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Abstract

The solvability of the two-phase quasilinear elliptic boundary value
problems with Venttsel interface condition is established under the as-
sumption that the interface surface meets the exterior boundary of a
medium transversally. Bibliography: 12 titles.

The boundary value problems with Venttsel type conditions appear in the de-
scription of various physical processes in media containig a thin film of a ma-
terial having high permeability. The examination of the one-phase Venttsel
problems was initiated by N. S. Trudinger in the late 80th. During the last
two decades the theory of solvability of the one- and two-phase Venttsel prob-
lems has been actively developing by many authors. For historical remarks
and bibliography the reader is referred to review [1].

This paper continues a series of the authors’ publications (see [2] and [3]) de-
voted to the two-phase Venttsel problems. Such problems can be considered
as models of some processes in a medium separated into two parts by a thin
film. The condition on the interface in this case is specified by an equation
of the second order with the principal term being an elliptic (parabolic) op-
erator in tangential variables and with the first order term being a ”jump”
operator across the separating film.

In [3], the existence result in Sobolev and Hoélder spaces was established for
parabolic and elliptic quasilinear two-phase Venttsel problems in the case,
where the interface surface does not intersect the exterior boundary of a
medium.

Our objective in this paper is to study the solvabilty of the quasilinear elliptic
two-phase Venttsel problems under the assumption that the separating film
meets the exterior boundary of a medium transversally. It follows from this
assumption that both parts of a medium are domains with smooth closed
edges. So, we can consider, first of all, the auxiliary Dirichlet problem on
the interface surface, and then reduce the proof of a priori estimates for
solutions of our two-phase problem to corresponding estimates for solutions
of two auxiliary Dirichlet problems in domains with edges. It is known (see
[4] for details) that the natural functional spaces for studing the Dirichlet
problems in domains with edges are the weight Sobolev spaces, where the
weight is equal to some power of the distance from a point to the edge. By
this reason, we have to solve the Dirichlet problem on the separating film also



in the weight spaces where the weight is equal to some power of the distance
(in the intrinsic metric) from a point to the boundary of the film. We note
that a priori estimates for solutions of the Dirichlet problems in domains
with edges were obtained in [5] and [4], while all the necessary estimates for
solutions of the Dirichlet problem on films were obtained in [6].

The paper is divided into three sections. In Sec. 1, we state the problem and
formulate the main result. In Sec. 2, we consider the corresponding linear
problem. First, we derive an auxiliary result about an extension operator
acting in the weight spaces. Then we obtain the coercive estimates for solu-
tions and prove the existence and uniqueness theorem in the weight spaces.
Finally, in Sec. 3, estimates for the gradients of solutions of the quasilinear
problem are established and the main existence result is proved.

Notation.
Throughout the paper, we use the following notation:
z = (a',2") is a vector in R", 1’ = (z1,79) € R?, 2" = (x3,...,3,) € R Z;

|z|, |#'|, |z"| are the Euclidean norms in the corresponding spaces;

R ={z e R* : 1 > 0};

Ri,jz{xER" cx1 >0, 9 > 0}

RS = {(z2,2") e R* ' : 25 > 0};

Q) is a bounded domain in R” with compact closure €2 and (n—1)-dimensional
boundary 0€;

|©2| denotes the Lebesgue measure of ;

> is a sufficiently smooth hypersurface separating {2 into two subdomains:
Q1 and $o;

n(x) is the unit vector of the outward (with respect to €2;) normal to ¥ at
the point z;

B (x°) is the open ball in R* with center 2° and radius p;

I, ={x e R" : |2'| < p, |2"]| < p,z2 > 0};

I'(IT,) is the part of II, lying on the hyperplane z; = 0.

We adopt the convention that the indices ¢, j, and s run from 1 to n, and the
indices £ and m run from 2 to n. We also adopt the convention regarding
summation with respect to repeated indices.

D; denotes the operator of differentiation with respect to the variable z;;
Du = (D;u) is the gradient of u;  D*u = (Dgu, D"u) = (Dou, D3u, . .., Dyu);
D%y = D(Dwu) is the Hessian of u.

For p € R" and x € 3 we define p=p — (p-n(z)) n(z).

l:)i denotes the tangent differential operator on the manifold ;

Du = (D;u) is the tangential gradient of w.

We introduce the following spaces:



C(Q) is the space of continuous functions with the norm || - [|;

C?%(Q) is the space of functions continuous in €2 together with their derivatives
up to the second order;

C*7(Q) is the Holder space with the norm

[ullgrea@y = llulle + | Dullo + [Dul, o,

where [-], o is the Holder constant with exponent +;
W2() (1 < p < oo)is the Sobolev space with the norm

lullwzi) = I1D*ullp. + lullp.o;

where || - ||,,o denotes the standard norm in L,(2);
We set

f+:max {f,O}, f,:max {_fao}’ oscf:supf—inff,
Q O Q

We assume that ¢ > n and define

~ n / q
alg) =1——, qg = —0.
(9) p 1

We use letters M, N, C' (with or without indices) to denote various constants.
To indicate that, say, N depends on some parameters, we list them in the
parentheses: N(...).

§1. Statement of the problem

We assume that 3 meets 0€) transversally. Namely, we suppose that M =
Y N o is an (n — 2)-dimensional submanifold without boundary satisfying
the following condition: for every point z° € M there exists a neighborhood
U(z°) in R" and a diffeomorphism ¥(,0) such that

U g0y (U(2%) N Q) =TI,

po < 1 is a constant independent of z°),

2 \II(:L.O) (./I,'O) = O, (\Ijl(l.O)(.TO))T . \Il'(mo) (,TO) = In, I

3 the norms of the Jakobi matrices ¥{ , (z) and (\Il(_w}))> (¥ (z0)(2))

1)
0
)
)
are uniformly bounded with respect to z° € M and x € U(z?),
)
)
)

(
(
(
(

(4 U0y (U(2°) N0Q) = {x € 911, : z5 = 0},
(5 U0 (U(2®) NE) = {z € I, : arcctg (z1/z2) = 20(2°)},
(6 max {sup, 9(z°),sup \(7/2 — 9(2°)} = 0 < 7 /2.
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Let d(z) denote the distance between a point z and the submanifold M,
and let g(x) denote the distance with respect to the intrinsic metric in the
manifold ¥ between a point x € ¥ and the submanifold M. We introduce
the following spaces:

Ly () (€2) is the weight space with the norm || - ||, ()0, Where

ullp,@).0 = 2" [*ullp0;
Ly (o) (€2) is the weight space with the norm || - ||, (a),0, Where
a2 = |l ([d(@)* ullp.0;
L

p,(a) (2) is the weight space with the norm || - ||, (a),5, Where

Ju

lllp, ey, 2 = ll(d(z))*ullp,s:;

V2 (o (§2) is the space with the norm

@ = I1D%ullp @0+ 1 (@) Dullpa,e + I (d@) " ullpa.0;

lullve

p (a (Q) is the set of functions vanishing on 02 with the finite semi-norm
H\DQUIHP,(a
p (@) () is the set of functions vanishing on M with the finite semi-norm

ID?ullp ey,

It should be noted that the semi-norms || D?ul|, ()0 and |||l~)2u|||p,(a),g become
the norms since u vanishes on 02 and on M, respectively.

We also introduce the function space
Voo (2, 3) = {u € V2 iy (U UQ) NV (0 (D) N CEQ) : ulon = o}
with the norm

[ully, @@ = 1D ullp@)00 + 1Dl @).00 + 1D ullp-1,ap).z-

The notation 08, € \72’(&) with o < @ and h = 1,2 means that
o0\ M € WQIOC and for all points 2° € M the matrices D*WU 0y be-
long to Ly (a) (U( %) N Q). Moreover the norms || D*W ;o) [|4,(a) are bounded

uniformly with respect to 2° € M.



We consider solutions of the boundary value problem

— afy(x, u, Du)D;Dju + apy(z, u, Du) = 0 in Q, (1.1)
_ ag] (z,u, Du)D;Dju + ag(x, u, Du) =0 in Qo (1.2)
— aE(J)] (z,u, Du)D;Dju + ajg)(x, u, Du) + Ju =0 on X, (1.3)

uloa =0, (1.4)

where J denotes a jump-operator
Ju=fy (2.0, Du+ n(z) lim O (2 + en(z)
u =Py | 4, Du+n(z) lim = (z + en(z

~ . Ou
— By (a:, u, Du + n(x)sl_lgloa—n (x + sn(a:))) .

Remark. The null boundary condition (1.4) is used for simplicity only.

Obviously, it can be replaced by u|sq = ¢, where ¢ belongs to an appropriate
function space dictated by the embedding theorem.

We assume that the matrices (a%), h = 0,1,2, are symmetric, and the

functions az[',”;], h = 0,1,2, have the first-order derivatives with respect to all
the arguments.

We assume that the functions involved in Egs. (1.1) and (1.2) satisfy the
following structure conditions:

vl€” < ag (@, 2,p)&& < v '€ VEERY, (A0)
(2, 2,9)| < palpl? + by () [p] + @1 (2), (A1)
day) (z, 2,p)
pl| =g | < for ol > 1, (A2)
da (x,z,p) y
= 4 D, (affy (e, 20))| <pmlpl + 9 @), (A3)
by, M, O € Ly () () (A4)

for h = 1,2 and for any € Qp,, z € R!, and p € R*, where v, and py, are
some positive constants. -
We assume that the functions ag, and ajg in Eq. (1.3) satisfy the following



structure conditions:

wlel® < afy(z, 2, D)&&; < iy 'I€° VEERT, (BO)
la (@, 2, B)| < polBI? + by (2)[B] + @Y (2), (B1)
dal (v, 2,p) _
|| <o for (7] >1, (B2)
oa? (x,2,0) ~ , .. B
—E 5+ D, (afy (e 2.5)) | < molfl + @ (2),  (BY)
b, @1, @) € Ly (g 1 (%) (B4)

for any z € 3, 2 € R', and p € R*, where vy and py are some positive
constants.

Finally, we assume that the coefficients of the jump-operator J satisfy the
following structure conditions:

a b) )
o<—@%%i@umw<mmw, (30)
1B (z, 2,p)| < by (2)[p] + B () (J1)

for h=1,2 and for any z € ¥, z € R}, and p € R".

Remark. Without loss of generality we may assume that vy = vy = v, = v
and o = pi1 = pia = p.

Let © = ©(f, v) be a solution to the equation
ctg(©) = v ctg(d), © €]0,7/2], (1.5)

where v is the ellipticity constant in (A0) and 6 is the parameter in (5).
We set
N { n—2 }
¢ =max{n, — :
1

Theorem 1. Let the following conditions hold:
(i) §< g < oo, max{—%’Q_ 2 _ %} <a<alg):

q

(ii) 0% € V2, for h=1,2;



(iii) every solution T € V, (a)(,X) to the problem
7'( a[](:quu)DDu+a (x,u,Du) | — (1 — 7)Au =0 in Oy,

—(1=7)Au =0 in Qy,

N—— N—

(1.6)

)
7'( a[](quu)DDu+a (2, u, Du)
7'( a[](quu)DDu—i-a (:EuD )—i—Ju)
—(

1—7)Au=0 on3,

’U,|39 = 07
where T € [0,1], satisfies the estimate
[ale < My;

(iv) if |2| < My, then conditions (A0), (A1), (A2), (A3), (A4), (BO), (B1),
(B2), (B3), (B4), (JO), and (J1) hold;

(v) for h = 1,2 the functions ay,(-, z,p) regarded as elements of the spaces
L) (£2) as well as the functions By (-, 2, p) regarded as elements of the space
Ly—1,(aq7)(X), are continuous with respect to (z,p).

(vi) the function ay(-, 2, D) regarded as an element of the space Ly_1 (aq")(2)
is continuous with respect to (z,p).

Then the problem (1.6) has at least one solution U € V; (a) (2, X) for each
7 €1[0,1]. In particular, WM is a solution of the problem (1.1)-(1.4).

82. Linear two-phase Venttsel problems

Lemma 2.1. Let ¢ > n, a < a(q), and let 09, € g’g,(a) for h =1,2.
Then there exists an extension operator

Ph: Vo101 (E) = Vi () ()

such that

ID* (Prw) l|g(a).0 < ChllD*uflg=1,(aq",5

where the constant Cy, depends only on q, «, and the characteristics of 0S)y,.

Proof. 1. We start from construction an extension operator for a model
case.

Let u = u(:r z") be a function with compact support, let (D*)%u
Ly—1,(aqn(R}5'), and let u(0,z"”) = 0. We extend the function u with respect



to zy by the odd reflection, i.e., by setting it as u(xq,z") = —u(—x9, ") for
Ty < 0, and define

u(z) = ((x1) / u(xo — T120, 2" — 212" )N(29, 2" )d20d2".
Rnr—1

Here ( stands for a smooth cut-off function which equals 1 near the origin,

while 7 denotes the following averaging kernel:

n € C(C))O (Rﬂ_l) J n > O: 77(_227 Z”) = 77(227 Z”)a

N(22,2") =0 for 2|+ " > 1, / n(zq, 2")dzpd2" = 1.
Rn-1

Obviously, @ has a compact support, u(z,0,z") = 0, and u(0, zo, 2") = u.
It remains to show that

|1D%l

a(0) < CI(D*)?ullg-1,(aq")- (2.1)
Differentiating u we obtain
D;Dju(z) = I + I,

where

I = ((x1) Dy Dpu(zs — 129, 2" — 212" )(22, 2") Tijkm (22, 2" )dzod2"
Rn—l

Tijkm(z% Z”) = §'kgim — 531Zm5zk — 5Z12m57k + 5115]12’192%1;

and I, stands for the terms containing derivatives of (.

Note that the terms in I, contain only the first derivatives of v and the
function u itself. Since I, vanishes near the points z € R"® with 2’ = 0, we can
estimate the norm of 5 in I, () by ||D*ul|. Moreover, from the assumptions
on ¢ and « it follows that ||D*u|| majorizes by ||(D*)?u|/q-1,(aq"- Thus, to
prove (2.1) it suffices to estimate the norm of I; in the weight space L (.
By the Holder inequality we have

/ |2' |9 I1|9dz <
Ry
a(g—2)

/IRI ¢“(z1) [/Rn_l |9 (T (2)) 71 (To()) ot dwpda”| day, (2.2)

where
Ti(z) = / Lo — 2120|%|(D*)?u(we — 2122, 2" — 112" |7 d2od2”,
Byt

g=1 dz
Tu(a) = [ (1ea, ) (2) ) e —— 2
1

|.T2 — .’E12’2|‘;‘—7q2 .



It is easily seen that

1
d
To(@)] < N, / . (2.3)

where Ny is an absolute constant. Since {=5 <1 the integral in the right-

hand side of (2.3) converges, and the homogeneity reasons give

_oq

| Z2(2)[ < Na(g, @) |2'] 2. (2.4)

Substituting (2.4) into (2.2) and changing the variables we get

Uz1)d
[ <n [ [ (5) dnar| SR (25)

R” R /Rt (z1) &1
where N3 depends on ¢ and «, and
T = Ti(wp, 2") = / |22 — Y2 | (D) (s — y2, 2" — y") |7 dyady”.
B!

By Minkowskii’s inequality we can estimate the integral in the square braces
by Ny(gq, @)||D?ul|? . Hence (2.5) takes the form

q—1,(aq’)
o Cq(lﬁ )dl’
L e < N DVl o [,
% Ry (z1) o
< CNDPulLs oy (26)

We note that % < 1, since a < @(q). Consequently, the second integral
in (2.6) converges and guarantees the second inequality in (2.6).

Now, combined with the above remark on majorant of the norm I, the
estimate (2.6) yields (2.1).

One can see from the above argument that the constant C in (2.1) depends
only on ¢, a, and the diameters of supp(u) and supp(u).

We note also that for o = 0 the operator P acts in the standard (non-
weight) Sobolev spaces. In this case the existence of P can be deduced from
the embedding theorems and the extension theorems (see Ch. 17-18, [7]):

2+ =1

W2AR) = By, (R B (RY) = W2RY),

g—1,q-1

(here the notation of the Besov space B corresponds to the monograph [7]).

2. The condition 092, € %ng,(a) implies that ¥ can be covered by a finite sum
U U, of open sets U; C R such that



(a) the sets €, NU; are diffeomorphic to Bf NRY |, if Uy N M # (); otherwise
the diffeomorphic images of €2, N U; coincide with B N RY ;

(b) all the diffeomorphisms have generalized derivatives of the second order,
and the norms of these derivatives are bounded in Ly (4).

Therefore, the ”transplantation” operators generated by above-mentioned
diffeomorphisms are bounded operators from VQ “1,(aq") (EﬂUl) to

2 (agy BTN R UNM # 0, and from W7 1(ZmUl) to W2 (B ™)
if otherwise.
Using an appropriate partition of unity, now we can glue the desired operator
P, from local operators constructed in the first part of the proof. [

Throughout this section we suppose that L£;, h = 1,2, are the uniformly
elliptic linear operators

L’hu:—a[]( )DDu—i—b[]( x)D;u, x € Qp,

iy
Uy = “[h]

v[€]? < af,{]gigj <vHE? for €€RM, v =const > 0.
Suppose also that Lo is a uniformly elliptic linear interface operator
Lou= —ajy(x)DiDju+ by (¢)Diu,  z €Y,

Zj _ ]Z
%o = Yop

V|£|2 a[() gz&] X _1|§|2 for f e R".
Suppose, finally, that J is a linear jump-operator

. )
Ju= fy(e) im == (2 + en(2)) — fpy() lim == (2 +en(2)),
where §;)(x) > 0 and SBjg(x) > 0 for z € X.

We introduce the notation by, (z) = (bfh] (x)), h=0,1,2.

Theorem 2.2. Let 6 and © be the same quantities as in Sec.1. Let § < g <
oo, and let max{ ,2 — E - —} < a < a(q). Suppose that 02 and 0

belong to iv/q,(a)
Suppose also that u € V, (4)(2, X) is a function such that

Luju = fu(x) in Q, (2.7)
E[Q]u = f[g} (33) m Qg, (2.8)
Liou+ Ju = fig(z) on 3, (2.9)
ulon = 0. (2.10)
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If, in addition,
iy € C@h); s by € Lq @@, h=12,
a"[%] € C(i)’ |b | ﬂ E ]Lq 1 (aq’)(z)

then

1wy, @@z < Cadll ful
+ 1 fiollg-1,¢aq).5 + vl

a0 + 1 f21llg ()02
a(@,2 + 1]l g=1,(aq1),2 } (2.11)

where Cs depends only on n, v, q, a, diamS), the characteristics of 08y, the
mumbers [y L@ 1801l -1. a5 for b = 1,2 and [y ly 1, (aqr)5, and on

the moduli of continuity of the coefficients a ( ) for h=0,1,2.

Proof. Taking into account the condition u|gx = 0 which follows from (2.10)
and regarding (2.9) as a self-governing equation on the hypersurface 3, we
can consider the following Dirichlet problem:

Lo = floy—Ju on X,

2.12
u‘ag =0. ( )

By the choice of o, we have ag' €] — qi—l, 2 — q_%[ Therefore, the inequal-
ity (35) from [6] (with the natural changes n — n —1, p — ¢ — 1, and
a — aq') is applicable to a solution of (2.12). It should be noted that in
[6] we studied equation in a domain. However, all the arguments from [6],
which prove (35), remain valid, if we replace a domain by the manifold .

As a result we have the estimate

1D%ullg- 10z < No (i) = Ttllg-raans + lullg-raans),  (213)

where Ng is determined by n, v, ¢, «, |\|bf0] llg=1,(aq"),, as well as by the moduli

of continuity of the coefficients a%} (z) and the properties of 3.
According to our definition of the linear jump-operator J, the inequality
(2.13) takes the form

D% ullg-1,a0)= < No(Ilfiorlla-1.001.= + lullg-1, 0072
+ 11lla-1,aan sl Dullay + 1B llg-1.¢aq7)

). (2.14)

Using Lemma 2.1 we extend the function u|sx to €; and s, respectively, so
as to satisfy

ID*unllg @), < CllD*ullg1,(aqrys: (2.15)

11



where h = 1,2 and u;, denote the corresponding extended functions, whereas
(', are the constants from Lemma 2.1.

From (2.7), (2.8), and (2.10) it follows that for A = 1,2 the functions v, =
u — Uy, are the solutions of the boundary value problems

Linvn = fin) — Liun in Qp,

Uh|6ﬂh = 0.

We note that the dihedral angles lying in €2, h = 1,2 and touching 02, at
the point z° € M have the openings 29(2°) and 7™ — 29(z%), respectively.
The linear transformations reducing the operators L) to the canonical form
at the point z° transform these dihedral angles. However, the conditions (6),
(A0) together with the relation (1.5) guarantee that both the openings of the
"new” dihedral angles do not exceed ©. In addition, by the choice of a, we
haveaé]?—%—%,?—%—i—%[.

Hence we can apply the results from the linear elliptic theory in nonsmooth
domains (see [8]) which give us for A = 1,2 the inequalities

1%l < lonllvz o < Nega (il

+ |1 D* 8| g (0,0 + [P1a1llg,@),00 | DTl 21 (2.16)

with N7 depending on n, v, ¢, o, H\bfh] l¢,(a),0n» the characteristics of 0,

and on the moduli of continuity of af, ().

By the choice of «, we have for v = @(q) — a; the embeddings of @3,(&) (Q4)
into C1*7(Q,). Therefore, for h = 1,2 we get

[orny

los(@).00 1D |, < Na iyl D8 [l (0,20 (2.17)

where Ng ;) depends on n, ¢, o, diam(2, the numbers |||bfh] llg,(a),05> and on
the characteristics of 0€2,. Moreover, for an arbitrary ¢ > 0 and h = 1,2 we
make use the well-known interpolation inequalities

IDulle, < ellD*ullg )0, + Nojui(e,n, ¢, o, diam®, 0 ) [ullay.0,-  (2:18)
Combining (2.14), (2.15), (2.16), and (2.17) we get

[ullv, o) < No(lBllg-1,(aq). =1 Dulle, + [1821llg-1,aq7, 1 Dull0,)
+ Nufll figllgay.00 + 1 fi21ll, (0.0
+ 1 follg-1,0a7,5 + ullg-1,aq),2} (2.19)

12



with NlO = Ne (1 + 01 + CZ + Zi:l [ChN'y’[h}(]_ + Ng’[h])}) and Nll =
Ny + N7 g + Nio-

Let us take ¢ = {2N1o (|81ll¢-1,aq).c + |82 lle-1,(aq7,=) } - Then substi-
tuting (2.18) into (2.19) we arrive at (2.11). O

Theorem 2.3. Let all the assumptions of Theorem 2.2 be valid, and let the
boundary value problem

Emu =0 in Q
Lpu=0 1in Q,
Lou+Ju=0 on X,
ulan =0

(2.20)

have only the trivial solution. Then the boundary value problem (2.7)-(2.10)
has a unique solution u € Vg (4)(£2, X).

Proof. Consider the problem

Ligu = D; (6“1~)u> = on Y,
[0] oD ol (2.21)

ulox = 0,
where the coefficients a[lgj satisfy the following conditions:

Dz(a[z()]]) € ]qul,(aq’)(z)a CL%] = a{g]a V|£|2 < afg]gzgj < V_1|§|2 \Vlg € Rna
and 'd[lgj take the form 6% after the straightening the boundary 0% in a neigh-
borhood of an arbitrary point z° € M.

For any Cg°-function fi) the problem (2.21) has a generalized solution. More-
over, if we straighten 0¥ in a neighborhood of an arbitrary point
2% € M then this solution is a smooth function of "new” local vari-
ables. Therefore, it is an easy matter to see that this solution belongs
to V(Qlfl)(aq ’) (E). ~

So, the inverse operator L[B]l is defined on everywhere dense set in the weight

space Ly_1,(ag')(2). We note that the estimate (2.13) (with Ju = 0) holds, if

we replace Ljg by Ljo], and guarantees that ,C[B]l

on the whole space IL;_; (aq)(X).
We denote by 4 a solution of the problem (2.21). Using Lemma 2.1 we extend
the function % to €2; and €2, respectively, and denote by %, h = 1,2 the
corresponding extended function.

can be continuously extended
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From the linear elliptic theory in nonsmooth domains (see [8]) it follows that
for h = 1,2 each of the boundary value problems

L = finy — Lpun in O,
U|agh = 0

has a unique solution v, € @27((1) ().
Therefore, the function

vy +uy, x €€,
u() = _
V2 + Ug, ZZ'EQQ

belongs to V, (0)(€2,X), and is a unique solution of the problem
Lyu = fryp in
Lpu= fgy in o,
Liow = flog on X,

’U,|aQ =0.

(2.22)

Finally, using the estimate (2.11) and the method of extending by continuity
with respect to the parameter we deduce the unique solvability of the problem
(2.7)-(2.10) from the unique solvability of the problem (2.22). This finishes
the proof. O

Theorem 2.4. Let q, a, 0€21 and 0%)y satisfy the assumptions of Theorem 2.2.
If, in addition,

ay €CE), af € C(h),
bo)s B € Looyioc(E),  bp] € Logjioc(S2) h=1,2,

then the boundary value problem (2.20) has only the trivial solution.

(2.23)

Proof. Let u be a nontrivial solution of the boundary value problem (2.20).
In view of (2.11), we have u € V, (4)(©2,%) and for A = 1,2, in view of the
embedding theorem, we have Du € C(Q).
Let u attain its maximum at some point z°. Then z° € ¥. From the
application of the Hopf lemma (see Lemma 3.1 [9]) to ©; and €y, it follows
that p 9

Eg%§§ﬁ+fmﬁ»>o, Eg%éﬁﬁ+emﬁ»<o.

Since Du € C(X) the inequality Ju > 0 is true in a neighborhood of the
point 2°. Hence Lioyu < 0 in the neighborhoods of those points of X, where

14



v attains its maximum. But the last inequality contradicts the Hopf lemma
on Y. This finishes the proof. U

Remark 2.1. It should be noted that Lemma 3.1 in [9] was actually proved
for u € C*(€2). The case u € W7 () can be treated similarly; the only
difference is that we must use the Aleksandrov maximum principle instead

of the Hopf maximum principle.

Remark 2.2. If O = QN R} then we can weaken the assumptions of
Theorem 2.4. Namely, instead of the condition (2.23) we can assume

b[O]: ﬁ[h] € Ln,loc(z)a b[h] € Ln,loc(Qh) h = 1,2. (224)

This fact follows from the Aleksandrov type maximum principle established
in [2].

Obviously, if there exists a diffemorphism T : O — Q such that \AI}(QQ) =Qn
R’} then Theorem 2.4 is valid. By this reason, it looks like that the condition
(2.24) is sufficient in the general case as well. However, we do not know the
proof of the Hopf lemma for operators with unbounded coefficients of lower-
order derivatives. So, in the general case the question on the possibility of
replacing (2.23) by (2.24) is still open.

83. The solvability of the quasilinear problems

Theorem 3.1. Let n < q < oo, and let § = a(q) — ay > 0. Suppose that
0€); and 0S)y belong to the space il/q,(a)-

Suppose also that a function u € Vg 0)(Q,X) is a solution to the problem
(1.1)-(1.4), ||lulloa < My, and the conditions (A0), (A1), (A2), (A3), (A4),
(B0), (B1), (B2), (B3), (B4), (JO), and (J1) hold for |z| < Mp.

Then u satisfies the estimate

. Ou
ilelg 61_1)11108—11(:16 +en(x))| < Cy, (3.1)

where the constant Cy depends onn, v, u, q, §, My, the characteristics of 0y,
h h
the numbers |bpllg..2m> 187 a0 195 g 0n for h = 1,2, as well as

0 0
on | lg=1,aary55 1@ lg—1,0a15 and |85 [lg—1,(aq),s:-

Remark 3.1. Let us note that if we straighten the hypersurface ¥ in a
neighborhood of an arbitrary point € X then all the structure conditions
listed in the statement of the theorem remain valid. The "new” constants

15



appearing in these conditions are determined only by the ”old” constants
and the characteristics of 9€2,. Therefore we will keep the notation after the
straightening ..

Remark 3.2. Suppose that we apply the diffeomorphism ¥ .0y, defined in
(1)-(6), to a neighborhood U(z°) of a point z° € M. By the choice of py, we
may assume without loss of generality that the norms of the Jakobi matrices

!
Wi ,0y(z) and (\Il(_zlo)> (U (40(z)) are not greater than 2.

Next, we apply to the set ¥(,0) (U(z°) N ) a linear mapping Y which keeps
the coordinates o and z” unchanged and transforms the hyperplane
{arcctg (z1/z2) = 29(2°)} into the hyperplane {z; = 0}. It is evident that
the norm of the mapping T is bounded by a constant depending only on 6.
Moreover, there exists a positive constant R; < 1 depending only on
v, d, the number ||bjg|/4—1,(aq’),=, and on the characteristics of M, such that
after the transform T o W 40y the inequality

16011l g=1,(aq"),"(1Tpy5,) < T2 (3.2)

hold independently of the particular point z°. Here py is the radius in-

troduced in (1), while o1 = o1(n — 1,1,1/2,8¢q’) is the constant from
Lemma 6 [6].

Proof. Let p < min{1, pg} be an arbitrary positive number, and let R < R;
be a positive constant completely determined by the known parameters listed
in the statement of the theorem. The precise value of R will be specified later.
For z € ¥ we define

ME(z) = Eglilog—z(x—i-en(x)) . Mi(2) = max {M; (x), M (2)} .

Next, we choose z* € ¥ such that M;(x) attains its supremum over ¥ at this
point. For the definiteness we assume that

M = ilellz) M (z) = My(z*) = M (z*). (3.3)

Now the proof is divided into two cases.

CASE 1. d(z*) < L&,

In this case we consider a point y* € M which is the nearest point to z*
in the intrinsic metric in ¥. We apply the mapping T o ¥(,.) defined in
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Remark 3.2 to a neighborhood of y*. It is obvious that
M1 < N12 limODlu(s, P, 0, ceey 0)‘ y (34)
e——

where

R
0 0,...,0 To U 0, —
(a%paa a) © )( ) %€:|a144|:7
and Np, depends only on 6.
Further, our arguments are based on the reasoning of Theorem 1 [10]. We
consider the cylinder II,z. By change of the scale we transform II, into IIg.
In the "dilatated” coordinates the problem (1.1)-(1.3) takes the form

aﬂ[{](i Up, Du,) Di Djup + apy (4, up, Dup) =0 in g N {2y <0}, (3.5)
aﬂ[é](fﬂ Up, Dup) Di Dju, + gy (€, up, Dup) =0 in llg N {1 >0}, (3.6)

— Gl (@, tp D*up) Dk Dyt + Gpg) (&, g, D*uy) + Ju, = 0 on T(IIg), (3.7)

up(x) = U(pl’),
ayy (@, 2,p) = g (px, 2,0/ p), appy(, 2,p) = p*aw(p, 2,p/p) for h=10,1,2,

Ju, = Bz, up, D*u, + ILIQODlup) - E[ (2, up, D*u, + lim Dlup)

T1—+0
E[h](l', Zap) = pzﬁ[h](pxa Zap/p) for h = 1,2.

It is easy to see that the constants v and u, appearing in the structure
conditions, remain without changes under dilatation, whereas the functions
appearing on the right-hand sides of (A1), (A3), (B1), (B3), (JO) and (J1)
become as follows:

b (z) = by (pz), P (z) = p?o (pa),

- (3.8)
o) (2) = poY ) (px), h=0,1,2.
Moreover, it follows that
1601 lg-1.(ag 7).y < P°2 B0 llg=1,(ag).r (11, 1y )- (3.9)
Similarly, for h = 1,2 and | = 1, 2 we have
||b ”q (a),lTgN{z1<0(>0)} < ||b ||q Mpory N{T1<0(>0)}>
;" ||q,(a) e <030} < 12 lo(@) 1,0 5, N1 <0(50)3 (3.10)

”(I)l ”q—l,(aq’),F(HR) < ”(I)l ||q—1,(aq’),F(HpoRl)'

—_
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We start with considering the interface equation (3.7). It should be noted
that Eq. (3.7) rewritten as

—afgf (0, up, D*up) Dy Dty + Gpop (2, up, D*u,) =0 (3.11)

with _
apo)(z, up, D*u,) = apo)(x, up, D up) + Ju, (3.12)

can be regarded as a self-govering equation on I'(Ilg) . In accordance with
(B1), (J1), (3.3), (3.4), (3.8) and (3.12) we have the estimate

[0y (%, up, D*u,)| < | D*u,|? + 3bygy ()| D*u,| + B (), (3.13)
where

5l_1>r£10D1u,,(5, 27,0,..., 0)‘ . (3.14)

Next, we consider a positive constant Ry such that

. B +pw \7 _
R2<mm{1’<14(01+,u]\714)> ; B = Ay,

where oy is the same constant as in (3.2), y3 = v1(n —1,v) and A\ =
An—1,v,q—1,0q', 1) are the constants from Theorem 7 [6] and Lemma 8 [6],
respectively, whereas Ni4 is the constant from the proof of Theorem 11
[6] completely determined by the values of n, ¢, §, My, v, pu,
16701 [l g=1,aq"),(1R) H\ZI;[IO] llg=1,(aq"),r1z) and by the characteristics of M.
It should be noted that N4 is the increasing function (and, consequently, Ry
is the decreasing one) with respect to the argument ||(,I\)[10]||q_1’(aql)7r(HR).
Define R = min{R;, Ry}. Taking into account (3.2), (3.9), the last inequal-
ities in (3.10), and the condition u|{y—o} = 0 which follows from (1.4), we
can apply successively Theorem 12 [6] and Theorem 13 [6] (with the natural
changesn - n—1,¢g - ¢—1, and @ — ag’) to (3.11). As a result we get
the estimates

”D*uPHF(Hm/Q) < Mis, [D*UP]V,F(HR/%) < Nis,

where the constants v €]0, 6[, N3, and N5 depend on n, ¢, 6, v, p, Mo,

1br01llg-1,¢aa 1,015 @1 1lg 1,011, a0 00 |85 1y 1 (g ),rrn)-

Now we can consider Eq. (3.11) as a linear equation with continuous coeffi-
cients at the second-order derivatives. Using a local variant of the inequal-
ity (35) from [6] we arrive at the estimate

1 (D*)? Upllg—1,(0a")r(1gy06) < Mg (3.15)
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where N depends on the same arguments as Ny3. It should be noted
also that Njg is an increasing function with respect to the argument

”(I)l llg—1,(aq"),0(11R)-
Using Lemma 2.1 we extend the function up\p(HR/SG) to the cylinders QW) =

] — £,0[xI'(Ilg/72) and Q@ =]0, £[xI'(Ilg/72) so as to satisfy
1D ] g 0.0 < Cll (D) thpllg-1,(007),0 (1 /26 (3.16)

where & = 1,2 and u,, ) denotes the corresponding extended function, whereas
(', are the constants from Lemma 2.1. _ L
By the choice of o, we have the embeddings of V7 (Q™) into C*HO(QW).
Therefore, for h = 1,2 we get

1Dl g < Nuz gl D*Tp g, 000 (3.17)

where Ny7 ) depends on n, ¢, 6, and on the characteristics of 0€y,.

Set vy (x) = up(w) — U, p) () for A = 1,2. Taking into account the condition
Up|{z,=0y = 0 which follows from (1.4), we get that both of the functions vy,
vanishes on I'(Ilg/72) U {z € 0Q™ : z, = 0}.

Then, using Eq. (3.5), we can write

—ag)(«, vy, Dvpy) DiDjop + gy (2, vy, Do) = 0,
where
(@, 2,p) = @) (x, 2 + Ty, p + Dﬂp’[”)’
ap(w, 2,p) = ap (%, 2 + Uy 1, p + D) + 61y (%, 2, p) DiDjip ).

Moreover, for any z € Q), z € R, p € R” the following structure conditions
are satisfied:

vIE[? <@ (x, 2, p)&E; < vUE VEERT, (A0)

Gy (x, 2, )| < 2ulp]? + by (2)|p] + @1 (2), (A1)
a9 (z,z,p

p| % <p for |p|>1, (A2')

94t (z, 2, p)

- Sulpl+8@),  (A3)

Ds + Ds ('dﬁ](x, Zap)>

o (2) = 01 (@) + 20| Dy | + by (2) | DGy | + vt D),
o}l (z) = % (2) + p|Da, -
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Further, applying successively Theorem 4.3 [4] and Theorem 3.2 [4] to the
function vy}, we find that

1D llr i1 1a0) < Mg, (3.18)

where Nijg depends on the same arguments as N3 and, in addition, on
b llgeyain, and (|1l @up for I = 1,2. It should be noted that Ny

is an increasing function with respect to the argument ”&)[10]”q—1,(aq’),F(HR)-
In particular, from (3.18) it follows that

|D’U[1](O, , 0, ey O)| < ng.

In view (3.17) and (3.16) with A~ =1 and due to (3.15), we have

©(p) = Eli@oDlup(s, x,0,...,0)

< [Dupy(0, 5,0, ..., 0)| + [ Dy 11(0, 52, 0, ... ., 0)]
< Nig + NigjC1Nig. (3.19)

Taking into account the relations (3.19), (3.8), (3.14), and the dependence
of the constants Ny, and N;5 — Nig on their arguments, we conclude that

0(p) < x1(p, P 0(p)), (3.20)

where x; is an increasing function of its arguments which is determined by
the quantities from the assumptions of the theorem.

Observe that for the case M;(z*) = M (z*), it sufficies to consider Eq.
(3.6) instead of Eq. (3.5) and repeat the above arguments for the
function vpy.

CASE 2. d(z*) > L&,

In this case we straighten the hypersurface ¥ in a neighborhood of z*. We
recall that all the properties of such a straightening are discussed in Re-
mark 3.1. It is obvious that

M1 < ng limODlu(s,x*) 5 (34,)
e——
where Nig depends only on properties of 3.
Consider ¢; = 7‘11(_”17;1;‘;. By the Holder inequality, for p* < %, and for any
functions f € Lg o) (B (z*) N ), h=1,2, and f € Lg1,(aq))(By ' (%))
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we have
- n * q_nn_ssl
[ fallgte),Br. @ynan (%)% | B (&™) [«Fe0
%\ 0
()™ Nao(n)|| fullg,(e),Br (@*)nes s
||f||q—1,(aq’),B;”,:1(z*) (p*)_aq |Bg*_1(m*)

NQO(n) ||f||q71,(aq’),BZ;1(m*)’

||fh||n+61,Bg* (z*)NQy,

NN

q—n—e]
(g—1)(n—1+e1)

||f||n—1+51,BZ;1(m*) <
<

where §; = 61(n, ¢, ) > 0.
The latter inequalities mean that we can apply the same arguments as in the
proof of Theorem 3.1 [10]. This immediately gives us

0(p) < x2(ps P 0(p)), (3.20")

where Y9 is an increasing function of its arguments which is determined by
the quantities from the assumptions of the theorem.

From (3.20) and (3.20’) it follows that, in either case, we have the inequality

0(p) < x(p, 1 ¢(p)), (3.21)

where x(p, p™"¢(p)) = max {x1(p, 0 ¢(p)), x2(p, P ¢(p)) } is an increasing
function of its arguments.

By Lemma 2.3 [11], the inequality (3.21) implies

elp) <P, Vp<p (3.22)

where p is determined by the known parameters listed in the statement of
the theorem.

The rest of the proof is standard. Combining the inequalities (3.4), (3.4")
and (3.22), we get the estimate

A~

M, < Ny QDIEO'\O) < Ny ﬁ_l_aql

where Ny; = max{Njy, Nig}. This completes the proof. O

Corollary 3.2. Under the hypothesis of Theorem 3.1 the following estimates
hold:
|Dullo, <G5, [Dulya, <G, (3.23)

where h = 1,2, while the constants Cs, Cg and 7 €]0,0[ depend on the same
quantities as Cy.

21



Proof. Once the estimate (3.1) is established, Eq. (3.8) becomes completely
self-govering and the rest of the proof is rather standard. Applying Theo-
rem 12 [6] we obtain the estimate || Dul|x, and after that from Theorem 13 [6]
we obtain the estimate [IN)u]:,,E. Then we consider the interface equation (1.3)
as a linear equation on ¥ and deduce the estimate |||(13)2u|||q_1,(aq/)72 from
Theorem 14 [6]. Using Lemma 2.1 we extend the function u|y to €; and
. For h = 1,2 we set vj(x) = u(zx) — U (), where 7, denotes the cor-
responding extended function. Then, Theorem 4.3 [4] and Theorem 3.2 [4],
applied succesively to the both functions vy, gives us the Holder estimate
for the full gradient on X as well as the interior estimates for the gradient.
Finally, combining all the estimates mentioned above, we arrive at (3.23). OJ

Proof of Theorem 1. We fix an arbitrary function
veEX =C"(Q)NCHT(Qy) NC(Q),

where 7 is the constant from Corollary 3.2. We consider the following family
of linear problems:

T (—az[{] (z,v, Dv)D;Dju + apy(z,v, Dv) ) — (1 — 7)Au = 0 in

T (—ag] (z,v, Dv)D;Dju + ag(z,v, Dv) ) — (1 = 7)Au = 0 in Qy,

1—7’)3u:0 on 3,

/U,‘QQ =0.

In view of the choice of «, it follows that the structural conditions (A2),
(A3) and (A4) guarantee for h = 1,2 the continuity of the functions affl] with
respect to all their arguments. Similarly, we may deduce from the structure
conditions (B2), (B3) and (B4) the continuity of the functions aff)] with re-

spect to all their arguments. Thus, aff;]( -, v, Dv) € C(Q) for h= 1,2, and

afg]( ., v,Dv) € C(T). By (A1) and (A4), we have ap)( -5 v, Dv) € Lg ) ()
for h = 1,2. Finally, from (B1), (B4), (J0) and (J1) we get that the functions
a) (-, v, Dv) and Jv belong to the space Ly—1,(aq)(2).

Therefore, Theorems 2.3 and 2.4 are applicable to the problem (3.24) for
every 7 € [0,1]. It guarantees that for every 7 € [0,1] there is a unique
solution ul™! of the problem (3.24) belonging to the space V ()(€, ).

We define the family of nonlinear operators F,, 7 € [0,1], from X in
Vi (e)(£,X). With every function v the operator F, associates the
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solution u” of the problem (3.24). By the choice of ¢ and «, the
embedding of V, (4)(£2, X) into X is compact. Therefore, the operators F;
are compact in X.

It is obvious that Fo(v) = 0. By condition (iii) of the theorem, the set N of
fixed points of the operators F,, 7 € [0, 1], is bounded in C'(Q2). Corollary 3.2
shows that the set M is bounded in X'. Applying the Leray-Schauder principle
(see Theorem 10.1 [12]), we complete the proof. O

Remark. For the case n = 2 the condition ¢ > ¢ in Theorem 1 becomes
the condition ¢ > n which is standard for domains with smooth boundaries.
Moreover, if ¢ is not too large ( % > 2 — %), then we can take o = 0 and

solve the problem in an ordinary (not weight) Sobolev space.

This work was partially supported by the Russian Foundation for Funda-
mental Research (grant No. 02-01-00276).
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