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Abstract

We prove asymptotic normality of the so-called maximum likeli-
hood estimator of the extreme value index.

AMS Subject Classification: 62G32, 62G20
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1 Introduction

Let X1, Xs,... be independent and identically distributed (i.i.d.) random
variables (r.v.’s) from some unknown distribution function (d.f.) F. Denote
the upper endpoint of F' by z*, where z* = sup{z : F\(z) < 1} < o0, and let

F(t+z) — F(t)
1—-F(t)

F(x) =P X <t+z|X>t)= (1)
with 1 — F(t) > 0, t < z* and z > 0, be the conditional d.f. of X — ¢
given X > t. Then it is well known (Balkema and de Haan, 1974; Pickands,
1975) that up to scale and location transformations the generalized Pareto

d.f. given by
Hy(z) =1~ (1+7z) 7, (2)

r>0ify>0and 0 <z < —1/yify < 0 (for v = 0 read (1 + yx)~ /7
as exp (—x)), can provide a good approximation to the conditional probabil-
ities (1). More precisely, it has been proved that there exists a normalizing
function o(t) > 0, such that

lim Fy(zo(t)) - H,(x)

t—x*

for all z, or equivalently

lim sup |EF(z) — H,(z/o(t))] =0 (3)

=T gcp<a —t

if and only if F'is in the maximum domain of attraction of the corresponding
extreme value d.f. G, (z) = exp(—(1+~2)~'/7) (Gnedenko, 1943), commonly
denoted by F € D(G,).

Under this set-up, it turns out that a major issue for estimating extreme
events is the estimation of the extreme value index . A variety of procedures
to estimate -y are now available in the literature (e.g. Hill, 1975; Dekkers et
al., 1989; Smith, 1987), although there are still open problems. Quite often
the accuracy of these estimators rely heavily on the choice of some threshold
but, it is not our aim here to address this type of optimality questions.

The so-called maximum likelihood estimator (m.l.e.) is one of the most
popular estimators in this context. For a sample of size n let X;,, < Xy, <
... X, be the ascending order statistics. In view of the generalized Pareto



approximation, it is clear that we shall base our inference on some high order

statistics, say (Xn—kn, Xn—k+1,n, - - - » Xnn)- Consider the one-to-one mapping
YvO = Apn—k,n
le = Ap—k+l,n — ank,n

Yk = Xn,n - ank,n-

Any inference based on maximizing  the likelihood  of
(Xn—kns Xn—k+1ms - - -» Xnn) is equivalent to considering the likelihood of
(Yo, Y1,...,Yr). Now the distribution of (Y3,...,Y;) given Yy = yo equals
the distribution of (Y,...,Y};), the order statistics of an ii.d. sample
(Y, ..., Y)) with common distribution Fy,(z) = P(X < yo+2z|X > yo) (see
e.g. Theorem 2.4.1 in Arnold et al., 1992). Therefore, the common approach
is first to factorize the distribution of (Y{*,...,Y}) and to use the general-
ized Pareto approximation (3), and second to ignore the factor related to the
marginal distribution of Yj in the likelihood of (Y, Y1, ..., Y%). To sum up,
the so-called m.l.e.’s of v and ¢ are obtained by maximizing in v and o the ap-
proximative likelihood [, h,,(V1,...,Y;) where h,,(y) = 0H,(y/o)/dy.

Note that the approximative likelihood function tends to oo if v < —1 and
v/o L —1/(Xpnn— Xn—kn), so that a maximum over the full range of possible
values for (,0) does not exist. Since moreover the maximum likelihood
estimator behaves irregular if v < —1/2, we look for a maximum of the
approximative likelihood function only in the region (v,0) € (—1/2,00) %
(0,00).

The likelihood equations are then given in terms of the partial derivatives

dlogh,,(y) 1 ol 1 4
Doglgls) 110 (1, 2) - (Lar) 2
Oy 2 08 +0y 7+ 1+ 2y
alog h")’:a'(y) _ _l _ 1 + 1 _0")/_2y
do o v 1+ 2y’

where for v = 0 these terms should be interpreted as

9log hy,o (y) _}(g)Q_g
oy =0 2 \g o’

Ologhyo(y))  _ 1 v _,
0o =0 o o2 ’

The resulting likelihood equations in terms of the excesses X, _i 1 n — Xpn—kn
are as follows

( k

1 Y
Z ? IOg (1 + E(Xn—i—kl,n - Xn—k,n))

i=1
. <l 1) %(Xn—i—}-l,n - Xn—lc,n)
Y 1 + g(Xn—i—H,n - Xn—k,n)

k
S (5+1) o e =
\ =1 Y 1 + %(ani—l—l,n — ank,n)

2

7\

-0 (4




(with a similar interpretation when y = 0), which for v # 0 can be simplified
to

z Zlog (1 + —(Xn—it1n — Xn—k,n)) =7

z 1 -—
k 1 + n i+1,n ank,n) v+ 1

with (v,0) € (—1/2, oo) x (0, oo). The numerical problem to find a solution of
these equations which maximizes the approximative likelihood was discussed
by Grimshaw (1993).

From the above reasoning it follows that the m.l.e. of v is shift and scale
invariant, and the m.l.e. of ¢ is shift invariant and scale equivariant.

Proofs of the asymptotic normality of the m.l.e.’s of v and o were given
by Smith (1987), and also by Drees (1998) in the case v > 0. Nonetheless
we consider some proofs not easily understandable. Moreover, some of the
conditions used in the aforementioned papers are unnecessarily restrictive. In
this paper we present a relatively simple direct approach to prove asymptotic
normality of the m.l.e.’s of v and o. It is based on some recent approximations
to the tail empirical quantile function established by Drees (1998).

Next we sketch the proof of the asymptotic normality. Under standard second
order conditions we have for an intermediate sequence k, € N, n € N, (i.e.
k, — oo and k,/n — 0 as n — o)

n(t) = Qn(1) _ t -1 ~1/2
(4455 )Hm (S o), o

where (Qn(t))tco,) is a distributionally equivalent version of the process
(Xn—knt],n)tef0]> (Yn(t))iepo,1) is an asymptotically Gaussian process of known
mean and covariance function (Lemma 3.1), o is the true parameter and a
is a suitably chosen positive function. Hence for all ¢ € [0, 1]

o (14200 1 (1) S el o
0

where & = o /a(%). Now if the sequence of solutions (v, ) satisfies

¥=7=0p(k,'?) and & —1=0,(k,

n

1/2)

Y

one can prove, using a construction similar to (5), that

inf ¢ <1+1Q”() Dl ))
1/(2kn)<t<1 o a()




is stochastically bounded away from 0 (Lemma 3.2). This implies

log (t”’o (1 4! zQ"( ) — Qn(l)))
o a()
= log ( (— — 70) 4 70 zanzYn(t))

(o = 707 1/2 1/2
= (2 -70) TR0 + 0y, )

and

1 v 1—1 o —1)2 1 2
where the o,-term is uniform for 1/(2k,) <t <1 (proof of Proposition 3.1).
Hence, up to a o, (kn Y ?)-term the equations (4) are equivalent to linear equa-
tions which can be solved readily. The proof in case vy = 0 requires longer
expansions but is similar.

The precise statement about the asymptotic normality is given in Theorem
2.1. In Theorem 2.2 an equivalent explicit estimator is constructed in the
case vy = 0.

Throughout the paper, F'*~ denotes the generalized inverse of F', —, conver-
gence in distribution and —, convergence in probability.

2 Asymptotic normality of the maximum like-
lihood estimators

Assume that there exist measurable, locally bounded functions a, @ : (0,1) —
(0,00) and ¥ : (0,00) — R such that
F(l—to)—F<(1—t) _ z=70_1
. a(t) Yo _

for some vy > —1/2, for all t € (0,1) and = > 0, where z — ¥(z)/(z77 — 1)
is not constant, ®(¢) not changing sign eventually and ®(¢) — 0 as ¢ | 0.
Then, according to de Haan and Stadtmiiller (1996), |®| is —p-varying at 0
for some p <0, i.e. limy o @(tx)/®(t) = 2 ” for all x > 0, and

(=00t —1) /(o +p) ,p<0
V(z) =4 —a"log(z)/v YoF#p=0 (8)
log®(x) Yo =p=0,

provided that the normalizing function a and the function ® are chosen
suitably. Condition (7) is a second order refinement of F' € D(G,,). Still, it
is a quite general condition, satisfied for all usual distributions satisfying the
max-domain of attraction condition.

We assume throughout that k, is an intermediate sequence, i.e. k, — 00
and k,/n — 0 as n — oo.



Theorem 2.1. Assume condition (7) for some o > —1/2 and that the
intermediate sequence k,, satisfies

®(kn/n) = O(k;'?). (9)

n

Then the system of likelihood equations (4) has a sequence of solutions (Y, 6y)
that verifies

2760 =) = S0 [ (e 0+ 100) wioar
—q Lj 2k /1 (t° — (27p + 1)#2°) (W (1) — ¢t oW (8)) dt (10)

~ 1 1
k;ﬂ( On _1) _Jot ki”‘I’(%)/ (o + 1) (270 + 1)£2© — £70) W(t) dt
0

a(%z) Y0
d 7"; ! /1 ((v0 + 1)(270 + 1)E2° — ) (W(1) — 00 W (1)) dt (1)

as n — 0o, and the convergence holds jointly with the same standard Brow-
nian motion W. For vy = 0 these equations should be interpreted as their
limats when v — 0, i.e.

1
k;/2%+k}/2q>(k—")/ (2 + logt)U(t)dt
n-Jo

—a — /1(2 +logt) (W(1) —t~'W(t)) dt (12)

. 1
k}l/Q ( On 1) _ krl/Z(I’(%)/ (3 + logt)W(t)dt
0

a(f)
1
ra / (3+logt) (W(1) — "W (#)) dt. (13)
0
Moreover, any sequence of solutions (3, 67%) which is not of the type (10)-
(13) must satisfy /-ci/gﬁ/;'; — Yo| —p 00 or k}/2|6;/a(kn/n) — 1] =, 0.
Remark 2.1. Condition (9) is satisfied if k£, — oo not too fast. The bias
term (Yo + 1)%ka’ ®(kn/n) [} (170 — (290 + 1)27°) U(t)dt/~, in (10) vanishes
if k}/QCD(kn/n) — 0. A similar remark applies to (11)-(13).

Remark 2.2. Note that the likelihood equations are satisfied with v = 0 if
and only if

k k 2
1 1
ﬂ E (anH—l,n - ank,n)z = <E 5 (anH—l,n - Xnk,n))

and o0 = Zle(Xn_iH,n — Xn—kn)/k. Hence the m.le. for vy will a.s. not be
equal to 0 if, e.g., F' possesses a density.

5



Corollary 2.1. Under the conditions of Theorem 2.1 and if
kn
k}/%(z) — AER, (14)

the solutions (10)-(13) verify

~

12 | Tn— 70
kY [ oo falkn/n) — 1 } =4 N, ), (15)

where N denotes the bivariate normal distribution, yu equals

T
p(v+1) 1-2p+70—p70 .
[(1—/))(70—p+1)’ (1—ﬂ)(70—p+1)} ,if p <0,

_11T .
[1a701’11 77’f707ép:07
[an] 77’f70:p:0

and

@+ =1 +)
X = [ —(14+7) 2+ 2y +72 ]

Remark 2.3. Smith (1987) examined a slightly different version of the m.l.e.
that is based on the excesses over a deterministic threshold v = u,, instead
of the excesses over the random threshold X, ,. For the comparison of
Smith’s results with Corollary 2.1, we focus on the case vy # 0, p < 0 and
A = 0, when there is no asymptotic bias, since in the other cases the more
restrictive second order conditions used by Smith are not directly comparable
to our setting.
Let K denote the (random) number of exceedances over the threshold « and
let

o — { You, Yo > 0,

" %[ (F(1) = u), 7 <0.

Then it was shown that the standardized m.l.e.’s KY2?(4, — 9,6 /00 — 1)
based on the exceedances X; — u converge to a centered bivariate normal
distribution with covariance matrix

((14‘%)2 —(1+70)>
—(1+7%) 2(1+%) /)’

At first glance, it seems peculiar that we obtain a different asymptotic vari-
ance for the scale estimator in Corollary 2.1, namely 2(1+ ) +~2. However,
the following heuristic reasoning shows that in fact the increase in the vari-
ance is due to the slightly different standardization.

To make the results about the asymptotic behavior comparable, in our setting
one has to condition at the event X,,_j, , = u. Then Smith’s result claims
that conditionally &, = o,(1 + kn Y 2Zn) for some asymptotically centered
normal r.v. Z, with asymptotic variance 2(1 + ). Hence conditionally at
ankn,n =Uu

(e ) = e (e )

6




Because, in the restrictive setting considered here, a(k,/n) = v F* (1—ky/n)
for v > 0 and a(k,/n) = |y|(F<(1) — F<(1 — k,/n)) for 79 < 0, uncondi-
tionally (i.e. when u is replaced with X,,_x, »n) on/a(k,/n) — 1 in probabil-
ity, so that the first term tends to a normal random variable with variance
2(70+1). According to the approximation of the tail empirical quantile func-
tion (cf. (17)), unconditionally the second term converges to oW (1). Since
asymptotically X,_j, » and the excesses X, _it1n — Xp_p,n, 1 <1 < ky, are
independent, so are Z, and W (1). Hence the two variances 2(yy + 1) and 72
add up, leading to the variance given in Corollary 2.1.

We now show that if 7y = 0 the m.l.e.’s are asymptotically equivalent in some
sense to explicit estimators. Define

k
) 1 <& i
U) — — . — ) =
mnj - kn ;(Xn_HLn Xn—kn,n)J’ J= 1’2’
: Lo, (m)y =
=1-3 (1 ) )
mnp
and (13
~ kn _ 2(7n”l )
CL*(;) = (2)

n
It can be shown, using Corollary 3.1, that these estimators are consistent
and asymptotically normal if v < 1/2. Let (Yyrr,mre) be a sequence of
solutions of (4) as described in Theorem 2.1.

Theorem 2.2. If F is in the class of distributions that satisfy (7) with vy =0
and if (9) holds, then

kéﬂ (3« — AmLE) =5 0

s kn) A
KL/ (a*(7) 0MLE> 5 0.

a(’z)
Remark 2.4. If, in addition, (7) holds with p < 0, sup{z|F(z) < 1} > 0 and

k, = o(log’n), then we have an analogous result for the moment estimator
introduced by Dekkers et al. (1989):

and

kx'? (Aaronr — Aure) —p 0

where M
. 1 (Mp )%,
Amom = MY +1 - 5= e )
with MY = é Zf;al(]oan,i’n —log Xy, k,n)?, 7 =1,2. A similar state-
ment holds for the scale estimator
ok 2(MD)3

The condition &, = o(log®n) ensures that the bias vanishes asymptotically.
We prove this remark in Section 3.



3 Proofs

Given (7) with 79 > —1/2 and (9), from Theorem 2.1 in Drees (1998) one
can find a probability space and define on that space a Brownian motion
W and a sequence of stochastic processes @, such that: (i) for each n,
(@n()tef0,1] =d (Xn—[knt],n )te[01 and (ii) there exist functions a(k,/n) =
a(ky,/n)(1 + o(®(kn/n))) and ®(kn/n) ~ ®(kn/n) such that for all € > 0

sup fro+1/2+e Qn(t) — F<(1— ’%n)
tG[O,l} EL(%)
-1 Wi(knt) = k
— P O s VA AV VLA ‘
< Yo k, + (n) (1)
Ky

= 0p(k, /) + 0,(®(~2)), as n — oo.

n
A similar expansion is also valid for 7o < —1/2 when F“ (1—k,/n) is replaced
with a suitable random variable.

Define
Ya(t) = ky'? (Q"(t;(_k_n?"(l) - %_ 1) (16)

(read (¢77° — 1)/70 as —logt, when vy = 0). Hence we have the following
lemma.

Lemma 3.1. Suppose (7) and that the intermediate sequence k, satisfies
(9). Then, for alle > 0

k

Yo (t) = W, (1) — =00 W, () + k}/%(;")\p(t) + 0, (1)t~ 00124 (17)

as n — oo, where W, (t) = k;l/QW(knt) is a standard Brownian motion and
the op-term is uniform for t € [0, 1].
From this lemma the following corollary follows easily.
Corollary 3.1. Under the conditions of Lemma 3.1, for alle > 0

Yo(t) = Op(1) ¢ 0t1/249) (18)
as n — 0o, where the Op-term is uniform for t € [0,1].

Given the previous results, to prove Theorem 2.1 it is sufficient to consider
the likelihood equations with (X, _,1,n — Xn—k,,n) Teplaced by @, () —Qx(1),
t € [0,1]. It is convenient to reparametrize the equations in terms of (v, &)
= (v,0/a(k,/n)). Then we have the equations

1Qn(#)—Qn(1)
IS ( log (14 2205%0) — (1+1) %) dt == 0
3 @n()-0n(t) G (19)
s (2+1) Wdt

a(kn)



Lemma 3.2. Assume conditions (7) and (9). Let (v,5) = (Yn, 0n) be such
that

[7/6 =70l = Op(k'7?). (20)
Then, if —1/2 < vy <0 or vy > 0,

7 Qn(t) — Qn(1) — 1
P(l—i-g o > Cut ™, €[5 1]) n - oo, (21)

for some r.v.’s C, > 0 such that 1/C,, = Op(1). If vo =0,

Y Qn(t) B Qn(l) 1 1
and
sup Q"(tz — @nl) _ O, (log k), n — oo, (23)
e a(32)

Proof. Tt suffices to prove the assertions with @, (t) replaced with X, 4.n-
Without loss of generality, one may assume X;, = F*<(1 — U,,) for uni-
form order statistics U;,, since (X,_p,0,0)te0,1] = (F©(1 = Upntn)tefo,1] =*
(@n(t))tep,1)-

Note that by Shorack and Wellner (1986, Chapter 10, Section 3, p. 416,
inequality 2)

Wikat+1.0 = 0p(1), sup _ Rt = Op(1) (24)

sup
0<t<1 nUknt +1,n

1/@2kn)<t<1  knt
as n — 0o. Also note that (7) implies, for some functions a(s) ~ a(s) and
O(s) ~ D(s), s 10, for all zp > 0 and € > 0,

Fe(l—sz)-F“(1-s) g=70_1

a(s) Yo
(s) ~ @)

$70+s

lim sup
50 0<z<xo

(Drees, 1998, Lemma 2.1). Combining these two results, we obtain

F (1 Uppiiin) FC(1-5)  (EUknnian) -1

a(kn) Y0

o(k) (25)
— v (k‘ U[kn t]+1 n) ‘ = Op(l)
Then we have, for —1/2 < vy < 0 or 7 > 0,

Xn—[lcnt],n — An—knn F< (1 - U[kntH-l,n) — F* (1 - Ukn-i—l,n)

sup t7te
te[1/(2kn) 1]

o

a() B (%)
1 n -7 1 n —70 -k n
= —(2Upiiin) == ZUsiin S (U gi1m
Y (kn [knt]+1, ) Yo (kn kn+1, ) + (n) (kn [knt]+1, )
=k n =k
_H( —(ro+e) n
Q( n )‘I’ (kn Ukn"'l;n) + Op (t (P( n ))

9



Hence

n —%o v 1 n —70
() ) 2

1 (n L n
— (k_U[knt]H,n) + gq)(;)qj (k_U[knt]H,n)

_|_

n

n
( ) (k_Uk"+1’"> + 0, (t*(vo+s)k;1/2)
I+III+IV+V+VI

7
c
gk
o
= I+1
By (24) t™III is bounded away from zero uniformly for ¢ € [(2k,)~",1]. We
will show that all the other terms tend to 0 uniformly when multiplied with
t3, so that assertion (21) follows with C,, := infycog,)- 1,1t I1] — €, for a
suitable sequence ¢, | 0.
By the asymptotic normality of intermediate order statistics, part I is
Op(kﬁl/Q). Hence ¢t = 0,(1), which is trivial if 7y > 0; for —1/2 < v, <0
note that ¢k, /> < 2790k, °7* 5 0 as k, — oo. By (24) and assump-
tion (20), part 11 is O,(kn /%) so that by the same arguments as above
Il = op(1).
Next note that WU (¢) = o(t~/?) as t | 0. This combined with (9) and (24)
gives that IV and ¢V are o0,(1). Finally, VI = 0,(1), provided one
chooses € < 1/2.
Now consider the case 7o = 0. Since (25) is still valid when 7, = 0, with the
obvious changes, we get

Xn—[knt],n - ankn,n

a(%e)
n n ~ ky n

= — log (EU[knt]‘H,n) —+ log <EU]€"+1,”> —+ (I)(F)\I[ (EU[knt]‘H,n)

= kn n ez kn

—B(2)w (EUan,n) + o0, (t7°0(7)). (26)
Hence
X mo Xn— 5T

o a( =)

n n
= 1—110gt—110g (k tU[knt]H,n) %log (k_nUk”+1’n>
Y = k n Y % kn n —e7.—1/2
Y50 (LU gin ) = 2850 (LU 1 k,
28050 (Ltinginn) = 282 (0hern) + oL 7,

Hence by (24) and assumptions (9) and (20), all the terms but the 1 in the
last equality tend to 0 in probability uniformly for ¢ € [1/(2k,), 1] so that
(22) is obvious.

10



Finally, to verify (23) just note that for t = 1/(2k,) the expression (26) is of
the order O,(logk,), provided 0 < ¢ < 1/2. Since X, 90 < Xy, for all
t € [0, 1] the assertion (23) follows. O

Proposition 3.1. Assume conditions (7) and (9). Any solution (v,5) of
(19) satisfying (20) and logé = Op(1) admits the approzimation

k(v = 70) — (%%1)2/0 (870 — (270 4+ 1)2°) Yy, (¢)dt = 0,(1)

%’Y_(')_ : /0 (v + 1) (270 + 1)t?7° — )Y, (t)dt = 0,(1),

(27)

SECE

as n — 00. For vy = 0 these equations should be interpreted as their limits
for v — 0, i.e.

ket y + /1(2 +logt)Y,(t)dt = 0,(1)
0 . (28)
kY25 —1) - / (3 4+ logt)Y,(t)dt = o,(1).

Conversely, there exists a solution of (19) which satisfies (27) respectively
(28).

Remark 3.1. For 7y # 0 the condition on log & is not needed.

Proof. We consider the cases 75 > 0, —1/2 < 7y < 0 and -y = 0 separately.
Case 9 > 0. In view of assumption (20), we may assume vy # 0. Hence
system (19) can be simplified to

/0 10g< ’YQn(;(_an dt )> dt =7

/1 1 g— L
0 14 %Qn?(ﬁz)n(l) oyt

(29)

Next we will find expansions for the left hand side of both equations.
Rewrite the first one as

(2kn) ™1
/2 log [ 1+ = an( 2 @n(1) dt + /1 log(t7°) dt
0 a(f) (2kn)~1

1 - 7 En(t) — @n(1)
+/(2kn)llog (t (1 (%) )) dt

:Il +’)/0(].—O( llogk ))+IQ

First we prove that I; is negligible. Since t — Q,(t) is constant when t €
[0, (2k,) '], Lemma 3.2 implies that, with probability tending to 1,

1y 2l 7%(2)%m

> (2k,)7°Cy (30)

D =
—~
:|j
N—
Qll
=i &
Chs



for all ¢ € [0, (2k,)~'] with C, stochastically bounded away from 0, so that
—I, < (2k,)"'Op(logk,). On the other hand from (16), (18) and (20),

- (2k,)™ — 1
&(;")

Yo

1+ = 1+ (v +Op(k, 1/2))(

= Op(k)™).

+ 0p(k}*))

Hence it follows that I; = op(k_l/ %).
Next we turn to the main term I,. We will apply the inequality 0 < z —
log(1+z) <z?/(2(L A (1 + 1)), valid for all z > —1, to

Then, from Lemma 3.2 it follows that 0 < 1/(1A(1+2z)) < 1V1/C, = Op(1)
with probability tending to one. Moreover note that relation (18) implies

(2k,) "t (2ky, )"t
/ oY, (1)dt = Op / 122t | = O,((2ka)Y2+) = 0,(1),
0 0

for € € (0,1/2). Hence from (16) and (18), as n — oc,

L - /( (1 ”Q"(;(k) <1>)_1dt

2k)~1

+0p( /() (tvo (1420 = g?n“)) _ 1)2dt>

1 1 — 0
= / ((Z - 70)—t + %k;l/QtVOYn(t)) dt
(

2ky) !

1 1 — ¢ 2
+0, / ((1—%) : +1k;”2t7°Yn(t)) dt
(2kn)"t \ O Yo o

= ((1—70) . +Op(k51/2(2kn)_l))

o (vo+1)
1
+ <7k 1/2/ 10V, (8) dt + op(k 1/2))
g 0

+0, (bt + kN (2kn) % + k1 (2K,) 712

1
Y —1/2/ Y 1/2

where for the last equality we took ¢ < 1/4. To sum up, we have proved that

/llog (Hzczn() (1)) u
0 a(k")

1 Y. _ !
ot D) +gkn1/2/0 0V, (t)dt + 0, (k/?).

12
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This means that the first equation of (29) is equivalent to

Y 1 Y —1)2 /1 —1/2
=%+ (3 %)(% " i n(t)dt + 0y (k7).

Now we deal with the left hand side of the second equation in (29). Applying
the equality

L
=1l-z
1+ 1+zx
valid for z # —1, to x defined in (31), we get, for 1/(2k,) <t <1,
1 7 1—t" Y1
= 0 - Yo I /2
a(r)
(G o)

Y 7 Qn(t)-Qa(1 )) }
o (1 o0

Hence the left hand side of the second equation in (29) equals

Yo o

2
(G5 B ()
&t

From (30) it follows easily that the first integral is o,(kn /) Direct calcula-
tions and (18) show that the second integral equals
1 0% 1

1
Y —1/2/ 270
— — (= - - —k; Y, (t)dt
vl G TG I D) 6 0 0

+O ((2]{;”)_70—1 +k—1/2(2k )—’Yo—l +k;1/2(2kn)_70_1/2+6)

Here for ¢ < 1/2 the O,-term is o, (ky, 1/ ). By Lemma 3.2, the last integral
of (32) is bounded by

L 1 — ¢ 2
(2kn)—1 o Yo o

= O,,(k;l FETN(L A (2k,) 70 %) + k;l(zkn)—70—1/2+5) _ Op(kgl/Q),
if ¢ < 1/4 + 79/2. Therefore we have proved

/1 1 g - ] ( ) 1
0o 14 %7%(” O T (o +1)(27% +1)

)

1
T / POV (1) dt + o, (k2.
o 0

13



Hence, under the given conditions, system (29) is equivalent to

1/2 -
{ by (% N %)70+1 Zk" / f th;/Q )Cft + 0p(kn 1/2) =7 1/2
1 1 _
o~ G =0 aemEern — ke U Sy Ya()dt + op(kn ) = #1( |
33
Next we prove that (33) implies (27). First note that, in view of (18) and
(20), (33) implies

{ Yo+ (2 = 0) k5 + qoka 7 [ OV (8)dt + 0p(kn/?) =y
—1/2 —1/2
=1~ & =) ger@ern — Yokn Jo t0Ya()dt + 0p(kn?) = 7}7 |
34
The first equation and (20) show that |y —o| = Op(k;m), hence |y —|? =

0p(kn'/?). Therefore 1/(yo+1)— 1/(y+1) = (v = %)/(v0 + 1)? + o(kn %)
and so (34) implies

7—70—(
Y= __

(70+1)2

—Y0) =5 = ka0 fy Y (t)dt + 0p(kn %) = 0
ka0 [ 120, (8)dt + 0, (kn /%) = 0.

—~
Q2 Q2

=) GarERTD
Now straightforward calculations show that a solution of this linear system
in v — 7o and y/& — 7, satisfies (27).

Since conversely a solution of type (27) obviously satisfies the condition (20),
it is easily seen that it also solves (33) and thus (19).

Case —1/2 < vy < 0. Again, in this case system (19) simplifies to (29).
Rewrite the left hand side of the first equation as

/sn log (1 + 2 7 O ;(ﬁ?ﬁl)) dt + /110g(t_70) dt

-I-/llog (t”"’ (1 n VQ"(t)(_ ?"(1)» di

a
= Ji+ (v + O(sn|log sn)) +

and choose s, = k%, with § € (1/2, (4¢)~?) for some € € (0,1/2).

Now we prove that J; is negligible. Note that since ¢t — @, (t) is constant
when ¢ € [0, (2k,)™"], (21) is trivially extended to ¢ € [0,1] when 7, < 0. By
definition @, (t) — Q,(1) > 0, for all t € [0,1] and a(k,/n) > 0. Since by (20)
P{y < 0} — 1, Lemma 3.2 implies

P ( log (1 + 2 ZQn( ) B Qn(1)>
(k)

as n — 00, so that [ |log(Cpt )| dt = Op(sn|logsy|) = op(k;m) gives
J1 = Op(k_l/z).

Next we approximate J;. Check that 0 <z —log(1+x) < z?/[2(1A (1+1x))]
holds for all x > —1. Hence, in view of (16) and Lemma 3.2, choosing

< |log(Cut ™), te[o,l])—>1

14



x=1"[14 (v/5)(Qn(t) — Qn(1))/a(k,/n)], we obtain

! 1 -t
Jy = / ((l ) + lknl/Qt%Yn(t)> dt
Sn g Yo g

L 1— ¢ 2
+@(/[g-%> + Lo o)

Yo

_ T 1 ~1/2 o+l
— (€= + otk )

1 Sn
+ (lk;lﬂ/ t’VOYn(t)dtJrOp(k;l/Q/ t_l/Q_Edt))
0 0

o

L 1— ¢ 2
+0, ( / [(% — %) + %knl/Qt’Yan(t)] dt)

Yo

and from the choice of s,,, (20) and vy, € (—1/2,0) it follows that the O,-terms
are op(kﬁlﬂ). Hence we proved that

/1 log (1 + lQn(t) — Qn(1)> dt
0 6 a(fy)

1
Y —1/2/ Yo —1/2
g T [ vt o)

- T
= %+(6 Yo)

Now we turn to the second equation in (29). Use a similar decomposition as
in the case v > 0 of the left hand side:

Sn 1 1 v tr — tQ'yO y
v _(d_ _ Jp—1/2427
/0 1+ 220 0u) dt"‘/g (t (6 Y0) " 6k" Y, (t) ) dt
o a(sr) "

2

— —1/2
[ (2 = 70) 22 + Lo 2007, (1))

. 1+ 222(0-Qu(])

a(t2)

dt

= Kl +K2+K3a

with s, =k, for some § € ((270 +2) 7}, (4 — 27) ') and & € (0,v + 1/2).
Then by Lemma 3.2, K; = O,(s)e*!) = op(k;m). Moreover

1 Y V12 12
— —(L- — Lk, /t%Yntdt
e Il ALy srargy T vy Sl MRS G0

+Op(8z0+1 + k;1/28270+1 + k;1/28z0+1/275)

KQZ

and, by the choice of 0, we have that the O,-term is 0,(kn Y ?). Finally from
Lemma 3.2 and the definition of s,

! 0% 1—-¢10  « 2
Sn 0

n

= Op(krflp)-

= 0, (/{;_1(33’170-1—1 V1) + k;l(szo—ZE +1)+ k;l(si’m—kl/Z—a + 1))

15



Hence the proof can be concluded by the same arguments as in the case
Yo > 0.

Case 7o = 0. In this case we use equations (19). Apply (twice) the equality
1/(1+2) =1—z+22/(1+xz), the inequality |z —log(1+z)—2%/2+23/3| <
ot /[AAA(1+x)Y)], valid for all z > —1, to z = (7/5)(Qn(t)—Qn(1))/a(k,/n),
and use (22) in Lemma 3.2, to obtain for the left hand side of the first equation

(35)

By (16) the first integral in the right hand side of the last equation equals
57t — 5, fo t)dt + o,(kn'/*). For the second integral in the right
hand side of (35) con31der

A (;”>ai( (;( y (l)>2dt
+/s: (% +7> % (Qn(tg(—%?n(l)f dt,

with s, = k%, 6 € (1/2,(4e)" 1), e € (0,1/2). Then the first of these last two
integrals is o,(kn /%) by (23). In view of (16), (18)and |v/5| = O,(kn'"),
the second integral equals

: / (log 1) Y, (£)dt + 0y (k7 /2).

o? o?

Using a similar reasoning, but with § € (1/2,3(4e)™' A 4(1 + 6¢)71), ¢ €
(0,1/2), the third integral of (35) equals —475~% + o0,(kn /*). Finally the
O,-term of (35) is clearly op(kﬁl/Q) by (23).

Hence we have that (35) equals

1 1
S ——=—=k, / Yo (t )dt——k 1/2/ (log )Yy, (t)dt+o,(k, */?).
o 0 0

To deal with the left hand side of the second equation, use again the afore-
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mentioned equality for 1/(1 4+ z) and (22) in Lemma 3.2 to get

147 Y Qn(t) = Qu(1) P Qnlt) — Qn(1) ’
T /00_ &(%) dt_/o (5 &(k") ) dt

(=)

—/sn v (%Q"(g(—_ﬂ?n(l)> dt + 0, (k' (log kn)*) | ,

where for the O,-term we used (23) and v = O,(kn Y ?). Next we consider
the second and third integral in the last equality, L; and Lo say. As for Ly,
it follows from (23) that

Ly = O, (say(logk,)?) = op(k, /%)
if s, = k9,0 € (0,1). As for Ly, from (18) with € € (0,1/2), we get

Lo :_2_+0( -3/2 ST 4+ ko ) 27+0p(k 1/2)

Hence we proved that

7 Qu()-Qn(1)
¢ al)

e ) 1+y 2y, 1 '
vl di = FTR knl/z/ Yo (£)dt+o,(k, 2.
/0<’Y 1+ 32020 5 215 | Yn(t)diop(k, )

Therefore, under the given conditions, a solution of (19) must satisfy

(1=6)+2y =2 — Gk [ Yo(t)dt — kn'? [ log Y, (t)dt + 0, (kn ?)
=0
(1=38)+v =2 + k" [ Ya(t)dt + 0, (k') = 0.

Next note that the first equation implies 6 = 1 + Op(kn /%) "and so /6 =
v + op(kn 1 2). Simplifying the above equations, we arrive at (28).
The converse assertion is proved as in the case 7y > 0. O

Proof of Theorem 2.1. Because of a(k,/n)/a(k,/n)—1= o(kﬁl/z), Proposi-
tion 3.1 shows that, under the conditions (7) and (9), any solution (5}, 6;) of
the likelihood equations such that k1/2| — Y| and krl/2|6;/a(kn/n) — 1| are
stochastically bounded, must satisfy (27 ) (28) and hence, in view of Lemma
3.1 and ®(k,/n) ~ ®(kn/n), also (10)-(13).

Conversely, according to Proposition 3.1, there exists a solution of (19) sat-
isfying (27) (respectively (28)). This solution corresponds to a solution of
the likelihood equations satisfying (10)—(13). O
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Proof of Corollary 2.1. According to Theorem 2.1, the components of the left
hand side of (15) minus deterministic bias terms converge to certain integrals
of a Gaussian process that is, to normal random variables. If e/ ®(k,/n) —

), the bias term of kn/* (4. —70) tends to A((70+1)2/70) fo (£ — (279 + 1)t27)
U(t)dt. Using (8) the result follows by simple calculations. Similarly the
asymptotic bias of the second component can be derived.

To calculate the variance of the limiting normal random variable corre-
sponding to kn/*(3n — %), let X(£) = ((v0 + 1)/70) (£ — (270 + 1)£2™)
(W(1) —t_(’m“)W(t)). Then straightforward calculations show that var

(Jy X(@0)dt) = [} [ E[X(s)X (t)]dsdt = (70 + 1)*.

Likewise, to obtain the asymptotlc covariance of k' (6n/a(k,/n) — 1) with
Bil*(Gn = 0), et Y() = ((0 + 1)/%) (o +1)(290 + 1) — 1)
(W(l) t‘(”VO“)W(t)). Then  cov(f, X(s)ds, [, Y(t)dt) =
fo fo (t)]dsdt = —(1 4+ 7). The limiting variance of the scale esti-
mator is obtamed similarly. O

Proof of Theorem 2.2. Integration of the various terms of (17) yields for v =

0
/2 mnl) -1
*o\a(t)
— k1/2< $Qn(t) — @n(1) dt + logtdt>
0

1
= / (Wa(1) =t "W, (¢)) dt+k1/2c1>ﬁ \1; t) dt + o0,(1).
0 n-Jo

Similarly we obtain

1/2 me) ' -1
k) —— =2 =— [ 2logt (Wa(1) —t~'W,(t)) dt
al = 0

1
+k}/2q>(%) / 2log U (£) dt + op(1).
0

Now, using Taylor expansions, straightforward calculations give

kY25, = — /1(2 +logt) (Wa(1) — £ Wi(0)) dt
+k711/2(1)(k—:) /1 (2+logt)¥(t) dt + op(1),

0

and hence by (12)
k,,ll/Q ("A)/* — ’A}/MLE) _>p 0.

The proof of the second statement is similar. O
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Proof of Remark 2.4. Under the stated conditions the following analogue of
(17) holds:

1/2 [ log Qn(t) —log Qn(1)
kn/ ( a(%“)/F“(l—%") +logt>

ky, log?t
= Wa(l) = 7 Wa(t) = B0 (5220 4 0, (1)1,
for some function ®* such that
kn (ke

see Draisma et al. (1999), Appendix. Now the results by de Haan and
Stadtmiiller (1996) imply that a(k,/n) tends to a positive constant, while
F<(1 — k,/n) behaves like a multiple of log(n/k,). Hence the bias term
is asymptotically negligible if k, = o(log®n), and the assertion can be con-
cluded by the same reasoning as in the proof of Theorem 2.2. O
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