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Abstract

A new scheme based on the Fourier transform for the three-dimen-
sional Helmholtz equation is introduced. We consider the boundary
integral formulation for the Dirichlet boundary value problem and use
the collocation boundary element method for the discretisation of the
problem. In order to solve the resulting linear systems, the identity
of the Fourier transform with respect to the wave number is applied
to the associated matrices. We deduce the analytical forms and some
important properties of the transformed matrices. Finally, some nu-
merical examples for the solution are presented and we compare these
with results using standard techniques.

AMS Subject Classification: 35J05, 65N38, 65R20
Keywords: Dirichlet problem, Helmholtz equation, single- and double-layer
potential, Fourier transform, collocation

Contents
1 Introduction 2
2 Preliminaries 3
2.1 Dirac §-Distribution . . . . . . .. ... 3
2.2 Fourier Transform . . . . . . . . . . . . .. ... 4
3 The exterior Dirichlet BVP 5
3.1 Boundary Integral Formulation . . ... ... ... ...... 6
3.2 Collocation Method . . . . . . . . . . . . .. ... ... ... 7
4 Linear Systems 9
4.1 Transformed Matrices. . . . . . . . . . . . .. ... ... 9
4.2 New Linear Systems . . . . . ... ... ... ... ... 13
5 Numerical Results 15
6 Conclusions 19



1 Introduction

We consider the exterior Dirichlet boundary value problem (BVP) for the
three-dimensional Helmholtz equation (see e.g. [2])

Au(z) + k*u(z) = 0, reR\Q, k=
¢ (1)

u(z) = g(zx), z€T.

In (1), x is the wave number which may be real or complex with I'm (k) > 0.
I' = 0f) denotes the smooth boundary of the bounded, connected domain €2
and g¢(z) is a given function. To guarantee uniqueness of the solution u(x),
we add the Sommerfeld radiation conditions or outgoing wave conditions (cf.

[8])

(% —in)u(z) = o(|o ) and u(z) = O |zl ") for large [a] =r. (2)

The Helmholtz equation arises in many physical problems related to wave
propagation. In acoustic applications, w and c are the frequency and velocity
of the sound and u corresponds to the pressure field. We are interested in
the solutions of (1) for a spectrum of (real) wave numbers 0 < k < L, where
L is corresponding to the highest frequency. Boundary element methods
(BEM) lead to a large linear system for each wave number. The memory
requirement for such a problem is Mem = O(N?) and the numerical work
using classical direct solvers is given by Op = O(M N3), where M denotes
the number of frequencies and N is the number of degrees of freedom by
BEM discretisation. Typical values are N = 10® — 10* for the dimension of
the problem and M = 10 — 10? for the wave numbers of interest.

In this paper, we discuss a numerical method for the Helmholtz equation
which is based on the Fourier transform with respect to the wave number x.
In particular, we examine in detail the case using the double-layer potential to
treat the BVP (1) and summarize the properties of the single-layer potential
representation of the solution which are described in our previous paper [7].

The paper is organised as follows.

In Section 2, we briefly review some basic properties of the Dirac J-distri-
bution and the Fourier transform. The exterior Dirichlet BVP is topic in
Section 3. In particular, we describe the boundary integral formulation for
the problem and its discrete forms. The new linear systems after applying the
identity of the Fourier transform are discussed in Section 4. In Section 4.1, we
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derive the analytical form of the transformed matrices and some important
properties are given in Section 4.2. Finally, we present some numerical results
(Section 5) and some conclusions (Section 6).

2 Preliminaries

For our subsequent applications, we introduce some basic definitions and
properties corresponding to the Dirac -distribution and the Fourier trans-
form. For more details, we refer the reader to [2], [4] and [6].

Let g be a real- or complex-valued function on R.
The classical L, spaces, 1 < p < oo, consists of functions g with the property

L, =L,(R)={¢g: R—=CorR, / lg(x)|Pdz < oo}

and the corresponding norm is

lall, = | [ otz
R
The Schwartz space S of rapidly decreasing smooth test functions is defined
by
S=S(®) = {g € C*(R) : |(1+2%)%¢™(@)| < Con}

with arbitrary m,n € N,, x € R and some positive constants C,,,,. Its adjoint
space S’ is called the space of tempered distributions.

2.1 Dirac 4-Distribution

Let ¢ : R — R be a continuous function satisfying
(@) =0 ([z]), |z] = o0

for some real a. Then v defines a real distribution over S by

<, g >= / b(x)g(z)dz Vg eS. (3)



Remark 1 We will reserve the same notation (3) even for the Dirac 6-
distribution. It holds 6 € S’ defined by

<d,g>=g(0) VgeSs.
The derivation of a distribution v is well known as
<Y, g>=—<1, ¢ > .
If we assume that g(z) = a(x)g(x) with a(z) € C*(R), g,§ € S, we obtain
<Y, g>=—<,d§g>—<v,af > (4)

by applying the product rule.
In particular, the derivation of the Heaviside function H defined by

1, >0
H(x):{o z <0

is just the Dirac d-distribution.

In our discussion, we will need an expression of the distribution d(a(z)),
where a(z) is differentiable and has n single zeros z,,.
In this case, we get

1

@/ (n)]

< 6(a(z)), g >= ) g(xa) (5)

for all g € S.

2.2 Fourier Transform

For the complex-valued ¢, we define the one-dimensional Fourier transform
by

mmzaﬁﬁm@=/a&M%. (6)

R
The corresponding inverse Fourier transform is then

_ 1
o

9(€) = FL3(R)(©) /gmwﬁwm (7)

R



from which we also have

1

Q@)EfZHd@)=§;ﬂ—@ resp.  Fexl[g](k) = 2mg(—r) . (8)

The Fourier transform g exists, at least for g € L;. In particular, (6) and (7)
define the Fourier transform and its inverse for every test function g € S. It
is well known that S is invariant under the Fourier transform and that under
its inverse

F*:S—S.

An important property of the Fourier transform is given by the Bessel-
Parseval formula

- 1 oA
<gaf >]L2: /g(’i)f(l{:)dﬁ:%<gaf >L2 for all fag€L2

R

We notice that the Fourier transform of a tempered distribution ¢ € §' is
defined by

<, §>=<1, 9>
which holds for every test function g € S and has the property
FH .8 > S

Later, we will need the inverse Fourier transform of the constant 1.
Since the Fourier transform of the even Dirac d-distribution is known

b=1,
we get, through (8),
i =6(z)=6(z) and 1=6(z). 9)

Another necessary application is the Fourier transform of a polynomial P (k)
given by

FoolP(9)(2) = 2P (i 2)5(2). (10)

3 The exterior Dirichlet BVP

In this section, we formulate boundary integral equations for the exterior
Dirichlet BVP (1) and present its discrete forms using the point collocation
method.



3.1 Boundary Integral Formulation

We introduce the acoustic single- and double-layer potentials

Wﬁm@=:/mm%MMwM&,

r u(x,y, K (11)
Va(F)y, k) = /%ﬂx,n)d&.

for a given density function f(-,x) defined on ' and y € R3. w*(z,y, k) is
the fundamental solution of the Helmholtz equation defined by

1 eirle—l

u*(z,y, K) z,y € R3.

Tz —y|’

Note that the fundamental solution and thus both potentials satisfy the Som-
merfeld radiation conditions (2) (cf. [1]).

Using the double-layer potential V5 in (11) to treat the Dirichlet BVP, we
need to solve the boundary integral equation (BIE) for y € T

1

(%I—i—B) f(y,n)E§f(y,/-c)+/Wﬂx,m)dﬂs:g(y,&). (12)

We formulate

Theorem 2 The exsterior Dirichlet BVP
Au(y)+k*u(y) =0  forye Q°=R*\Q, (13)
u(y) =g(y) € H(09) forye o, reR,

u satisfies the radiation conditions (2)

has a unique solution

ou* r+l
ut) = [T 0y ar, € o) (1)
r

for all wave numbers k. f € H"(0Q) denotes the solution of the BIE (12).

If —k? is not an eigenvalue of the interior Neumann BVP for the Laplacian,
then the BIE is uniquely solvable. Otherwise the kernel of %I—{— B becomes
nontrivial.



Similary, we can use the single-layer potential V; and get the BIE for y € I’

Af(y, k) = / u*(z,y, 8) f (2, K) dFy = g(y, ). (15)

T

The uniqueness of the solution is given by the
Theorem 3 The exterior Dirichlet BVP (13) with ¢ € H™(0Q) has a

unique solution

u(y) = / u*(z,y, k) f(z, k) dF, € H;Ot%(QC)

r

for a unique f € HT(09Q) solving the BIE (15), provided —k?* is not an
eigenvalue of the interior Dirichlet BVP for the Laplacian.

Remark 4 If —x? is an eigenvalue of the interior Dirichlet BVP for the
Laplacian, then the BIE (15) is solvable, if and only if g is orthogonal to the
cokernel (=kernel) of A. In this case, the solution f is not unique, cf. [3].

Throughout the rest of this discussion, we assume that the equation (15) is
solvable.

It should be remarked that the operators for the corresponding interior
Dirichlet BVP are given by respective —%I + B and A. In these cases,
the solutions f of the associated BIE are unique, provided —x? is not an
eigenvalue of the interior Dirichlet BVP for the Laplacian.

For more details and the proofs of the theorems, we refer the readers to [2]
or [3].

3.2 Collocation Method

Let the surface I' be discretised using a system of plane, triangle panels
N
T~Ty=|JT;.
j=1

Since the unknown function f(x, ) depends on x € I and the wave number
k, we devide the approximate function f;, in a product

Fule, k) = D a5 () (w)

7



where ¢;, 7 =1,..., N, are the associated ansatz functions.

Therefore, the BIE (12) leads to

(g + B(/{)> O!(/{) = Q(/ﬁ) ) B e (CNXN , O, 0 € CN : (16)

The elements of the matrix B are defined by

1 [ 9 erloul

bii(k) = — —i(x)dF},,

ZJ(K) A1 anx |x—y,~|%(x)

r
where y;, 2 = 1,..., N, denote the corresponding collocation points.
Using
0 ein\zfyﬂ ein|wfy¢| ( ‘ | )
= KT — Y| — 1) <ng,x—y; >,
ong v —yi| |z —yl? ' ? '

the expression above can be rewritten in the form
1 ein|$—yi|

=25 | g HlT = wl = 1) <neiz—pi > 0y(e)dFr.
t
r

bij (k)

If the BIE corresponds to the single-layer representation (15), we get
A(k)a(k) = o(k), A€ CV*N o, pe CV (17)

where
1 6in|ac—yi\

i(8) = — | ———;(@)dF,
G“J(H) 47T ; \x—yz‘gpj(x)

are the entries of the matrix A.
In both cases, the vector v and the right-hand side of the systems are given
by

(a(k)); = (k) and (o(k))i = 9(yir k), 4,7=1,...,N.

Remark 5 The equations (16) and (17) explicitly depend on the wave num-
ber k.

Throughout the rest of the discussion, we assume that x € RT.



4 Linear Systems

In order to solve the system of linear equations, we apply the identity of
the Fourier transform with respect to the wave number k to the collocation
matrices

C(k) = Fen [Fre [C(0) ()] (5),

with respectively C' = B and C' = A.

4.1 Transformed Matrices
The entries of the matrix B(¢) = .7-";% [ B(k) (&) are given by

O = 4 [ % (rs 1)

with r = |z — ;| as a consequence of

. < Ng, T — Yy > @i(x)dF, . (18)

F;é[ei’" (ikr —1)](&) = %fn,z[ilﬂ' - 1](2)‘

z=r—¢&
and (10).

Remark 6 The distribution 0(2), z = |x — y;| — &£, is concentrated on a ball

of radius & centred at y;. Due to its definition, the integration domain leads

to integration over the intersection of I' and the surface of this ball.

Further, & can be restricted to [0, diam(I") | where diam(T") = sup |z — y|.
z,yel’

Since we assume that I';, 7 = 1,..., N, are plane triangles and the ansatz

functions are piecewise constant on I';, i.e.

(CU) . 1 on F]
Yil" = 0 otherwise,

then the centres of the mass of the panels I'; build a system of collocation
points

1
vi=5 (e +aP +2Y), i=1.N.

In this situation, the elements of the matrix B(¢) can be computed analyti-
cally as follows.

Let us denote the projection of the point y; into the plane of the triangle
I'; with yi, yi = y; — d - ny. First, we rotate and translate the system of

9



coordinates in such a way that the origin coincides with the point y;, the
ei-axis is directed along a side of the triangle, especially the side $§1)$§2)

the es-axis is directed along the unit normal vector n,.

, and

In these new coordinates, a point x € I'; takes the form
xl = Q(J; - yzl) = (J;Il’xlbo) ’

where () denotes the corresponding rotation matrix. Further, the scalar
product in (18) is given by

Ofore=

< Ng, & — Y >= { —d otherwise.

Figure 1 illustrates the situation described.

4

YL
i . X-(B)

@
X

Figure 1: Computation of the elements of the matrices

The integral (18) will be evaluated in polar coordinates in the plane of
the triangle I';. Using the notation from Figure 1 and noting the relation
pdp = rdr = (z + £)dz, we obtain for i # j

10



D2 Zmax

o = 2] T (8 )

D1 Zmin

)
1d ,
- Eg (11 [2min s2maz] (Z)) ‘Z:O dd)

—
i~
N2

47r§/5 —Zmin(9)) = 0(=Zmaa (¢))do (19)

through 1, . . 1(2) = H(2 — Zmin) — H(2 — Zmas) and H' (2) = §(2).

In order to compute the integral (19), we first consider the situation described
in the following Figure.

i |

\y’i

\j

Figure 2: y; coincides with one of the edges of the triangle T,

In this case, we formulate
Theorem 7 The elements of the matriz B(€) € RV*N are given by
0, 2=3

bij(€) =14 @ d

— 0 —[d]) - Bu( £)
Am &

where

d h

&2 —d? 52—d2—h2

It holds &5 > &, = Vd? + h? and h denotes the minimal distance of a side
of the triangle and the origin (c.f. Figure 2).

Bij(§) =

H[gminagmaw] (5) N

11



Proof. We consider the entries in the form (19) with ®; = 0 and ®, = &.
The relation (5) and the fact that z,,:,(¢) = |d| — € is independent of ¢ lead
to

(¢n)
mam(qs)) ‘¢:¢n ‘ .

The expression (20) follows after short calculations using the relation
62_d2 /52—d2—h2
13 h

for any zero of the function z(¢). "

b 1d 1d 1
biy(§) = e 20(E - 1d) - 3 = [0,8]

|(=2(9))19=0.| =

The expression (20) implies that each element bi;(€) has a local support.
Therefore the matrix B(&) has a sparse structure for a fixed £. It should be
remarked that f;;(£) becomes singular at the point & = &.

If the projection y; does not coincide with one of the edges, then we can
always reduce the calculation of the integral to calculating three integrals of
the previous type. Thus, the analytical computation of the entries b;;(£) is
given in any case.

Throughout the rest of the discussion, we assume the expression (20) from
Theorem 7.

In a similar manner, we get the inverse Fourier transform of the matrix A(x)

by

11
056 = 377 | 9 1o = ules()dF,
T

since
Froele™ vl (&) = F{)(E - o — ui)

and applying (9).
Transforming the geometry as described above and using the notation from
Figure 1, we obtain for all 7,7 =1,..., N

ai;(€) = %% /6(§—r)rdrd¢
= (@0 - ®(0) (21)

12



The matrix /1(5) is also real and sparse for a fixed &, because each element
ai;(&) has a local support, supp| ;| = [£ins &z |, ¢f- Remark 6.

maxr

4.2 New Linear Systems

After studying the inverse transformed matrices, we return to matrices which
depend on the wave number k. §
Applying the Fourier transform to the matrix B(§), we obtain for the term

Bi;(€) in (20)

Emax Emaz
FeulBs(©@) ) = & [ 806 + [ 5y(©) (e = %) de 22
Emin Emin

Since the analytical computation of

§maaz
[ Bstds =0

§min

max
min
with

0 for £ =&,

WO=q 1 o &+de \ o &—de
2 hy/& = & hy/& — &

is independent of the wave number, we need to estimate the first integral
in (22) once. A further property is the smoothness of the second integrant.
Using the Gaussian formula for the approximation, it holds

gmaw m
/ Bij(€) (€ — ™) de ~ ine™Ohe Y wyfBy(€)sine(réy)e
Emin k=1

where B;;(€) = £B;(2(€ + &)) is also independent of k and the relevant
parameters are given by

— gmaz + gmin - 2£O

fk — g‘f‘hgxk, hg — é.maa: _gmin and{;r .

4

x) denote the zeros of the Legendre polynomials P,, of order m and wy are
the associated weights.
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Due to the definition of §(§ — |d|), the system of linear equations (16) leads
to

S0(s) + B(w)a(x) = ofx) (23)

where the entries of the matrix B(k) are given by

bi(k) = 0
bij(k) = % sgn(d) el o
1Kk&o . m . |
_64—7r (%‘j 3] ‘me + ikhg Z wiBij (fk)SinC(ﬁfk)emik) '

k=1

The elements of the matrix A(¢) will be transformed as follows.
After restricting the integration domain to its support, we approximate the
function G,;(€) inside this interval using n piecewise constant splines

Emac . 11
[ @t x he Y- o 0) [ o
e 1=0 /
where
1+1 ) *
ai; (1) = /dij(é-:nin + the)dt and  he = W’ neN.

l

Since the integral term will be computed analytically, we also get a linear
system

A(r)a(k) = o(k) (25)
with a new collocation matrix depending on
~ k(€ —I—k) : ’{h’f — - iklh
aij(n) = hfe min T 2/ QINC (7) lz_;azj(l)e €, (26)
Notice that the term outside of the sum depends only on the wave number
and will be evaluated separately.

Remark 8 Due to the independence of the wave number k, the values 7;;(§)
and f3;;(€) in (24) and, similary, G;(l) in (26) need to be calculated only
once. Thus we will treat the respective linear systems (23) and (25) for
several k < L using always these computed data.
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5 Numerical Results

We present numerical experiments for the boundary integral formulation

Av = (%I—FB) f and Av= (—%I+B> f (27)

for the respective interior and exterior Dirichlet BVPs for the Helmholtz
equation using collocation with piecewise constant ansatz functions.

In (27), A and B denote the single-layer and double-layer potentials of the
Helmholtz equation. Since we chose

1 ein|m—y0\

f=u"(x,yo, k) zel,

dm |z — ol
yo ¢ € for the interior and yy € Q for the exterior problem, the solution of
the equation (27) is known to be v = 0,,u*(x, Yo, K)|zer-

Here, all numerical tests are performed for the surface of the unit sphere
[={zelR,Jz|=1},

approximated using a system of N = 1280 plane, triangle panels. We are
interested in a spectrum of M = 200 wave numbers bounded by L = 8.

In order to study the behaviour of the solutions vgr which arise from the
so called Fourier method described in Section 4, we compare these and the
results using standard techniques vgr with the analytical solutions v. Note
that “using standard techniques” means the use of numerical integration for
the computation of the matrices.

In the graphs below, the solution vgr is highlighted in black, vgr is pointed
and the dashed line corresponds to the analytical solution.

Figure 3 shows the error of the solutions in the Ly norm. The error of the
solution using standard techniques increases with a larger wave number, while
the error vpr is almost constant apart from some discrete peaks. These result
from the fact that the negative square of these wave numbers are exactly the
eigenvalues of the Laplacian on the unit sphere, cf. the relevant theorems
and remarks in Section 3.1.

15



0.15¢

0.05¢

a) Interior Problem

1.75}

1.5}

1.25;

0.75¢}

0.25}

b) Exterior Problem

Figure 3: Ly error of the solutions in dependence on the wave number

Next, we selected one component of the solutions and printed it depending
on the wave number k, see Figure 4 and 5. In all cases, we decide that
the results of the Fourier method correspond well with the analytical values.
Only for the eigenvalues it differs a bit. The curves of the solution vgr differ
increasingly for larger wave numbers.
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0.1+

0.05¢

0 2 4 6 8
a) Real Part

0.1+

0.05¢

0 2 4 6 8

b) Imaginary Part

Figure 4: The course of the solutions in dependence on the wave number -
Interior problem
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0 2 4 6 8
a) Real Part

b) Imaginary Part

Figure 5: The course of the solutions in dependence on the wave number -
Exterior problem
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In order to examine the behaviour of the solutions vgr in dependence on
the dimension N, we differentiate between the behaviour of the error for
kh = const. and the convergence for a fixed wave number x with the dis-
cretisation parameter h tending to 0, cf. [5].

Table 1 shows the behaviour of the errors for various wave numbers satisfying
the condition kh ~ 0.7.

We decide that the deviation of the solution of the interior problem results
from the fact that the wave number x = 7.84 lies close to an eigenvalue of
the Laplacian (see also Figure 3).

Table 1: L, error of the solutions for various k with kh ~ 0.7

| N | & | &h |]|]v* —vprl, (interior) | [[v* — vpr||L, (exterior) |
20 | 1.15| 0.698 0.795E-02 0.517E-01
80 | 2.04 | 0.697 0.708E-02 0.145E-01
320 | 3.94 | 0.699 0.760E-02 0.224E-01
1280 | 7.84 | 0.702 0.159E-01 0.179E-01

In Table 2, the convergence of the solutions vgr of the respective interior and

exterior problems is printed for k = 7/2.

Table 2: Convergence of the solutions for k = /2

N kh | ||[v* —vpr||L, (interior) | ||v* — vpr||L, (exterior)
20 | 0.953 0.112E-01 0.532E-01

80 | 0.538 0.473E-02 0.134E-01

320 | 0.278 0.143E-02 0.380E-02

1280 | 0.140 0.418E-03 0.146E-02

It should be pointed out that the new scheme uses only half of the computing
time compared to the case using standard techniques.

6 Conclusions

In this paper, we presented a new Fourier method for the Helmholtz equation,
in particular for the exterior Dirichlet BVP. The transformed collocation ma-
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trices, which are real and have sparse structures, were discussed. We pointed
out the advantages of solving the new resulting linear systems. Numerical
tests of the new sheme show the good agreement of the boundary element
results with the analytical solutions.

In a similar manner, we can apply the described Fourier method to the Neu-
mann or impedance BVP for the Helmholtz equation.
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