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NEW FACTS AROUND THE CHOQUET INTEGRAL

HEINZ KONIG

In section 48 of his famous Theory of Capacities [2] Gustave Choquet introduced
a certain class of functionals with the flavour of an integral, but invented for an
important issue in capacities and not at all for the sake of measure and integration.
Yet the concept showed basic qualities in that other respect too: It was in the initial
spirit of Lebesgue [11] to construct the integral via decomposition into horizontal
strips rather than into vertical ones, which had fallen into oblivion in the course of
the 20th century, and was simpler and much more comprehensive than the usual
constructions. Thus in subsequent decades the concept developed into a universal
one in measure and integration, called the Choguet integral. One could even wonder
why the Choquet integral did not become the foundation for all of integration theory.

But the fact that this did not happen had an immediate reason: The basic hard-
ship with the Choquet integral is that it is a priori obscure whether and when it is
additive, which one best even subdivides into subadditive and superadditive. To this
issue Choquet contributed in his final section 54 a spectacular, because much more
abstract idea: On certain lattice cones all submodular and positive-homogeneous
real-valued functionals must be subadditive, and the same for super in place of sub.
It is this assertion which forms the theme of the present note (in the sequel the two
cases will be united via an obvious sub/super shorthand notation). The treatment
of Choquet was kind of an outline, and his proof limited to a rather narrow spe-
cial case. While the Choquet integral has been explored in subsequent decades, the
abstract assertion remained unsettled up to now.

In recent years the present author became motivated because he needed an as-
sertion of this kind for the further development of his extended Daniell-Stone and
Riesz representation theorems [7]. The present note is a summary of his recent
paper [10]. It presents a counterexample which shows that the initial context for
the abstract assertion has to be modified, and then in new context a comprehensive
theorem which fulfils all needs turned up so far. There are two proofs for the basic
step within the so-called finite situation. One of them is a distributional version of
the initial proof due to Choquet, while the other one furnishes, via a remarkable
fact on convex functions, an essential fortification in the finite situation.

1. The Choquet integral. The Choquet integral as evolved in the second
half of the 20th century exists in different versions. The present version is from the
author’s textbook [7] section 11. Tt features two classes of admissible functions. The
reason is that the two variants are in perfect accord with the two extension theories
in measure and integration, the inner and the outer one, developed in [7].

Let X be a nonvoid set and & be a lattice of subsets with @ € & in X. We define
UM(&)/LM(6) to consist of the functions f € [0, 00]* such that [f > t]/[f >t] € &
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forall 0 < t < oo, called upper/lower measurable G. We fix an increasing set function
v : 6 — [0,00] with (&) = 0 and define the Choguet integral

—00

][fdw - / o([f 2 H)dt € [0,00] for f € UM(S),

0
—00

][fd<p = /(p([f > t])dt € [0,00] for f € LM(G),
(I
both times as an improper Riemann integral of a decreasing function with values in
[0, 00]. It is well-defined since in case f € UM(G) NLM(S) the two second members
are equal. Thus for A € & we have x4 € UM(6) NLM(S) with fxadp = p(A). If
G is a o algebra then UM(&) = LM(G) consists of the f € [0,00]* measurable G in
the usual sense, and in case of a measure ¢ then  fdy is the usual integral [ fde.

The prototype of the Choquet integral defined in [2] was for the lattice & =
Comp(X) of the compact subsets in a locally compact Hausdorff topological space
X and under the assumption ¢ < oo, but restricted to the function class

CK(X, [0, 00]) € USCK(X, [0, o) € UM(Comp(X)) N [0, co[*,

with these classes defined to consist of the continuous and of the upper semicontin-
uous functions X — [0, 00[ with compact support. Therefore the set functions ¢
had sometimes to be restricted to the downward 7 continuous ones, that is to the
capacities in the sense of [2].

We return to the full Choquet integral. For the sequel we need a few terms on
nonvoid function systems S C [0,00]* and functionals I : S — [0, 00]. The list will
be continued in section 5 below.

D1) I is called (sub/super)additive iff I(u +v) </2 I(u) + I(v) for all u,v € S

with u +v € S. Thus S need not be stable under addition.

D2) Assume that S is stable under the pointwise lattice operations max min = VA.

Then I is called (sub/super)modular iff I(u V v) + I(u Av) £/2 I(u) + I(v) for

all u,v € S.

One then notes the properties which follow.
1.1 PROPERTIES. i) UM(S) and LM(S) are positive-homogeneous (under multi-
plication with real numbers 0 < t < oo) with 0 and stable under VA.

ii) If © is stable under countable intersections then UM(S) is stable under addition
and UM(6) D LM(S). If G is stable under countable unions then LM(&) is stable
under addition and LM(&) D UM(6).

iii) The Choquet integral I : I(f) = ffdp on UM(S)/LM(S) is positive-homoge-
neous with I(0) = 0 and increasing under the pointwise order <.

The basic question is when the Choquet integral T : I(f) = ffdy on UM(G)/
LM(G) is (sub/super)additive, and also when it is (sub/super)modular, in relation

to the respective behaviour of the set function . For set functions on lattices the
adequate notion is (sub/super)modular, defined to mean that

w(AUB)+ 9(ANB) </Z (A)+¢(B) forall A, B € 6.

One notes the simple observations
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(A) ¢ (sub/super)modular <= I (sub/super)additive,
(M) ¢ (sub/super)modular <= I (sub/super)modular,

under the reservation that for the prototype in [2] the two implications <= require
that ¢ be a capacity. The decisive question is whether = holds true in (A). It will
be dealt with in the subsequent sections.

2. The work of Choquet 1953/54. Choquet in [2] noted that for his prototype
the implication = in (A) is valid, and hence that the three properties involved are
equivalent for capacities ¢. But what is more and deserves to be called spectacular,
he had the idea that the implication

I (sub/super)modular = I (sub/super)additive

must be valid for a much wider class of functionals (he also knew that this cannot
be true for the converse implication). His precise formulation 54.1 was as follows.

2.1 CHOQUET’S VISION. Let E be an ordered vector space with order C and
positive cone ET, and assume that E (or at least E™) is a lattice under C with lattice
operations LN. Let I : ET — R be positive-homogeneous. If I is (sub/super)modular
under UM then it must be (sub/super)additive.

From this vision 2.1 applied to £ = CK(X,R) on the locally compact Hausdorff
X with pointwise order < and lattice operations VA, and to the restricted Choquet
integral I : I(f) = ffdy on ET = CK(X,[0,00[) with an arbitrary ¢, and com-
bined with = in (M), it follows indeed that Choquet’s prototype fulfils the desired
implication = in (A).

However, Choquet did not prove his vision 2.1 in its full extent. His proof was
restricted to the case E = R™ with pointwise order < and lattice operations VA, and
to the positive-homogeneous functions I : Et = [0, 00["— R which are continuous
on [0, 00[® and C? on ]0, 0o[". The explanation is that the entire context was at the
end and outside the mainstream of the memoir [2]. Nevertheless Choquet’s proof
was so well-founded that after half a century it was capable to furnish a proof of the
basic step for the present new main theorem. Therefore we include a sketch of the
proof.

2.2 PROPOSITION. Assume that I :]0,00["— R is positive-homogeneous and C2.
If I is (sub/super)modular then it is (sub/super)additive.

Sketch of proof. Assume that I :]0,00["— R is C2. Let Xi,---,X, :]0,00"—
10, o[ denote the coordinate functions and D1, - - , D,, the partial derivations. One
verifies three facts.

0) For z = (21,--- ,2n) € R" one has the identity

n ]_ n Zk zl 2
S X(DiDi)) - 5, 3 XX, (— _ —) (Dp D).

B o(DDI) = B
z:1zkzl( k l)_k:IX_k(l:I X X

n
1) If T is positive-homogeneous then l§1Xl(DleI) =0for1 <k <n.
2) If I is (sub/super)modular then DyD;I </20for 1 S k#1< n.

For I positive-homogeneous and (sub/super)modular these facts combine with Tay-
lor’s formula to furnish that I is convex/concave, that is (sub/super)additive. [J
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3. The need for reconsideration. We have seen that Choquet’s vision 2.1
furnishes the decisive implication = in (A) for his prototype. But we have to note
that it does not furnish this implication for the full Choquet integral. An obvious
reason is that the functions f € UM(&)/LM(S) and the functional I : I(f) = f fdyp
can attain the value co, and another one that the domains UM (&) /LM(S) need not
be stable under addition. But there is a deeper reason: Let for example X = [0, 1]
and & = Comp(X). Then USC(X, [0, 00[) = UM(&) N [0, 00[X is a convex cone in
the vector space E = B(X, R) of bounded functions, pointed and salient in the usual
sense and hence the positive cone ET C E in the so-called intrinsic order T which
it produces. But one proves that E* is not a lattice under C. Thus 2.1 cannot be
applied.

To be sure, the implication = in (A) holds true for the full Choquet integral,
even though this does not follow from Choquet’s vision 2.1. In the second half of
the 20th century the implication has been proved a number of times for the different
versions of the Choquet integral. As far as the author is aware, the first proof is due
to Topsge [13] in 1974. For other proofs see [1] [6] [12] [3]. The implication for the
present version is in [7] 11.11.

On the other hand Choquet’s vision 2.1 remained open in [2], and in fact remained
open all the time so far. Now in March 2002 the present author observed that the
statement is not true as it stands.

3.1 EXAMPLE. Let E = R? be equipped with the lexicographical order C, that
is u = (u1,u2) and v = (v1,v2) fulfil w C v iff either u; < v; or u; = v; and
uo < ve. The order C is compatible with the standard vector space structure, and
E* consists of the halfspace {z : ; > 0} and the halfline {z : z; = 0 and z5 > 0}.
Moreover L is total and hence a lattice order with trivial lattice operations LMN. Thus
in particular all positive-homogeneous functions I : ET — R are modular UM. But
of course most of them are not additive. A simple example is I : I(z) = z3, since
u = (u1,u2) and v = (vy,v2) with u;,v; > 0 and us < 0 < vy are in ET and fulfil
I(u+v) = (ug +vo)t <wve=wj =I(v) =1I(u)+I(v). O

The same idea works for any real vector space F of dimension > 1, in that one
defines a compatible and total order C on FE via the choice of a basis B of E and of
a well-order of B.

Thus there is quite some reason for reconsideration. This does not mean to impose
questions upon the wonderful overall implication

I (sub/super)modular = I (sub/super)additive,

which will henceforth be called the fundamental implication. In the sequel the au-
thor wants to summarize what he observed since 1998. Section 4 will be devoted to
the special case E = R" with pointwise order < and lattice operations VA, hence-
forth called the finite situation, and section 6 to the full situation, as we shall see
with pointwise order and lattice operations as well. Then section 7 will outline the
application to the Daniell-Stone and Riesz representation theorems mentioned in
the introduction.

4. The finite situation. It is important to start with the open cone ]0, co[".
The basic step is to prove the above result 2.2 of Choquet [2] under the assumption
that I instead of C? is continuous.
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4.1 PROPOSITION. Assume that I :)0,00["— R is positive-homogeneous and con-
tinuous. Then I fulfils the fundamental implication.

There are two proofs. The first proof extends 2.2 via distribution theory. This
has not been done before, perhaps because one had tried to extend the result of 2.2
via regularization, which does not work. By contrast the author [10] 2.1 followed
Choquet’s proof of 2.2, in that he took the above 0)1)2) in the distributional sense.

The second proof of 4.1 is with bare hands [10] section 2. It leads in two variants
1)2) to the two sharper results which assume I instead of continuous to fulfil the
respective two conditions

1) for each pair u,v €]0, co[" the function ¢ — I((1 — t)u + tv) is continuous on
0<t<1;and

2) for each pair u,v €]0,00[" the function ¢ — I((1 — t)u + tv) is bounded
(above/below) on some nondegenerate subinterval of {¢t € R : (1 — t)u + tv > 0}.

The result under 2) requires the somewhat mysterious fact on convex functions which
follows, obtained in [10] 2.4. The special case ¢ = const is the classical result [5]
theorem 111 that a midpoint convex function on an interval in R is convex when it
is bounded above on some nondegenerate subinterval.

4.2 THEOREM. Let K C E be a nonvoid convex subset of the real vector space E
and f : K — R. Assume that

i) there exists an affine function ¢ : K —]0,00[ such that

f(\/¢(v)u + \/w(u)v) < Vo) [ () + Vo) f(v)
Vo) +ve(u) 77 V) + V()

ii) for each pair u,v € K the function t — f((l —tu+ tv) s bounded above on
some nondegenerate subinterval of {t € R: (1 —t)u +tv € K}.

Then f is conver.

for u,v € K;

An important specialization of 4.1 is the case that I is increasing under < (also

called isotone), because it is the unique one which will reach the full situation, but
on the other hand will cover all applications known so far.

4.3 SPECIALIZATION. Assume that I :]0,00["— R is positive-homogeneous and
increasing. Then I is 2 0 and continuous. Thus I fulfils the fundamental implica-
tion.

Proof. 1) For z €]0,00[™ we have I(z) < I(2z) = 2I(z) and hence I(z) 2 0. 2)
If a €]0,00[" and 0 < e < 1 then {z : (1 —€)a £ z £ (1 + ¢)a} is a neighbourhood
of a on which (1 —€)I(a) = I((1 — €)a) < I(z) < I((1+¢€)a) = (1 +¢)I(a), that is
[(z) = I(a)| < el(a). O

So much for the open cone ]0, co[®. The four results obtained thereon, the initial
4.1 with the fortified versions based on 1)2) and the more special 4.3, can all be
transferred to the positive cone ET = [0, 00" of E = R". This is obvious for 4.1
and requires a little inductive proof for the other three results. However, the trans-
ferred 4.1 is kind of a dead end, because it involves an unnatural proper restriction:
For I : [0,00["— R positive-homogeneous the properties (sub/super)additive mean
convezx/concave, and it is well-known that these functions need not be continuous at
the boundaries of their domains. An example is the function

I:[0,00%2= [0,00[ with I(z) =z for zo > 0 and I(z) = 0 for z = 0,
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which is positive-homogeneous, supermodular and superadditive, and moreover in-
creasing. Thus we shall ignore the transferred 4.1 but restate the transferred versions
of the other three results, which do not share that defect. The statement based on 2)
will be our most comprehensive result in the finite situation, while the transferred
4.3 will be the basis for the treatment of the full situation in section 6. We add
that the subsequent assertions can also be formulated with the value co admitted in
adequate manner. We avoid this at present, but will do it in the full situation.

4.4 THEOREM. Assume that I : [0,00["— R is positive-homogeneous. The further
assumptions are

1) for each pair u,v € [0,00[" the function t — I((1 —t)u + tv) is continuous on

0<t<ly

2) for each pair u,v € [0,00[" the function t — I((1 — t)u + tv) is bounded

(above/below) on some nondegenerate subinterval of {t € R: (1 —t)u + tv = 0}.

Of course 1) = 2). Each of these assumptions implies that I fulfils the fundamental
implication.

4.5 THEOREM. Assume that I : [0,00["— [0,00[ is positive-homogeneous and
increasing. Then I fulfils the fundamental implication.

5. Return to the Choquet integral. Our treatment of the full situation will
be under the strict requirement that it comprises the (sub/super)additivity theorem
for the full Choquet integral, that is the implication => in (A) above. We see
from 1.1 that in this case we have positive-homogeneous domains S C [0, c0]X with
0 € S which are stable under the pointwise lattice operations VA, and positive-
homogeneous functionals I : S — [0, 00| with I(0) = 0 which are increasing in the
pointwise order <.

We need some further properties of the Choquet integral. We first continue the
former list of terms on nonvoid function systems S C [0,00]* and functionals I :
S — [0, co].

D3) S is called Stonean iff f € S = fAt,(f —t)t € S for 0 < ¢ < oo; note that

f=fAt+(f—t)". In this case I is called Stonean iff

I(f)=I(f ANt)+I((f —t)T) forall f€ Sand0<t< co.
Moreover an increasing I is called truncable iff
I(fy=sup{I((f —a)TA(b—a)):0<a<b<oo} forall feSs.

We note that this relation holds true when f on its [f > 0] fulfils o £ f < S for
some constants 0 < a < 8 < 00, because then f < (a/a —a)((f —a)™ A (b—a))
for 0 < a < a < B <b< oo. Thus to be truncable is a mild continuity condition
on I.

D4) Assume that 0 € S and that I is increasing with I(0) = 0. Then we define
the envelopes I*, I : [0,00]% — [0, 00] to be

I(f) = inf{I(u) :u € S withw 2 f} with inf& := oo, and
L(f) = sup{I(u) :uw € S withu £ f}.
Thus I, £ I* and I*|S = I, |S = I. Moreover I* and I, are increasing. When

S is stable under VA then to be submodular VA carries over from I to I'*, and
to be supermodular VA carries over from I to I4.
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One then notes the properties which follow. The subsequent representation theorem
is in essence due to Greco [4]. Let & be a lattice of subsets with @ € & in X.

5.1 PROPERTIES. i) UM(G) and LM(G&) are Stonean.

ii) For an increasing ¢ : & — [0, 0] with ¢(@&) = 0 the Choquet integral I : I(f) =
ffdp on UM(S)/LM(G) is Stonean and truncable.

5.2 THEOREM. Assume that S C UM(G)/LM(S) is positive-homogeneous with
0 € S and Stonean, and that I : S — [0, 00] with 1(0) = 0 is increasing. Then
there exist increasing set functions ¢ : & — [0, 00] with ¢(&) =0
which represent I : I(f) = ffdy for all f € S

iff I is Stonean and truncable. In this case an increasing ¢ : & — [0,00] with
©(@) = 0 represents I iff I.(xa) < p(A) < I*(xa) for all A€ 6.

6. The full situation. We observe that the above representation theorem 5.2
allows to formulate the (sub/super)additivity theorem for the Choquet integral in
exclusive terms of the functional I without reference to the set function .

6.1 REMARK. On a nonvoid set X the following are equivalent. i) For each lattice
G with @ € 6 in X and each increasing ¢ : & — [0, 00] with ¢(&) = 0 one has the
implication = in (A).

ii) For each positive-homogeneous S C [0,00]X with 0 € S which is stable under
VA and Stonean, and for each positive-homogeneous I : S — [0, 00] with I(0) =0
which is increasing, Stonean and truncable, one has the fundamental implication.

Proof. One obtains ii)==1) as an immediate consequence of 1.1 and 5.1 combined
with = in (M). To see i)==1ii) one applies 5.2 to I and & = P(X), and takes

¢ :@(A) = I*(xa) for A C X when I is submodular V A,
©(A) = IL(xa) for A C X when I is supermodular V A.

Then ¢ : P(X) — [0, 00| represents I, and is (sub/super)modular in view of D4).
Thus i) asserts that f — £ fdp on [0,00]* is (sub/super)additive, and hence that I
is (sub/super) additive in the sense of the above definition D1). O

The new formulation 6.1.ii) of the implication = in (A) looks in fact like the
theorem on the fundamental implication we are in search of. However, there are sev-
eral additional conditions: Besides the almost familiar condition that I be increasing
these are the conditions that I be Stonean and truncable (with the prerequisite one
that S be Stonean). The condition to be truncable can be dismissed as a mild
continuity assumption. However, the condition that I be Stonean is a critical one,
because it expresses that I be additive in a certain partial sense, and thus collides
with the conclusion. In fact, there are situations where the prospective theorem will
be invoked in order to conclude that I is Stonean. A case in point will be described
below. Therefore it is imperative that in a comprehensive version of the theorem
like the desired one the assumption that I be Stonean does not occur.

Now the fundamental fact is that the above reformulation 6.1.ii) holds true without
the assumption that I be Stonean. This is the main and final result of the present
work. It is much more comprehensive than 6.1.ii).

6.2 THEOREM. Assume that the positive-homogeneous S C [0,00]% with 0 € S is
stable under VA and Stonean, and that the positive-homogeneous I : S — [0, oco] with
I(0) = 0 is increasing and truncable. Then I fulfils the fundamental implication.
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The proof starts from the result 4.5 in the finite situation (enriched with oo) and
proceeds via certain approximations which make essential use of the assumption that
I be increasing. An important intermediate step is the specialization S = [0, o0]X.

6.3 SPECIALIZATION. Assume that the positive-homogeneous I : [0, 00]% — [0, ]
with I(0) = 0 is increasing and truncable. Then I fulfils the fundamental implica-
tion.

The above specialization is the first result 1998 of the author in the present context
[8] theorem 1.1. It is, aside from the theories of measure and integration developed
in [7], the basic pillar which carries the comprehensive Daniell-Stone and Riesz type
representation theorems [8] 5.3 = [9] 6.3 and [8] 5.8 = [9] 6.6. These theorems are
the other important application of the new (sub/super)additivity theorem. They
will be described in the final section 7 below. We note that the applications of [8]
1.1 which served to obtain these theorems were in the proof of [8] 3.10 and had in
fact the aim to prove that the functionals under consideration were Stonean. For
the details we have to refer to that paper.

We conclude the section with one more example, in order to show what can happen
when the functional I is not increasing.

6.4 EXAMPLE. Let X C R be an interval with sup X = co. Define P C [0, co[X
to consist of the functions f : X — [0, co[ which are constant near oo, that means
on some upward unbounded subinterval of X, and Q C [0,00[X to consist of the
functions f : X — [0, 00[ which are strictly decreasing near co. Then PN Q = &,
and S := PUQ C [0,00[X is a convex cone with 0 € S which is stable under VA.
Define I : S — [0,00[ to be I(f) =0 for f € P and I(f) = tl_l)Iélof(t) for f € Q. Thus

I is positive-homogeneous with I(0) = 0, but of course not increasing. One verifies
that I is modular VA. But I is not additive, since for u € P with u = ¢ > 0 near
oo and v € Q one has u+v € Q with I(u+v) =c+ I(v) > I(v) = I(u) + I(v). We
note that I has certain continuity properties. Thus S is Stonean, and I is truncable
in the sense that

I((f—a)"A(b—a)) 1 I(f) undera L 0 and bt oo for all f € S.

Also for each pair u,v € S the function ¢ — I((1 — t)u + tv) is continuous on
0 <t <1 (but need not be continuous on 0 < ¢ < 1).

7. The Daniell-Stone-Riesz representation theorems. The representation
theorems of the present section are quite different from the former representation
theorem 5.2: The aim is to represent particular classes of functionals in terms of
certain classes of distinguished set functions, like in the classical Riesz representation
theorem, but in a much more extended frame. The basis are the extension theories
in measure and integration developed in the author’s textbook [7] and in subsequent
articles like [8], and summarized in [9]. We recall that there are parallel inner and
outer extension theories, and also parallel sequential and nonsequential versions (as
usual labelled as o and 7 versions). We also recall the most basic notions: For an
increasing set function ¢ : & — [0, 00] on a set system & with @ € & and ¢(@) =0
and for e = o7 one forms the envelopes

Ve, 0° : P(X) — [0, 00] with the satellites o8 : P(X) — [0, 00[ with B € &,
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and on a lattice & with & € & one defines the inner and outer e premeasures .
Likewise for an increasing functional I : § — [0, 0] on a function class S C [0, c0]X
with 0 € S and I(0) = 0 and for e = o7 one forms the envelopes

I, I° : [0,00]* — [0, 00] with the satellites I? : [0, 00]* — [0,00] with v € S;
the notions of inner and outer e preintegrals I will appear below.

For the sequel we assume a positive-homogeneous function class
S C [0,00[X in the inner situation,
S C [0,00]X  in the outer situation,
with 0 € S which is stable under VA and Stonean, and a functional
I:S—[0,00[ in the inner situation,
I:S —[0,00] in the outer situation,
with I(0) = 0 which is increasing. These are the assumptions made in [8] [9], while
those in [7] were much narrower. We form the set systems
um(S) ={[f 2t]: f € Sand 0 <t < oo} for the inner situation,
Im(S) ={[f >1t]: f €S and 0 <t < oo} for the outer situation,

which are lattices with @. Then we define

the inner sources of I to be those increasing set functions ¢ : um(S) — [0, oof,
the outer sources of I to be those increasing set functions ¢ : Im(S) — [0, o],

which have ¢(@) = 0 and which represent I : I(f) = ffdp for all f € S. The
representation theorem 5.2 tells us that such inner/outer sources of I exist iff I is
Stonean and truncable. In this case their characterization is I, (x4) < ¢(A) < I*(xa)
for all A € um(S)/Im(S), so that as a rule one must expect a lot of inner and outer
sources of I.

After this we define for @« = o7 the functional I to be an inner/outer o preintegral
iff it admits at least one inner/outer source which is an inner/outer ® premeasure.
Then the fundamental results quoted above are the theorems on the inner and outer
e preintegrals which follow.

7.1 INNER THEOREM (o = o7). The functional I is an inner e preintegral iff

1) I is supermodular and Stonean and downward e continuous at &,

2) I(v) S I(u) + I¥(v —u) for allu S v in S.
In this case ¢ := I*(x.)|lum(S) is the unique inner source of I which is an inner e
premeasure. It fulfils I.(f) = f fdpe for all f € [0, 00]*.

7.2 OUTER THEOREM (e = o7). The functional I is an outer e preintegral iff

1) I is submodular and Stonean and upward e continuous,
2) I(v) 2 I(u) + I*(v — u) for allu < v in S with u < oo,
3) moreover for ¢ = 7 (while this is automatic for e = o)

I*(f) =sup{I*(f Au):u €[l <]} forall fe[lI®<x].

In this case ¢ := L(x.)|lm(S) is the unique outer source of I which is an outer e

premeasure. It fulfils I*(f) = £ fde® for all f € [0,00]%.

We refer to the cited papers for the collection of more or less familiar special
cases. Thus the classical Riesz representation theorem and its extension to arbitrary
Hausdorff topological spaces are immediate consequences of the inner 7 theorem,
whereas the conventional Daniell-Stone theorem falls under the outer o theorem.
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