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A commutant lifting theorem on analytic polyhedra

Calin Ambrozie! and Joérg Eschmeier

In 1967 Sarason observed that commutant lifting results for contractions on Hilbert
spaces can be used to solve interpolation problems for bounded analytic functions on the
unit disc. This idea was considerably extended in the work of Sz.-Nagy and Foiag on
Hilbert space contractions ([20],[26]). Each contraction T' € B(H) of type C, is, up to
unitary equivalence, the compression of the multiplication operator with the independent
variable M, € B(H?(D, E)) on a suitable vector-valued Hardy space to a closed linear
subspace M C H?(D, E) which is invariant for the adjoint M} € B(H?*(D,E)). A
functional version of the commutant lifting theorem, which is suitable for applications
to interpolation problems, says that each contraction X in the commutant of the
compression T' = Py M,|M can be realized as the compression X = Py MM of a
multiplication operator M/ given by a bounded analytic function f € H*(D, B(E)) with
supremum norm ||f||. bounded by one. Since the commutant of M, € B(H?*(D, E))
consists precisely of all multiplication operators My with f € H*(D, B(E)), the above re-
sult can be seen as the Cy-case of the abstract commutant lifting theorem for contractions.

If one replaces the Hardy space on the unit disc D in C by the Hardy space
on the open Euclidean unit ball B in C* and uses the commuting n-tuple
M, = (M,,...,M,) € B(H*®B,FE))" consisting of the multiplication operators
with the coordinate functions instead of the operator M, on H?(D,E), then the
multivariable analogue of the above functional form of the commutant lifting theorem
becomes wrong, even in the scalar-valued case £ = C. An easy way to show this, is
to use the well-known observation that the ball version of the classical Nevanlinna-Pick
theorem for functions in H>*(B) is wrong (cf. [22]).

By von Neumann’s inequality, the supremum norm of a bounded analytic function f in
H*(D, B(E)) can be described as

1fllee = sup{[|f(T)Il; T € B(H) with [|T]| <1}.

Here H is a fixed separable, infinite-dimensional Hilbert space, and the operator f(7) is
formed with the help of an appropriate vector-valued analytic functional calculus.

! The first-named author expresses his thanks to the Department of Mathematics of the University of
Saarbriicken for its kind hospitality during the first stage of the preparation of the present work.



If one substitutes B for D and replaces single contractions by the class of all n-contractions
as introduced by Arveson in [9], then the space of all analytic functions f € O(B, B(E)),
for which the norm defined by the supremum on the right in the above formula is finite,
forms a contractively embedded Banach subalgebra of H*(B, B(F)). For this class
of analytic functions, interpolation results of Nevanlinna-Pick or Carathéodory-Fejér
type have been proved, and closely related versions of the above functional form of the
commutant lifting theorem can be proved (see [7], [13]], [18], [23]). Based on Agler’s
characterization of Schur class functions on the open unit polydisc D™ in C* ([1]),
corresponding interpolation and commutant lifting results have been proved over the
unit polydisc in C* ([2], [12]).

In the present paper we replace the ball and unit polydisc by a bounded analytic polyhe-
dron of the form
D={zeW; |ld(z)|| <1} c C",

where d : W — (P4 is a matrix-valued analytic function on an open neighbourhood W of
D in C". Instead of contractions we use the class C of all commuting n-tuples T € B(H)"
on a fixed separable, infinite-dimensional Hilbert space H such that o(7) C W and
||d(T)|| < 1. Since in this situation the Taylor spectrum o (7’) of T is contained in D, the
formula

1flls = sup{llf(T)l; T € C}

can be used to define a contractively embedded Banach subalgebra S(d, B(E)) of
H>(D,B(E)), called the Schur space on D. We replace the Hardy space by suitable
Hilbert spaces H of analytic functions on D defined by a reproducing kernel function
C. Our main result (Theorem 3.7) shows in particular that, for each M3-invariant
finite-dimensional subspace M C H ® E, the operators X in the commutant of the
compression T = Py, M,|M € B(M)™, which possess a lifting to a multiplication operator
My given by a Schur class function f € S(d, B(E)) with Schur norm ||f|ls < 1, can be
characterized by a positivity condition which is formulated in terms of the reproducing
kernel C' and the boundary function d of the domain D.

The result obtained in this way is of a quite general nature. It applies in particular
to the ball and the polydisc and, more generally, to all symmetric domains, since in
these cases natural examples of reproducing kernel Hilbert spaces are known to exist.
As an application we derive interpolation results for functions f € S(d,B(F)) of
Nevanlinna-Pick and Carathéodory-Fejér type.

The paper is a continuation of joint work of the first named author with D. Timotin on
von Neumann type inequalities and intertwining lifting results over suitable domains in
C™ ([4],[5]).- We make essential use of a recent result of Ball and Bolotnikov [11] which
gives different characterizations of Schur class functions on polynomial polyhedra.



§0 Preliminaries

Let H and K be complex Hilbert spaces. We write B(H, K) for the set of all bounded
linear operators from H to K and H ® K for the Hilbertian tensor product of H and K.
For an open set U in C" and a given Banach space X, we denote by O(U, X) the Fréchet
space of all analytic X-valued functions on U. If T € B(H)" is a commuting tuple of
bounded linear operators on H, then o(7T) is defined as the Taylor spectrum of 7', and
we write ® : O(c(T)) — B(H), f — f(T), for Taylor’s analytic functional calculus of
T. For the definition and basic properties of these notions from multivariable operator
theory, we refer the reader to [17] or [27].

For given Hilbert spaces E and E. and each open neighbourhood U of o(T'), there is a
unique continuous linear map

®pp : OWU,B(E,E))2OU)®B(E,E) > BHQE,HQE)

with the property that ®pp (f @ A) = f(T) ® A for f € O(U) and A € B(E,E). For
simplicity, we write again f(T) instead of ®p i (f). If S C C" is an arbitrary subset, then
we define S = {z € C*; Z€ S}. For f € O(U, B(E, E)), the function

f:U—B(E,E), f(z)=f("

is analytic again. An elementary exercise, using the corresponding scalar-valued result
and the density of the linear span of all elementary tensors, shows that the identity

f(T*) = f(T)* holds for all functions f € O(U, B(E, E)).

If p, ¢ are positive integers, then we identify the space B(H?, HP) of all bounded linear
operators from H? to H? with the space B(H)P? of all (p x ¢)-operator matrices with
entries in B(H). For p = ¢, we regard the map

tr: B(H)?? - B(H), (Ai)+— iAjj

=1

as a generalization of the ordinary trace for scalar matrices.

Let A be an arbitrary set. An operator-valued function K : A x A — B(H) is called
positive definite if Z;,j:l(K()‘% Aj)ci, ¢;) > 0 whenever s is a positive integer, A1,..., As €
A and ¢y, ...,c; € H. By a well-known theorem of Kolmogorov and Aronszajn a function
K : A x A — B(H) is positive definite if and only if there is a Hilbert space G and a

function k : A — B(H, G) such that K(\, p) = k(u)*k(X) for A, p € A,



¢1 Functional Hilbert spaces

Let D C C" be an open set with 0 € D. Throughout this note we shall denote by H a
fixed functional Hilbert space consisting of analytic functions on D. More precisely, H is
a Hilbert space consisting of complex-valued analytic functions on D such that all point
evaluations

dw:H—=C, [ f(w) (w e D)
are continuous. For each point w € D, there is a unique function C,, € H such that
(f,Cw) = flw)  (f €H).

The map D — H, w — C,, is weakly anti-analytic, and hence it is anti-analytic as a map
with values in H. Consequently, on the open set A = {(z,w); z,w € D} C C*", we can
define an analytic function C' : A — C by

C(z,w) = Cx(2).

In addition, we shall suppose that the domain D and the functional Hilbert space H
satisfy the following conditions:

(i) H contains the constant functions and ||1]| =1,

(ii) the coordinate functions are multipliers of #, and the tuple Z = (Z1,...,7Z,) €
B(H)™ consisting of the multiplication operators Z; : H — H, f +— z;f, has the
property that o(Z) = D,

(iii) D is polynomially convex and the polynomials form a dense subset of #,

(iv) the function C' has no zeros, Cp = 1 and C~! extends to a holomorphic function
defined on an open neighbourhood of A.

For a given Hilbert space E, we shall identify the Hilbertian tensor product H ® E with
a linear subspace of the space O(D, E) of all E-valued analytic functions on D via the
injective linear map

jJHE - O(D,E), (jh)(z)=(6,®1g)(h).

Let E, E be fixed Hilbert spaces, and let f € O(U,B(E,E_)) be an analytic function
defined on an open set U D D. Then the multiplication operator

Ty HQE—->HQE, hw— fh
is well defined and continuous linear. To verify this, it suffices to show that
(f(D)h)(2) = f(D)h(z)  (feH®E, z€ D),

where f(Z) is formed with the operator-valued analytic functional calculus explained in
the preliminaries. Since both sides of the above equation depend in a continuous bilinear
way on f and h, it suffices to consider the particular case where f € O(U) and h € H.
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To settle this case, one can use the observation that Z:C, = z;C, (1 < j < n) to deduce

that

(F(Z)h)(2) = (h, f(2)*C) = (h, F(Z7)C.) = (b, f(2)C:) = f(2)h(2).
By choosing EF and E as ﬁnlte—dlmglsional Hilbert spaces, we obtain that each
matrix-valued analytic map d € O(D,CP?) induces a continuous linear operator

T, =d(Z): H' — HP.

A closed subspace M C H ® E will be called s-invariant if (Z; ® 15)*M C M for
j=1,....n
Lemma 1.1 Suppose that M C ‘H ® E is a *-invariant closed subspace.

(a) The compression T' = Py (Z®1g)|M € B(M)" is a commuting tuple with o(T) C D
such that
F(Z@1gM cM and f(T)=Puf(Z®1g)|M

holds for each function f € O(D).
(b) For he HQ® E, z € D and = € E, we have the identity
(h,C, ® ) = (h(z), ).

(c) Each function f € O(D,B(E,E)) induces a well-defined multiplication operator
Ty HOQE —+HQE, hw— fh. For z € D and = € E, we have

T;(C.,®x)=C,® f(2)z

Proof (a) Since the adjoint 7% = Z* @ 1g|M is a commuting tuple, the same is true
for T'. The approximate point spectrum of 1T satisfies

0:(T*) Cox(Z* ®15) C0o(Z2*® 1p) = 0(Z*) = {z; 2z € D}.

Since the Taylor spectrum is always contained in the polynomially convex hull of the
approximate point spectrum ([25]), we conclude that o(T) C D. Let f € O(D). Since
0(Z*®15)Ua(T*) C {Z; z € D}, the space M is invariant for f(Z*®15) = f(Z® 1p)*.
Hence it follows that (cf. Lemma 2.5.8 in [17])

FO) = f(T") = f(Z* ®1p)|M = f(Z ® 15)*| M.

(b) The observation that both sides of the claimed identity are continuous linear in A
reduces the assertion to the case of elementary tensors h = hy @ y, hg € H and y € F,
where it is obvious.

(c) The first part of (c) has been proved before. The remaining part follows from (b) and
the observation that

(9, T}(C. ® z)) = (f(2)9(2),z) = (9,C. @ f(2)"x)
forge HQFE, ze Dand z € E.. O



For a commuting tuple ' € B(H)™ on a Hilbert space H, we denote by
My = (L, Ry-) € B(B(H))™

the commuting (2n)-tuple consisting of the tuple Ly = (Lp, ..., Lz, ) of left multiplication
operators Ly, : B(H) — B(H), X — T;X, and of the tuple Ry~ = (Rrs, ..., Rrx) of right
multiplication operators Rr- : B(H) — B(H), X — XT;. It is well known (see [16])
that o(Mr) = o(T) x o(T*). For a given analytic function f € O(o(T) x o(T*)), we use
the notation
fF(T,1T7) = f(Mr)(1n) € B(H).
Suppose that T € B(H)™ and S € B(K)™ are commuting tuples of bounded operators on
Hilbert spaces H and K and that X € B(H, K) intertwines 7" and S componentwise in
the sense that
XT,=8X (1<i<n).
Then the operator Ay : B(H) — B(K), A — XAX*, intertwines the multiplication
tuples My € B(B(H))*™ and Ms € B(B(K))?>® componentwise. If f is an analytic
complex-valued function on an open neighbourhood of (o(7) x o(T*)) U (¢(S) x o(S*)),
then
Axf(Mr) = f(Ms)Ax (Lemma 2.5.8 in [17]).

Lemma 1.2 With the notation from above, we obtain the identity

1

where Pp € B(H® FE) denotes the orthogonal projection onto the subspace of all constant
functions.

Proof Our hypothesis that Cy = 1 implies in particular that
Ppf=f(0) (feHRE)

Let U D o(Z) and V D o(Z*) be open neighbourhoods. To prove the assertion it suffices
to show that, for any function f € O(U x V), the identity

holds for all A, u € D and x,y € E. Since both sides of this equation are continuous linear
in f, we may suppose that f = g ® h with ¢ € O(U) and h € O(V). In this case, we
obtain that

f(Z®1g, Z*®1p) = g(Lzsip) M(Rz-915) (lusk)
= Lyzeip) Brz o) (Ier) =9(Z @ 1g) M(Z* @ 1g)

= (9(2)h(Z")) ® 1p.



Thus the proof is completed by the observation that

(MZ)Cx, 9(Z)*Cu) = h(X) (k) (Cx, Cu) = (9@ h) (1, A) C(p, N).

Let M C H® F and M. C H ® E. be x-invariant closed subspaces. Then
T=Py(Z®1g)|M € BI(M)", T =Py (Z®1g)|M € B(M)"

are commuting n-tuples with o(T) U o(T) C D. For every function f € O(A) and every
operator X € B(H ® E), the identity

f(Myp)(Py XIM) = Py [f(Mggn,)(X)]|M
holds. Indeed, it suffices to check this identity for functions f of the form
f=9®h,  geO(U), heOV),

where U D o(Z) and V' D o(Z*) are fixed open neighbourhoods. In this case the
assertion easily follows as an application of Lemma 1.1(a).

Proposition 1.3  For every operator X € B(M, M) which intertwines the commuting
tuples T' € B(M)™ and T, € B(M )™ componentwise, we have the identity

%(MT_ J(XX*)h, k) = (PeX*h, X*K)

forall h,k € M.

Proof Using Lemma 1.2 we obtain the identity

1 o 1 )
5(MT_)(XX ) = AX(E(T,T )) = Ax(PuPr|M),

which is equivalent to the assertion. O
§2 Fractional transforms and the Schur class

In this section we make the additional assumption that the open set D C C" is a general-
ized analytic polyhedron in the sense that there are an open neighbourhood W of D and
an analytic function d = (dj;) : W — B(C?,CP) = CP such that d(0) = 0 and

D =A{zeW; [ld(z)|| <1}.

Let us fix a separable infinite-dimensional Hilbert space H. For a given commuting tuple
X € B(H)" with o(X) C W, the operator-valued analytic functional calculus of X
applied to the function d gives rise to the matrix-operator

d(X) = (d;x(X)) € B(H?, H?).
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Using the spectral mapping theorem for Taylor’s analytic functional calculus, one can
prove the following result.

Lemma 2.1 Let X € B(H)"” be a commuting tuple with o(X) C W. Then

sup [|d(2)]| < [[d(X)]-

z€o(X)

|

This result was proved in [5] for the case that the coefficients d;; of d are polynomial
functions. Since the same proof, without any changes, applies to our more general situ-
ation, we omit the details. Note that, if ||d(X)|| < 1 in the setting of Lemma 2.1, then
o(X) C D. Hence, for any operator-valued analytic function f € O(D,B(E, E)) with
given Hilbert spaces F and E, we can form the operator

f(X)e BHQE, H® E).

Define C as the set of all commuting tuples X € B(H)" with o(X) C W and ||d(X)]| < 1.
For f € O(D,B(E,E)), we call

1f]ls = sup{[[f(X)[l; X € C}

the Schur norm of f. Since, for each point z € D, the n-tuple z1 = (z11y,...,2,1x)
belongs to C and since f(z1) = 15 ® f(z) for each function f € O(D, B(E, E)), it follows
that || f|ls > || f||eo,p for each such function f.

The linear space
S(d’B(EaE)) = {f € O(D’B(EaE))a ”f”S < OO}
becomes a Banach space if equipped with the Schur norm || - ||s.

Its unit ball
S=S84(E,E)={f €O(D,B(E,E)); ||flls <1}

is called the B(E, E )-valued Schur class on D (with respect to d). In the scalar case
E = E = C, we simply write S, instead of S4(C, C).

Let L and L. be Hilbert spaces, and let the matrix operator

U= (? 2) €B(L&E,L ®E)

be a contraction. We shall use the well-known and elementary fact that, for each bounded
operator X € B(L, L) with || X|| < 1, the operator

d+c(ly — Xa)"'Xb € B(E,E)



is a contraction again. Fix an arbitrary Hilbert space K. With
L=K=2C®K, L=K=ZCQ®K,

and with X replaced by di(z) = d(z) ® 1k (2 € D), we see that the analytic function
fv: D — B(E, E) defined by

fo(2) =d+ c(lgr — di(2)a) " dx(2)b

is sup-norm bounded by one. To keep the notation simpler, we shall usually write d(z)
instead of dg(z) again.

For the case that d is a polynomial function, the following result is contained in [5].

Proposition 2.2 Let K be a Hilbert space. Suppose that the matrix operator

U= (a Z) €EBK'@FE, Ki©FE)
C

is a contraction. Then fy € Sy(E, E).

Proof For completeness sake, we indicate the elementary proof. It suffices to observe
that, for any given tuple X € C, the operator

fu(X) =1g ®@d+ (1n ® ¢) (Luaxr — dx(X)(1n ® a)) " di(X) (15 @ b)

is a contraction again. The reason is that the matrix-operator obtained from U by
replacing its coefficients by the tensor products with the identity operator on H is a
contraction again. O

Our next aim is to derive some useful characterizations of Schur class functions, which
in particular show that the converse of Proposition 2.2 holds. For the case that the
coefficients of d are polynomial functions, this result has been announced in [11]. Since
our setting is slightly more general, we indicate a sketch of the main ideas.

Lemma 2.3 Let A€ B(H") = B(H)"™" be a positive operator. Then
[A]] < 7 [[trAll.
Proof Using the Cauchy-Schwarz inequality for the positive definite map
{1,...,r¥ = B(H), (i,j) — Aji
one obtains the estimate

145411 < (14l Az51)"/? < max || Ay

fori,j =1,...,r. On the other hand, for any fixed index &k € {1,...,r}, we have

| Ak || < ”51H1p mZ?iX<Aii$a$> < ||trA||.
z||l=1



To complete the proof it suffices to recall that ||A|| < rmax||A4;]|. O
gyt

Suppose that § : S — B(C",C*) is a map on an arbitrary set S such that |[§(z)|| < 1 for
z€eS.

Lemma 2.4 Suppose that I': S x S — B(H") is positive definite such that
F:Sx8S— B(H), F(z,w)=rtr((1-0(z)0(w)*)(z,w))
has sup-norm bounded by one. Then the estimate
DGz, )l < (1 = 1821 = [16(w) )"
holds for all z,w € S.

Proof By Lemma 2.3 we obtain that

IT(z2)l < 111 = 6(2)d(2)") 2PN (L = 6(2)6(2)") 2L (=, 2) (1 = 6(2)8 (=) ) 2|

IN

rll(1=6(2)6(2)") HIIF (=, 2)
< rd—6)1H)~

for all z € S. To complete the proof it suffices to apply the Cauchy-Schwarz inequality
to the positive definite map I. O

After these preparations we can prove our version of the theorem from Ball and
Bolotnikov [11] referred to above.

Theorem 2.5 Let S C D and f: S — B(E,E) be given. Then the following are
equivalent:

(i) f extends to a map in S;

(i) there is a positive definite map I': S x S — B(EY) such that
1= f(w) f(2) = tr((1 = d'(2)d" ()" )T (2,w)) (2,w € S);
(iif) there is a Hilbert space G and a map G : S — B(E, G9) such that
1—f(w)f(2) = G(w) (1 —d(w)"d(2))G(2) (z,w € S);

(iv) there is a Hilbert space K and a unitary operator

U= <a 2) € BKP® E,K'@E)
C

such that f(z) = d + cd(2)(1ge — ad(z))~'b for z € S;

10



(ii)’ there is a positive definite map I' : § x S — B(EP) such that

1= f(w)f(2)" = tr((1 — d'(2)"d"(w))T(z,0)) (2,0 € 5);
(iii)’ there is a Hilbert space G and a map G : S — B(GP, E.) such that

1= f(w)f(2)" = G(w)(1 = d(w)d(2)")G(2)" (2w € S);

(iv)’ there is a Hilbert space K and a unitary operator U as in condition (iv) such that
f=fuvons.

Proof (i) = (ii). Let f € S be a Schur class function, and let S C D be finite. Set
§(z) = d'(z). Suppose that dim(F) < oo. It suffices to show that in this case there
is a positive definite map I' as in condition (ii). Then the general case can be deduced
by choosing, for each finite set M C D and each finite-dimensional subspace F' C E, a
positive definite map 'y, p : M x M — B(F?) such that

Pr(1 = f(w)" f(2)F = tr((1 = 8(2)8(w) ) as,p(z, w))

holds for z,w € M. The trivial extensions Ay p : D x D — B(EY) defined by setting
Ay r=0o0n (D x D)\ (M x M) and

AM,F(z,w) = FM,F(Z,’LU)PFq (z,w € M)

form a net in the compact Hausdorff space

I[I (xeBEY; IX] < r(zw)} rwor),

(z,w)eEDxD

where 7(z,w) are suitable real numbers given by Lemma 2.4 and mwor refers to the weak
operator topology. It is elementary to check that the limit I' of any convergent subnet of
(Apr,r) will give a representation of 1 — f(w)*f(z) on D x D as in condition (ii).

Thus suppose that S C D is finite and that dim(E) < oo. The proof of this implication
follows by a standard separation argument due to Agler [1]. The set V = B(E)**S of
all functions S x S — B(E) is a finite-dimensional normed space with respect to the
sup-norm. It suffices to show that the function

F:SxS— B(E), F(z,w)=1-f(@)f(2)

belongs to the subset C' C V' consisting of all functions g € V' for which there is a positive
definite map I' : S x S — B(E7) such that

g(z,w) = tr((1 — 6(2)6(w)")(z,w)) (z,w € 9).

By Lemma 2.4 the set C'is a closed proper cone in V. Assume that F' ¢ C. Since F' and
the elements of C' are self-adjoint with respect to the involution on V' defined by

f*(z,w) = f(@,?)*,

11



a well-known separation theorem (Theorem 2.7 in [21]) allows us to choose a linear func-
tional L : V — C such that L > 0 on C \ {0} and L(F) < 0. Let Hy = B(E, C)® be the
vector space of all functions g : S — B(FE,C). For g, h € Hy, define a function g x h in V
by

g x h(z, w) = h(w)"g(2).

All functions of the form g x g, g € Hy, belong to C. Indeed, by Schur’s theorem the map
[':S xS — B(FE) defined by

L(z,w) = Y ({(di(2)r, (i (w))edor) " 9(w)*g(2)

m=0

is positive definite and satisfies
g x g(z,w) = tr((1 — 6(2)0(w)") T (2, w)m) (2,w € S),

where m; : E?9 — E is the projection onto the first coordinate. Thus H, is a finite-
dimensional Hilbert space relative to the inner product

(9,h) = L(g x h).
The tuple X € L(Hp)" defined by (X,f)(2) = z;f(2) for z € Sand j = 1,...,n is

commutative with o(X) = S. Since for each non-zero element h € H{ the relation

mwwwmw%iQij%—é%ﬁW@Wmemmo
- L(tr[(l _ 5(z)5(w)*)rh(z,w)]) >0
holds with I'y,(z,w) = (h;(w)*h;(2))1<ij<q, We conclude that ||d(X)| < 1.

Since by hypothesis f € S, it follows that ||f(X)| < 1. For fixed vectors g,h € H, and
z,y € F, the identity

(u(X)g ® 2,0(X)h & Yor = L((u(z)z,v(@)s g % h(zw))

holds for each pair of functions u,v € O(D, B(E, E)). It suffices to check this assertion
for elementary tensors u = uy ® A, v = vy ® B, which is straightforward.

Fix an orthonormal basis (e;)j_,of £ and define, for j =1,...,r,
fi:8 = B(E.Q), fi(z)z = (n,e;).

Then f; x f; = (-,e;)ej on S x S. The identity

T

F(z,w) = Z(F(Z,’U))ei,ej) <'a€i)€ja

1,j=1

12



valid for all (z,w) € S x S, implies that

L) = L{E U x faw) = 3 (FEe F@e)fi x fy(zw))
= [S500], - IS 500, 20

This contradiction completes the proof of the implication (i) = (ii).

(ii) = (iii). ~Suppose that I' is given as in condition (ii). Then there is a Hilbert space

i).
G and a map G : S — B(E?,G) such that ['(z,w) = G(w)*G(z) for z,w € S. Write
G(z) = (G1(2),...,G4(z)) and define
G:S— B(E,G7), G(z)=(Gi(2),...,G(2))".
Then, with 6(z) = d*(z), we obtain that

tr((1— 6(z)0(w)*)I' (2, w))

= 3 Gy Gi(e) — X Gilw)* (2 dawiny(2))Gi(2)

j=1 ij=1 k

Il
_

for z,w € S.

(iii) = (iv). Let G be a map as in condition (iii). Then, for z,w € S and z,y € E, we
obtain the identity

(d(2)G(2)z, d(w)G(w)y)gr + (,9)p = (G(2)z, G(w)y)ge + {f(2), f(w)y) .-

Hence there is a Hilbert space K D G and a unitary operator U of the form described in
condition (iv) such that
d(z)G(2)x G(2)z
U =
x f(2)zx

for all z € S and x € E. By solving the corresponding system of linear equations

ad(z2)G(z) + b= G(z),
cd(2)G(z) + d = f(2),

we obtain that, for all z € S,
f(z) =d+ cd(2)(1ge — ad(2)) .
(iv) = (iv)’.  Suppose that U represents f as in condition (iv). Using the identity
(1ge —ad(2)) ' =1ge + a(lge —d(2)a) 'd(z)

we see that

13



f(z) = d+cd(2)(1ge — ad(2))"'b
= d+cd(2)b+ cd(2)a(1g» — d(2)a)'d(2)b

= d+c(1gr — d(2)a)~td(2)b.

In Proposition 2.2 we proved that (iv)’ implies (i). Completely analogous to the above
arguments one can prove the implications (i) = (i)’ = (iii)’ = (iv)’. Thus the proof of
Theorem 2.5 is complete. O

83 A commutant lifting theorem

Let H be a functional Hilbert space consisting of analytic functions defined on an open
set D in C" such that 4 and D satisfy the conditions described at the beginning of §1. As
in §2 we suppose that there is an open neighbourhood W of D and an analytic function
d: W — B(C?,CP) such that d(0) = 0 and

D =A{zeW; [ld(z)|| <1}.

For 0 < r < 1, the set W, = {z € W; ||d(z)| < 1/r} is an open neighbourhood
of D. Recall that the operator-valued analytic functional calculus of the multiplication
tuple Z = (Z1,...,%,) € B(H)" gives rise to the matrix operator d(Z) € B(H9,HP).
Throughout this section we make the additional assumption that

[d(Z)]| < 1.
For given Hilbert spaces £ and E , we consider the multiplier space
M(E,E)={f€ OD,B(E,E)); fHQE CHQE}.

By the closed graph theorem each function f € M(E, FE)) induces a continuous linear
multiplication operator Ty : HQ E - H® E, g — fg. It is well known ([14],[15]) that a
function f € O(D, B(E, E))) belongs to the closed unit ball of M(E, E) with respect to
the multiplier norm || f|| = ||Ty|| if and only if the induced map

Ki:DxD— B(E), (z,w)—C(w,z2)(1g — f(w)f(2)")

is positive definite. In particular, the closed unit ball of M (E, E) contains together with
each pointwise convergent sequence of multipliers its limit.

Lemma 3.1 Let F and E be Hilbert spaces. Then S(d, B(E,E))) C M(E, E.) and

1Tl < NI flls

for all f € S(d, B(E, E))).

Proof Let f € S4(F,FE) be a Schur class function. By Theorem 2.5 there is a unitary
matrix operator U € B(K? & E, K1® FE) such that f = fy. As usual we denote the
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coefficients of U by a,b, ¢,d (cf. Proposition 2.2). On D, the function f is the pointwise
limit of the functions f, € O(W,, B(E, E))) defined by

fr(z) =d+ c(lgr — rdg(z)a) 717“dK(z)b

as r tends to one from below. The representation

fT(Z) = (1% X d) —+ (17{ (034 C) (1’”@]{1) — TdK(Z)(lq.L X a)) _leK(Z)(l'H X b)

shows that the restrictions f.|D are contractive multipliers. By the remarks preceding
the lemma, this observation completes the proof. O

A second important consequence of the hypothesis that ||d(Z)|| < 1 is the following
result, which should be compared with Lemma 3.2 in [12].

Lemma 3.2 Let K and E be Hilbert spaces. Suppose that a € B(K?, K%) and
¢ € B(KP,E) are bounded operators with a*a + ¢*¢ < 1gp. Then, for x € KP, the
function Qx : D — FE. defined by

(Qz)(2) = (1o — dK(z)a)_lx

belongs to H ® E.. The map Q) : K» - H® E, x — Quz, is a linear contraction with the
property that

V(C, ®y) = (1x» — a*dg(2)*) '¢'y (€ D,y € E).

Proof Define a=14®a € B(H® K?,H® K?). Let us fix an arbitrary real number
r with 0 < r < 1. Then the operator

§=06=rdZ)®1x € BH'® K, H* ® K) & B(H® K, H{ ® K?)
satisfies ||6,|| < r. The functions
w=w,: W, — B(KP,E), zwc(l—-rdg(z)a)?,
o=, : W, = B(KP), zr (1+rdg(z)a)(l —rdg(z)a)™
induce multipliers T, € M(K?,E) and T,, € M(K?) such that

T“’+T$ = LA +6a)(1-6ba)t 4+ (1 —a*d*)H(1+ a%6)]

= (1-a**)"'(1 - a*6*6*a)(1 — da)™!

v

(1—a*6")71(1 —r’a*a)(1 — da)™t

v

r?(1 —a*0*) 11y ® c*)(1y ® ¢)(1 — )
= r’T*T,.
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In particular, it follows that
2| T, (Co ® 2)||* < (1/2){(T,, + T2 )Co ® 2, Co @ z) = |22
for 0 < r < 1and z € KP. Since, for x € K, y € E and z € D, we have

(T.,(Co®z),C. @y) = {z,w,(2)*y) = (wr(2)z,y),

it follows that the limit lim,4; (7., (Co ® z), y) exists for z € K? and y in the linear span
of all vectors C, ® y, z € D and y € E. Because of

lim | 7., (Co ® 2)]| < o]

the above limit exists for all x € K? and y € H ® E and can be represented by a linear
contraction Q' : K? — H ® E in the sense that

(Co®z),y) (€K, yeHQE).

T

(Qz,y) = lrlgl (T,
In view of the identity
<(Q’x)(z), y> = lrlgl <ww(z)x, y> = <(Qx)(z), y>

it is clear that Q@ = Q' € B(K?,H ® E) is a well-defined contraction. The proof is
completed by the observation that

(O (C,®y),z) = (y,(Qz)(2)) = ((1 — a*dk(2)*) "'y, z)
holds for all elements y € F, x € KP and z € D. O

Let E and E. be complex Hilbert spaces. Suppose that M C H® Fand M CHQ E.
are x-invariant closed subspaces. Denote by

T=Py(Z®1g)|M € BI(M)", T =Py (Z®1g)|M € B(M)"

the compressions of Z ® 1g and Z ® 15 to M and M, respectively. Our aim is to find
positivity conditions that characterize those operators X : M — M which intertwine 7’
and T and which possess a lifting to a multiplier Ty : H ® F — H ® E_with a Schur
class symbol f.

For this purpose, we fix an orthonormal basis (ex)r>o of H with C[z] = LH{es; k£ > 0}
and define Ay = ex(T) € B(M)) for k > 0. In addition to our previous hypotheses we
make the assumption that the set

My ={zxe M; Z | Azz]|? < oo}
k>0

is dense in M. Note that My C M  is a linear subspace which is invariant for each operator
in the commutant of 7*. For any given operator B € B(M.), the map

B:Myx My—C, B(z,y)= Z(AkBA,’;x,y)

k>0
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is a well-defined sesquilinear form. More generally, let p > 1 be a fixed natural number.
Then, in exactly the same way, the p-fold direct sums A,(Cp ) € B(MP?) can be used to
associate with each operator B € B(MP) a sesquilinear form

B:M!x MP - C, B(z,y) = Z(A,(cp)BAZ(p)x,y).
k>0

For 1 <1 < p, we denote by

M — MP, e (0yn)i_,

VIO Mp — M_, (xj);;:l — Z;
the canonical inclusions and projections.

Lemma 3.3 Let B = (B;;) € B(MP?) be a given operator. Then, for p,c =1,...,¢,
u,v=1,...,pand all vectors x,y € My, we obtain the identities

(a) Bloz,wy) = (Buw)™(2,y),
(b) B(d(T)* (p2), d'(T)"(ey)) =ij2p_31(Bij)”(dj (T)*z,dis(T)*y).

Proof (a) By definition we have

B, uy) = 3 (AP BAP) (1,2), (L))

118

(Ar(muBuy) Ajw,y) = (Bu)™ (@, y)-

B
Il

0

(b) Let C = (C;;) € B(M)P? be a matrix such that all entries of C' belong to the
commutant of 7% € B(M ). Then as an application of part (a) we obtain that

p p
B(C(1px), Clioy)) = Y B(1;(Cjpn), 1u(Cioy)) = D (Byy)™(Cjp, Cigy).
ij=1 6j=1
By choosing C = d*(T))* we obtain the claimed formula. O

For B = (B,;) € B(MP?), we define a sesquilinear form 7B : My x My — C by setting
p q
TB(z,y) =Y (Bjj)~(z,y) = > > (Biy)~ (dje(T) "z, dx(T)"y).

j=1 ij=1 k=1

Lemma 3.4 Let I' = (-, y)y € B(MP) be a positive rank-one operator given by a vector
y € MP. Then there is a linear map S = S, : My — H? such that

(i) 7T(z,z) = ||Sz||* — ||d(Z)*Sz||* for all x € M,,
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(ii) (Sz,q) = (=, XZ: ;i (T)y;) for all z € My and g = (¢;) € C[z]P.

Proof For x € MP, the map t, : C[z] = C, ¢~ (z,q(T)Py), is antilinear such that

Z Z p)PA z,z) = [(z,2) < 0.
k=0 k=0
Hence we obtain a well-defined linear map ¢ : M} — H by setting
t(z) = ta(er)er-
k=0

By definition it follows that (t(z), ex) = tz(ex) for all k£ € N. Since C[z] is the linear span
of the polynomials e; (k € N) and since each function f € O(D) is the uniform limit of
polynomials on an open neighbourhood of D, we obtain that

(t(), f) = (z, F(T)*)y)

for € M} and f € O(D). Furthermore, for z, ' € M{, we have

The observation that, for r,s € O(D) and z € M, the identity
(t(r(T)®z),s) = (r(T )Pz, s(T)Py)

= (z, (rs)(T)Py) = (t(z),rs) = (r(Z)*t(z), s)

holds, allows us to conclude that the intertwining relation
tor(T)® =r(Z) ot

holds on M. Write ¢ as a row operator t = (t1,...,t,) € B(M§,H) and define

S: My —HP, x> (tz)i_,
Using Lemma, 3.3 (a) we obtain that

(t(ejw), t(ua")) = C(ez, ua’) = (0y)~ (z,2")
fori,7=1,...,p and z,2" € My, and hence that
(Fz'j)N(djk(T)*fv, dz’k(T_)*ﬂ.'?) = <t(djk(T_)*(p)Lj,x), t(dik(T_)*(p)Lix»

= (djx(2)*(sz);, dix(Z)*(Sz)s)
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forall7,5=1,...,p, k=1,...,q and x € M,. Taking the sum over all indices 7, 7 and &,
we see that

Z)*Sx||?

i) follows from the observation that

> (Ty) (= Z< (Sz);, (Sz);) = ||Sz|)?

i=1

for all x € M. Now, condition

for all vectors x € My. At the same time we find that
(Sz,q) = Xij (t(y2), ¢5) = Z {1z, 4;(T)Py)
= é (z.;(T)y;) = <$,j§::1qj(il’_)yj>
for z € M, and ¢ = (¢;) € C[2]". O

It follows from part (i) of Lemma 3.4 that 7[ is a positive semi-definite sesquilinear form
for each positive rank-one operator I' € B(MP). Using part (ii) of Lemma 3.4 and the
density of My C M, one finds that I' has to be zero if 7" = 0.

Lemma 3.5 Suppose that I' = (-,y)y € B(MP) is a positive rank-one operator. If
T (z,2) =0 for all z € My, then I = 0.

Proof Choose alinear map S : My — H? as in Lemma 3.4. The hypothesis that 7" = 0
implies that
(Sz, Sz) = (d(Z)d(Z)*Sz,Sz) (z € My).

Since d(Z)d(Z)* € B(HP) is a positive contraction, it follows that d(Z)d(Z)*Sz = Sz for
x € My. Because of d(Z)*(Co ® o) = Cy ® (d(0)*«) = 0 for o € CP we find that

(Sz, Co®@a) = (Szx—d(2)d(Z)'Sz, Chy®@a) =0

for € My and o € CP. Since Cy = 1, part (ii) of Lemma 3.4 allows us to conclude that

ZIJyJ

P
0=(Sz, Ch®a)= (:E,Zﬁjyg
j=1

H M'@

for all z € My and a = (a;) € CP. Hence y = 0 as was to be shown. O

Using the fact that each positive operator A € B(MP) can be represented as the limit of
a strongly convergent, increasing series of positive rank-one operators, one can improve
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the above results considerably.

Proposition 3.6 Let A € B(MP) be a positive operator. Then 7A > 0, and
TA(z,x) = 0 holds for all z € M if and only if A = 0.

Proof Define y = A'/? and fix an orthonormal basis (u;);c; of MP. Then the orthogonal
projections

Ty = Z(-,uj)uj (J C I finite)
jeJ
form an increasing net of positive operators converging strongly to the identity operator.
Fix a vector x € M{ and a real number € > 0. Then there is a natural number k = k(z, ¢)
such that

k
0<A(z,z) — ZA(”)AA 'z, z) < /2.
=0

For k fixed, we can choose a finite set JO C I such that

k
0< Z <<’)/A,:(p)x,’yA,:(p):v) _ (WJvAZ(p)x,’yAz(p)fv)) <e/2
§=0

for all finite sets J C I containing J;. Hence, for the same sets J, we have

k
0 < Az, ) Z VvaA,:(p)x,AZ(p)@ <e.

J=0

Thus we obtain that 0 < A(z,z) — (ym;7)~(z,2) < € for all finite sets J D Jy. Conse-
quently we have shown that

li5n(7wJ7)N(x, z) = Az, 2)
for all z € M§.

Fix a vector z € Mp. Since, for all J C I finite, the operators ym;y = >, (-, Yus) Y5
are finite sums of positive rank-one operators, Lemma 3.4 shows that the expressions

P g
T(ym) (@, @) = Y (vmy) ™ (g, 5x) = ) (yms) ™ (d(T) we, d'(T) 1)
j=1 k=1
form an increasing net of non-negative real numbers. But then
T(A)(z,z) = li}nT(q/Wﬂ/)(x,x) > 0.
If this limit is zero for each x € M, then
({5 yus)yu) =0 (5 € 1),
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and Lemma 3.5 implies that yu; = 0 for all j € I. This observation completes the proof. O

Let as before T € B(M)™ and T. € B(M,)"™ be compressions of Z ® 1 and Z ® 15 to
x-invariant closed subspaces M C H ® F and M. C ‘H ® E, respectively. Under the
hypothesis that the set

={zeM; ZH@ )zl < oo}

is dense in M, we characterize those operators X € B(M, M) intertwining 7" and 7' that
possess a lifting to a multiplier with Schur class symbol.

Theorem 3.7 Let X € B(M, M) be a bounded operator with X7T; = T,;X for i =
1,...,n. Then the following conditions are equivalent:

(i) there exists a function F' € S such that X Py = Py Tr;
(ii) there exists a positive operator I' = (I';;) € B(MP) such that

p
é(MT_)(l—XX => Ty szzk i (T
Jj=1

2,7=1 k=1

(iii) there exists a Hilbert space K and a unitary operator

U= (“ 2) cB(K*®E, K@ E)
C

such that if F(2) = d + c¢(1x» — dx(2)a) 'dx(2)b, then X Pyy = Py Tr.

Proof The equivalence of conditions (i) and (iii) follows from Theorem 2.5.

To prove the implication (ii) = (iii), suppose that I' € B(M)? is a positive operator as
in condition (ii). Define Ky = MP and L = I'Y/2. Write L = (Ly,..., L,)' € B(Ky, MP)
as a column operator. Then I';; = L;L} for 1 < 4,5 < p and, using Proposition 1.3, we
obtain the identity

D
q
1P bl = 1PoX "Bl = (Yl = (D Lidn(T)R) |1

J=1 B

for all h € M. Hence the map
P q
(Z Lﬁdjk(T-)*h)kzl @ (Pgh) = (L;h)i_, ® (PeX"h)
j=1

defines an isometry V' from the linear subspace of K{ @ E_ consisting of the vectors on
the left-hand side into the space K} @ E. Choose a Hilbert space K D K and a unitary
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operator U € B(KP@ E, K@ E) such that U* extends V. Let a, b, ¢, d be the coefficients
of U (as in condition (iii) of Proposition 3.7). Defining ®; = L;Px, € B(K, M) for
j=1,...,p we obtain that

p q
o > Qdip(T)'h) e Prh = (O5h),
]:

k=1

p
(SO du(T)n)! +dPoh = PoX'h
]:

for all h € M. According to Lemma 3.2 the unitary operator U induces a contraction
Q= (Q,...,9) : K» - H ® E uniquely determined by

VNC,®1) = (1gp — a*dg(2)*) ‘¢’z (€ D, 2z € E).

It follows that
a*dg (2)*(C, @ x) + 'z = *(C, ® x),

b dg(2)*Q*(C, ® ) + d*z = Pp T}, (C, ® 1)
for x € E and z € D. Since the vectors C, ® x span H ® E_topologically, the identity

q

d (2)*V(C, @ x) = (ZQ dir(Z ®1E_)(Cz®:v))

k=1

implies that
P q
a*( > U(dn(2) @ 1E.)h> + " Py h = (Qh)j_,
7j=1

(X n(2) @ 10)h),  +dPoh= PoTih

— k=1

for all h € H ® E.. Define ®; = Py §; € B(K, M) and ¥; = &; — @ € B(K, M) for
j=1,...,p. Since by Lemma 1.1 (a) the identity

(dje(2)* @15 )IM. = d(T)",
holds, we see that ,
o (Y wd(ryn)' = (Wi,
j=1
forall h € M.

Since a* is a contraction, we find that

Z 3R] < Z | Z‘I’ dix(T)*hl[* (b € M).

k=1 j=1
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Hence A = (¥;¥7); ; € B(MP) is a positive operator such that

p
> A - Zde )Aijd(T)* < 0.
j=1

i,j=1 k=1

By Proposition 3.6 the positivity of the operator A implies that the induced sesquilinear
form 7A = My x My — Cis positive. Using the definition of TA (see the section preceding
Lemma 3.4) one immediately obtains that 7A is negative. Hence 7A(z,z) = 0 for all
x € My, and again by Proposition 3.6, it follows that A = 0. But then

;=0 =Q; M. (1<j<p).
Comparing the above representations of PgX*h and PgT¥y, h, we obtain that

Then, for any constant function x € £ C ‘H ® E and any multiindex o € N”, we have the
identity

<X*h, (Z*® 1E)x> = (T**X*h,x) = (X*T**h, x)

= (T}, T*h,x) = (2" @ 1p Ty, h, o) = (Tj, h, (Z° ® 1g)ar).

Since H ® E is spanned topologically by the elements of the form 2*®z (o € N*, z € E),
we find that X*h = T, h for each h € M.. Thus the proof of the implication (ii) = (iii)
is complete.

We complete the proof of Theorem 3.7 by showing that (iii) = (ii). Suppose that F' = Fy
for a unitary matrix operator as in condition (iii). The hypothesis that X Py, = Py TF is
easily seen to be equivalent to the condition that TpM C M and X* = T3 |M . Exactly
as in the previous part of the proof, we apply Lemma 3.2 to the first column of the matrix
operator U to define a contraction Q = (€y,...,8,) : K» — H ® E.. Reversing the
arguments given in the proof of the implication (ii) = (iii) we obtain that

v ((Zp:9§<djk(z)* ® 1p)h)j_, ® (Pph)) = (Q'h) @ PoTyh

for each h € H ® E.. Using Proposition 1.3 and the fact that U* is isometric, we see that
(&(Mr)(1 = XX*)h, h) = ||Pg h|]” - ||PeX*h|]”

p q
= ll2nl2 = | X () h) |2
j=1 k

for all h € M. Now it is elementary to check that condition (ii) holds with

Thus the proof of Theorem 3.7 is complete. O
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Remark 3.8 Suppose that o(T") C D. Then o(Mr) = o(T) x o(T*) C A and, since
the series C(z,w) = >, ex(z)éx(w) converges uniformly on all compact subsets of A,
we obtain the representation

C(T, T =) er(T)ex(T)".
k=0
It follows that -
> llew(T) zl|” = (C(T, T*)x, z) < o0
k=0

for each vector x € M, and hence Theorem 3.7 is applicable in this case.

Next we want to indicate that the convergence condition used to prove Theorem 3.7 is also
automatically satisfied in the case where M, C H ® E is a finite-dimensional *-invariant
subspace. For this purpose, define a sequence of analytic functions f,, € O(A) by

1

fm(z,w) =1 — ex(2)éx(w)C(z,w) .

0

3

B
Il

Exactly as in [3] (Lemma 14 and Corollary 15) one can show that, without any condition
on the x-invariant subspace M. C ‘H ® E, the convergence condition

SOT — lim f(T,T") = 0.

m—0o0

holds. Note that, for a given operator X € B(M.), the sequence (fm(Mr)(X))  converges
to zero in the strong operator topology if and only if

SOT — Zek(T_)é(MT_)(X)ek(T_)* = X.

If the operators X,Y € B(M, M) intertwine the tuples 7" and T componentwise, then
fin(Mp)(XY*) = X f,(T,T*)Y* converges pointwise to zero as a sequence in m. In
particular, it follows that, for given multipliers f, g € M(FE, E), the sequence of operators

fm(Mq)(Pa T Ty | M) = Pay frn(Mzgi, )(T5T,) | M.

converges to zero pointwise. Hence we find that the series Y .o e, (7)Y} ex(T)* con-
verges strongly at least for every operator Yy, of the form

1
Yig = G(Mn)(PuTiTjIM) = P (T PeT5) M. (f,9 € M(E,E)).

Lemma 3.9 Suppose that dim(M) < co. Then we have
(a) LH{Py (T;Pu.T:)|M,; f,g € M(E, E)} = B(M),
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(b) the series Y ex(T)ex(T)* is norm-convergent.
k=0

Proof (a) Let us denote the linear hull on the left by L. If f, g € O(D) are multipliers of
H, then it is an elementary exercise to deduce, for any pair of operators A, B in B(E, E),
the identity

TeaPpTgp = ((-,9)f) ® (AB*) € B(H® E)).

Let y € M be a fixed vector. It suffices to show that the rank-one operator (-, y)y € B(M))
can be approximated by operators in L. For this in turn, it is enough to show that the
corresponding rank-one operator (-, y)y € B(H ® E) can be approximated in B(H ® F)
by linear combinations of operators of the form 7Py T}, where f,g € M(E, E). Since

HOE. =\/{p®x; p€ C[z] and z € E },
it suffices to observe that, for p,q € Clz] and z,y € E,,

(g@yp@r=((9p) @ ((y)7) = TeaPe Tyyp

with suitably chosen rank-one operators A, B € B(E, E).

(b) Since the identity operator 1;; belongs to L, the remarks preceding the lemma show
that the series Y, ex(T )ex(T)* converges strongly. O

As an application of the last lemma we see that in the case where dim(M) < oo, the
convergence condition

> llew(T) zl* < oo
k=0

holds for all vectors x € M.. Hence Theorem 3.7 is applicable in this case.

§4 Interpolation for Schur class functions

The above results can be used to solve interpolation problems for Schur class functions.
For simplicity, we only treat the scalar-valued case, that is, in the following we make the
assumption that ¥ = F. = C.

Let H be a functional Hilbert space consisting of analytic functions on an open set

D ={zeW; [ld(z)|| <1}

in C" such that ‘H and D satisfy all hypotheses described at the beginning of Section 3.
We fix a finite subset S C D and suppose that, for each s € S, a finite set A, C N is
given with the property that, for each o € A;, we have

{yeN';y<a} C A,
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Here the order relation v < « is defined componentwise. For each s € S, let (¢;.0)aca, be
a fixed family of complex numbers. Our aim in the following is to find conditions that
characterize the existence of functions f € § = S§; in the Schur class such that

f(a)(s) = Cs,a (8 € S, o€ As)

Since every Schur class function f € S is a multiplier of % with ||T%|| < 1, we find at
least sufficient conditions for the existence of interpolating functions with multiplier norm
bounded by one.

Since by the closed graph theorem the inclusion mapping ‘H C O(D) is continuous, for
each point w € D and each multiindex oo € N*, there is a unique function CJ € H with
the property that

(f.Co) = FDw) (f €H).

Let, as before, (ex)ren be an orthonormal basis of H consisting of polynomials. Then

where the series converges uniformly on compact subsets of A = {(z,w);z,w € D}.
Hence, for o € N* and z,w € D, we find that

(05C)(z,@) = Y (0%x)~ (@)ex(2) = ) (0%ex) (w)en(2) = Y (T, en)en(z) = Co(2).

holds, it follows that
(B°C)w) = (0°C(z, ))(@) = C3(2).

Lemma 4.1 Let f € O(D) be a multiplier of 4. Then the identity
x e QAT
TiCy= Y ()0 )w)Cy,
0<7<a |
<r<a

holds for all points w € D and each multiindex oo € N”.

Proof It suffices to observe that

(07

5 )T (w)Cy ()

T;Cq = (C8, TiC) = (FC) @ (w) = Y (

0<r<a

for all z,w € D and a € N, O
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By Lemma 4.1 the subspace
M =M =LH{C¢; s€ Sand o € A}

is invariant for the commuting tuple Z* € B(#H)". As before, we denote by T" € B(M)" the
compression of Z to M. Since the generating vectors C'¢ for M are linearly independent,
there is a unique operator X € B(M) such that

x0e= 3" ()l
0<y<a 7
for all s € S and a € A,. The existence of a Schur class function f € § with
FO(s) = 50 (s € Sand a € Ay)

is equivalent to the existence of a function f € S with TfM C M and T7|M = X*. It is
elementary to check that XT; = T;X for j = 1,...,n. Hence Theorem 3.7 can be applied
to characterize the solvability of the above interpolation problem.

Our aim is to prove this interpolation result in a form which directly generalizes the
classical theorem known for the case of the unit disc. For this aim, let P denote the
orthogonal projection from # onto the constant functions. Then we obtain that

PC? = (C¢,1) =401 (s€S, aeA,).

Using Lemma 4.1 and the results from Section 1, one easily finds that

1
(5(MT)(1 — XX*)C2,C)) = 8(a,8,0 — Cs,aCt,p

for all s,t € S and a € Ay, B € A;. Our result is formulated in terms of a scalar matrix
G = (G)s)poen, Wwhere A is the index set

A={p=(js,a); j=1,...,pand s € S, € A,}.

Theorem 4.2  (Carathéodory-Fejér problem) For S C D finite and finite families
(Csa)aca, (s € S) as above, the following are equivalent:

(i) there is a function f € S with f(®)(s) = ¢, for all s € S and a € A;

(ii) there is a positive semidefinite matrix G = (G, ),0ea of complex numbers such
that the equations

p
5(a,ﬂ),0 - Es’act’ﬂ = Z G(]’tﬁﬂ)f(j’s,a)

j=1
p q

B Z (?) <f\¥> Z (Z(aﬂ_ddik)(t)(aa_’\djk)(s)> G (,4,6),(5,5,7)
ST =1\

hold for all s, € S and a € A;, f € A;.
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Proof By Theorem 3.7 the validity of condition (i) is equivalent to the existence of a
positive operator I' = (T';;) € B(MP?) such that

é(MT) 1-XX") Zrﬂ Z Zdzk )Lijdin(T)".

2,=1 k=1

Suppose that I' is such a matrix operator. Each coefficient I';; € B(M) has a representa-
tion of the form
TCe= > T§,5)C) (s€Sacd,).
teS,BE A
By applying both sides of the first of the last two equations to the vector C'¢, and then
forming the inner product with Cf , one obtains the identity

6(a3ﬂ)50 - Esaactaﬁ = Z [Z Full ] ] )C) (t’ H)

ueS,veA, j=1

D3 (5)(5) @ am@=aaeieo e

i,j=1 k=1 0<6<B
0< A <L
for all s,t € S and a € A, 3 € A;. The scalar matrix G = (G,y) 0en With coefficients
defined by
G(jataﬂ)’(ia‘g:a) = Z F’fl,%(]) IL) (8(/3"/)0) (t7 ﬂ)

UES,VGAu

clearly satisfies condition (ii). The positivity of the matrix operator I' = (I';;) € B(MP)
is equivalent to the positive semidefiniteness of the matrix GG. To check this, it suffices
to observe that, for every vector m = (m;) € MP with m; = Zses,aeAs V(s,5,0) O for
1=1,...,p, the identity

P
E (Tjimi, my) E G pUpTs
1,j=1 p,o€EA

holds. Thus it is clear that condition (i) implies condition (ii).

If conversely, a positive semidefinite matrix G as in condition (ii) is given, then the last
equality can be used to define a positive matrix operator I' € B(MP). By reversing the
above arguments one finds that I' satisfies the equation contained in condition (ii) of
Theorem 3.7, where the operator X is defined as above.

O

In the particular case that A, = {0} for each s € S, the preceding result yields a
solution of the Nevanlinna-Pick problem for Schur class functions. The same result
and various similar characterizations, even for an arbitrary subset S C D, are con-
tained in Theorem 2.5. As an example we state the result below, for which we also cite [5].

28



Theorem 4.3 Let S C D be an arbitrary subset, and let (¢;)scs be a family of complex
numbers. Then there is a Schur class function f € S such that f(s) = ¢, for all s € S if
and only if there is a positive definite function I' = (I';;) : S x S — B(CP) = CP? such

that ’ » q
1—"¢sc; = erj(s t szzk zj(sat)
j=1

2,j=1 k=1

holds for all s,t € S.

Proof The assertion follows directly from the equivalence of conditions (i) and (ii)’ in
Theorem 2.5. a
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