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Abstract

In this note w consider a parabolic obstacle problem with zero con-
straint. Without any additional assumptions on a free boundary we
prove that a free boundary at interior points of a domain, lying near
the fixed boundary, is a graph of a C'*®-function. Bibliography: 8
titles.

In this paper we study the regularity properties of a free boundary in a
neighborhood of the fixed boundary of a domain for a parabolic obstacle
problem with zero constraint.

For parabolic equations the simplest obstacle problem can be formulated as
follows: let D be a domain in R", Q = Dx]0, 77,

K={weH(Q: w>0 ae. inQ w=¢ ondQl,

where ¢ be a nonnegative function defined on the parabolic boundary 0'Q of
the cylinder Q. It is required to find a function v € K such that

/Datu(w —u)dzr + /DDuD(w —u)dx + /D(w —u)dzx >0

a.e. in t €]0, T, and for all w € K.
It is known that a solution u of the problem, formulated above, satisfies (in
the sense of distributions) the equation

Au — Ou = xq in Q,

where Q = {(z,t) € Q: u(z,t) > 0}.

It cannot be ruled out that the free boundary 9f2 touches &'Q at points where
¢ = 0, that is, there can exist the points of contact.

Even the regularity of the free boundary on a distance from the fixed bound-
ary for this problem has been investigated earlier only in the special case
of the Stefan problem ([C1]), where boundary conditions guarantee the ad-
ditional information 0;u > 0. The nonnegativity of the time-derivative of
solutions has been used in [C1] to prove the fact that d;u is continuous at
the points of the free boundary.

The latter (i.e., the continuity of d,u) is quite essential for investigation the
regularity properties of the free boundary. For instance, I. Athanasopoulos
and S. Salsa have proved the following:



Theorem. ([AtSa]) Let v(x,t) > 0 in Dy := Bg(z°)x|t° — R%,t° + R?[,
with (2°,1%) € 8{v > 0}, let v be a solution of the equation Av — v =1 in
Drn{u > 0}, and let Oyv € C(Dg_¢) for any e > 0.

Suppose also that in some spatial direction, say e;, v is monotone, (i.e.,
D, v > 0) and 0{v > 0} is x1-graph of a Lipschitz function f. Then f is a
CHrafunction for some 0 < o < 1.

It should be especially noted that the above Theorem relates to C''*-regularity
of 0{v > 0} only at interior points of Dg. Unfortunately, at the contact
points where the free boundary meets the fixed boundary is impossible to
establish C'*t%-regularity. There exists the counterexample showing that the
free boundary 0{v > 0} does not touch the fixed boundary in ¢-direction.
The main result of the present paper is the proof of the Lipschitz continuity
of the free boundary in a neighborhood of the fixed boundary. In particular,
from here it follows that Q2 N Q is a graph of a C'*®-function near the fixed
boundary 0'Q.

Our arguments are based on the blow-up technique, the various monotonicity
formulas and the results of [ASU2|, concerning the global solutions of the
parabolic obstacle problem with zero constraint (i.e., solutions in the entire
half-space {(z,t) € R"*! : z; > 0}). It should be noted that our arguments
do not require any additional assumptions on the free boundary.

Except of the monotonicity formula due to L. A. Caffarelli and C. Kenig (see
[C2], [CK] as well as Lemma 2.1 [ASU2]), we use also the Weiss functional
introduced by G.S. Weiss during the studies of some kind the free boundary
problems in the whole space R**!. Changing Weiss’s notation we denote this
functional by W. For a solution u defined in R**! and r > 0 it is defined as
follows:

W(r,z*t*,u) ==

1 t*—r2 ) u?
= — D 2 Glx — ", t" — t)dzdt
7“4/t*4,2/n<| u|+u+t_t*> (x — 27, )dzdt,

where (x*,t*) is a free boundary point, whereas

Gla.0) =TS

for t>0 and G(z,t)=0 for t<0.

In the paper [W] it was showed that the functional W is a nondecreasing
with respect to r and that the equality aa_v;/ = 0 Vr > 0 is equivalent to the
parabolic homogenuity of degree 2 for the function w.

In addition, for our purposes it was essential to take into consideration a
local version of the Weiss functional. In particular, it permits us to make
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a conclusion about homogenuity of blow-ups limits. We observe that for
interior counterpart of our problem such a local version of W was introdused
in [CPS]. In the present paper we introduce a modified local version of W
which takes into account the existence of the homogenious Dirichlet condition
on the fixed boundary.

This paper is organized as follows. Section 1 is devoted to a local version of
the Weiss monotonicity formula. In Section 2 we prove that 0;u is continu-
ous at the points of the free boundary lying in a neighborhood of the fixed
boundary. Finally, in Section 3 we analyze the free boundary near the fixed
boundary in the context of regularity theory.

Notations and definitions.
Throughout the paper we will use the following notations:

z = (z,t) are points in R*™ where z = (z1,7') = (z1,%9,.-.,7,) € R,
n>2 and t € RY; RM = {(z,t) € R**' : z; > b}, where b € R;

RY™ =Ry

Iy = {(z,t) e R** : 2y = b}

1T = Ilp;

e1,...,e, is the standard basis in R”;

eo is the standard basis in R};

Xa denotes the characteristic function of the set  (Q C R*™);
vy = max {v,0};

B, (z°) denotes the open ball in R* with center z° and radius r;

B} (2°) = B,(z°) N R

B, = B,(0);

S (z®) ={z eR": |z — 2% =r};
Sr = Sr 0),

Q-(2°) = Q. (2°,1°) = B,(2°)x]t°® — r2,1°[ is the open cylinder in R**!;
F(2%) = Qf (%,1°) = @, (2, 1°) NRY

Qr=Q, (0, 0);

QF = Q7 (0,0).

If Q = R N Q,(22,10) then Q = {(,t%) : 21 > b, |z — 2°| < r} is the top

of @ and 0'Q is it’s parabolic boundary, i.e., topological boundary minus the

top of the cylinder.

D, denotes the differential operator with respect to x;; 0; = %;

D = (D,y,D") = (D1, Ds,...,D,) denotes the spatial gradient;

D? = D(D) denotes the Hessian;

D,, denotes the operator of differentiation along the direction v € R”, i.e.,

_ _— n
lv| =1and Dyu = Z¢:1 v; Diu;

H = A — 0, is the heat operator.



We adopt the convention that the index 7 runs from 2 to n. We also adopt
the convention regarding summation with respect to repeated indices.

For a non-negative C: N CP-function u defined in Ry UTI, we introduce the
sets

A(w) = {(z,t) € R¥T UL, : u(x,t) = |Du(x,t)| = 0};

Qu) = {(z,t) e Ry tu(z, t) > 0} = R\ A(u);

['(u) = 0Q(u) N A(u) is the free boundary;

['(u) N1y is the set of contact points.

We use letters M, N, C' (with or without indices) to denote various constants.
To indicate that, say, N depends on some parameters, we list them in the

parentheses: N(...).

Let M be a constant, M > 1. We denote by P."(M,b), the class of ”local
non-negative solutions” to the problem, i.e., we say a continuous function
u (not identically zero) belongs to the class PF (M, b) if u satisfies:

(a) Hlu] = xq in @, NR!, for some open set Q = Q(u) C Q,NRX, and
u = |Du| =0 in {Q, "R} \ Q(u),

) u>0in Q,NRIM, w=0o0nI,NQ,,

(c) ess sup {|D?u| + [Qu|} = M

QrNRyT!

and the first equation in (a) is understood in the sence of distributions. For
simplicity of notation we will write P (M) instead of Pt (M,0).

We denote by P} (M,b), the class of ”global non-negative solutions” to
the problem in the entire ”half space” RZ“ with quadratic growth in x and

linear growth in ¢, i.e., solutions in ]RI?+1 satisfying

ess sup {|D’u| + |Opu|} < M. (0.1)
n+1

Ry

More precisely, we say a continuous function (not identically zero) belongs
to the class Pl (M,b) if u satisfies:

(a’) H[u] = xq in RI*!, for some open set Q = Q(u), and u = |Du| =0 in
Ry ™\ Q(u),

() u>0in R uw=0on II,

(¢’) u satisfies inequality (0.1),



and equation in (a’) is understood in the sence of distributions.

We also define the class P} (M, —oo) corresponding formally to b = —oco. In
this case the whole space R**! is considered instead of ]RZH, IT, = 0 and
we omit the condition u|;;, = 0. For any b € [—00,0] and a global solution
u € PY(M,b) from results of [ASU2] it follows that

Let a > 0, b < 0 be some constants, let u € Py (M, b), and let 2° = (22,1°) €
['(u). For r > 0 we consider the scaling

u(rz + 2°, 7%t + t°)

ur(z,t) = =

. (0.3)

By the standard compactness methods we may let r tend to zero and obtain
(for a subsequence) a global solution uq € PL(M,—oc). This process is
referred to as blowing up, and the global solution wug thus obtained is called
a blow-up of the function u at the point 2°.

§1. The Monotonicity Formula

Let 2* = (2*,t*) be an arbitrary point in R"™' let a and r be positive
constants, and let v be a continuous function in Q,,(2*) := B,(z*)x|t* —
4r? t* — r?|, satisfying |Dv| € Ly(Q,,(2%))-

We define the local Weiss functional (cf. [W]) as

W (r, " t*,v) :=

1 t*—r? v2
== / <|Dv|2+21)+ *> G(x — ", t" — t)dxdt,
T * 47.2 a(w*) t _t
where
—|z|?/4t
G(z,t) = exp (=|z*/41) for t>0 and G(z,t)=0 for t<0.

(4mt)n/?

Lemma 1.1. Let v and z* be as above.
Then the equality

Wa(Ar,z*,t*,v) = Wasr (A, 0,0, vr) (1.1)

holds for any A < a/r and v.(x,t) = r~2 -v(re + x*, r’ + t*).
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We omit the simple proof.

Lemma 1.2. Let a > 0, b > 0 be given constants, let u € Py (M, —b), and
let
¥ =(2%1°) e T(u) N Q. NR™S.

Suppose that we extend the function u as zero across the plane I1_y to the set
Q.(2°) N {z, < —b} and preserve the notation u for the extended function.
Then

0 tO 1 -1 / . 2
Ml ) 2 [ [P Gt~ o+ 2,0
dr rJ_ 4 —t
Ba/r
0 b -1
+ 4 j / / |Dyu, [2G(z, —t)dzdt, (1.2)
" - —29-b
Ba/rn{wlz i }
where u, is defined by formula (0.3),
du,(x,t) := x - Du,(z,t) + 2t0pu,(z,t) — 2u,(z,1), (1.3)

Jo(r) = /_41 / al:r (7 - Du,)G(z, —t)dzdt

Sa/r

71 2
a / <|Du,«|2 + 2u, + (u;) > G(z, —t)dzdt,
—4
S

2r2
a/r

and 7 is the unit vector of the outward normal to Sy, .

Proof. Using (1.1) and taking into account the evident relation

d du
— (D;u,) = D, !
dr (Dyur) ! ( dr )

we obtain

d d
JWa(r, 2°,4% u) = %Wa/r(l, 0,0,u,) = I, + I, (1.4)



where

-1 du du U, AU
L =2 Du, - D T T+ T G(x, —t)dxdt,
! /4 / [u (dr>+dr+tdr] (2 )dz
Ba,/Tm{w1>_$7(1«)_b}
—1 2
I, = _7% / <|Du,«|2 + 2u, + (u;) ) G(z, —t)dxdt
4

—29%_p
Sa/rﬂ{l‘1> 21 }

0 —1 2
x b Uy
_4a —2’_ / / | Du,|* + 2u, + () G(z, —t)dzdt.
T —4 1
—20-bp
Ba/rm{mlz i }

Then, integrating by parts the term 2Du,. - D (d%u,) G(z,—t) in I; and using
the identity
m.
D,G(xz,—t) = Q—ZG(x, —t)

we obtain

-1 dur Z; Uy
I =2 — - 22D, 14+ = —
1 /_4 / = [ Au, oy Ditir +1+ " ] G(z, —t)dzdt

}

—20-b
Ba/'rn{$1> r}

-1
42 / / Wr (2. Duy) Gz, —t)dwdt

4 dr
9_p

_20_
Sa/rn{w1> ;

-1 du,
-2 Du,G(z, —t)dzdt. (1.5)
4 dr

_,0_
z7—b

}

Ba/rn{wlz

}

Observe that according to the assumption u € Py (M, —b) we have for (z,t) €
&= {Ba/T N{z = _z?_b}} x| — 4, —1[ the equalities

T

u, = D'u, =0, (1.6)

and, consequently,

2 (ur)? 2
|Du,|* + 2u, + ; = |Dyiu,|". (1.7)
£
Moreover, taking into account the identity
du, 0'u,
= , 1.8
dr r (1.8)



and using (1.6) and (1.3), we get

du, 1(/-2%—b
(- al Dlur> =—= ( 172D, +2t8tur> -Dw,.  (1.9)
dr £ r r

Observe that dyu, = 0 on E\I'(u,). Moreover, d;u, is bounded while Dyu, =0
at the points of £ N T'(u,). Therefore, (2t0;u, D1u,) |¢ = 0 and relation (1.9)

takes the form p
U

D ,

( dr “)

Substituting (1.7) and (1.10) into (1.5), and using (1.8) we obtain the fol-
lowing representation:

—1 !/ /
L+, = 2/ / Iy [1 — Hlu] — 821;7"} G(z, —t)dxdt

4 0
—20—b
By N{z1>—12}

r

20+ b
= 17«2 |Dyu, |2 (1.10)
£

0 -1
+2J,(r) + “th / / | Dy, |G (2, —t)dzdt. (1.11)

r2 4
—20_p
Ba/rﬂ{sm: 7%

}

From the assumption u € Py, (M, —b) it follows that I'(u,) has zero Lebesgue
measure and

Hlu,] = X0y 0 Q:={Byy, N{z; > (—2% —b)/r}} x] — 4, —1].

Therefore, we have for (z,t) € Q the equality

0'u, 0'u, |0"u,.|?
1—-Hlu|— = —— 1.12
r [ [l 2t } 2rt ( )
The proof is completed by combining (1.4), (1.11) and (1.12). O

Remark. There exists a universal constant Cy = Cy(n, M) such that

C a
()| < =5 (14 55) exp (—a?/4r?).
Moreover,
al_irlloo|Ja(r)\ =0 Vr>0o, (1.13)
lim |J,(r)| =0 Va > 0. (1.14)
r—0t



Corollary 1.3. Leta > 0, b > 0 be given constants, and let u € Py (M, —b).
Then for any 2° = (2°,¢°) € T(u) N Q, NR™I' the function W,(r,z°,1% u)
has a limit asr — 0%, i.e.

lim W, (r, 2°, 1%, u) = w(z’,1°, u). (1.15)
r—0+

We will call the value w(z°,¢°, ) the ”transition energy” of function u at the
point (2°,¢%). From (1.1) it follows that

w(2®, £, u // (\Du 2 )G(x,—t)dacdt, (1.16)

where g is a blow-up of the solution v at the point (z9,¢%)

(u0)”

§2. Regularity Properties of Solutions

Lemma 2.1. Let u € Pr(M), let 2° = (2°,¢°) € T'(u) N QF, and let ug be a
blow-up of the solution u at the point 2°.

Then ug s a homogenious function of degree 2 on the set R*** N {t < 0}
i.e.,

ug(2ex, 3°t) = 5ug(w,t) Vx>0, V(z,t) € R N{t<0}.

Remark. We observe that the statement of Lemma 2.1 concerns only the
blow-ups of u at some fixed point 2° € T'(u).

Proof. We consider a sequence 7, — 07 as k — oo and define u;, as

u(rgr + 20, 72t + t°
U,k(-'lf,t) ( T g )
k

By the definition wug(z,t) = limg_,o0 ug(z, t).
From (1.15) and (1.1) it follows that for arbitrary A > u > 0 we have

0 lj— Wl()\rk,x t°, u) — Wl(,urk,ato,to,u)
—00
A AW (6,0,0,u
= Wl/?"k ()‘a 01 05 U’k) - Wl/'l‘k (:U’a 01 05 U’k) = / !/ k(dH k) df. (21)
"



On the other hand, accordlng to (1.2) we have

dWi,, 9 0,0, '( 2
l/rke
I 2
/ [0 (un)* “’“ e x, —t)dzdt + 2J; 5, (0). (2.2)
— 462
I/Tk

Now, combining (2.1), (2.2), taking into account estimate (1.13) and letting
k — oo we get the identity

dup = & - Dug + 2tdyug — 2ug =0Vt € [~V ), — /1]

Therefore, 1 is homogenious of degree 2 for all ¢ from the interval [—v/), —/1].
It remains only to recall that A\ and p are arbitrary positive constants satis-
fying the inequality A > p. This finishes the proof. O

Lemma 2.2. Let ug € PL(M, —00), let (0,0) € T'(ug), and let

2
Woo(r, 0,0, ug) / / <|Du % + 2ug + (o) ) G(z,—t)dzdt, 7> 0.
4r2 n

t

Then the equality
dWoo(T, 0, 0, Uo)
dr
implies the homogenuity of degree 2 for the function uyg, i.e.,

ug(sex, 3%t) = sug(z, t) Ve >0, VY(z,t) € R"™'n{t<0}.

=0 Vr >0

Proof. The proof of this statement is given in [W]. O

Lemma 2.3. Let u € P,f(M).
For any ¢ > 0 there exists p* = p*(g) > 0 such that if 2° = (2°,1°) € T'(u)NQ,
and 0 < 9 < p* then for p € [29, p*] we have

— 29 .)?
sup |u(z,t) — M| < ep, (2.3)
Q7 (=) 2
sup ‘Dlu x,t) — (:131 — x(l))+| < ep, (2.4)
Q7 (2°)
sup |D-u(z,t)| < ep, T=2,...,n. (2.5)
Q7 (2%
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Proof. We begin with considering the first inequality. Suppose, towards
a contradiction, that (2.3) fails. Then there exists a number g5 > 0 and
sequences u! € Py (M), p; \, 0, and 27 = (27,#) € T'(u/) N Q; such that
pj > x] > 0 and

(21— 2))”

> | > eop’. (2.6)

sup |u;(z,t) —
QPJ (#9)

Next, we define v; as

uj(pjx + 7, pit +17)
Pj

Uj(xa t) =

for (z,t) € Q1 ﬂR’_L}:jl, where b; = i—j?, b; € [0,1]. Observe that for each func-
tion v; we have (0,0) € I'(v;) and vj[,——s; = 0. Moreover, for a subsequence
and in appropriate space, v; converges to a global solution vy € P (M, —b),
where b = limb;, b € [0, 1].

j—o0
Taking into account the relations (0,0) € ['(vg) and vg|z,=—» = 0, we get from

Theorem II [ASU2| that vy = W Therefore, for all sufficiently large j
we have the inequality

2
sup  |v;(,t) — M| < £, (2.7)
Q10{z1>-b;} 2 2

On the other hand, the inequality (2.6) implies

2 2 j 2
u;i(pjx + 27, pit + 17
sup ‘vj(a:,t) _ %‘ — sup i(p; . j ) _ (($12)+) ‘
Q1n{z1>—b;} Q1n{w1>—b;} Pj
2
= sup |uj(y2, ) ((yl ) | > €
Q) Fi 205

The latter inequality gives the contradiction with (2.7) and completes the
proof of (2.3).

It remains only to observe that the estimates (2.4) and (2.5) are proved in
the same way as (2.3). O

Lemma 2.4. Let u € Py (M), let gy €]0, 16(2n+1 [, and let Ni > 0 and N;
(with 7 = 2,...,n) be some constants.

11



Then for arbitrary point 2° = (2°,°) € Q7 and p < 1 the inequality

(ZND u) —u > —gp’ in Qp/z( 2°)
implies

p(ZNiju>—u20 in Qp/4( 2%).
j=1

Proof. Suppose the conclusion of the lemma fails. Then there is a function
u € Py (M) and some points 2° € Qf and 2* = (z%,¢*) € Q; ,(2°) such that

P (i Niju(:c*,t*)> —u(z",t") < 0. (2.8)

Let

w(z,t) =p (Z Niju(x,t)) —u(x,t) + 2n1+ 1 (lz — 22 = (t—17)) .

i=1

Then w is caloric in Q,/4(2*) N Q(u), and, by (2.8), w(z*,t*) < 0. Observe
also that v > 0 implies Diu > 0 on II, and, consequently, w > 0 on the set
0Q(u) N Q,/4(z*). Hence by the maximum principle the negative infimum of
w is attained on 9'Q;,(2*) N Q(u). We thus obtain

2
p ; 2
—_— > E N;iDju | —up =2 —€gp°,
16(27?, -+ 1) 31Q+ (z NQ(u { ( ) } 0P

which is a contradiction. This proves the lemma. O

Lemma 2.5. Let u € P,f(M).
There exists pg > 0 such that if 2° = (2°,1°) € T'(u) N Q)2 and 2§ < 22 then
for any p € [29, po] we have

p-Diu—u>=0 in Qp/4( 29).

Proof. We fix ¢y from Lemma 2.4 and set ¢ = £7/2. Now, successive
application of Lemmas 2.3 and 2.4 finishes the proof. ]

12



Lemma 2.6. Let ug be non-negative, continuous and homogenious function
degree 2 i R*™ N {t < 0}, satisfying the inequality (0.1). Suppose also that

Hlug] = Xfuo»0y in R N {t <0},
(0,0) € T'(u),
Diyug >0 in R N{t<0}.

Then, either for some direction e € R" such that e - e; > 0 we have

uo(z,t) = %, (2.9)

or, in some rotated system of x-coordinates,

n

uo(z,t) = Z %xf —ct, (2.10)
i=1

where Y "

1@ =1—c¢, a;20,c=>0.

Proof. It is evident that only two situations may arise: interior of A(ug) = ()

and interior of A(ug) # 0. _
For case interior of Alus) — () We observe that the function vy defined as

a?
UO(‘Tat) = UO(xat) - Ea

is caloric in R**'N{¢ < 0}, and it has quadratic growth with respect to z and
linear growth with respect to t. So, by Liouville’s theorem (see Lemma 2.1
[ASU1]) we get that vy, and, consequently ug, is a polinomial of degree two,
i.e., there exist constants a; > 0, ¢ > 0 such that the exact representation
(2.10) takes place.

For case interior of A(ug) # 0 we need a more detailed analysis. In view of
homogenuity of uy the fact, that the set of interior points of A(ug) is not
empty, implies the existence of interior point of A(ug) for all values of ¢t < 0.
Next, arguing in the same way as in Step 2 of Theorem II [ASU2] we can
prove that the function wg is the one-space dimensional, i.e., ug = ug(y,t)
where y = (z - e) for some e € R”, y € R and ¢ < 0. This result follows by
dimensional reduction based on the version of the monotonicity formula due
to L. A. Caffarelli and C. Kenig.

Therefore, due to homogenuity of ug, the relation

up(0,t) = —mt >0, 0<m<1, (2.11)

13



holds for all ¢ < 0.

If m = 0 then Theorem I [ASU2| immediately gives (2.9). We would like to
show that m = 0 is the only possibility.

Let m > 0. From the assumption Djug > 0 in RN {¢t < 0} it follows that
D.uy does not change sign. For the definitness we suppose that D.ug > 0
(otherwise we just change e by —e). Now, combining (2.11) with the inequal-
ity Deug > 0 we obtain ug(y,t) > 0 on the set D := {(y,t) : y € R, ¢t < 0}.
Therefore, H[ug] = 1 and H[0;uo] = 0 on D.

Now we define the function v as

(0.1 Ouo(y,t) +m, if y>0,t<0
’U g
v — Owuo(—y,t)+m, if y<0,t<0.

Obviously, the function v is bounded and caloric in RN{¢ < 0}. Therefore, by
Liouville’s theorem we get v = 0 in RN {¢ < 0}, and elementary integrations
imply the exact representation for ug on the set {y > 0,¢ < 0}

-m
uo(y,t) = —mt + Ty2. (2.12)

Observe that from (2.12) we immediately get
Deug=0 on IIN{t<0}. (2.13)

On the other hand, from (0.2) it follows that
D.D.ouy >0 in RN{t <0} (2.14)

Combination (2.13) and (2.14) gives D,ug = 0 on the set {y < 0, < 0}. The
latter means that on the set {y < 0,¢ < 0} we have exact representation

uo(y,t) = —mt. (2.15)
Representation (2.15) together with the equation H[ug] = 1 gives m = 1.
However, the case m = 1 is impossible since for uy = —t the set of interior
points of A(uyg) is empty. O

Corollary 2.7. Let u € Py (M), let 2° = (2°,t°) € I'(u), and let uy be a
blow-up of the solution u at the point 2°.
Then, either for some direction e € R" such that e - e; > 0 we have

(z-e)%
2

15
uo(z,t) = and  w(z® 1% u) = W (1,0,0,uq) = VR (2.16)
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or, in some rotated system of x-coordinates,

"< 15
uo(z,t) = Z%xf —ct and w(@®, 1% u) = Wy (1,0,0,uq) = 5 (2.17)

=1

Here a; and ¢ are the constants from Lemma 2.6, while w(z° %, u) is the
"transition energy” at the point 2° defined by (1.15).

Proof. By Lemmas 2.1 and 2.6 the first equalities in (2.16) and (2.17) are
already obtained.
Further, in view of (1.16), for the case uo(x,t) = (z - €)% /2 we have

(2% u / dt/ / <2y1 + Z;) G(y, —t)dy;.
Rn—1 0

Analogously, in view of (1.16), for the case ug(z,t) = >." oz} —ct we have
i=1

w(z?, %, u / dt/ (Za +iaix?—20t
+02t—cZaZx + (4t) Zalaj ) (z,—t)dz.

=1 2,j=1

Now the second equalities in (2.16) and (2.17) follow immediately from the
direct calculations of the integrals introduced above. O

Lemma 2.8. There ezists 3 > 0 > 0 such that if u € Py (M), and
2= (2%t eT(u)NQN{x; <5}

then 15
w(z, 1%, u) = R (2.18)

Here w(x°, 1%, u) is the "transition energy” at the point 2° defined by (1.15).
Proof. We set R := z?% and consider the scaling

u(Rx + 2°, R*t + %)

R? '
If R is small enough then the function ug is close to a global solution uy €
P} (M, —1). Moreover, from (1.1), Lemma 2.3 and (2.16) it follows that

ug(z,t) =

15 +¢(R),

Wl(Ra xO,tO’u) = Wl/R(l,0,0,UR) < 4
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where £(R) tends to zero as R goes to 0.
Therefore, by (1.2) and (1.14) we have for r < R < §

N1 (n, M) 1
Wl(r, (L'O, tO, u) < Wl(R, xo’ tO’ u) + W exp (—4—}?) < 5, (2.19)
provided ¢ is small enough.
Now, the equality (2.18) follows from (2.19) and Corollary 2.7. O

Remark. Let u € Py (M), let § be the constant from Lemma 2.8, and let
z = (z,t) € I'(u) N Q1 N{zy < 0}. Then the convergence Wi(p,z,t,u) to
2 as p \, 0T is uniform with respect to z = (z,¢). This fact follows from
Dini’s theorem, since for p > 0 the functions W;(p, z,t,u) are continuous
with respect to (x,t), the limit function is constant, and convergence, up to
exponentially small terms, is monotonuous.

In particular, if p, \, 07 as k — oo, and 2F = (2%, t%) — 20 = (29,19),
where 2z € T'(u) N Q, N {z; < 6}, then

15

lim W1 (pg, 2%, t%,u) = = (2.20)
k—o0 4
Theorem 2.9. Let u € P} (M).

Then Oyu is continuous on the set Q1/20{0 < z1 < d}, where § is the contstant
from Lemma 2.8.

Proof. Consider a point 2° = (2°,t°) € T'(u) N Q12 N {0 < z1 < §}. We
claim that
li 0 = 0. 2.21
Q(u)lar,?—)zo tU(Z) ( )
As we know from [ASU2| the corresponding upper limit in (2.21) is non-
positive. Therefore, we only need to prove that the lower limit in (2.21) is
non-negative.
Suppose that

lim infQu(z) =: —m, m > 0. (2.22)
Q(u)32—20
Then there exists a sequence z* = (z*,t¥) € Q(u) such that 2* — 20 as
k — oo and
lim dyu(2*) = —m.
k—o0

We denote by K,(z*), r > 0 the cylinder K,(z¥) = B,(a*)x]tF — r2, ¢k +
r?[, and for each point 2z* we define the corresponding distance to the free
boundary as follows:

r, =sup{r >0: K, (z*) C Qu)}.
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It is clear that r, — 0 as k£ — oc.
Also we define uy as
wn(z.t) = u(ryz + ﬂc’;, rt + t*) |
Tk
and observe that K;(0,0) C Q(u) and 8;ux(0,0) = dyu(z*, t*) tends to —m
as k — oo.
Then wu; converges (for a subsequence) to a global solution wuy €
gk

Pt (M, klim —1), satisfying the following properties:
—00

Tk

Hlup) =1 in K;(0,0),
Oyup(0,0) = —m,
Owuo(x,t) > —m for all (z,t) € K,(0,0),
where the latter follows from the convergence of 0;u, to 0;ug at each point
of K1(0,0) and (2.22).
Thus the function d;ug is caloric in K;(0,0) and takes a local minimum at
the origin. Therefore, one can conclude by the maximum principle that

Owup(z,t) = —m in Q. (2.23)

We now proceed to get a contradiction with (2.23) if m # 0. It is easy to see
that only two situations may arise:

(a) Ry = O(ry) as k — oo, where Ry, := x¥;

(b) ¢, = o(Rg) as k — oo.

For m > 0 in the case (a) the contradiction with (2.23) follows immediately
by the results of [ASU2J.

For case (b) we need a more detailed analysis. Observe that in the case (b)
the limit function ug is a global solution defined in the whole space R**!.
By the definition of 7y, for each k there exists a point (y*,7%) € T'(ux) N
0K1(0,0) and a corresponding point (rgy* + 2%, rir% +t*) € I'(v) N 0K, (2*)
such that

(riy® + 2% rirh +1%) — (2°,4°) as k — oo, (2.24)
We denote by (y°,7°) the limit of (y*,7%) as & — oo. It is obvious that
(y°,7°) € T'(ug) N 0K (0,0). Further, using (1.1),(2.24),(2.20) and (1.15) we
obtain for any p > 0

Wl(ﬂv y07 7-07 UO) = kllglowl (p: ykv Tkv uk)
= lim W, (prg, rey* + 2, rir% + 15 )
k—00

1
=w(@,t%u) = Z5 (2.25)
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From Lemma 2.2 it follows that a limit u, is a homogenious function of degree
2 for t < 7°. More precisely, for any x € R*, ¢t < 7% and A > 0 we have

uo(yo + Az — yo), 0+ )\2(15 — 7'0)) = /\2u0(a:, t).

In addition, from Lemma 2.5 it follows that for any x € R* and ¢t < 7° we
have
Diug >0 in R {t <70

Now, using Lemma 2.6, Corollary 2.7 and (2.25) we obtain for ¢t < 79 the
representation
(z—9°) -}

9 .
where e is a direction in R" satisfying cos (e - e;) > 0.
The solution u( can be uniquely continued for ¢ > 7° by the same expression.
It remains only to note that representation (2.26) contradicts (2.23) if m # 0.
The proof is completed. O

up(w,t) = (2.26)

83. Regularity Properties of a Free Boundary

Lemma 3.1. Let u € Py (M), let § be the constant from Lemma 2.8, and let

0<e < m, N; >0, Ny, and N, (with T = 2,...,n) be some constants.

Then for arbitrary 2° = (2°,¢°) € @), N {0 < 2] < 6/2} and p < §/2 the
mequality

P (Z NiDiu) + P’ NyOyu — u > —e1p°  in Qp/Q(ZO)
i=1
implies

P (Z NiDiu> + p?NyOyu —u >0 in Q,,/4(z0).

=1

Proof. Suppose the conclusion of the lemma fails.
Then there is a function u € P, (M) and some points 2° € Q1 N {0 < 2§ <
§/2} and 2* = (z*,t*) € Q,/4(2°) such that

P (Z NiDZ-u(x*,t*)) + p°NoOgu(z*, t*) — u(z*, t*) < 0. (3.1)
i=1
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Let

w(z,t) =p (Z NZ-Diu(x,t)) + p? NoOyu(z, t)

i=1

—u(x,t) + (Jz —2*]> = (t —t*)).

2n +1

Then w is caloric in Q,/4(2*) N §2(u), and, by (3.1), w(z*,t*) < 0.
We observe also that Theorem 2.9 and the condition v > 0 imply the in-
equalities

w>=0 on II, w>0 on I'(u)NQ,u(z").

Hence by the maximum principle the negative infimum of w is attained on
0'Qpya(2*) N Q(u). We thus obtain

2 n
P . 2 2
- > inf N;Dju | + p*NoOyu — u p = —e1p°,
16(2n+1) 7 2Q,/a(z")n(u) {p (Z ) 0% } P

i=1
which is a contradiction. This proves the lemma. Il

Lemma 3.2. Let u € P,/(M), and let (0,0) € T'(u).
There exist constants p > 0 and 9 €]0, 5[, and the whole cone of directions

n n
Ky :={e= Zaiei : oy = cost, Za? =1}
i=0 1=0

such that for any point z = (x,t) € QF and any direction e € Ky we have

ou
—(2) = 0.

50 %)

Proof. We fix & from Lemma 3.1, and choose ¢ < &;/n and
p < min{p*, py,d/2} where p* = p*(e1), po and § are the constants from
Lemmas 2.3, 2.5 and 2.8, respectively.

Applying Lemmas 2.3 and 2.5 we obtain

pDiu—u>0 in Q:/4,
<

sup|DTu\ ep, T=2,...,n. (3.3)

QF
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Moreover, from Theorem 2.9 it follows that
sup|8tu‘ < e, (3.4)
QF

if p is small enough.
Further, we choose p so small that the inequalities (3.2), (3.3), and (3.4)
hold. Combining (3.2), (3.3), and (3.4), we get

p (Dlu + NTDTU) + o Nodpu —u > —e1p® in Q)

T=2

with constants N, and N, satisfying |N;| < 1 and |Ny| < 1, respectively.
Now, applying Lemma 3.1 we obtain the statement of the lemma with

ool <p(Ltn+A)77 arz (L4,
o | < (1+n+p2)_1/2, T=2...,n.
Ol
Theorem 3.3. Let u € P, (M), and let (0,0) be a contact point.
There exists 7 > 0 such that 0(u) N Q; can be represented in the form
x1 = f(x2,...,Tn, 1) (3.5)

with Lipschitz continuous function f.

Proof. By Lemma 2.5 we know that u is monotone in direction e;. This
implies that 02(u) can be represented by formula (3.5).

In addition, by Lemma 3.2 for each point z = (z,t) € Q(u)NQ; there exists a
whole cone of directions Ky in which the function u is nondecreasing. Hence
f is Lipschitz continuous. U

Corollary 3.4. There exists a universal constant ro = ro(n, M) such that if
u € Py (M) and (0,0) € I'(u) then 0Q(u)NQ; is the graph of a C+*-function
for some 0 < a < 1.

Proof. The proof of this statement is now an easy consequence of Theo-
rem 3.3, Lemma 3.2 and the result of [AtSa]. O
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