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Abstract

Implicit active contour models belong to the most popular level set
methods in computer vision. Typical implementations, however, suf-
fer from poor efficiency. In this paper we survey an efficient algorithm
that is based on an additive operator splitting (AOS). It is suitable
for geometric and geodesic active contour models as well as for mean
curvature motion. It uses harmonic averaging and does not require to
compute the distance function in each iteration step. We prove that
the scheme satisfies a discrete maximum-minimum principle which im-
plies unconditional stability if no balloon forces are present. Moreover,
it possesses all typical advantages of AOS schemes: simple implemen-
tation, equal treatment of all axes, suitability for parallel computing,
and straightforward generalization to higher dimensions. Experiments
show that one can gain a speed up by one order of magnitude com-
pared to the widely used explicit time discretization.

AMS Subject Classification: 68T45, 68T10, 35K55, 35K65
Key words: computer vision, active contour models, mean curvature motion,
splitting methods
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1 Introduction

Active contour models (also called deformable models or snakes) [15] have
been used in a variety of different image processing and computer vision
tasks, ranging from interactive image segmentation to object tracking in
image sequences. The basic idea is that the user specifies an initial guess of
an interesting contour (e.g. an organ, a tumour, or a person to be tracked).
Then this contour is moved by image-driven forces to the boundaries of the
desired object.

Implicit active contour models [7] constitute a very interesting applications
of level set ideas within the active contour framework. They embed the ac-
tive contour as a level set in a suitable image evolution that is determined
by a partial differential equation (PDE). Then the final contour is extracted
when the evolution is stopped. The main advantages of implicit active con-
tours over classical explicit snakes are the automatic handling of topologi-
cal changes, high numerical stability and independence of parametrization.
However, their main drawback is the additional computational complexity.
In their simplest implementation, most approaches are based on an explicit
or forward Euler scheme which requires very small time steps. This severely
limits their efficiency.

A number of fast implementations for implicit snakes have been proposed to
circumvent this problem. Often they concentrate on narrow-band techniques
and multi-scale computations [1, 29, 27], but more recently also methods
based on additive operator splittings (AOS) have become popular [11, 12,
19, 28, 39]. It is the goal of this paper to give an introduction to AOS
schemes for implicit active contour models and related PDEs.

AOS schemes has been introduced to image analysis in the context of nonlin-
ear diffusion filtering [43]. They have been used for medical imaging problems
[31], for regularization methods [40], image registration [10] and for optic flow
computations [42]. The basic idea behind AOS schemes is to decompose a
multi-dimensional problem into one-dimensional ones that can be solved very
efficiently. Then the final multi-dimensional solution is approximated by av-
eraging the one-dimensional solutions. AOS schemes perform well not only
on sequential architectures: experiments have demonstrated that they are
also well-suited for parallel computing on systems with shared [41] as well as
distributed memory [6].

The usefulness of AOS ideas has also been shown in a number of other ap-
plications ranging from Navier—-Stokes equations [37, 21] to sandpile growth
simulations [14]. It seems that Navier-Stokes equations have constituted one
of their historically first application domains.

The description in this paper follows our previous publications [19, 39, 43].



Our approach is suitable both for the geometric [7] and the geodesic active
contour model [8, 16], and it may also be used for mean curvature motion
[3, 18]. It differs from recent work by Goldenberg et al. [12, 11] by the
fact that it does not require to recompute a distance transformation in each
iteration step. This may lead to significant savings in computation time.
Indeed, we shall see that — under realistic accuracy requirements — AOS
schemes allow to speed up implicit active contour models by one order of
magnitude.

The present paper is organized as follows: Section 2 introduces the geometric
and the geodesic active contour model. Section 3 describes our numerical im-
plementation of both models based on the AOS scheme. Section 4 presents
an evaluation of the accuracy and efficiency of the AOS scheme. Finally, Sec-
tion 5 concludes the paper by giving a summary and mentioning extensions
that can further increase the computational efficiency.

2 Implicit Active Contour Models

In active contour models one places a closed planar parametric curve Cy(s) =
(z(s),y(s)),s € [0, 1], around image parts of interest. Then this curve evolves
under smoothness control (internal energy) and the influence of an image
force (external energy).

In the classical ezplicit snake model [15] the parametric curve is embedded
into an energy minimization framework. Apart from energy minimization
the parametric curve can also evolve directly under motion equations derived
from geometric considerations [34].

However, the parametrization of the curve causes difficulties with respect to
topological changes and numerical implementations. Thus, to prevent these
difficulties, implicit active contour models have been developed. Here the
basic idea is to represent the inital curve Cy(s) implicitly within a higher
dimensional function, and to evolve this function under a partial differential
equation. Usually, Cy is embedded as a zero level set into a function ug :
R? — R by using the signed distance function:

d(z,Cy), if zis inside Cy
up(z) = 0, ifzison Cy (1)
—d(z,Cy), if z is outside Cy,

where d(z,Cy) denotes the distance between some point z and the curve Cj.
The implicit geometric active contour model discovered by Caselles et al. [7]
includes geometrical considerations similar to [34]. Let Q := (0, a;) % (0, ay)
be our image domain in R?. We consider a scalar image uo(x) on Q. Then,



the geometric active contour model investigates the evolution of uy under the
PDE

g—z = g(z) |V <div (%) + k) on Qx (0,00),
u(z,0) = uo(z) on Q. 2)

Here, k is a constant force term comparable to the balloon force [9] known
from explicit models, and g : R — (0, 1] denotes a stopping function that
slows down the snake as it approaches selected image features such as edges.
Note that normal and curvature to a level set are given by

Vu
= —-—— 3
" V| (3)
Vu U U2 — QU Uy Uy~ Uy U
— div[ 22 ) = %2y z Uy Uy wla 4
& v <\w) (u2 + u2)3 (4)

In the implicit geodesic active contour model proposed simultaneously by
Caselles et al. [8] and Kichenassamy et al. [16] the function u is embedded
into an energy functional that can be related to the explicit snake model.
The corresponding evolution equation is given by

g—j = |Vu| (div <g(x)|§—“u‘> + kg(x)) on x (0,00),
u(z,0) = uo(z) on Q. (5)

Figure 1 gives an example of a geodesic active contour evolution.

3 Numerical Implementation

While implicit active contour models avoid several of the difficulties known
from explicit models, their main disadvantage is poor efficiency. First, in
their simplest implementation, the partial differential equation must be eval-
uated on the complete image domain. Second, most approaches are based on
explicit updating schemes which require very small time steps. While the first
limitation can be addressed by narrow-band and/or multi-scale techniques
[1, 35, 29], the latter requires different discretizations. In the following we
focus on the second problem and develop semi-implicit schemes for both
the geometric and the geodesic active contour model based on the additive
operator splitting (AOS) scheme. Note that narrow-band and multi-scale
techniques can be easily combined with our implementation.



Figure 1: Temporal evolution of a geodesic active contour superimposed on
the original image with Q = (0, 256)2. From left to right: ¢ = 0, 1500, 7500.
From [39].

A Unified Model. Let us consider the following equation, which unifies the
geometric and the geodesic model by introducing two additional functions a
and b:

b
% = () |Vu| div (%w) + 1Vl kg(z). (6)
Setting a := g and b := 1 yields the geometric model, whilea :=1and b :=g¢g
results in the geodesic model. Moreover, for ¢ := b := 1 and k£ := 0, we
obtain the mean curvature motion
ou Vu
— = |Vu|div [ — 7
o = vulaiv (). )

which plays an important role in image denoising and morphological scale-
space analysis [2, 3, 17, 18].

Semi-Implicit Scheme. Now we are in a position to derive suitable nu-
merical schemes for our unified model. For the sake of clarity we assume a
constant force £ = 0 in the following and discuss the integration of the bal-
loon force later on. Interpreting the term % as “diffusivity” we can employ
techniques similar to those as described in [43] in the context of nonlinear
diffusion filtering.

To derive a numerical algorithm one has to consider discretizations of space
and time. We employ discrete times ¢, := n7, where n € INg and 7 denotes
the time step size. Additionally, an image is divided by a uniform mesh of
spacing h = 1 into grid nodes (7, 7). Using standard notation, ug; denotes
the approximation of u(ih, jh,t,).

Let us recall a simple spatial discretization of the term div (ﬁVU) since
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it is a prerequisite for our semi-implicit scheme. Setting c := ﬁ the term
may be approximated as follows:

U, 1 ., —U; 1, U; 01 — Uy - 1
. Z+_7.7 1—355] IL:J+_ 4] —35
div(¢Vu) =~ 0, <cij 2 2 ) + 0, (cij 2 2)

h h
u‘ 1._u.. u.-_u.fl'
~ et T )
Z+§1] h2 t—=35.] h2
Uij+1 — Uij Uij — Uij—1
J+3 h2 hi—5 h2

The values for ¢;+1/2; and ¢;j+1/2 can be determined by linear interpolation.
To simplify the notation in the following, a discrete image is represented fur-
ther on by a vector f € RY, whose components f;,i € {1,..., N}, contain
the pixel values. For instance, this vector might be constructed by concate-
nating the rows of an image. Consequently, pixel ¢ corresponds to some grid
node z;. Thus, u? denotes the approximation of u(z;,t,). Hence, following
[43] and using the above mentioned discretization, Equation 6 with £ = 0
reads in its semi-implicit formulation as

b \" b \"
(|w|> + (\Vu\) VYL

: L)

n+l _ n . n
up =ul +7a; | Vul E 5 2

JEN(3)

where N (%) denotes the 4-neighbourhood of the pixel at position z;. However,
in order to compute Equation 9 one must assure that |Vu| does not vanish in
the 4-neighbourhood. Here, straightforward finite difference implementations
would give rise to problems. These problems do not appear if one uses a finite
difference scheme with harmonic averaging [39], thus replacing the arithmetic

n n
mean % ((ﬁ)z + (%)]) in Equation 9 by its harmonic counterpart.
This yields

2 un—H - un—kl

ultt = ul + 7 a; [Vul? E - a—— 5 L (10)
(v \" (Y h

JEN(4) b ), b ).

J

Note that by evaluating only image positions with |Vu|; # 0, the denomi-
nator in this scheme cannot vanish. If [Vu|; = 0, one sets u™' := u?. In
general such an harmonic averaging scheme may turn out to be rather dissi-
pative. For the specific application to active contour models, however, this



does not seem to create specific problems.
In matrix-vector notation, Equation 10 becomes

e T Z Ay (u™) u™t, (11)

where A; describes the interaction in [ direction. In detail, the matrix
Ay(u™) = (@iji(u™)) is given by

1% n%, e Ni(1
Vel ey 9 € MO

dijl(un) = _ai|vu|zn gfj(') (M)"_i(\vw)n , J=1 (12)
m 2 i m

b b

0, else,

where N;(i) represents the neighbouring pixels with respect to direction [ €
{z,y}. However, the solution u"*! cannot be directly determined from this
scheme. Instead, it requires to solve the linear system of equations

(I -7 Z Al(u”)>u”+1 =u". (13)

le{z,y}

where I denotes the unit matrix.

Since the system matrix is strictly diagonally dominant, it follows from Ger-
schgorin’s theorem that it is invertible [38]. In practice, however, it may
be rather expensive to solve such a linear system in the 2-D case. Since its
number of unknowns coincides with the pixel number, it is typically a very
large sparse system with at most five nonvanishing entries per row. Although
the actual structure of the system matrix depends on the pixel numbering,
it is not possible to order the pixels in such a way that in the ¢-th row all
nonvanishing matix elements can be found within the positions [,7 — 2| to
[i,7+ 2]: Usually, the matrix reveals a much larger bandwidth. Applying di-
rect algorithms such as Gaussian elimination would destroy the zeros within
the band and would lead to an immense storage and computation effort.
Hence, iterative algorithms should be applied. Classical methods like Gaufi—
Seidel or SOR iterations [45] do not need additional storage, and convergence
can be guaranteed for the special structure of the system matrix. This con-
vergence, however, may be rather slow since the condition number of the
system matrix increases with the image resolution. Faster iterative methods
such as preconditioned conjugate gradient methods [32] need significantly
more storage, which can become prohibitive for very large images or 3-D
problems. Iterative methods suffer also from the fact that their convergence

7



slows down for increasing 7, since this increases the condition number of the
system matrix. Multigrid methods [5] appear to be one possibility to circum-
vent many of these problems, but their implementation is more complicated.
In the following we shall focus on a splitting-based alternative. It is simple to
implement and does not require to specify any additional parameters. This
may make it attractive in a number of practical applications.

AOS Scheme. Instead of using the semi-implicit scheme

u"t = (I -7 Z Al(u")>1u" (14)

le{z,y}
we may consider its additive operator splitting (AOS) variant

uH = % S (- 2r Ay (15)

le{z,y}

By means of a Taylor expansion it is easy to see that the semi-implicit scheme
and its AOS version differ by an O(72) term. However, this does not create
any problems since the time discretization in the semi-implicit scheme has
already introduced an error of the same order. Hence, from an approximation
viewpoint, both schemes have the same order of numerical consistency to the
continuous equation.

The AOS scheme, however, offers one important advantage: The operators
By(uF) := I —27A;(u") lead to strictly diagonally dominant tridiagonal linear
systems which can be solved very efficiently with a Gaussian algorithm (also
called Thomas algorithm in this context [25]). This algorithm has linear
complexity and can be implemented very easily. Details are given in the
appendix.

In order to implement Equation 15, one proceeds in three steps:

1. Evolution in x direction with step size 27:
Solve the tridiagonal system (I — 27A,(u")) v™* = u™ for v™*i.

2. Evolution in y direction with step size 27:
Solve the tridiagonal system (I — 27A4,(u")) w™t* = u" for w"*'.

3. Averaging:
Compute v := 0.5 (v + w" ™).

The fact that AOS schemes are based on an additive splitting guarantees
that both axes are treated in exactly the same manner. This is in contrast to
conventional splitting techniques from the literature such as ADI methods,
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D’yakonov splitting or LOD techniques [22, 24, 44]: they are multiplicative
and may produce different results in the nonlinear setting if the image is
rotated by 90 degrees, since the operators do not commute.

One should notice that AOS schemes are also well-suited for parallel com-
puting as they possess two granularities of parallelism:

e Coarse grain parallelism: The evolution in different directions can be
performed simultaneously on different processors.

e Mid grain parallelism: Each 1-D evolution decouples into independent
evolutions along each row or column.

AOQOS schemes are not only efficient, they are also unconditionally stable. This
can be seen as follows: Since B;(u*) is strictly diagonally dominant, b;; > 0
for all i and b;; < 0 for i # j, we may conclude from [23, p. 192] that B; ' is
nonnegative in all its arguments. Moreover, from the fact that all row sums
of 4;(u™) vanish, it follows that B;(u") and Q(u") := + 3", B; ' (u") have row
sums 1. Together with the nonnegativity this implies that the AOS scheme
u™! = Q(u™)u™ computes u™*! from convex combinations of the elements of
u". This guarantees the discrete maximum-minimum principle

. +1 .
minuj < uf" < maxuy Vi. (16)

j j
which implies stability of the scheme in the maximum norm for all time step
sizes T.

In practice, it makes of course not much sense to use extremely large time
steps, since the accuracy will deteriorate significantly and splitting artifacts
may become visible. Experiments show that, if a spatial grid size of 1 is used
and if a(x)b(z) < 1, a time step size of 7 =5 is a good compromise between
accuracy and efficiency.

Supplementing the balloon force. So far we have neglected the constant
force term |Vulkg (cf. Equation 6). This term stems from the hyperbolic
dilation/erosion equation d,u = +|Vu|. Consequently, it is advantageous to
approximate the gradient by an upwind scheme [26]:

|V~ ul? =(max(D~*u?, 0)? + min(D**u?, 0) +
max(D~¥u?, 0)2 + min(D¥u?, 0)2)"? | if k < 0
Vul? ~ ,
|V*tu|? =(min(D%u?, 0)* + max(D**u?, 0)? +
min(D~¥u?, 0)2 + max(D+¥u?, 0)2)"? | if k > 0
(17)



where D* DY, D % and D ¥ denote forward resp. backward approxima-
tions of the spatial derivatives (see e. g. [35]). Integrating the constant force
term into Equation 15 is straightforward and yields for £ < 0:

u"t = % Z (I —27A,(u™)™" (u™ 4+ 7|V~ ul"kg) . (18)

le{z,y}

Since the dilation/erosion equation approximated on a grid with size h = 1
can be shown [26] to be stable only for 7 < 0.5, the constant force term
limits the applicable time step. Consequently, Equation 18 is stable only for
|Tkg| < 0.5. However, since g is bounded by one, k is usually a small fraction
of 1.0, and very large time steps (7 > 5.0) degrade the accuracy of the AOS
scheme significantly, this constraint is not severe.

4 Experimental Results

In this section we evaluate the accuracy and the efficiency of AOS schemes
for implicit active contour models. For the accuracy evaluation we focus
on a specific example where an analytic solution is known, and efficiency
is studied by comparing the semi-implicit AOS schemes to a corresponding
explicit (Euler forward) discretization in time.

4.1 Accuracy Evaluation in Case of Mean Curvature
Motion

In order to assess the numerical errors of our AOS scheme, we consider in our
first experiment an evolution of a disk under mean curvature motion. Since
it is well-known that a disk-shaped level set with area S(0) shrinks under
mean curvature motion such that

S(t) = 5(0) — 2t (19)

simple accuracy evaluations are possible. To this end we use a distance
transformation of some disk-shaped initial image and consider the evolution
of a level set with an initial area of 24845 pixels. Table 1 shows the area
errors for different time step sizes 7 and two stopping times. We observe
that for 7 < 5, the accuracy is sufficiently high for typical image processing
applications. Figure 2 demonstrates that in this case no violations regarding
rotational invariance are visible.
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Table 1: Area errors for the evolution of a disk-shaped area of 24845 pixels
under mean curvature motion using an AOS-based semi-implicit scheme with
harmonic averaging. The pixels have size 1 in each direction. From [39].

step size 7 stopping time 7' = 2250 stopping time 7" = 3600

0.5 —0.27 % —0.60 %
1 —0.26 % -0.88 %
2 —0.27 % -0.88 %
3 —0.34 % -1.73 %
10 —5.18 % 51.20 %

Figure 2: Temporal evolution of a disked shaped level set under mean cur-
vature motion. The results have been obtained using an AOS-based semi-
implicit scheme with harmonic averaging and step size 7 = 5. From left to
right: ¢ = 0, 2250, 3600. From [39].
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Figure 3: AOS-based geometric active contour model on a synthetic image
(size 128 x 128, 7 = 5.0, k = —0.1, 0 = 0.5, A = 1). From left to right: 10,
150, 250 iterations. From [19].

4.2 Efficiency Gain for Implicit Active Contour Mod-
els

With the AOS-based implementation it is possible to choose time steps much
larger than in explicit updating schemes. Consequently, the evolution of
the contour to its final location requires only a small number of iterations
compared to explicit algorithms. However, a semi-implicit AOS iteration
is more expensive than its explicit counterpart. In order to compare both
approaches, we implemented the AOS-based models according to Equation
18. For the explicit model we employed standard techniques [35, 4]. In
addition, we used a stopping criterion to indicate that the curve location
has stabilized. Every time a certain period At; has elapsed the average gray
value of the evolving image u is calculated. E. g., when setting At = 50
and 7 = 0.25, the average gray value is computed every 200 iterations. The
process stops if two consecutive measurements differ by less than an accuracy
parameter o. In all experiments the parameters for the stopping criterion
were set to Aty = 50 and « € {0.01,0.1}.

To assess the final placement of the contour with regard to the underlying
algorithm, a simple distance measure was developed. Given a result contour
and a reference contour, we calculated for each pixel on the result contour
the distance to the nearest pixel on the reference contour. Averaging these
distances over all result contour pixels yields the average distance between
the two contours. As reference contour we used in all cases the explicit
implementation with a small time step 7 = 0.1.

We applied both algorithms to sample images (cf. Figures 3-5). A stopping
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Figure 4: AOS-based geodesic active contour model on hall-and-monitor
image (size 352 x 240, 7 = 5.0, k = —0.02, 0 = 0.5, A = 1). Top left:
100 iterations. Top right: 500 iterations. Bottom left: 1000 iterations. From
[19].

Figure 5: AOS-based geometric active contour model on medical image (size
284 x 284, 7 =5.0, k = —0.1, 0 = 1, A = 1.5). From left to right: 50, 150,
300 iterations. From [19].
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function according to the Perona-Malik diffusivity [30] was used:

B 1
= V@R

(20)

where f, denotes the convolution of image f with a Gaussian kernel of stan-
dard deviation o, and ) is a contrast factor. Close to edges (high gradient
magnitudes) of the image f, the stopping function approaches 0, whereas
it reaches 1 in flat image areas (low gradient magnitudes). To extract the
person in the hall-and-monitor sequence we replaced the gradient term in
the above equation by the results of a motion detector [20]. In each case
the image uy was intialized to a signed distance function [36, 29, 35] from a
mask that covered nearly the complete image domain. In addition, we did
not employ any reinitialization procedure throughout the computations to
prove the stability of our scheme. However, we should note that for certain
applications it is necessary to maintain the signed distance function during
curve evolution [36, 13].

Table 2 summarizes the results calculated on a standard personal computer
with 1.4 GHz. As expected, the AOS-based implementation reduced the
number of iterations on the average by a factor of 20. Due to the coarse
stopping criterion the reduction varies from 18 to 22. Furthermore, we ob-
serve that an AOS-based iteration is about twice as expensive, and in some
cases three times as expensive as an explicit iteration. Combining those re-
sults, we observe that using AOS-based implementations of implicit active
contour models yields a significant speedup. In our examples the speedup
ranges from a factor of 5 to a factor of 9. Additionally, we applied the simple
distance measure to the final contours of the AOS-based and the explicit
algorithms. The distance column in Table 2 shows the average distance (in
pixels) of the contours to the reference contour obtained by an explicit al-
gorithm with 7 = 0.1. In all cases the results indicate that the accuracy of
the final placements are sufficient with respect to the underlying segmenta-
tion task. We should note that the accuracy might be further improved by
refining the simple stopping criterion.

5 Conclusions

In this paper we have surveyed an additive operator splitting (AOS) algo-
rithm for a class of PDEs that comprises mean curvature motion, geometric
and geodesic active contour models. This algorithm uses harmonic averaging
and it does not require any recomputations of the distance transformation
in each iteration step.

14



Table 2: Comparison of explicit and AOS-based schemes. From [19].

geometric model (explicit scheme)

image T k  iterations CPU time distance
synthetic 0.25 -0.1 20200 49.0 s 0
hall-and-monitor0.25 -0.1 20000 324.5 s 0
medical 025 -0.1 6600 126.3 s 0.01
geometric model (AOS scheme)

image T k  iterations CPU time distance
synthetic 5.0 -0.1 950 74s 0.75
hall-and-monitor 5.0  -0.1 1040 54.0 s 0.87
medical 5.0 -0.1 370 25.0s 0.48
geodesic model (explicit scheme)

image T k  iterations CPU time distance
synthetic 0.25 -0.02 10400 36.9 s 0
hall-and-monitor0.25 -0.02 30800 634.9 s 0
medical 0.25 -0.05 12200 306.1 s 0.01
geodesic model (AOS scheme)

image T k  iterations CPU time distance
synthetic 5.0 -0.02 480 4.2's 1
hall-and-monitor 5.0  -0.02 1390 70.2 s 1.79
medical 5.0 -0.05 640 36.8 s 1.32

AOS schemes have the same approximation order as their corresponding
semi-implicit schemes. They come down to solving tridiagonal linear sys-
tems of equations which can be done in linear complexity with a very simple
algorithm. If no balloon forces are present, then they are absolutely stable
in the maximum norm. Under typical accuracy requirements one can gain
a speed-up by one order of magnitude compared to the widely used explicit
time discretization.

Further speed up may be possible by exploiting one of the following options:

e Implementing AOS schemes on a parallel system. Recent experiments
with AOS-based nonlinear diffusion filtering on a PC cluster with 256
processors showed that speed up factors of 209 are possible [6].

e Embedding AOS schemes in a pyramid framework. This may yield an

15



accelation by one order of magnitude [40].

e The integration of narrow-band techniques is another possibility for
improving the computational efficiency [11].

Finally it should be mentioned that we have focussed on the 2-D case for
didactical reasons only. It is straightforward to generalize all ideas in this
paper to higher dimensions.

6 Appendix: The Thomas Algorithm

The semi-implicit scheme requires to solve a linear system, where the system
matrix is tridiagonal and diagonally dominant. The most efficient way to
achieve this goal is the so-called Thomas algorithm, a Gaussian elimination
algorithm for tridiagonal systems. It can be found in many textbooks on
numerical analysis, e.g. [33, pp. 43-45]. However, since it builds the backbone
of our AOS algorithm and since we want to keep this paper selfcontained, we
survey its algorithmic features here.

The principle is as follows. Suppose we want to solve a tridiagonal linear
system Bu = d with an N x N matrix

ar B
Mmoo oa B
B = " . (21)
YN—2 an—1 Bn-1
IN-1 QN
Then the Thomas algorithm consists of three steps.
Step 1: LR decomposition.
We decompose B into the product of a lower bidiagonal matrix
1
L 1
L= | (22)
In.1 1
and an upper bidiagonal matrix
my 7m
R= (23)
my-1 TN
my
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Comparing the coefficients shows that r; = f; for all 7, and m,; and [/; can be
obtained as follows:

mp =0y

for 1=1,2,...,. N—1:
li := i/ m;
Miy1 := Qg1 — i

Solving LRu = d for u is done in two steps:

Step 2: Forward substitution.
We solve Ly = d for y. This gives

Y11= dy
for 1 =2,3,...,N:
yi '=di — i1y

Step 3: Backward substitution.
We solve Ru = y for u. This leads to

Uy ‘= ?JN/mN
for i =N—-1,N-2,..,1:
u; = (y; — Bitliy1)/my

This completes the Thomas algorithm. It is stable for every strictly diago-
nally dominant system matrix. One may also regard it as a recursive filtering:
The LR decomposition determines the filter coefficients, Step 2 is a causal
filter and Step 3 an anticausal one. The whole scheme is very efficient: it
requires only

AN-1)+(N-1)+1+2(N-1) = 5N —4 (24)
multiplications/divisions, and
(N-1)+(N-1)+(N—-1) = 3N-3 (25)

subtractions. Hence the CPU effort is linear in N. The same holds for the
memory requirement.
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