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Abstract

In the present paper a new numerical method for the Boltzmann
equation is developed. The gain part of the collision integral is written
in a form which allows its numerical computation on the uniform grid
to be carried out efficiently. The amount of numerical work is shown
to be of the order O(n®log(n)) for the most general model of inter-
action and of the order O(n®) for the Variable Hard Spheres (VHS)
interaction model, while the formal accuracy is of the order O(n 2).
Here n denotes the number of discretisation points in one direction
of the velocity space. Some numerical examples for Maxwell pseudo-
molecules and for the hard spheres model illustrate the accuracy and
the efficiency of the method in comparison with DSMC computations.

AMS Subject Classification: 82C40, 82C80, 656R20
Keywords: Boltzmann equation, deterministic numerical method
1 Introduction

We consider the classical Boltzmann equation for a simple, dilute gas of
particles [7]

fe+ (v, grad, f) = Q(f, f) (1)



which describes the time evolution of the particle density f(t,z,v)

f R xOQxR = R,.

Here R, denotes the set of non-negative real numbers and Q C R® is a
domain in physical space. The right-hand side of the equation (1), known as
the collision integral or the collision term, is of the form

AN = [ [ Bowe ()W) - 10f @) dedu. @)

R3 §2

Note that Q(f, f) depends on ¢ and z only as parameters, so we have omitted
this dependence in (2) for conciseness. The following notations have been
used in (2): v,w € R® are the pre-collision velocities, e € S? C R® is a
unit vector, v, w’ € R® are the post-collision velocities and B(v, w,e) is the
collision kernel. The operator Q(f, f) represents the change of the distri-
bution function f(¢,x,v) due to the binary collisions between particles. A
single collision results in a change of the velocities of the colliding partners
v,w — v, w with

! 1 ! ]‘
v :§(v+w+\u|e), w :§(v+w—\u|e>,

where © = v — w denotes the relative velocity. The Boltzmann equation (1)
is subjected to an initial condition

f(oﬁxﬂv) = fO(xav): S Qa v E RS

and to the boundary conditions on I' = 0€2. The kernel B(v,w,e) can be
written as

Mum@=3w¢m=mwwmmu=amm=ﬁjW

The function o : R} x [-1,1] — Ry is the differential cross-section and 6 is
the scattering angle. Some special models for the kernel are as follows:

1. The hard spheres model is described by the kernel

Bl = L. @)

where d denotes the diameter of the particles.



2. The kernel
B(lul,p) = [u]t = Mg, (), m > 1 (4)

corresponds to the inverse power potential of interaction. m denotes
the order of the potential and g, is a given function of the scattering
angle only. The function g,, imposes a non-integrable singularity for
60— 0

gm (1) = O(G_WTH) .

Since the collisions with a small scattering angle lead to only small
changes it is useful to cut off the function g,, in such a way that the
condition g, € L;([—1,1]) is fulfilled [9]. This model of interaction
is called inverse power cut-off potential. In this case the collision
integral can be decomposed naturally

Q(fa f)(’U) = Q-l—(fa f)(’l)) - Q—(fa f)(v)a

into the gain

Qe (f f)(v) = / / B(Jul, 1)/ (o)) (") de du (5)

RS §2
and the loss part
Q-(F.H) = F0) [ Buar(lu () ds (6)
J
I (6) Bios(|u|) denotes the following integral
Bua(fu) = [ B(ul, ) de. (7)
J

3. The special case of m = 4 in (4) corresponds to the Maxwell pseudo—
molecules with

B(lul, p) = ga(p) -

The collision kernel B(|ul, xt) here does not depend on the relative speed
Jul.



4. The Variable Hard Spheres model [1] (VHS) has an isotropic cut-
off kernel

B(Jul,p) = Cylul*, =3 <A< 1. (8)

The model includes, as particular cases, the hard spheres model for
A =1 and a special case of the Maxwell pseudo—molecules with A = 0.

All relevant physical values of the gas flow are computed as the first 13
moments of the distribution function or their combinations. These moments
are:

the density

o(t,z) = /f(t,x,v) dv, 9)
R3
the momentum
m(t,z) = /vf(t,x,v) dv, (10)
R3
the momentum flow
M(t,z) = /vaf(t,:v,v) dv, (11)
R3
and the energy flow
1
r(t,z) = 3 /v|v\2f(t,x,v) dv . (12)
R3

Note that the matrix M (¢, z) is symmetric and therefore defined by its upper
triangle. Using these moments we define the bulk velocity

V@xy:%, (13)

the internal energy and the temperature

1 2
e(ta CE) = 2_9 (tI‘M - Q|V‘2) ) T(t, .’E) = ﬁea (14)

the pressure

p(t,z) = o RT, (15)
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the stress tensor
P(t,z) =M — oVVT

and the heat flux vector
1
q(t,z) =1 — (M + (?ch - Q|V|2) 1) V.

Note that in the spatially homogeneous case f = f(¢,v) the following impor-
tant conservation properties hold. The density

oft) = / £(t,0) do = / folv)dv = a0, (16)

the momentum

mi#) = /vf(t, v) dy = /vfo(v) dv (17)

R3 R3

and the trace of the momentum flow

b M (1) =/|v|2f(t,v) dv=/|v|2f0(v) dv (18)

remain constant during the relaxation. Thus, corresponding to (13), (14) and
(15), the bulk velocity, the internal energy, the temperature and the pressure
are conserved quantities

V(t)=Vo, e(t) =eo, T(t) =To, p(t) =po.

Before we begin the description of our new numerical method, we shall discuss
the results known from the literature. One of the first discrete versions of
the Boltzmann equation was published by D. Goldstein, B. Sturtevant and
J.E. Broadwell [8]. Many authors then published different ideas to lead to
a discrete version of the Boltzmann collision operator [20], [12], [13], [14],
[15], [16]. In [10] the authors studied the difference scheme for a mixture of
gases. L. Pareschi and G. Russso [18], [19] considered deterministic spectral
methods for the Boltzmann equation.

The main difficulty with the deterministic approximation of the Boltzmann
collision integral besides its high dimensionality is the fact that any grid
for the integration over the whole space R® will not fit for the integration
over the unit sphere S?. Thus only O(n) irregularly distributed integration
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points belong to the unit sphere if n regular points in one direction are used
for the approximation of the R?® integral. A. Bobylev, A. Palczewski and J.
Schneider [3] considered this direct approximation of the Boltzmann collision
integral and showed that the corresponding numerical method is consistent.
The arithmetical work is O(n”) per time step and the formal accuracy is
O(n=1?).

A. Bobylev and S. Rjasanow [4], [6] developed and tested a deterministic
numerical method for the case of the Maxwell pseudo—molecules applying
the Fast Fourier Transform (FFT) and using the explicit simplification of the
Boltzmann equation for this model of interaction (see [2]). The arithmetical
work is O(n*) per time step for the same low formal accuracy of O(n~'/2).
A similar method was considered by L. Pareschi and B. Perthame in [17].
Probably it is the fastest deterministic numerical method known but at the
same time it is strongly restricted to the case of Maxwell pseudo—molecules.
In the case of hard spheres A. Bobylev and S. Rjasanow [5] developed an
algorithm where the integration over the unit sphere is completely separated
from the integration over the whole space R®. The resulting scheme uses the
possibility of fast evaluation of the generalised Radon and X-Ray transforms
via FFT and requires O(n® log(n)) per time step for the high formal accuracy
of O(n™2).

The paper is organised as follows. In Section 2 we show how to rewrite the
gain part of the Boltzmann collision integral in a formally equivalent form
which is convenient for the numerics for the most general model of interaction
(4). In Section 3 we describe the uniform discretisation of the velocity space.
The numerical algorithm for the Boltzmann equation with the general kernel
will be formulated in Subsection 3.2. Then, in Subsection 3.3, we deal with
the VHS model and construct a faster modification of the method described
above. In Subsection 3.4 we discuss the discrete form of the conservation
laws. The time discretisation is the topic of Subsection 3.5. In the fourth
and final Section we present the results of some numerical tests. Here we
use the analytically known time relaxation of the moments (9)-(12) for the
Maxwell pseudo-molecules model for a careful check of the accuracy. Finally,
a reference solution obtained by the DSMC method for the hard spheres
model is compared with results obtained by the new method.



2 Transformation of the collision integral
The three-dimensional Fourier transform of the function g(v) is defined as
96) = Fune o) (©) = [ 90 Do (19)
R3

Thus the function g(v) can be represented as

o) = 3, [00] 0) = s [ a6 7O (20)

Lemma 1 The gain part of the Boltzmann collision integral (2) can be writ-
ten in the following form

QD) = Fpn| [ T )7, [1 - ) + 0] @y du] @) )
where the kernel T (u,y) is defined as follows
T(u,y) = 8/B(2|u|,,u)e_l|u|(y’e) de. (22)

Proof. Using the substitution w = v — u, dw = du we rewrite the gain
part of the Boltzmann collision integral (5) as follows

// (lul, ) f v——u+ |u|) (U——u——\u|)dedu.
R3 §2
Switching to the spherical coordinates u =ré, r > 0, é € S? leads to
/TQ//B(T‘ (e é))f(v - lré—i- 17“6)]‘(1) - 1T“é— lT'e) de dédr .
T 2 2 2 2
0 S22

Forming the new variable 24 = r e, r2dr de = 8du and immediately omitting
the tilde signs over 4 and € we obtain

QN =8 [ [ Bl f e lule+ wf(o = fule - ) dedu. (23)

R3 §2



Thus both post-collisional velocities now depend on the variable e in the
same way. Now we remove this dependence from the expressions v — |ule +u
and v — |ule — u using the Fourier transforms (19) and (20)

F(o = [ule +u)f (v = [ule = u) = Fyre | F 3, [F(z +u)f(z = )] v)]

E=v—|ule

Substituting this expression in (23) and using the integral form of the Fourier
transform leads to

s [ [ [ Bl e~ e E L (16 w0 s - w) ) dedudy.

R3 R3 §2

Thus together with the definition (22) we obtain the final result (21)

Qe NE) = Foon| [ T F3,[1 =01z + )] (w.9) du] ).

Remark 2 The expression (21) contains nine integrals instead of five in the
original form (2). However no integration over the unit sphere is involved
and two Fourier transforms in (21) can be evaluated very efficiently on the
uniform grid using the algorithm of FFT.

The kernel T'(u,y) defined in (22) does not depend on six variables. Even in
the most general case of interaction (4) it depends only on |ul, |y| and (u,y).
To show this fact we rewrite (22) having the kernel (4) as follows

T(u,y) = 23+)‘|u|’\/gm ((u, e)) e~Uul(y,€) de, A\=1—4/m. (24)

Using the orthogonal matrix

_((uxy)Xu: uXy :i>€R3X3
luxyllul *luxyl " |u|

we introduce the following parametrisation of the unit sphere

cos ¢ sin @
e=e(p,0)=U| sinpsing | ,0<p<2r,0<0<.
cosf
Since
X
(u,e) = |u|cosf, (y,e) = |u‘ |y| cos o sin § + (T’?‘J) cos
u u
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we obtain for the integral in (24) the following expression

T 27
/gm(cos e)e—z(u, Y) cosH/e—z|u X y| cos ¢ sin 0 dp sin0do .
0 0

Using the Bessel function

2

1
J()(Z) — g/ezz COSSDdQD
0

and the obvious formula

u x yl =/ lul?lyl? = (u,y)?

we obtain the following simplification

™

27T/gm(cos O)e_l(u’ v) COSGJO <\/|u|2|y|2 — (u,y)2 sin 0) sin 0 d6 .

0

Thus

T(u,y) = T(|ul, [y], (u,9)) -

This property can be used for reducing the numerical work and/or the mem-
ory requirements.

For the VHS model of interaction (8) the function T'(u,y) can be computed
analytically

T(u,y) = 22Oy ul / e~ Uul(¥:€) ge — 250y JuPsine([ul Jy)),
52
where the abbreviation
sin z

sincz=——, z€ R
z

is used. In this case the kernel T'(u,y) depends only on two scalar values |u|
and |y|. This property will then help us to construct a more efficient scheme
for the VHS model (8) than for the general model of interaction (4).



3 Discretisation of the collision integral
In this section we derive a discrete version of the Boltzmann collision integral

QU )(w) = Q4 (f, f)(v) — Q-(f, f)(v)

with

Qe DO Fon| [T T3, 1= wf e+ 0)] ) d] @) (25)

R3

and

Q_(f, )w) = f(v) / Buon(lu]) f (1) dhw, (26)

RB

where the function By (|u|) is defined in (7).

3.1 Discretisation of the velocity space

The distribution function f(¢,v) is in general not compactly supported but
usually it is negligibly small outside of some ball

BrV)={veR : v-V|<L},

where V' denotes the bulk velocity (13). Thus for the numerical treatment
of the Boltzmann equation we assume that

supp f(t,) = Br(V), t > 0.
The support of the function
9 (u, 2) = f(z — u) f(z + u) (27)

with respect to the variable z by fixed u is the intersection of two balls and
depends on u

supp ¢ (u,-) = B(V —u) () Bu(V +u).
It is clear that

supp g (u,-) =0, |u| > L.

10



The same property is obviously valid for the function

99(u,y) = F23, [90(2)| ). (28)

with respect to the variable y i.e.
Suppg@)(u, ) = ma |u| > L.

Thus the integration over the whole space R* with respect to the variable u
in (21) can be restricted to the ball By (0). It is much more convenient to
consider the cube

Co(V)={veR : |v,—-V;| <L, j=1,23}

instead of the ball B, (V) C CL(V) for discretisation of the variables z, v and
w in (25) and (26). C(0) will be used for the variable u in (25).

Let n € N be a natural even number. Then we denote by C,,, C, the following
sets of three-dimensional indices

C, = {keZ’, —n/2<k,<n/2, m=1,2,3}, (29)
C, = {keZ’, —n/2<kn<n/2, m=1,2,3}.

Introducing the mesh size h, = 2L/n in the velocity space we consider the
following set of discrete velocities

Co={v;=V+hj, jeC} CCL(V). (30)
The appropriate set for the variable u is
Cy=A{ur=hyk, k€ C,} CCL(0).
The variable y in (25) will be discretised on the set
Cy={yj=hyj, j€C}, (31)
where the mesh size h, is related to the mesh size h, by

2
hohy = —, e hy, =~

= = (32)
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3.2 Discretisation of the gain part (general case)

The computation of the gain part of the collision integral Q. (f, f) (25) con-
sists of the computation of the integral of the function ¢® (u, y) (see (27),(28))
over C,(0) with respect to the variable u

9P (y) = / 9 (u,y) du
CL(O)

and of the final Fourier transform

Q+(f, /) () = Fooy[9¥ (1)) (v)
and can be realised using the following algorithm:
Algorithm 3

1. Integration over Cp(0):

1.1 set g®(y;):=0, y; € Cy,
1.2 for all u, € C, compute

1.2.1
9(1)(%, z1) = fla—ue) f(z+ur), 2 €Cy,

1.2.2

) hy —1(y5, 21) ,(1)

9 (ug, y;) = 3 Z we A g (ug, z1) Y € Cy,

(2m)
ZIECU

1.2.3

93 (y;) := ¢® (y;) + wi T(ug, y;) 92 (ug, v5)

2. Fourier transform:

Q+(f: f)(vk) = h’z Z Wj el(vk’yj)g(?’) (y]) , Uk € Cv .

y; €Cy

Remark 4 The values wy, k € C, in 1.2.2, 1.2.3 and 2. are the weights
of a quadrature defined on the regular grids C,, C, and C,. In our tests we
will use the trapezoidal rule having the formal accuracy of O(n=?) and which
15 very easy to implement. It should be pointed out that the use of more
accurate quadrature rules such as the Stmpson rule affect neither the amount
of numerical work nor the practical realisation of the algorithm.
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Remark 5 Step 1.2.1 of the above algorithm can be realised very effi-
ciently. Thus the pointwise multiplication is only necessary for the points
Z; € supp g(l)(uk, -). Simple geometrical considerations show that the total
number of multiplications required by this step is n%/8 + O(n?).

Remark 6 Step 1.2.2 is the most expensive in the whole algorithm. It can
be written with (30), (31) and (32) in the form

2T
T

1 — . i
9 (u, y;) = =—ze u(y;, V) > we (2D g0 (4, ) .

(2L) leCl,

Thus this step requires one FFT and one multiplication with the diagonal
matriz

D = diag {e_l(yj’ V) , j € C;L}
for every uy leading to 15m°log,(n) + O(n®) complex multiplications.

Remark 7 The realisation of Step 1.2.3 is obvious. If the values T (ug,y;)
can be precomputed and stored then the numerical work required by this step
is exactly n® + O(n®) complex multiplications. We are going to discuss this
procedure for the VHS model in the next section. If these values are computed
in each time step then the numerical work required by Step 1.2.3 remains
of the same order O(n®) but having some probably unpleasant constant which
will depend on the special choice of the kernel B(|u|, ).

Remark 8 Final Step 2. of the algorithm reads as
3,1(vg, V) 127 (k, 7) 3
Qq (o) = hie!\ Ve V) N " e D) gy
JECY,

Thus this step requires one FFT and one multiplication with the diagonal
matriz D*. The amount of numerical work 15n3log,(n) + O(n?) is negligible
i comparison with the previous steps.

3.3 Discretisation of the gain part (VHS model)

The main advantage of the VHS model (8) is that the function 7'(u,y) in
(25) depends only on the values |u| and |y| (e.g. (25))

T(u,y) = 2> 7Cy |u*sinc(|u] y|) .

13



Thus on the grid C,, x C, we obtain with (32)
5+ ML A 2m -
T (uk,yj) = Tr; = 27 wCrh; k| sinc ;|k| I3l ] - (33)

The matrix 7' contains many equal elements due to the following fact. The
integer values |k|? and |j|? have the following range

3
0<|k]*<

_ZnQ, kECn

Thus the matrix 7" in (33) contains only 9/16n* + O(n?) different values
which can be stored in an array T of the dimension (3/4n%+1) x (3/4n%+1).
Then we use

Tk; = Tkp,jjp2

for further calculations. The amount of computer memory is close to optimal
but probably the main advantage of the VHS model is a remarkable reduction
of numerical work due to the special form of the matrix 7". In order to modify
Algorithm 3 we divide the set C), of all indices in classes of equivalence

3/4n?

Co=J Clm, Clp= {keZ3 : |k|2:m}.
m=0
Note that due to the number theory there are no solutions k& € Z3 of the
equation
k> + k2 +k?="7mod 8.

Thus the corresponding classes Cl7 moq s are empty. The following modifica-
tion of Algorithm 3 is therefore possible:

Algorithm 9

1. Integration over Cp(0):

1.1 set g(3)(yj) =0, ijan
1.2 for all m=0,1,...,3/4n?, m # 7 mod 8 compute
1.2.1

g (m,z) = Y wi fla—w) fla+u), z€Cy,
kEClm

14



1.2.2

h3
gD (m,y;) = (2;’)3

Z Wi e_l(yj’ Zl)g(l) (ma Zl) y Y € Cy )

ZIECq)

1.2.3
9 (y;) = g®(y;) + Ty 92 (m, y;)

2. Fourier transform:

Q(f, Do) = h3 Y w; VU g® (y) | v € C,.

y; €Cy

Algorithms 3 and 9 are completely equivalent but Algorithm 9 is much faster.
The main gain in efficiency is the reduction of FFT’s in Step 1.2.2 from
(n 4+ 1)% in Algorithm 3 to 21/32n? + 1 in Algorithm 9. Thus Step 1.2.1
requiring n®/8 multiplications is now asymptotically the most expensive step
while all FFT’s in Step 1.2.2 require only 315/32n5log,(n) operations.
However, Step 1.2.2 is more expensive in practice than Step 1.2.1 for
realistic values of n.

3.4 The loss part of the collision integral

The computation of the loss part of the collision integral Q_(f, f) (26) con-
sists of the computation of the linear integral operator of convolution type

o(v) = / Buar(v = w]) f (1) duw (34)

Cr(V)

and of the pointwise multiplication of the functions f(v) and g(v) on the grid
C,. The discretisation of (34) leads to

g(vr) =5 > wiBor(holk — j1) f (w;)

’UIJ'ECU

Thus (34) describes a multiplication of the three-level Block-Toeplitz ma-
trix having elements h3Byo(hy|k — j|), k,j € C, with the vector having
elements w;f(w;), j € C,. This standard task can be done numerically
using O(n®In(n)) arithmetical operations with a rather unpleasant constant.
However, this amount of work is negligible compared with the computation
of the gain part. It is necessary to remark that the fast multiplication of
a multilevel Block-Toeplitz matrix with a vector also requires some amount

15



of memory for the eigenvalues of the corresponding block-circulant matrix.
This amount is 8n® and in general quite important. Finally we compute

Q-(f, /) (wk) = f(vk)g(vr), k € Cy (35)

using O(n®) multiplications. Note that for the Maxwell pseudo-molecules the
function By, is constant and therefore the computation of the loss part is a
trivial scaling

Q— (f7 f) (Uk) = QOBtotf(Uk) ) k € Cn . (36)

3.5 Conservation properties

Here we follow [6] and describe the discrete version of the conservation prop-
erties (16), (17) and (18). For a given initial distribution fy(v) we first
compute on the grid C, the initial values

on = b}y wifolvy),

’U]'ECU

mn = h) Y wivi folvy),
’U]'EC'U

My = B3 wilo? folvy).
v; €CYy

Then we introduce numerical conservation properties of the form

hg Z ij(t, Uj) = (f: ¢70) = aop, (37)
’U]‘ECU
hg Z CUj('Uj)lf(t,Uj) = (fawl):a'lv l:1:2737
v; €CYy
hg Z CUj‘Uij(?f,’Uj) = (fﬂﬁz) = a4,
v; €Cy

where (-,-) : ROHD° x R+D* 4 R is the Euclidean scalar product and
Y, € RO are given vectors. Thus there are 5 algebraic constraints on the
vector f(t,-) for all ¢ > 0. In general they will not be fulfilled automatically
and require some correction of the vector f(¢,-) for ¢ > 0. In [4], [5] and [6] we
have developed and tested an effective algorithm for conservation properties
(37) which is based on the Fourier transform. Here we give only a short
summary of this algorithm and refer to the above articles for more details.

16



If

f(t€) = / (0@ gy

denotes the Fourier transform of the distribution f(¢, v) then the conservation
properties (16), (17) and (18) read as

/ fEo)do = Ft,6)les,
]R3
/ vf(tv)dy = —igradf(t,€)|y.

R3
/ WP f(t o) do = —AF(E 6],
R3

Thus for f everything is concentrated at zero. The conservation algorithm
uses the property of the matrix of the discrete Fourier transform

2w .
FF%:WF:n%,ﬁJ=é7@JXkJeCM

the analytical form (see [5]) of the discrete Fourier transforms of the vectors
’(/Jl in (37)
hi=Fy, 1=0,...,4

and equations (37) to obtain

(fvdjl):%(f:,&l):a’lvl:07"'747' (38)

Thus the whole procedure is simple. We compute the discrete Fourier trans-
form of f(¢,-) and obtain f(¢,-). Then we correct f(t,-) in the points
(0,0,0)T, (£+1,0,0)T,(0,£1,0)T and (0,0,4+1)T corresponding to (38) and
finally transform it back. The algorithm requires only O(n?In(n)) arithmeti-
cal operations. The numerical tests show that the correction is usually very
small but important for the stability of the whole numerical procedure.

3.6 Time discretisation

After the discretisation of the Boltzmann collision integral the Boltzmann
equation (1) is reduced to the initial value problem for the following system

17



of ordinary algebro-differential equations

% = @w(f,f), fr(0) = fo(vr), k € Cn, (39)

(fvwl) = a, l:O,,4

In (39) the collision integral is decomposed into the difference of Q. (f, f)
which is computed corresponding to Algorithm 3 or Algorithm 9 and Q_(f, f)
which is computed corresponding to (35) or (36). The simplest time discreti-
sation of the system (39) is the Euler scheme

10 = {he}_ .
fmth) = fm) 4 Q) (f(M), f(m)) 7

fO) = Conserve(f™Y), m=0,1,...,

where 7 > 0 is the time step and C'onserve denotes the conservation proce-
dure described in the previous section. The formal accuracy of this discreti-
sation is O(7) which is, corresponding to our numerical tests, not sufficient
compared with the accuracy of the discretisation of the collision integral
which is O(n™2). Since, in addition, the relaxation at the beginning is very
fast, our numerical tests show that the error is dominated by O(7) due to the
time discretisation. Thus it is necessary to use a numerical scheme for the
system (39) of at least second-order accuracy, for example the second-order
Runge-Kutta scheme

10 = {nw} .

m m T m m
FmA = fm o SQ (£, £
fmtD) — fm) 4 (f(m+1/2), f(m+1/2)) ,

f = Conserve(f™Y), m=0,1,...,

which was perfect in all our tests.

4 Numerical examples

The careful check of new numerical methods requires a secure, possibly ana-
lytical solution of the problem. There are only few such solutions known. All
of them are obtained for the Maxwell pseudo-molecules, one example being
the famous BKW solution [2], [11]. However, the exact time evolution of the
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moments (9)-(12) is available for an arbitrary initial distribution fy(v) (see
[6]). If we assume that the collision kernel is constant

1
B(lul, ) = ;-

and the density is normalised oo = 1 then the time evolution of the momen-
tum flow and of the energy flow is given by

M(t) = M) "+ (Ty I +VoVy ) (1 —e ?);
1
r(t) = r(0)e™ + (5T + Vo) Vo(1 - ™)
+ (M(0) = VOV = To I)Vo(e * — e 3).

Here V, and T, denote the conserved bulk velocity and the temperature.
These values as well as the initial values M (0),7(0) can be computed using
the initial distribution fy(v).
As an example we consider the initial distribution fy(v) as a mixture of two
different Maxwell distributions

fO(U) = anl(U) + (1 - a)fMZ(U)7 0 S @ S 1.

The parameters of the Maxwell distributions are V;,7T; and V3, T5. For the
following simple but nontrivial choice

Vi= (_2’2’0)Ta Vy = (Q,O’O)T, N=T=1, a=1/2
we obtain Ty = 8/3 and

o(t) = o0p=1;

5 -2 0 L [8 00
M($) = | =2 3 0 Je42{ 0110 (1—64/2),
0 0 1 0 0 8
L[ 4 0
) = 5| 18 | o] 43 (1—e*t/3) (40)
0 0
(12
_ 4 (e—t/Q _ e—t/3) '
0

The corresponding curves and their numerical approximations are presented
in Figures 1,2 and 3.
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Figure 3. r1(t) and r2(¢) and their approximations for n =8, M = 16.

Here n denotes the number of discrete velocities in one direction (cf. (29)) and
M is the number of time steps we used for discretisation of the time interval
[0,12]. Thus 7 = 12/M. The thick solid lines in the above figures represent
the numerical solution while the thin dashed lines show the analytical curves.
The quality of the numerical solution increases very quickly if we use more
discretisation points. It is almost impossible to see any difference between
the numerical and the analytical solution in a figure for n > 12, so we present
the corresponding results in a form of tables.
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| 7| M| Enae(M11) | Ex(M11) | CF | Ernae(Mis) | Ewo(Mis) | CF |
8| 16 | 0.678 E-01 | 0.182E-01 | - 0.714E-01 | 0.171E-01 | -
16 | 32| 0.466 E-02 | 0.168E-03 | 14.5 | 0.519E-02 | 0.206 E-03 | 13.8
32| 64| 0.135E-02 | 0.548E-04 | 3.5 | 0.116 E-02 | 0.470E-04 | 4.5
64 | 128 | 0.326 E-03 | 0.132E-04 | 4.2 | 0.279E-03 | 0.113E-04 | 4.2
Table 1. Numerical convergence of Mii(t) and Mis(t).
‘ n ‘ M ‘ Emaw(MQQ) ‘ Eoo(M22) ‘ CF ‘ Emam(M33) ‘ Eoo(M33) ‘ CF ‘
8| 16 | 0.738E-01 | 0.621 E-02 | - 0.140E-00 | 0.307E-01 | -
16 | 32| 0.116 E-02 | 0.676 E-04 | 63.6 | 0.546 E-02 | 0.236 E-03 | 25.6
32| 64| 0.386E-03 | 0.157E-04 | 3.0 | 0.965E-03 | 0.392E-04 | 5.7
64 | 128 | 0.930E-04 | 0.377E-05 | 4.2 | 0.233E-03 | 0.941 E-05 | 4.1
Table 2. Numerical convergence of Moy (t) and Ms3(t).
| n| M| Epw(ri) | Ex(r1)) | CF | Ena(rs) | Ex(ra) | CF |
8| 16 | 0.142E-00 | 0.342E-02 | - | 0.142E-00 | 0.631E-02 | -
16 | 32| 0.104E-01 | 0.411E-03 | 13.7 | 0.232 E-02 | 0.135E-03 | 61.2
32| 64| 0.231E-02 | 0.939E-04 | 4.5 | 0.771E-03 | 0.313E-04 | 3.0
64 | 128 | 0.558 E-03 | 0.226 E-04 | 4.1 | 0.186 E-03 | 0.753 E-05 | 4.1

Table 3. Numerical convergence of r1(t) and ra(t).

In the above tables n and M are as before. Tables 1-3 show the maximal
error of the moments on the whole time interval as well as the final error
computed as

Epnaz(g) = max

0<m<M ‘q(tm) B qm‘ , Exo(q) = ‘Q(tM) - QM‘ :

The convergence factor C'F' is the ratio of the maximal error in the given
row and of the previous one. Thus we can see that the convergence is almost
quadratic

Bz = O(’I’L_Z + M_2> ;

i.e. coincides with the quadratic convergence of the trapezoidal integration
quadrature and second-order Runge-Kutta scheme used.

Using our new method we were able to solve the Boltzmann equation for
n = 96 and M = 192 on a normal personal computer with 1.5GB memory.
In the next table we present the results for M;; and M;j5. The results for the
other moments are very similar.

21



‘ n ‘ M ‘ Emaw(Mll) ‘ Eoo(Mll) ‘ CF ‘ Emam(Mm) ‘ Eoo(M12) ‘ CF ‘
12| 24| 0.659E-01 | 0.219E-01 - 0.772E-01 | 0.195 E-01 -
24| 48 | 0.248E-02 | 0.101 E-03 | 26.6 | 0.210E-02 | 0.858 E-04 | 36.8
48 | 96 | 0.586 E-03 | 0.237E-04 | 4.2 | 0.502E-03 | 0.203E-04 | 4.2
96 | 192 | 0.143E-03 | 0.579E-05 | 4.1 | 0.123E-03 | 0.496 E-05 | 4.1

Table 4. Numerical convergence of Mii(t) and Mis(t).

The computational time for all examples is presented in the next table.

‘ n ‘ M ‘ Time ‘
8 | 16 6 sec
12 | 24 8 sec
16 | 32 24 sec
24 | 48 3 min
32| 64 39 min
48 | 96 6 hours
64 | 128 | 45 hours
96 | 192 | 27 days

Table 5. Computational time for all examples.

We would like to point out that the parameters n = 16 and M = 32 already
lead to high accuracy of all physical moments using very reasonable com-
putational time. Thus we are now going to compare the numerical results
obtained using this set of parameters with results obtained using the DSMC
procedure for the Hard Spheres model (3). Note that in this case there is no

analytical information about the moments.

2.7
2.69
2.68
2.67
1.6 1.8 2 2.2 2.4 2.6 28 3
Figure 4.
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-0.025
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Figure 5. My (t) and Ms3(t).
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Figure 6. r(¢) and ro(t).

The pictures 4, 5 and 6 show the moments obtained using our new method
(dashed lines), the empirical mean values obtained by the DSMC method
with 10° particles and 1000 independent trajectories (thick solid line) as
well as the corresponding confidence bands (thin solid lines) on the time
interval [1.5, 3.0]. It can be seen that the agreement of the results is excellent.
The difference (E,,.; ) between the deterministic and stochastic numerical
solutions is presented in Table 6.

‘ Emaz(Mll) ‘ Emam(MH) ‘ Emam(M22) ‘ Emaz(M33) ‘ Emaz(rl) ‘ Emaw(TQ) ‘
| 0.628 E-03 | 0.858 E-03 | 0.538 E-03 | 0.964 E-03 | 0.209E-02 | 0.190 E-02 |

Table 6. Difference between deterministic and stochastic solutions.

We remark that the DSMC solution took 17 hours computational time on
the same personal computer while the deterministic solution was obtained
within seconds.

Conclusions

In the present paper we develop a new deterministic numerical method for
the Boltzmann equation. This method uses a special form of the gain part
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of the Boltzmann collision operator which is available for all cut-off kernels
and involves Fourier transforms. The discretisation uses a uniform grid in
the velocity space, so the algorithm of Fast Fourier Transform can be applied
to increase the efficiency of the method. Since no integration over the unit
sphere is involved in the special form of the collision integral only simple
numerical integration on a regular grid is applied, leading to a high degree of
accuracy. This result forced us to use a second-order scheme for the time dis-
cretisation too in order to avoid any discrepancy in accuracy with respect to
the velocity space and the time. The numerical results obtained are carefully
tested using known analytical curves for the time relaxation of the moments
for the Maxwell pseudo-molecules. The second-order accuracy of the method
can be seen clearly. The comparisons with the DSMC results for the Hard
Spheres model show very good agreement even for a relatively small number
of discrete velocities and time steps. Further acceleration of the method pre-
sented can be achieved by replacing the numerical integration on the regular
grid with respect to the variable v in (25) by some more efficient numerical
integration procedure. At present we are thinking of employing the Gauf-
Hermite quadratures for this integration. However, the main problem with
using deterministic methods for the Boltzmann equation in a spatially non-
homogeneous case occurs if the distribution function is not only significant
in a small part of the velocity space covered by the cube C, but has sev-
eral different significant concentrations. In such situations it is still not clear
whether deterministic schemes can compete with the DSMC.
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