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Abstract

Let © C R? denote a bounded Lipschitz domain and consider some
portion I'y of OS2 representing the austenite-twinned martensite inter-
face which is not assumed to be a straight segment. We prove

uEIVI\l/’f(‘Q) /Q ¢(Vu(z,y))dzdy =0
for an elastic energy density ¢ : R2 — [0, 00) such that ¢(0,+1) = 0.
Here W(Q) consists of all functions u from the Sobolev class W1 (Q)
such that |uy| = 1 a.e. on € together with v = 0 on I'y. Moreover
some minimizing sequences vanishing on the whole boundary 92 are
constructed, that is, one can even take 'y = 0€). We also show that
the existence or nonexistence of minimizers depends on the shape of
the austenite-twinned martensite interface I'y.

AMS classification: 49, 74

Keywords: microstructure, martensitic phase transformation, elastic energy,
minimizing sequences, Young measures.

1 Introduction.

In solid-solid phase transformations one often observes certain characteris-
tical microstructural features involving fine mixtures of the phases. If we
consider martensitic phase transformations, then one usually has a plane in-
terface which separates one homogeneous phase called austenite from a very
fine mixture of twins of the other phase termed martensite. We now con-
sider a two-dimensional section and assume that for some physical reasons
the interface which seperates the two phases is not a segment but a curve
not necessarily being smooth.

For instance, it is known that some applied small loads easily change the
austenite-martensite interface. For further details concerning the physical
background of martensitic phase transformation and also the mathematical
modelling we refer the reader to the papers [B.J.;] and [B.J.o] and the refer-
ences quoted therein. To give a more precise formulation of the problem we
like to investigate, let us consider a bounded Lipschitz domain Q C R? rep-
resenting the martensitic configuration, and let I'y denote a part of 0) with
positive measure having the meaning of the austenite-twinned martensite
interface. Let ¢ : R? — [0, 00) denote a Borel function such that

©(0,1) = ¢(0,—1) = 0. (1.1)
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Figure 1. The austenite—twinned martensite interfac

For example, ¢ could be the elastic energy density of the martensite with
wells in (0, +1) corresponding to the stress-free states of two possible variants
of the martensite. We then would like to consider the problem

I = inf dzd 1.2
nt [ e(Vulap)dsdy (12)

in the class of admissible comparison functions
Wi=W(Q) :={ueW"(Q) : |u,/=1ae. inQand u=0on [y}

Here WH(Q) is the Sobolev space of all weakly differentiable functions
u @ ©Q — R such that u, |Vu| € L*(2). Since Q is a bounded Lipschitz
domain, Sobolev’s embedding theorem implies W1 (Q) — C°(Q), and the
requirement u = 0 on 'y has to be understood in the pointwise sense. If
u = 0 on the whole of 9Q, we just say that u is of class W, °(Q). For a
further discussion of Sobolev spaces we refer the reader to [A.].

We remark that the boundary condition occurring in W refers to elastic com-
patibility with the austenitic phase in the extreme case of complete rigidity
of the austenite ( see [B.J.1], [B.J.2] and [Ko.]). Problems of the type (1.2)
have been investigated by Chipot and Collins ( compare [C.] and [C.C.]) but
without the constraint |u,| = 1. This constraint was introduced by Kohn and
Miiller ( see [K.M.;] and [K.M.,]): they considered a functional consisting of
an elastic energy plus a surface energy term for the case that the martensitic
configuration is a rectangle like (0, L) x (0,1) and the austenite-martensite
interface is the segment {0} x (0, 1).

Problem (1.2) was studied in [E.F.] for the case when no loads are applied,
i.e. the austenite-martensite interface is given by a segment I'y. We proved
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that the value of I*° is zero by constructing suitable minimizing sequences
from the class W(2) which represent, according to the Ball-James theory,
the microstructure. The minimizing sequences discussed in [E.F.] differ for
the case when the segment I’y is vertical and for the case when I’y is oblique.
In particular, for non-vertical segments we could even replace the set W({2)
by a smaller class by adding the additional constraint

|uyy| is @ Radon measure of finite mass

which is not true in the vertical case ( see [W.]).
In the present note we want to extend the result of [E.F.] to the general case
of curved boundary portions, precisely we have:

THEOREM 1.1 Let Q be a bounded Lipschitz domain in R? and consider
a non empty portion Ty of 02 having positive measure . If ¢ satisfies (1.1),
then we have

I® .= inf v dxdy = 0.
ue%(n)/n‘p( u(z,y))dzdy

Moreover, we can find a minimizing sequence (uy), C W(Q2) such that u,, = 0
on the whole boundary 0f).

For the proof we first discuss in Section 2 the case when the Lipschitz domain
() is replaced by some elementary domain, e.g. the domain enclosed by a
triangle or a square. Then, in Section 3, we consider the general situation by
covering every bounded open set with a countable number of such elementary
domains.

2 The case of some elementary domains.

Here we prove Theorem 1.1 for some special cases. First we let A denote the
interior of the triangle with vertices in (—1,0), (1,0) and (0, 1).

THEOREM 2.1 Assume that ¢ satisfies (1.1). Then there exists a se-
quence v, € Wy (A) satisfying |0yv,| = 1 a.e. for each n and such that

lim [ ¢o(Vu,(z,y))dzdy = 0.

n—oo A

Proof. Given N € N we will define u € W,**°(A), |u,| = 1, such that

/A o(Vu(z, y))dady



is of order % Let ¢ := % and consider the J-periodic extension to the whole
line of

t if0<t<g,
h(t) :=
§—t if<t<s
We then let
(z+1-y)Ah(y) if(z,y) €A, -1<2<0,
u(z,y) =

(1—-z—y)Ah(y) if(z,y) € A0<z<]1.

Here we write ao A § for the minimum of two numbers o, 5 € R. Figure 2
below shows the situation for N = 3.

Figure 2: the function u for N =3

Clearly u € W,°(A) and
Vu(z,y) = (0, £1)

for points (z,y) not belonging to the 2N triangles A; and A, i =1,..., N,
It is easy to check that

Vu(z,y) = (1,—1) on A,

whereas
Vu(z,y) = (—1,—1) on Al
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Therefore |u,| =1 a.e. on A and (1.1) implies

N

[ evuta iz =30 [

i=1 VYD

o(Vu(z, y))dady + / o(Vu(z, y))dudy

A

=3[ @ne, -1) + £2(ADp(-1,-1)]

=1

= N2 fo1,-1) + (-1, -1)]

thus
0< 1> < /A (Vu(z,y))dzdy = 3lp(1,~1) +o(~1,~1)},
and Theorem 2.1 is established.

n
Let S now denote the set of points (z,y) such that (z,y) € A or (z, —y) € A,
i.e. S is the closed square with vertices in (41, 0) and (0, +1). Then we have
the following

Corollary 2.1 Assume that ¢ satisfies (1.1). Then there exists a sequence
v, € Wy™(S) satisfying |0yvn| =1 a.e. for each n and such that

lim [ o(Vu,(z,y))dzdy = 0.

n—oo S

Proof. Let us define on S the following function

u(z,y) if (z,y) € A,
v(z,y) =
u(z,—y) if (z,y) € S\A

where the function v : A — R is defined in the proof of Theorem 2.1. One
can easily check that

/S o(Vo(z,y))dady = /A o(Vu(z, y))dady + /A H(Vu(z, y))dudy

where



Thus

| e(Votam)dedy = Tl =1) + ¢(=1,=1) + G(1—1) + 5(-1,-1)

_ %[@0(1, 1)+ (—1,-1) + ¢(1,1) + o(—1,1)],

and Corollary 2.1 is proved.
]

REMARK 2.1 Notice that for the elementary domains we considered above
one can add the constraint

|tyy| is a Radon measure of finite mass.

One can also consider other elementary domains like squares with sides paral-
lel to the x and y axis or discs and construct minimizing sequences using the
principle of branching. But for these domains it is not possible to incorporate
the above constraint.

3 The construction of minimizing sequences
for general domains.

Here we are going to prove Theorem 1.1. To this purpose we need the fol-
lowing lemmas

LEMMA 3.1 Let Q2 denote a bounded open subset of R?. Then there exist
points (Tn,yn) € Q and positive numbers r, such that

Sn :=10S + (T, yn) CQand S;N Sp=0 for | #k,
where S is the square with vertices in (£1,0) and (0,+1). Moreover, we have
+o00
Q=JS.
n=0
Proof. A multi-dimensional proof can be found in [S.]. Nevertheless for our
two-dimensional case we give an alternative proof showing the evolution of
the microstructure when it approaches the boundary. We put 2y = 2 and

cover it with a scaled copy ( with diameter §) of the square S. We divide
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this square into four squares by joining the midpoints of its sides and denote
by Sy the union of all squares which are inside €2;. We then let

Q1 = Q\So
and divide the squares which intersect §2; as above and put
Qy = U\S

where S is the union of all squares inside {2;. Repeating the above procedure,
we inductively obtain two sequences (£2,), and (S,), such that

Q() = Q,
Qn+1 - Qn\Sn

where S, is the union of all squares inside (2, obtained at the (n—i—l)th step.
Notice that the squares composing S, are of diameter 4;%. It is clear that

Q:QO ZSOUQl :80U81UQQ =...= (USZ) UQn—i—l for alln € N.
i=0
We claim that .
Q=[S
n=0
We proceed by contradiction, assuming that there exists « € €2 such that

x ¢ S, for every n € N.

But if x ¢ S,,, then 2 would belong to a square of diameter 4;% encountering
the boundary of 2. Thus

dist(z,00Q) <

e for every n € N

where dist(z, 0f2) denotes the distance from z to the boundary 02. Hence

dist(z,0Q) = 0, i.e. z € 09,

which is not possible. This completes the proof of the lemma.



We now return to our plane domain 2. Applying the construction of Lemma
3.1 we find 7, > 0, (zp,yn) € 2 such that the sets S, = r,S + (Zn, yn) C

have the stated properties. Given a function uy € Wy ’°°(§), we let
up Sy 2R, un(x: y) = Tnuo(i(ﬂf —Tny Y — yn))a

5 (3.1)
u: Q =R u(z,y):= Z(Xf%nu")(x’y)

n=1
where Xg denotes the characteristic function of the set S,. Then we claim:

LEMMA 3.2 The function u defined in (3.1) is in the space Wy '>°(S), and
we have the following formula

o0

Vu(z,y) = Z(Xo Vu,)(z,y) ZXO Vuo — Ty, Y — Yn)) a.e. on €.

n=1

REMARK 3.1 If we know |0yug| =1 a.e. on §, then we deduce from the
disjointness of the family {§n} that also |u,| =1 is true a.e. on .

Proof of Lemma 3.2: On account of (z,,y,) € Q, S, C €, the sequence
(rn)n stays bounded, thus

|| o) < supry ||to||reo(sy < 00.
neN

In order to prove weak differentiability of the function u, we fix ¥ € C§°(Q2)
and get from Lebesgue’s theorem on dominated convergence

/U(w,y)V¢(w,y)dwdy= Z/ un (@, y)Vip(z, y)dady.
Q n=1 n
Observing that u, = 0 on 0S,,, we can write

J. tnlas) Vi, y)dady = = [, V(o )b (o, )dody

n Sn

and by the same reasoning as above ( note: ||Vuy||z~(s,) = ||Vuo||r(s) and
M

therefore || ZX‘%nvunHLoo(Q) = ||Vug||pes(s) for all M > 1)
n=1

—Z Vun (z,y)¢(z, y)drdy = —/ ZXO Vu,(z,y))Y(z, y)dzdy,
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which proves that
Y Xz Vu, € L%(Q,R?)
n=1 "

is the weak derivative of u. Again by dominated convergence it is obvious
that

M M
g Xg Un = U, E X Vu, = Vu

as M goes to infinity in L?(2) for any finite p. Since the compact sets S,, are
included in €2, we have

M
ngnun € W,"(Q),
n=1

thus u € Wo1 P(€Q), p < co. Lipschitz boundary of ) guarantees that
WP (Q) = {v e W(Q) : B(v) =0},

where B : WHP(Q) — LP(99) is the trace operator. Recalling that for
functions v € WH(Q)NC°(Q2), B(v) is the pointwise trace, we finally deduce
u € Wy ().

n
The proof of Theorem 1.1 can now be carried out as follows. Given N € N,

we constructed in the proof of Corollary 2.1 a function uy € W, °°(§) such
that |Oyue| =1 on S and

[ (Ve u)dady = Zelo(, =1 + o(=1,21) + 9(1,1) + o1, 1)

Let us consider the function u defined in (3.1) for this particular choice of
uo. Lemma 3.2 implies u € W,°(Q), and from the remark after Lemma 3.2
we deduce |u,| =1 a.e. on €, thus u € W(). We further have:

o0

/QSD(VU(:E,y))dxdy = Zﬁ (Vuo( ! (x — T, Y — Yn)))dzdy
ZT / (Vug(z,y))dzdy
so that B
/Q (Vu(z,y))drdy = 7 lp(L=1)+ p(=1,~1) + p(1,1) + (-1, )] Y7
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Finally we observe

L) = L2(raS + (Tn, yn)) =2 17,
n=1 n=1

hence

| olutep)dedy = S5 L @)p(1,1) + o1, =1) + (1,1 + o1, 1)

and since N was arbitrary, we have shown that /* = 0. Moreover, it should
be obvious how to obtain from the above construction a minimizing sequence

in the class W(€Q) N W,*°(Q). This finishes the proof of Theorem 1.1.
]

4 Remarks.

In addition to (1.1) let us assume that the integrand ¢ satisfies
o(p,£1) =0=p=0. (4.1)

Under this condition we like to investigate if the infimum /*° = 0 is attained
by some function v € W(2). This heavily depends on the shape of the
boundary portion. For example, if 'y C R x {b} for some number b € R,
then clearly u(z,y) = y — b vanishes on Iy, d,u = 1 and Vu(z,y) = (0,1),
hence ¢(Vu(z,y)) =0 by (1.1). In order to exclude such a behaviour we let
Y} denote the union of all rays starting from points (o, yo) € I'g into 2 with
direction (1,0), and require

Qo := QN X is open and nonempty. (4.2)
Of course, (4.2) does not hold in case I'y C R x {b}.
THEOREM 4.1 Let (1.1), (4.1) and (4.2) hold. Then we have

/Q@(Vu(x,y))dxdy >0

for any u € W(Q).

Proof. If we assume that
/ o(Vu(z,y))drdy = 0
Q
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Figure3: 2 = a disc

for some u € W(Q), then we get from (4.1)
uz = 0 on (.

This implies the vanishing of v on any ray of the type defined before, hence,
by (4.2), u = 0 on €2y contradicting u, = %1 a.e.

]
Next we like to describe minimizing sequences in terms of Young measures (
see [P.] for details about the notion Young measure)

THEOREM 4.2 Let Q denote a bounded Lipschitz domain in R? and as-
sume that the boundary portion I'y is chosen in such a way that Qy = Q (see
(4.2)). Suppose that the integrand ¢ : R* — [0,00) is a continuous function
such that

(p,q) =0 if and only if (p,q) = (0,£1).
Let (uy), denote a minimizing sequence of problem (1.2) such that

unllzoo(@), [[VUn|lze@ < C
for a finite constant C' independent of n. Then
un — 0 uniformly on Q.

Moreover, the sequence of gradients (Vuy), defines a unique homogeneous
Young measure given by

1 1
Visy) = 5(5(0’_1) + 5(5(0,1) for a.a. (z,y) € Q,

where 0(o,+1) are the Dirac measures at (0,%1).
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Proof. One proceeds as in [E.F.], we refer also to [C.] for a proof related to
multiple-wells problems.

Corollary 4.1 Let Q denote a bounded Lipschitz domain in R?. Suppose
that the integrand ¢ : R? — [0,00) is a continuous function such that

¢(p,q) = 0 if and only if (p,q) = (0, 1)
Let (uy,), denote a minimizing sequence of problem (1.2) such that
[|un| |z (), [[Vtn]|Leo(@) < C.
Suppose further that (4.2) holds. Then
un — 0 uniformly on .

Moreover, the sequence of gradients (Vuy), defines a Young measure given
by
Vi) = (@)d(0,-1) + (1 — a(x))d0,) for a.a. (z,y) € Q,

where . : Q — [0, 1] is a measurable function such that

1
a(z) = 5 for a.e. in S

Proof. The restriction of (u,) to {2y is a minimizing sequence of

I*°(€Q) := inf =0.
©0):= inf [ o(Futr sy =0

where W() is defined with respect to the boundary portion I'oN 9. Since
(Q0)0 = Qo with an obvious definition of (£2)o, one can apply Theorem 4.2
to get Corollary 4.1.

REMARK 4.1 Note that Qg = € holds for the particular case T'y = 0f).
Now if Qg # Q then the considered minimizing sequences do not necessarily
converge to zero uniformly on the whole domain 0 and the related Young
measure is in general not unique (see [E.F.] Remark 6 for an example).
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