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FROBENIUS DISTRIBUTIONS OF ELLIPTIC CURVES
OVER FINITE PRIME FIELDS

ERNST-ULRICH GEKELER

0. Introduction.

An elliptic curve E over the finite prime field I, has N rational points,
where the Frobenius tracet := t(E/F,) = p+1—N is subject to Hasse’s
bound

(0.1) It| < 2p'/2.

It is known that all N allowed by (0.1) actually occur, but how often?
How likely is it that a random elliptic curve E/F, satisfies t(E/F,) = t,
with a given admissible t, € Z? According to Birch [1], small values of
|t| are more likely than large ones; more precisely, the distribution of
the normalized quantity 7 := 2})%/2 approaches %\/1 — 72 as p tends to
infinity. This is in keeping with the “sin? philosophy” of the Sato-Tate
conjecture ([9]; see also [6] and [3]), but fails to give information on a
finite level p.

In section 2 of the present paper, we propose a heuristic model for the
behavior of

number of isomorphism classes of
(0.2) H(t,p) = g

E/F, such that t(E/F,) =1,

based on ideas of Lang and Trotter [6] and the Cebotarev theorem. It
turns out that, after a slight and natural correction, the expected value
for H(t,p) derived from the model agrees with the actual value: the
corresponding result is Theorem 4.6. Among other consequences, we
find that the frequency of ¢ as a Frobenius trace for E/F, is in average
(t € Z fixed, p variable) proportional with

(0.3) wit)= ] gf_%

¢ prime,{|t

The precise statement is Theorem 5.14; it also makes use of subtle es-
timates of David and Pappalardi [3].

The author wishes to thank Gerald Tenenbaum for valuable hints in
analytic number theory given in extended email correspondence, and

he is grateful to Max Gebhardt for his help with numerical calculations
1



2 ERNST-ULRICH GEKELER

and the preparation of the tables.

1. Class numbers [2] [8].

In this section, we collect a few well-known but dispersed results needed
in the sequel.

Let D be a negative discriminant, i.e., 0 > D € Z and D = 0,1 (mod
4). Write D = f2Dy, where f is maximal such that f%|/D and Dy =
D/f? is congruent to 0 or 1 (mod4). Then D, is the discriminant of

the imaginary quadratic field Q(Dé/ ?) (a so-called fundamental discrim-
inant) and D the discriminant of the order O(D) of index f in O(Dy) =

integers of Q(Dé/Z). An explicit expression is O(D) = Z + fO(Dy) =
Z[’D%Dm]. The association D — O(D) is a bijection between nega-
tive discriminants as above and orders in imaginary quadratic fields.

We let
(1.1) h(D) = class number of O(D)
(i.e., the order of the group of proper ideal classes of O(D)) and

(1.2 H(D) = 3" h(f” Do),
e

the GauB class number of O(D). Then H(D) equals the number
of equivalence classes (under the group SL(2,Z) that acts through
substitutions) of positive definite binary quadratic forms ¢(X,Y) =
aX?+bXY +cY? with a,b, ¢ € Z and discriminant > — 4ac = D. Un-
der that correspondence, h(D) yields the number of classes of primitive
such forms, i.e., those that also satisfy (a,b,c) = 1.

In his Disquisitiones Arithmeticae [5], Gauf found a powerful algorithm
to determine H (D). It is suitable for large scale calculations, see e.g.
[8] section 3 for details.

We will need the following result due to Deuring [4].

1.3 Theorem. Let p be a prime and t € 7 satisfy |t| < 2p*/?. The
number H(t,p) of (0.2) equals the Gauf class number H(t* — 4p).

(In fact, Deuring goes much further. He determines the endomorphism
rings of elliptic curves over arbitrary finite fields IF,, which are orders
either in imaginary quadratic fields or in quaternion algebras over Q.
The numerical identity of (1.3) is a mere corollary of his results.)

The class numbers h(Dy) and h(D) (and thus H(t,p)) may also be
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calculated through the analytic class number formula (see e.g. [12]).
First,

(1.4) h(Dy) = w(Do) |Do|"*n"L(1, x).

where:

w(Dy) = 2,3 for Dy = —4, —3, respectively, and
w(Dy) = 1 otherwise,

x is the quadratic Dirichlet character ( mod Dj) corresponding to Q(Dg/?):
D
(1.5) x(¢) = (70) (quadratic symbol, £ > 2 prime),

1 Dy =1 (mod8)
= 0 Dy=0,4 (mod8)
—1 Dy =5 (mod8),

Do, (Kronecker
x(2) = (7) symbol)

and
(1.6) L,x) = ] @=x@eH™
£ prime

is the value of its L-series of s = 1. Note that the product fails to
converge absolutely; it must be evaluated in the given order.

Next, the class numbers for D = f?D, (f > 1) and Dy are related by

T oy [ (-x@e

’(U(Do) ¢ prime,f|f

(1.7) h(D) =

(e.g. [2], Thm. 7.24).

In order to avoid phenomena special to the primes 2 and 3, we assume
from now on that p is a prime larger than 3. Then we have for an
elliptic curve E over F):

(1.8) E supersingular < t(E/F,) = 0.

Combined with the preceding formulas, and going through the cases,
the number of supersingular E/F, is

(1.9) H(0,p) = h, 2h, 4h,

if the prime p > 3 is congruent to (1 or 5), 7, 3 (mod8), respectively,
where h = h(Dy) is the class number of the field Q((—p)'/?) with fun-
damental discriminant Dy = —4p, —p, —p.
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For some reasons, it is convenient to count elliptic curves E/F, accord-
ing to the size of their automorphism groups Autg, (E) over F,. Under
our assumption p > 3, Autg, (E) is cyclic of order 2w(E/F,), with

3 ifp=1(mod3)and j(E) =0
(1.10) w(E/F,) =< 2 ifp=1(mod4) and j(£) = 1728

1 in all other cases.

For p fixed, we have

(1.11) > m = 2p,

E/Fp
or equivalently, the number of isomorphism classes of curves E/F, is
#{E/F,} =2p+6,2p+2,2p+4,2p for p=1,5,7,11 (mod12),

respectively. (There are 6 curves E/F, with j(E) =0ifp =1 (mod 3),
4 curves E/F, with j(E) = 1728 if p = 1 (mod4), and 2 curves E/F,
with a fixed j-invariant otherwise. Note that the number of “special”
curves with w # 1 is universally bounded by 10 for each p, and is
therefore negligible for p large.) We now slightly modify the number
H(t,p) of (0.2) and define

(1.12) Hp) = Y & ——a

E/Fy (B /Fy)=1 w(E/Fy)
Similarly, for a discriminant D = f2D,
h*(D) = h(D)/w(D) and
(1.13) H'(D) = YW (f”Dy),
I
with w(D) = $#(unit group of O(D)) as in (1.4). As in (1.3), we get
(1.14) H*(t,p) = H(¢* - 4p),

and several formulas (e.g. (1.4), (1.7)) become smoother for the starred
quantities h*, H*.

2. A heuristic model.

Let F' = F(E/F,) be the Frobenius endomorphism of E/F,. It satisfies
the quadratic equation

(1.14) F?—tF +p=0,
where ¢t = t(E/F,). Fix n € N coprime with p. Via its action on
n-division points of E, F' yields a conjugacy class [F,,] C GL(2,Z/n).

1/2

(2.2) For fixing ideas, assume that n < 2p*/“. There are about 2p curves
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E/F,, whose Frobenius traces t(E/F,) are distributed among the about
4p'/? integers in the interval [—2p'/2 2p!'/?]. Regarding their [F,] as
random and evenly distributed in GL(2,Z/n), we expect a frequency of
curves E/F, with Frobenius trace in a given class ¢t € Z/n proportional
to
#{A € GL(2,Z/n) | tr(A) =t,det(A) = p}.

(Here and in the sequel, we often abuse notation and write k£ € Z/n
for the class of k € Z.) This is a ceteris paribus expectation, which
exploits information from n-division points only.

(2.3) Next, for coprime m and n, [F,,,] and [F},] should be approximately
independent, at least if m - n is sufficiently small compared to 2p'/2.

(2.4) Let veo(t,p) = 24/1 —2/4p for real t with [t| < 2p'/? and 0
otherwise. Using v,,, we extend the crude heuristic considerations of
(2.2) and (2.3) to arbitrary n with (n,p) = 1.

(2.5) Let us first specify the notion of probability we use. We put &,
for the set of isomorphism classes of elliptic curves over F,. By (1.11),
. 1

' 2p - w(E/F,)
yields a probability measure p on &,. Writing tr : E — t(E/F,) for
the Frobenius trace map from &, to 7, := {t € Z | [t| < 2p'/2}, we let

T (t,p) = (tr(p))(®).
Then 2pm*(t,p) = H*(t,p), i.e., 7*(?,p) is the probability measure on
7, that describes the frequency of the different Frobenius traces, the
weights w(E/F,) taken into account.

Now our assumption is that 7*(¢, p) is approximately given by
(2.6) P(t,p) =c(p) [] velt:p) veolt,p),
¢ prime

where

A € Mat(2,7Z ok A) =t,det(A) =
ult.p) = Jim HAESHEE A= el =)

and ¢(p) is a normalizing constant determined such that ), P*(¢,p) =
1. Note that:

(2.7) for £ # p, the denominator /**72(¢? — 1) is the average over all
t € ZJ0F of #{A € Mat(2,Z/¢%) | tr(A) = t,det(A) = p};

(2.8) the limit limy_,, defining v,(t, p) exists and is in fact attained for
all £ > kg, where ky depends on ¢, p, and /; its value will be determined
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in the next section;

(2.9) regarding v,(¢, u) as a continuous function on the compact group
Zy x Ly, i.e., replacing p # ¢ by an ¢-adic variable v € Zj, its average
is one, due to (2.7);

(2.10) for a fixed prime p, the factors v,(t,p) fluctuate around 1, and
the infinite product [[,v.(t,p) will turn out to converge (but fail to
converge absolutely).

Hence the meaning of (2.6) is that P*(¢, p) is built up from independent
local contributions of the primes ¢ (including ¢ = p), which reflect
the frequency of matrices in Mat(2, Z, £¥) with the given characteristic
polynomial (2.1). The factor v, which of course is motivated from
Birch’s result and the Sato-Tate conjecture, plays a similar role for the
“Infinite prime” of Q. Namely, (0.1) says that the conjugacy class of
the normalized Frobenius endomorphism p~'/2F (FE/F,) is represented
by an element of the compact subgroup SO(2) of GL(2,R). Writing
Voo(t,p) = f(1) = 21 =72 for |7| < 1 and f(r) = 0 otherwise,
with 7 = ¢/2p'/2, the measure f(r)dr on R is the direct image of the
normalized Haar measure on SO(2) under the map A —— tr(A) from
SO(2) to R.

Our model (2.6) is inspired from the considerations of [6]. We will see
in section 4 that it accurately describes the actual behavior of H*(¢, p),
and thus yields a refinement of Birch’s result.

3. The local weight factors v(t, p).

Let £ be a fixed prime number, £ > 1, and ¢, u arbitrary elements of Z,.
As before, we also write ¢, u for their canonical images in Z/¢*. Our
aim here is to calculate the precise value of

(3.1) oW (t,u) == #{A4 € Mat(2,Z/0*) | tr(A) = t,det(A4) = u}.

(We are only interested in the case where u = some prime p, which for
{ # p is invertible in Z,, but the induction procedure as well as the
case ¢ = p leads us naturally to consider the general case.) To simplify,
we use the following notation:

Rk = Z/Ek, Mk = Mat(?,Rk), Gk = GL(?,R}C),

(3.2) I = I, the unit 2 x 2-matrix.

If Ais a 2 x 2-matrix over the ring R, we put T'(A4) = (tr(A4),det(A)) €
R x R. The residue class of a € Ry or Z in R, = I, (resp. of A € Mj
or Mat(2,Z) € M) is denoted by @ (resp. A). For (t,u) € Zy x Zy
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with discriminant D = D(t,u) = t*> — 4u, we put

t,u

( 14

if the polynomial X2 — X + 7 € F,[X] has 2, 1,0 different roots in T,
respectively. Its value depends only on D; we have

(%) = (D) (quadratic symbol, if £ > 2)

(%u) = (%) (Kronecker symbol, see (1.5)).
3.3 Lemma. Put S (t,u) = (2 4 (k=1 g2k _ g2k—2 g2k _ p2k—1 ;¢
(tTU) = 1,0, —1, respectively. There are precisely B*)(t,u) matrices

A € My, such that T(A) = (t,u) € Ry x Ry and A is non-scalar in M,
and all these A are conjugate in M.

)=1,0,—1

Proof (induction on k). k£ = 1. Working over a field, all the non-scalar
A € M, with T(A) fixed are conjugate, so their number is determined
through the order of its centralizer Z;(A) C G1, which has (¢ — 1)?,
(¢—1)¢, £*—1 elements if (4*) = 1,0, —1. Since #G; = ({—1)€(2—1),
we get the desired formula.

k > 1. Let A € M, be such that A is non-scalar, and A;_; its image in
M.+, with respective centralizers Z(A) C Gy and Zy_1(A) C Gg_1.
It is easy to see that #7;(A) = ¢2Z;_1(A). Counting and using the
induction hypothesis, we get that all such A with a fixed value of T'(A)
are conjugate and have the right number. [

By the lemma, we are reduced to determine the number of A € M,
with A scalar, i.e., A = sl (mod{) with s € {0,1,...,¢—1}. We first
note that (3.3) gives

t,u

(3.4) oW (t,u) = 0%+ ( 7

)e.

From now on, we assume that £ > 2.

Let A,A; € M, be such that A = A; + sI with some s € Rj. If
T(A) = (t,u), T(A1) = (t1,u1) then

(3.5) t=2s41t, u=s+t15+uy, D(t,u) = D(t;,u;) in Ry.
Conversely, if (t,u) and (¢1,u;) satisfy the above relation with some s,
then ¥ (t,u) = ¥ (1, u,), in view of the bijection A, — Ay +sI of
the relevant sets of matrices. Writing those A € M} with A scalar in

a unique fashion as A = Ay + sI with s € {0,1,...,/— 1} C Ry and
Ay € My, we get

(3.6) a®(t,u) = B0 (t,u) + #{(s, A1)},
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where s and A; are subject to the above restrictions and
T(A) = (ti,u1) = (=25 +t,8” — ts + u).
Let (t,u) € Zy X Z; be given. Recall that D(t,u) = t* — 4u.

3.7 Lemma.

(i) A necessary and sufficient condition for the existence of pairs
(s, A1) as in (3.6) is:
I >2: D(t,u) =0 (mod ¢?). In this case, s is determined through
2s =t (mod¥).
[=2:t=0 (mod2) and u =0 (mod4); here s =0; or
t=0 (mod2) and u =t — 1 (mod4); here s = 1.
(ii) Condition (i) for £ = 2 may be summarized as D(t,u) = 0 or
4 (mod16).
(iii) If condition (i) is fulfilled, solutions (s, A1) as in (3.6) corre-
spond bijectively to solutions B = {"'A; € My_1 of

tr(B) = £y, det(B) = £%u; (modf*?).

Proof. (i) is straightforward. For (ii) we note that, although the condi-
tion depends only on (¢,u) (mod4), the relevant discrimiant D(¢, u) is
defined (mod16). Inspection of the cases now leads to the equivalent
condition D(t,u) = 0,4 (modl16). As to (iii), B — (B is a well-
defined bijection from M} ; to £Mj, and det(¢/B) = *det(B). O

3.8 Corollary. Either the conditions of (3.7)(1) are fulfilled with s €
{0,1,...,£—1} and (t1,u1) as in (3.6). Then

B (tu) =R tLu)+ D oD, P+ o).

celk—2Ry_,
Or they fail, in which case o®) (t,u) = B®)(t, u).

(3.9) Again, let (t,u) € Zy X Z;, and suppose moreover that D(t,u) =
t? — 4u # 0. We put § = §(¢,u) for the largest integer 7 > 0 such that
?%|D and, in case £ = 2, D/2% = 0 or 1 (mod4). Note that § depends
only on D and remains unchanged if D is replaced by D — 4c, provided
that ¢ = 0 (mod#?**2). With these notations, we have:

3.10 Proposition. Suppose that k > 26 + 2. The number o*)(t,u) of
matrices A € Mat(2,7/¢%) with trace t and determinant u is given by

0 D/ 1
B (t,u) = k4021 L — (04 1)p2k02 if( ) = 0
_9p2k—i-1 14 _1
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Proof (by induction on §). If § = 0 then o'®(¢,u) = B®)(¢,u), and
the formula is given by (3.3). Thus let 6 > 0. With notations as
in (3.8) and (3.6), D(¢ t1,€ ?uy) = £ 2D(t,u) and 6(¢ ¢y, 0 uy) =
d(t,uy—1=0—1. Inviewof £ > 26 +2, k—2>2(0 — 1) + 2, and
hence §(¢71t;,£72u; +¢) = 6 — 1 for each ¢ € #*"2R;_; asin (3.8). The
induction hypothesis applies to all the o*~Y (¢, £~2u; + ¢), which
are evaluated through the same value

(D(Eltl, 52121 + c)/p(m)) _ (w) |

Plugging in, we get the result. [

3.11 Remarks. (i) The numbers ol*) (¢, u) for k < 26(t,u) + 2 may be
determined through analogous but more complicated considerations.
Since the resulting less smooth formulas are useless for our purposes,
they are omitted.

(ii) Proposition 3.10 may be rephrased as follows. Let T : Mat (2, Z;) —
Zy X Zy be the trace-determinant map and p, v the normalized Haar
measures on Mat(2, Zy), ZyX Zy, respectively. Then (T,u)(z) = h(z)v(z)
with the continuous function

0 26(z) 1
h(z) = 1+07' 4 — (¢ +1)¢0@-2 if (M> = 0
951 ¢ ~1

on Zy X Zy. Here § and D are the obvious functions, where §(x) is
ascribed the value oo if z = (t,u) with D(z) = t* — 4u = 0.

Without giving an explicit expression for h, some of its qualitative
properties, including the fact that it is locally constant off the locus
D(z) = 0, have been decribed by Lang and Trotter, [6] pp. 124-132.

The next two corollaries are immediate consequences of the preceding.

3.12 Corollary. The weight factors ve(t,p) of (2.6) are given by

0
v(t,p) = (1 =) A+ 0 4+ —(L+1)02 3)
—207071

with 6 = §(t,p) and according to the values +1,0,—1 of (w).

3.13 Corollary. The weight factors ve(t,p) depend only on D(t,p) =
t?2 —4p. We thus also write vy(D) for vy(t,p). Then we have vo(f?D) =

ve(D) if (f,£) = 1.
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3.14 Corollary. Given t and p, the infinite product

v(D) =v(t,p) = [] vlt,p)
£ prime
converges.
Proof. As usual, D = t? — 4p = f2D, with a fundamental discriminant

Dq. For a prime £ not dividing f, the quantity d,(¢,u) vanishes. For
such 2,

(3.15) velt,p) = ——

1—x(0)v
where x is the quadratic character associated to Dy, x(£) = (52) =

(%) Hence the product in question agrees up to a finite number of
non-vanishing factors with the product (1.6), which converges (non-
absolutely) to the value L(1,x) of the Dirichlet L-series L(s, x) at s =

1. O

4. ©™(t,p) = P*(t,p)-

Again, let D = t>—4p = f2D, with a fundamental discriminant D, < 0.
Combining the formulas in section 1, we get

(4.1) H*(D) = S(f, Do)h* (Do)

with
h*(Do) = 7 | Do|*L(1, x)

S(Do) = 1" [T @—x@e™,

! £ prime
E

where x is the Dirichlet character with x(¢) = (£2).

and

4.2 Lemma. Let f and g be relatively prime. Then
S(fgvDO) = S(f7 DO)S(g: DO)
Proof. Straightforward. [
We are thus reduced to calculate S(f, Dy) for prime powers f.
4.3 Lemma. Let f = ¢* with a prime . Then
ok —1
S(f, Do) =1+ (€ = x(O)(—7)-
Proof. Both sides equal 1 for £ = 0. If £ > 0 then S(f,Dy) = 1+
> icick £'(1— x(0)£7"). Evaluating yields the result. [

4.4 Lemma. With notations as above,
gk?)g(gszo) = UE(D())S(ZIC, Do)
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Proof. This follows from comparing (3.12) with (4.3). O

4.5 Corollary. For D =2 — 4p = f2D, as above,
H*(D) =7 |[D["u(t, p)

with

U(t,p): H Ué(tap)

£ prime
as in (3.14).
Proof. Insert (4.4) into (4.1)! O

In view of |D|'/? = p'/2 . 7 - v (t, p), the formula

pl/?
H*(t,p) = @P*(t,p)

comes out. Since ), H*(t,p) = 2p by (1.11) and (1.12), we find upon
comparing with (2.5) the following result.

4.6 Theorem. The a posteriori-probability 7*(t, p) of (2.5) agrees with
the probability P*(t, p) prescribed by the model (2.6). The constant c(p)
equals 21)%/2, and thus

P*(tap) = ﬁ ) U(tap) 'Uoo(t,p)a

H*(tap) = p1/2 ’ U(t,p) : Uoo(tap)'
4.7 Corollary. For p > 3 fized, the weights v(t,p) satisfy

Z v(t, p)veo(t, p) = op'/2,

LEZ,|t|<2pl/2

5. Asymptotics of H(t,p).

We now use the preceding considerations to study the average behavior
of H(t,p). For t fixed, let

(5.1) Hy(z):= Y H(t,p).

Here and in the sequel, p and / always denote prime numbers,
where p is assumed larger than 3.

As usual we write f(z) ~ g(z) (asymptotic equivalence) if the two

functions f(z) and g(z) satisfy lim, 0o 2% = 1, and f(z) = o(g(z))

g(z)
if lim,_, o % = 0. Here f and g are real-valued and defined on suf-

ficiently large real or natural numbers. We assume f and g such that
all the integrals below exist. If f is defined on a subset of N, f: f(s)ds
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has to be interpreted as > ..., f(s), etc.

We want to describe Hy(x) up to asymptotic equivalence. The proper-
ties of “~” we need are the following:

(5.2) Let g(z) be such that [ g(s)ds tends to co for z — oo, and
suppose that f(z) = o(g(x)). Then

[ s =of [ ao1is
as functions in x;

(5.3) if f(z) ~ g(x), where g(z) is as in (5.2), then

/ " F(s)ds ~ / Cg(s)ds;

(5.4) let @« > —1 and F(z) be a primitive for 1:;z' Then F(z) ~
1 glte
1—|——alogw'

Here (5.2) results from the obvious estimate, and (5.3), (5.4) are imme-
diate consequences. We further recall the principle of Abel summation

(see e.g. [10] pp. 3/4):

(5.5) Let (an)nen be a series, A(z) =" .. an, and b a C'-function on
[1,z]. Then -

S aub(n) = A(x)b(z) - /1 " A(s)b (5)ds.

5.6 Lemma. We use notation as in (3.2). Thus let £ be a prime
number, k > 1, and t an element of R, = Z/¢*. The number of
elements A of Gy, = GL(2, Ry) with tr(A) =1t is

(02 — 0) 032, if t is divisible by ¢,
(02 — 0 — )32 ift is invertible in Ry,.

Proof (see [6] pp. 34-36). Let G(t) be the set of matrices in G, with
, J—
trace t. If ¢t = ¢’ (modf) then A — A + (t 0 t 8) is a bijection

from Gy(t) to Gg(t'). Similarly, for u € R}, A — uA is bijective from
Gi(t) to Gg(ut). It thus suffices to determine the numbers of elements
of G1(0) and G1(1), which by elementary calculations are £> — ¢* and
03 — 02 — ¢, respectively. [

We fix a prime ¢ and keep the above notation. The number #G(?)
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averaged over all t € Ry, is #(Gy,) /€¥ = £3*73(42—1)(¢—1). We therefore
put

#G (1) oy it =0 (mode)
5.7 Up(t) i= ——=4 = en
&7) «(%) #G) [tk (4/53—_1% if t # 0 (mod¥).

It is independent of k, and by the very definitions of u,(t), ve(t,u), we
have

(5.8) u(t) = / velt, u)du,

Z;
the average of the weight function v,(¢, *). Here “du” is the normalized
Haar measure on Zj. This means that the probability of a randomly
chosen matrix A € GL(2,Z,) to have a trace divisible by ¢ is slightly
larger than £ 1.

5.9 Proposition. Let 7(x) denote the prime number function, (z) =
#{p prime | p < x}. Then

lim 7(x) ! D " vg(t, p) = uglt).

Proof. First note that for any function f on R; = (Z/¢*)*, extended
by zero to Ry, the limit

lim 7(2) Y £ (p)

exists and equals the average

(=17t Y f),

0<i<pk

by Dirichlet’s theorem. Thus let vék)(t, u) be the k-th step approxima-
tion of vy(t,u), that is,

vék) (t,up) = vol,;1/ ve(t, u)du,
u=ug ( mod £)

where vol;, = vol{u € Z} | u = up (mod¢*)} = (£ — 1)~"'~*. By the
above, we have

: -1 () —
(%) lim 7(2) ™"y v (,p) = ue(t)

p<z

independently of k. Now as we see from (3.12), |v,(t,u) — ’Uék) (t,u)|
is bounded by a constant C' which depends only on ¢, and vanishes if
2 # 4u (mod/*). Hence both the lim sup and the lim inf for x — co
of m () 3, <, ve(t, p) differ less than voly - C' in absolute value from
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(*). Since voly tends to zero, the result follows. [

Thus we have

(5.10) D " ve(t, p) ~ ug(t)m () ~ uglt)

p<z

X

logz

It is crucial to know whether a similar property for

(5.11) u(t) = [ welt)

¢ prime

holds, i.e., do we have

? i -1 = ?

(5.127) lim 7(z) > u(t,p) = u(t)
Pz

Equivalently, does the infinite product (5.11) commute with the av-

eraging in (5.9)? This is a deep arithmetical question, which will be

answered to the affirmative in what follows.

5.13 Proposition. Let t € Z, and consider the summatory functions
F(z) =3, (p) of the following functions f defined on primesp > 3
and extended by zero to N:

(i) v(t, p);

(ii) p “v(t,p) for some fized real number o > —1;

(i) 2p /20 (t, p); (iiia) H*(t,p)/p; (iiib) H(t,p)/p;

(iv) = : 1/2 v(t,p); (iva) H*(t,p); (ivb) H(t,p).
Then the following are equivalent:

(i) F(z) ~ u(t):2 in case (i), (i.e., (5.12) is true);

logz
(i) F(x) ~ ?J(rti 1;; in case (ii) for one (thus each) real number
a>—1;

(iii) F(z) ~ 2u(t)E= 2 — in one (thus all) of the cases (iii), (iiia), (iiib);

log
(iv) F(z) ~ %u(t)ﬁfg/; in one (thus all) of the cases (iv), (iva),
(ivb).

Proof. The difference of H*(t,p) and H (¢, p) is universally bounded by
(1.11) and (1.12). Since, on the other hand, H(t,p) grows sufficiently
fast (if we write as usual 2 — 4p = D = f2D, with a fundamental
discriminant Dy, H(t,p) ~ H*(t,p) = H*(D) > fH*(Dy) by (4.1)-
(4.3), and H*(Dy) ~ H(Dy) = h(Dy) grows faster than |Dy|'/?=¢ for
each € > 0; see [11]), the equivalence of (iiia) and (iiib) follows from
(5.3). The equivalence of (iii) and (iiia) also follows from (5.3) and the
formula (4.6), since v (t,p) = 24/1 — 2/4p ~ 2. Similarly, we get the
asymptotic equivalence of the summatory functions in group (iv). It
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therefore suffices to prove the equivalence of (i) and (ii). Let «, 5 be
real numbers such that o, + 8 > —1. We will show that

vatp u(t) =

1+« logac

1+a

p<z

implies the same formula for « replaced by a + 5. Define the series
(a'n)nEN thrOUgh

a, = p*v(t,p), n = p > 3 prime

and a, = 0 otherwise, and the C'-function b(z) := z”.
Now (5.5) combined with (5.3) yields

14+a+pB t)ﬁ
S (s, ) o SO 2 w08
Pt p) 1+a logz 1+« ()

p<z
with a primitive F'(z) of ‘fogf. Thus, using (5.4),
+ u(t) 14+a+8 B 1+a+8
Zpgzpa ﬂv(tap) ~ 1ra zlogac T 14048 xlog;c

_ u(t) plta+B
T 14+a+B  logz

as desired. [

Now the asymptotic behavior discussed in the proposition has been
verified in case (iiia) (i.e., for the summatory function of H*(t,p)/p)
by David-Pappalardi: see equation (32) of [3]. Strictly speaking, the
proof is given in their paper for odd ¢ only, but as the authors write (loc.
cit. p. 169), the proof is similar when ¢ is even, and can be obtained
from the case of odd ¢ by obvious modifications. We can therefore draw
the following conclusion.

5.14 Theorem. Let t be an integer.

3/2

() Hy(2) ~ 5rul)igs
(i) Put C := s-u ( )_ LT (@ TS (ﬁ 1) =0,261070408 ... and
w(t) == Hat 22471 (recall £ is always prime!). Then

23/2
Hi(z) ~w(t)-C - gz
(iii) In the case t = 0 we get
9 563/2
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Proof. (i) is immediate from (5.13) and David-Pappalardi’s result. (ii)
follows from (i) by rearranging the factors in u(t), which is allowed in
view of the absolute convergence of the products deﬁning u( t) and w(t).
For ¢t = 0, the constant in front of laé)g/z is = Hz(e2 o) = a=((2) = 2m.
0

6. Remarks and comments.

(6.1) Part (ii) of Theorem 5.14 may be interpreted as follows: Let t € Z
be fixed, and let E be a randomly chosen elliptic curve over the prime
field IF,,, where p is random and large compared to ¢. Then the probabil-
ity that E has Frobenius trace ¢(E/F,) equal to ¢ is proportional with
w(t). This should be compared with H.W. Lenstra’s result [7] Propo-
sition 1.14 about the probability that N(E/F,) = 1+ p — t(E/F,)
is divisible by a prime ¢ < p. Note that w(¢) depends only on the
prime factors (Without multiplicity) of ¢, and is maximal for ¢ = 0,

w(0) = [1,(#55) = 2,67411272. .. Some numerical values of Hy(x)
are given in Table 6.5 below.

(6.2) The average number (in the sense of [10] p. 37) of supersingular

elliptic curves E over F, is Zp'/2. This follows from (1.9), (5.14)(iii)

1 /2 2 z3/2
and the formula - _ p'/* ~ 3=,

quence of the prime number theorem and Abel summation (5.5). We
conclude that the number of F,-rational supersingular j-invariants is
2p'/? in average, compared to the number £ +O(1) of all supersingular
invariants in characteristic p. These latter lie at worst in the quadratic
extension IF,» of p. The expected number of elements of a k-subset of
F,» which lie in F, is k/p; hence there is a strong bias of supersingular

p
invariants to actually lie in the prime field IF,,.

which in turn is an easy conse-

(6.3) We didn’t try to get estimates for the remainder term in Hy(z) ~
const.i—— ke , which looks like a delicate problem of analytic number the-
ory. If one is interested in an asymptotic formula as accurate as possi-

ble, it is advisable to use a better approximation of 7(z) than @,
e.g., li(z) = [ 1odgss- As the tables show, the formula (5.14) sys-

tematically under-estimates Hy(z), which comes from the well-known
under-estimation of 7(z) through . However, the tabulated ratios

log
Hy(z)/Hy(z) for small ¢,¢' and z = 106, say, are very close to their

predicted values w(t')/w(t). See Table 6.5!

(6.4) It is conceiveable that the equidistribution philosophy underlying
the present paper may be applied to more general situations, e.g. to
curves of fixed genus over F,, or to abelian varieties of fixed dimension.
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By lack of substitutes for (1.3) and (1.7) (at least), such generalizations
seem to be inaccessible at present. However, using the well-known anal-
ogy between elliptic curves and Drinfeld modules (see e.g. the articles

in

[13]), similar probabilistic explanations may be given for the dis-

tribution of Frobenius elements of Drinfeld modules over finite fields.
That circle of ideas will be treated in the forthcoming Saarbriicken the-
sis of Max Gebhardt.

Note that H;(z) as well as H (t, p) is unchanged under ¢ — —t, which
allows us to restrict to non-negative ¢ in the following table. It con-
tains, for z = 10° with 3 < i < 6 and 0 < ¢ < 10, the values of Hy(z)
and of Hy(x)/[H:(x) - w(t)], the latter rounded to 4 decimals.

6.5 Table. Hi(x) and Hy(x)/[H:i(x) - w(t)]

z =10°% 104 10° 108
=0 | 3.392 | 0,9949 || 81.380 [ 0,9942 || 2.034.220 [ 0,9965 || 53.157.932 | 0,9993
1 | 1.275 | 1,0000 || 30.609 | 1,0000 || 763.399 | 1,0000 || 19.892.381 | 1,0000
2 | 2572 1,0086 || 60.836 | 0,9938 || 1.524.648 | 0,9986 || 39.731.198 | 0,9986
3 | 1.593 | 1,0412 || 36.532 | 0,9946 || 916.368 | 1,0003 || 23.855.268 | 0,9993
4 12600 ]1,0196 || 61.441 | 1,0036 || 1.529.175 | 1,0016 || 39.765.119 | 0,9995
5 | 1.329 | 0,9902 || 32.241 | 1,0007 || 802.832 | 0,9991 || 20.929.738 | 0,9995
6 | 3.073]1,0042 || 73.454 | 0,9999 || 1.829.288 | 0,9984 || 47.714.735 | 0,9994
7 | 1.322]1,0122 || 31.315 | 0,9987 || 781.736 | 0,9996 || 20.371.883 | 0,9997
8 [2.569 | 1,0074 || 61.209 | 0,9999 || 1.523.362 | 0,9977 || 39.770.028 | 0,9996
9 |[1.489 ] 0,9732 || 36.566 | 0,9955 || 914.450 | 0,9982 || 23.865.230 | 0,9998
10 | 2.501 | 0,9317 || 64.188 | 0,9961 || 1.605.267 | 0,9988 || 41.853.998 | 0,9994
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