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Abstract

In this note, we consider a nonconvex variational problem for which
the admissible deformations are located between two obstacles. It
turns out that the value of the minimization problem is equal to zero
when the obstacles do not touch each other, otherwise it might be
positive. A numerical analysis of such problems is also considered.

AMS classification: 656N30, 49M25.

Keywords: Approximation, nonconvex, finite elements, obstacles, calculus
of variations.

1. Introduction.

Let €2 be a bounded polyhedral domain in R" of boundary 052 and of closure
Q. Let w; € R®, 1 =1,...,p, p> 2 and consider a function ¢ : R®* - R
such that

o(w;)) =0Vi=1,...,p, (1.1)
o(w) >0Vw #w;, i=1,...,p, (1.2)
w; —wp, 1 =1,...,p— 1 are linearly independent. (1.3)

For instance, in a physical setting, ¢ could be some stored energy density
that vanishes at wells w;’s. These wells stand for natural states with low or
no energy (see for example [B.J;] and [B.J] for the physical background).
We refer to [A.] for details and notations on Sobolev spaces. If G, a and
are Lipschitz continuous functions i.e. if

a, B, G e Wh*(Q)

such that
a(z) < G(z) < B(z) on L,

we denote by K the following set
KQ):=K={veW"™(Q): alz) <v(r) < AB(x)in Q and v(z) = G(z) on 0Q}.

Let €2; and €25 denote the following sets
lez{xEQ|G($)>w}

QQ = Q\Ql

and M;, M, the following nonegative constants



M, = inf (B(z) — G(x)). (1.5)

€N

Then we consider the following problem

I = inf / o(Vo(z))da. (1.6)
veK Jq
We assume that
VG(z) € Co(w;) a.e. in 2 (1.7)

(Co(w;) denotes the convex hull of the w;’s).
For the numerical purpose, let (7,) be a family of triangulations of 2 (see
[R.T.]), this means

V K € Tp, K isa N-simplex,

Vh>0 Ir(réa§(hz()=h,

h

dv > 0 such that VK € T, Z—ﬁ < v

where hg is the diameter of the N-simplex K and pg its roundness (i.e. the
largest diameter of the balls that could fit in K). If P;(K) is the space of
polynomials of degree 1 on K, set

Vi, ={v : Q@ — R continuous, v/x € Pi(K), VK € Ty},

Y ={p€Q/pisavertex of K € T},
Sh=1{p €T /p ¢ 00},
and

Kit ={v e Vi / alp) <v(p) < B(p) Vp € T} and v(p) = A(p) Vp € £,NON}

Our objective is to compute the value of I in (1.6) and try to obtain estimates
for the following discrete problem

In= inf /Q o(Vo(z))ds (1.8)

in terms of the mesh size h. If one assumes that ¢ is a continuous function
then by a compactness argument, the discrete problem (1.8) admits a mini-
mizer. Instead the continuous problem (1.6), as we will see, does not admit
in general a minimizer. This kind of problems were studied in [C.], [C.L.]
and [C.E.] but where the obstacles are out of consideration.
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2. A particular case.

For convenience we consider in this section the particular where

M := inf (G(z) — a(z)) > 0. (2.1)

e

The result of this section will be used when we will study at the end of this
note the case where the two obstacles touch each other. Let (vq,...,v,—1) be
the dual basis of (w1 — wy, ..., w,_1 — w,) i.e. the basis such that

(wi—wp)-vj:&-j Vi,j=1,...,p—1.

Then we have the following theorem:

Theorem 2.1. Let us assume that ) is conver and that ¢ is a function
bounded on bounded subsets of R"™ satisfying (1.1), (1.2). Then if (1.3),
(1.7) and (2.1) hold, one has

I=0.

Moreover, there ezists a constant C independent of h, 0 < h < inf ((&5)2,1)),
such that

M:hﬁ/]qvu@mxgcm%
K’,?Q

where C* = 2(p — 1) max ||w;|| max ||v;]| (|| || denotes the Euclidian norm in
3 3

R").

To prove Theorem2.1 some preliminary lemmas are needed. First we have

Lemma 2.1. If G € W">(Q) satisfies (1.7), then there exists a Lipschitz
continuous function G defined in R™ such that

G=GinQ
and »
G(z) — G(y) > /\wi (x —vy) forall z,y € R" (2.2)
i=1

where N\ denotes the infimum of functions.

Proof. Applying the mean value theorem after regularization one has ( see
[E.] for details)

G(z) — G(y) > /\wi - (z —y) for a.e. z,y € Q. (2.3)

i=1



Then let )
G(z) = inf{G(y) - /\wi (y — x)} z € R"

yeQ

It is clear that G(z) < G(z) in Q. Moreover one has using (2.3)

G(z) > G(x) in Q
so that

G(z) = G(z) in Q.
Let us now prove that

p
G(z) — G(y) > /\wi -(x —y) for a.e. z,y € R™

i=1

For every z,y € R" one has

2€Q

(2.4)

G(z) = inf{G(z)—/\wi-(z—y)+/\wi-(z—y)—/\wi-(z—x)}.

Since
p

/\wi-(z—y)—/\wi-(z—x)EAwi'(x—y)

=1

one gets

G(x) > inf{G(z) —/_I)\wi-(z—y)}+/i\wi-(x—y)

2€N

which implies (2.4). This completes the proof of the lemma.

Denote by z, the points of the lattice of size h> spanned by the v;’s i.e. for

any z = (21,...,2p-1) € ZP7" set
p—1
L
T, = E zih2v;.
i=1

Then let us define the function A, by

Ap(z) = \/ (/\ w; - (x — ) + G(x,))

2eZp—1 i=1

(2.5)



where G is the extension of G obtained in Lemma 2.1 and \/ denotes the

. . . 1
supremum of functions. By a unit cell of the lattice spanned by the h2v; we
mean a set of the type

p—1
C. =z, +{)_ Bih#v; /; € [0,1]}

i=1
where z, is defined by (2.5). Then one has
Lemma 2.2. Let us assume that Q is convex. Under the above assumptions,
denote by C,, a unit cell spanned by h%vi s and by E the set
E={z€ZV' ) z=00r1Vi=1,...,p—1},
then one has

Ap(z) = \/ (/\wi-(x—xzf)+G(xzf)).

z'€z9+E 1=1

Proof. We give here an astute proof for th case of two wells i.e. the case
when p = 2 and we refer to [C.E.| for the general case. Let zg,z € Z and
x € Cy = [Z4,Ts+1]- One has either z,, € [x,,2] or ,,41 € [r,,2]. Let
us assume that z,, € [z,,z] the other case can be handled similarly. There
exists A € [0, 1] such that

Ty = AT, + (1 — Nz
Therefore
T—2,, =Nz —z,)and z,, —z, = (1 — \)(z — z,).

One has

p

/\wi (7 — xzo) + é(xzo) = /\wi (z - xm) + G(xm) - é(xz) + G(x)

i=1
so that

./\ w; - (.Z‘ - aczo) + C~7Y(aczo) > /\ wj - (37 - -Tzo) + /\wi ’ (‘/EZO - sz) + G(xz)

i=1 i=1
but

P P P P
/\wi-(x—xzo)—i-/\wi-(mzo—xz) = )\/\wi-(x—mz)-f-(l—)\) /\wi-(x—xz)
i=1 i=1 =1 =1
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so that

/\wi-(:c—xzo)—l—/\wi-(xm—xz) =/\wi-(x—xz).

=1

Hence
p

/\wi (1= xy) + Gl2) > /\wi Nz — ) + G(x,).

i=1
This completes the proof of the lemma.
[ |

Remark 2.1. Notice that the above proof can be applied to functions ¢
having more than two wells but spanning a one dimensional space. Hence
the condition (1.3) is not necessary in this case. Nevertheless this condition
is crucial when the space spanned by the wells has a dimension greater than
one. As we mentioned before we refer to [C.E.] for details.

We need also the following lemma:

Lemma 2.3. Let us assume that €2 is conver, under the preceding assump-

tions one has .
G(r) — C*h2 < Ay(z) < G(x) Yz € Q, (2.7)

where C* = 2(p — 1) max ||w;|| max ||v;|.
3 3

Proof. Let z € Z°~! and x € Q. Using Lemma 2.1. one has
p ~
/\wi (x—z,) + G(z,) < G(z) Yz,
i=1

so that
Ap(z) < G(z).
Now let us denote by z’' the component of z on Py (€2) the orthogonal pro-

jection of €2 onto W the space spanned by the w;’s. There exists 2y such that
z' € C,,, then 2’ can be written as follows

p—1
= Ty + Zﬁzhévz, ﬁ, € [0, 1]

=1

Hence )
12" = 24| < (p— 1) max ||| h2



and

p

1

[ Awi (&~ )] < (p— 1) max g | max o[ |13.
=1

Since »
An(@) > N\wi- (2" = 22) + Glas,)
i=1
one gets ) ~
An(z) > =(p = 1) max [Jw;|| max[[v;[|h2 + G (25)-
Since

G(,) = Glz,,) — G(z) + G(z) > /\wi (2, — ) + G(2)

i=1
one obtains

Ap(z) > =2(p—1) max ||| max ||vz||h% + G(x).

This completes the proof of the lemma.
|

Remark 2.2. We have seen that the condition (1.7) implies (2.3). The two
conditions are actually equivalent. Indeed, if (2.3) is verified then due to (2.7)
the sequence (Ap) converges uniformly to G. Since VA,(z) = w; a.e. in §2
one has at least for a subsequence that VA, — VG in L*®(Q) weak *. Let
B any ball included in €2. Since

;?' /B VA, (2)dz € Co(w;)

and Co(w;) is a closed set one has

ﬁ/BVG(a:)dx € Co(w;).

Using the Lebesgue differentiation theorem one obtains (1.7).

Proof of Thoerem 2.1. Let us consider the following function

up(x) = Ap(z) V (G(z) — dist(z, 0)).

where we have denoted by dist(z,02) the distance from z to the boundary
09). According to Lemma 2.3. one has

up(z) < G(z) < B(z) Vo € Q.
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On the other hand one has
un(z) > (G(z) — C*h2) V (G(z) — dist(z, 0Q)) > G(z) — C*h?
or again .
up(x) > G(z) — a(z) — C*h2 + a(z)

so that .
up(z) > M — C*h2 + a(z)

where M is defined by (2.1). Since 0 < h < (&5)? one gets

up(z) > ax).

Then the function u;, belongs to K. Now we can prove that
I=0. (2.8)

Indeed, due to (2.7) one has Vu, = w; except in a neighbourhood of the
boundary of measure less than Ch2. Therefore 0 <I< Ch> for every
0 < h < inf((£5)? 1) which obviously implies (2.9). Now the rest of the
proof follows as in [C.E.]. Due to (2.7) one has

G(z) — An(z)| < C*h?
so that .
|G(z) — up(z)| < Cha.

where C is a constant independent of h. Let 4, denote the interpolate of uy.
Clearly 4y, € K3 and
|uh - ﬂh| S Ch.

Therefore (Recall that h < 1)
lan — G(z)| < Chs.

Notice that
V’Eth = w;

except maybe on the set S composed of simplices where interpolation oc-
cured. Since on this set Vi, remains bounded ( see [B.C.]) one has

/Q (Vi (z))dz = / (Vi (x))dz < C|S| (2.9)

S



where |S| is the Lebesgue measure of S and C is a constant which only
depends on the wells w;. When

dist(z, 0Q) > C*h?

one has
up(z) = Ap(x).
So, when dist(z, Q) > C*h? + h one has

U, = the interpolate of Ay.
Let us denote by S; the set
S, = {z € Q| dist(z, Q) > C*h? + h}.

Hence
[S] < [S NS+ |Q2\S]-

First we have .
|Q\S1| < Che. (2.10)

where C' is a constant.
To estimate |SNS; | one can see that the interpolation occurs on a h—neighbourhood
of the set where A, has a discontinuity in its gradient. Clearly A, has a jump
in its gradient on a unit cell of the lattice spanned by h%vi when one of the
functions 3

w; - (x —x,) + G(z,)

is equal to an other. These two functions are equal on a set of (p — 2)—

dimensional measure bounded by Ch* where C is a constant. Since in
(2.6) the supremum is taken on a finite number of functions it is clear that

1SN Si| < Ch™ .h.N(h)
where N(h) is the number of cells of size h? included in Py (). Clearly
N(R)h*= < C
where C is a constant. Therefore
1SN S| < Che. (2.11)

Combining (2.9), (2.10) and (2.11) one obtains
/ o(Vii)dx < Ch?.
Q
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where C' is a constant. This completes the proof of the theorem.

Remark 2.3. Notice that a polyhedral domain can be divided into a finite
number of disjoint convex domains. Using the same construction as above in
every such subdomain one can see that the estimate we obtained in theorem
2.1 is obviously still valid.

Remark 2.4. The continuous problem (1.6) does not admit in general a
minimizer. Indeed, let us assume that p < n + 1 and

VG # w; in a set of positive measure. (2.12)

There exists v € R™ such that
w;rv=0Vi=1,2,...,p. (2.13)
If the problem (1.6) admits a minimizer u, by (2.8), (1.1) and (1.2) one has
Vu = w; a.e. in . (2.14)

Using a variant of Poincaré’s inequality one gets

/\u 2)|dz < 0/\ (Vu(z) — VG(2)) - vde.
Using (1.7), (2.13) and (2.14) one deduces that
u=G.

But the assertions (2.12) and (2.14) are incompatible. Therefore the problem
(1.6) cannot admit a minimizer.

3. The general case.

In this section we assume that M; and M, defined in (1.4) and (1.5) are
positive. Before stating our estimate theorem we begin with some lemmas.
First we have

Lemma 3.1. Let G be the extension of G defined in section 2. Then one
has

p p

/\wi-(x—y)gé(x)—é(y)S\/wi-(a:—y) Ve, y € R" (3.1)

=1 i=1

where )\ and \/ denote respectively the infimum and supremum of functions.
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Proof. It is easy to check that

p

p
Vwi-(y—2)=-N\w-(z—-y) Vz,yeR"
i=1

i=1
Using (2.2) one obtains

Vwi-(y—=z)>Gy) - Glx) Vr,y eR™

=1

This completes the proof of the lemma.

[ |
Let V}, be the function defined by
P
Vi) = N\ (Vwi-(z—2)+G(z.))
2eZr—1 i=1
where the z,’s are defined by (2.5). Then one has the following lemma
Lemma 3.2 Under the assumptions and notations of lemma 2.3 one has
G(z) < Vi(z) < C*h2 + G(2)
Proof. The proof follows like the one of lemma 2.3.
[ |

We have also the following lemma

Lemma 3.3. Under the assumptions and notations of Lemma 2.2 one has

Vi) = N\ (Vwi-(@—2z)+G(z.)) (3.2)

z2€zo+FE =1

Proof. Reversing the order of the inequalities in the proof of Lemma 2.2 in
this note and in [C.E.] for the general case one easily obtains (3.2).

Now we can prove the following theorem

Theorem 3.1. Under the assumptions and notations of theorem 2.1, there
ezists a constant C independent of h, 0 < h < inf((%*)?, (#2)?,1) such that

C*
I, = inf/ o(Vo(z))dz < Ch?.
K}‘? 0
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Proof. Let us consider the following Lipschitz functions
ul(z) = Ay V (G (x) — dist(z, 00)) if x € Q,

ul(z) = Viy(2) A (G () + dist(z, 0y)) if z € Qy.

Using respectively lemma 2.3 and lemma 3.2 it is clear that the u;’s coincide
with G at the boundaries of (2;’s. Moreover one can easily check that

a(r) < ul(z) < G(x) on Q,

and
G(z) < ul(z) < B(x) on Q.

Since 002 C 021 U 02y the following function

ul(z) if z € Q
un(z) =
ub(z) if z € Q.

coincides with G' at the boundary of 2. Moreover u,, is a Lipschitz function.
Indeed, let x € 2; and y € 5. There exists z € 0€2; N 0§25 such that

z € [z,y].
Thus
lun(z) = un(y)| = |ul (@) — ug(y)| < [uf(z) — ui(2)] + ug(2) — ug(y)]
since u?(2) = uli(z) = G(2). Hence
un(z) —un(y)| < Cle — 2[ + |z -y} = Clz - y|

where C' is a constant independent of z, y and h.

Let 4y, be the interpolate of uy. Interpolation occurs now in some neighbour-
hoods N; of the boundaries of €2;, j = 1,2 of measure less than Chz and in
the subset of Q\{N; U Ny} where the function

w; - (x—x,) + é(xz)

is equal to another. Arguing as in the proof of theorem 2.1 one obtains

inf /Q o(Vu(z))dz < / o(Vin(z))dz < Ch}

UEI(}‘:1 0
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We end up this note by considering the case where the two obstacles touch
each other. Let us denote by €' the following open set

Q' ={reQ|al) < i)}
One has for every u € K

u(z) = G(z) = a(z) = B(z) in Q\Q

and
Vu(z))dx = Vu(z))dx VG (x))dz. :
[ euane= [ ovuanas [ oweE 63
Since
u =G on 99
one has
uellrcl(fm/ngo(Vu(ac))dx = ueilcn(fs’)l)/nl (p(Vu(:v))dx—i-/Q\Qlcp(VG(:v))dx. (3.4)

Then one has

Theorem 3.2. Assume that ¢ is bounded on bounded subsets of R™ and
(1.1), (1.2), (1.3), (1.7) hold. Then

inf /Qap(Vu(x))da::/ o(VG(x))dz.

ueK(Q) Q\Q

Proof. Due to (3.4) it suffices to prove that

inf /Q (Vu(x))dr = 0. (3.6)

uek(Q')
Let us denote by Q. the set
QL = {z € Q| dist(z,0Q") > e}.
Let u € IC(€2), we extend u to Q' by setting
u=G in Q"\Q..

The extension of u to €' belongs to (') and

| etvu@yas= [

o(Vulz))ds + / H(VG(2))da.

A\

!
€
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Thus

o(Vu(z))dz + / o(VG(2))dz > inf / (Vo(@)da

/
Q\QL veEK(Y)

J

which implies that

inf dr < inf
vellcn(Q’) /Q/ p(Vol@))de < UG}CH(QQ)/Q

According to section 2 we know that

/
€
@\

/
€

inf /, o(Vo(z))dx =0

since
M = in£ [G(z) — a(z)] > 0.
TEQL
Thus

0< inf / o(Vo(e))dz < CI\Y| < C"
veEX(QY) '

where C' and C" are constants independent of . Hence

inf /Q, o(Vu(x))dz =0

veK(Y)

and this completes the proof of the theorem.

o(Vou(z))dz + / ©(VG(x))dz.

Remark 3.1. Using (3.3) and arguing as in Remark 2.4 one can prove that

the continuous problem I does not admit, in genaral, a minimizer.
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