = (I?'W),, In
fact, (FI\II)*(A) for A C X is by definition
=sup{¥(B) : B € ¢(zp,) with H '(B) c A}
=sup{¥(T) = ¢o (H(H N(T))) : T € T, with H (T) C A}
= sup{te (H(S)) = pe(S) : S € &, with S C A} = po(A) = 2. (4).

vii) To prove 5) we fix M € €(p,). For A C X then

)
Pe((H(A))) = pu(A') = pu(A'N M) + o (A" M)

= e (H(AUM"))') + 1o (H(AU M))')
= e (H(A))' N (H(M"))') +¢u ((H(A))' N (H(M)))
< e (H(A) NH(M)) + 1o (H(A))' N (H(M))') < 9 (H(A))),

where we used ( (M")) NH(X) C H(M) and that 1, is supermodular. Thus

Yo ((H(A))') = ve ((H(A)) NH(M)) + ¢ ((H(A))' N (H(M))').
Now let B CY and put A := H'(B') C X. From (H(A))' N H(X)= BN H(X)
we conclude that 1 ((H(A))' NN) = 1« (BN N) for any subset N C Y. Therefore
We(B) = tho(B O H(M))+1e(BN(H(M)Y') for all B C Y, so that H(M) € €(sb,).
O

4. The Prokhorov Type Theorem

The present section will be devoted to the principal results. The section is under
the assumption formulated in 4.1 below.

Assumption 4.1. Let I be a nonvoid index set, equipped with an order < under
which I is upward directed.

a) For each p € I letY, be a nonvoid set, and for each pair p < q in I let
Hy,, :Y, <Y, Foreachp €I let T, be a lattice in Y, with @ € T,,. For each pair
p < q in I assume that
(=) Hp, (‘Sq) C (%p)e, and
() H, (%) C T, T(%y)e and hence (<) Hp ' ((Tp)e) C T T (Tg)e-
We shall have as a rule that Hp,, is the identity map of Y}, and that H,, = Hp,0Hy,
forpSgSrinl.
b) For each p € I let ¢, : ¥, — [0,00[ be an inner o premeasure with
U, = (¢p)e|€((¢p)e). For each pair p < < q in I assume that P, = (Vg)e(Hyt' (-))|Zp.
A) Let X be a nonvoid set, and for each p € I let Hy : Y}, + X. For each
pair p < q in I assume that H, = Hpq 0 Hy. Let & be a lattice in X with @ € 6.
For each p € I assume that
(=) Hy(6) C (%p)s, and
(«)H, 1(%,) C 8T8, and hence (<) H, 1 ((%p)s) C BT S,.

P p
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There is no part B) in the assumption. It will rather be the aim of the present
section to establish an appropriate B).

Aim 4.2. B) There exists an inner o premeasure ¢ : & — [0, 00[ such that v, =
o(H, ' (-))|Zp for all p € I. Each such ¢ will be named a solution.

wB) There ezists an inner x premeasure ¢ : G4 — [0, 00[ such that (vp)e =

¢« (H, () on (Tp)e for all p € I. Each such ¢ will be named a weak solution.

The relation between these two concepts follows at once from the simple
facts 1.2-1.5: For the set functions ¢ : &4 — [0, co[ we have from 1.2 and 1.3 the
equivalence

¢ inner e premeasure <> ¢ inner x premeasure and
¢|6 downward e continuous at @.
Then 1.4 asserts that these ¢ : &4 — [0, 00| are in one-to-one correspondence with
the inner e premeasures ¢ : & — [0, 00[ via both ¢ = ¢|G and ¢ = p.|S,. For a
couple ¢ and ¢ moreover Yo = o = ¢ and hence Ye|C(Pe) = G| €(Px). As to B)
and wB) we note for p € I the equivalence

¢p = @O(Hgl('))mjp — (¢p)0|(rsp)o = ¢*(Hp_1('))|(3:p)o-
Here <= is clear, and we have = because ¢,.(H, ' (-))|(Zp)e = 0o (H, ' (-))[(Tp)e

is almost downward e continuous in view of 1.5 with H;'((%,),) C 6T&, and
3.5.2).

Consequence 4.3. The solutions ¢ : & — [0,00[ are in one-to-one correspondence
with the particular weak solutions ¢ : G4 — [0,00[ of which the restrictions ¢|S
are downward e continuous at &, via both o = ¢|G and ¢ = pe|S.. For a couple
@ and ¢ moreover o = o = Py and hence po|C(Pe) = Pi|C(Py).

We shall see that there is quite a difference between solutions and weak
solutions. The most pleasant particular situation is of course that & is e compact,
where the two notions are identical.

We start with two preliminaries. The first point is to note that 3.8 leads to
certain fortifications of the basic relations in b) and B)wB).

N
Remark 4.4. Let p < ¢ in I. Then the direct image Hp,¥, is an extension of
¥, (note that this contains the assumption ¢, = (¢g)e (H,;'(-))|%;p). In particular

U,(Y,) = FIMIII,I(Y;,) = U, (Y,). Thus the value C := ¥,(Y},) € [0, 00] is indepen-
dent of p € I. Moreover if (=) Hpa((4)s) C (Zp)e then (¢p)e = (¢g)e(Hyr'(+))

N
and Hp ¥, = T,,.

Proposition 4.5. Let ¢ : G4 — [0,00[ be a weak solution with ® = ¢ |C(¢y). For
p € I then ?I »® is an extension of ¥, (note that this contains the assumption
(hp)e = &u((H, () on (%p)e). In particular C = ,(Y,) = ﬁ@(Yp) = &(X).
Moreover if (=) Hy(S,) C (Zp)e then (p)e = ou(H,(-)) and ?Ipq) =7T,.
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Proofs. In 4.4 the assertions follow from 3.8.2)3) applied to the lattices T,
in Yy and ¥, in Y, under the map Hj, and to the set functions 1, and . In 4.5
the assertions follow from 3.8.1)3) applied to the lattices G, in X and (Tp)s in Y,
under the map H), and to the set functions ¢ and (vp)e|(%p)e, but in case x. One
has to note that ((¢¥p)e|(Tp)s), = (¢p)e- O

The second point is to introduce the so-called PROKHOROV condition into
the present situation 4.1. This is the fundamental condition which dominates the

traditional treatment in the concrete situations based on Radon measures. It is
due to Prokhorov [19].

Lemma 4.6. Assume that p € I satisfies Slrelg3 U, ((Hp(S))') = 0. Then ¥, lives on
Hy(X) CY,. Moreover C = ¥,(Y,) < 0.

Proof. For S € & we have H,(S) € (%p)e C €((¥p)e). Thus for A C Y, it
follows that
(¥p)e(A) = (¥p)e (AN Hp(S5)) + (p)e (AN (Hy)S))')
S(Wp)e(AN Hy(X)) + (1) (Hp(S5))') for S € 6,

so that the present assumption implies that (¢p)e(A) = (¢p)e(A N Hp(X)). From
1.9.4) the first assertion follows. The second assertion is obvious. O
After this we define the Prokhorov condition to be

I inf U, ((H ") =0.
(M) nf sup @, ((H,(S))) =0
Thus (II) is the uniform fortification of the condition Slrelé T, ((Hy(S))") = 0 for

the individual p € I which appears in 4.6. Therefore (II) implies that ¥, lives on
Hy(X) C Y, for all p € I, and that C < oo. We prove that the existence of a
weak solution ¢ : Gq — [0, 00[ with ®(X) = C < oo enforces that condition (II) is
fulfilled. This statement can be fortified as follows.

Proposition 4.7. Assume that ¢ : G4 — [0,00[ is isotone with (&) = 0 and
supermodular, and that

(Yp)e < ¢*(Hp_1(-)) on (%p)e and hence on P(Y,) for each p € I.
If moreover ¢,(X) < oo then condition (II) is fulfilled.

Proof. For fixed € > 0 there exists an S € & with ¢(S) 2 ¢4(X) — e. Since
¢4 is supermodular we have ¢,(S') + ¢(S) £ ¢.(X) and hence ¢,(S’') £ . Now
for p € I and P := (H,(S))' we have @ = H,(S)NP = H,(SN H,*(P)) from
3.1 and hence SN H,'(P) = @ or H;'(P) C S'. Thus the assumption furnishes
(¥p)e (Hp(S))') = (p)e(P) S 6 (H, 1 (P)) £ ¢u(S") Se. O

After these preliminaries we head for the main results. These are the converse
assertion that condition (II) implies the existence of weak solutions, and another
fortification of their properties. For the subsequent development up to 4.9 and 4.10
we assume that ¥, lives on Hy(X) C Y, for allp € I.
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-
For p € I we have on the one hand the inverse image H,¥, of ¥,. On the

other hand we form the lattice &, := H,'(%,) with @ in X, so that (Gp)e
H;'((%p)s). Then after 3.13 we have the inverse image ¢p, := (¢p)e (Hp(- ))|6 of
€((¢p)e)

Yp. Thus ¢, : &, —= [0,00[ is an inner e premeasure with ®, = (¢p).
which fulfils

3.13.1) (i2p)e(A) = (v0p)e ((Hp(4"))') for A C X,

3:13.2) (pp)e(A) = (¥p)o(Hp(4)) for A € SatH, or (0p)e (H; 1 () = (p)e,

3.13.3) H,®, = T, or ®,|(¢((¢,)s) N SatH,) = H,T,.
In particular ®,(X) = C. From 4.1 one cannot expect simple inclusions between
the &, and (&), for different p € I. But from 1.8 we obtain the basic fact which
follows.

Lemma 4.8. Let p < g in I. Then ®, is an extension of ®,. It follows that (pp)e <
(@q)e-
In particular €(pp)s) C €(pq)e)- For later use we also note the obvious fact
that SatH, C SatH,.
Proof. We show that 1.8 can be applied to ¢, : &; — [0,00[ and ¢, :
S, — [0, 00[. Thus we have to prove that 1) &, is upward enclosable &, and 2)
(g)e = (¥p)e On (Sp)e. 1) Let B € &, so that B = H,;'(Q) for some Q € Z,.
Then Hy,q(Q) € (%p)e and hence H,y(Q) C some P € T, It follows that
B = H;'(Q) C H (Hy (Hy(Q)) € Hy (H;X(P)) = Hy'(P) € 6.
2) Let A € (6p)e = H, ' ((%p)s), so that A = H'(P) = H; ' (H,,' (P)) for some
P € (%p)s. Then
(q)e(A) = (o) (Hy(H, " (H,,' (P)))
¢q)-(Hq H( )) = (Yq)e(Hy,' (P)),
(0p)e(A) = (¥p)e (Hp(H, ( ) = (p)e(PNH, ( ) = (¥p)e(P)),
s

and the two final terms are equal in view of 4.4. Thus 1.8 asserts that ®, is an
extension of ®,. O

We conclude from 4.8 that 2 := LEJI €((¢p)e) is an algebra in X, and that
P

there is a unique content a : 2 — [0, 0o] such that a|€((pp)s) = @, for all p € I.
In particular a(X) = C. The definition implies that

e = sup (Pp)« = sup (¢p)e-
pel pel
Next we define ¥ to be the lattice generated by UI (6p)e- Thus ¥ con-
peE

sists of the nonvoid-finite unions of the nonvoid-finite intersections of members of
UI (6p)e. We list its relevant properties.
peE

)T C Y, (€(pp)e N SatH,) C 2A. This follows from 4.8.
p
ii) ¥ C BTG, = 6, TG,. This follows from (<) in A).
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iii) & and hence &, are upward enclosable ¥. In fact, for S € & we
have H,(S) € (%,)e from (=) in A) and hence S C H,'(H,(S)) €
H, 1 (5,)0) = (Sy)e C .
iv) « is inner regular ¥ and hence an inner x extension of a|¥ < co. This
is clear from the definition of a.
We see from iv) that ¢ := «|% is an inner x premeasure ¢ : ¥ — [0,00[ and
that ¥ = ¢,|€(1)y) is an extension of a. Thus A C €(¢),) and ¢, = a on A. It
follows that ¥, = a, and hence ¥ = a4|€(a,). Then we use iii) to see that 1.8
can be applied in case % to the lattices &, and ¥, and to any inner x premeasure
¢ : S = [0,00] with & = ¢,|€(d«) and the above ¢ : T — [0, 00[. In view of ii)
we have T C 6, TG, C €(¢y), so that => in 1.8 reads that
P extension of Yy = P extension of V.
We combine this with the obvious implications

® extension of ¥ = a,|€(a) = P extension of o =>
® extension of af U (€(pp)e) NSatH,) =—> @ extension of a|T = ),
pE

where the last = follows from i). The result is that all these assertions are
equivalent. Now the third assertion means that @ is an extension of ®,|(€((¢p)e)N

-
Sa,tH,,) = H,9¥, for all p € I, where 3.13.3) has been used. Equivalent by 3.3 is

e
that H,® is an extension of ¥, for all p € I, and hence by 4.5 that ¢ is a weak
solution. Thus we have proved what follows.

Theorem 4.9. Assume that ¥, lives on H,(X) C Y, for all p € I, so that the
inverse images pp : &, — [0,00[ are defined, and likewise their combination « :
A — [0, 00] which fulfils

ax(4) = sup (Pp)e(A4) = sup (¥p)e ((Hp(A")) for all AC X.

Then each inner x premeasure ¢ : G4 — [0, 00[ with ® = ¢, |€(¢y) fulfils
¢ is a weak solution <= ® is an extension of a,|C(a).

In this case a, < ¢.

We continue to invoke the new transplantation theorem 2.4 in order to obtain
lattices G, and ¥, and to the above inner x premeasure ¢ : ¥ — [0, 0o[. Now on the
one hand the assumption in = requires that inf{1,(S") : S € G} = inf{1, () :
S € 6} be = 0. To appreciate this we recall that our previous formulas combine
to

() = 0 (4) = sup (,)a (4) = sup () ((H,(4))) YA C X.
P P
Thus the assumption in question is identical with the Prokhorov condition (IT).
On the other hand the conclusion (3) in = asserts that there exists an inner
* premeasure ¢ : S, — [0,00[ such that & = ¢, |€(4,) is an extension of ¥ =
0|€(ay). In view of 4.9 this means that ¢ is a weak solution. Thus 2.4 leads at
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once to the main result which follows. We need to recall that condition (II) implies
the overall assumption that ¥, lives on H,(X) C Y}, for all p € I.

Theorem 4.10. Assume that (IT) is fulfilled. Then there exists at least one weak
solution ¢ : S, — [0, 0.

Example 4.16 at the end of the section will show that condition (II) does not
enforce the existence of solutions ¢ : & — [0,00[. At last we want to obtain a
uniqueness assertion. We need a simple remark and two more utensils.

Remark 4.11. Let p < g in I. i) For A C X we have Hy'(H,(A)) D Hy ' (H,(A)).

ii) For A C X with Hp(A) € €((¢p)e) we have (¢)e(Hp(A)) Z (¢y)e ( 4(4)).
Proof. i) We have H, ' (H,(A)) = H; ' (H, ' (Hy(H,y(A)))) D H ' (Hy(A)).

ii) We have H, ' (H,(A)) € €((¢q)s) with ¥, (H,(A )) ‘Ilq(Hp_ (Hp(A))), and

H,'(Hy(A)) D Hy(A). O

Next we define the set function 9 : dom(¥) — [0, 00] as follows. Its domain
consists of the subsets A C X such that there exists u € I with H,(A) € €((¢p)s)
for all p 2 win I. From 4.11.ii) then (¢p)e(Hp(A)) 2 (¢q)e(Hq(A)) foru Ep < g
in I. We are entitled to define

HA) = inf  (¢p)e(Hp(A)) =:1im (¢p)e (Hy(A)),
pEI,pgu ptl

because the infimum in question does not depend on the individual v € I. In
particular & C dom(¥9) and 9|6 < co. Moreover 3.13.5) implies that 2 C dom(¥)
when ¥, lives on Hp(X) C Y, for all p € I. We note some properties.

Remark 4.12. i) Each weak solution ¢ : G4 — [0, oo[ fulfils ¢,(A) £ ¥(A) for all
A € dom(9). In particular ¢ < ¢ on &.
ii) Assume that ¥, lives on H,(X) C Y, for all p € I. Then

a5 (A) £9(A) and C = I(A) + a,(A") for all A € dom(d).
In particular in case C' < co one has a.(A) = 9(4) for A € dom(¥) N ().

Proof. i) For A € dom(¥) let as in the definition for p 2 w in I be H,(A) €
€((¢p)s), 50 that H,'(H,(A)) € €(p,) and ¢, (H; (H,(A))) = (1p)e(Hp(A))
after 4.5. This implies that ¢,(A) < J(A).

ii) For A € dom(«}) let once more be H,(A) € €((¢)p)s) for p 2 w in I. Then

(p)e(A) = (Wp)e(Hp(A"))) = (¥p)e (Hp(A")' N Hp(X)) < (vp)e(Hp(A)),
C = (¥p)e(Hp(A)) + (¥p)s (Hp(A))') = (¢p) e (Hp(A)) + (2p)e (4").

These relations and the monotone dependence on p 2 w of the terms involved
furnish the two assertions. [J
The other concept to be introduced is the uniqueness condition

(UCe) for each S € & there exists a nonvoid e subset K C I
-1
such that pQK H; (Hy(S)) =S.

4)
(A
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In case ® = 7 one can take K = I. In view of 4.11.i) one can take K in case e = ¢
to be an isotone sequence p(1) £ --- < p(n) £ --- in I, and in case ® = x to be

K = {p} for some p € I. Thus K can be assumed to be upward directed. Then
4.11.i) implies that {H, ' (Hy(S)) :pe K} | S.

Remark 4.13. Assume that i) & is e compact,
ii) H,'({b}) e TS, for all be Y, and p € I,
iii) for each S € & there exists a nonvoid e subset K C I
such that pQK H,'({Hy(a)}) C S for alla € S.

Then (UCe) is fulfilled.

Let us note that in case e = 7 condition iii) is satisfied when the product
map (Hp)per : X — HIYp is injective.
y4S]

Proof. Fix S € & and then a nonvoid e subset K C I as in iii). We can
assume as before that K is upward directed. We claim that for this K condition
(UCe) is satisfied. In fact, let u € X such that u € H, ' (H,(S)) or Hy(u) € Hy(S)
for all p € K. To be shown is u € S. For p € K note that A, :={x € S: Hy(z) =
Hy(u)} = H, '({Hy(u)}) N S is nonvoid and € &, by ii). Since &, is e compact it
follows that {A, : p € K} | some nonvoid A C S. For each a € A C S we obtain
u € pQKHp_l({Hp(a)}) and hence u € S in view of iii). O

With condition (UCe) we obtain the uniqueness assertion which follows.

Proposition 4.14. Assume that (UCe) is fulfilled. Then each solution ¢ : & —
[0, 00 must be ¢ = 3. We have even ®(A) = ¥(A) for all those A € &4 which
fulfil Hy(A) € (%p)e for p 2 some u € I.

Proof. Let A € &, with its u € I as above, and fix 9t C & nonvoid e with
M | A. There exists a nonvoid e subset K C I such that QK H;Y(Hy(M)) =M
P

for all M € M, which implies that ﬂK Hy '(H,(A)) = A. We can assume as before
pPE

that K is upward directed. Thus {H, ' (H,(A)) : p€ K} | A. We can also assume
that the p € K are 2 u, so that H,(A) € (%,)e C €((¢p)s) and hence

U,(Hpy(A)) = ®(H, ' (Hy(A))) < 0o with H, '(H,(A)) € 6TE..

The infimum under u < p € I on the left side is = 9¥(A4). On the right side it is on
the one hand = ®(A), and on the other hand £ the infimum under p € K which
is ®(A) from 1.5, so that it is = ®(4). O

We have to realize that the above uniqueness assertion on the basis of (UCe)
does not refer to the weak solutions ¢ : G4 — [0,00[, but is restricted to the
solutions ¢ : & — [0, col.

Ezample 4.15. The most natural example for the situation 4.1 is that the Y}, and
X are Hausdorff topological spaces with €, = Comp(Y},) and & = Comp(X), and
that the maps H,, and H, are continuous. Then the 1), are Radon premeasures

5
on the Y, such that ¢, = (1g)e(H,;'(-))|%, and hence H, ¥, = ¥, for p < ¢.
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We are of course in the case ¢ = 7. The above 4.10 and its converse 4.7 combined
with 4.3 and 4.5 then assert that condition (II) is equivalent to C < oo plus
the existence of at least one Radon premeasure ¢ : & — [0,00[ on X which

—
fulfils 1, = @e(H, " (-))|%, and hence H,® = ¥, for all p € I. Furthermore 4.14
with 4.13 assert that ¢ is unique whenever the product map (Hp)per : X —
I;IIXP is injective, and that in this case ¢(S) = 1r61f1 Yp(Hp(S)) for S € Comp(X).
p p

These results, or at least the last-mentioned case of uniqueness, are for instance
in Kisyriski [9] section 3, Bourbaki [2] section 4.2, Schwartz [20] section I.10, and
Fremlin [5] 418M.

We turn to the final example announced above. The example covers both
cases @ = o7. We use on R the Lebesgue premeasure A : Comp(R) — [0, 00|, and
on the unit circle S = {s € C : |s| = 1} the arc length premeasure «y : Comp(S) —
[0, oo[ normalized to y(S) = 1. The connection is via the map H : R — S defined
to be H(z) = exp(2wiz): For each ¢ € R the restricted map H|[¢, ¢+ 1] transforms
the restricted Lebesgue premeasure A|[c, ¢ + 1] into  in the direct image sense of
3.10 and 3.11, that is

Y(K) = A{z € [¢,c + 1] : exp(2miz) € K}) for K € Comp(S).

We recall the well-known fact that + is invariant under the maps A, : S — S
defined to be h,,(s) = s™ for m € N, that is v(K) = y(h;;,}(K)) for K € Comp(S).

m

Ezample 4.16. Let I = {p € Z : p 2 0} with the usual total order <. For p € I let
Y, =S with ¥, = Comp(S) and ¢, = . For p < ¢ in I define Hy, : Y, < Y, to be
Hpy(s) = s*". Then v, = 1h(H,,'())|T, as mentioned above. On the other side
let X = R. For p € I define H, : Y, + X to be Hy(z) = exp(2~P2mix), so that
H, = H,q0H, for p £ g in I. Note that the H, are surjective.

For p € I let 6, := H,'(%,) = H, ' (Comp(S)), so that &, is a lattice in
X = R with &,X € 6, and 6, = (6,).. 6, consists of the closed subsets of
R which are periodic with period 27. Thus &, C &, for p £ ¢ in I. Therefore
6 = pLeJI S, is a lattice in X = R with @, X € &. It is clear that (=) Hp(6) C

Comp(S) = %, and obvious that (+-) H;'(%,) = 6, C 6 = 6T C 6T6,.
Thus the situation fulfils 4.1, and we have C = 1. Moreover condition (II) is
fulfilled for the trivial reasons that X € & and H,(X) = Y. However, note that
S, is a more complicated formation.

For p € I let as above ¢, : G, — [0, co[ be the inverse image of ¢, = y under

H,. We also recall the content a : 2 — [0, o0] which this time fulfils
o, (A) = supve((Hp(4")) forall AC X =R
pel
We use this formula in order to prove that each bounded subset A C R is in €(a,)

and has a,(A) = 0. In view of a(X) = 1 it follows that the content a.|€(au) is
not upward o continuous.
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For the proof fix a bounded subset A C R. We show that 1) a,.(A) = 0 and 2)
ay(A") = 1. Then 1.7.1) applied to & := a, and T := {X} asserts that A € €(ay)
and hence the full claim. 1) is obvious since H,(A') = S and hence (Hp(4")) = @.
2) Fix ¢ > 0 such that A C [—¢, ] and hence

Hy(4) € Hy([=c,d]) = {exp(2rit) : |f] < 2-Pc}.
For the p € I with 27P2¢ < 1 it follows that
Yo (Hp(4))') 2 1 = y(Hp([-c,d])) =1 - 272,
and hence a,(A") =1 as claimed.
Now 4.9 asserts for each weak solution ¢ : G4 — [0, 00[ that & = ¢, |€(¢y) is

an extension of a,|€(ay). Therefore ® is not upward o continuous as well. Thus
4.3 tells us that there are no solutions ¢ : & — [0, 00[. O

5. The Kolmogorov Type Theorem

In this section we consider the specialization of the above situation 4.1 which
corresponds to the traditional situation named after Kolmogorov [10] chapter III
section 4. For recent presentations we refer to Bauer [1] section 35 and Stromberg
[21] chapter 7. In the present context the situation is as follows.

Let T be an infinite index set, and let I consist of the nonvoid finite subsets
of T. On I one defines the order £ to be the inclusion C, so that I under < is
upward directed.

For each t € T let Y; be a nonvoid set. For p € I one forms Y, := tlé[ Y:.
P

For each pair p < ¢ in I let Hpy : Y, + Y, be the canonical projection. The Hp,

are surjective and fulfil Hy,. = Hp, o Hy, for p £ ¢ < r in I. Next one forms

X = tHTY}. For each p € I let Hy, : Y}, + X be the canonical projection. The H,
€

are surjective and fulfil H, = Hp, o H, for p < ¢ in I. In particular for ¢ € T the
H 4y =: Hy; are the canonical projections Hy : ¥; + X.
Then for each t € T let ¥; be a lattice in Y; with &,Y; € T; and hence
T T = %4, and with {b} € %, for all b € Y;. We assume F; to be o compact. For
p € I one forms
Tp = {tIE—Ith :T; €% fort € p}*,

that is ¥, = (tI;I %¢)* in the sense of [13] section 2 (note that 90* is defined to
P

consist of the unions of the nonvoid finite subsets of M). Thus T, is a lattice in
Y, with @,Y, € €, and hence ¥,T%, = %, and with {b} € T, for all b € Y.
From well-known facts [13] 2.5-2.6 one knows that ¥, is ® compact. In particular
Ty =% fort € T. For p £ g in I we have

() H, ' (%,) C %, and hence (<) Hy.'((Tp)e) C (Fg)e,

(=) Hpy(%,) =%, and hence (=) Hpg((%4)e) C (¥p)e from 3.12.
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Next one forms

G = {tle'ITTt 1Ty € %y for all t € T and Ty = Y; for almost all ¢ € T},

where as usual almost all means all aside from a finite number, that is & =
( x %)* in the sense of [13] section 2. Thus & is a lattice in X with &, X € &
teT

and hence 6TS = G, and as before & is ® compact. For p € I we have
(«) H;'(%,) C & and hence (<) H; ' ((%p)e) C Ga,

P p
(=) Hy(6) =%, and hence (=) Hy(S,) C (%,)e from 3.12.
At last note that for each S € & there exists p € I such that H, ' (H,(S)) = S.
Thus we have a)A) in assumption 4.1. The present form of part b) will be

the assumption in the theorem which follows.

Theorem 5.1. Let (Y)per be a family of inner e premeasures v, : T, — [0, 00[
with ¥, = (Vp)e|€((¥p)e). For p < q in I assume that

Up (tlngt) =1, (tlgq Tt) forT, ey Vt€ep and T, =Y, VEt € g\ p.

Then there exists a unique inner & premeasure ¢ : & — [0, 00[ with & = pe|C ()
such that for all p € I

¢p(t£1 T;) = go(thTt) forTy e Viepand Ty, =Y, Vi € T\ p.
P

We have
o(S) = mel? U, (H,(9)) for S € &, and even
P

B(4) = inf Uy(Hy(4))  for A€ B

—
Furthermore we have (¥p)e = po(H™'(+)) and H,® = ¥, for allp € I.

Proof. i) We claim that ¢, = ¢, (H,'(-))|%p for p < ¢ in I. In fact, for an
A € T, of the form A = tlg T; with T; € ¥; Vt € p this relation coincides with
P

the assumption. For a finite union of such particular A € ¥, it then follows from
the folklore formula MI 2.5.1) applied to the set functions v, and ¥, (H,.'(-))|%,.
Thus we have part b) in assumption 4.1 and hence all of 4.1.

ii) Condition (II) is satisfied for the trivial reasons that X € & and H,(X) =
Y. Since & is e compact we conclude from 4.10 and 4.3 that there exists at least
one solution ¢ : & — [0, 00[. The equivalence with the respective formulation in
the theorem is seen as in i) above. Next 4.14 can be applied, because as noted
above we have (UCx) and hence (UCe). In case S € & we can write min instead of
inf, because for p < ¢ in I with H ' (H,(S)) = S we have H, '(H,(S)) = H,y(S)
and hence U, (H,(S)) = ¥, (H, ' (Hy(S))) = ¥,(Hy(S)). At last the two final
assertions are contained in 4.5. O

It is a matter of routine to liberate the situation from the assumption that
Y; € %, for all t € T'. This will be done in the sequel. We have to supplement the
situation as follows.
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For each ¢t € T let R be a lattice in Y; with @ € K, and with {b} € & for
all b € Y;. We assume K to be e compact. Then T; := & U {Y;} is a lattice in Y}
as it has been before; in particular note that e compactness carries over from £
to T;. For p € I one forms

Rp = {tg Ki: K€ R fort ep}*7
p

that is K, = (tI;I £:)* in the sense of [13] section 2. Thus K, is a lattice in Y,
»

with @ € &), and with {b} € K, for all b € Y},, and as before K, is e compact.
In particular 8¢y} = & for t € T. We also retain the lattice T, in Y),. The basic
relations between the two lattices are 8, C T, C K, TK,. At last we retain the
lattice & in X, with no companion this time.

For the sequel we need another little remark.
Remark 5.2. 1) Let ¥ : & — [0,00[ on a lattice & be isotone and downward e
continuous. Then ¥ = ¥, on GTES.

2) For some p € I let ¢ : &, — [0, oo[ be isotone with $(@) = 0 and downward
e continuous. For each system of T; € ¥y Vt € p then

19. (tlg Tt) = sup{ﬁ(tlg Kt) : Kt S Rt with Kt C Tt Vt € p}
p P

Proof. 1) We fix A € 6T and have to prove J¢(A) < ¥.(A). Let S € &,
with S C A, and 9t C & nonvoid e with 9t | S. For M € M then M NA € & and
SCMnNACA. It follows that 9e(S) £ Je(M N A) =93(MNA) £ 9,(A), and
hence Yo (A) < 9, (A).

2) It is obvious that =. To see < let A € R, with A C tgp T;. Then there exist

K, € Ry Vt € p with A C tlg K, C tlé[ T;. In case A # @ it follows that K; C T
p P
for all ¢ € p and hence ¥(A) < ﬁ(tlél K;) < the second member. In view of 1) the
p
assertion follows. O

After this the above theorem attains the form which follows.

Theorem 5.3. Let (¢p)per be a family of inner o premeasures ¢p : K, — [0,00[
with @, = (pp)e|€((¢p)e) < 0. For p < q in I assume that

cpp(tlelpKt) = sup{p, (tlgq K;) : Ky € &Vt € ¢\ p} for Ky € & Vt € p,
which after 5.2.2) is equivalent to
() ¢p(ILK:) = (pg)e (T K1) for Ky € & V€ p and Ky =Y, ¥t € g\ p.

Then there exists a unique inner & premeasure ¢ : & — [0, 00[ with & = pe|C(p,)
such that for all p € I

(P”(tlngt) = cp(thKt) for Kie &eVtep and Ky =Y, Vt € T \ p,
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and ®,(Y,) = o(X). We have
o(9) = mel? @, (Hp(S)) for S € &, and even
)

(4) = inf B,(Hy(4)  for A€ G,

—
Furthermore we have (pp)e = po(H, ' () and Hy,® = &, for allp € I.

For the purpose of reduction to 5.1 we conclude for fixed p € I from 1.6 ap-
plied to ¢, : K, — [0, 00[ and ¥, and from the above 5.2.1) that 1, := (p)e|Tp =
(p)«|%p is an inner o premeasure ¥, : T, — [0, oo[ which fulfils (¢5)e = (¢p)e. In
particular ¥, = (¢¥p)e|€((¥p)e) is = P,.

Proof. i) For p € I we see from 5.2.2) that

wp (tIG—Ith) = sup{cpp (tlgp Kt) : Ky € Ry with K, C Ty Vit € p} for T; € T; Vt € p.

ii) We claim that the inner e premeasures v, for p € I fulfil the assumption
in 5.1. In fact, let p S ¢in I, and fix Ty € Sy for t e pand Ty = Y; for t € ¢\ p.
For each system of K; € K; with K; C T} Vt € p we have by assumption

(pp(tlngt) = sup{goq (tlgq Kt) K, e R Vieq \p}

We form on either side the supremum over all these systems (Ky)icp. Then i)
asserts that this supremum is

= %(tlgp T;) on the left, and = 1), (tgq T;) on the right .

Thus we obtain the present assertion.

iii) After this theorem 5.1 asserts that there exists a unique inner e premea-
sure p : & — [0, 00[ with & = e|€(ps) which is as formulated at that place. It is
clear from the above that the former properties

¢p(t£[ Tt) = (p(thTt) for Tt € Tt Vit € p and Tt = Y;g VteT \p7
p

asserted for all p € I, are equivalent to the present ones for the ¢, and ®,, for all
p € I as well. The further assertions persist. [

Theorem 5.4. The assertion of 5.3 defines a one-to-one correspondence between the
families (pp)per of inner o premeasures pp : 8 — [0, 0o[ with @, = (p)e|€((¢p)e)
< 0o which fulfil (o) for allp < q in I, and
the inner o premeasures ¢ : & — [0, oo[ with p(X) < oo such that
@o(H, 1 (-)) : B(Yp) = [0, 00] is inner regular (Kp)s for each p € I.

In view of the main result in the final section we define these particular
p: 6 — [0,00] with p(X) = 1 to be the Wiener e premeasures for the present
situation, that is for the family (& )ier with &, and their & = p4|€(p,) to be the
respective Wiener measures. The fundamental case will be e = 7.

Proof. Define A to consist of all families (¢p)per as described above, and ¥
to consist of all ¢ : & — [0, 0o[ as described above.
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1) By 5.3 each (pp)per in A produces an inner e premeasure ¢ : & — [0, 00[
which in view of (¢p)e = @e(H,, '(+)) for p € I is a member of ¥.

2) Let ¢ : & — [0, 00[ be a member of X. For the first two steps we fix p € I.
2.i) From 3.10 applied to Hy, : X — Y, with & and ¥, for which the assumptions
(=)(<«=) are fulfilled after the initial part of this section, and to ¢, we obtain an
inner e premeasure ¥, : T, — [0,00[ such that (¢p)e = @e(H, '(-)) < o0o. 2.ii)
Then from 1.6 applied to ¥, : T, — [0,00[ and to K, C ¥, we obtain an inner o
premeasure ¢, : &, = [0, 00[ such that (¢p)e = (¢¥p)e = @e (H; ' () < c0.

2.ii1) We claim that the family (yp)per fulfils (o) for all p < ¢ in I, and hence
is a member of A. In fact, for K; € R for allt € pand Ky =Y; for all ¢t € ¢\ p we
have Hq_l(tlqut) = H;l(tngt) and hence

(0 (LKD) = (oo (LK) = (LK),

3) It remains to prove that the two maps (pp)per — ¢ obtained in 1) and
@ — (pp)per obtained in 2) are invers to each other. 3.i) For the composition
Pp)per = @ = (Pp)per we see from 1) and 2.ii) that (¢p)e = pe(H, " (-)) = (Pp)e
and hence ¢, = @, for p € I. 3.ii) For the composition ¢ +— (p)per — @ we see
from 2.ii) and 1) that

poH; (1) = (p)e = Go(H; () on P(¥;) for pe 1.
Now each S € & is of the form S = A x 171\ Y; = Hp_l(A) for some p € I and
teT\p
A CY,. It follows that ¢ = ¢. O

We conclude with an important specialization and the comparison with the
traditional counterpart of the present development.

Ezxample 5.5. The most natural example is that Y; for ¢ € T is a Hausdorff topolog-
ical space with £, = Comp(Y;). We equip Y}, for p € I with the product topology.
We are then led to assume that ¢ = 7, because one has (£;,), = Comp(Y,) from MI
21.3.2) and [13] 2.4.2). We recall from 1.4 the one-to-one correspondence between
the inner 7 premeasures ¢, : K, — [0, 00[ and the Radon premeasures ¢, on Y, via
(¢p)r = (¢p)r. Thus 5.3 and 5.4 produce a one-to-one correspondence between the
families (¢,)per of Radon premeasures ¢, on'Y, with ®,(Y,) = 1 which fulfil (o)
for all p £ q in I, and the Wiener T premeasures ¢ : & — [0, 00 for the present
situation. We emphasize that this result reaches beyond topological measure the-
ory, because & does not appear as a set system which comes from some Hausdorff

—
topology on X. We also note that the final assertion H,® = &, in 5.3 implies that
R € Bor(Y,) C €((pp);) = R x (t 1}\ Y;) = H,'(R) € €(p,) forpel.
€T\p

After this we turn to the traditional situation cited at the outset of the section.

Here one considers 7" with I and the Y; for ¢ € T with the Y}, for p € I and X
as before. Then one assumes a family of o algebras 9B, in Y; for ¢ € T and forms
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their usual product o algebras B, in Y, and

A = AO’({thBt : By € B, Vt € T and B; =Y; for almost all ¢t € T}) in X.

We recall that for T" uncountable the formation 2l appears to be too small, be-
cause its members A € 2l are of countable type in the sense that A = R x EI\CY;
te

for some nonvoid countable C C T and some R C tHcY;' In this frame the de-
€

sired counterpart of the above 5.3 would read as follows: If (6,),er s a family of
probability measures 6, on B, which for p < q in I fulfils

6, (tngt) =6, (tqut) for B, € BVt € p and B, =Y, Vt € ¢\ p,

then there exists a unique probability measure 8 on 2 such that for p € I
Op(tlg B,) = O(tle'ITBt) for Be B, Vtepand B, =Y, Vte T\ p.
P

However, this statement is not true as it stands. But it is true in the special case
that the Y; for t € T are Polish topological spaces with 8B; = Bor(Y;). The finite
product spaces Y}, are then Polish as well with 8, = Bor(Y},,). This fact and the
further well-known particularities of the Polish spaces show that the present special
case is an immediate outcome of the situation considered in 5.5 above: In fact, in
view of the inner extension theorem 1.1 the families (6,),cr of the present kind are
in one-to-one correspondence with the families (¢p)per and (¢p)per in 5.5. Thus
from (8,)per the result in 5.5 produces the Wiener 7 premeasure ¢ : & — [0, 00[
with its Wiener measure ® = ¢, |€(p, ). Its domain €(p, ) has been seen to contain
the present 2, and we obtain the measure 6 as the restriction of ® to 2I.

But the fundamental point is that € can be a rather poor restriction of ®, in
that its domain 2( can be much smaller than the comprehensive €(y,) and refuse
even the most important requirements. In fact, it can happen that some subset
E C X of utmost importance turns out to be thick with respect to 8, that is

0*(E) :=inf{6(A): A € A with A D E} =1, but has 6,(FE) =0,

so that E cannot be a member of 2, whereas in our new approach one has E €
€(p,) with ®(E) = 1, so that ® lives on E. The most prominent example will be
the topic of the final section.

If in such situation one wants to pass to a probability measure on E, then
in the traditional frame one has to form the so-called contraction g := 6*|AN E
of 8 onto E, that is a formation defined on a domain 20 M E which is in essence
outside the former 2. In contrast, in the new frame one can form the restriction
®|E of ® to the domain €(p,)ME = {A € €(p,) : A C E} which is contained in
the former domain €(y,), and one has the pleasant properties listed in 1.10.

The final section below will be under a more special assumption, which is the
usual one in probabilistic context. For T with I as before one assumes that Y; =Y
for t € T, so that Y, = Y? for p € I and X = Y. In the traditional frame one
then assumes B; = B for t € T, so that B, = Ac(BP) with the usual product
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set system BP = B x --- x B and A as before. In the present new situation we
assume & = R for t € T, so that K, = (&¥)* and & as before. Of course the most
important special case is that Y is a Polish topological space with %8 = Bor(Y)
and R = Comp(Y).

6. The true Wiener Measure

We assume the situation described at the end of the last section with 7' = [0, oo[
and Y = R with B8 = Bor(R) and £ = Comp(R), so that X = RT = RI®>I
with 20 and & as before. Thus the members of X are the one-dimensional paths
z = (z¢)ser : T = [0, 00[— R. We also assume that e = 7.

We fix a family (¢,)per of inner 7 premeasures ¢, : £, — [0,00[ with
®,(RP) = 1 which fulfil (o) for all p £ ¢ in I, and its Wiener 7 premeasure

—
¢ : & — [0,00[ and Wiener measure & = ¢.|C(yp;). We recall that H,® = &,
implies that the projection H, : X — RP is measurable with respect to €(y;) and
€((¢p)r) D Bor(RP). The present main theorem then reads as follows.

Theorem 6.1. Assume that there are real numbers o, > 0 and ¢ > 0 such that
the projections Hy : X — RVt € T fulfil

/|Hs — Hy|%d® < c|s —t|'*?  for all 5,t € T.

Fiz 0 <~y £ 1 with vy < 8/a, and define for real M > 0 the function class
E(v,M):={z € X :|zg| £ M and
|2y — 2| S M2VIA=D |y — |7 Yu,v € T}.
Then E(y, M) € &, and hence E(y) := MU>0 E(y,M) € (6,)° C €(p;) with

®(E(7) = lim &(E(y, M)) =1.

The assumption in 6.1 is the usual one in the theorem on the existence of
so-called continuous modifications, like for instance in Bauer [1] 39.3. But the
assertion is a drastic improvement: The traditional result in terms of the measure
6 on A is 6*(C(T,R)) = 1, and of course 6,(C(T,R)) = 0, and one obtains via
contraction the traditional Wiener measure 8¢ (rr) := 6*[(2 1 C(T, R)). In sharp
contrast, the present situation concludes from E(y) C C(T,R) that the subspace
C(T,R) is a member of €(ip,) with ®(C(T,R)) = 1. Also note the occurrence of the
small subsystem & of €(¢; ), which after all is the most basic system of measurable
sets, and the almost global character of the Holder classes E(y, M), connected with
the particular bound of increase at infinity contained in their definition.

The technical problems with the proof will be finished off with the lemma
below. It is modelled after the standard procedure, like for instance in the proof of
Stromberg [21] 8.2. We present the details both for the sake of completeness and
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because we need some peculiarities. We retain the assumption of 6.1. For fixed
0 <~v £1 with v < 8/a we form

1 2446
6—5(/8—OK’Y)>0 and A—m, sothat0</\<1,

2 +1 __ 2 1y

= >0 and B'_b(—l—)\) .

Let D C T consist of the dyadic rationals 2 0. Moreover let
D(n) = {teD:2" € Zand ¢t < n} and

E(n) := {(s,t) €D(n) xD(n) :0<t—s <27 ™} forneN
Thus card(E(n)) £ n227~"*, Then define
A, = N H, — H;)| <|s—t|"] € €(¢p;) f €N,
Doy [ = S s =t € €p) form

A= U 0 A,ec(p).

m=1 n=m

The lemma in question reads as follows.

Lemma 6.2. i) ®(A) = 1. ii) Fiz © = (z¢)ter € A, and choose m € N such that
ze N A, andm 2 % Then
n

=m
|2y — 2| < B2 VYA 4|7 for u,v € D.

Proof of 6.2. 1) For n € N and (s,t) € E(n) we have

B~ 1l > s < [ (F0) ae

é c|s _ t|1+ﬁ—a’y — C|S _ t|1+26 é 02_n>‘(1+25),

and hence ®(A4!) < en22n—mA-mA1+20) — 22n(1-A-29) — ;270 hecause one
computes that 1 — A — Ad = —§/2. It follows for m € N that

A'c U A" andhence ®(4')< T en2 .
n=m n=m

Thus ®(A') =0 or &(A) = 1.

ii) The proof of this part is more involved. ii.0) First note for n = m that
z € A, and hence |zs — x| £ |s — t|? for all (s,t) € E(n).

ii.1) We fix 0 < @ < oo and put M := m + [a], with [a] the integer part of a.
Thus M € N with M 2 m and M 2 a. Then we fix u,v € D with 0 S u,v < a
and 0 < v —u £ 27MA We claim that |z, — z,| < blu — v|".

ii.1.1) There is a unique n € N with n > M and 2=tV < y—y < 277 and
then there are unique integers 7 and j with ¢ — 1 < 2"y < i and j £ 2"v < j + 1.
We have ¢ 2 0, and

j—i42>2"%v—u) > 2" (DA — 9n(1=N=A > 9 implies that j > i.
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ii.1.2) Weput s =42 " andt =52". Then 0 S u<s<tSv<as<MZ<n
and 0 < t—s < v—u < 27" Hence (s,t) € E(n). From ii.0) therefore |z, — x| <
|s — 7.

ii.1.3) Next we estimate |z, —z;|. Wehave s—2 " <u <sor0 < s—u < 27"
and s —u € D. Thus

n+p

s—u= k:%+1 ex2™% with pe N and ¢, € {0,1}.
We put s(0) := s and
s(l) :==s— nZJ}rl g2 F for1<1<p,
k=n+1 = =

so that s = s(0) 2 s(1) = --- 2 s(p) = u. For 0 £ 1 £ p we have 2"*!5(]) € Z
and 0 £ s(l) £ s £n < n+1, that is s(I) € D(n + 1). Moreover s(I — 1) — s(l) =
eni2~ " 50 that either s(1 —1) —s(I) =0 or 0 < s(I — 1) — s(I) = 2-("*D <
2~ ("D and hence (s(1), s(1 —1)) € E(n+1). In view of ii.0) we have in both cases
lzsy — sa—ny| < [s(l) — s(l — 1)[7 £ 2=(+D7 Tt follows that
2=
27 —1°
ii.1.4) The same idea furnishes |z, — z¢| £ 27"7/(27 — 1).
ii.1.5) From ii.1.2)3)4) and ii.1.1) we obtain
29—nY 9 9—ny+(n+1)\y
o1 < (1=l
which in view of (n+1D)A—n=—-n(1-A)+A < —m(1—-A)+ A< 0is < blu—v|".
This proves ii.1).

ii.2) After these preparations we prove assertion ii). We fix u,v € D with
u < v =: a, and put M := m + [a] as in ii.1). In view of ii.1) we can assume
that a > 27 Then there is a unique r € N with 2"~ < a2M* < 27, The points
u(l) ;= u+127"(v—u) VO ST £ 2"are € Dwithu = u(0) <u(l) < ---<u(2") =w
and fulfil 0 < u(l) —u(l—1) =2""(v —u) £277a < 27M* for 1 <1 < 2. Thus
ii.1) asserts that

Buty = Tuan] S Blu(l) —ull = )P =b2u—of? for 1 SIS,

and hence |z, — z,| < b2" |y — v|7. Now

y4
|z — 24| £ 121 9—(nt+l)y

[Ty — Ty < |u—v|" +

2" < 202" £ 202™2 € T 2 L2000Vt = 2 27,

because z < 27 for z > 0. It follows that |z, — z,| £ B2mA1=728(1=7) |y — |7,
which in view of a = w V v is the assertion ii). O

Proof of 6.1. As before let 0 < v £ 1 with v < 8/a. For M > 0 and
0€U CT =10,00[ we form the function sets

E(v,M,U):={z € X : |zg| £ M and
|2y — | £ M2OVIA=N |y — |7 Yu,v € U},
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so that E(y, M) = E(y, M,T). We collect their relevant properties.
1) E(vy,M,U) is increasing in M and decreasing in U. Moreover

E(v, M,U) = E(v, M, p).
(v, M,U) pertdoc (v, M, p)

2) E(y,M,U) € &;. In fact, in view of 1) it suffices to prove E(vy, M,p) € &,
for 0 € p € I. We have

E(i M) = {z = ()iep € B : |20] < M and
|2 — 20| < M2V |y — |7 Vu,v € p} x RT\P.

The first factor is a closed subset of R?, and bounded since |z, — zo| £ M2 =7)y7
Vu € p, and hence compact, that is in Comp(RP) = (K;,),. Thus the product set
E(y,M,p)isin &,.

3) Assume that U is dense in T'. Then

®(E(y,M,UUp)) = ®(E(y, M,U)) forpel.

In fact, it suffices to prove ®(E(y, M,U U{t})) = ®(E(y,M,U)) for t e T\ U. To
this end we use

/|Hs — Hy|*d® < c|s —t|'*? forallseT.

We fix a sequence (s());>; in U with loglol |s(l) — ¢|'*# < oco. Then there exists a

subset R € €(p,) with ®(R) = 1 such that H,;) — H; pointwise on R, that is
x4y — ¢ for all z € R. Since for € E(y, M,U) we have

|25 — z5qy| £ M2EVEOO=|s —5(1)|7 for s € U,
it follows for z € E(y,M,U) N R that
|2y — 2| < M26VDU-Y s — 4|7 for s € U.

Therefore E(y, M,U)NR C E(y, M,U U {t}), and hence the assertion.
4) Assume that U is dense in T'. Then for each z € E(vy, M,U) there exists
y € E(y,M,T) such that x; = y; for all t € U. In fact, it is obvious that

= typ = i forteT
Yy (yt)teT Yt Sel}’r?_)tars ort €

exists and is as required.
5) Assume that U is dense in T'. Then

E(y,M,UUp) C H, ' (Hy(E(v,M,T))) forallpel.

This is an obvious consequence of 4).

We come to the decisive point. i) From theorem 5.3 and 2) we obtain

(I)(E(77 M, T)) = ;l;relfl @, (HP(E(’Y: M, T))) .
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From 5)3) we see that
q)P(HP(E(rY: M: T))

¢ (H, ' (Hp(E(y, M,T))))
@(E(y, M,DUp)) = &(E(y, M, D)),
so that ®(E(y, M,T)) = ®(E(y, M,D)). From 1) it follows that ®(E(y, M,T)) =
®(E(y, M, D).

ii) We see from 6.2.ii) that each z € A is contained in E(y, M,D) for some
M > 0, that is

Ac U E(y,M,D) = U E(y,n,D) € (6:)” C &pr).

v

Thus 6.2.1) implies that <I>(MU 0E(’y, M,D)) = ]&Il%n ®(E(v, M,D)) = 1. From 1)ii)
> e’}
we obtain the assertion of theorem 6.1. [J

Consequence 6.3. Fiz as above 0 < v £ 1 with v < /a, and define 8§ := {U €
S, :U C E(vy,M) for some M > 0}. Then ¢, is inner regular 1.

Proof. Fix A C X and ¢ < ¢,(A), and then S € &, with S C A and
¢ < . (8). From 6.1 we obtain ¢, (E(y, M)) > 1 — (¢(S) — ¢) for some M > 0.
Then U := SN E(y, M) € &, fulfils

1+o-(U) 2 ¢ (SU(E(y, M)) + (SN (E(y, M))
= SDT(S) + (p.,—(E(’y,M)) >1+e,
and hence is as required. O

We add one more consequence with respect to topologies. One has on X = R”
the product topology 3, and on C(T, R) its restriction |C(T, R) and the topology
9 of uniform convergence on the compact subsets of T' = [0, co[, which is Polish.
For these topologies we obtain what follows.

Proposition 6.4. 1) ® is mazimal Radon with respect to . 2) The restriction
®|C(T,R) is mazimal Radon with respect to P|C(T,R) and to Q.

Proof. We write C(T,R) =: E for short. i) For { as defined in 6.3 we claim
that

i.1) 4 € Comp(P) C &, C CI(P),

i.2) 4 C Comp(Q) C Comp(P|E) = {P € Comp(P) : P C E},
where in i.2) 4l is viewed as a set system in E. In fact, in i.1) the third C is obvious,
and the second C follows from [13] 2.4.2). In i.2) the = is obvious, and the second
C holds true since 9 is finer than B|E. As to the first C in i.2), the classical Ascoli
theorem asserts that E(y, M) € Comp(Q) for M > 0. In view of U C E(vy, M)
for some M > 0 it remains to show that U is closed in . But the third C in i.1)
asserts that U is closed in 93, that is in 3| E, and hence in . This also proves the
first C in 1.1).

ii) We see from 1.4 that ¢ := ¢, |6, is an inner 7 premeasure ¢ : S, — [0, 0]

which fulfils ¢, = ¢, and hence ® = ¢, |€(d;).
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iii) To prove 1) we combine 1.6 applied to ¢ : &, — [0, 00[ and to Comp(PB)
with i.1). It follows via 6.3 that ¥ := ¢|Comp(P) is an inner 7 premeasure ¥ :
Comp(B) — [0, oo which fulfils 9, = ¢, and hence & = 9,|€(I,).

iv) To prove 2) we first invoke 1.10 for ¢ : &, — [0,00[ and E. Let ¥ =
G, NE =%, C &¢,) with T, as before, and note that Comp(‘B|E) C ¥, from
i). Then 1.10.1) asserts that ) = ¢.|% is an inner 7 premeasure ¢ : ¥ — [0, 00[
with ¢, = ¢,, and 1.10.2) asserts that 1), as before is an inner 7 premeasure
Yo : To — [0, 00 with (t%o); = ¢, |B(E) = 6,|B(E) and B|E = (1p),|€((s),).
After this we combine 1.6 applied to 9, : To — [0, 00[ and to both Comp(PB|E)
and Comp(£Q) with i.2) plus the above Comp(B|E) C %,. It follows via 6.3 that
both ¥ := ¢)o|Comp(P|E) and & := 1)o|Comp(Q) are inner 7 premeasures which
fulfil 9, = (o), and hence ®|E = ¥,|€(d,). O.

The remainder of the section wants to establish the explicit connection with
the usual Wiener measure situation. What follows are standard procedures, but
to be transferred into the world of inner premeasures. We want to note that in
the sequel we shall have ¢y = ¢} = the Dirac premeasure do|f for 0 € R. There-
fore N := Hy'({0}) = {z € X : zp = 0} € & has ®(N) = ¢, (H; ' ({0})) =
(00)-({0}) = 1.

We start to recall the notion of convolution, for the sake of fun for Radon
premeasures @, : R = Comp(X) — [0,00[ on a Hausdorff topological space X
which is a group under a continuous operation G : (u,v) — wv (this is less than a
topological group [7] (4.20)). From MI 21.9 = [15] 6.4 we obtain the product inner
7 premeasure ¢ X ¢ : (R X R)* = [0, oo[, with ((R x R)*), = Comp(X x X) from
MI 21.3.2). Now the map G : X x X — X with the lattices (9 x RR)* and R fulfils
conditions (=)(«) in 3.10 for ¢ = 7. We assume that ¢, (X),¥,(X) < oo and
hence (o x1) (X xX) = ¢ (X)-(X) < co. Then 3.10 furnishes the image Radon

N
premeasure X = G(¢p x ¥) : R — [0,00[ on X. It fulfils x, = (¢ x ¥)(G71(")).
We call x = ¢ % the convolution of ¢ and .

After this we fix a family (+:):er of Radon premeasures y; : £ = Comp(R) —
[0,00[ on R with T’y = (v¢)7|€(()-) such that T'4(R) = 1 and o = do|R, which
under convolution fulfils vs * v = vs4¢ for all s,t € T. We form for p € I, written
p = {t(1),--- ,t(n)} with 0 =: £(0) £ #(1) < --- < t(n), after [13] 1.5 the p-fold
product inner 7 premeasure

n
% = I qu-ai-) : K = (8)* = [0, 00] with T = (3)-[€((7)-),
so that I',(RP) = 1. Then define G, : R? — RP to be the partial-sum map
!
Gp:u=(u1, - ,u,) = Gp(u) = (v1,--+ ,v,) with vy = k§1uk for1<1 < n.

The map G, is homeomorphic and hence fulfils, with the lattice &, on both sides,
conditions (=>)(<=) in 3.10. Thus 3.10 furnishes the image inner 7 premeasure ¢, =

G+ 8y = [0, 00 with B, = () [€((125),)- Tt ulfils (i), = (3)+(G; () amd
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hence ®,(RP) = 1. We claim that the family of these ¢, for p € I is appropriate
for the application of theorem 6.1.

Proposition 6.5. The family (¢p)per fulfils condition (o) of theorem 5.3. Moreover
its Wiener T premeasure ¢ : & — [0, 00[ with ® = ¢,|€(p;) fulfils for s 2 0 and
t > 0 the relation

SOT([HS-l—t — Hs S B]) = (’)’t)T(B) fOT' all BC R
Hence in particular [|Hypy — Hg|*d® = [ |v]|*dD(v) for a > 0.
Proof. 1) We recall for p £ ¢ in I the canonical projection Hyq : R? — RP.
It is continuous and hence fulfils, with the lattices K, and K,, conditions (=)(<)

=
in 3.10.The desired (o) is equivalent to @, = (¢q)- (Hy.'(-))|Rp or ©p = Hppg,
which once more is seen via MI 2.5.1). Besides H,, we consider the map G,, =

G, Yo Hp, 0 G, : R — RP, which likewise is continuous and hence fulfils, with

the lattices K, and K,, conditions (=)(<=) in 3.10. We note that ¢, = ?Ipqcpq is
equivalent to v, = apq'yq: In fact, in view of G}, o Gpq = Hpq 0 Gy we have
()7 (A) = (7)-(Gpy (4)) VACRP
& (1) (G, (B) = (10)+(Gpy (G, (B))) = (10)- (G (H,, (B))) VB C R
& (¢p)r(B) = ()~ (H,,! (B)) VB C RP.

It is clear from the form of (o) that it suffices to prove the equivalent conditions
in the special case ¢ = pU {s} with s € T\ p. In 2) below we shall do this for
—

Y» = Gpga-
2) Thus let p = {¢(1),--- ,t(n)} with 0 = ¢(0) £ (1) < --- < t(n) and
g =pU{s} with s € T'\ p as before. There are the three cases
L) #(0) = s <i(1),
(M) t(l—1)<s<t(l) forsome2=<1<n,
(R) t(n) <s.
We first want to obtain an explicit formula for G,4. To this end we write v € R?
and an associate u € R in the three cases (L)(M)(R) in the forms

v = (a,b,va,--,vp) u=(a+b,va,--,vy),
V= (Ula'"7Ul*17a7b7vl+17"'7vn) u = (’Ul,"',Ul,17a+b,’l]l+1,"',1]n),
V= (’Ul,"',’Un,.'L') u = (U17"'7Un)'

Then one notes that Hp,(G4(v)) = Gp(u) and hence Gpy(v) = u. It follows for
A=A, x---x A, CRP that
GoHA) = G7HA) x Ay x -+ x Ay,

rq

Gl (A) = Ay x oo x Ay X GTY(Ay) X gy X o+ X Ay,

GlA) = A x---x Ap x R,

pq
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where G : R x R — R denotes the addition G(a,b) = a + b. Next we note that in
the three cases (L)(M)(R)

Vg = Vs—t(0) X Ve(1)—s X klez Ve(k)—t(k—1)
-1
Yq

II

n
L Y0 —e(k-1) X Vo—tt-1) X Vew-s X, L etk -e(k-1),

Vg = klle Ve(k)—t(k—1) X Vs—t(n)-

We know from [13] 1.2 that this product formation is associative. Thus [13] 1.3
implies for A = A; x -+ x A, C RP that

(10)r (G (A)) = (=100 X Ye(1)=s) (G (A1) X I (o)) (),
-1
(9)r(Gpq (4)) = 121 (Ve =t (k1)) 7 (Ak) X (Vs—t—1) X Yety—s))r (G (A1) x
< AL Oo—e(e-1)) 7 (A),
(7a)r(Goy

(4)) = I (Vetk)—t(k—1))r (Ak) X (Vo—i(n))r (R),
which in view of
(Ys—t(1—-1) X Ye)—s) (G

(A1) = (Vs—t—1) * Yey—s)~ (A1) = (Vey—t(a—1)) (A1)
in (L)(M) and (vs—¢(n))-(R) = 1 in (R) boils down to

n
(V)7 (G (A)) =TT (Yeqhy—e(a—1))r (A) = (3p)r (A)-
The result holds true in particular for A € #P, and hence for A € (RP)* = &,
—
once more in view of MI 2.5.1). Thus we have v, = Gpq7, as claimed.

3) We turn to the final assertions in 6.5. Let s 2 0 and ¢t > 0. For B C R we
have

[Hs+t—HsGB]={$€X:$5+t—Z’3€B}

= H{ESH} ({(u,v) € RI#s+} .y —y € BY) = H{’;s“} (G546 (R x B)),
and hence

@r ([Hoyt — Hs € B]) = (045,5413)7 (Gs,s443 (R x B))

= (7{s,s+t})T(R X B) = (VS)T(R)('W)T(B) = (’Yt) (B)
For e > 0 it follows via the Choquet integral

—00
[ = Hped2 = [ @ (o~ HJ 2 2]
0+

/—>oo Li({veR:v|*22})dz = / |v]|*dTy(v).
0

This completes the proof of 6.5. [
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At last we specialize the family (v;):er to the Brownian convolution semi-
group of the Gaussian premeasures

1
Yt :’Yt(K) = \/2—7_”&

and vy = do|R. In this case one computes for & > 0 and ¢ > 0 that

/e‘zQ/Qtdx for K € & = Comp(R) when ¢ > 0,
K

21+a/2 —00 .
/ l|*dTy(v) = £/ M(a)  with M(a) = e da.
VT Joe
It follows that the assumption in 6.1 is fulfilled for & > 2 with 1 + 8 = «a/2.
Thus we obtain the assertion of 6.1 for the exponents 0 < v < 1/2. The measure
® = ¢, |€(p,) which satisfies all this is what we call the true Wiener measure.

We conclude with a few further remarks on the traditional Wiener measure
Oc(r,r) := 0*|(A N C(T,R)). 1) Instead of C(T,R) one often considers the smaller
Co(T,R) = {z € C(T,R) : 2o = 0}. In the present context we have C,(T,R) =
C(T,R) NN, where N € & with ®(/N) = 1 has been defined above, and one could
proceed alike.

2) The traditional Wiener measure has the domain AMC(7T, R). In connection
with the topologies PB|C(T,R) and Q on C(T,R) and with 6.4 we recall that this
domain is = Bor(C(T, R)) for both these topologies [1] 38.6. In connection with
the Radon properties 6.4 we also refer to Fremlin [5] 454-455.

3) At last Kisyniski [9] section 3 follows an alternative but not unrelated route,
in that he uses his Prokhorov type theorem mentioned in 4.15 for the direct con-
struction of the traditional Wiener measure on C([0,T], R) (to appear in corrected
and augmented form). Kisyniski refers to It6-McKean [8] as a predecessor.

References

[1] H.Bauer, Wahrscheinlichkeitstheorie. 4th ed. de Gruyter 1991, English translation
1996.

[2] N.Bourbaki, Intégration, Chap.IX. Hermann 1969.
[3] N.Bourbaki, Théorie des Ensembles. Hermann 1970.
[4] C.Dellacherie and P.A.Meyer, Probability and Potential. North-Holland 1978.

[5] D.H.Fremlin, Measure Theory. Vol.1-3 Torres Fremlin 2000-2002, Vol.4 Preprint (in
the references the first digit of an item indicates its volume). http://www.essex.ac.
uk/maths/staff/fremlin/mt.htm.

[6] W.Hackenbroch and A.Thalmaier, Stochastische Analysis. Teubner 1994.
[7] E.Hewitt and K.A.Ross, Abstract Harmonic Analysis I. Springer 1963.

[8] K.It6 and H.P.McKean Jr., Diffusion Processes and their Sample Paths. Springer
1965.

[9] J.Kisyriski, On the generation of tight measures. Studia Math. 30(1968), 141-151.

[10] A.Kolmogorov (=Kolmogoroff), Grundbegriffe der Wahrscheinlichkeitsrechnung.
Springer 1933, Reprint 1973.



40 Heinz Konig Mediterr. j. math.

[11] H.K6nig, Measure and Integration: An Advanced Course in Basic Procedures and
Applications. Springer 1997.

[12] H.K6nig, Image measures and the so-called image measure catastrophe. Positivity
1(1997), 255-270.

[13] H.K6nig, The product theory for inner premeasures. Note di Matematica 17(1997),
235-249.

[14] H.K6nig, Upper envelopes of inner premeasures. Ann.Inst. Fourier 50(2000), 401-422.

[15] H.K6nig, Measure and Integration: An attempt at unified systematization. In: Work-
shop on Measure Theory and Real Analysis, Grado 2001. Rend. Istit. Mat. Univ.
Trieste 34(2002), 155-214.

[16] H.K6nig, The (sub/super) additivity assertion of Choquet. Studia Math. 157(2003),
171-197.

[17] Z.Lipecki, On unique extensions of positive additive set functions. Arch.Math.
41(1983), 71-79.

[18] J.Lo$ and E.Marczewski, Extensions of measure. Fund. Math. 36(1949), 267-276.

[19] Yu.V.Prokhorov, Convergence of random processes and limit theorems in probability
theory. Theor.Prob.Appl. 1(1956), 156-214.

[20] L.Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Mea-
sures. Oxford Univ. Press 1973.

[21] K.R.Stromberg, Probability for Analysts. Chapman & Hall 1994.

Heinz Konig
Fakultat fiir Mathematik und Informatik, Universitédt des Saarlandes, 66041 Saarbriicken,
Germany

E-mail: hkoenig@math.uni-sb.de



