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Abstract

A weighted approximation to the tail empirical distribution func-
tion is derived which is suitable for applications in extreme value
statistics. The approximation is used to develop a Cramér-von Mises
type test for the extreme value conditions. A useful auxiliary result is
a tail approximation to the distribution function.

AMS 2000 Subject Classification: primary 62G30, 62G32; secondary 62G10
Key words: domain of attraction, limit distribution, maximum likelihood,
tail empirical distribution function, weighted approximation

1 Introduction

Since Doob’s (1949) and Donsker’s (1952) path breaking work, it is well
known that empirical processes do not only offer a concise way of describing
observed independent and identically (i.i.d.) random variables (r.v.’s), but
that the asymptotics of whole classes of statistics can be easily derived from
limit theorems for empirical processes. If one is interested in the extremal
behavior of the underlying distribution function (d.f.) then tail empirical
processes are the objects of choice. Classical weighted approximations to the
uniform tail empirical process can be found in Csérgé and Horvath (1993);
see also Einmahl (1997) for further results of that type.

De Haan and Resnick (1998) and Resnick and Starica (1997) used unweighted
approximations to the tail empirical process to establish the asymptotic nor-
mality of the Hill estimator and its ramifications. To this end, however,
one needs additional arguments to deal with the largest observations. To
avoid such technical difficulties, one may use uniform approximations w.r.t.
a weighted supremum norm. For tail empirical quantile functions such ap-
proximations were established by Drees (1998). It is the main aim of the
present paper to derive analogous approximations to the tail empirical d.f.
When analyzing the tail behavior of the empirical d.f. for not necessarily
uniformly distributed r.v.’s, one clearly needs regularity conditions on the
tail behavior of the parent d.f. Since we have applications in extreme value
statistics in mind, d.f.’s in the domain of attraction of an extreme value
distribution suggest themselves. Thus, throughout the paper, we assume
that i.i.d. r.v.’s X;, 1 <17 < n, with d.f. F' are observed such that
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for all z € R, with some normalizing constants a,, > 0 and b, € R, that is,
F € D(G,). Here

G, (z) ==exp (— (1 +~2)7'/) (1.1)
for all x € R such that 1 +~x > 0, and v € R is the so-called extreme value

index. For v = 0, the right-hand side of (1.1) is defined as exp(—e *).
This extreme value condition can be rephrased in the following way:

lim tF(a(t)z + b(t)) = (1 + vz) /" (1.2)

t—00

for all z with 1+ vz > 0. Here F :=1—F, & is some positive normalizing
function and b(t) := U(t) with

U(t) = (ﬁ) T = re(1- %)

and F'* denoting the generalized inverse of F. The right-hand side of (1.2)
equals 1 minus the generalized Pareto d.f. in von Mises representation. A
straightforward inversion shows that (1.2) is equivalent to

Ultz)-Ut) 27 -1

)
O (1-3)

lim
t—o0
for all z > 0.

In the sequel, we also need a second order refinement of (1.3) that specifies
the speed of convergence. More concretely, we assume

U(te) =U(t) 2z7-1

- 1 /g7t — 1 v -1
lim ®) Y2 (x _7 ) = H (z) (L4)
t—o0 A(t) p\ Yt+p Y

for all z > 0 and some p < 0. De Haan and Stadtmiiller (1996) proved that
any non-trivial limit must be of the type H,, and that |A| is necessarily
p—varying. Moreover, they proved that (1.4) is equivalent to a second order
refinement of (1.2):

tF(a(t)x +b(t)) — (1+yz)~/
A(t)

for all x with 1 4+ vz > 0.
Now let k, € N, n € N, be an intermediate sequence, that is

lim
t—00

=1+ Vx)_l_l/vH%p((l + WU)_IM)
(1.5)

lim k, =00, lim k,/n=0.
n—o0 n—o0
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The pertaining tail empirical d.f. is the process

T — %Fn(a(:—n)x—kb(%)), r€eR

where F, := 1 — F,, with F}, denoting the empirical d.f. defined by

1 n
F,(z) == - ZI{Xi <z} TER
=1

and @ and b are suitable modifications of the normalizing functions @ and b
to be specified later (see Lemma 2.1 below).

In view of (1.2) and (1.5), the following normalization of the tail d.f. suggests
itself:

\/I?n(%ﬁ’n (a(%)x + b(k%)) -1+ 7:6)_1/7), reR (1.6)

It is one of the goals of the paper to establish a weighted approximation to
(1.6). It will turn out in Section 2 that, unlike the analogous approximation
to the tail empirical quantile function, the asymptotic behavior of (1.6) is
qualitatively different in the case ¥ = p = 0 from all other cases.

This approximation will then be used to devise a test for the extreme value
condition F' € D(G,) for some unspecified v > —1/2. To this end, note
that, according to the approximation to (1.6), a suitable distance between
the tail empirical d.f. and the limiting Pareto d.f. will be small if F' € D(G,),
while this should not be expected if F' does not belong to some domain
of attraction. However, to construct a test statistic, first one must replace
the unknown parameters v, a(n/k,) and b(n/k,) by suitable estimators and
prove an approximation to the resulting counterpart to (1.6). From this, we
derive the limit distribution of a test statistic of Cramér-von Mises type in
Section 2.

One important step in the proof of the approximation to (1.6) is an analogous
result when F, is replaced with F', which we establish in Section 3. Section
4 contains the proof of the approximation to (1.6), while the proofs of the
limit theorems for the tail empirical d.f. with estimated parameters and for
the resulting test statistic are given in Section 5. The paper concludes with
a simulation study about the limiting distribution of the test statistic and
the size of the test for finite samples.

2 Main results

If i.i.d. uniformly distributed r.v.’s U; are observed, then (1.3) holds with
a(t) = 1/t and v = —1. For this particular case, Einmahl (1997, Corollary
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3.3) gave a weighted approximation to the normalized tail empirical d.f. (1.6):
there exist versions of the uniform tail empirical d.f.

1 n
(again denoted by U,) and a sequence of Brownian motions W,, such that

Vi (ot () = 1) = Wl

K

P

1/2g=¢llogt] =0 (2.1)

supt
>0

as n — oo for all intermediate sequences ky, n € N.
By the well-known quantile transformation, () has the same distribution

as U,(F(-)). Hence, by (2.1), for suitable versions of F,,

sup (zn(x))—l/Qe—e\logzn(zﬂ
{z:2n(z)>0}

V[ (A +5) = )] = Waleala)] B0 @2

with n _ n .

zp(x) == EF(a(k—n)x + b(k_n)>
In view of (1.2), one may conjecture that (2.2) still holds if z,(z) is replaced
with (1 + vz)~'/7. However, for this to be justified one must replace the
normalizing functions @ and b with suitable modifications such that (1.2)
holds in a certain uniform sense.
In the sequel, we will focus on distributions which satisfy the second order
conditions (1.4) or (1.5), since for these one can calculate the difference be-
tween (1.6) and its first order approximation W,((1 4+ yz)~'/7) and, as a
consequence, give simple conditions on k, such that a weighted approxima-
tion to (1.6) is valid. In that case, the suitable normalizing functions a and
b were determined by Drees (1998) and Cheng and Jiang (2001):

Lemma 2.1. Suppose the second order condition (1.4) holds. Then there
exist a function A, satisfying A(t) ~ A(t) as t — oo, and for all € > 0 a
constant t. > 0 such that for all t and x with min(¢, tx) > t.

Ultz) =b(t) 27"-1

_ _ a(t) v
2 (rtp) g—ellogz| Y10 ~-K,,

@)|<e (23



Here

ct” if p<0,
a(t) — f)/U(t if p= Oa v > 0:
] (U(ee) —U) if p=0, v <0,

U*(t) + U*(t)  if p=0, y=0,

b(t) = { U(t) —a(®)A)/(v+p) ify+p#0, p<0,
Ul(t) else,
and
;Tpx"”” it p<0,v+p#0,
K, (z) = log x if p<0,7v+p=0,

%x”’ logz if p=0#1,
2 .
%log x if p=0=r,

with ¢ = limy_,o t77a(t) (which exists in that case), and for any integrable
function g the function g* is defined by

In the sequel, we denote the right endpoint of the support of the generalized
Pareto d.f. with extreme value index ~ by

1 ) -1/y if v <0,
(=1 VO  |oo if >0,

and its left endpoint by

1 J-oo if <0,
VO | -1/y if 4>0.

Then we have the following main result.

Theorem 2.1. Suppose that the second order condition (1.4) holds for some
v €R and p < 0. Let k, be an intermediate sequence such that \/k,A(n/ky,),
n € N, is bounded and choose a, b and A as in Lemma 2.1. Then there
exist versions of F, and a sequence of Brownian motions W, such that for
all 1o > —1/(y Vv 0)



(1)
sup ((1 +7x)—1/7)*1/2+6.
zo<z<1/((=7)V0)

. \/E[%F’n (a(%)x + b(%)) -1+ fyx)_l/"’]

~Wa((1492)71) = VEA(-) L4+ 72) 77 K (L4 72)'17)

50
if y# 0 or p< 0, and
(i)
sup (max <e_$, %F’(a(kﬁn)x + b(%))))l/ﬂc.

To<zT<00

: ‘\/17 [ Fe (o) +6()) =)

ify=p=0.

Remark 2.1. If, in particular, 'k, A(n/k,) tends to 0, then the bias term
VEka A(nfky) (1 +~y2) YLK, (1 +y3)Y7) is asymptotically negligible. In
order for this statement to be true, it is sufficient to assume that the left-hand
side of (1.5) remains bounded (rather than the present limit requirement)
provided that k,, tends to infinity sufficiently slowly.

The assertion in Theorem 2.1(ii) is wrong if the maximum of e ® and n/k,
F(a(n/ky)x + b(n/k,)) is replaced with just one of these two terms. Hence
the asymptotic behavior of the tail empirical d.f. in the case v = p = 0 is
qualitatively different from the behavior in the case (i). This is due to the fact
that in the case v # 0 or p < 0 the tail behavior of F' is essentially determined
by the parameters v and p, while in the case v = p = 0 tail behaviors as
diverse as F(z) ~ exp(—log®z), F(z) ~ exp(—v/z) and F(z) ~ exp(—z?),
say, are possible (cf. Example 3.1).

Nevertheless, also in the case v = p = 0 results similar to the one in case (i)
hold if max(e~%, n/k,F(a(n/k,)x + b(n/ky,))) is replaced with some weight
function converging to oo much slower than e™ as z tends to co:

Corollary 2.1. Under the conditions of Theorem 2.1 with v = p = 0 one



has for all 7 > 0

Ioiligoomax (1,27 ‘\/7 (kn)x—i—b(kn)) —e ]
2
= \//?nA(kﬁ)e—w— 5.

The proofs of Theorem 2.1 and Corollary 2.1 are given in section 4.
According to these results, the standardized tail empirical d.f.

Mf( ((2)“7‘1+b(%))_x>, e (0,1,

converges to a Brownian motion plus a bias term if k,, tends to oo not too
fast. This may be used to construct a test for ' € D(G.,). However, to this
end, first the unknown parameters -, a(n/k,) and b(n/k,) must be replaced
with suitable estimators. The following result is an analog to Theorem 2.1(i)
and Corollary 2.1 for the process with estimated parameters in the case

v >—1/2.

Proposition 2.1. Suppose that the conditions of Theorem 2.1 are satisfied
for some vy > —1/2. Let 4, a(n/k,) and b(n/k,) be estimators such that

X a(n/ky,) b(n/ky,) — b(n/ky,)
Va (3 =7 anfk) "V T a(n/ky) )

—(L(Wa), a(Wa), B(Wa)) S0 (24)

for some measurable real-valued functionals I', and S of the Brownian mo-
tions W, used in Theorem 2.1. Then, for the versions of F,, used in Theorem
2.1 and every € > 0 and 7 > 0, one has

n-_/,nxT—1 . n
0221 h(z) [\ kn [k_nFn (a(k—n) P + b(k_n)> - x] .
W) ~ (@) = VEeA (1 )$7+1K%p(i) L
with
22 (ST (Wa) — a(Wy)) + ST(W,)zlog z
L) (z) = 22" (YB(Wa) + ( W) —a(W,) if v#0,
z(— BW,) — sT (W) log z+ a(W,)logz) if v=0,
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and

hz) = a1/ if v#0o0rp<0,
(1+|logzl o 7v=p=0

Remark 2.2. (i) If v < —1/2, a rate of convergence of fon 1/ for the
estimators in (2.4) is not sufficient to ensure the approximation (2.5).
To see this, note that in this case b(n/ky) — b(n/ky) is of larger order
than lfﬁl/Q(n/lfn)"Y_6 and hence also of larger order than the difference
between the inth largest order statistic and the right endpoint F* (1)
for some sequence i, — 0o not too fast, leading, for small x > 0, to
a non-negligible difference between F,(a(n/k,)(z™" — 1)/v + b(n/ky,))
and the corresponding expression with estimated parameters.

(#) Typically the functionals T, a and B depend on the underlying d.f. F
only through ~ if the estimators 4, a(n/ky,) and b(n/k,) use only the
largest k,, + 1 order statistics and \/k,A(n/k,) — 0. This justifies the
notation Lg’) for the limiting function occurring in (2.5) in that case.

However, if k,A(n/k,) — ¢ > 0 then LY will also depend on c; for
simplicity, we ignore this dependence in the notation.

Example 2.1. In Proposition 2.1 one may use the so-called maximum like-
lihood estimator in a generalized Pareto model discussed by Smith (1987).
Since the excesses Xy_it1n — Xn—k,m, 1 < @ < ky, over the random thresh-
old Xy _, n are approzimately distributed according to a generalized Pareto
distribution with shape parameter v and scale parameter o, = a(n/ky,) if
F € D(G,) and ky, is not too big, v and o, are estimated by the pertain-
ing maximum likelihood estimators 4, and &, in an exact generalized Pareto
model for the excesses. They can be calculated as the solutions to the equa-
tions

k
1
E Zlog (1 + g(Xn—i—H,n - Xn—lc,n)) = 7
=1
1 z’“: 1 1
k i—1 1 + %(Xn—i—l—l,n - Xn—k,n) Y + 1 .

In Theorem 2.1 of Drees et al. (2002) it is proved that %y, a(n/ky,) := 6, and



b(n/ky) = Xn_p,n satisfy (2.4) with

(W, = —(“’Lvl)?((zy +1)S, — Ry) + (v + )W, (1),
o) = 2N R - (4 D@y 1S, - (v + WD),

B(Wn) = Wn(l)a

1
R, = /thn(t)dt,
01
S, = /t"_an(t)dt,
0

provided Vk,A(n/ky,) — 0; if Vk,A(n/k,) — ¢ > 0 then additional bias
terms enter the formulas. As usual, for v = 0, these expressions are to be
interpreted as their limits as vy tends to 0, that s,

rw,) = —/01(2+10gt)t_1Wn(t) dt + W,(1),

a(W,) = /1(3+10gt)t1Wn(t) dt — 2W,(1),

(Applying Vervaat’s (1972) lemma to the approxzimation to the tail empirical
distribution function given in Theorem 2.1, restricted to a compact interval
bounded away from 0, and then using a Taylor expansion of t — (77 —1)/v
shows that the Brownian motions used by Drees et al. (2002) are indeed the
Brownian motions used in Proposition 2.1 multiplied with —1.)

Hence one may apply Proposition 2.1 to obtain the asymptotics of the tail
empirical distribution function with estimated parameters.

It is not difficult to devise tests for F' € D(G,,) with v > —1/2 using approx-
imation (2.5). Here we consider tests of Cramér-von Mises type based on the
weighted Lo-statistic

1 _4 2
n - n.x ™—1 ~ n
T, = —Fla(—)——+0b(—) ) — =2q 2.6
[ lEe (e == i) —a] e o
with suitable n > 0. The critical values for the corresponding test rejecting

the null hypothesis if &,7;, is too large can be calculated using the following
limit theorem.



Theorem 2.2. Under the conditions of Proposition 2.1 with \/k,A(n/k,) —
0 one has

1 2
kT — / (Wn(x) + L,@(x)) 22 de 25 0 (2.7)
0
foralln>0ifvy#0o0rp<0,and alln>1ify=p=0.

Since the continuous distribution of fol(Wn(ac) + L (2))22"2dz does not
depend on n, for fixed v > —1/2 its quantiles @, , defined by P{fo1 (Wi (z) +

LY (z))22"2dz < Q,,} = p can be easily obtained by simulations (see
Section 6). Then the one-sided test rejecting F' € D(G,) if k,T,, > Q1-a,
has asymptotic size @ € (0, 1).

If one wants to test F' € D(G,) for an arbitrary unknown vy > —1/2, one
may use the test rejecting the null hypothesis if k,T;, > @155, for some
estimator 4, which is consistent for v if F' € D(G,). If the functionals T,
o and $ determining the limit distributions of 4,, a(n/ky,) and b(n/k,) are
continuous functions of vy (like the ones obtained in Example 2.1), then also
LY (x) and hence the quantiles ), , are continuous functions of 7. Thus the
test has asymptotic size a.

However, recall that, in fact, for (2.7) to hold we have not merely assumed
that F' € D(G,) but also that the second order condition (1.4) holds and,
for the particular &, used in the definition of the test statistic 7;,, in addition
we have assumed that A(t) — 0 sufficiently fast such that \/k,A(n/k,) —
0. Hence, we actually test only the subset of the hypothesis F' € D(G,)
described by these additional assumptions.

A test for a similar hypothesis, but based on the tail empirical quantile
function instead of the tail empirical distribution function, has been discussed
by Dietrich et al. (2001). That test does not require v > —1/2 but, on the
other hand, U(cc) > 0 and a slightly different second order condition were
assumed.

The test based on the statistic k,,7,, becomes particularly simple if I, « and
A are the zero functional, that is, the estimators 4,, a(n/k,) and b(n/kn)
converge at a faster rate than k;, Y2 This can be achieved by using suit-
able estimators based on m, largest order statistics with k, = o(m,) and
vVmnA(n/my,) — 0. (For example, v may be estimated by the estimator
given in Example 2.1 with m,, instead of k,, and b(n/k,) by a quantile esti-
mator of the type described in de Haan and Rootzén (1993).) In that case
the limit distribution fol W2(z)z"?dz of the test statistic k,,T,, does not de-
pend on 7, so that no consistent estimator 7, for v is needed. However, this
approach has two disadvantages. Firstly, in practice it is often not an easy
task to choose k, such that the bias is negligible (i.e. vk, A(n/k,) — 0). Tt
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is even more delicate to choose two numbers k,, and m,, such that k,, is much
smaller than m, but not too small and, at the same time, the bias of the
estimators of the parameters is still not dominating when these are based on
m,, order statistics. Secondly, while this approach may lead to a test whose
actual size is closer to the nominal value &, the power of the test will probably
higher if one choose a larger value for k,, e.g. k, = m,, because the larger
ky the larger will typically be the test statistic k,7;, if the tail empirical d.f.
is not well approximated by a generalized Pareto d.f. For these reasons, in
the simulation study we will focus on the case where the tail empirical d.f.
and the estimators 4,, a(n/k,) and b(n/k,) are based on the same number
of largest order statistics.

3 Tail Approximation to the Distribution
Function

A substantial part of the proof of Theorem 2.1 consists of proving an approx-

imation to the tail of the (deterministic) distribution function.

For all ¢,6 > 0 define sets

{z :tF(a(t)r +b(t)) < ™'}  if p <O,

DWF:DW@“:{gutFm@n+w@D§LM@Iﬂ if p=0.

Check that, in particular, eventually [zy,00) C D, , for all zo > —1/(yV 0).

Proposition 3.1. Suppose that the second order relation (1.4) holds for some
vye€R and p < 0. Fore> 0, define
((tF(a(t)z + b(1)))" -

~exp (— ¢/ log(tF (a(t)z + b(t)))|) if y#0 orp#0,
mm(aﬁman+wu»rk

-exp ( — €| log(tF(a(t)z + b(t)))|),em_€|m|> ify=p=0.

wy(x) == <

Then, for all €,0,¢c > 0,

tF(a(t)z +b(t)) — (1 + yz)~11
A(t)

—(tF(a(t)z + (1)) K,

SUPzeD,,, Wt (T) ‘

1
Qﬁmmx+uﬂﬂwﬁa

11



Moreover, we establish an analogous result where tF(a(t)x +b(t)) is replaced
with (1 +~z)~*/7. To this end, let

o JEi Q) <ar)if p <0,
t,p - t,0,0,¢ {[L‘ . (1 _+_ ryx)—l/’)/ S |A(t)|—c} if p — 0,

and, for v # 0 or p < 0,
wy(z) = ((1+ ’ya:)_l/'y)p*1 exp (— €|log((1 + yz)/7)|).

Proposition 3.2. If the second order relation (1.4) holds for some v € R
and p < 0, then

tF(a(t)z +b(t)) — (1 +~yz)~H/7
sup wy(x
s (o) A®
—(1+y2) K, (14 72) ) | = 0.
Moreover, if v # 0 or p < 0, then
_ L JtF(a(®)z +b(t) — (1 4 yz) /7
sup wy(z ‘
2 ) A
-1+ ’Yx)il/%lK%p((l + 73”)1/7) — 0,
and fory=p=20
tF(a(t)x + b(t)) —e™® __ x? ‘
wse%lt)o wy(x) A0 Y 0

for all ,¢c > 0.

At first glance, it is somewhat surprising that the results look differently in
the case v = p = 0 in that one needs a more complicated weight function,
namely the minimum of a function of the standardized tail d.f. tF(a(t)z+b(t))
and the corresponding function of the limiting exponential d.f. The following
example shows that indeed the straightforward analog to the assertion in the
case v # 0 or p < 0 does not hold, because, in the case v = p = 0, these two
functions may behave quite differently for large x, despite the fact that for
fixed = the former converges to the latter.

Example 3.1. Here we give an example of a d.f. satisfying (1.4) such that

tF(a(t)z + b)) —e™® a2
AD —e (3.1)

T—e|z|

sup e
{z:x>clog |A(t)|}

12



does not tend to 0 for any c,e > 0.
Let F(z) :=1—¢ V% >0, and a(t) := 2logt, b(t) := log’t, A(t) :=
1/logt. Then U(x) = log®x satisfies the second order condition (1.4):

1 <U(tx) —U(t) 2

log” x
A(t) a(t) 2

— log:v) —

Moreover

tF(a(t)z +b(t)) = texp ( - \/290 logt + log? t)
= exp (— logt(y/1+ 2z/logt — 1))

Hence, for x = z(t) = A\(t) logt/2 with \(t) — oo ast — oo, one obtains

tF(a(t)z +b(t) = exp (—logty/A@)(1+0(1)),

e % = éexp (2(log logt + log A(t)) — %/\(t) logt)
= o(tF(a(t)z +b(1)),
e ® = o(tF(a(t)z +b(1))),
so that
tF(a(t)z+b(t)) —e® 2?2 tF(a(t)z +b(t))
A0 —et = A0 (1+0(1)).

However, this contradicts the convergence of (3.1) to 0 as t — oo:

(o)t F@z + b)) e ,a?

A(t) 2
_ (moy—1etF(a(t)T + b(1))
= (e A0 (1+ o(1))

— OCQ.

_x2

Likewise one can show that F(z) = 1—e™* , x > 0, satisfies the second order

condition (1.4) but that
sup (tF(a(t)z + b(t)))_1 exp (— €| log(tF (a(t)z + b(t)))|)-

z€ D40
‘tF‘ (at)z +0b(t) —e™® a2
—_— e J—

A0 5| o

13



Before proving the propositions, we need an auxiliary lemma. Let

_Ultr) —b(t) 27 -1
T R

Lemma 3.1. For each € > 0, there exists t. > 0 such that for t > t.

sup &~ ("FPe 8%l g,(z)| = O(A(1)).
x>t [t

Proof: We focus on the case ¥ = p = 0; the assertion can be proved by
the same arguments in the other cases. From Lemma 2.1 we know that, for
each 0 > 0, there exists t5 such that for ¢,tx > t;

1 2
efe\logw||qt(x)| < efe|log:c|‘A(t)‘( 0g2 o +5ed|logw|)'

Choose § < € and . = t; to obtain the assertion, since sup,. e ¢ '°8% log® v <
Q. a
Let

B =B [ct®=1 00) if p <0,
BT TR0 Ly logy| < c|log |A(®)]|}if p =0,

with d,¢ > 0.

Corollary 3.1. For all ¢, > 0,

sup z 7 |q(x)] =0
T€Bt,p

ast — oo.

Proof:
For p < 0, choose € < |p| in Lemma 3.1 to obtain

supz"|g(z)| < supaTPle 8% g, (z)| = O(A(t)) = o(1).
z>1 r>1

téfl

For all ¢,d,t. > 0, eventually c is greater than t./t. Hence, by Lemma

3.1,

sup 77 q(x)| < O(A(t))- sup = O(A(t) .t(5—1)(p—6)) 0

ctd—1<z<1 ctd—1<z<1

if (6 —1)(p—¢€) < —p (which is satisfied for sufficient small € > 0), since A(t)
is p-varying and hence A(t) = o(¢"*?) for all n > 0.

14



In the case p = 0, one has for all € € (0,1/c)

sup 77 gi(z)] < O(A(t)) - sup e€llogz| — O(A(t)ew\log\A(t)ll) 0.

T€Bt,p ZEBy,p
O
Proof of Proposition 3.1. :

For simplicity assume that F' is eventually strictly increasing. (For more
general F', the assertion follows by standard extra arguments using the second
order condition (1.5).) Let g(z) := (1 + yz)~'/7 and

1
tF(a(t)z + b(t))’

y =

which implies that x = (U(ty) — b(¢))/a(t). Then ¢'(z) = —(g(x))"*! and
g"(@) = (v + 1)(g(=))*"*", and so

tF (a(t)z +b(t)) — (1 +yz) /"

= — ((1 + 7%) —i _ (1 + 7y77— 1)‘1/’Y>

= (o) ()
= a(y) <—g'(y7; 1)) — /Oqt(y) /Osg,,(?ﬂ; ! +u) du ds

1 at(y) ps Y —1 —1/y—2
=q(y)y — (T+7) 1+ S + u) du ds
0 0

with (14 yz)~/7 7 :=e ™ fory=0and j = 1,2.
Since (1 + y((y" — 1)/v 4+ u))~Y/772 lies between (1 + y(y? —1)/4)"/772 =

y " and 1+9((y" = 1)/v+ @) 2=y A+ q(y)) 72,
Corollary 3.1 yields

|tF (a(t)e +b(t) = (L +72) " —aly)y™ 7] < 201+ 9y gl (y) (3.2)

for all y € By, and sufficiently large ?.
Since ty — oo uniformly for y € B, ,, (2.3), Lemma 3.1 and Corollary 3.1

15



imply

sup wt(x) ‘ tF(a(t);[; + b(t)) - (1 + ’yx)_l/’Y

YEBi,p A(t)
— (tF(a(t)z +b(1)) K 1
( (CL( )x + ( ))) 7’p(tF(a(t)x + b(t)))
. a(y)y
< sup y' Pe ellogy\( LA (+7)K, y ‘
yEBt,p A(t) 'Yp( )
y7(1+27) 9
+2|1+7\W% (y))
_ _ Qt(l/)
< sup y~(FPecllogyl| 221 , ‘
yeBt’p A(t) 'Yp( )
- —e|logy| 19t\Y _
+2[1 49| sup y~ e '1”';1(7)' sup ¥ 7 |q:(y)]
YEBy, |A®)| yeBe,
— 0.

Because x € Dy, ;. is equivalent to y € By,51/c if p < 0, the assertion is
proved in that case.
In the case p = 0, it remains to prove that, for sufficiently large c,

L (14 yz)~
oy UMK ‘ )
A(t) y W,O(y) — 0

"
—
{z:1/y<|A(t)|}

Note that

wi(@)|y K (y)| = O (e 10g y) = o(1)
uniformly for 1/y < |A(t)|°. Moreover, for ¢ > 1/,

we(x)y™t < e Y < JA(H)] = o(A(t))
for all z such that 1/y < |A(%)|°.
Therefore, it suffices to verify that
sup wy(x) (1 +yz) M7 = o(A(t)). (3.3)
{z: tF(a(t)z+b(t))<|A(t)|}

To this end, we distinguish 3 cases.

First suppose v > 0. Then (1 + yz)U(t) = a(t)z + b(t) — oo uniformly for
all z such that 1/y = tF(a(t)x + b(t)) < |A(t)|¢ = 0. By the Potter bounds
(see Bingham et al. (1987), Theorem 1.5.6)

F((l_—l— vz)U(t)) .

ooy 2 %(1 ) VOUa2) (3.4

y I =tF(a(t)z +b(t)) =

16



for sufficient large t. Hence the left side of (3.3) is bounded by
—¢ —1\1—¢€/2 €c
sup e (2y7Y) P < 20A(0)|? = o(A(t))
{z:1/y<|A(t)|°}
when we choose ¢ > 2/e.
Likewise, for v < 0, one has

F(U(00) = (1 +72)(U(e0) = U(1)))
F(U(c0) = (U(o0) = U(1)))
1

> 5(1 + yz) Y ((1=€/2) (3.5)

y = tF(a(t)z +b(t) =

and one can argue like in the case v > 0.
Finally, if v = 0 then the left side of (3.3) is bounded by

sup e =e "
{z: tF(a(t)ze+b(t))<|A(t)|°}
with z; = inf{x : tF(a(t)z + b(t)) < |A(t)[¢}. According to (3.2), Lemma
3.1, and Corollary 3.1, one has eventually
e~ < AW + |a: (1A®) ™) [IA®)]° + 247 (|A®) ) |A()©
= A (1+ |a:(A@1)] + 22 (14D ™))

= AW (1+0( A1)

O( |c(1 € )
which implies that e <®* = O(|A(#)|*(1~¢)) = o(A(t)) for ¢ > 2/e and € < 1/2.
The proof of Proposition 3.1 is complete. O

Proof of Proposition 3.2:
Recall the definition y := 1/(¢tF (a(t)z + b(t))). We consider three cases.

Case(i): p<0O.
Inequality (3.2) and Corollary 3.1 imply

sup |y(1+7y2)™ "7 =1/ < sup y7|q(y)|+2/1+7] sup (¥ 7q@(y))® — 0.
z€Di,p y>ctd—1 y>ctd—1
(3.6)
Hence, for v+ p # 0, by the definition of K, ,
sup wt(x)‘(l + 'Yx)_(lHM)K%p((l + 'Y$)1/7) (1+7)K7,p( )
€Dy p
_ —e|logy] ‘ —1/y\1=P _ (3.7)
= sup e y(1+ vx) 1‘
mEDt,p ‘7 + p‘ )
— 0.

17



If v 4+ p =0, then the left-hand side of (3.7) equals

Sup ei€| IOg y|
T€Dy,p

(y(1+v2) ") log (y(1 +vz) /)

+((y(1 + 'yx)_l/V)lﬂ - 1) (—log y)‘ — 0.

Now the first assertion is immediate from Proposition 3.1. In view of (3.6),
Wy (x)/wy(z) tends to 1 uniformly for z € D,,. Moreover, (1 + yz)~/7 <
ct=0*! implies tF(a(t)z + b(t)) < 2ct~°*! for sufficient large ¢. Thus the
second assertion follows immediate from the first.

Case (ii): p=0, y#0.

Define
Dy = {z: [A@)|° <t ( (¢ )»’6+b( ) < A1)~}
= {o: [l eh e 4 D)| < clloglA@II},
Df,o = {x (():c ) < |A(¢ \}
so that Dyo = DjyU D7,. As in the first case, (3.2) and Corollary 3.1 imply
sup [y(1+72) 7= 1) < sup y7la(y)| + 201 +9] sup (¥ 7a(y))? 0.
z€D} YE€Bi0 YyE€Bi0
(3.8)
Hence
sup wt(x)‘(l + ’yx)’(l“Ll/"’)K%O((l + 73:)1/7) — y’(lﬂ)Kmo(y)‘
z€D},
1
= — sup e '8 \y(1+yz) 7 log (y(1 +yz) /) 3.9
T (39)
+ (y(1+y2) 7 = 1)(~log y)‘
— 0.
Note that
1
sup wy( ‘y (1+7) K%O(y)‘ = sup —e 9°8¥|logy| — 0. (3.10)
zED] $6D3,0| |
Therefore, it remains to verify that
sup i (2)] (1 -+ 50) /1 Ko (1 492)1)
*ePeo (3.11)
1 .
— sup wy(z)(1+ fyx)’l/7| log ((1 -+ fyx)’l/7)| = o(1).
‘7' z€D}

18



For v > 0, (3.4) shows that the right-hand side of (3.11) is bounded by

1 —¢ _
o sup wi(a) (2y~) " log (27)]
&l o
|17| >‘SA}1(I;| y1—e(2y—1)17e/2‘log(Qy_l)‘_)0’
y>|A(t)|=¢

and hence (3.11). In the case v < 0, we can argue likewise. So the first

assertion is immediate from (3.9)—(3.11) and Proposition 3.1.

For the second assertion, it suffices to prove that {z : (1+yz)~/7 < |A(t)|~¢}

C {z : tF(a(t)z+b(t)) < |A(t)| >} eventually, and that sup,c p, , 0;(z)/wy(x)
is bounded when in the definition of w; we replace ¢ with €/2.

From (3.8), we have sup,cp: wi(z)/wi(z) — 1, so we must check whether

SUPep?, @y(z) /wy(z) is bounded.

We only discuss the case v > 0, since the arguments are similar for v < 0.

By the Potter bounds, for all n > 0 and sufficiently large ¢,

_ 1
2(1 +yz) /7 >yt =t F (a(t)z + b(t)) > 5(1 + yz) Y OA=m)

uniformly for all z € D7, (cf. (3.4)). Thus

sup G sup v
zeD?, wi () zeD?, (1 +yz)=(=ah
1 —1/7
< sup 2'7¢2 ( —|—7:r_)(1_ 77 <2 sup (14 yx) 7
zED?’O (1 + ’)/33) RO zeDf’O
<2 sup (2y )2 40,
wEDiO

Thus sup,ep, , Wt(r)/wi(z) is bounded for v >0 .

Next we verify {z : (14 vz)~"/7 < |A(t)|=¢} C {z : tF(a(t)z + b(t)) <
|A(t)|72¢}. To this end, define z; := inf{z |tF (a(t)x + b(t)) < |A(t)|72%}.
Then by the analog to (3.8), (1 4+ yz,)~"/7 ~ tF(a(t)z, + b(t)) = |A(t)| 2.
Hence for x satisfying (1 + yz)~'/7 < |A(t)|~¢, we have for sufficient large ¢,
(14 ~vz)~ Y7 < (1 4+ vyx,)~'/7, which implies x > =z, and tF(a(t)x + b(t)) <
tF(a(t)z;+b(t)) = |A(t)| 2. Hence we obtain {z : (1+vyx)~ Y7 < |A(t)|~¢} C
{x : tF(a(t)z + b(t)) < |A(t)| 2}, and the proof of the second assertion is
complete.

Case (iii): y=p=0.

In the very same way as for p < 0, we obtain for all d > 0

sup lye™ — 1] — 0. (3.12)
{z:|log y|<d| log |A(#)][}
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Thus

1 2
sup wt(x)‘e’c”ac2 - M‘

zED;

< sup e‘e“"gy“ye‘x log (ye™™) log(e™*/y) + (ye™ — 1) log’y
wEDtl,o
— 0.

Moreover, in view of (3.12) with d = 2¢, eventually —logy < clog|A(?)]
implies —x < clog |A(t)|/2. Hence

log?
sup wy(z)le "% — 8 Y
wEth,o Yy
< sup e~y 4 sup e~ 108 og? y — 0.
z>—clog|A(t)|/2 z>—clog |A(t)|/2

Again the first assertion follows from Proposition 3.1.
Finally, in view of (3.12), e ® < |A(t)| ¢ implies 1/y < |A(t)|?¢ for suffi-
ciently large t, so that the second assertion is obvious.
The proof of Proposition 3.2 is complete. a

4 Tail Approximation to the Empirical
Distribution Function

For the proof of Theorem 2.1, we need two additional Lemmas.

Lemma 4.1. Suppose zy > —1/(y V 0).
(i) If p < 0, then

‘ (14 yx)=1/
sup
zo<z<1/((—7)VO0) tF )ZC + b(t))

(it) If p =0 and v # 0, then for alln >0
tF(a(t)x + b(t)) — (1 =)~/

—1‘ — 0.

sup — — 0
z0<a<1/((~7)V0) ((1 n W)—w)
as t — oo so that
tF 3: + b t
sup ( ) 18 bounded.

1-n

z0<<1/((~7)V0) ((1 +yz)- 1/7)
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(#5i) If v = p = 0, then for alln,c >0
tF(a(t)z +b(t)) —e™®

sup — 0
zo<z<—clog|A(t)]| e~(i-m)z
as t — oo so that
tF (a(t)r + b(t
sup (a(_?lx_ ) (®) is bounded.
zo<z<—clog|A(t)] e\
Proof:
(i) By (3.6), one has for all § € (0,1) and ¢ >0
1 c
L e aaamn < ) e
[330, (_7)\/0) C {x (147yx)~ /7 < 5 C Dy,
for sufficiently large ¢. Hence, again by (3.6),

1 —1/v
sup ‘ (1 +yx) B 1‘
ro<a<1/((—vo) | tF (a(t)z + b(t))

(ii) By similar arguments as in (i), one concludes [y, 1/((—7) V0)) C Dyy.
Hence Proposition 3.2 with ¢ = n implies

tF(a(t)z + b(t)) — (1 +~yz)~/
A(t)
-1+ ’yx)_l/7_1K7,0((1 + ’)/x)l/”’)
1 ‘tﬁ’(a(t)x -+ b(t)) —(1+ 73;)*1/7
0 (1 + yz)~-1/7) '
= A1+ 72) )R o (1 4 2)'7)

— 0.

sup ((1+ 73”)_1/7)7]71
zo<z<1/((=7)V0))

— 0.

Because A(t) — 0 and (1 +vx)~'/7 is bounded for x > x,, the assertions are
immediate from the definition of K.

(ili) The proof is similar to the one of (ii). Note that (3.12) shows that
wy(z) /=97 — 1 uniformly for zp < z < —clog |A(?)]. O
Lemma 4.2. Let W denote a Brownian motion.

(i) If y # 0 or p <0, then

n

W F o )e + b))

—W((1+yz)~/7)

sup (14 )~y 2t
20<a<1/((—7)V0)

—0 a.s.
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as n — oo.
(i) If p =y =0, then

sup (o (e 2Pl )
‘W(%F(“(%)x - b(,%))) W (1470 50 as

Proof:

(i) Let s:= (1+v2)~Y" and u(n, s) := (n/ky)F(a(n/ky)z +b(n/k,)) — s.
Then zp < z < 1/((—7) V 0) implies 0 < s < s, where sy is a constant
depending on x,. So we only need to prove

sup s~ 2H W (u(n,s) +s) — W(s)| =0 as. (4.1)
0<s<so
From Lemma 4.1, one can easily conclude that u(n,s) = o(s' ") uniformly

for s € (0, so], so that in the sequel we may assume u(n,s) < s' .
Forall0 <a<1

sup s~ YW (u(n, s) + s) — W(s)]

0<s<a
. W (u(n, W
< sup s’l/”e(s-I-u(n,s))l/2 2 sup (u(n, 5) —LS) S|+ sup # .
0<s<a 0<s<a (S + u(n, 8))( €)/ 0<s<a S /2—¢
Since
. —1/2+¢ (1—¢)/2 T ( ¢/(1—¢) u(n, 8) )(1_5)/2 _
lim oiglg)as (s+u(n,s)) lim 0s<1;2a s + oo 0,

the law of iterated logarithm yields

lim sup s~ Y2|W (u(n,s) +s) —W(s)| =0 a.s.

=0 0<s<a

On the other hand, by the continuity of W, for all fixed a > 0

lim sup s Y2 |W(u(n,s)+s)—W(s)|=0 a.s.

n—=00 g<5<s0

Therefore one obtains (4.1) by a standard diagonal argument.
(i) We consider z € [zg, —clog|A(n/k,)|) and = € [—clog|A(n/k,)|, 00)
separately.
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As in the proof of (i), one may conclude from Lemma 4.1 that

W (P (o) +b(0) ) ~W(e)

n n n

1
—Z\—5te€

sup (e —0 a.s.

zo<z<—clog|A(n/ks)|

(4.2)
Since e — 0 and (n/k,)F(a(n/k,)x + b(n/k,)) — 0 uniformly for z >
—clog |A(n/k,)|, we get

Lo (sl PG+ G)) T
W (Pl )e +5(0)) = W(e™)
< o (P aGe+6G0)) o W (5Pl )e +6(0))|

+ sup (e ) VP W (e ™)
a>—clog|A(n/kn)|

— 0 a.s. (4.3)

by the law of the iterated logarithm. A combination of (4.2) and (4.3) proves
the assertion. O

Proof of Theorem 2.1:

We confine ourselves to the case v # 0 or p < 0, because the other case can
be treated similarly.
Define

. e if p <O,
€ =
/2 ifp=0#1,

and

Ii=((147z) )72

n

Vka [%Fn (a(,%)x Fo()) - 1+ m)l/v}
— W (1 +y2)77) - \fA( =) (4 7w) TG, (14 72) )
(L ye) )™ n n o\ -1/t
< - e |7 Flali-)z +b(-) :

e i) )

VR A 0G) - P+

)]

n

(Pl + )
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(1 4+ a) ~7)=1/2He

Dy () mt(x)mA(%).
_ EF(a(®)z+b() = (L 4+z) /7
A(zE)

- (1 + 7$)_1/7_1K7,p((1 + ’Y$)1/7)

g+ b(—

+ (1 4 ya) ) p p

Wn(ﬁﬁ(a(

v ) = Wa((1472)717)

= ]1+]2+13.

By (2.2) and Lemma 4.1 one has sup,, <, <1 /(o) /1 %5 0. From Proposi-
tion 3.2 and the fact that ((1 4 yz)~*/7)~/2+¢/w@,(x) is bounded uniformly
for zo <z < 1/((=7) Vv 0), it follows that sup, <,<1/(_yyvo) l2 — 0. Finally

Lemma 4.2 shows that SUPzo<z<1/((—7)V0) I3 i 0. O

Proof of Corollary 2.1:

Because of Theorem 2.1(ii) and max(1,27) = o(e/279%) as x — oo for all
7 >0 and € € (0,1/2), it suffices to prove that

sup <£F(a(£)$ + b(ﬁ))yﬂ_6 max(1,z") = O(1).

o<z <00 kn kn kn

According to Lemma 2.2 of Resnick (1987), there exists a function a such
that a(t)/a(t) — 1 as t — oo and

F'(a(t)z +b(t)) > 1= (1+6)(1 + 6z)~/°

for all 6 > 0, sufficiently large ¢ and = > x. Thus, by the mean value
theorem, there exists 6, , € (0, 1) such that

tF(a(t)z +b(t)) < t(l . (1 (14 6)*(1+ 53:)—1/6) 1/t>

1/t—1

= (1+6)%(1 + ox)" 1/ (1 — 0,.(1+0)3(1 + 5:3)*1/6)
< 214 6z)7/°

if x > 0 and § > 0 is sufficiently small. Since by the locally uniform conver-
gence in (1.2)

sup (%F(a(%)x + b(;ﬂb—n)))lﬂ_6 max(1,27) = O(1),

zo<z<0
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it follows that

sup (%F(a(:—n)x + b(%)))l/26 max(1,z")

o <z<00
§ \~U/9
= O(1)+2 sup (1 + —:v) max(1,z")

0<z<00 2
= 0(1)

if 0 is chosen smaller than 1/7. O

5 Tail Empirical Process With Estimated
Parameters: Proofs

In this section we prove the approximation to the tail empirical process with
estimated parameters stated in Proposition 2.1 and the limit theorem 2.2 for
the test statistic 7;,. To this end, we need a sequence of lemmas.

Define

&(n/kn)
An,kn a(n/kn) )
B(n/kn) — b(n/ky)
P afb)
yn(x) = (1 + ’Y(Bn,kn + An,knw)) o

Recall from (2.4) that

Ak, = 1+E2a(W,) + op(k; %),
By, = k,'"*BW,)+op(k,'?), (5.1)
o =y +k PO(Wa) +op(ky'7?).

Lemma 5.1. Suppose (5.1) holds. Let A, > 0 be such that A\, — 0, and
kn' P2 = 0 if 7 <0, or kn/?log® Ay — 0 if v = 0.
(i) If v > 0 then, for all € > 0, z7' /< (\/k, (yu () — ) — Ly (z)) 0, and
¢ Hyn(z) — 2) 20 as n — 0o uniformly for z € (0,1].
(ii) If =1/2 < v < 0 then, for all e > 0, x_1/2+6(\/E(yn(x)—x)—L§7) (z)) LN
0 and (yn(z) —x)/x 20 as n — oo uniformly for z € [An, 1]
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Proof: For v # 0, define 6, := 1+ VB, — AngnY/n, and A, 1= A, 4 =
6nHn/ (YAn k2~ ), so that 6, = Op(kn''?).
(i) By the mean value theorem there exist 6, , € (0,1] such that

= — 1 \—1/7
. —1/v
_ ( A —%+5)
-1/
= (5 A ) A
An
R - 1 71/ —1
= (A = (S A U 008,
Y Y \An
. 1
= (ZAppz ™) 1y — /5 (1 + 0p(1)) (5.2)

Tn Y

where the op(1)-term tends to 0 uniformly for z € (0, 1]. Hence again by the
mean value theorem and (5.1), for some 6, , € (0,1),

Yn(z) — 2
- 5 N 1 .
= (G Aw) T = 1)a™ 0 4 @ — ) = a0 05,14 0, (1))
Tn Y

1 ; ; Vn
= (0 A, — 1)o7 0 Do a2 1)

n

1 .
— =S (14 0,(1))
5

1 (A —
=;u+%mmwwlrl%m—MMV40

Tn

_|_ 1+0ncc 'Yn/'y 1 log ’y_fy (53)

1 4 T .
—;x“’"(l/”“) (’an,kn + = (G =) = 2 (Ang, — 1)) (14 0p(1)).

n ,YTL

Now the first assertion is a straightforward consequence of (5.1). For example,

ol (1t o) (BT, = (A, = 1)
1 n
= ;x’l/”f exp ((fy /v —1) logx) (\/77 fYAnk m(Ankn - 1))

1o—ipie (TWa) o
. (5 = o)) (14 0p(1)

uniformly for z € (0, 1].

26



Moreover, in view of (5.4),

xe_l(yn(l‘) - ‘T)

A~

1 N 5 n
=~ (1 0y(1)) (- Any =12/ 7 g Onelinl1 D10 n (72— 1)

A~

n

1 . .
— g S (14 0,(1))
v

Lo
as n — oo uniformly for z € (0, 1].

(ii) First we consider the case v = 0. Then

Yn(z) —
= exp ( — (Bn,kn + Ankn$)> -
= x(exp ( — (Bn,kn + Anykn(xﬂn -1 + logx) — (Apg, — 1) logm)) — 1).
" (5.4)
A Taylor expansion of v +— 277 together with (5.1) yields
% = —logx + %% log?x + Op (k%% log® z). (5.5)

It follows that .
—Tn __ 1
T ilogz 5o

n

as n — oo uniformly for = € [\, 1], since then k;l/QIOg2 z < kptl? log? \, —
0. Hence

= —1 P
Bk, + An’kn(% + log:v) — (Apg, —1)logz — 0,

Tn

so that by (5.1) and (5.5) and the series representation of the exponential
function

e () — ) A
= _x_1/2+6x(\/EBn,kn + \/l?nAn,kn (# + log 33)
—\/I?n(An,kn - 1) logm) (14 0p(1))

= g/ (ﬁ(Wn) + %F(Wn) log® z — a(W,,) logx> (1+o0p(1))
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uniformly for z € [A,, 1], that is, the first assertion.

Likewise one concludes from (5.4), (5.1) and (5.5) that (y,(z) — x)/z tends
to 0 uniformly for z € [\, 1].

Next assume —1/2 < v < 0.

Because 6, = Op(kﬁm) and, by the definition of A\, and (5.1),

kn—l/Zx’AYn < k;l/Q)\Z" = O(GXP (log )\n(ﬁ/n - 7))) = Op(l),

A, — 0 in probability uniformly for = € [A,, 1]. Therefore, the first assertion
can be established as in the case v > 0.
Furthermore, according to (5.4),

Yn(z) —
x
1 ; ; Vn
=——(14+0,(1 AlAnk — 1)z /77t 4 gbnaCGn/7 D) 1og 9
p Kn
Y Tn Y
1

— —x;’"+§"/7_15n(1 +0,(1))
Y

Y e (VEn(n =) loga )
=~ (A, — Dep (T TS ) (L 0(1)

| loge Vkn(n —7) exp (9n,m\/ﬁ(% - ) logx)
V. 7 Vhn

1 Vkn(An — ) logz . logz\ 27
P
— 0
as n — oo uniformly for z € [A,, 1] by the choice of A,,. O

Lemma 5.2. Under the conditions of Lemma 5.1 one has for all e > 0:

(i) If v > 0, then z= V%< (W, (yn(2)) — Wi (z)) %50 as n — oo uniformly for
z € (0,1].

(it) If =1/2 < v < 0, then x /*T¢(Wy(yn(z)) — Wa(z)) 5 0asn > oo
uniformly for x € [Ap, 1].

Proof:

Let u, > 0, n € N, be an arbitrary sequence converging to 0. According to
Lemma 5.1 and the law of iterated logarithm
(yn (@) /** Walyn(@))  Wal(z) p

2T (Waya(2)) = Wale)) = =15 (@)=~ i
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uniformly for z € (0,u,] if ¥ > 0, and uniformly for z € [\, u,]| if =1/2 <
v < 0. Since, due to the continuity of W,, and Lemma 5.1,

sup x’l/2+6|Wn(yn(x)) — Wa(2)| 50

u<zr<l

for all u € (0, 1], the assertion follows by a standard diagonal argument. O

Lemma 5.3. Under the conditions of Lemma 5.1 one has for all e > 0:
(i) For v >0

g/ ((yn (x))7+1Kv,p(

7+l 1y e
yn(x)) -7 K%p(x)) —0

as n — oo uniformly for x € (0,1].
(i) For —1/2 <~y <0

(o))

v+l 1y P
yn(x)) -7z K%P(x)) —0

as n — oo uniformly for x € [\, 1].

Proof:

(i)  We only consider the case v > 0 = p; the assertion can be proved
similarly in the case v > 0 > p. Equation (5.2) implies

tog ) = tog (2 A, ) 7 71) (1 4 0p(1)
x n

= ((B_ 1
— (( y 1) logz S log (% An,kn)) (1+ 0p(1))
uniformly for z € (0,1]. Hence, by the definition of K, and Lemma 5.1(i),
- € 1 1
(@) Ko (5) = K ()
— 1:—1/2—1—6( _ Yn(x) log(yn(z)) N xlogm>
" gl

1 n
= (:r_l/”eyn(x) log yT(:v) + 272y, (x) — z) log 33)

1 Tn
S— (xelyn(aj)xl/2 logx(l —1)(1+0p(1))
Y Y
1
~ Lo @) 10 (A0, ) (14 0p(1) + 2 1n(o) - £)2" g
5o
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as n — oo uniformly for z € (0, 1].
(ii) In the case v = 0 > p, according to the definition of Kj,, Lemma
5.1(ii) and the mean value theorem, there exists 6, , € (0,1) such that

(e () — ks (1)
p-1/2+e (yn ()7 _ z'
( P p )
_ 1 Ly yn(l‘i — (¢ + O yn(2) — ) "
50

as n — oo uniformly for z € [\, 1].
In the other cases the assertion can be proved likewise. O

Remark 5.1. The part (i) of Lemma 5.1 with weight function z¢ =7 instead
of x=Y?%¢ and of the Lemmas 5.2 and 5.3 also hold true for —1 < v < 0.

Lemma 5.4. Suppose p, — 0, np, — 0, and k;l/Qlogz(npn) — 0 asn — oo.
Define
(q=)m =1 n . p
T, = ———a(—) +b(-)
Tn
Then, under the conditions of Proposition 2.1 for —% < v <0, P{z,, <
Xnnt — 0 asn — oo.

Proof: According to Theorem 1 of de Haan and Stadtmiiller (1996), one
has

;Ua’Y(ZCgt)) —1 zf =1

_)
A(t) p
as t — oo. By similar arguments as used by Drees (1998) and Cheng and

Jiang (2001) it follows that, for all 0 < e < £, there exists ¢, > 0 such that
forall¢ > ¢, and x > 1

_ (L'p—l‘ < exhte
A(t) p

Hence

because p < 0 and Vk,A(n/k,) = O(1).
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Now, we distinguish two cases.
Case (i): —1/2 <~y <.

Then
i'pn_Xn,n
a(n/kn)
1 fa(n/kn) 1 a(n/k) (ko \in | a(n/k) (1 1
( a(n/ky) 1>+’3/na(n/kn)<npn) +a(n/kn)(7 %)
b(n/ka) — b(n/kn)  (b(n) —b(n/ky) 1
= )
—b(n) a(n)

a(n) a(n/kn)
= T1+T2+T3+T4—T5—T6.

Assumption (5.1) implies Ty + T3 + Ty = Op(kn /*) = op(kyy) and

T, = Op<(:;n)vexp ((% — ) log :;n)) = 0P<(nk—;)7) = op(k}))

because np, — 0 and k, /*log(np,) — 0.
Since, in view of (5.6) and the definition of b(n),

Un)—bn)  an) An) o

approximation (2.3) yields

S D o(k A ) ok + - = S (k).

T5:
v n T

Finally, k7T converges to G, in distribution because of ' € D(G,) and
(5.6).
Summing up, one obtains

T & =(+2)

for a G -distributed r.v. M. Now the assertion follows from the fact that
—(M +1/v) >0 as.
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Case (ii): v = 0.
By similar arguments as in the first case one obtains

ZTp, — Xnp
a(n/ky) A
_ (Ga)" -1k Na(/ka) | galn/k)
- (5 v et G )t
a(n/ky,) 1 b(n/k,) — b(n/ky)
* a(n/ky) log npn a(n/ky,)

(
b(n) —b(n/kn) o ~ Xun —b(n) _ a(n)
~( ik ghn) o) aln/ky)

— op(1) + op(1) +log - (1-+ 0n(1)) + Op(k; ") + (1) + Op(1)

~ og %(1 +op(1))

n
P
— o0
from which the assertion is obvious.

Proof of Proposition 2.1:
Recall the definition

() = (1 o
Observe that

Ii= x—we(m[kﬁpn () L b)) - o]

n /YTL
o)~ L)~ VA ) K (3))
x*l/Z—}—E
_ o))-L/2Her2.
= Gty o)
P (P Ga@) T =1
n 7+ 1
- Waan(o) = VEAG) o) Ko(5))
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+ 072 (Vo (a(@) = 2) = L (@)
(W (ya(2)) = Wa(a))
1

—1/24¢ n 1 n
a2 (VRAGE) (@) Ko () = VEAG )T ()
1211+12+I3+I4
Now we distinguish three cases.
Case (i): v > 0.
By Lemma 5.1(i), sup,e(gy 2~ /*¢/ (yn(2)) 7/>¢/? is stochastically bounded.
Combining this with Theorem 2.1, we obtain sup,¢ 1 [/1| — 0 in probability
as n — 0o. An application of Lemma 5.1(i), Lemma 5.2(i), and Lemma 5.3(i)
gives
sup || 4, 0, sup |[3] i 0, sup |l i 0,
z€(0,1] z€(0,1] z€(0,1]

respectively. Hence sup,¢q 1 |I| = 0 in probability as n — oc.

Case (ii) —1/2 <y < 0,0or y=0and p <0.

Let Ay := 1/(ky logky). Obviously A, — 0, kn/*A7 — 0 and k,/*log? A, —
0 as n — oo, so that Lemmas 5.1, 5.2 and 5.3 apply. Like in case (i), we
obtain sup,¢y, 17 |{| — 0 in probability as n — oco.

It remains to prove that sup,¢ |I| — 0 in probability. To this end, let

pn = 1/(nlogk,), so that np, — 0 and ko 1/ log?(np,) — 0 as n — oo.
Thus, for z € (0, \,],

on xm—1 ., n An)\;%—l ~m

Zn () ::a(k_n)Ter(k_n) > a(k_n)T+b(k_n)
NG L
= “(k—n) % +b(k_n)’

so that by Lemma 5.4,
P{zn(aj) < X, for some z € (0, )\n]} — 0.

Let ; .
— “1/24e Mg ( R N YL )
n wES(l(ilzn] ! V kn m\? ( kn ) % * ( )

By the definition of F,, z,(z) < X, for some z € (0,),] implies 7 # 0.
Therefore,
P{r, #0} =0 (5.7)
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as n — oo.
Furthermore, it is easy to check that

Ve ke — 0, 2w (z) Do,

5.8
LD @) B0, a P RA(E )7 K () 0 0

uniformly for z € (0,)\,] as n — oo. For example, the second convergence
is an immediate consequence of the law of the iterated logarithm, and in the
case —1/2 <y <0

sup o /2H|L{Y (z)]

z€(0,An]
1 1
< sup —aE| =T (W,) — a(W,)| + sup |F( Wy)|z/?+ log x
z€(0,A\r] |7| Y z€(0,Ar] |7|
+ P ] 2PNy B(W,) + F(W) a(Wh)
2€(0,An] |’Y|
o,

In view of (5.7) and (5.8), the assertion sup,¢», /| — 0 in probability is
immediate.

Case (iii): v = p = 0.

According to Lemma 5.1, y,(z)/z — 1 in probability uniformly for z € [A,, 1]
with A, :=1/(k,logk,), so that

(1+|logz|)" B ( 1+ |logz|
(1 + [log yn(x)[)

uniformly for z € [\,,1]. Therefore, one can argue as in case (ii) (using
Corollary 2.1 instead of Theorem 2.1) to establish the assertion. O

m) =ort)

1+ |logz| + op(1

Proof of Theorem 2.2:
By Proposition 2.1 one has

(VR i) o) .
= (W) + L@ + VEAGE )3:7+1K%p(é)+(2’((;))>2
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Using the law of iterated logarithm, it is readily checked that

/1 (Wa(z) + L?))Q:v"_Q dr = Op(1)

1
/0 (ﬁHK%p(

2
)) 2" 2dr < oo

K| —

dr < o0

/0 h?(x)

forn > 0,and n > 1if v = p = 0. Hence the assertion is an immediate
consequence of (5.9) and vk, A(n/k,) — 0. O

6 Simulations

First we want to determine the limiting distribution of the test statistic
k. T, defined by (2.6), where we use the maximum likelihood estimator 7,
a(n/ky) and b(n/k,) described in Example 2.1. Here we have chosen n = 1,
thus giving maximal weight to deviations in the extreme tail region that is
possible in the framework of Theorem 2.2 for all values of v > —1/2.

To simulate fol(Wn(ac) + LY (2))22~" dz, the Brownian motion W, on the
unit interval is simulated on a grid with 50000 points. Then the inte-
gral is approximated by a Riemann sum for the extreme value indices v =
2,1.5,1,0.5,0.25,0,—0.25,—0.375 and —0.5. Note that for v < —0.5 the
term LY is not defined since the integral S, = f01 t771W,,(t) dt defined in
Example 2.1 may not exist. The empirical quantiles of the integral statistic
obtained in 20 000 runs are reported in Table 6. It is not surprising that the
extreme upper quantiles increase rapidly as v < 0 decreases, since |S,| — oo
in probability as v | —1/2, and thus the limit distribution of &, 7, converges
weakly to oo, too.

Next we investigate the finite sample behavior of the test described in Section
2, that rejects the hypothesis that ' € D(G,) for some v > —1/2 if k,T,,
exceeds Q1_q5,. Here we use the maximum likelihood estimator for 7 also as
the pilot estimator, that is, 7, = %,,. Since we have approximately determined
the quantiles (), , only for 9 different values of 7y, we use linear interpolation
to approximate the quantiles for intermediate values of ~, that is, for 7, €
[v1,72] we define

A Tn— N
Qpjn = Qpn + h(Qpﬁz — Qpm)

where ()., denote the quantiles given in Table 6. Moreover, we define
Qpﬁn = QP,Q 1f ;yn > 2.

35



v = 2 1.5 1 0.5 0.25 0 —-0.25 | —0.375 | —0.5
p
0.995 | 0.545 | 0.513 | 0.507 | 0.525 | 0.553 | 0.621 | 0.672 | 0.739 | 0.909
0.99 0.477 | 0.462 | 0.459 | 0.474 | 0.494 | 0.554 | 0.604 | 0.667 | 0.795
0.975 | 0.408 | 0.389 | 0.383 | 0.390 | 0.409 | 0.459 | 0.510 | 0.558 | 0.657
0.95 0.349 | 0.337 | 0.330 | 0.337 | 0.355 | 0.390 | 0.431 | 0.468 | 0.552
0.9 0.289 | 0.281 | 0.278 | 0.285 | 0.295 | 0.318 | 0.355 | 0.381 | 0.444
0.8 0.231 | 0.227 | 0.224 | 0.229 | 0.239 | 0.254 | 0.280 | 0.299 | 0.343
0.7 0.197 | 0.193 | 0.191 | 0.195 | 0.201 | 0.213 | 0.235 | 0.253 | 0.286
0.6 0.171 | 0.168 | 0.166 | 0.169 | 0.175 | 0.185 | 0.204 | 0.217 | 0.243
0.5 0.151 | 0.148 | 0.147 | 0.149 | 0.154 | 0.162 | 0.178 | 0.189 | 0.211
0.4 0.132 | 0.131 | 0.130 | 0.132 | 0.136 | 0.144 | 0.157 | 0.164 | 0.183
0.3 0.116 | 0.114 | 0.114 | 0.116 | 0.120 | 0.126 | 0.135 | 0.144 | 0.158
0.2 0.100 | 0.099 | 0.098 | 0.100 | 0.103 | 0.108 | 0.116 | 0.122 | 0.134
0.1 0.083 | 0.082 | 0.081 | 0.082 | 0.085 | 0.089 | 0.095 | 0.099 | 0.106
0.05 0.071 | 0.070 | 0.070 | 0.071 | 0.073 | 0.078 | 0.080 | 0.083 | 0.090
0.025 | 0.062 | 0.062 | 0.062 | 0.063 | 0.064 | 0.068 | 0.071 | 0.073 | 0.078
0.01 0.053 | 0.054 | 0.054 | 0.055 | 0.056 | 0.059 | 0.060 | 0.062 | 0.067
0.005 | 0.048 | 0.049 | 0.049 | 0.050 | 0.051 | 0.052 | 0.054 | 0.055 | 0.060

Table 1: Quantiles (), of the limit distribution of £,7;,.

As usually in extreme value theory, the choice of the number k, of order
statistics used for the inference is a crucial point. Here we consider k, =
25,50 and 75 for sample size n = 200, and k,, = 25,50, ...,200 for sample
size n = 1000.
1000 samples were drawn from each of the following distribution functions
belonging to the domain of attraction of G., for some v > —1/2:

e Cauchy distribution

(7:1’ p= _2):

1 1
F(z) = gt arctan ,

e Burr(g, 7, ) distribution (v

with (3,7,\) = (1,2,2).

™

e Extreme Value distribution EV (7)

(7 € R’p = _1):

F(z) = exp (= (1+72)7'7),
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e Weibull(), 7) distribution (v =0, p = 0):
F(z) =1—exp(—Az"), >0
with (A, 7) = (1, 0.5).
e Reversed Burr(f, 7, A) distribution (y = —1/(7A), p=—1/A):

P =1~ (grgmay) <o

with (8,7,A) = (1,4,1) and z, = 1.

In some simulations either there exists no solution to the likelihood equations,
or the maximum likelihood estimate of « is less than —1/2, so that the
test cannot be applied. The relative frequency of simulations in which this
happened are given in the Tables 6—6; for all other values of &, not mentioned
in these tables, the test could be performed in all simulations.

For the reversed Burr distribution, one gets estimates of 7 less than —1/2
in at least 1% of the simulations for all values of k,, and in about one third
of all simulations if n = 200, while for all other distributions this happened
only if a small proportion of the data is used for the inference. It is clear
that the problem of pilot estimates of v being smaller than —1/2 becomes
more and more acute as the true extreme value index approaches —1/2; this
is particularly true for small sample sizes.

In the Tables 6 and 6 the empirical size of the test with nominal size @ = 0.05
is reported, that is, the relative frequency of simulations in which the hy-
pothesis is rejected. These frequencies are based only on those simulations
in which the test could actually be applied. The overall impression is that the
empirical size of the test is quite close to the nominal value for a wide range
of values of k,,. Hence, as far as the size is concerned, the test is rather insen-
sitive to the choice of the proportion of the data used for testing, although
for very small k, the test seems a bit too conservative. This conclusion is
also supported by Figure 1 that displays the empirical size of the test for the
Cauchy distribution and sample size n = 1000.

At first glance, it might be surprising that, unlike estimators of 7, the test
behaves equally well for small and large values of |p|. However, recall that
for the actual size to be close to the nominal value it is not important how
accurate the estimators are but only how precise the Gaussian approxima-
tion for the tail empirical distribution function with estimated parameters
is. While the rate of convergence of estimators of the extreme value index
deteriorates as p tends to 0, this is not necessarily true for the accuracy of
the normal approximation.
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To sum up, if FF € D(G,) with v not too close to —1/2, then the empirical
size of the test is close to the nominal value for a wide range of values of &,.
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Cauchy | Burr(1,2,2) | EV(0.25) | EV(0) | Weibull(1,0.5) | Rev. Burr(1,4,1)
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size n = 200

kn || Cauchy
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EV(0)

Weibull(1,0.5)

Rev. Burr(1,4,1)

25 | 0.000

0.000
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Table 4: Relative frequency of simulations in which no maximum likelihood
estimate was found for sample size n = 1000
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Table 6: Empirical size the one-sided test with nominal size & = 0.05 for

sample size n = 200.

kn || Cauchy | Burr(1,2,2) | EV(0.25) | EV(0) | Weibull(1,0.5) | Rev. Burr(1,4,1)
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200 0.059 0.050 0.040 0.040 0.079 0.051

Table 7: Empirical size of the one-sided test with nominal size & = 0.05 for

sample size n = 1000.
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Figure 1: Empirical size of the one-sided test with nominal size & = 0.05 as
a function of k, for Cauchy samples of size n = 1000.
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