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Abstract
In this article we discuss the decomposition of A; € R™*"2 k =
1,...,n3, as Ay ~ BED,C* in the Frobenius norm, where B € R *"
and C € IR™*" have normalized columns, FE and D € R™ " are

ng
diagonal and Zﬁ,% is the identity matrix. This decomposition is

k=1
widely used in the data processing and is the generalization of the

singular value decomposition for the 3 dimensional case. We propose
a new algorithm for finding B, C, Dy, and E if Ay, and r are given and
B, C have full column rank. If A; have exact decomposition then this
algorithm has a linear convergence.

An implementation of the numerical algorithm was developed, sev-
eral examples were tested and good results obtained.

1 Introduction

This paper gives a method for identifying the parameters of a multilinear
model proposed by Harshman [1] and by Carroll and Chang [2]. In this
problem we have an n;-by-ny-by-ns array A, € R™*™ k = 1,...,n3. The
idea is to find factors B € R™*", C € R™*", D € R™*" and diagonal
E € R™*", where r is as small as possible and B, C, D have unit l, norm
columns, so that

A, = BED,C*,
where Dj, € IR"™*" are diagonal and contain k-th row of D on the diagonal.
Further, for the simplicity of explanation, we will use both Dy, and D for the
same data.
In the real applications A; = BED,C* + Ry, where Ry, represents some noise
of the experiment. We say that the data have 2% of noise if

n3
Al
k=1
n3
\ (1BDC" |17+ |14 3

k=1

We discuss a general case where we have no any a priory information about
Ry, then we will minimize the sum of their Frobenius norms as following;:

ns
min )" |[A; — BDC*[[}. (1)

B,C,E,D1,...,Dpy 1



This decomposition is a generalization of Singular Value Decomposition (SVD)
on three dimensional case. In SVD there are unique orthonormal B and C'
(we skip the case with repeated singular values), so that A = BEC*. In the
Three-Way Decomposition (TWD) the condition of orthonormality for B, C
and D is dropped. It was proved by Kruskal [5], who gives such conditions
on the sets of parameters that the parameters are identifiable and unique,
but his paper does not include a construction.

Several successful applications have been demonstrated in quite different ar-
eas such as psychometrics [1, 2], chromatography [3], optical spectroscopy
[4], number theory [5] and NMR [6]. Noise is zero in some applications like
[5] and 30% in others [6], the size of problem changes from r = 2 till r = 5
in chromatography to really huge problems with r > 100 for NMR.
Harshman and Lundy [7] suggested a monotonically converging algorithm
called PARAFAC for minimizing the distance between A, and BEDkC* in
Frobenius norm. Freeze any two of B, C' and D, and the functional is linear
in the third. For example, if we temporarily fix the matrices C' and D, then
we seek B so

n3
> IlAx — BDyC*|[7
k=1
is minimized. The new B and E are then defined by B = BE, where B’s
columns have unit l norms. It is easy to show that B solves the ordinary
least squares problem

min ||[As, ..., Ap,] — B[D:C*, ..., D,,C*]||.
B

This approach has poor convergence properties, sometimes it runs in local
minima [8] or/and needs an incredibly large amount of iterations. In the
PARAFAC algorithm r should be given.

If r is much smaller than n, ny or ng, then, for given r{, 7, and r3:

B=B'Ug, B e R UgelR™, r<r <m,
C=CUs, CeR™"™ UzelR™, r<ry<ny,
D= D’UD, = IRRSXM’ Up € ]Rrgxr’ r <rg < ngs.

We can compute B, C', D' and Up, Ugs, Up independently. This idea was
originally introduced by Tucker [9] and improved by Kronenberg and de
Leeuw [10]. Consider

Gy = UgEUp, Ug, K =1,...,rs,



here U p,, created from Up the same way as lA)k from D, and assume that B’,
C', D" have orthonormal columns, and the Tucker algorithm is searching for

T3
A, — B (Z Gk,dkk,> ol

k'=1

2

: (2)
F
where dyy is the (k, k') entry of D'. Gy is called core array and Ug, Ug, Up
can be computed again from TWD of the core. In general, if (2) is bigger
than zero — we call this case as the initial array A, has some noise — then
Tucker reduction does not preserve Frobenius norm, but in most applications
it works good enough [11].
The algorithm that computes the core is similar to PARAFAC: freeze any two
of B', C" and D', and the functional is linear in the third. For example, if we
temporarily fix B’ and C' matrices, then we seek D and, as B' and C' are
orthonormal, it leads to

n3

min E
B',C',D' .Gy

ns 2

T3
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If we transform all elements of matrix B"*A,C’' € IR""*" to the vector p; €
IR™" and do the same for Gy € R™*™ (transform it to g € IR™"), then
this problem becomes

n3

jgr'l,gcll H[pla'--,pns]_[QIa'-"qTS]DI*Hi"

which is an ordinary least squares problem and D’ contains the right singular
vectors of the matrix [pi,...,pn,]. In the Tucker algorithm 7y, 7o and r;
should be given.

The main advantage of this algorithm is a better convergence: during com-
putations of the core it is usually better than in PARAFAC because B’, C' and
D' can be chosen orthonormal. For example, if the initial data have no noise
at all it converges within 3 iterations [8], but this algorithm still has just a
monotonical convergence for the general case. One iteration of the PARAFAC
algorithm linearly depends on the size of initial problem. If r;ryrs is reason-
ably smaller than nynyns, then TWD with the Tucker approach works much
faster [11].

A very important problem in nonlinear minimization is to compute an ini-
tial approximation. This field was discussed by Leurgans, Ross and Abel
[12]. The most popular initial approaches are based either on one iteration

of the Tucker algorithm or on the generalized eigenvalue decomposition of
A1 and A2.



Thus, up to now, TWD has been solved by the PARAFAC + Tucker algo-
rithm. The arithmetical complexity of three sequential iterations for Tucker
is mingng(ny + ne + n3) and for PARAFAC 3rirorsr operations. Usually the
Tucker algorithm has good convergence [11] and for most cases it converges
within 10 — 100 iterations, while convergence of PARAFAC is really weak, thus
it needs more than 10000 iterations for the problem with » = 30 and usually
does not converge at all for the problems with > 100 [6].

In this work we present a new algorithm for TWD with linear convergence if
B and C have a full column rank. It dramatically reduces the computational
time and produces no worse accuracy. The main idea is to decompose our
problem into several small nonlinear eigenvector problems and solve them by
standard minimization methods with good convergence.

2 The Algorithm

We introduce the following notations, Let b, € R™, ¢, € IR™?, d; € IR™ are
I-th columns of B, C and D; E = diag(ey,...,e;), e, >0,1=1,...,r. We
call b;, ¢;, d; and ¢; as the triad.

Theorem 1. If exact solution of three-way decomposition of ny-by-ng-by-ns
array A,k =1,...,n3 contains B and C with full column rank r, then it is
possible to transform this problem to another three-way decomposition r-by-
r-by-ns problem Gy with no more than ninynz(ny +ng) +n3 +n3 arithmetical
operations.

Proof. Let B’ and C’ are the left singular vectors of Z; = [Ay,..., A,,]
and Z, = [A],..., A;_ | correspondently. Because the original A; array has
exact decomposition with only r rank, then the SVD of Z; and Z5 have only r
nonzero singular values, then B' and C’ contains the singular vectors belongs
to the nonzero singular values. If we set the D' as the identity matrix, then (2)
is zero. The SVD of Z; and Z, require no more than nynynz(ni +ny) +nd+n3

arithmetical operations. m

Theorem 2. Suppose that the ni-by-ny-by-n3 array Ax,k =1,...,n3, has
an exact three-way decomposition with two quadratic nonsingular factors B
and C. Then there is an algorithm to compute independently at least one
triad.

Proof. Because B and C' are quadratic nonsingular matrices, there exist
S = B~* and T = C~*. Our problem is to find B, C, Dy, E when A; =
BDEC*,k = 1,...,n3, or A,TE™" = BDy, or AtSE~' = CDj. The last
two problems can be splitted to r small nonlinear problems:



Atlel_l = bl X dl, (3)
A'slefl = ®d, (4)

where A = [A},..., AX]*, A" =[A4,..., A,]", ® denotes the Kronecker prod-
uct of two vectors, b;, ¢, d;, s; and t; are [-th columns of B, C', D, S and T’;
e; is the (1, 1) entry of E.

By definition all ¢; depend on all ¢;, and the same holds for s; and b;. As A,
has an exact three-way decomposition then At; and A’s; can be transferred
to matrices r x n with rank 1. Then we can solve (3) and (4) simultaneously.
Let us perform a singular vector decomposition for A and A’. Then A =

VA X* and A" = WAY* and

MX ey =V @ dy), NY*siey ' =W ®d).  (5)

As ||by||le = |lalle = |ldi]]la = 1, we can solve (3) and (4) by minimizing
FL=1—|V*&®d)||3and F, =1 — ||[W*(¢; ® d;)||2. These functions are
nonnegative because they are transferred from the least squares problems,
thus we obtain the solution when

min [V (0 © d,) | + [ (e @ d) I 0
is equal to 2. By definition of S and T b*s = ¢*t = 1. According to (5):

1 1
XAV @d)  BYAS'Wr (o ®d)

The latter occurs only if (6) is equal to 2.

Thus we have proved that one set of b;, ¢;, d;, and e; can be computed
independently from other triads. =

To compute one triad we should compute SVD several times (about nynsnsr
arithmetical operations), and find all local minima of the problem (6). To
solve each particular minimum of (6) we can use either Newton’s method or
the method of sequential minimization. It is easy to prove that it converges
at least linearly for the local minima. However, computing a full optimiza-
tion problem for (6) is really difficult, but there is a simple remedy. If we
compute at least one local minimum, then we find a corresponding triad. Let
us subtract it from the initial data, and repeat the decomposition. If this
problem after the Tucker algorithm has r x r X n size, then the residual after
Tucker algorithm will be (r — 1) x (r — 1) x n size, and still contain two
nonsingular factors. Then this approach terminates within r iterations.

(7)

€l



Every new restart with residual data needs additional overheads of about
r3(n3 + 2) and each solution of (6) takes about cr® arithmetical operations,
where c is the total number of iteration for the solution of (6). We can keep
it in mind trying to find several independent triads by computation several
local minima at the same time. When it is really impossible and takes a lot of
additional work we can make a restart with residual matrix. Then the total
estimation of arithmetical operations for our algorithm is bounded by r*(ns+
2+ ¢) and r3(n3 + 2 + cr) arithmetical operations. This value is bigger than
the cost of one iteration of PARAFAC algorithm (r* arithmetical operations),
but if we consider the poor convergence and thousands of iterations then the
total arithmetical complexity of our approach looks much more attractive.
All previous theorems can be generalized for N-way case (IV > 3) but we did
not present it because we do not know any application for it.

This approach minimize modified (1) problem. If B and C are square and
nonsingular we can write the following minimization problem:

n3
min Z |AkC™ — BDy||% + | A B~ — C Dy %
B,C,B, D1, Dy
Since, this problem is not original (1) problem, we found out that our al-
gorithm is really resistant to the different kind of noise from the numerical

experiments.

3 Numerical Experiments

Now we demonstrate the efficiency of our new approach. We developed a
software package containing Tucker and PARAFAC, and our new algorithm
which we call Parallel Decomposition PARDEC. In addition we developed a
software to provide initial data A,. It is based on the normalized Gaussian-
like functions with different variations of position in 3-D, different width
distributed between 5—10% from the size of each dimension, different scaling
factor — amplitude distributed in [0.5,1] and threshold of orthogonality of
initial function. All mentioned distributions are normal.

We make 3 series of data. The first series of data contains a 60 x 60 x 60
array with 25 components. We variate the noise from 0% till 40%. The
second series of data has the same size, number of components, and noise,
but positions of peaks was randomly generated. The third series of data has
bigger size — 150 x 150 x 150 with 100 components distributed randomly in
the domain with noise form 0% till 40%.

We reduce the size of all problems by Tucker algorithm to the cube with the
edge equal to the number of components. It takes several seconds for

6



Table. The dependence of computational time, residual of approximation
and the number of correctly found triads (/V;) on the amount of noise in the
simulated data for the PARAFAC and PARDEC algorithms.

60 x 60 x 60 problem

Noise PARAFAC PARDEC

(%) Time (sec) | Ny | Residual | | Time (sec) | Ny | Residual
0 2108 | 3 | 0.245 2.2 0 [ 1077
3 210.8* 3 0.255 24 0 0.039
10 210.8* 3 0.255 2.5 0 0.081
15 254.7 0 0.128 2.5 0 0.128
20 78.2 0 0.180 2.7 0 0.180
25 1374 0 0.237 2.7 0 0.237
30 161.3 0 0.299 2.9 0 0.299
35 8.9 0 0.366 4.6 1 0.367
40 5.4 0 0.439 3.9 0 0.439

150 x 150 x 150 problem

Noise PARAFAC PARDEC

(%) Time (sec) | Ny | Residual | | Time (sec) | N; | Residual
0 18385* 17 0.096 1357 0 10710
5 18423* 16 0.137 1935 0 0.041
10 18431* 13 0.170 2116 0 0.086
15 18437~ 13 0.228 2353 2 0.143
20 18441~ 11 0.281 2485 3 0.201
25 18444~ 12 0.332 2471 2 0.261
30 18446* 10 | 0.367 2590 4 0.312
35 18448* 13 0.423 2644 ) 0.380
40 18449* 15 0.459 2804 7 0.427

*x — computations were stopped after 10000 iterations.

the first and second series of data and several minutes for the third series,
then we treat this reduced data by standard PARAFAC algorithm and our new
PARDEC algorithm. We measure the computation time for an AMD Athlon
500 computer and the number of converged components. We consider that
the component has converged if it is similar to the original triad in [, norm
at least in 90% in each dimension and in the amplitude.

The first series of data is too easy to solve — both algorithms solve it within
1.5 — 2.5 seconds and all components have converged for both algorithms.
The results for the second and the third series of data are presented in the
Table.



The computation time for the PARAFAC algorithm for the third series of data
are constant for any amount of noise because the computations are stopped
after 10000 iterations.

We tested some data of intermediate sizes and the results show the following
properties: if the data contain components which are close to orthogonal, then
both algorithms solve it fast enough. If the noise grows, sometimes PARAFAC
produces slightly better results than PARDEC, but works too slowly and not so
stable. If the number of components grows, then PARDEC becomes faster and
more stable.
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