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Abstract

Differential methods belong to the most widely used techniques for
optic flow computation in image sequences. They can be classified into
local methods such as the Lucas–Kanade technique or Bigün’s struc-
ture tensor method, and into global methods such as the Horn/Schunck
approach and its extensions. Often local methods are more robust un-
der noise, while global techniques yield dense flow fields. The goal
of this paper is to contribute to a better understanding and the de-
sign of differential methods in four ways: (i) We juxtapose the role
of smoothing/regularisation processes that are required in local and
global differential methods for optic flow computation. (ii) This discus-
sion motivates us to describe and evaluate a novel method that com-
bines important advantages of local and global approaches: It yields
dense flow fields that are robust against noise. (iii) Spatiotemproal
and nonlinear extensions to this hybrid method are presented. (iv)
We propose a simple confidence measure for optic flow methods that
minimise energy functionals. It allows to sparsify a dense flow field
gradually, depending on the reliability required for the resulting flow.
Comparisons with experiments from the literature demonstrate the
favourable performance of the proposed methods and the confidence
measure.

AMS 2000 Subject Classification: 68T45, 49K20, 65K10, 35J60, 65N04
Key Words: computer vision, optic flow, differential techniques, variational
methods, structure tensor, partial differential equations, confidence measures,
performance evaluation.
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1 Introduction

Ill-posedness is a problem that is present many image processing and com-
puter vision techniques: Edge detection, for example, requires the computa-
tion of image derivatives. This problem is ill-posed in the sense of Hadamard1,
as small perturbations in the signal may create large fluctuations in its deriva-
tives [62]. Another example consists of optic flow computation, where the
ill-posedness manifests itself in the nonuniqueness due to the aperture prob-
lem [7]: The data allow to compute only the optic flow component normal
to image edges. Both types of ill-posedness problems appear jointly in so-
called differential methods for optic flow recovery, where optic flow estima-
tion is based on computing spatial and temporal image derivatives. These
techniques can be classified into local methods that may optimise some lo-
cal energy-like expression, and global strategies which attempt to minimise a
global energy functional. Examples of the first category include the Lucas–
Kanade method [36, 37] and the structure tensor approach of Bigün et al.
[8, 9], while the second category is represented by the classic method of
Horn and Schunck [28] and its numerous discontinuity-preserving variants
[1, 3, 10, 16, 26, 34, 41, 44, 47, 50, 51, 58]. Differential methods are rather
popular: Together with phase-based methods such as [23] they belong to the
techniques with the best performance [6, 24]. Local methods may offer rela-
tively high robustness under noise, but do not give dense flow fields. Global
methods, on the other hand, yield flow fields with 100 % density, but are
experimentally known to be more sensitive to noise [6, 24].
A typical way to overcome the ill-posedness problems of differential optic
flow methods consists of the use of smoothing techniques and smoothness
assumptions: It is common to smooth the image sequence prior to differen-
tiation in order to remove noise and to stabilise the differentiation process.
Local techniques use spatial constancy assumptions on the optic flow field
in the case of the Lucas–Kanade method, and spatiotemporal constancy for
the Bigün method. Global approaches, on the other hand, supplement the

1A problem is called well-posed in the sense of Hadamard, if it has a unique solution
that depends continuously on the data. If one of these conditions is violated, it is called
ill-posed.

2



optic flow constraint with a regularising smoothness term. Surprisingly, the
actual role and the difference between these smoothing strategies, however,
has hardly been addressed in the literature so far. In a first step of this paper
we juxtapose the role of the different smoothing steps of these methods. We
shall see that each smoothing process offers certain advantages that cannot
be found in other cases. Consequently, it would be desirable to combine the
different smoothing effects of local and global methods in order to design
novel approaches that combine the high robustness of local methods with
the high density of global techniques. One of the goals of the present paper
is to propose and analyse such an embedding of local methods into global
approaches. This results in a technique that is robust under noise and gives
flow fields with 100 % density. Hence, there is no need for a postprocessing
step where sparse data have to be interpolated.
On the other hand, it has sometimes been criticised that there is no reliable
confidence measure that allows to sparsify the result of a dense flow field such
that the remaining flow is more reliable [6]. In this way it would be possible to
compare the real quality of dense methods with the characteristics of local,
nondense approaches. In our paper we shall present such a measure. It is
simple and applicable to the entire class of energy minimising global optic
flow techniques. Our experimental evaluation will show that this confidence
measure can give excellent results.
Our paper is organised as follows. In Section 2 we discuss the role of the
different smoothing processes that are involved in local and global optic
flow approaches. Based on these results we propose two combined local-global
(CLG) methods in Section 3, one with spatial, the other one with spatiotem-
poral smoothing. In Section 4 nonlinear variants of the CLG method are
presented. Our numerical algorithm is described in Section 5. In Section 6,
we introduce a novel confidence measure for all global optic flow methods
that use energy functionals. Section 7 is devoted to performance evaluations
of the CLG methods and the confidence measure. A summary and an out-
look to future work is given in Section 8. In the Appendix, we show how the
CLG principle has to be modified if one wants to replace the Lucas–Kanade
method by the structure tensor method of Bigün et al. [8, 9].

Related Work. In spite of the fact that there exists a very large number
number of publications on motion analysis (see e.g. [39, 53] for reviews), there
has been remarkably little work devoted to the integration of local and global
optic flow methods. Schnörr [49] sketched a framework for supplementing
global energy functionals with multiple equations that provide local data
constraints. He suggested to use the output of Gaussian filters shifted in
frequency space [23] or local methods incorporating second-order derivatives
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[55, 56], but did not consider methods of Lucas–Kanade or Bigün type.
Our proposed technique differs from the majority of global regularisation
methods by the fact that we also use spatiotemporal regularisers instead of
spatial ones. Other work with spatiotemporal regularisers includes publica-
tions by Murray and Buxton [40], Nagel [42], Black and Anandan [10], Elad
and Feuer [18], and Weickert and Schnörr [59].
While the noise sensitivity of local differential methods has been studied
intensively in recent years [5, 22, 30, 33, 45, 52], the noise sensitivity of global
differential methods has been analysed to a significantly smaller extent. In
this context, Galvin et al. [24] have compared a number of classical methods
where small amounts of Gaussian noise had been added. Their conclusion
was similar to the findings of Barron et al. [6]: the global approach of Horn
and Schunck is more sensitive to noise than the local Lucas–Kanade method.
A preliminary shorter version of the present paper has been presented at a
conference [14].

2 Role of the Smoothing Processes

In this section we discuss the role of smoothing techniques in differential
optic flow methods. For simplicity we focus on spatial smoothing. All spatial
smoothing strategies can easily be extended into the temporal domain. This
will usually lead to improved results [59].
Let us consider some image sequence g(x, y, t), where (x, y) denotes the loca-
tion within a rectangular image domain Ω, and t ∈ [0, T ] denotes time. It is
common to smooth the image sequence prior to differentiation [6, 33], e.g. by
convolving each frame with some Gaussian Kσ(x, y) of standard deviation σ:

f(x, y, t) := (Kσ ∗ g)(x, y, t), (1)

The low-pass effect of Gaussian convolution removes noise and other desta-
bilising high frequencies. In a subsequent optic flow method, we may thus
call σ the noise scale.
Many differential methods for optic flow are based on the assumption that
the grey values of image objects in subsequent frames do not change over
time:

f(x+u, y+v, t+1) = f(x, y, t), (2)

where the displacement field (u, v)>(x, y, t) is called optic flow. For small
displacements, we may perform a first order Taylor expansion yielding the
optic flow constraint

fxu+ fyv + ft = 0, (3)
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where subscripts denote partial derivatives. Evidently, this single equation
is not sufficient to uniquely compute the two unknowns u and v (aperture
problem): For nonvanishing image gradients, it is only possible to determine
the flow component parallel to ∇f := (fx, fy)

>, i.e. normal to image edges.
This so-called normal flow is given by

wn = −
ft

|∇f |
. (4)

Figure 1(a) depicts one frame from the famous Hamburg taxi sequence2. We
have added Gaussian noise, and in Figure 1(b)–(d) we illustrate the impact
of presmoothing the image data on the normal flow. While some moderate
presmoothing improves the results, great care should be taken not to apply
too much presmoothing, since this would severely destroy important image
structure.
In order to cope with the aperture problem, Lucas and Kanade [36, 37]
proposed to assume that the unknown optic flow vector is constant within
some neighbourhood of size ρ. In this case it is possible to determine the two
constants u and v at some location (x, y, t) from a weighted least square fit
by minimising the function

ELK(u, v) := Kρ ∗
(

(fxu+ fyv + ft)
2
)

. (5)

Here the standard deviation ρ of the Gaussian serves as an integration scale
over which the main contribution of the least square fit is computed.
A minimum (u, v) of ELK satisfies ∂uELK = 0 and ∂vELK = 0. This gives
the linear system

(

Kρ ∗ (f 2
x) Kρ ∗ (fxfy)

Kρ ∗ (fxfy) Kρ ∗ (f 2
y )

)(

u
v

)

=

(

−Kρ ∗ (fxft)
−Kρ ∗ (fyft)

)

(6)

which can be solved provided that its system matrix is invertible. This is
not the case in flat regions where the image gradient vanishes. In some other
regions, the smaller eigenvalue of the system matrix may be close to 0, such
that the aperture problem remains present and the data do not allow a re-
liable determination of the full optic flow. All this results in nondense flow
fields. They constitute the most severe drawback of local gradient methods:
Since many computer vision applications require dense flow estimates, sub-
sequent interpolation steps are required. On the other hand, one may use
the smaller eigenvalue of the system matrix as a confidence measure that

2The taxi sequence is available from ftp://csd.uwo.ca under the directory
pub/vision
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characterises the reliability of the estimate. Experiments by Barron et al. [6]
indicated that this performs better than the trace-based confidence measure
in [52].
Figures 1(e),(f) show the influence of the integration scale ρ on the final
result. In these images we have displayed the entire flow field regardless of
its local reliability. We can see that in each case, the flow field has typical
structures of order ρ. In particular, a sufficiently large value for ρ is very
successful in rendering the Lucas–Kanade method robust under noise.
In order to end up with dense flow estimates one may embed the optic flow
constraint into a regularisation framework. Horn and Schunck [28] have pio-
neered this class of global differential methods. They determine the unknown
functions u(x, y, t) and v(x, y, t) as the minimisers of the global energy func-
tional

EHS(u, v) =

∫

Ω

(

(fxu+ fyv + ft)
2 + α

(

|∇u|2 + |∇v|2
))

dx dy (7)

where the smoothness weight α > 0 serves as regularisation parameter: Larger
values for α result in a stronger penalisation of large flow gradients and lead
to smoother flow fields.
Minimising this convex functional comes down to solving its corresponding
Euler–Lagrange equations [17, 19]. They are given by

0 = ∆u− 1
α

(f 2
xu+ fxfyv + fxft), (8)

0 = ∆v − 1
α

(fxfyu+ f 2
y v + fyft). (9)

with reflecting boundary conditions. ∆ denotes the spatial Laplace operator:

∆ := ∂xx + ∂yy. (10)

The solution of these diffusion–reaction equations is not only unique [48],
it also benefits from the filling-in effect: At locations with |∇f | ≈ 0, no
reliable local flow estimate is possible, but the regulariser |∇u|2 + |∇v|2 fills
in information from the neighbourhood. This results in dense flow fields and
makes subsequent interpolation steps obsolete. This is a clear advantage over
local methods.
It has, however, been criticised that for such global differential methods,
no good confidence measures are available that would help to determine
locations where the computations are more reliable than elsewhere [6]. It
has also been observed that they may be more sensitive to noise than local
differential methods [6, 24].
An explanation for this behaviour can be given as follows. Noise results in
high image gradients. They serve as weights in the data term of the regu-
larisation functional (7). Since the smoothness term has a constant weight
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α, smoothness is relatively less important at locations with high image gra-
dients than elsewhere. As a consequence, flow fields are less regularised at
noisy image structures. This sensitivity under noise is therefore nothing else
but a side-effect of the desired filling-in effect. Figures 1(g),(h) illustrate this
behaviour. Figure 1(g) shows that the flow field does not reveal a uniform
scale: It lives on a fine scale at high gradient image structures, and the scale
may become very large when the image gradient tends to zero. Increasing
the regularisation parameter α will finally also smooth the flow field at noisy
structures, but at this stage, it might already be too blurred in flatter image
regions (Figure 1(h)).

3 A Combined Local–Global Method

We have seen that both local and global differential methods have com-
plementary advantages and shortcomings. Hence it would be interesting to
construct a hybrid technique that constitutes the best of two worlds: It
should combine the robustness of local methods with the density of global ap-
proaches. This shall be done next. We start with spatial formulations before
we extend the approach to the spatiotemporal domain.

3.1 Spatial Approach

In order to design a combined local–global (CLG) method, let us first refor-
mulate the previous approaches. Using the notations

w := (u, v, 1)>, (11)

|∇w|2 := |∇u|2 + |∇v|2, (12)

∇3f := (fx, fy, ft)
>, (13)

Jρ(∇3f) := Kρ ∗ (∇3f ∇3f
>) (14)

it becomes evident that the Lucas–Kanade method minimises the quadratic
form

ELK(w) = w>Jρ(∇3f)w, (15)

while the Horn–Schunck technique minimises the functional

EHS(w) =

∫

Ω

(

w>J0(∇3f)w + α|∇w|2
)

dx dy. (16)

This terminology suggests a natural way to extend the Horn–Schunck func-
tional to the desired CLG functional. We simply replace the matrix J0(∇3f)
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Figure 1: From left to right, and from top to bottom: (a) Frame 10 of the
Hamburg taxi sequence, where Gaussian noise with standard deviation σn =
10 has been added. The white taxi turns around the corner, the left car drives
to the right, and the right van moves to the left. (b) Normal flow magnitude
without presmoothing. (c) Normal flow magnitude, presmoothing with σ=1.
(d) Ditto, presmoothing with σ = 5. (e) Lucas-Kanade method with σ = 0,
ρ = 7.5. (f) Ditto, σ = 0, ρ = 15. (g) Optic flow magnitude with the Horn-
Schunck approach, σ=0, α=105. (h) Ditto, σ=0, α=106.
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by the structure tensor Jρ(∇3f) with some integration scale ρ > 0. Thus, we
propose to minimise the functional

ECLG(w) =

∫

Ω

(

w>Jρ(∇3f)w + α|∇w|2
)

dx dy. (17)

Its minimising flow field (u, v) satisfies the Euler–Lagrange equations

0 = ∆u− 1
α

(

Kρ ∗ (f 2
x) u+Kρ ∗ (fxfy) v +Kρ ∗ (fxft)

)

, (18)

0 = ∆v − 1
α

(

Kρ ∗ (fxfy) u+Kρ ∗ (f 2
y ) v +Kρ ∗ (fyft)

)

. (19)

It should be noted that these equations are hardly more complicated than
the original Horn–Schunck equations (8)–(9). All one has to do is to evaluate
the terms containing image data at a nonvanishing integration scale. The
basic structure with respect to the unknown functions u(x, y, t) and v(x, y, t)
is identical. It is therefore not surprising that the well-posedness proof for
the Horn–Schunck method that was presented in [48] can also be extended
to this case.

3.2 Spatiotemporal Approach

The previous approaches used only spatial smoothness operators. Rapid ad-
vances in computer technology, however, makes it now possible to consider
also spatiotemporal smoothness operators. Formal extensions in this direc-
tion are straightforward. In general, one may expect that spatiotemporal
formulations give better results than spatial ones because of the additional
denoising properties along the temporal direction.
A spatiotemporal variant of the Lucas–Kanade approach simply replaces con-
volution with 2-D Gaussians by spatiotemporal convolution with 3-D Gaus-
sians. This still leads to a 2 × 2 linear system of equations for the two un-
knowns u and v.
Spatiotemporal versions of the Horn-Schunck method have been considered
by Elad and Feuer [18], while discontinuity preserving global methods with
spatiotemporal regularisers have been proposed in different formulations in
[10, 40, 42, 59].
Combining the temporal extended variant of both the Lucas–Kanade and
the Horn–Schunck method we obtain a spatiotemporal version of our CLG
functional given by

ECLG3(w) =

∫

Ω×[0,T ]

(

w>Jρ(∇3f)w + α|∇3w|
2
)

dx dy dt (20)
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where convolutions with Gaussians are now to be understood in a spatiotem-
poral way, and

|∇3w|
2 := |∇3u|

2 + |∇3v|
2. (21)

In general, the spatiotemporal Gaussians may have different standard devi-
ations in space and time. Let us denote by Jnm the component (n,m) of the
structure tensor Jρ(∇3f). Then the Euler–Lagrange equations for (20) are
given by

∆3u−
1
α

(J11u+ J12v + J13) = 0, (22)

∆3v −
1
α

(J12u+ J22v + J23) = 0. (23)

One should note that they have the same structure as (18)–(19), apart from
the fact that spatiotemporal Gaussian convolution is used, and that the spa-
tial Laplacean ∆ is replaced by the spatiotemporal Laplacean

∆3 := ∂xx + ∂yy + ∂tt. (24)

The spatiotemporal Lucas–Kanade method is similar to the approach of
Bigün et al. [8, 9]. In the Appendix we show how the latter method can
be embedded in a global energy functional.

4 Nonquadratic Approach

So far the underlying Lucas–Kanade and Horn–Schunck approaches are lin-
ear methods that are based on quadratic optimisation. It is not very difficult
to replace them by nonquadratic optimisation problems that lead to non-
linear methods. From a statistical viewpoint this can be regarded as apply-
ing methods from robust statistics where outliers are penalised less severely
than in quadratic approaches [25, 29]. In general, nonlinear methods give
better results at locations with flow discontinuities. Robust variants of the
Lucas–Kanade method have been investigated by Black and Anandan [11]
and by Yacoob and Davies [60], respectively, while a survey of the numerous
convex discontinuity-preserving regularisers for global optic flow methods is
presented in [58].
In order to render our approach more robust against outliers in both the
data and the smoothness term we propose the minimisation of the following
functional:

ECLG3−N (w) =

∫

Ω×[0,T ]

(

ψ1

(

w>Jρ(∇3f)w
)

+ αψ2

(

|∇3w|
2
) )

dx dy dt (25)
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where ψ1(s
2) and ψ2(s

2) are nonquadratic penalisers. Encouraging experi-
ments with related continuous energy functionals have been performed by
Hinterberger et al. [27]. In order to guarantee well–posedness for the remain-
ing problem, we focus on penalisers that are convex in s. In particular, we
use a function that has been proposed by Charbonnier et al. [15]:

ψi(s
2) = 2β2

i

√

1 +
s2

β2
i

, i ∈ 1, 2 (26)

where β1 and β2 are scaling parameters. Under some technical requirements,
the choice of convex penalisers ensures a unique solution of the minimisation
problem and allows to construct simple globally convergent algorithms. The
Euler–Lagrange equations of the energy functional (25) are given by

0 = div
(

ψ′
2

(

|∇3w|
2
)

∇3u
)

− 1
α
ψ′

1

(

w>Jρ(∇3f)w
)

(J11 u+ J12 v + J13) , (27)

0 = div
(

ψ′
2

(

|∇3w|
2
)

∇3v
)

− 1
α
ψ′

1

(

w>Jρ(∇3f)w
)

(J21 v + J22 u+ J23) . (28)

5 Algorithmic Realisation

Let us now discuss a suitable algorithm for the CLG method (18)–(19) and
its spatiotemporal variant. To this end we consider the unknown functions
u(x, y, t) and v(x, y, t) on a rectangular pixel grid of size h, and we denote
by ui the approximation to u at some pixel i with i = 1,...,N . Gaussian
convolution is realised in the spatial / spatiotemporal domain by discrete
convolution with a truncated and renormalised Gaussian, where the trunca-
tion took place at 3 times the standard deviation. Symmetry and separability
has been exploited in order to speed up these discrete convolutions. Spatial
derivatives of the image data have been approximated using a sixth-order ap-
proximation with the stencil (−1, 9,−45, 0, 45,−9, 1)/(60h), while temporal
derivatives are approximated with a simple two-point stencil. Let us denote
by Jnmi the component (n,m) of the structure tensor Jρ(∇f) in some pixel
i. Furthermore, let N (i) denote the set of (4 in 2-D, 6 in 3-D) neighbours of
pixel i. Then a finite difference approximation to the Euler–Lagrange equa-
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tions (18)–(19) is given by

0 =
∑

j∈N (i)

ui − uj

h2
−

1

α
(J11i ui + J12i vi + J13i) , (29)

0 =
∑

j∈N (i)

vi − vj

h2
−

1

α
(J21i ui + J22i vi + J23i) (30)

for i = 1,...,N . This sparse linear system of equations may be solved itera-
tively. The successive overrelaxation (SOR) method [61] is a good compromise
between simplicity and efficiency. If the upper index denotes the iteration
step, the SOR method can be written as

uk+1
i = (1−ω) uk

i + ω

∑

j∈N−(i)

uk+1
j +

∑

j∈N+(i)

uk
j −

h2

α

(

J12i v
k
i + J13i

)

|N (i)| + h2

α
J11i

, (31)

vk+1
i = (1−ω) vk

i + ω

∑

j∈N−(i)

vk+1
j +

∑

j∈N+(i)

vk
j − h2

α

(

J21i u
k+1
i + J23i

)

|N (i)| + h2

α
J22i

(32)

where

N−(i) := {j ∈ N (i) | j < i}, (33)

N+(i) := {j ∈ N (i) | j > i} (34)

and |N (i)| denotes the number of neighbours of pixel i that belong to the
image domain. The relaxation parameter ω ∈ (0, 2) has a strong influence on
the convergence speed. For ω = 1 one obtains the well-known Gauß–Seidel
method. We usually use values for ω between 1.9 and 1.99. This numeri-
cally inexpensive overrelaxation step results in a speed-up by one order of
magnitude compared with the Gauß–Seidel approach. We initialised the flow
components for the first iteration by 0. The specific choice of the initialisation
is not critical since the method is globally convergent.
It should be noted that the iteration scheme does not require many compu-
tations per step, since one may compute expressions of type h2

α
Jnmi before

entering the iteration loop. Moreover, any practical implementation requires
only a single vector of size N for storing each of the two flow components u
and v: Since the components are updated sequentially, there is no need for
two vectors for the iteration levels k and k + 1.
Our CLG method has been implemented in ANSI C. For computing the optic
flow between two image frames of size 316× 252 on a 1533 GHz Athlon PC,
one iteration takes 4 CPU milliseconds. In the 3-D case using 15 frames of
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the same sequence, one iteration takes 70 CPU milliseconds. For our perfor-
mance evaluations in Section 7, we used 1000 iterations in the 2-D case and
200 iterations in the 3-D case. Since the iterative process converges fast in
the beginning and slows down afterwards, one may get perceptually similar
solutions already after significantly less iterations. The memory requirement
was 5.9 MB in the 2-D example, and 63 MB in the 3-D case.
In the nonlinear case, the discretisation of the Euler-Lagrange equations (27)-
(28) is straightforward. For the sake of clarity let us denote the derivatives
of the penalising functions ψ1 and ψ2 at some pixel i by ψ′

1i := ψ′
1

(

w>
i Jρi wi

)

respectively ψ′
2i := ψ′

2 (|∇3wi|2). Then the obtained nonlinear system of equa-
tions reads

0 =
∑

j∈N (i)

ψ′
2i + ψ′

2j

2

ui − uj

h2
−

ψ′
1i

α
(J11i ui + J12i vi + J13i) , (35)

0 =
∑

j∈N (i)

ψ′
2i + ψ′

2j

2

vi − vj

h2
−

ψ′
1i

α
(J21i ui + J22i vi + J23i) (36)

for i = 1,...,N . One should keep in mind that the nonlinearity results from
the dependency of ψ′

1i and ψ′
2i on ui and vi. Therfore it is not surprising that,

when choosing the quadratic penalisers ψ1(s
2) = ψ2(s

2) = s2, the nonlinear
case comes down to the linear one, since ψ′

1(s
2) = ψ′

2(s
2) = 1.

6 A Confidence Measure for Energy-Based

Methods

While global optic flow methods typically yield dense flow fields, it is clear
that the flow estimates cannot have the same reliability at all locations.
Local methods, on the other hand, have natural confidence measures that
help to avoid computing flow values at locations where there is not enough
information for a reliable estimate. It would thus be interesting to find a
confidence measure that allows to assess the reliability of a dense optic flow
field. Barron et al. [6] have identified the absence of such good measure as one
of the main drawbacks of energy-based global optic flow techniques: Simple
heuristics such as using |∇f | as a confidence measure did not work well.
In order to address this problem, we propose a measure that may be applied
to any energy-based global differential method for computing the optic flow:
Since the energy functional E penalises deviations from model assumptions
by summing up the deviations Ei from all pixels i in the image domain, it
appears natural to use Ei for assessing the local reliability of the computation.
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Table 1: Average angular errors computed for the office sequence with vary-
ing standard deviations σn of Gaussian noise. 2-D implementations of the
methods of Lucas/Kanade (LK), Horn/Schunck (HS) and the combined local-
global approach (CLG) are compared.

σn LK HS CLG
0 5.71◦ 4.36◦ 4.32◦

10 6.79◦ 6.17◦ 5.89◦

20 8.43◦ 8.30◦ 7.75◦

40 11.47◦ 11.76◦ 10.73◦

All we have to do is to consider the cumulative histogram of the contributions
Ei with i = 1,...,N . As an approximation to the p per cent locations with the
highest reliability, we look for the p per cent locations where the contribution
Ei is lowest. There are very efficient algorithms available for this purpose;
see e.g. [46, Section 8.5]. In the next section we shall observe that this simple
criterion may work well over a large range of densities.

7 Experiments

7.1 Evaluation of the CLG Method

Figure 2 shows our first experiment. It depicts a zoom into a synthetic office
scene where divergent motion is dominating. This test sequence is avail-
able from www.cs.otago.ac.nz/research/vision/. It has been created by
Galvin et al. [24]. We have added Gaussian noise with zero mean and stan-
dard deviation σn = 20 to this sequence, and we used the 2-D CLG method
(i.e. with spatial regularisation) for computing the flow field. Figure 2(d)
shows that the recovered flow field is not very sensitive to Gaussian noise
and that it coincides well with the ground truth flow field in Figure 2(c).
These qualitative results are confirmed by the quantitative evaluations in
Table 1, where we compare the average angular errors of the Lucas–Kanade,
Horn–Schunck, and the CLG method for different noise levels and optimised
smoothing parameters σ, ρ, and α. We computed the angular error via

arccos

(

ucue + vcve + 1
√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)

(37)

where (uc, vc) denotes the correct flow, and (ue, ve) is the estimated flow (cf.
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Figure 2: (a) Top left: Frame 10 of the synthetic office sequence. (b) Top
right: Degraded by Gaussian noise with σn = 20. (c) Bottom left: Ground
truth optic flow field. (d) Bottom right: Computed optic flow field using the
2-D CLG method for the noisy sequence.
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also [6]).
Table 1 shows that for small noise levels, Horn–Schunck performs better
than Lucas–Kanade. This indicates that the filling-in effect of the Horn–
Schunck algorithm is very useful here. For higher noise levels, Lucas–Kanade
becomes somewhat more robust than Horn–Schunck, since the former does
not reduce smoothing at noisy structures. The CLG method appears to be
able to pick up the best of two worlds: It may benefit from filling-in effects
in flat regions without renouncing robustness against noise. Table 1 shows
that this combined effect leads to results that may be better than both the
Lucas–Kanade and the Horn–Schunck method.
Another example demonstrating the robustness of the 2-D CLG method un-
der Gaussian noise is shown in Figure 3. It depicts the results for the synthetic
Yosemite sequence with cloudy sky. This sequence, which is available from
ftp://csd.uwo.ca under the directory pub/vision, combines divergent mo-
tion with the translational motion of the sky. It has been used by Barron et
al. [6] for evaluating a number of optic flow algorithms. Also in this example
we can observe that the flow computations using the CLG method do hardly
suffer from severe degradations by Gaussian noise.
Let us now investigate the sensitivity of the CLG method with respect to
parameter variations. This is done in Table 2 for the Yosemite sequence with
and without clouds. The modified variant without cloudy sky is available
from http://www.cs.brown.edu/people/black/images.html. We observe
that the average angular error does hardly deteriorate when smoothness pa-
rameters are used that differ from their optimal settings by as much as a
factor 2. Only the noise scale σ, that is responsible for the presmoothing of
the original sequence, is slightly more sensitive. This stability under para-
meter variations may be regarded as another experimental confirmation of
the well-posedness of the CLG approach. Moreover, this also indicates that
the method performs sufficiently robust in practice even if non-optimised
default parameter settings are used.
In Table 3 we have studied the effect of replacing spatial smoothing steps by
spatiotemporal ones for both Yosemite sequences. As one may expect, both
the quality of the optic flow estimates and their robustness under Gaussian
noise improve when temporal coherence is taken into account.
In Section 4 we have presented nonlinear variants of our spatial and spa-
tiotemporal CLG approaches. Our next experiment compares these nonlinear
versions to their linear counterparts for a variety of sequences. Generally, flow
discontinuities do not cover more than a few percent of the estimated flow
field, so only moderate improvements should be expected. These considera-
tions are confirmed by Table 4 where the computed average angular errors are
listed. A qualitative example of such a nonlinear variant is given in figure 4.
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Figure 3: (a) Top left: Frame 8 of the Yosemite sequence severely degraded
by Gaussian noise with σn = 40. (b) Top right: Ground truth flow field.
(c) Middle left: Computed flow field for σn = 0. (d) Middle right: Ditto for
σn = 10. (e) Bottom left: σn = 20. (f) Bottom right: σn = 40.
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Table 2: Stability of the 2-D CLG method under variations of the smoothing
parameters. Two of the three parameters have been set to their optimal
value, while the other one may deviate from its optimum by a factor 2. The
data refer to the Yosemite sequence with and without clouds degraded by
Gaussian noise with σn = 10. AAE = average angular error.

Yosemite with clouds Yosemite without clouds
α ρ σ AAE α ρ σ AAE

475 4.550 1.770 9.31◦ 1000 4.550 1.950 4.57◦

633 ” ,, 9.23◦ 1666 ” ,, 4.44◦

950 ” ,, 9.18◦ 2000 ” ,, 4.43◦

1425 ” ,, 9.24◦ 3000 ” ,, 4.54◦

1900 ” ,, 9.37◦ 4000 ” ,, 4.79◦

950 2.275 1.770 9.25◦ 2000 2.275 1.950 4.46◦

” 3.033 ” 9.21◦ ” 3.033 ” 4.44◦

” 4.550 ” 9.18◦ ” 4.550 ” 4.43◦

” 6.825 ” 9.24◦ ” 6.825 ” 4.49◦

” 9.100 ” 9.39◦ ” 9.100 ” 4.62◦

950 4.550 0.885 13.65◦ 2000 4.550 0.975 7.48◦

” ” 1.180 10.58◦ ” ” 1.300 5.39◦

” ” 1.770 9.18◦ ” ” 1.950 4.43◦

” ” 2.655 10.24◦ ” ” 2.975 5.60◦

” ” 3.540 12.30◦ ” ” 3.800 7.09◦
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Table 3: Results for the 2-D and 3-D CLG method using the Yosemite se-
quence with and without cloudy sky. Gaussian noise with varying standard
deviations σn was added, and the average angular errors and their standard
deviations were computed.

Yosemite with clouds
σn 2-D CLG 3-D CLG
0 7.14◦ ± 9.28◦ 6.18◦ ± 9.19◦

10 9.19◦ ± 9.62◦ 7.25◦ ± 9.39◦

20 10.17◦ ± 10.50◦ 8.62◦ ± 9.97◦

40 15.82◦ ± 11.53◦ 11.21◦ ± 11.19◦

Yosemite without clouds
σn 2-D CLG 3-D CLG
0 2.64◦ ± 2.27◦ 1.79◦ ± 2.34◦

10 4.45◦ ± 2.94◦ 2.53◦ ± 2.75◦

20 6.93◦ ± 4.31◦ 3.47◦ ± 3.37◦

40 11.30◦ ± 7.41◦ 5.34◦ ± 3.81◦
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Table 4: Results for linear and nonlinear variants of our CLG method using
various sequences. Average angular error and standard deviation have been
computed.

Sequence 2-D linear 2-D nonlin. 3-D linear 3-D nonlin.
Yosemite (clouds) 7.14◦ 6.03◦ 6.18◦ 5.18◦

Yosemite (no clouds) 2.64◦ 2.31◦ 1.79◦ 1.46◦

Office 4.33◦ 4.13◦ 3.60◦ 3.24◦

Marble 5.30◦ 5.14◦ 2.06◦ 1.70◦

The Marble sequence that was used for this purpose can be downloaded at the
following internet address: http://i21www.ira.uk.de/image sequences. It
is easy to see that the flow discontinuities are much better preserved using
the nonlinear variant.
A comparison with other methods from the literature that yield dense flow
fields is shown in Table 5. We observe that both the linear 2-D and the 3-
D version of our method performs favourably compared to other techniques
that do not use multiscale focusing strategies. Since the Yosemite sequence
contains also large displacements up to 5 pixels per frame, it is not surprising
that recent multiscale differential methods are in a somewhat more advanta-
geous position here. However, using nonlinear methods, we are even able to
perform better than those techniques.
Nevertheless, it seems possible that the CLG method can also be improved
further by embedding it in a suitable multiscale focusing framework. Since
our CLG techniques are based on convex energy functionals, one would have
to correct the image sequence by the estimated coarse scale motion field
before going to a finer scale then. If this is not done, the algorithm would
remain globally convergent, and multiscale strategies would only speed up
the convergence, but the final result would not change.

7.2 Evaluation of the Confidence Measure

Let us now evaluate the quality of our energy-based confidence measure. To
this end we have depicted in Figure 5(a) the 20 % quantile of locations where
the 3-D CLG method has lowest contributions to the energy. A compari-
son with Figure 5(b) – which displays the result of a theoretical confidence
measure that would be optimal with respect to the average angular error –
demonstrates that the energy-based confidence method leads to a fairly re-
alistic thinning of flow fields. In particular, we observe that this confidence
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Figure 4: (a) Top left: Frame 10 of the Marble sequence. (b) Top right: Ground
truth magnitude. (c) Bottom left: Computed flow field magnitude using linear
2-D CLG method. (d) Bottom right: Ditto for the nonlinear 3-D CLG variant.
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Table 5: Comparison between the results from the literature with 100 %
density and our results. All data refer to the Yosemite sequence with cloudy
sky. Multiscale means that some focusing strategy using linear scale-space or
pyramids has been applied. AAE = average angular error.

Technique multiscale AAE
Horn/Schunck, original [6] no 31.69◦

Singh, step 1 [6] no 15.28◦

Anandan [6] no 13.36◦

Singh, step 2 [6] no 10.44◦

Nagel [6] no 10.22◦

Horn/Schunck, modified [6] no 9.78◦

Uras et al., unthresholded [6] no 8.94◦

2-D CLG linear no 7.09◦

3-D CLG linear no 6.18◦

2-D CLG nonlinear no 6.03◦

Alvarez et al. [2] yes 5.53◦

Mémin/Pérez [38] yes 5.38◦

3-D CLG nonlinear no 5.18◦

Figure 5: Confidence criterion for the Yosemite sequence. (a) Left: Locations
with the lowest contributions to the energy (20 % quantile). The non-black
grey values depict the optic flow magnitude. (b) Right: Locations where the
angular error is lowest (20 % quantile).
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Table 6: Comparison between the “nondense” results from Barron et al. [6]
and our results for the Yosemite sequence with cloudy sky. AAE = average
angular error. CLG = average angular error of the 3-D CLG method with
the same density. The sparse flow field has been created using our energy-
based confidence criterion. The table shows that using this criterion clearly
outperforms all results in the evaluation of Barron et al.

Technique Density AAE CLG
Singh, step 2, λ1 ≤ 0.1 97.7 % 10.03◦ 6.02◦

Heeger, level 0 64.2 % 22.82◦ 2.89◦

Weber/Malik [57] 64.2 % 4.31◦ 2.89◦

Horn/Schunck, original, |∇f | ≥ 5 59.6 % 25.33◦ 2.61◦

Heeger, combined 44.8 % 15.93◦ 1.98◦

Lucas/Kanade, λ2 ≥ 1.0 35.1 % 4.28◦ 1.62◦

Fleet/Jepson, τ = 2.5 34.1 % 4.63◦ 1.59◦

Horn/Schunck, modified, |∇f | ≥ 5 32.9 % 5.59◦ 1.55◦

Nagel, |∇f | ≥ 5 32.9 % 6.06◦ 1.55◦

Fleet/Jepson, τ = 1.25 30.6 % 5.28◦ 1.48◦

Heeger, level 1 15.2 % 9.87◦ 1.13◦

Uras et al., det(H) ≥ 1 14.7 % 7.55◦ 1.11◦

Singh, step 1, λ1 ≤ 6.5 11.3 % 12.01◦ 1.05◦

Waxman et al., σf = 2.0 7.4 % 20.05◦ 0.94◦

Heeger, level 2 2.4 % 12.93◦ 0.76◦

criterion is very successful in removing the cloudy sky regions. These locations
are well-known to create large angular errors in many optic flow methods [6].
A number of authors have thus only used the modified Yosemite sequence
without cloudy sky, or they have neglected the flow values from the sky re-
gion for their evaluations [4, 11, 12, 20, 21, 31, 32, 35, 54]. As we have seen
one may get significantly lower angular errors than for the full sequence with
cloudy sky.
A quantitative evaluation of our confidence measure is given in Table 6. Here
we have used the energy-based confidence measure to sparsify the dense flow
field such that the reduced density coincides with densities of well-known
optic flow methods. Most of them have been evaluated by Barron et al. [6].
We observe that the sparsified 3-D CLG method performs very favourably:
It has a far lower angular error than all corresponding methods with the
same density. In several cases there is an order of magnitude between these
approaches. At a flow density of 2.4 %, an average angular error of 0.76 ◦ is
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reached. To our knowledge, these are the best values that have been obtained
for this sequence in the entire literature. It should be noted that these results
have been computed from an image sequence that suffers from quantisation
errors since its grey values have been stored in 8-bit precision only.
In Table 6 we also observe that the angular error decreases monotonically
under sparsification over the entire range from 100 % down to 2.4 %. This
in turn indicates in interesting finding that may seem counterintuitive at
first glance: Regions in which the filling-in effect dominates give particularly
small angular errors. In such flat regions, the data term vanishes such that
a smoothly extended flow field may yield only a small local contribution to
the energy functional. If there were large angular errors in regions with such
low energy contributions, our confidence measure would not work well for
low densities. This also confirms the observation that |∇f | is not necessarily
a good confidence measure [6]: Areas with large gradients may represent
noise or occlusions, where reliable flow information is difficult to obtain. The
filling-in effect, however, may create more reliable information in flat regions
by averaging less reliable information that comes from all the surrounding
high-gradient regions. The success of our confidence measure also confirms
our previous findings that it is beneficial to supplement local methods with
a global regulariser.

8 Summary and Conclusions

In this paper we have analysed the smoothing effects in local and global
differential methods for optic flow computation. As a prototypes of local
methods we used the least-square fit of Lucas and Kanade [36, 37], while the
Horn and Schunck approach [28] was our representative for a global method.
We saw that the smoothing steps in each of these methods serve different
purposes and have different advantages and shortcomings. As a consequence,
we proposed a combined local-global (CLG) approach that incorporates the
advantages of both paradigms: It is highly robust under Gaussian noise while
giving dense flow fields. In order to improve the performance of our method
further we considered spatiotemporal variants and the use of nonlinear penal-
ising functions that are well-known from robust statistics. Experiments have
shown that the CLG method is not very sensitive under parameter varia-
tions. This method may serve as an example of how one can supplement
local methods with a regulariser such that dense flow fields are obtained.
As is shown in the Appendix, it can also be extended to the embedding of
Bigün’s structure tensor method into a global energy functional.
We have also proposed a simple confidence measure that allows to sparsify
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the dense flow fields of energy-based global methods, such that the most
reliable local estimates can easily be found. This enables fair comparisons
of the quality of local and global approaches. Our evaluations have shown
that the proposed confidence measure may give excellent results over a large
range of densities. Last but not least, its success has triggered a surprising
finding: For global energy-based optic flow methods, flat regions in which the
filling-in effect dominates may offer particularly reliable flow estimates. This
explains the common observation that the image gradient magnitude is not
a good confidence measure for global variational methods.
While we have already taken efforts to use efficient numerical methods, we
have certainly not reached the end of the road yet. Therefore, we are currently
investigating multigrid implementations of our technique and we are studying
parallelisation possibilities on low latency networks.
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[38] E. Mémin and P. Pérez. Dense estimation and object-based segmenta-
tion of the optical flow with robust techniques. IEEE Transactions on
Image Processing, 7(5):703–719, May 1998.

28



[39] A. Mitiche and P. Bouthemy. Computation and analysis of image mo-
tion: a synopsis of current problems and methods. International Journal
of Computer Vision, 19(1):29–55, July 1996.

[40] D. W. Murray and B. F. Buxton. Scene segmentation from visual motion
using global optimization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(2):220–228, Mar. 1987.

[41] H.-H. Nagel. Constraints for the estimation of displacement vector fields
from image sequences. In Proc. Eighth International Joint Conference
on Artificial Intelligence, volume 2, pages 945–951, Karlsruhe, West Ger-
many, August 1983.

[42] H.-H. Nagel. Extending the ’oriented smoothness constraint’ into the
temporal domain and the estimation of derivatives of optical flow. In
O. Faugeras, editor, Computer Vision – ECCV ’90, volume 427 of Lec-
ture Notes in Computer Science, pages 139–148. Springer, Berlin, 1990.

[43] H.-H. Nagel and A. Gehrke. Spatiotemporally adaptive estimation and
segmentation of OF-fields. In H. Burkhardt and B. Neumann, editors,
Computer Vision – ECCV ’98, volume 1407 of Lecture Notes in Com-
puter Science, pages 86–102. Springer, Berlin, 1998.

[44] P. Nesi. Variational approach to optical flow estimation managing dis-
continuities. Image and Vision Computing, 11(7):419–439, Sept. 1993.

[45] N. Ohta. Uncertainty models of the gradient constraint for optical flow
computation. IEICE Transactions on Information and Systems, E79-
D(7):958–962, July 1996.

[46] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C. Cambridge University Press, Cambridge, UK,
second edition, 1992.

[47] M. Proesmans, L. Van Gool, E. Pauwels, and A. Oosterlinck. Determi-
nation of optical flow and its discontinuities using non-linear diffusion.
In J.-O. Eklundh, editor, Computer Vision – ECCV ’94, volume 801
of Lecture Notes in Computer Science, pages 295–304. Springer, Berlin,
1994.
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Appendix: Extension to the Structure Tensor

Method

The CLG approach can be extended in a straightforward way to the embed-
ding of basically any local differential method into a global energy functional.
Let us illustrate this general principle by focusing on another popular local
method: the structure tensor approach of Bigün et al. [8, 9].
In Subsection 3.2 we have used a spatiotemporal variant of the Lucas–Kanade
technique for the temporal extension of our CLG functional. This method is
closely related to the approach of Bigün et al. [8, 9]. While Lucas and Kanade
make use of a least square fit to overcome the aperture problem, Bigün et al.
follow a slightly different strategy: They minimise the quadratic form

EBG(w̃) = w̃>Jρ(∇3f) w̃ (38)

where w̃ := (ũ, ṽ, r)>, and the normalisation constraint

w̃>w̃ = 1. (39)

has to be fulfilled. This is achieved by searching for the eigenvector w̃ that
corresponds to the smallest eigenvalue of the structure tensor Jρ(∇3f). Nor-
malising its third component to 1 yields u = ũ

r
and v = ṽ

r
as the first two

components.
In order to combine the local approach of Bigün et al. with some global
differential optic flow technique, the method can be reformulated as an un-
constraint minimisation of the local energy

EBG(w) =
w>Jρ(∇3f)w

|w|2
. (40)

This reformulation allows a comparison of (15) and (40), which shows that
both types of least square fits differ only by the normalisation factor 1

|w|2 .
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The CLG functional obtained by the embedding of Bigün’s method in the
spatiotemporal variant of Horn and Schunck has the following structure:

ECLG3−B(w) =

∫

Ω×[0,T ]

(

w>Jρ(∇3f)w

|w|2
+ α|∇3w|

2

)

dx dy dt. (41)

Its corresponding Euler–Lagrange equations are given by

0 = ∆3u−
1

α(u2 + v2 + 1)2

(

J11(uv
2 + u) + J12(v

3 − u2v + v)

+ J13(v
2 − u2 + 1) − J22uv

2 − 2J23uv − J33u
)

, (42)

0 = ∆3v −
1

α(u2 + v2 + 1)2

(

−J11u
2v + J12(u

3 − uv2 + u)

− 2J13uv + J22(u
2v + v) + J23(u

2 − v2 + 1) − J33v
)

. (43)

These nonlinear equations are somewhat more complicated than their linear
Lucas–Kanade counterpart (22)–(23).
In order to encourage discontinuity-preserving optic flow fields, one can also
introduce nonquadratic penalisers into the functional (41). This yields

ECLG3−BN (w) =

∫

Ω×[0,T ]

(

ψ2

(

w>Jρ(∇3f)w

|w|2

)

+ αψ1(|∇3w|
2)

)

dx dy dt. (44)

Such a strategy may be regarded as an alternative to the discontinuity-
preserving structure tensor methods in [13, 43]. It gives dense flow fields
without additional postprocessing steps.
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