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Abstract

In this paper a new numerical method for the multifrequency anal-
ysis of the three-dimensional Helmholtz equation is introduced. The
Collocation Boundary Element Method (BEM) is used for the dis-
cretisation of the problem. The identity of the Fourier transform with
respect to the wave number is applied to the matrix of the resulting
linear system. The analytical form and some important properties are
derived. Some numerical examples for the solution are presented.
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1 Introduction

An important assignment for engineers who design electro-magnetic compo-
nents for automobiles is the reduction of the noise which results from acoustic
radiation emitted by the surfaces of these vibrating components.

The mathematical model of this technical problem can be represented by a
three-dimensional exterior boundary value problem for the Helmholtz equa-
tion. The associated boundary integral equation (BIE) is formulated in terms
of the surfaces of the components, so one of the most complicated problems
is the numerical solution for the BIE. The boundary element method (BEM)



produces large dense matrices especially for complex, practically relevant
geometries in 3D, where a large number of panels is needed to obtain a suffi-
ciently accurate approximation of the boundary. The memory requirement is
Mem = O(N?) and the numerical work using classical direct solvers is given
by Op = O(M N?) where M denotes the number of frequencies and N is the
number of degrees of freedom. Engineers are interested in a wide spectrum
of frequencies v € [0, Vyaz)-

Typical values are N = 10> — 10* for the dimension of the problem and
M = 10' — 10? for the frequencies of interest.

In this paper, we introduce a new method for the multifrequency analysis of
the Helmholtz equation which is based on the Fourier transform with respect
to the wave number  (and so the frequency).

The paper is organised as follows. In Section 2 we give a short description
of the exterior boundary value problem for the Helmholtz equation and its
properties. The boundary integral formulation of the problem and the dis-
crete form are the topics of Sections 3 and 4. In Section 5 we give a short
review of the Fourier transform and its main properties. We present, in Sec-
tion 6, the new system of collocation equations after applying the Fourier
transform. Finally, we give some numerical examples, Section 7, and some
conclusions, Section 8.

2 The Helmholtz Equation

We consider the exterior boundary value problem for the three-dimensional
Helmholtz equation [2]
Au(z)+r*u(z) = 0, 2R \Q, (1)
l(u(z)) = g(z), z€Tl.
In (1) k is the wave number which may be real or complex with I'm (k) > 0.
[ = 09 denotes the boundary of the bounded domain 2 and g(z) is a given
function. [ is a boundary operator corresponding to the Dirichlet, Neumann

or impedance boundary condition on I'.
Here, we restrict our discussion to the case of the Dirichlet problem

u(z) = g(z), z €. (2)

To quarantee uniqueness of the solution u(x), we add the Sommerfeld radi-
ation conditions or outgoing wave conditions [6]

(% - m)u(x) =o(|z|™) and u(z) = O (|z|™!) for large |z| =7. (3)
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Notice that the fundamental solution of the Helmholtz equation is known
Au*(z,y, k) + K*u*(z,y, k) = —8(x — y)

where for z,y € R3

1 etrle—yl

(4)

U*(.Z',y,li) = E|$—y| .

It should be pointed out that the fundamental solution (4) satisfies the Som-
merfeld radiation conditions [1].

3 Boundary Integral Formulation

The boundary integral equations for the exterior Dirichlet boundary value
problem in (1) will be reviewed, according to [2].
For a given density function f(-, ) defined on I and y € R?, we let

V() (sk) = / u* (2,9, 8)f (@, k) dF, (5)
Bwe) = [P ar, ()

be the single- and double-layer potentials for the Helmholtz equation.
Note that both potentials satisfy the Sommerfeld radiation conditions (3).

Using the single-layer potential V; in (5), to treat the Dirichlet BVP, we
would need to solve the boundary integral equation for y € I’

Af(y, k) = / u*(z,y, 8) f (2, 5) dFy = g(y, ), (7)

T

where f is the single-layer density representing the solution of (1).

We now give a uniqueness theorem for the solution.

Theorem 1 The exsterior Dirichlet BVP

Au(y) + *u(y) =0 fory € Q° (8)
u(y) =g(y) € H(092) forye o, reR

u satisfies the radiation conditions (3)
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has a unique solution
uly) = / u*(z,y, k) f(z, k) dF, € H,, 2 () (9)
r

for a unique f € H™(0R) solving the BIE (7), provided —k? is not an eigen-
value of the interior Dirichlet BVP for the Laplacian.

Remark 2 If —k2? is an eigenvalue of the interior Dirichlet BVP for the
Laplacian, then the BIE (7) is solvable if and only if g is orthogonal to the
cokernel (=kernel) of A. In this case, the solution f is not unique, cf. [3].

In a similar manner we can use the double-layer or the combined single- and
double-layer representations to solve the exterior Dirichlet BVP.
The associated uniqueness theorems for all wave numbers  are given in [2].

Throughout the rest of this discussion, we assume that x € R*.
Restricting our discussion to the case of the single-layer representation, we
assume that the equation (7) is solvable.

4 Collocation Method

The numerical solution for the equation (7) begins with the discretisation of
the surface I' using a system of plane, triangle panels

N
P~Ty=JI;.
j=1

The centres of the mass of the panels I'; build a system of collocation points
Yi
_lrw @ _
yz—g(acZ + ;7 + x; ), 1=1,...,N.

Let the unknown function f(x,x) on I' be approximated by

CEEDNACEIC

where ¢; is piecewise constant on I';:

(x) _ 1 on Fj
“i\T) =1 0 otherwise.
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Thus we obtain the following system of collocation equations
A(k)a(k) =b(k), Ae CV*N o, be CN (10)

where the elements of the matrix A are defined as

1 in|:c yil

aij(k) = ——;(x)dF; . (11)

\x—yz|

The vector o and the right-hand side of this system are given by

(a(k)); = aj(k) and (b(k))i = 9(vi, k), 4,7i=1,...,N.

Note that the equation (10) explicitly depends on the wave number x.

5 Fourier Transform

In this section we give some basic definitions and properties of the Fourier
transform for our subsequent applications. For more details we refer the
reader to [2], [5] .
For a complex-valued function f on R, we define the one-dimensional Fourier
transform of f by

F(k) = FenlFO(R) = / F(€)d™de ,r ER. (12)

The corresponding inverse Fourier transform is then
7€) = F41i (o) / Flrye ., (13

from which we also have

F©) = FAAE) = 5 f(r) resp. Feulfits) =2mf(-x).  (14)

The Fourier transform f exists, at least, for f € L;. In particular, (12)
and (13) define the Fourier transform and its inverse for every test function
f € S. It is well known that the Schwartz space S is invariant under the
Fourier transform and that under its inverse

Ft.S—>S.



An important property of the Fourier transform is given by the Bessel-
Parseval formula

(frg) = [ F050n =

oo (f,9)1, forall fig € L.

We notice that the Fourier transform of a tempered distribution ¢ € S’ is
defined by

(W, f) = (. f)
which holds for every test function f € S and has the property
Fil.s' 8.

Later we will need the inverse Fourier transform of the constant 1.
Since the Fourier transform of the even Dirac d-distribution is known

b=1

we get, through (14),

Sy

1=6(z)=46(z) and 1=46(z). (15)

6 New Linear System

Applying the identity of the Fourier transform with respect to the wave
number « to the collocation matrix (11) we obtain

A(K) = Fen [Frg [AB) ()] (k) - (16)

The entries of the matrix A(¢) = .7-'7;51 [A(n)](&) are given by

1 .
dij(é‘) = %/aij(ﬁ)eﬂ’igd/ﬁ;
R
11
— ¢ [ o€ - westanr, (
Tr
as a consequence of
FAHe =€) = FAN(E - o - ui) (19

and (15).



Remark 3 The Dirac §-distribution in (17) describes a ball of radius & cen-
tred at vy;.

Due to its definition the integration domain leads to integration over the in-
tersection of T' and the surface of the ball.

Note that £ is reduced to [0, diam(T") | where diam(T') = sup |z — y|.
z,yel’

If we assume that I';, 7 = 1,..., N, are plane triangles then the corresponding
elements of the matrix A(¢) can be computed analytically in the following
way.

Let us denote the projection of the point y; into the plane of the triangle
I'; with y;, vi = yi —d-n;. First we rotate and translate the system of
coordinates in such a way that the origin coincides with the point y, , the
ei-axis is directed along a side of the triangle, especially the side x§1)x§2),
and the es-axis is directed along the unit normal vector n;. In these new
coordinates a point x € I'; takes the form

t' = Q(:E - y;) = (xll’:EIQ: 0)
where () denotes the corresponding rotation matrix.
Figure 1 illustrates the situation described.

Figure 1: Computation of the elements of the matrix

The integral in (17) will be evaluated in polar coordinates in the plane of the
triangle I';. Using the notation from Figure 1 and noting that odp = rdr we
obtain

P2 Tmaz

| 8= nestatr ordrdp = - @a(6) - 1(6)) , (1)

®; d

11

i (€) = PP



i,j =1,..., N, since ¢;(z) is piecewise constant on I';.

Notice that each element a;;(£) has a lpcal support, supp| @i; | = [Emin, Emaz |
cf. Remark 3. Therefore the matrix A(£) is real and has a sparse structure
for a fixed &.

In order to solve the system of linear equations (10) we need to examine the
Fourier transform of the matrix A(€) (cf. (16)).

Since each element a;;(£) has a local support we can restrict the integration
domain to the support of the element.

Inside this interval the function will be approximated using a set of m piece-

wise constant splines and we obtain the following relations for the entries of
A(r)

m—1 +1
[ as(@etie mhe Yy [ eennioa
R =0 1
where
I+1
ai(l) = / Gij(Emin + the)dt and  he = W m € N.

!
A short calculation of the integral term leads to the new linear system

A(k)a(k) =b(k), Ac CVN o, beCN (20)
where the elements of the matrix A are defined as
m—1
~ 1k (Emin hey ’{hf - K
aij(li) = hf e (Emint+—=) sinc (7) lz_; az](l)e lhe . (2]_)

Since the term outside the sum depends only on the wave number £ the sum
will be estimated separately.
A further property is that the values @;;(!) are independent of the choice of
wave number. This allows us to treat the linear system for several k < L
using the same data d;;() for each of them.
Remember that L corresponds to the highest frequency

L= QWM

c

where c is the velocity.

It should be remarked that we can analytically compute the entries of the
double-layer potential matrix in a similar manner.
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7 Numerical Results
We consider the surface of the unit sphere
[ ={zeR, |z|=1},

approximated using a system of N = 1280 plane, triangle panels.
The maximal wave number is given by L = 8 and we are interested in
M = 200 frequencies.

The following numerical tests were performed for the boundary integral equa-
tion

Av = (%I—i—l’)’) f and Av= (—%I—FB) f (22)

of the respective interior and exterior Dirichlet BVPs of the Helmholtz equa-
tion using collocation with piecewise constant ansatz functions.

In the above A and B denote the single-layer and double-layer potentials of
the Helmholtz equation.

Since we chose

1 ein\z—yo\

f=u"(z,yo, k) rel,

Cdr T — Yo’
Yy, ¢ Q for the interior and y, € §2 for the exterior problem, the solution of
the equation (22) is known to be v = O, u*(z, Yo, K)|zer-

In order to examine the behaviour of the solutions which arise from the
Fourier method vpr, we compare these and the results using standard tech-
niques vgr with the analytical solutions v. Note that we use numerical inte-
gration for the computation of the matrices in the case of vgr.

In the graphs below the solution vgr is highlighted in black, vgr is pointed
and the dashed line corresponds to the analytical solution.

Figure 2 shows the error of the solutions in the L, norm. The error of the
solution using the Fourier method is almost constant except for the discrete
peaks, whereas the error of vgr increases with a larger wave number. The
peaks result from the fact that the negative square of these wave numbers
are exactly the eigenvalues of the Laplacian on the unit sphere.
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Figure 2: Ly error of the solutions in dependence on the wave number

The course of one component of the solutions depending on the wave number
is presented in Figures 3 and 4. In both cases, the Fourier method provides
results which coincide well with the analytical values. The curve of the solu-
tion using standard techniques differs increasingly for larger wave numbers.
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Figure 3: The course of the solutions in dependence on the wave number -
Interior problem
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Figure 4: The course of the solutions in dependence on the wave number -
Exterior problem



Finally, we consider the behaviour of the solution using the Fourier method
in dependence on the dimension N of the respective interior and exterior
problems.

In order to do this we differentiate between the convergence for a fixed wave
number x with the discretisation parameter i tending to 0, and the behaviour
of the error for kh = const., cf. [4].

Table 1 shows the convergence of the solutions vgr for K = 7/2.

N kh | ||[v* —vpr||L, (interior) | ||v* — vpr||L, (exterior)
20 | 0.953 0.104E-01 0.595E-01

80 | 0.538 0.459E-02 0.148E-01

320 | 0.278 0.161E-02 0.873E-02

1280 | 0.140 0.894E-03 0.674E-02

Table 1: Convergence of the solutions for k = 7 /2

The behaviour of the error for various wave numbers satisfying the condition
kh = 0.7 is printed in Table 2.

Notice that the deviation of the solution of the interior problem arises from
the fact that the wave number k = 7.84 lies close to an eigenvalue of the
Laplacian (see also Figure 2).

N K kh | ||[v* —vpr||L, (interior) | ||v* — vpr||L, (exterior) ‘
20 | 1.15 | 0.698 0.727E-02 0.566E-01

80 | 2.04 | 0.697 0.682E-02 0.145E-01

320 | 3.94 | 0.699 0.740E-02 0.222E-01

1280 | 7.84 | 0.702 0.122E-01 0.203E-01

Table 2: I, error of the solutions for various x with kh =~ 0.7

It should be pointed out that the new scheme uses only half of the computing
time compared to the case using standard techniques.
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8 Conclusions

In this paper, we presented a new numerical method for the multifrequency
analysis of the Helm- holtz equation. We illustrated the advantages of the
transformed matrix, which is real and has a sparse structure. Numerical
tests of the new procedure show that the agreement of the boundary element
results with the analytical solutions is good.
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