Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint

Microstructures Corresponding To Curved Austenite-Martensite Interfaces

Abdellah Elfanni and Martin Fuchs

Preprint No. 60 Saarbrücken 2002

Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Microstructures Corresponding To Curved Austenite-Martensite Interfaces

Abdellah Elfanni

Saarland University Department of Mathematics Postfach 15 11 50 D–66041 Saarbrücken Germany E-Mail: elfanni@math.uni-sb.de Martin Fuchs

Saarland University Department of Mathematics Postfach 15 11 50 D–66041 Saarbrücken Germany E-Mail: fuchs@math.uni-sb.de

submitted: 15th May 2002

Preprint No. 60 Saarbrücken 2002

Edited by FR 6.1 – Mathematik Im Stadtwald D–66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

Abstract

Let $\Omega \subset \mathbb{R}^2$ denote a bounded Lipschitz domain and consider some portion Γ_0 of $\partial\Omega$ representing the austenite-twinned martensite interface which is not assumed to be a straight segment. We prove

$$\inf_{u\in\mathcal{W}(\Omega)}\int_{\Omega}arphi(
abla u(x,y))dxdy=0$$

for an elastic energy density $\varphi : \mathbb{R}^2 \to [0, \infty)$ such that $\varphi(0, \pm 1) = 0$. Here $\mathcal{W}(\Omega)$ consists of all functions u from the Sobolev class $W^{1,\infty}(\Omega)$ such that $|u_y| = 1$ a.e. on Ω together with u = 0 on Γ_0 . Moreover some minimizing sequences vanishing on the whole boundary $\partial\Omega$ are constructed, that is, one can even take $\Gamma_0 = \partial\Omega$. We also show that the existence or nonexistence of minimizers depends on the shape of the austenite-twinned martensite interface Γ_0 .

AMS classification: 49, 74

Keywords: microstructure, martensitic phase transformation, elastic energy, minimizing sequences, Young measures.

1 Introduction.

In solid-solid phase transformations one often observes certain characteristical microstructural features involving fine mixtures of the phases. If we consider martensitic phase transformations, then one usually has a plane interface which separates one homogeneous phase called austenite from a very fine mixture of twins of the other phase termed martensite. We now consider a two-dimensional section and assume that for some physical reasons the interface which separates the two phases is not a segment but a curve not necessarily being smooth.

For instance, it is known that some applied small loads easily change the austenite-martensite interface. For further details concerning the physical background of martensitic phase transformation and also the mathematical modelling we refer the reader to the papers [B.J.₁] and [B.J.₂] and the references quoted therein. To give a more precise formulation of the problem we like to investigate, let us consider a bounded Lipschitz domain $\Omega \subset \mathbb{R}^2$ representing the martensitic configuration, and let Γ_0 denote a part of $\partial\Omega$ with positive measure having the meaning of the austenite-twinned martensite interface. Let $\varphi : \mathbb{R}^2 \to [0, \infty)$ denote a Borel function such that

$$\varphi(0,1) = \varphi(0,-1) = 0. \tag{1.1}$$

Figure 1. The austenite-twinned martensite interface

For example, φ could be the elastic energy density of the martensite with wells in $(0, \pm 1)$ corresponding to the stress-free states of two possible variants of the martensite. We then would like to consider the problem

$$I^{\infty} := \inf_{u \in \mathcal{W}(\Omega)} \int_{\Omega} \varphi(\nabla u(x, y)) dx dy$$
(1.2)

in the class of admissible comparison functions

$$\mathcal{W} := \mathcal{W}(\Omega) := \{ u \in W^{1,\infty}(\Omega) : |u_y| = 1 \text{ a.e. in } \Omega \text{ and } u = 0 \text{ on } \Gamma_0 \}.$$

Here $W^{1,\infty}(\Omega)$ is the Sobolev space of all weakly differentiable functions $u : \Omega \to \mathbb{R}$ such that $u, |\nabla u| \in L^{\infty}(\Omega)$. Since Ω is a bounded Lipschitz domain, Sobolev's embedding theorem implies $W^{1,\infty}(\Omega) \hookrightarrow C^0(\overline{\Omega})$, and the requirement u = 0 on Γ_0 has to be understood in the pointwise sense. If u = 0 on the whole of $\partial\Omega$, we just say that u is of class $W_0^{1,\infty}(\Omega)$. For a further discussion of Sobolev spaces we refer the reader to [A.].

We remark that the boundary condition occurring in \mathcal{W} refers to elastic compatibility with the austenitic phase in the extreme case of complete rigidity of the austenite (see [B.J.₁], [B.J.₂] and [Ko.]). Problems of the type (1.2) have been investigated by Chipot and Collins (compare [C.] and [C.C.]) but without the constraint $|u_y| = 1$. This constraint was introduced by Kohn and Müller (see [K.M.₁] and [K.M.₂]): they considered a functional consisting of an elastic energy plus a surface energy term for the case that the martensitic configuration is a rectangle like $(0, L) \times (0, 1)$ and the austenite-martensite interface is the segment $\{0\} \times (0, 1)$.

Problem (1.2) was studied in [E.F.] for the case when no loads are applied, i.e. the austenite-martensite interface is given by a segment Γ_0 . We proved

that the value of I^{∞} is zero by constructing suitable minimizing sequences from the class $\mathcal{W}(\Omega)$ which represent, according to the Ball-James theory, the microstructure. The minimizing sequences discussed in [E.F.] differ for the case when the segment Γ_0 is vertical and for the case when Γ_0 is oblique. In particular, for non-vertical segments we could even replace the set $\mathcal{W}(\Omega)$ by a smaller class by adding the additional constraint

 $|u_{yy}|$ is a Radon measure of finite mass

which is not true in the vertical case (see [W.]).

In the present note we want to extend the result of [E.F.] to the general case of curved boundary portions, precisely we have:

THEOREM 1.1 Let Ω be a bounded Lipschitz domain in \mathbb{R}^2 and consider a non empty portion Γ_0 of $\partial\Omega$ having positive measure. If φ satisfies (1.1), then we have

$$I^{\infty} := \inf_{u \in \mathcal{W}(\Omega)} \int_{\Omega} \varphi(\nabla u(x, y)) dx dy = 0.$$

Moreover, we can find a minimizing sequence $(u_n)_n \subset \mathcal{W}(\Omega)$ such that $u_n = 0$ on the whole boundary $\partial \Omega$.

For the proof we first discuss in Section 2 the case when the Lipschitz domain Ω is replaced by some elementary domain, e.g. the domain enclosed by a triangle or a square. Then, in Section 3, we consider the general situation by covering every bounded open set with a countable number of such elementary domains.

2 The case of some elementary domains.

Here we prove Theorem 1.1 for some special cases. First we let Δ denote the interior of the triangle with vertices in (-1, 0), (1, 0) and (0, 1).

THEOREM 2.1 Assume that φ satisfies (1.1). Then there exists a sequence $v_n \in W_0^{1,\infty}(\Delta)$ satisfying $|\partial_y v_n| = 1$ a.e. for each n and such that

$$\lim_{n \to \infty} \int_{\Delta} \varphi(\nabla v_n(x, y)) dx dy = 0.$$

Proof. Given $N \in \mathbb{N}$ we will define $u \in W_0^{1,\infty}(\Delta)$, $|u_y| = 1$, such that

$$\int_{\Delta}\varphi(\nabla u(x,y))dxdy$$

is of order $\frac{1}{N}$. Let $\delta := \frac{1}{N}$ and consider the δ -periodic extension to the whole line of

$$h(t) := \begin{cases} t & \text{if } 0 \le t \le \frac{\delta}{2}; \\ \delta - t & \text{if } \frac{\delta}{2} \le t \le \delta. \end{cases}$$

We then let

$$u(x,y) := \begin{cases} (x+1-y) \wedge h(y) & \text{if } (x,y) \in \Delta, -1 \le x \le 0, \\ \\ (1-x-y) \wedge h(y) & \text{if } (x,y) \in \Delta, 0 \le x \le 1. \end{cases}$$

Here we write $\alpha \wedge \beta$ for the minimum of two numbers α , $\beta \in \mathbb{R}$. Figure 2 below shows the situation for N = 3.

Figure 2: the function u for N = 3

Clearly $u \in W_0^{1,\infty}(\Delta)$ and

$$\nabla u(x,y) = (0,\pm 1)$$

for points (x, y) not belonging to the 2N triangles Δ_i and Δ'_i , $i = 1, \ldots, N$. It is easy to check that

$$abla u(x,y) = (1,-1) ext{ on } \Delta_i$$

whereas

$$\nabla u(x,y) = (-1,-1)$$
 on Δ'_i .

Therefore $|u_y| = 1$ a.e. on Δ and (1.1) implies

$$\begin{split} \int_{\Delta} \varphi(\nabla u(x,y)) dx dy &= \sum_{i=1}^{N} \Bigl[\int_{\Delta_{i}} \varphi(\nabla u(x,y)) dx dy + \int_{\Delta'_{i}} \varphi(\nabla u(x,y)) dx dy \Bigr] \\ &= \sum_{i=1}^{N} \Bigl[\mathcal{L}^{2}(\Delta_{i}) \varphi(1,-1) + \mathcal{L}^{2}(\Delta'_{i}) \varphi(-1,-1) \Bigr] \\ &= N \frac{\delta^{2}}{4} [\varphi(1,-1) + \varphi(-1,-1)], \end{split}$$

thus

$$0 \leq I^{\infty} \leq \int_{\Delta} \varphi(\nabla u(x,y)) dx dy = \frac{1}{4N} [\varphi(1,-1) + \varphi(-1,-1)],$$

and Theorem 2.1 is established.

Let S now denote the set of points (x, y) such that $(x, y) \in \overline{\Delta}$ or $(x, -y) \in \overline{\Delta}$, i.e. S is the closed square with vertices in $(\pm 1, 0)$ and $(0, \pm 1)$. Then we have the following

Corollary 2.1 Assume that φ satisfies (1.1). Then there exists a sequence $v_n \in W_0^{1,\infty}(\mathring{S})$ satisfying $|\partial_y v_n| = 1$ a.e. for each n and such that

$$\lim_{n \to \infty} \int_{S} \varphi(\nabla v_n(x, y)) dx dy = 0.$$

Proof. Let us define on S the following function

$$v(x,y) := \begin{cases} u(x,y) & \text{if } (x,y) \in \Delta, \\ \\ u(x,-y) & \text{if } (x,y) \in S \setminus \Delta \end{cases}$$

where the function $u: \Delta \to \mathbb{R}$ is defined in the proof of Theorem 2.1. One can easily check that

$$\int_{S} \varphi(\nabla v(x,y)) dx dy = \int_{\Delta} \varphi(\nabla u(x,y)) dx dy + \int_{\Delta} \tilde{\varphi}(\nabla u(x,y)) dx dy$$

where

$$\tilde{\varphi}(x,y) = \varphi(x,-y).$$

Thus

$$\int_{S} \varphi(\nabla v(x,y)) dx dy = \frac{1}{4N} [\varphi(1,-1) + \varphi(-1,-1) + \tilde{\varphi}(1,-1) + \tilde{\varphi}(-1,-1)]$$
$$= \frac{1}{4N} [\varphi(1,-1) + \varphi(-1,-1) + \varphi(1,1) + \varphi(-1,1)],$$

and Corollary 2.1 is proved.

REMARK 2.1 Notice that for the elementary domains we considered above one can add the constraint

 $|u_{yy}|$ is a Radon measure of finite mass.

One can also consider other elementary domains like squares with sides parallel to the x and y axis or discs and construct minimizing sequences using the principle of branching. But for these domains it is not possible to incorporate the above constraint.

3 The construction of minimizing sequences for general domains.

Here we are going to prove Theorem 1.1. To this purpose we need the following lemmas

LEMMA 3.1 Let Ω denote a bounded open subset of \mathbb{R}^2 . Then there exist points $(x_n, y_n) \in \Omega$ and positive numbers r_n such that

$$S_n := r_n S + (x_n, y_n) \subset \Omega \text{ and } \mathring{S}_l \cap \mathring{S}_k = \emptyset \text{ for } l \neq k,$$

where S is the square with vertices in $(\pm 1, 0)$ and $(0, \pm 1)$. Moreover, we have

$$\Omega = \bigcup_{n=0}^{+\infty} S_n$$

Proof. A multi-dimensional proof can be found in [S.]. Nevertheless for our two-dimensional case we give an alternative proof showing the evolution of the microstructure when it approaches the boundary. We put $\Omega_0 = \Omega$ and cover it with a scaled copy (with diameter δ) of the square S. We divide

this square into four squares by joining the midpoints of its sides and denote by S_0 the union of all squares which are inside Ω_0 . We then let

$$\Omega_1 = \Omega_0 \backslash \mathcal{S}_0$$

and divide the squares which intersect Ω_1 as above and put

$$\Omega_2 = \Omega_1 \backslash \mathcal{S}_1$$

where S_1 is the union of all squares inside Ω_1 . Repeating the above procedure, we inductively obtain two sequences $(\Omega_n)_n$ and $(S_n)_n$ such that

$$\begin{cases} \Omega_0 = \Omega, \\ \\ \Omega_{n+1} = \Omega_n \backslash \mathcal{S}_n \end{cases}$$

where S_n is the union of all squares inside Ω_n obtained at the $(n+1)^{\text{th}}$ step. Notice that the squares composing S_n are of diameter $\frac{\delta}{4^{n+1}}$. It is clear that

$$\Omega = \Omega_0 = \mathcal{S}_0 \cup \Omega_1 = \mathcal{S}_0 \cup \mathcal{S}_1 \cup \Omega_2 = \ldots = \left(\bigcup_{i=0}^n \mathcal{S}_i\right) \cup \Omega_{n+1} \text{ for all } n \in \mathbb{N}.$$

We claim that

$$\Omega = \bigcup_{n=0}^{+\infty} \mathcal{S}_n.$$

We proceed by contradiction, assuming that there exists $x \in \Omega$ such that

$$x \notin S_n$$
 for every $n \in \mathbb{N}$.

But if $x \notin S_n$, then x would belong to a square of diameter $\frac{\delta}{4^{n+1}}$ encountering the boundary of Ω . Thus

$$\operatorname{dist}(x,\partial\Omega) \leq \frac{\delta}{4^{n+1}} \text{ for every } n \in \mathbb{N}$$

where dist $(x, \partial \Omega)$ denotes the distance from x to the boundary $\partial \Omega$. Hence

$$\operatorname{dist}(x,\partial\Omega) = 0$$
, i.e. $x \in \partial\Omega$,

which is not possible. This completes the proof of the lemma.

We now return to our plane domain Ω . Applying the construction of Lemma 3.1 we find $r_n > 0$, $(x_n, y_n) \in \Omega$ such that the sets $S_n = r_n S + (x_n, y_n) \subset \Omega$ have the stated properties. Given a function $u_0 \in W_0^{1,\infty}(\mathring{S})$, we let

$$\begin{cases} u_n : S_n \to \mathbb{R}, \ u_n(x, y) := r_n u_0(\frac{1}{r_n}(x - x_n, y - y_n)), \\ u : \Omega \to \mathbb{R}, \ u(x, y) := \sum_{n=1}^{\infty} (\chi_{S_n}^{\circ} u_n)(x, y) \end{cases}$$
(3.1)

where $\chi_{\mathring{S}_n}$ denotes the characteristic function of the set \mathring{S}_n . Then we claim:

LEMMA 3.2 The function u defined in (3.1) is in the space $W_0^{1,\infty}(\Omega)$, and we have the following formula

$$\nabla u(x,y) = \sum_{n=1}^{\infty} (\chi_{\hat{S}_n} \nabla u_n)(x,y) = \sum_{n=1}^{\infty} \chi_{\hat{S}_n} \nabla u_0(\frac{1}{r_n}(x-x_n,y-y_n)) \text{ a.e. on } \Omega.$$

REMARK 3.1 If we know $|\partial_y u_0| = 1$ a.e. on $\overset{\circ}{S}$, then we deduce from the disjointness of the family $\{\overset{\circ}{S}_n\}$ that also $|u_y| = 1$ is true a.e. on Ω .

Proof of Lemma 3.2: On account of $(x_n, y_n) \in \Omega$, $S_n \subset \Omega$, the sequence $(r_n)_n$ stays bounded, thus

$$||u||_{L^{\infty}(\Omega)} \leq \sup_{n \in \mathbb{N}} r_n ||u_0||_{L^{\infty}(S)} < \infty.$$

In order to prove weak differentiability of the function u, we fix $\psi \in C_0^{\infty}(\Omega)$ and get from Lebesgue's theorem on dominated convergence

$$\int_{\Omega} u(x,y)\nabla\psi(x,y)dxdy = \sum_{n=1}^{\infty} \int_{\mathring{S}_n} u_n(x,y)\nabla\psi(x,y)dxdy.$$

Observing that $u_n = 0$ on ∂S_n , we can write

$$\int_{\mathring{S}_n} u_n(x,y) \nabla \psi(x,y) dx dy = -\int_{\mathring{S}_n} \nabla u_n(x,y) \psi(x,y) dx dy$$

and by the same reasoning as above (note: $||\nabla u_n||_{L^{\infty}(S_n)} = ||\nabla u_0||_{L^{\infty}(S)}$ and therefore $||\sum_{n=1}^M \chi_{S_n}^{\circ} \nabla u_n||_{L^{\infty}(\Omega)} = ||\nabla u_0||_{L^{\infty}(S)}$ for all $M \ge 1$) $-\sum_{n=1}^{\infty} \int_{S_n}^{\circ} \nabla u_n(x,y)\psi(x,y)dxdy = -\int_{\Omega} (\sum_{n=1}^{\infty} \chi_{S_n}^{\circ} \nabla u_n(x,y))\psi(x,y)dxdy,$ which proves that

$$\sum_{n=1}^{\infty} \chi_{\mathring{S}_n} \nabla u_n \in L^{\infty}(\Omega, \mathbb{R}^2)$$

is the weak derivative of u. Again by dominated convergence it is obvious that

$$\sum_{n=1}^{M} \chi_{\mathring{S}_{n}} u_{n} \to u, \ \sum_{n=1}^{M} \chi_{\mathring{S}_{n}} \nabla u_{n} \to \nabla u$$

as M goes to infinity in $L^p(\Omega)$ for any finite p. Since the compact sets S_n are included in Ω , we have

$$\sum_{n=1}^{M} \chi_{\overset{\circ}{S}_{n}} u_{n} \in W_{0}^{1,p}(\Omega),$$

thus $u \in W_0^{1,p}(\Omega)$, $p < \infty$. Lipschitz boundary of Ω guarantees that

$$W_0^{1,p}(\Omega) = \{ v \in W^{1,p}(\Omega) : B(v) = 0 \},\$$

where $B: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ is the trace operator. Recalling that for functions $v \in W^{1,p}(\Omega) \cap C^0(\overline{\Omega})$, B(v) is the pointwise trace, we finally deduce $u \in W_0^{1,\infty}(\Omega)$.

The proof of Theorem 1.1 can now be carried out as follows. Given $N \in \mathbb{N}$, we constructed in the proof of Corollary 2.1 a function $u_0 \in W_0^{1,\infty}(\mathring{S})$ such that $|\partial_y u_0| = 1$ on S and

$$\int_{S} \varphi(\nabla u_0(x,y)) dx dy = \frac{1}{4N} [\varphi(1,-1) + \varphi(-1,-1) + \varphi(1,1) + \varphi(-1,1)].$$

Let us consider the function u defined in (3.1) for this particular choice of u_0 . Lemma 3.2 implies $u \in W_0^{1,\infty}(\Omega)$, and from the remark after Lemma 3.2 we deduce $|u_y| = 1$ a.e. on Ω , thus $u \in \mathcal{W}(\Omega)$. We further have:

$$\int_{\Omega} \varphi(\nabla u(x,y)) dx dy = \sum_{n=1}^{\infty} \int_{S_n} \varphi(\nabla u_0(\frac{1}{r_n}(x-x_n,y-y_n))) dx dy$$
$$= \sum_{n=1}^{\infty} r_n^2 \int_{S} \varphi(\nabla u_0(x,y)) dx dy$$

so that

$$\int_{\Omega} \varphi(\nabla u(x,y)) dx dy = \frac{1}{4N} [\varphi(1,-1) + \varphi(-1,-1) + \varphi(1,1) + \varphi(-1,1)] \sum_{n=1}^{\infty} r_n^2.$$

Finally we observe

$$\mathcal{L}^2(\Omega) = \sum_{n=1}^{\infty} \mathcal{L}^2(r_n S + (x_n, y_n)) = 2\sum_{n=1}^{\infty} r_n^2,$$

hence

$$\int_{\Omega} \varphi(\nabla u(x,y)) dx dy = \frac{1}{2N} \mathcal{L}^2(\Omega) [\varphi(1,-1) + \varphi(-1,-1) + \varphi(1,1) + \varphi(-1,1)],$$

and since N was arbitrary, we have shown that $I^{\infty} = 0$. Moreover, it should be obvious how to obtain from the above construction a minimizing sequence in the class $\mathcal{W}(\Omega) \cap W_0^{1,\infty}(\Omega)$. This finishes the proof of Theorem 1.1.

4 Remarks.

In addition to (1.1) let us assume that the integrand φ satisfies

$$\varphi(p,\pm 1) = 0 \Longrightarrow p = 0. \tag{4.1}$$

Under this condition we like to investigate if the infimum $I^{\infty} = 0$ is attained by some function $u \in \mathcal{W}(\Omega)$. This heavily depends on the shape of the boundary portion. For example, if $\Gamma_0 \subset \mathbb{R} \times \{b\}$ for some number $b \in \mathbb{R}$, then clearly u(x, y) = y - b vanishes on Γ_0 , $\partial_y u \equiv 1$ and $\nabla u(x, y) = (0, 1)$, hence $\varphi(\nabla u(x, y)) = 0$ by (1.1). In order to exclude such a behaviour we let Σ denote the union of all rays starting from points $(x_0, y_0) \in \Gamma_0$ into Ω with direction (1, 0), and require

$$\Omega_0 := \Omega \cap \Sigma \text{ is open and nonempty.}$$
(4.2)

Of course, (4.2) does not hold in case $\Gamma_0 \subset \mathbb{R} \times \{b\}$.

THEOREM 4.1 Let (1.1), (4.1) and (4.2) hold. Then we have

$$\int_{\Omega} \varphi(\nabla u(x,y)) dx dy > 0$$

for any $u \in \mathcal{W}(\Omega)$.

Proof. If we assume that

$$\int_{\Omega} \varphi(\nabla u(x,y)) dx dy = 0$$

Figure 3: $\Omega = a \operatorname{disc}$

for some $u \in \mathcal{W}(\Omega)$, then we get from (4.1)

$$u_x = 0$$
 on Ω .

This implies the vanishing of u on any ray of the type defined before, hence, by (4.2), u = 0 on Ω_0 contradicting $u_y = \pm 1$ a.e.

Next we like to describe minimizing sequences in terms of Young measures (see [P.] for details about the notion Young measure)

THEOREM 4.2 Let Ω denote a bounded Lipschitz domain in \mathbb{R}^2 and assume that the boundary portion Γ_0 is chosen in such a way that $\Omega_0 = \Omega$ (see (4.2)). Suppose that the integrand $\varphi : \mathbb{R}^2 \to [0, \infty)$ is a continuous function such that

 $\varphi(p,q) = 0$ if and only if $(p,q) = (0,\pm 1)$.

Let $(u_n)_n$ denote a minimizing sequence of problem (1.2) such that

$$||u_n||_{L^{\infty}(\Omega)}, ||\nabla u_n||_{L^{\infty}(\Omega)} \le C$$

for a finite constant C independent of n. Then

 $u_n \to 0$ uniformly on Ω .

Moreover, the sequence of gradients $(\nabla u_n)_n$ defines a unique homogeneous Young measure given by

$$\nu_{(x,y)} = \frac{1}{2}\delta_{(0,-1)} + \frac{1}{2}\delta_{(0,1)} \text{ for a.a. } (x,y) \in \Omega,$$

where $\delta_{(0,\pm 1)}$ are the Dirac measures at $(0,\pm 1)$.

Proof. One proceeds as in [E.F.], we refer also to [C.] for a proof related to multiple-wells problems.

Corollary 4.1 Let Ω denote a bounded Lipschitz domain in \mathbb{R}^2 . Suppose that the integrand $\varphi : \mathbb{R}^2 \to [0, \infty)$ is a continuous function such that

 $\varphi(p,q) = 0$ if and only if $(p,q) = (0, \pm 1)$.

Let $(u_n)_n$ denote a minimizing sequence of problem (1.2) such that

$$||u_n||_{L^{\infty}(\Omega)}, ||\nabla u_n||_{L^{\infty}(\Omega)} \leq C.$$

Suppose further that (4.2) holds. Then

 $u_n \to 0$ uniformly on Ω_0 .

Moreover, the sequence of gradients $(\nabla u_n)_n$ defines a Young measure given by

$$u_{(x,y)} = \alpha(x)\delta_{(0,-1)} + (1 - \alpha(x))\delta_{(0,1)} \text{ for a.a. } (x,y) \in \Omega,$$

where $\alpha: \Omega \to [0,1]$ is a measurable function such that

$$lpha(x)=rac{1}{2} \ for \ a.e. \ in \ \Omega_0$$

Proof. The restriction of (u_n) to Ω_0 is a minimizing sequence of

$$I^{\infty}(\Omega_0) := \inf_{u \in \mathcal{W}(\Omega_0)} \int_{\Omega_0} \varphi(\nabla u(x, y)) dx dy = 0.$$

where $\mathcal{W}(\Omega_0)$ is defined with respect to the boundary portion $\Gamma_0 \cap \partial \Omega_0$. Since $(\Omega_0)_0 = \Omega_0$ with an obvious definition of $(\Omega_0)_0$, one can apply Theorem 4.2 to get Corollary 4.1.

REMARK 4.1 Note that $\Omega_0 = \Omega$ holds for the particular case $\Gamma_0 = \partial \Omega$. Now if $\Omega_0 \neq \Omega$ then the considered minimizing sequences do not necessarily converge to zero uniformly on the whole domain Ω and the related Young measure is in general not unique (see [E.F.] Remark 6 for an example).

Acknowlegments. We would like to thank Michel Chipot for his valuable comments which help us to improve the first version of this work.

References

[A.] R. A. Adams : Sobolev Spaces, Academic Press, New York (1975).

[B.J.₁] J. M. Ball and R. D. James : Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., 100, (1987), p. 13-52.

[B.J.₂] J. M. Ball and R. D. James : Proposed experimental tests of a theory of fine microstructures. Phil. Trans. Roy. Soc. London A, 338, (1992), p. 350-389.

[C.] M. Chipot : Numerical analysis of oscillations in nonconvex problems. Numerische Mathematik, 59, (1991), p. 747-767.

[C.C.] M. Chipot and C. Collins : Numerical approximation in variational problems with potential wells. SIAM J. of Numerical Analysis, 29, 4, (1993), p. 473-487.

[E.F.] A. Elfanni and M. Fuchs : The behaviour of microstructures with small shears of the austenite-martensite interface in martensitic phase transformations, Preprint-SFB 256 Bonn.

[Ko.] R. Kohn : The relationship between linear and nonlinear variational models of coherent phase transitions. In Proceedings of seventh Army Conference on applied Mathematics and Computing, West Point, June 1989.

 $[K.M._1]$ R. V. Kohn and S. Müller : Surface energy and microstructure in coherent phase transitions. Comm. Pure App. Math. 47, 4, (1994), p. 405-435.

[K.M.₂] R. V. Kohn and S. Müller : Branching of twins near an austenite/twinned martensite interface. Phil. Mag. Ser. A 66 (1992) 697-715.

[P.] P. Pedregal : Parametrized measures and variational principles, Birkhäuser, 1997.

[S.] E. Stein : Singular Integrals and differentiability properties of functions, Princeton University Press (1970).

[W.] M. Winter : Lavrentiev phenomenon in microstructure theory. Electron. J. Differential Equations, No 6 (1996).